1 | //===-- sanitizer_posix_libcdep.cpp ---------------------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file is shared between AddressSanitizer and ThreadSanitizer |
10 | // run-time libraries and implements libc-dependent POSIX-specific functions |
11 | // from sanitizer_libc.h. |
12 | //===----------------------------------------------------------------------===// |
13 | |
14 | #include "sanitizer_platform.h" |
15 | |
16 | #if SANITIZER_POSIX |
17 | |
18 | #include "sanitizer_common.h" |
19 | #include "sanitizer_flags.h" |
20 | #include "sanitizer_platform_limits_netbsd.h" |
21 | #include "sanitizer_platform_limits_posix.h" |
22 | #include "sanitizer_platform_limits_solaris.h" |
23 | #include "sanitizer_posix.h" |
24 | #include "sanitizer_procmaps.h" |
25 | |
26 | #include <errno.h> |
27 | #include <fcntl.h> |
28 | #include <pthread.h> |
29 | #include <signal.h> |
30 | #include <stdlib.h> |
31 | #include <sys/mman.h> |
32 | #include <sys/resource.h> |
33 | #include <sys/stat.h> |
34 | #include <sys/time.h> |
35 | #include <sys/types.h> |
36 | #include <sys/wait.h> |
37 | #include <unistd.h> |
38 | |
39 | #if SANITIZER_FREEBSD |
40 | // The MAP_NORESERVE define has been removed in FreeBSD 11.x, and even before |
41 | // that, it was never implemented. So just define it to zero. |
42 | #undef MAP_NORESERVE |
43 | #define MAP_NORESERVE 0 |
44 | #endif |
45 | |
46 | typedef void (*sa_sigaction_t)(int, siginfo_t *, void *); |
47 | |
48 | namespace __sanitizer { |
49 | |
50 | u32 GetUid() { |
51 | return getuid(); |
52 | } |
53 | |
54 | uptr GetThreadSelf() { |
55 | return (uptr)pthread_self(); |
56 | } |
57 | |
58 | void ReleaseMemoryPagesToOS(uptr beg, uptr end) { |
59 | uptr page_size = GetPageSizeCached(); |
60 | uptr beg_aligned = RoundUpTo(size: beg, boundary: page_size); |
61 | uptr end_aligned = RoundDownTo(x: end, boundary: page_size); |
62 | if (beg_aligned < end_aligned) |
63 | internal_madvise(addr: beg_aligned, length: end_aligned - beg_aligned, |
64 | SANITIZER_MADVISE_DONTNEED); |
65 | } |
66 | |
67 | void SetShadowRegionHugePageMode(uptr addr, uptr size) { |
68 | #ifdef MADV_NOHUGEPAGE // May not be defined on old systems. |
69 | if (common_flags()->no_huge_pages_for_shadow) |
70 | internal_madvise(addr, length: size, MADV_NOHUGEPAGE); |
71 | else |
72 | internal_madvise(addr, length: size, MADV_HUGEPAGE); |
73 | #endif // MADV_NOHUGEPAGE |
74 | } |
75 | |
76 | bool DontDumpShadowMemory(uptr addr, uptr length) { |
77 | #if defined(MADV_DONTDUMP) |
78 | return internal_madvise(addr, length, MADV_DONTDUMP) == 0; |
79 | #elif defined(MADV_NOCORE) |
80 | return internal_madvise(addr, length, MADV_NOCORE) == 0; |
81 | #else |
82 | return true; |
83 | #endif // MADV_DONTDUMP |
84 | } |
85 | |
86 | static rlim_t getlim(int res) { |
87 | rlimit rlim; |
88 | CHECK_EQ(0, getrlimit(res, &rlim)); |
89 | return rlim.rlim_cur; |
90 | } |
91 | |
92 | static void setlim(int res, rlim_t lim) { |
93 | struct rlimit rlim; |
94 | if (getrlimit(resource: res, rlimits: &rlim)) { |
95 | Report(format: "ERROR: %s getrlimit() failed %d\n" , SanitizerToolName, errno); |
96 | Die(); |
97 | } |
98 | rlim.rlim_cur = lim; |
99 | if (setrlimit(resource: res, rlimits: &rlim)) { |
100 | Report(format: "ERROR: %s setrlimit() failed %d\n" , SanitizerToolName, errno); |
101 | Die(); |
102 | } |
103 | } |
104 | |
105 | void DisableCoreDumperIfNecessary() { |
106 | if (common_flags()->disable_coredump) { |
107 | rlimit rlim; |
108 | CHECK_EQ(0, getrlimit(RLIMIT_CORE, &rlim)); |
109 | // On Linux, if the kernel.core_pattern sysctl starts with a '|' (i.e. it |
110 | // is being piped to a coredump handler such as systemd-coredumpd), the |
111 | // kernel ignores RLIMIT_CORE (since we aren't creating a file in the file |
112 | // system) except for the magic value of 1, which disables coredumps when |
113 | // piping. 1 byte is too small for any kind of valid core dump, so it |
114 | // also disables coredumps if kernel.core_pattern creates files directly. |
115 | // While most piped coredump handlers do respect the crashing processes' |
116 | // RLIMIT_CORE, this is notable not the case for Debian's systemd-coredump |
117 | // due to a local patch that changes sysctl.d/50-coredump.conf to ignore |
118 | // the specified limit and instead use RLIM_INFINITY. |
119 | // |
120 | // The alternative to using RLIMIT_CORE=1 would be to use prctl() with the |
121 | // PR_SET_DUMPABLE flag, however that also prevents ptrace(), so makes it |
122 | // impossible to attach a debugger. |
123 | // |
124 | // Note: we use rlim_max in the Min() call here since that is the upper |
125 | // limit for what can be set without getting an EINVAL error. |
126 | rlim.rlim_cur = Min<rlim_t>(SANITIZER_LINUX ? 1 : 0, b: rlim.rlim_max); |
127 | CHECK_EQ(0, setrlimit(RLIMIT_CORE, &rlim)); |
128 | } |
129 | } |
130 | |
131 | bool StackSizeIsUnlimited() { |
132 | rlim_t stack_size = getlim(RLIMIT_STACK); |
133 | return (stack_size == RLIM_INFINITY); |
134 | } |
135 | |
136 | void SetStackSizeLimitInBytes(uptr limit) { |
137 | setlim(RLIMIT_STACK, lim: (rlim_t)limit); |
138 | CHECK(!StackSizeIsUnlimited()); |
139 | } |
140 | |
141 | bool AddressSpaceIsUnlimited() { |
142 | rlim_t as_size = getlim(RLIMIT_AS); |
143 | return (as_size == RLIM_INFINITY); |
144 | } |
145 | |
146 | void SetAddressSpaceUnlimited() { |
147 | setlim(RLIMIT_AS, RLIM_INFINITY); |
148 | CHECK(AddressSpaceIsUnlimited()); |
149 | } |
150 | |
151 | void Abort() { |
152 | #if !SANITIZER_GO |
153 | // If we are handling SIGABRT, unhandle it first. |
154 | // TODO(vitalybuka): Check if handler belongs to sanitizer. |
155 | if (GetHandleSignalMode(SIGABRT) != kHandleSignalNo) { |
156 | struct sigaction sigact; |
157 | internal_memset(s: &sigact, c: 0, n: sizeof(sigact)); |
158 | sigact.sa_handler = SIG_DFL; |
159 | internal_sigaction(SIGABRT, act: &sigact, oldact: nullptr); |
160 | } |
161 | #endif |
162 | |
163 | abort(); |
164 | } |
165 | |
166 | int Atexit(void (*function)(void)) { |
167 | #if !SANITIZER_GO |
168 | return atexit(func: function); |
169 | #else |
170 | return 0; |
171 | #endif |
172 | } |
173 | |
174 | bool CreateDir(const char *pathname) { return mkdir(path: pathname, mode: 0755) == 0; } |
175 | |
176 | bool SupportsColoredOutput(fd_t fd) { |
177 | return isatty(fd: fd) != 0; |
178 | } |
179 | |
180 | #if !SANITIZER_GO |
181 | // TODO(glider): different tools may require different altstack size. |
182 | static uptr GetAltStackSize() { |
183 | // Note: since GLIBC_2.31, SIGSTKSZ may be a function call, so this may be |
184 | // more costly that you think. However GetAltStackSize is only call 2-3 times |
185 | // per thread so don't cache the evaluation. |
186 | return SIGSTKSZ * 4; |
187 | } |
188 | |
189 | void SetAlternateSignalStack() { |
190 | stack_t altstack, oldstack; |
191 | CHECK_EQ(0, sigaltstack(nullptr, &oldstack)); |
192 | // If the alternate stack is already in place, do nothing. |
193 | // Android always sets an alternate stack, but it's too small for us. |
194 | if (!SANITIZER_ANDROID && !(oldstack.ss_flags & SS_DISABLE)) return; |
195 | // TODO(glider): the mapped stack should have the MAP_STACK flag in the |
196 | // future. It is not required by man 2 sigaltstack now (they're using |
197 | // malloc()). |
198 | altstack.ss_size = GetAltStackSize(); |
199 | altstack.ss_sp = (char *)MmapOrDie(size: altstack.ss_size, mem_type: __func__); |
200 | altstack.ss_flags = 0; |
201 | CHECK_EQ(0, sigaltstack(&altstack, nullptr)); |
202 | } |
203 | |
204 | void UnsetAlternateSignalStack() { |
205 | stack_t altstack, oldstack; |
206 | altstack.ss_sp = nullptr; |
207 | altstack.ss_flags = SS_DISABLE; |
208 | altstack.ss_size = GetAltStackSize(); // Some sane value required on Darwin. |
209 | CHECK_EQ(0, sigaltstack(&altstack, &oldstack)); |
210 | UnmapOrDie(addr: oldstack.ss_sp, size: oldstack.ss_size); |
211 | } |
212 | |
213 | static void MaybeInstallSigaction(int signum, |
214 | SignalHandlerType handler) { |
215 | if (GetHandleSignalMode(signum) == kHandleSignalNo) return; |
216 | |
217 | struct sigaction sigact; |
218 | internal_memset(s: &sigact, c: 0, n: sizeof(sigact)); |
219 | sigact.sa_sigaction = (sa_sigaction_t)handler; |
220 | // Do not block the signal from being received in that signal's handler. |
221 | // Clients are responsible for handling this correctly. |
222 | sigact.sa_flags = SA_SIGINFO | SA_NODEFER; |
223 | if (common_flags()->use_sigaltstack) sigact.sa_flags |= SA_ONSTACK; |
224 | CHECK_EQ(0, internal_sigaction(signum, &sigact, nullptr)); |
225 | VReport(1, "Installed the sigaction for signal %d\n" , signum); |
226 | } |
227 | |
228 | void InstallDeadlySignalHandlers(SignalHandlerType handler) { |
229 | // Set the alternate signal stack for the main thread. |
230 | // This will cause SetAlternateSignalStack to be called twice, but the stack |
231 | // will be actually set only once. |
232 | if (common_flags()->use_sigaltstack) SetAlternateSignalStack(); |
233 | MaybeInstallSigaction(SIGSEGV, handler); |
234 | MaybeInstallSigaction(SIGBUS, handler); |
235 | MaybeInstallSigaction(SIGABRT, handler); |
236 | MaybeInstallSigaction(SIGFPE, handler); |
237 | MaybeInstallSigaction(SIGILL, handler); |
238 | MaybeInstallSigaction(SIGTRAP, handler); |
239 | } |
240 | |
241 | bool SignalContext::IsStackOverflow() const { |
242 | // Access at a reasonable offset above SP, or slightly below it (to account |
243 | // for x86_64 or PowerPC redzone, ARM push of multiple registers, etc) is |
244 | // probably a stack overflow. |
245 | #ifdef __s390__ |
246 | // On s390, the fault address in siginfo points to start of the page, not |
247 | // to the precise word that was accessed. Mask off the low bits of sp to |
248 | // take it into account. |
249 | bool IsStackAccess = addr >= (sp & ~0xFFF) && addr < sp + 0xFFFF; |
250 | #else |
251 | // Let's accept up to a page size away from top of stack. Things like stack |
252 | // probing can trigger accesses with such large offsets. |
253 | bool IsStackAccess = addr + GetPageSizeCached() > sp && addr < sp + 0xFFFF; |
254 | #endif |
255 | |
256 | #if __powerpc__ |
257 | // Large stack frames can be allocated with e.g. |
258 | // lis r0,-10000 |
259 | // stdux r1,r1,r0 # store sp to [sp-10000] and update sp by -10000 |
260 | // If the store faults then sp will not have been updated, so test above |
261 | // will not work, because the fault address will be more than just "slightly" |
262 | // below sp. |
263 | if (!IsStackAccess && IsAccessibleMemoryRange(pc, 4)) { |
264 | u32 inst = *(unsigned *)pc; |
265 | u32 ra = (inst >> 16) & 0x1F; |
266 | u32 opcd = inst >> 26; |
267 | u32 xo = (inst >> 1) & 0x3FF; |
268 | // Check for store-with-update to sp. The instructions we accept are: |
269 | // stbu rs,d(ra) stbux rs,ra,rb |
270 | // sthu rs,d(ra) sthux rs,ra,rb |
271 | // stwu rs,d(ra) stwux rs,ra,rb |
272 | // stdu rs,ds(ra) stdux rs,ra,rb |
273 | // where ra is r1 (the stack pointer). |
274 | if (ra == 1 && |
275 | (opcd == 39 || opcd == 45 || opcd == 37 || opcd == 62 || |
276 | (opcd == 31 && (xo == 247 || xo == 439 || xo == 183 || xo == 181)))) |
277 | IsStackAccess = true; |
278 | } |
279 | #endif // __powerpc__ |
280 | |
281 | // We also check si_code to filter out SEGV caused by something else other |
282 | // then hitting the guard page or unmapped memory, like, for example, |
283 | // unaligned memory access. |
284 | auto si = static_cast<const siginfo_t *>(siginfo); |
285 | return IsStackAccess && |
286 | (si->si_code == si_SEGV_MAPERR || si->si_code == si_SEGV_ACCERR); |
287 | } |
288 | |
289 | #endif // SANITIZER_GO |
290 | |
291 | bool IsAccessibleMemoryRange(uptr beg, uptr size) { |
292 | uptr page_size = GetPageSizeCached(); |
293 | // Checking too large memory ranges is slow. |
294 | CHECK_LT(size, page_size * 10); |
295 | int sock_pair[2]; |
296 | if (pipe(pipedes: sock_pair)) |
297 | return false; |
298 | uptr bytes_written = |
299 | internal_write(fd: sock_pair[1], buf: reinterpret_cast<void *>(beg), count: size); |
300 | int write_errno; |
301 | bool result; |
302 | if (internal_iserror(retval: bytes_written, rverrno: &write_errno)) { |
303 | CHECK_EQ(EFAULT, write_errno); |
304 | result = false; |
305 | } else { |
306 | result = (bytes_written == size); |
307 | } |
308 | internal_close(fd: sock_pair[0]); |
309 | internal_close(fd: sock_pair[1]); |
310 | return result; |
311 | } |
312 | |
313 | void PlatformPrepareForSandboxing(void *args) { |
314 | // Some kinds of sandboxes may forbid filesystem access, so we won't be able |
315 | // to read the file mappings from /proc/self/maps. Luckily, neither the |
316 | // process will be able to load additional libraries, so it's fine to use the |
317 | // cached mappings. |
318 | MemoryMappingLayout::CacheMemoryMappings(); |
319 | } |
320 | |
321 | static bool MmapFixed(uptr fixed_addr, uptr size, int additional_flags, |
322 | const char *name) { |
323 | size = RoundUpTo(size, boundary: GetPageSizeCached()); |
324 | fixed_addr = RoundDownTo(x: fixed_addr, boundary: GetPageSizeCached()); |
325 | uptr p = |
326 | MmapNamed(addr: (void *)fixed_addr, length: size, PROT_READ | PROT_WRITE, |
327 | MAP_PRIVATE | MAP_FIXED | additional_flags | MAP_ANON, name); |
328 | int reserrno; |
329 | if (internal_iserror(retval: p, rverrno: &reserrno)) { |
330 | Report( |
331 | format: "ERROR: %s failed to " |
332 | "allocate 0x%zx (%zd) bytes at address %p (errno: %d)\n" , |
333 | SanitizerToolName, size, size, (void *)fixed_addr, reserrno); |
334 | return false; |
335 | } |
336 | IncreaseTotalMmap(size); |
337 | return true; |
338 | } |
339 | |
340 | bool MmapFixedNoReserve(uptr fixed_addr, uptr size, const char *name) { |
341 | return MmapFixed(fixed_addr, size, MAP_NORESERVE, name); |
342 | } |
343 | |
344 | bool MmapFixedSuperNoReserve(uptr fixed_addr, uptr size, const char *name) { |
345 | #if SANITIZER_FREEBSD |
346 | if (common_flags()->no_huge_pages_for_shadow) |
347 | return MmapFixedNoReserve(fixed_addr, size, name); |
348 | // MAP_NORESERVE is implicit with FreeBSD |
349 | return MmapFixed(fixed_addr, size, MAP_ALIGNED_SUPER, name); |
350 | #else |
351 | bool r = MmapFixedNoReserve(fixed_addr, size, name); |
352 | if (r) |
353 | SetShadowRegionHugePageMode(addr: fixed_addr, size); |
354 | return r; |
355 | #endif |
356 | } |
357 | |
358 | uptr ReservedAddressRange::Init(uptr size, const char *name, uptr fixed_addr) { |
359 | base_ = fixed_addr ? MmapFixedNoAccess(fixed_addr, size, name) |
360 | : MmapNoAccess(size); |
361 | size_ = size; |
362 | name_ = name; |
363 | (void)os_handle_; // unsupported |
364 | return reinterpret_cast<uptr>(base_); |
365 | } |
366 | |
367 | // Uses fixed_addr for now. |
368 | // Will use offset instead once we've implemented this function for real. |
369 | uptr ReservedAddressRange::Map(uptr fixed_addr, uptr size, const char *name) { |
370 | return reinterpret_cast<uptr>( |
371 | MmapFixedOrDieOnFatalError(fixed_addr, size, name)); |
372 | } |
373 | |
374 | uptr ReservedAddressRange::MapOrDie(uptr fixed_addr, uptr size, |
375 | const char *name) { |
376 | return reinterpret_cast<uptr>(MmapFixedOrDie(fixed_addr, size, name)); |
377 | } |
378 | |
379 | void ReservedAddressRange::Unmap(uptr addr, uptr size) { |
380 | CHECK_LE(size, size_); |
381 | if (addr == reinterpret_cast<uptr>(base_)) |
382 | // If we unmap the whole range, just null out the base. |
383 | base_ = (size == size_) ? nullptr : reinterpret_cast<void*>(addr + size); |
384 | else |
385 | CHECK_EQ(addr + size, reinterpret_cast<uptr>(base_) + size_); |
386 | size_ -= size; |
387 | UnmapOrDie(addr: reinterpret_cast<void*>(addr), size); |
388 | } |
389 | |
390 | void *MmapFixedNoAccess(uptr fixed_addr, uptr size, const char *name) { |
391 | return (void *)MmapNamed(addr: (void *)fixed_addr, length: size, PROT_NONE, |
392 | MAP_PRIVATE | MAP_FIXED | MAP_NORESERVE | MAP_ANON, |
393 | name); |
394 | } |
395 | |
396 | void *MmapNoAccess(uptr size) { |
397 | unsigned flags = MAP_PRIVATE | MAP_ANON | MAP_NORESERVE; |
398 | return (void *)internal_mmap(addr: nullptr, length: size, PROT_NONE, flags, fd: -1, offset: 0); |
399 | } |
400 | |
401 | // This function is defined elsewhere if we intercepted pthread_attr_getstack. |
402 | extern "C" { |
403 | SANITIZER_WEAK_ATTRIBUTE int |
404 | real_pthread_attr_getstack(void *attr, void **addr, size_t *size); |
405 | } // extern "C" |
406 | |
407 | int internal_pthread_attr_getstack(void *attr, void **addr, uptr *size) { |
408 | #if !SANITIZER_GO && !SANITIZER_APPLE |
409 | if (&real_pthread_attr_getstack) |
410 | return real_pthread_attr_getstack(attr: (pthread_attr_t *)attr, addr, |
411 | size: (size_t *)size); |
412 | #endif |
413 | return pthread_attr_getstack(attr: (pthread_attr_t *)attr, stackaddr: addr, stacksize: (size_t *)size); |
414 | } |
415 | |
416 | #if !SANITIZER_GO |
417 | void AdjustStackSize(void *attr_) { |
418 | pthread_attr_t *attr = (pthread_attr_t *)attr_; |
419 | uptr stackaddr = 0; |
420 | uptr stacksize = 0; |
421 | internal_pthread_attr_getstack(attr, addr: (void **)&stackaddr, size: &stacksize); |
422 | // GLibC will return (0 - stacksize) as the stack address in the case when |
423 | // stacksize is set, but stackaddr is not. |
424 | bool stack_set = (stackaddr != 0) && (stackaddr + stacksize != 0); |
425 | // We place a lot of tool data into TLS, account for that. |
426 | const uptr minstacksize = GetTlsSize() + 128*1024; |
427 | if (stacksize < minstacksize) { |
428 | if (!stack_set) { |
429 | if (stacksize != 0) { |
430 | VPrintf(1, "Sanitizer: increasing stacksize %zu->%zu\n" , stacksize, |
431 | minstacksize); |
432 | pthread_attr_setstacksize(attr: attr, stacksize: minstacksize); |
433 | } |
434 | } else { |
435 | Printf(format: "Sanitizer: pre-allocated stack size is insufficient: " |
436 | "%zu < %zu\n" , stacksize, minstacksize); |
437 | Printf(format: "Sanitizer: pthread_create is likely to fail.\n" ); |
438 | } |
439 | } |
440 | } |
441 | #endif // !SANITIZER_GO |
442 | |
443 | pid_t StartSubprocess(const char *program, const char *const argv[], |
444 | const char *const envp[], fd_t stdin_fd, fd_t stdout_fd, |
445 | fd_t stderr_fd) { |
446 | auto file_closer = at_scope_exit(fn: [&] { |
447 | if (stdin_fd != kInvalidFd) { |
448 | internal_close(fd: stdin_fd); |
449 | } |
450 | if (stdout_fd != kInvalidFd) { |
451 | internal_close(fd: stdout_fd); |
452 | } |
453 | if (stderr_fd != kInvalidFd) { |
454 | internal_close(fd: stderr_fd); |
455 | } |
456 | }); |
457 | |
458 | int pid = internal_fork(); |
459 | |
460 | if (pid < 0) { |
461 | int rverrno; |
462 | if (internal_iserror(retval: pid, rverrno: &rverrno)) { |
463 | Report(format: "WARNING: failed to fork (errno %d)\n" , rverrno); |
464 | } |
465 | return pid; |
466 | } |
467 | |
468 | if (pid == 0) { |
469 | // Child subprocess |
470 | if (stdin_fd != kInvalidFd) { |
471 | internal_close(STDIN_FILENO); |
472 | internal_dup2(oldfd: stdin_fd, STDIN_FILENO); |
473 | internal_close(fd: stdin_fd); |
474 | } |
475 | if (stdout_fd != kInvalidFd) { |
476 | internal_close(STDOUT_FILENO); |
477 | internal_dup2(oldfd: stdout_fd, STDOUT_FILENO); |
478 | internal_close(fd: stdout_fd); |
479 | } |
480 | if (stderr_fd != kInvalidFd) { |
481 | internal_close(STDERR_FILENO); |
482 | internal_dup2(oldfd: stderr_fd, STDERR_FILENO); |
483 | internal_close(fd: stderr_fd); |
484 | } |
485 | |
486 | for (int fd = sysconf(_SC_OPEN_MAX); fd > 2; fd--) internal_close(fd); |
487 | |
488 | internal_execve(filename: program, argv: const_cast<char **>(&argv[0]), |
489 | envp: const_cast<char *const *>(envp)); |
490 | internal__exit(exitcode: 1); |
491 | } |
492 | |
493 | return pid; |
494 | } |
495 | |
496 | bool IsProcessRunning(pid_t pid) { |
497 | int process_status; |
498 | uptr waitpid_status = internal_waitpid(pid, status: &process_status, WNOHANG); |
499 | int local_errno; |
500 | if (internal_iserror(retval: waitpid_status, rverrno: &local_errno)) { |
501 | VReport(1, "Waiting on the process failed (errno %d).\n" , local_errno); |
502 | return false; |
503 | } |
504 | return waitpid_status == 0; |
505 | } |
506 | |
507 | int WaitForProcess(pid_t pid) { |
508 | int process_status; |
509 | uptr waitpid_status = internal_waitpid(pid, status: &process_status, options: 0); |
510 | int local_errno; |
511 | if (internal_iserror(retval: waitpid_status, rverrno: &local_errno)) { |
512 | VReport(1, "Waiting on the process failed (errno %d).\n" , local_errno); |
513 | return -1; |
514 | } |
515 | return process_status; |
516 | } |
517 | |
518 | bool IsStateDetached(int state) { |
519 | return state == PTHREAD_CREATE_DETACHED; |
520 | } |
521 | |
522 | } // namespace __sanitizer |
523 | |
524 | #endif // SANITIZER_POSIX |
525 | |