1 | //===- FuzzerTracePC.cpp - PC tracing--------------------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // Trace PCs. |
9 | // This module implements __sanitizer_cov_trace_pc_guard[_init], |
10 | // the callback required for -fsanitize-coverage=trace-pc-guard instrumentation. |
11 | // |
12 | //===----------------------------------------------------------------------===// |
13 | |
14 | #include "FuzzerTracePC.h" |
15 | #include "FuzzerBuiltins.h" |
16 | #include "FuzzerBuiltinsMsvc.h" |
17 | #include "FuzzerCorpus.h" |
18 | #include "FuzzerDefs.h" |
19 | #include "FuzzerDictionary.h" |
20 | #include "FuzzerExtFunctions.h" |
21 | #include "FuzzerIO.h" |
22 | #include "FuzzerPlatform.h" |
23 | #include "FuzzerUtil.h" |
24 | #include "FuzzerValueBitMap.h" |
25 | #include <set> |
26 | |
27 | // Used by -fsanitize-coverage=stack-depth to track stack depth |
28 | ATTRIBUTES_INTERFACE_TLS_INITIAL_EXEC uintptr_t __sancov_lowest_stack; |
29 | |
30 | namespace fuzzer { |
31 | |
32 | TracePC TPC; |
33 | |
34 | size_t TracePC::GetTotalPCCoverage() { |
35 | return ObservedPCs.size(); |
36 | } |
37 | |
38 | |
39 | void TracePC::HandleInline8bitCountersInit(uint8_t *Start, uint8_t *Stop) { |
40 | if (Start == Stop) return; |
41 | if (NumModules && |
42 | Modules[NumModules - 1].Start() == Start) |
43 | return; |
44 | assert(NumModules < |
45 | sizeof(Modules) / sizeof(Modules[0])); |
46 | auto &M = Modules[NumModules++]; |
47 | uint8_t *AlignedStart = RoundUpByPage(P: Start); |
48 | uint8_t *AlignedStop = RoundDownByPage(P: Stop); |
49 | size_t NumFullPages = AlignedStop > AlignedStart ? |
50 | (AlignedStop - AlignedStart) / PageSize() : 0; |
51 | bool NeedFirst = Start < AlignedStart || !NumFullPages; |
52 | bool NeedLast = Stop > AlignedStop && AlignedStop >= AlignedStart; |
53 | M.NumRegions = NumFullPages + NeedFirst + NeedLast;; |
54 | assert(M.NumRegions > 0); |
55 | M.Regions = new Module::Region[M.NumRegions]; |
56 | assert(M.Regions); |
57 | size_t R = 0; |
58 | if (NeedFirst) |
59 | M.Regions[R++] = {.Start: Start, .Stop: std::min(a: Stop, b: AlignedStart), .Enabled: true, .OneFullPage: false}; |
60 | for (uint8_t *P = AlignedStart; P < AlignedStop; P += PageSize()) |
61 | M.Regions[R++] = {.Start: P, .Stop: P + PageSize(), .Enabled: true, .OneFullPage: true}; |
62 | if (NeedLast) |
63 | M.Regions[R++] = {.Start: AlignedStop, .Stop: Stop, .Enabled: true, .OneFullPage: false}; |
64 | assert(R == M.NumRegions); |
65 | assert(M.Size() == (size_t)(Stop - Start)); |
66 | assert(M.Stop() == Stop); |
67 | assert(M.Start() == Start); |
68 | NumInline8bitCounters += M.Size(); |
69 | } |
70 | |
71 | void TracePC::HandlePCsInit(const uintptr_t *Start, const uintptr_t *Stop) { |
72 | const PCTableEntry *B = reinterpret_cast<const PCTableEntry *>(Start); |
73 | const PCTableEntry *E = reinterpret_cast<const PCTableEntry *>(Stop); |
74 | if (NumPCTables && ModulePCTable[NumPCTables - 1].Start == B) return; |
75 | assert(NumPCTables < sizeof(ModulePCTable) / sizeof(ModulePCTable[0])); |
76 | ModulePCTable[NumPCTables++] = {.Start: B, .Stop: E}; |
77 | NumPCsInPCTables += E - B; |
78 | } |
79 | |
80 | void TracePC::PrintModuleInfo() { |
81 | if (NumModules) { |
82 | Printf(Fmt: "INFO: Loaded %zd modules (%zd inline 8-bit counters): " , |
83 | NumModules, NumInline8bitCounters); |
84 | for (size_t i = 0; i < NumModules; i++) |
85 | Printf(Fmt: "%zd [%p, %p), " , Modules[i].Size(), Modules[i].Start(), |
86 | Modules[i].Stop()); |
87 | Printf(Fmt: "\n" ); |
88 | } |
89 | if (NumPCTables) { |
90 | Printf(Fmt: "INFO: Loaded %zd PC tables (%zd PCs): " , NumPCTables, |
91 | NumPCsInPCTables); |
92 | for (size_t i = 0; i < NumPCTables; i++) { |
93 | Printf(Fmt: "%zd [%p,%p), " , ModulePCTable[i].Stop - ModulePCTable[i].Start, |
94 | ModulePCTable[i].Start, ModulePCTable[i].Stop); |
95 | } |
96 | Printf(Fmt: "\n" ); |
97 | |
98 | if (NumInline8bitCounters && NumInline8bitCounters != NumPCsInPCTables) { |
99 | Printf(Fmt: "ERROR: The size of coverage PC tables does not match the\n" |
100 | "number of instrumented PCs. This might be a compiler bug,\n" |
101 | "please contact the libFuzzer developers.\n" |
102 | "Also check https://bugs.llvm.org/show_bug.cgi?id=34636\n" |
103 | "for possible workarounds (tl;dr: don't use the old GNU ld)\n" ); |
104 | _Exit(status: 1); |
105 | } |
106 | } |
107 | if (size_t = ExtraCountersEnd() - ExtraCountersBegin()) |
108 | Printf(Fmt: "INFO: %zd Extra Counters\n" , NumExtraCounters); |
109 | |
110 | size_t MaxFeatures = CollectFeatures(HandleFeature: [](uint32_t) {}); |
111 | if (MaxFeatures > std::numeric_limits<uint32_t>::max()) |
112 | Printf(Fmt: "WARNING: The coverage PC tables may produce up to %zu features.\n" |
113 | "This exceeds the maximum 32-bit value. Some features may be\n" |
114 | "ignored, and fuzzing may become less precise. If possible,\n" |
115 | "consider refactoring the fuzzer into several smaller fuzzers\n" |
116 | "linked against only a portion of the current target.\n" , |
117 | MaxFeatures); |
118 | } |
119 | |
120 | ATTRIBUTE_NO_SANITIZE_ALL |
121 | void TracePC::HandleCallerCallee(uintptr_t Caller, uintptr_t Callee) { |
122 | const uintptr_t kBits = 12; |
123 | const uintptr_t kMask = (1 << kBits) - 1; |
124 | uintptr_t Idx = (Caller & kMask) | ((Callee & kMask) << kBits); |
125 | ValueProfileMap.AddValueModPrime(Value: Idx); |
126 | } |
127 | |
128 | /// \return the address of the previous instruction. |
129 | /// Note: the logic is copied from `sanitizer_common/sanitizer_stacktrace.h` |
130 | inline ALWAYS_INLINE uintptr_t GetPreviousInstructionPc(uintptr_t PC) { |
131 | #if defined(__arm__) |
132 | // T32 (Thumb) branch instructions might be 16 or 32 bit long, |
133 | // so we return (pc-2) in that case in order to be safe. |
134 | // For A32 mode we return (pc-4) because all instructions are 32 bit long. |
135 | return (PC - 3) & (~1); |
136 | #elif defined(__sparc__) || defined(__mips__) |
137 | return PC - 8; |
138 | #elif defined(__riscv__) |
139 | return PC - 2; |
140 | #elif defined(__i386__) || defined(__x86_64__) || defined(_M_IX86) || defined(_M_X64) |
141 | return PC - 1; |
142 | #else |
143 | return PC - 4; |
144 | #endif |
145 | } |
146 | |
147 | /// \return the address of the next instruction. |
148 | /// Note: the logic is copied from `sanitizer_common/sanitizer_stacktrace.cpp` |
149 | ALWAYS_INLINE uintptr_t TracePC::GetNextInstructionPc(uintptr_t PC) { |
150 | #if defined(__mips__) |
151 | return PC + 8; |
152 | #elif defined(__powerpc__) || defined(__sparc__) || defined(__arm__) || \ |
153 | defined(__aarch64__) || defined(__loongarch__) |
154 | return PC + 4; |
155 | #else |
156 | return PC + 1; |
157 | #endif |
158 | } |
159 | |
160 | void TracePC::UpdateObservedPCs() { |
161 | std::vector<uintptr_t> CoveredFuncs; |
162 | auto ObservePC = [&](const PCTableEntry *TE) { |
163 | if (ObservedPCs.insert(v: TE).second && DoPrintNewPCs) { |
164 | PrintPC(SymbolizedFMT: "\tNEW_PC: %p %F %L" , FallbackFMT: "\tNEW_PC: %p" , |
165 | PC: GetNextInstructionPc(PC: TE->PC)); |
166 | Printf(Fmt: "\n" ); |
167 | } |
168 | }; |
169 | |
170 | auto Observe = [&](const PCTableEntry *TE) { |
171 | if (PcIsFuncEntry(TE)) |
172 | if (++ObservedFuncs[TE->PC] == 1 && NumPrintNewFuncs) |
173 | CoveredFuncs.push_back(x: TE->PC); |
174 | ObservePC(TE); |
175 | }; |
176 | |
177 | if (NumPCsInPCTables) { |
178 | if (NumInline8bitCounters == NumPCsInPCTables) { |
179 | for (size_t i = 0; i < NumModules; i++) { |
180 | auto &M = Modules[i]; |
181 | assert(M.Size() == |
182 | (size_t)(ModulePCTable[i].Stop - ModulePCTable[i].Start)); |
183 | for (size_t r = 0; r < M.NumRegions; r++) { |
184 | auto &R = M.Regions[r]; |
185 | if (!R.Enabled) continue; |
186 | for (uint8_t *P = R.Start; P < R.Stop; P++) |
187 | if (*P) |
188 | Observe(&ModulePCTable[i].Start[M.Idx(P)]); |
189 | } |
190 | } |
191 | } |
192 | } |
193 | |
194 | for (size_t i = 0, N = Min(a: CoveredFuncs.size(), b: NumPrintNewFuncs); i < N; |
195 | i++) { |
196 | Printf(Fmt: "\tNEW_FUNC[%zd/%zd]: " , i + 1, CoveredFuncs.size()); |
197 | PrintPC(SymbolizedFMT: "%p %F %L" , FallbackFMT: "%p" , PC: GetNextInstructionPc(PC: CoveredFuncs[i])); |
198 | Printf(Fmt: "\n" ); |
199 | } |
200 | } |
201 | |
202 | uintptr_t TracePC::PCTableEntryIdx(const PCTableEntry *TE) { |
203 | size_t TotalTEs = 0; |
204 | for (size_t i = 0; i < NumPCTables; i++) { |
205 | auto &M = ModulePCTable[i]; |
206 | if (TE >= M.Start && TE < M.Stop) |
207 | return TotalTEs + TE - M.Start; |
208 | TotalTEs += M.Stop - M.Start; |
209 | } |
210 | assert(0); |
211 | return 0; |
212 | } |
213 | |
214 | const TracePC::PCTableEntry *TracePC::PCTableEntryByIdx(uintptr_t Idx) { |
215 | for (size_t i = 0; i < NumPCTables; i++) { |
216 | auto &M = ModulePCTable[i]; |
217 | size_t Size = M.Stop - M.Start; |
218 | if (Idx < Size) return &M.Start[Idx]; |
219 | Idx -= Size; |
220 | } |
221 | return nullptr; |
222 | } |
223 | |
224 | static std::string GetModuleName(uintptr_t PC) { |
225 | char ModulePathRaw[4096] = "" ; // What's PATH_MAX in portable C++? |
226 | void *OffsetRaw = nullptr; |
227 | if (!EF->__sanitizer_get_module_and_offset_for_pc( |
228 | reinterpret_cast<void *>(PC), ModulePathRaw, |
229 | sizeof(ModulePathRaw), &OffsetRaw)) |
230 | return "" ; |
231 | return ModulePathRaw; |
232 | } |
233 | |
234 | template<class CallBack> |
235 | void TracePC::IterateCoveredFunctions(CallBack CB) { |
236 | for (size_t i = 0; i < NumPCTables; i++) { |
237 | auto &M = ModulePCTable[i]; |
238 | assert(M.Start < M.Stop); |
239 | auto ModuleName = GetModuleName(PC: M.Start->PC); |
240 | for (auto NextFE = M.Start; NextFE < M.Stop; ) { |
241 | auto FE = NextFE; |
242 | assert(PcIsFuncEntry(FE) && "Not a function entry point" ); |
243 | do { |
244 | NextFE++; |
245 | } while (NextFE < M.Stop && !(PcIsFuncEntry(TE: NextFE))); |
246 | CB(FE, NextFE, ObservedFuncs[FE->PC]); |
247 | } |
248 | } |
249 | } |
250 | |
251 | void TracePC::SetFocusFunction(const std::string &FuncName) { |
252 | // This function should be called once. |
253 | assert(!FocusFunctionCounterPtr); |
254 | // "auto" is not a valid function name. If this function is called with "auto" |
255 | // that means the auto focus functionality failed. |
256 | if (FuncName.empty() || FuncName == "auto" ) |
257 | return; |
258 | for (size_t M = 0; M < NumModules; M++) { |
259 | auto &PCTE = ModulePCTable[M]; |
260 | size_t N = PCTE.Stop - PCTE.Start; |
261 | for (size_t I = 0; I < N; I++) { |
262 | if (!(PcIsFuncEntry(TE: &PCTE.Start[I]))) continue; // not a function entry. |
263 | auto Name = DescribePC(SymbolizedFMT: "%F" , PC: GetNextInstructionPc(PC: PCTE.Start[I].PC)); |
264 | if (Name[0] == 'i' && Name[1] == 'n' && Name[2] == ' ') |
265 | Name = Name.substr(pos: 3, n: std::string::npos); |
266 | if (FuncName != Name) continue; |
267 | Printf(Fmt: "INFO: Focus function is set to '%s'\n" , Name.c_str()); |
268 | FocusFunctionCounterPtr = Modules[M].Start() + I; |
269 | return; |
270 | } |
271 | } |
272 | |
273 | Printf(Fmt: "ERROR: Failed to set focus function. Make sure the function name is " |
274 | "valid (%s) and symbolization is enabled.\n" , FuncName.c_str()); |
275 | exit(status: 1); |
276 | } |
277 | |
278 | bool TracePC::ObservedFocusFunction() { |
279 | return FocusFunctionCounterPtr && *FocusFunctionCounterPtr; |
280 | } |
281 | |
282 | void TracePC::PrintCoverage(bool PrintAllCounters) { |
283 | if (!EF->__sanitizer_symbolize_pc || |
284 | !EF->__sanitizer_get_module_and_offset_for_pc) { |
285 | Printf(Fmt: "INFO: __sanitizer_symbolize_pc or " |
286 | "__sanitizer_get_module_and_offset_for_pc is not available," |
287 | " not printing coverage\n" ); |
288 | return; |
289 | } |
290 | Printf(Fmt: PrintAllCounters ? "FULL COVERAGE:\n" : "COVERAGE:\n" ); |
291 | auto CoveredFunctionCallback = [&](const PCTableEntry *First, |
292 | const PCTableEntry *Last, |
293 | uintptr_t Counter) { |
294 | assert(First < Last); |
295 | auto VisualizePC = GetNextInstructionPc(PC: First->PC); |
296 | std::string FileStr = DescribePC(SymbolizedFMT: "%s" , PC: VisualizePC); |
297 | if (!IsInterestingCoverageFile(FileName: FileStr)) |
298 | return; |
299 | std::string FunctionStr = DescribePC(SymbolizedFMT: "%F" , PC: VisualizePC); |
300 | if (FunctionStr.find(s: "in " ) == 0) |
301 | FunctionStr = FunctionStr.substr(pos: 3); |
302 | std::string LineStr = DescribePC(SymbolizedFMT: "%l" , PC: VisualizePC); |
303 | size_t NumEdges = Last - First; |
304 | std::vector<uintptr_t> UncoveredPCs; |
305 | std::vector<uintptr_t> CoveredPCs; |
306 | for (auto TE = First; TE < Last; TE++) |
307 | if (!ObservedPCs.count(k: TE)) |
308 | UncoveredPCs.push_back(x: TE->PC); |
309 | else |
310 | CoveredPCs.push_back(x: TE->PC); |
311 | |
312 | if (PrintAllCounters) { |
313 | Printf(Fmt: "U" ); |
314 | for (auto PC : UncoveredPCs) |
315 | Printf(Fmt: DescribePC(SymbolizedFMT: " %l" , PC: GetNextInstructionPc(PC)).c_str()); |
316 | Printf(Fmt: "\n" ); |
317 | |
318 | Printf(Fmt: "C" ); |
319 | for (auto PC : CoveredPCs) |
320 | Printf(Fmt: DescribePC(SymbolizedFMT: " %l" , PC: GetNextInstructionPc(PC)).c_str()); |
321 | Printf(Fmt: "\n" ); |
322 | } else { |
323 | Printf(Fmt: "%sCOVERED_FUNC: hits: %zd" , Counter ? "" : "UN" , Counter); |
324 | Printf(Fmt: " edges: %zd/%zd" , NumEdges - UncoveredPCs.size(), NumEdges); |
325 | Printf(Fmt: " %s %s:%s\n" , FunctionStr.c_str(), FileStr.c_str(), |
326 | LineStr.c_str()); |
327 | if (Counter) |
328 | for (auto PC : UncoveredPCs) |
329 | Printf(Fmt: " UNCOVERED_PC: %s\n" , |
330 | DescribePC(SymbolizedFMT: "%s:%l" , PC: GetNextInstructionPc(PC)).c_str()); |
331 | } |
332 | }; |
333 | |
334 | IterateCoveredFunctions(CB: CoveredFunctionCallback); |
335 | } |
336 | |
337 | // Value profile. |
338 | // We keep track of various values that affect control flow. |
339 | // These values are inserted into a bit-set-based hash map. |
340 | // Every new bit in the map is treated as a new coverage. |
341 | // |
342 | // For memcmp/strcmp/etc the interesting value is the length of the common |
343 | // prefix of the parameters. |
344 | // For cmp instructions the interesting value is a XOR of the parameters. |
345 | // The interesting value is mixed up with the PC and is then added to the map. |
346 | |
347 | ATTRIBUTE_NO_SANITIZE_ALL |
348 | void TracePC::AddValueForMemcmp(void *caller_pc, const void *s1, const void *s2, |
349 | size_t n, bool StopAtZero) { |
350 | if (!n) return; |
351 | size_t Len = std::min(a: n, b: Word::GetMaxSize()); |
352 | const uint8_t *A1 = reinterpret_cast<const uint8_t *>(s1); |
353 | const uint8_t *A2 = reinterpret_cast<const uint8_t *>(s2); |
354 | uint8_t B1[Word::kMaxSize]; |
355 | uint8_t B2[Word::kMaxSize]; |
356 | // Copy the data into locals in this non-msan-instrumented function |
357 | // to avoid msan complaining further. |
358 | size_t Hash = 0; // Compute some simple hash of both strings. |
359 | for (size_t i = 0; i < Len; i++) { |
360 | B1[i] = A1[i]; |
361 | B2[i] = A2[i]; |
362 | size_t T = B1[i]; |
363 | Hash ^= (T << 8) | B2[i]; |
364 | } |
365 | size_t I = 0; |
366 | uint8_t HammingDistance = 0; |
367 | for (; I < Len; I++) { |
368 | if (B1[I] != B2[I] || (StopAtZero && B1[I] == 0)) { |
369 | HammingDistance = static_cast<uint8_t>(Popcountll(X: B1[I] ^ B2[I])); |
370 | break; |
371 | } |
372 | } |
373 | size_t PC = reinterpret_cast<size_t>(caller_pc); |
374 | size_t Idx = (PC & 4095) | (I << 12); |
375 | Idx += HammingDistance; |
376 | ValueProfileMap.AddValue(Value: Idx); |
377 | TORCW.Insert(Idx: Idx ^ Hash, Arg1: Word(B1, Len), Arg2: Word(B2, Len)); |
378 | } |
379 | |
380 | template <class T> |
381 | ATTRIBUTE_TARGET_POPCNT ALWAYS_INLINE |
382 | ATTRIBUTE_NO_SANITIZE_ALL |
383 | void TracePC::HandleCmp(uintptr_t PC, T Arg1, T Arg2) { |
384 | uint64_t ArgXor = Arg1 ^ Arg2; |
385 | if (sizeof(T) == 4) |
386 | TORC4.Insert(Idx: ArgXor, Arg1, Arg2); |
387 | else if (sizeof(T) == 8) |
388 | TORC8.Insert(Idx: ArgXor, Arg1, Arg2); |
389 | uint64_t HammingDistance = Popcountll(X: ArgXor); // [0,64] |
390 | uint64_t AbsoluteDistance = (Arg1 == Arg2 ? 0 : Clzll(Arg1 - Arg2) + 1); |
391 | ValueProfileMap.AddValue(Value: PC * 128 + HammingDistance); |
392 | ValueProfileMap.AddValue(Value: PC * 128 + 64 + AbsoluteDistance); |
393 | } |
394 | |
395 | ATTRIBUTE_NO_SANITIZE_MEMORY |
396 | static size_t InternalStrnlen(const char *S, size_t MaxLen) { |
397 | size_t Len = 0; |
398 | for (; Len < MaxLen && S[Len]; Len++) {} |
399 | return Len; |
400 | } |
401 | |
402 | // Finds min of (strlen(S1), strlen(S2)). |
403 | // Needed because one of these strings may actually be non-zero terminated. |
404 | ATTRIBUTE_NO_SANITIZE_MEMORY |
405 | static size_t InternalStrnlen2(const char *S1, const char *S2) { |
406 | size_t Len = 0; |
407 | for (; S1[Len] && S2[Len]; Len++) {} |
408 | return Len; |
409 | } |
410 | |
411 | void TracePC::ClearInlineCounters() { |
412 | IterateCounterRegions(CB: [](const Module::Region &R){ |
413 | if (R.Enabled) |
414 | memset(s: R.Start, c: 0, n: R.Stop - R.Start); |
415 | }); |
416 | } |
417 | |
418 | ATTRIBUTE_NO_SANITIZE_ALL |
419 | void TracePC::RecordInitialStack() { |
420 | int stack; |
421 | __sancov_lowest_stack = InitialStack = reinterpret_cast<uintptr_t>(&stack); |
422 | } |
423 | |
424 | uintptr_t TracePC::GetMaxStackOffset() const { |
425 | return InitialStack - __sancov_lowest_stack; // Stack grows down |
426 | } |
427 | |
428 | void WarnAboutDeprecatedInstrumentation(const char *flag) { |
429 | // Use RawPrint because Printf cannot be used on Windows before OutputFile is |
430 | // initialized. |
431 | RawPrint(Str: flag); |
432 | RawPrint( |
433 | Str: " is no longer supported by libFuzzer.\n" |
434 | "Please either migrate to a compiler that supports -fsanitize=fuzzer\n" |
435 | "or use an older version of libFuzzer\n" ); |
436 | exit(status: 1); |
437 | } |
438 | |
439 | } // namespace fuzzer |
440 | |
441 | extern "C" { |
442 | ATTRIBUTE_INTERFACE |
443 | ATTRIBUTE_NO_SANITIZE_ALL |
444 | void __sanitizer_cov_trace_pc_guard(uint32_t *Guard) { |
445 | fuzzer::WarnAboutDeprecatedInstrumentation( |
446 | flag: "-fsanitize-coverage=trace-pc-guard" ); |
447 | } |
448 | |
449 | // Best-effort support for -fsanitize-coverage=trace-pc, which is available |
450 | // in both Clang and GCC. |
451 | ATTRIBUTE_INTERFACE |
452 | ATTRIBUTE_NO_SANITIZE_ALL |
453 | void __sanitizer_cov_trace_pc() { |
454 | fuzzer::WarnAboutDeprecatedInstrumentation(flag: "-fsanitize-coverage=trace-pc" ); |
455 | } |
456 | |
457 | ATTRIBUTE_INTERFACE |
458 | void __sanitizer_cov_trace_pc_guard_init(uint32_t *Start, uint32_t *Stop) { |
459 | fuzzer::WarnAboutDeprecatedInstrumentation( |
460 | flag: "-fsanitize-coverage=trace-pc-guard" ); |
461 | } |
462 | |
463 | ATTRIBUTE_INTERFACE |
464 | void __sanitizer_cov_8bit_counters_init(uint8_t *Start, uint8_t *Stop) { |
465 | fuzzer::TPC.HandleInline8bitCountersInit(Start, Stop); |
466 | } |
467 | |
468 | ATTRIBUTE_INTERFACE |
469 | void __sanitizer_cov_pcs_init(const uintptr_t *pcs_beg, |
470 | const uintptr_t *pcs_end) { |
471 | fuzzer::TPC.HandlePCsInit(Start: pcs_beg, Stop: pcs_end); |
472 | } |
473 | |
474 | ATTRIBUTE_INTERFACE |
475 | ATTRIBUTE_NO_SANITIZE_ALL |
476 | void __sanitizer_cov_trace_pc_indir(uintptr_t Callee) { |
477 | uintptr_t PC = reinterpret_cast<uintptr_t>(GET_CALLER_PC()); |
478 | fuzzer::TPC.HandleCallerCallee(Caller: PC, Callee); |
479 | } |
480 | |
481 | ATTRIBUTE_INTERFACE |
482 | ATTRIBUTE_NO_SANITIZE_ALL |
483 | ATTRIBUTE_TARGET_POPCNT |
484 | void __sanitizer_cov_trace_cmp8(uint64_t Arg1, uint64_t Arg2) { |
485 | uintptr_t PC = reinterpret_cast<uintptr_t>(GET_CALLER_PC()); |
486 | fuzzer::TPC.HandleCmp(PC, Arg1, Arg2); |
487 | } |
488 | |
489 | ATTRIBUTE_INTERFACE |
490 | ATTRIBUTE_NO_SANITIZE_ALL |
491 | ATTRIBUTE_TARGET_POPCNT |
492 | // Now the __sanitizer_cov_trace_const_cmp[1248] callbacks just mimic |
493 | // the behaviour of __sanitizer_cov_trace_cmp[1248] ones. This, however, |
494 | // should be changed later to make full use of instrumentation. |
495 | void __sanitizer_cov_trace_const_cmp8(uint64_t Arg1, uint64_t Arg2) { |
496 | uintptr_t PC = reinterpret_cast<uintptr_t>(GET_CALLER_PC()); |
497 | fuzzer::TPC.HandleCmp(PC, Arg1, Arg2); |
498 | } |
499 | |
500 | ATTRIBUTE_INTERFACE |
501 | ATTRIBUTE_NO_SANITIZE_ALL |
502 | ATTRIBUTE_TARGET_POPCNT |
503 | void __sanitizer_cov_trace_cmp4(uint32_t Arg1, uint32_t Arg2) { |
504 | uintptr_t PC = reinterpret_cast<uintptr_t>(GET_CALLER_PC()); |
505 | fuzzer::TPC.HandleCmp(PC, Arg1, Arg2); |
506 | } |
507 | |
508 | ATTRIBUTE_INTERFACE |
509 | ATTRIBUTE_NO_SANITIZE_ALL |
510 | ATTRIBUTE_TARGET_POPCNT |
511 | void __sanitizer_cov_trace_const_cmp4(uint32_t Arg1, uint32_t Arg2) { |
512 | uintptr_t PC = reinterpret_cast<uintptr_t>(GET_CALLER_PC()); |
513 | fuzzer::TPC.HandleCmp(PC, Arg1, Arg2); |
514 | } |
515 | |
516 | ATTRIBUTE_INTERFACE |
517 | ATTRIBUTE_NO_SANITIZE_ALL |
518 | ATTRIBUTE_TARGET_POPCNT |
519 | void __sanitizer_cov_trace_cmp2(uint16_t Arg1, uint16_t Arg2) { |
520 | uintptr_t PC = reinterpret_cast<uintptr_t>(GET_CALLER_PC()); |
521 | fuzzer::TPC.HandleCmp(PC, Arg1, Arg2); |
522 | } |
523 | |
524 | ATTRIBUTE_INTERFACE |
525 | ATTRIBUTE_NO_SANITIZE_ALL |
526 | ATTRIBUTE_TARGET_POPCNT |
527 | void __sanitizer_cov_trace_const_cmp2(uint16_t Arg1, uint16_t Arg2) { |
528 | uintptr_t PC = reinterpret_cast<uintptr_t>(GET_CALLER_PC()); |
529 | fuzzer::TPC.HandleCmp(PC, Arg1, Arg2); |
530 | } |
531 | |
532 | ATTRIBUTE_INTERFACE |
533 | ATTRIBUTE_NO_SANITIZE_ALL |
534 | ATTRIBUTE_TARGET_POPCNT |
535 | void __sanitizer_cov_trace_cmp1(uint8_t Arg1, uint8_t Arg2) { |
536 | uintptr_t PC = reinterpret_cast<uintptr_t>(GET_CALLER_PC()); |
537 | fuzzer::TPC.HandleCmp(PC, Arg1, Arg2); |
538 | } |
539 | |
540 | ATTRIBUTE_INTERFACE |
541 | ATTRIBUTE_NO_SANITIZE_ALL |
542 | ATTRIBUTE_TARGET_POPCNT |
543 | void __sanitizer_cov_trace_const_cmp1(uint8_t Arg1, uint8_t Arg2) { |
544 | uintptr_t PC = reinterpret_cast<uintptr_t>(GET_CALLER_PC()); |
545 | fuzzer::TPC.HandleCmp(PC, Arg1, Arg2); |
546 | } |
547 | |
548 | ATTRIBUTE_INTERFACE |
549 | ATTRIBUTE_NO_SANITIZE_ALL |
550 | ATTRIBUTE_TARGET_POPCNT |
551 | void __sanitizer_cov_trace_switch(uint64_t Val, uint64_t *Cases) { |
552 | uint64_t N = Cases[0]; |
553 | uint64_t ValSizeInBits = Cases[1]; |
554 | uint64_t *Vals = Cases + 2; |
555 | // Skip the most common and the most boring case: all switch values are small. |
556 | // We may want to skip this at compile-time, but it will make the |
557 | // instrumentation less general. |
558 | if (Vals[N - 1] < 256) |
559 | return; |
560 | // Also skip small inputs values, they won't give good signal. |
561 | if (Val < 256) |
562 | return; |
563 | uintptr_t PC = reinterpret_cast<uintptr_t>(GET_CALLER_PC()); |
564 | size_t i; |
565 | uint64_t Smaller = 0; |
566 | uint64_t Larger = ~(uint64_t)0; |
567 | // Find two switch values such that Smaller < Val < Larger. |
568 | // Use 0 and 0xfff..f as the defaults. |
569 | for (i = 0; i < N; i++) { |
570 | if (Val < Vals[i]) { |
571 | Larger = Vals[i]; |
572 | break; |
573 | } |
574 | if (Val > Vals[i]) Smaller = Vals[i]; |
575 | } |
576 | |
577 | // Apply HandleCmp to {Val,Smaller} and {Val, Larger}, |
578 | // use i as the PC modifier for HandleCmp. |
579 | if (ValSizeInBits == 16) { |
580 | fuzzer::TPC.HandleCmp(PC: PC + 2 * i, Arg1: static_cast<uint16_t>(Val), |
581 | Arg2: (uint16_t)(Smaller)); |
582 | fuzzer::TPC.HandleCmp(PC: PC + 2 * i + 1, Arg1: static_cast<uint16_t>(Val), |
583 | Arg2: (uint16_t)(Larger)); |
584 | } else if (ValSizeInBits == 32) { |
585 | fuzzer::TPC.HandleCmp(PC: PC + 2 * i, Arg1: static_cast<uint32_t>(Val), |
586 | Arg2: (uint32_t)(Smaller)); |
587 | fuzzer::TPC.HandleCmp(PC: PC + 2 * i + 1, Arg1: static_cast<uint32_t>(Val), |
588 | Arg2: (uint32_t)(Larger)); |
589 | } else { |
590 | fuzzer::TPC.HandleCmp(PC: PC + 2*i, Arg1: Val, Arg2: Smaller); |
591 | fuzzer::TPC.HandleCmp(PC: PC + 2*i + 1, Arg1: Val, Arg2: Larger); |
592 | } |
593 | } |
594 | |
595 | ATTRIBUTE_INTERFACE |
596 | ATTRIBUTE_NO_SANITIZE_ALL |
597 | ATTRIBUTE_TARGET_POPCNT |
598 | void __sanitizer_cov_trace_div4(uint32_t Val) { |
599 | uintptr_t PC = reinterpret_cast<uintptr_t>(GET_CALLER_PC()); |
600 | fuzzer::TPC.HandleCmp(PC, Arg1: Val, Arg2: (uint32_t)0); |
601 | } |
602 | |
603 | ATTRIBUTE_INTERFACE |
604 | ATTRIBUTE_NO_SANITIZE_ALL |
605 | ATTRIBUTE_TARGET_POPCNT |
606 | void __sanitizer_cov_trace_div8(uint64_t Val) { |
607 | uintptr_t PC = reinterpret_cast<uintptr_t>(GET_CALLER_PC()); |
608 | fuzzer::TPC.HandleCmp(PC, Arg1: Val, Arg2: (uint64_t)0); |
609 | } |
610 | |
611 | ATTRIBUTE_INTERFACE |
612 | ATTRIBUTE_NO_SANITIZE_ALL |
613 | ATTRIBUTE_TARGET_POPCNT |
614 | void __sanitizer_cov_trace_gep(uintptr_t Idx) { |
615 | uintptr_t PC = reinterpret_cast<uintptr_t>(GET_CALLER_PC()); |
616 | fuzzer::TPC.HandleCmp(PC, Arg1: Idx, Arg2: (uintptr_t)0); |
617 | } |
618 | |
619 | ATTRIBUTE_INTERFACE ATTRIBUTE_NO_SANITIZE_MEMORY |
620 | void __sanitizer_weak_hook_memcmp(void *caller_pc, const void *s1, |
621 | const void *s2, size_t n, int result) { |
622 | if (!fuzzer::RunningUserCallback) return; |
623 | if (result == 0) return; // No reason to mutate. |
624 | if (n <= 1) return; // Not interesting. |
625 | fuzzer::TPC.AddValueForMemcmp(caller_pc, s1, s2, n, /*StopAtZero*/false); |
626 | } |
627 | |
628 | ATTRIBUTE_INTERFACE ATTRIBUTE_NO_SANITIZE_MEMORY |
629 | void __sanitizer_weak_hook_strncmp(void *caller_pc, const char *s1, |
630 | const char *s2, size_t n, int result) { |
631 | if (!fuzzer::RunningUserCallback) return; |
632 | if (result == 0) return; // No reason to mutate. |
633 | size_t Len1 = fuzzer::InternalStrnlen(S: s1, MaxLen: n); |
634 | size_t Len2 = fuzzer::InternalStrnlen(S: s2, MaxLen: n); |
635 | n = std::min(a: n, b: Len1); |
636 | n = std::min(a: n, b: Len2); |
637 | if (n <= 1) return; // Not interesting. |
638 | fuzzer::TPC.AddValueForMemcmp(caller_pc, s1, s2, n, /*StopAtZero*/true); |
639 | } |
640 | |
641 | ATTRIBUTE_INTERFACE ATTRIBUTE_NO_SANITIZE_MEMORY |
642 | void __sanitizer_weak_hook_strcmp(void *caller_pc, const char *s1, |
643 | const char *s2, int result) { |
644 | if (!fuzzer::RunningUserCallback) return; |
645 | if (result == 0) return; // No reason to mutate. |
646 | size_t N = fuzzer::InternalStrnlen2(S1: s1, S2: s2); |
647 | if (N <= 1) return; // Not interesting. |
648 | fuzzer::TPC.AddValueForMemcmp(caller_pc, s1, s2, n: N, /*StopAtZero*/true); |
649 | } |
650 | |
651 | ATTRIBUTE_INTERFACE ATTRIBUTE_NO_SANITIZE_MEMORY |
652 | void __sanitizer_weak_hook_strncasecmp(void *called_pc, const char *s1, |
653 | const char *s2, size_t n, int result) { |
654 | if (!fuzzer::RunningUserCallback) return; |
655 | return __sanitizer_weak_hook_strncmp(caller_pc: called_pc, s1, s2, n, result); |
656 | } |
657 | |
658 | ATTRIBUTE_INTERFACE ATTRIBUTE_NO_SANITIZE_MEMORY |
659 | void __sanitizer_weak_hook_strcasecmp(void *called_pc, const char *s1, |
660 | const char *s2, int result) { |
661 | if (!fuzzer::RunningUserCallback) return; |
662 | return __sanitizer_weak_hook_strcmp(caller_pc: called_pc, s1, s2, result); |
663 | } |
664 | |
665 | ATTRIBUTE_INTERFACE ATTRIBUTE_NO_SANITIZE_MEMORY |
666 | void __sanitizer_weak_hook_strstr(void *called_pc, const char *s1, |
667 | const char *s2, char *result) { |
668 | if (!fuzzer::RunningUserCallback) return; |
669 | fuzzer::TPC.MMT.Add(Data: reinterpret_cast<const uint8_t *>(s2), Size: strlen(s: s2)); |
670 | } |
671 | |
672 | ATTRIBUTE_INTERFACE ATTRIBUTE_NO_SANITIZE_MEMORY |
673 | void __sanitizer_weak_hook_strcasestr(void *called_pc, const char *s1, |
674 | const char *s2, char *result) { |
675 | if (!fuzzer::RunningUserCallback) return; |
676 | fuzzer::TPC.MMT.Add(Data: reinterpret_cast<const uint8_t *>(s2), Size: strlen(s: s2)); |
677 | } |
678 | |
679 | ATTRIBUTE_INTERFACE ATTRIBUTE_NO_SANITIZE_MEMORY |
680 | void __sanitizer_weak_hook_memmem(void *called_pc, const void *s1, size_t len1, |
681 | const void *s2, size_t len2, void *result) { |
682 | if (!fuzzer::RunningUserCallback) return; |
683 | fuzzer::TPC.MMT.Add(Data: reinterpret_cast<const uint8_t *>(s2), Size: len2); |
684 | } |
685 | } // extern "C" |
686 | |