1 | //===----------------------------------------------------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #ifndef _LIBCPP___RANDOM_POISSON_DISTRIBUTION_H |
10 | #define _LIBCPP___RANDOM_POISSON_DISTRIBUTION_H |
11 | |
12 | #include <__config> |
13 | #include <__random/clamp_to_integral.h> |
14 | #include <__random/exponential_distribution.h> |
15 | #include <__random/is_valid.h> |
16 | #include <__random/normal_distribution.h> |
17 | #include <__random/uniform_real_distribution.h> |
18 | #include <cmath> |
19 | #include <iosfwd> |
20 | #include <limits> |
21 | |
22 | #if !defined(_LIBCPP_HAS_NO_PRAGMA_SYSTEM_HEADER) |
23 | # pragma GCC system_header |
24 | #endif |
25 | |
26 | _LIBCPP_PUSH_MACROS |
27 | #include <__undef_macros> |
28 | |
29 | _LIBCPP_BEGIN_NAMESPACE_STD |
30 | |
31 | template <class _IntType = int> |
32 | class _LIBCPP_TEMPLATE_VIS poisson_distribution { |
33 | static_assert(__libcpp_random_is_valid_inttype<_IntType>::value, "IntType must be a supported integer type" ); |
34 | |
35 | public: |
36 | // types |
37 | typedef _IntType result_type; |
38 | |
39 | class _LIBCPP_TEMPLATE_VIS param_type { |
40 | double __mean_; |
41 | double __s_; |
42 | double __d_; |
43 | double __l_; |
44 | double __omega_; |
45 | double __c0_; |
46 | double __c1_; |
47 | double __c2_; |
48 | double __c3_; |
49 | double __c_; |
50 | |
51 | public: |
52 | typedef poisson_distribution distribution_type; |
53 | |
54 | _LIBCPP_HIDE_FROM_ABI explicit param_type(double __mean = 1.0); |
55 | |
56 | _LIBCPP_HIDE_FROM_ABI double mean() const { return __mean_; } |
57 | |
58 | friend _LIBCPP_HIDE_FROM_ABI bool operator==(const param_type& __x, const param_type& __y) { |
59 | return __x.__mean_ == __y.__mean_; |
60 | } |
61 | friend _LIBCPP_HIDE_FROM_ABI bool operator!=(const param_type& __x, const param_type& __y) { return !(__x == __y); } |
62 | |
63 | friend class poisson_distribution; |
64 | }; |
65 | |
66 | private: |
67 | param_type __p_; |
68 | |
69 | public: |
70 | // constructors and reset functions |
71 | #ifndef _LIBCPP_CXX03_LANG |
72 | _LIBCPP_HIDE_FROM_ABI poisson_distribution() : poisson_distribution(1.0) {} |
73 | _LIBCPP_HIDE_FROM_ABI explicit poisson_distribution(double __mean) : __p_(__mean) {} |
74 | #else |
75 | _LIBCPP_HIDE_FROM_ABI explicit poisson_distribution(double __mean = 1.0) : __p_(__mean) {} |
76 | #endif |
77 | _LIBCPP_HIDE_FROM_ABI explicit poisson_distribution(const param_type& __p) : __p_(__p) {} |
78 | _LIBCPP_HIDE_FROM_ABI void reset() {} |
79 | |
80 | // generating functions |
81 | template <class _URNG> |
82 | _LIBCPP_HIDE_FROM_ABI result_type operator()(_URNG& __g) { |
83 | return (*this)(__g, __p_); |
84 | } |
85 | template <class _URNG> |
86 | _LIBCPP_HIDE_FROM_ABI result_type operator()(_URNG& __g, const param_type& __p); |
87 | |
88 | // property functions |
89 | _LIBCPP_HIDE_FROM_ABI double mean() const { return __p_.mean(); } |
90 | |
91 | _LIBCPP_HIDE_FROM_ABI param_type param() const { return __p_; } |
92 | _LIBCPP_HIDE_FROM_ABI void param(const param_type& __p) { __p_ = __p; } |
93 | |
94 | _LIBCPP_HIDE_FROM_ABI result_type min() const { return 0; } |
95 | _LIBCPP_HIDE_FROM_ABI result_type max() const { return numeric_limits<result_type>::max(); } |
96 | |
97 | friend _LIBCPP_HIDE_FROM_ABI bool operator==(const poisson_distribution& __x, const poisson_distribution& __y) { |
98 | return __x.__p_ == __y.__p_; |
99 | } |
100 | friend _LIBCPP_HIDE_FROM_ABI bool operator!=(const poisson_distribution& __x, const poisson_distribution& __y) { |
101 | return !(__x == __y); |
102 | } |
103 | }; |
104 | |
105 | template <class _IntType> |
106 | poisson_distribution<_IntType>::param_type::param_type(double __mean) |
107 | // According to the standard `inf` is a valid input, but it causes the |
108 | // distribution to hang, so we replace it with the maximum representable |
109 | // mean. |
110 | : __mean_(isinf(x: __mean) ? numeric_limits<double>::max() : __mean) { |
111 | if (__mean_ < 10) { |
112 | __s_ = 0; |
113 | __d_ = 0; |
114 | __l_ = std::exp(x: -__mean_); |
115 | __omega_ = 0; |
116 | __c3_ = 0; |
117 | __c2_ = 0; |
118 | __c1_ = 0; |
119 | __c0_ = 0; |
120 | __c_ = 0; |
121 | } else { |
122 | __s_ = std::sqrt(x: __mean_); |
123 | __d_ = 6 * __mean_ * __mean_; |
124 | __l_ = std::trunc(x: __mean_ - 1.1484); |
125 | __omega_ = .3989423 / __s_; |
126 | double __b1 = .4166667E-1 / __mean_; |
127 | double __b2 = .3 * __b1 * __b1; |
128 | __c3_ = .1428571 * __b1 * __b2; |
129 | __c2_ = __b2 - 15. * __c3_; |
130 | __c1_ = __b1 - 6. * __b2 + 45. * __c3_; |
131 | __c0_ = 1. - __b1 + 3. * __b2 - 15. * __c3_; |
132 | __c_ = .1069 / __mean_; |
133 | } |
134 | } |
135 | |
136 | template <class _IntType> |
137 | template <class _URNG> |
138 | _IntType poisson_distribution<_IntType>::operator()(_URNG& __urng, const param_type& __pr) { |
139 | static_assert(__libcpp_random_is_valid_urng<_URNG>::value, "" ); |
140 | double __tx; |
141 | uniform_real_distribution<double> __urd; |
142 | if (__pr.__mean_ < 10) { |
143 | __tx = 0; |
144 | for (double __p = __urd(__urng); __p > __pr.__l_; ++__tx) |
145 | __p *= __urd(__urng); |
146 | } else { |
147 | double __difmuk; |
148 | double __g = __pr.__mean_ + __pr.__s_ * normal_distribution<double>()(__urng); |
149 | double __u; |
150 | if (__g > 0) { |
151 | __tx = std::trunc(x: __g); |
152 | if (__tx >= __pr.__l_) |
153 | return std::__clamp_to_integral<result_type>(__tx); |
154 | __difmuk = __pr.__mean_ - __tx; |
155 | __u = __urd(__urng); |
156 | if (__pr.__d_ * __u >= __difmuk * __difmuk * __difmuk) |
157 | return std::__clamp_to_integral<result_type>(__tx); |
158 | } |
159 | exponential_distribution<double> __edist; |
160 | for (bool __using_exp_dist = false; true; __using_exp_dist = true) { |
161 | double __e; |
162 | if (__using_exp_dist || __g <= 0) { |
163 | double __t; |
164 | do { |
165 | __e = __edist(__urng); |
166 | __u = __urd(__urng); |
167 | __u += __u - 1; |
168 | __t = 1.8 + (__u < 0 ? -__e : __e); |
169 | } while (__t <= -.6744); |
170 | __tx = std::trunc(__pr.__mean_ + __pr.__s_ * __t); |
171 | __difmuk = __pr.__mean_ - __tx; |
172 | __using_exp_dist = true; |
173 | } |
174 | double __px; |
175 | double __py; |
176 | if (__tx < 10 && __tx >= 0) { |
177 | const double __fac[] = {1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880}; |
178 | __px = -__pr.__mean_; |
179 | __py = std::pow(__pr.__mean_, (double)__tx) / __fac[static_cast<int>(__tx)]; |
180 | } else { |
181 | double __del = .8333333E-1 / __tx; |
182 | __del -= 4.8 * __del * __del * __del; |
183 | double __v = __difmuk / __tx; |
184 | if (std::abs(lcpp_x: __v) > 0.25) |
185 | __px = __tx * std::log(x: 1 + __v) - __difmuk - __del; |
186 | else |
187 | __px = __tx * __v * __v * |
188 | (((((((.1250060 * __v + -.1384794) * __v + .1421878) * __v + -.1661269) * __v + .2000118) * __v + |
189 | -.2500068) * |
190 | __v + |
191 | .3333333) * |
192 | __v + |
193 | -.5) - |
194 | __del; |
195 | __py = .3989423 / std::sqrt(x: __tx); |
196 | } |
197 | double __r = (0.5 - __difmuk) / __pr.__s_; |
198 | double __r2 = __r * __r; |
199 | double __fx = -0.5 * __r2; |
200 | double __fy = __pr.__omega_ * (((__pr.__c3_ * __r2 + __pr.__c2_) * __r2 + __pr.__c1_) * __r2 + __pr.__c0_); |
201 | if (__using_exp_dist) { |
202 | if (__pr.__c_ * std::abs(lcpp_x: __u) <= __py * std::exp(x: __px + __e) - __fy * std::exp(x: __fx + __e)) |
203 | break; |
204 | } else { |
205 | if (__fy - __u * __fy <= __py * std::exp(x: __px - __fx)) |
206 | break; |
207 | } |
208 | } |
209 | } |
210 | return std::__clamp_to_integral<result_type>(__tx); |
211 | } |
212 | |
213 | template <class _CharT, class _Traits, class _IntType> |
214 | _LIBCPP_HIDE_FROM_ABI basic_ostream<_CharT, _Traits>& |
215 | operator<<(basic_ostream<_CharT, _Traits>& __os, const poisson_distribution<_IntType>& __x) { |
216 | __save_flags<_CharT, _Traits> __lx(__os); |
217 | typedef basic_ostream<_CharT, _Traits> _OStream; |
218 | __os.flags(_OStream::dec | _OStream::left | _OStream::fixed | _OStream::scientific); |
219 | return __os << __x.mean(); |
220 | } |
221 | |
222 | template <class _CharT, class _Traits, class _IntType> |
223 | _LIBCPP_HIDE_FROM_ABI basic_istream<_CharT, _Traits>& |
224 | operator>>(basic_istream<_CharT, _Traits>& __is, poisson_distribution<_IntType>& __x) { |
225 | typedef poisson_distribution<_IntType> _Eng; |
226 | typedef typename _Eng::param_type param_type; |
227 | __save_flags<_CharT, _Traits> __lx(__is); |
228 | typedef basic_istream<_CharT, _Traits> _Istream; |
229 | __is.flags(_Istream::dec | _Istream::skipws); |
230 | double __mean; |
231 | __is >> __mean; |
232 | if (!__is.fail()) |
233 | __x.param(param_type(__mean)); |
234 | return __is; |
235 | } |
236 | |
237 | _LIBCPP_END_NAMESPACE_STD |
238 | |
239 | _LIBCPP_POP_MACROS |
240 | |
241 | #endif // _LIBCPP___RANDOM_POISSON_DISTRIBUTION_H |
242 | |