1//===-- sanitizer_stoptheworld_linux_libcdep.cpp --------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// See sanitizer_stoptheworld.h for details.
10// This implementation was inspired by Markus Gutschke's linuxthreads.cc.
11//
12//===----------------------------------------------------------------------===//
13
14#include "sanitizer_platform.h"
15
16#if SANITIZER_LINUX && \
17 (defined(__x86_64__) || defined(__mips__) || defined(__aarch64__) || \
18 defined(__powerpc64__) || defined(__s390__) || defined(__i386__) || \
19 defined(__arm__) || SANITIZER_RISCV64 || SANITIZER_LOONGARCH64)
20
21#include "sanitizer_stoptheworld.h"
22
23#include "sanitizer_platform_limits_posix.h"
24#include "sanitizer_atomic.h"
25
26#include <errno.h>
27#include <sched.h> // for CLONE_* definitions
28#include <stddef.h>
29#include <sys/prctl.h> // for PR_* definitions
30#include <sys/ptrace.h> // for PTRACE_* definitions
31#include <sys/types.h> // for pid_t
32#include <sys/uio.h> // for iovec
33#include <elf.h> // for NT_PRSTATUS
34#if (defined(__aarch64__) || SANITIZER_RISCV64 || SANITIZER_LOONGARCH64) && \
35 !SANITIZER_ANDROID
36// GLIBC 2.20+ sys/user does not include asm/ptrace.h
37# include <asm/ptrace.h>
38#endif
39#include <sys/user.h> // for user_regs_struct
40#if SANITIZER_ANDROID && SANITIZER_MIPS
41# include <asm/reg.h> // for mips SP register in sys/user.h
42#endif
43#include <sys/wait.h> // for signal-related stuff
44
45#ifdef sa_handler
46# undef sa_handler
47#endif
48
49#ifdef sa_sigaction
50# undef sa_sigaction
51#endif
52
53#include "sanitizer_common.h"
54#include "sanitizer_flags.h"
55#include "sanitizer_libc.h"
56#include "sanitizer_linux.h"
57#include "sanitizer_mutex.h"
58#include "sanitizer_placement_new.h"
59
60// Sufficiently old kernel headers don't provide this value, but we can still
61// call prctl with it. If the runtime kernel is new enough, the prctl call will
62// have the desired effect; if the kernel is too old, the call will error and we
63// can ignore said error.
64#ifndef PR_SET_PTRACER
65#define PR_SET_PTRACER 0x59616d61
66#endif
67
68// This module works by spawning a Linux task which then attaches to every
69// thread in the caller process with ptrace. This suspends the threads, and
70// PTRACE_GETREGS can then be used to obtain their register state. The callback
71// supplied to StopTheWorld() is run in the tracer task while the threads are
72// suspended.
73// The tracer task must be placed in a different thread group for ptrace to
74// work, so it cannot be spawned as a pthread. Instead, we use the low-level
75// clone() interface (we want to share the address space with the caller
76// process, so we prefer clone() over fork()).
77//
78// We don't use any libc functions, relying instead on direct syscalls. There
79// are two reasons for this:
80// 1. calling a library function while threads are suspended could cause a
81// deadlock, if one of the treads happens to be holding a libc lock;
82// 2. it's generally not safe to call libc functions from the tracer task,
83// because clone() does not set up a thread-local storage for it. Any
84// thread-local variables used by libc will be shared between the tracer task
85// and the thread which spawned it.
86
87namespace __sanitizer {
88
89class SuspendedThreadsListLinux final : public SuspendedThreadsList {
90 public:
91 SuspendedThreadsListLinux() { thread_ids_.reserve(new_size: 1024); }
92
93 tid_t GetThreadID(uptr index) const override;
94 uptr ThreadCount() const override;
95 bool ContainsTid(tid_t thread_id) const;
96 void Append(tid_t tid);
97
98 PtraceRegistersStatus GetRegistersAndSP(uptr index,
99 InternalMmapVector<uptr> *buffer,
100 uptr *sp) const override;
101
102 private:
103 InternalMmapVector<tid_t> thread_ids_;
104};
105
106// Structure for passing arguments into the tracer thread.
107struct TracerThreadArgument {
108 StopTheWorldCallback callback;
109 void *callback_argument;
110 // The tracer thread waits on this mutex while the parent finishes its
111 // preparations.
112 Mutex mutex;
113 // Tracer thread signals its completion by setting done.
114 atomic_uintptr_t done;
115 uptr parent_pid;
116};
117
118// This class handles thread suspending/unsuspending in the tracer thread.
119class ThreadSuspender {
120 public:
121 explicit ThreadSuspender(pid_t pid, TracerThreadArgument *arg)
122 : arg(arg)
123 , pid_(pid) {
124 CHECK_GE(pid, 0);
125 }
126 bool SuspendAllThreads();
127 void ResumeAllThreads();
128 void KillAllThreads();
129 SuspendedThreadsListLinux &suspended_threads_list() {
130 return suspended_threads_list_;
131 }
132 TracerThreadArgument *arg;
133 private:
134 SuspendedThreadsListLinux suspended_threads_list_;
135 pid_t pid_;
136 bool SuspendThread(tid_t thread_id);
137};
138
139bool ThreadSuspender::SuspendThread(tid_t tid) {
140 // Are we already attached to this thread?
141 // Currently this check takes linear time, however the number of threads is
142 // usually small.
143 if (suspended_threads_list_.ContainsTid(thread_id: tid)) return false;
144 int pterrno;
145 if (internal_iserror(retval: internal_ptrace(request: PTRACE_ATTACH, pid: tid, addr: nullptr, data: nullptr),
146 rverrno: &pterrno)) {
147 // Either the thread is dead, or something prevented us from attaching.
148 // Log this event and move on.
149 VReport(1, "Could not attach to thread %zu (errno %d).\n", (uptr)tid,
150 pterrno);
151 return false;
152 } else {
153 VReport(2, "Attached to thread %zu.\n", (uptr)tid);
154 // The thread is not guaranteed to stop before ptrace returns, so we must
155 // wait on it. Note: if the thread receives a signal concurrently,
156 // we can get notification about the signal before notification about stop.
157 // In such case we need to forward the signal to the thread, otherwise
158 // the signal will be missed (as we do PTRACE_DETACH with arg=0) and
159 // any logic relying on signals will break. After forwarding we need to
160 // continue to wait for stopping, because the thread is not stopped yet.
161 // We do ignore delivery of SIGSTOP, because we want to make stop-the-world
162 // as invisible as possible.
163 for (;;) {
164 int status;
165 uptr waitpid_status;
166 HANDLE_EINTR(waitpid_status, internal_waitpid(tid, &status, __WALL));
167 int wperrno;
168 if (internal_iserror(retval: waitpid_status, rverrno: &wperrno)) {
169 // Got a ECHILD error. I don't think this situation is possible, but it
170 // doesn't hurt to report it.
171 VReport(1, "Waiting on thread %zu failed, detaching (errno %d).\n",
172 (uptr)tid, wperrno);
173 internal_ptrace(request: PTRACE_DETACH, pid: tid, addr: nullptr, data: nullptr);
174 return false;
175 }
176 if (WIFSTOPPED(status) && WSTOPSIG(status) != SIGSTOP) {
177 internal_ptrace(request: PTRACE_CONT, pid: tid, addr: nullptr,
178 data: (void*)(uptr)WSTOPSIG(status));
179 continue;
180 }
181 break;
182 }
183 suspended_threads_list_.Append(tid);
184 return true;
185 }
186}
187
188void ThreadSuspender::ResumeAllThreads() {
189 for (uptr i = 0; i < suspended_threads_list_.ThreadCount(); i++) {
190 pid_t tid = suspended_threads_list_.GetThreadID(index: i);
191 int pterrno;
192 if (!internal_iserror(retval: internal_ptrace(request: PTRACE_DETACH, pid: tid, addr: nullptr, data: nullptr),
193 rverrno: &pterrno)) {
194 VReport(2, "Detached from thread %d.\n", tid);
195 } else {
196 // Either the thread is dead, or we are already detached.
197 // The latter case is possible, for instance, if this function was called
198 // from a signal handler.
199 VReport(1, "Could not detach from thread %d (errno %d).\n", tid, pterrno);
200 }
201 }
202}
203
204void ThreadSuspender::KillAllThreads() {
205 for (uptr i = 0; i < suspended_threads_list_.ThreadCount(); i++)
206 internal_ptrace(request: PTRACE_KILL, pid: suspended_threads_list_.GetThreadID(index: i),
207 addr: nullptr, data: nullptr);
208}
209
210bool ThreadSuspender::SuspendAllThreads() {
211 ThreadLister thread_lister(pid_);
212 bool retry = true;
213 InternalMmapVector<tid_t> threads;
214 threads.reserve(new_size: 128);
215 for (int i = 0; i < 30 && retry; ++i) {
216 retry = false;
217 switch (thread_lister.ListThreads(threads: &threads)) {
218 case ThreadLister::Error:
219 ResumeAllThreads();
220 return false;
221 case ThreadLister::Incomplete:
222 retry = true;
223 break;
224 case ThreadLister::Ok:
225 break;
226 }
227 for (tid_t tid : threads) {
228 if (SuspendThread(tid))
229 retry = true;
230 }
231 }
232 return suspended_threads_list_.ThreadCount();
233}
234
235// Pointer to the ThreadSuspender instance for use in signal handler.
236static ThreadSuspender *thread_suspender_instance = nullptr;
237
238// Synchronous signals that should not be blocked.
239static const int kSyncSignals[] = { SIGABRT, SIGILL, SIGFPE, SIGSEGV, SIGBUS,
240 SIGXCPU, SIGXFSZ };
241
242static void TracerThreadDieCallback() {
243 // Generally a call to Die() in the tracer thread should be fatal to the
244 // parent process as well, because they share the address space.
245 // This really only works correctly if all the threads are suspended at this
246 // point. So we correctly handle calls to Die() from within the callback, but
247 // not those that happen before or after the callback. Hopefully there aren't
248 // a lot of opportunities for that to happen...
249 ThreadSuspender *inst = thread_suspender_instance;
250 if (inst && stoptheworld_tracer_pid == internal_getpid()) {
251 inst->KillAllThreads();
252 thread_suspender_instance = nullptr;
253 }
254}
255
256// Signal handler to wake up suspended threads when the tracer thread dies.
257static void TracerThreadSignalHandler(int signum, __sanitizer_siginfo *siginfo,
258 void *uctx) {
259 SignalContext ctx(siginfo, uctx);
260 Printf(format: "Tracer caught signal %d: addr=%p pc=%p sp=%p\n", signum,
261 (void *)ctx.addr, (void *)ctx.pc, (void *)ctx.sp);
262 ThreadSuspender *inst = thread_suspender_instance;
263 if (inst) {
264 if (signum == SIGABRT)
265 inst->KillAllThreads();
266 else
267 inst->ResumeAllThreads();
268 RAW_CHECK(RemoveDieCallback(TracerThreadDieCallback));
269 thread_suspender_instance = nullptr;
270 atomic_store(a: &inst->arg->done, v: 1, mo: memory_order_relaxed);
271 }
272 internal__exit(exitcode: (signum == SIGABRT) ? 1 : 2);
273}
274
275// Size of alternative stack for signal handlers in the tracer thread.
276static const int kHandlerStackSize = 8192;
277
278// This function will be run as a cloned task.
279static int TracerThread(void* argument) {
280 TracerThreadArgument *tracer_thread_argument =
281 (TracerThreadArgument *)argument;
282
283 internal_prctl(PR_SET_PDEATHSIG, SIGKILL, arg3: 0, arg4: 0, arg5: 0);
284 // Check if parent is already dead.
285 if (internal_getppid() != tracer_thread_argument->parent_pid)
286 internal__exit(exitcode: 4);
287
288 // Wait for the parent thread to finish preparations.
289 tracer_thread_argument->mutex.Lock();
290 tracer_thread_argument->mutex.Unlock();
291
292 RAW_CHECK(AddDieCallback(TracerThreadDieCallback));
293
294 ThreadSuspender thread_suspender(internal_getppid(), tracer_thread_argument);
295 // Global pointer for the signal handler.
296 thread_suspender_instance = &thread_suspender;
297
298 // Alternate stack for signal handling.
299 InternalMmapVector<char> handler_stack_memory(kHandlerStackSize);
300 stack_t handler_stack;
301 internal_memset(s: &handler_stack, c: 0, n: sizeof(handler_stack));
302 handler_stack.ss_sp = handler_stack_memory.data();
303 handler_stack.ss_size = kHandlerStackSize;
304 internal_sigaltstack(ss: &handler_stack, oss: nullptr);
305
306 // Install our handler for synchronous signals. Other signals should be
307 // blocked by the mask we inherited from the parent thread.
308 for (uptr i = 0; i < ARRAY_SIZE(kSyncSignals); i++) {
309 __sanitizer_sigaction act;
310 internal_memset(s: &act, c: 0, n: sizeof(act));
311 act.sigaction = TracerThreadSignalHandler;
312 act.sa_flags = SA_ONSTACK | SA_SIGINFO;
313 internal_sigaction_norestorer(signum: kSyncSignals[i], act: &act, oldact: 0);
314 }
315
316 int exit_code = 0;
317 if (!thread_suspender.SuspendAllThreads()) {
318 VReport(1, "Failed suspending threads.\n");
319 exit_code = 3;
320 } else {
321 tracer_thread_argument->callback(thread_suspender.suspended_threads_list(),
322 tracer_thread_argument->callback_argument);
323 thread_suspender.ResumeAllThreads();
324 exit_code = 0;
325 }
326 RAW_CHECK(RemoveDieCallback(TracerThreadDieCallback));
327 thread_suspender_instance = nullptr;
328 atomic_store(a: &tracer_thread_argument->done, v: 1, mo: memory_order_relaxed);
329 return exit_code;
330}
331
332class ScopedStackSpaceWithGuard {
333 public:
334 explicit ScopedStackSpaceWithGuard(uptr stack_size) {
335 stack_size_ = stack_size;
336 guard_size_ = GetPageSizeCached();
337 // FIXME: Omitting MAP_STACK here works in current kernels but might break
338 // in the future.
339 guard_start_ = (uptr)MmapOrDie(size: stack_size_ + guard_size_,
340 mem_type: "ScopedStackWithGuard");
341 CHECK(MprotectNoAccess((uptr)guard_start_, guard_size_));
342 }
343 ~ScopedStackSpaceWithGuard() {
344 UnmapOrDie(addr: (void *)guard_start_, size: stack_size_ + guard_size_);
345 }
346 void *Bottom() const {
347 return (void *)(guard_start_ + stack_size_ + guard_size_);
348 }
349
350 private:
351 uptr stack_size_;
352 uptr guard_size_;
353 uptr guard_start_;
354};
355
356// We have a limitation on the stack frame size, so some stuff had to be moved
357// into globals.
358static __sanitizer_sigset_t blocked_sigset;
359static __sanitizer_sigset_t old_sigset;
360
361class StopTheWorldScope {
362 public:
363 StopTheWorldScope() {
364 // Make this process dumpable. Processes that are not dumpable cannot be
365 // attached to.
366 process_was_dumpable_ = internal_prctl(PR_GET_DUMPABLE, arg2: 0, arg3: 0, arg4: 0, arg5: 0);
367 if (!process_was_dumpable_)
368 internal_prctl(PR_SET_DUMPABLE, arg2: 1, arg3: 0, arg4: 0, arg5: 0);
369 }
370
371 ~StopTheWorldScope() {
372 // Restore the dumpable flag.
373 if (!process_was_dumpable_)
374 internal_prctl(PR_SET_DUMPABLE, arg2: 0, arg3: 0, arg4: 0, arg5: 0);
375 }
376
377 private:
378 int process_was_dumpable_;
379};
380
381// When sanitizer output is being redirected to file (i.e. by using log_path),
382// the tracer should write to the parent's log instead of trying to open a new
383// file. Alert the logging code to the fact that we have a tracer.
384struct ScopedSetTracerPID {
385 explicit ScopedSetTracerPID(uptr tracer_pid) {
386 stoptheworld_tracer_pid = tracer_pid;
387 stoptheworld_tracer_ppid = internal_getpid();
388 }
389 ~ScopedSetTracerPID() {
390 stoptheworld_tracer_pid = 0;
391 stoptheworld_tracer_ppid = 0;
392 }
393};
394
395void StopTheWorld(StopTheWorldCallback callback, void *argument) {
396 StopTheWorldScope in_stoptheworld;
397 // Prepare the arguments for TracerThread.
398 struct TracerThreadArgument tracer_thread_argument;
399 tracer_thread_argument.callback = callback;
400 tracer_thread_argument.callback_argument = argument;
401 tracer_thread_argument.parent_pid = internal_getpid();
402 atomic_store(a: &tracer_thread_argument.done, v: 0, mo: memory_order_relaxed);
403 const uptr kTracerStackSize = 2 * 1024 * 1024;
404 ScopedStackSpaceWithGuard tracer_stack(kTracerStackSize);
405 // Block the execution of TracerThread until after we have set ptrace
406 // permissions.
407 tracer_thread_argument.mutex.Lock();
408 // Signal handling story.
409 // We don't want async signals to be delivered to the tracer thread,
410 // so we block all async signals before creating the thread. An async signal
411 // handler can temporary modify errno, which is shared with this thread.
412 // We ought to use pthread_sigmask here, because sigprocmask has undefined
413 // behavior in multithreaded programs. However, on linux sigprocmask is
414 // equivalent to pthread_sigmask with the exception that pthread_sigmask
415 // does not allow to block some signals used internally in pthread
416 // implementation. We are fine with blocking them here, we are really not
417 // going to pthread_cancel the thread.
418 // The tracer thread should not raise any synchronous signals. But in case it
419 // does, we setup a special handler for sync signals that properly kills the
420 // parent as well. Note: we don't pass CLONE_SIGHAND to clone, so handlers
421 // in the tracer thread won't interfere with user program. Double note: if a
422 // user does something along the lines of 'kill -11 pid', that can kill the
423 // process even if user setup own handler for SEGV.
424 // Thing to watch out for: this code should not change behavior of user code
425 // in any observable way. In particular it should not override user signal
426 // handlers.
427 internal_sigfillset(set: &blocked_sigset);
428 for (uptr i = 0; i < ARRAY_SIZE(kSyncSignals); i++)
429 internal_sigdelset(set: &blocked_sigset, signum: kSyncSignals[i]);
430 int rv = internal_sigprocmask(SIG_BLOCK, set: &blocked_sigset, oldset: &old_sigset);
431 CHECK_EQ(rv, 0);
432 uptr tracer_pid = internal_clone(
433 fn: TracerThread, child_stack: tracer_stack.Bottom(),
434 CLONE_VM | CLONE_FS | CLONE_FILES | CLONE_UNTRACED,
435 arg: &tracer_thread_argument, parent_tidptr: nullptr /* parent_tidptr */,
436 newtls: nullptr /* newtls */, child_tidptr: nullptr /* child_tidptr */);
437 internal_sigprocmask(SIG_SETMASK, set: &old_sigset, oldset: 0);
438 int local_errno = 0;
439 if (internal_iserror(retval: tracer_pid, rverrno: &local_errno)) {
440 VReport(1, "Failed spawning a tracer thread (errno %d).\n", local_errno);
441 tracer_thread_argument.mutex.Unlock();
442 } else {
443 ScopedSetTracerPID scoped_set_tracer_pid(tracer_pid);
444 // On some systems we have to explicitly declare that we want to be traced
445 // by the tracer thread.
446 internal_prctl(PR_SET_PTRACER, arg2: tracer_pid, arg3: 0, arg4: 0, arg5: 0);
447 // Allow the tracer thread to start.
448 tracer_thread_argument.mutex.Unlock();
449 // NOTE: errno is shared between this thread and the tracer thread.
450 // internal_waitpid() may call syscall() which can access/spoil errno,
451 // so we can't call it now. Instead we for the tracer thread to finish using
452 // the spin loop below. Man page for sched_yield() says "In the Linux
453 // implementation, sched_yield() always succeeds", so let's hope it does not
454 // spoil errno. Note that this spin loop runs only for brief periods before
455 // the tracer thread has suspended us and when it starts unblocking threads.
456 while (atomic_load(a: &tracer_thread_argument.done, mo: memory_order_relaxed) == 0)
457 sched_yield();
458 // Now the tracer thread is about to exit and does not touch errno,
459 // wait for it.
460 for (;;) {
461 uptr waitpid_status = internal_waitpid(pid: tracer_pid, status: nullptr, __WALL);
462 if (!internal_iserror(retval: waitpid_status, rverrno: &local_errno))
463 break;
464 if (local_errno == EINTR)
465 continue;
466 VReport(1, "Waiting on the tracer thread failed (errno %d).\n",
467 local_errno);
468 break;
469 }
470 }
471}
472
473// Platform-specific methods from SuspendedThreadsList.
474#if SANITIZER_ANDROID && defined(__arm__)
475typedef pt_regs regs_struct;
476#define REG_SP ARM_sp
477
478#elif SANITIZER_LINUX && defined(__arm__)
479typedef user_regs regs_struct;
480#define REG_SP uregs[13]
481
482#elif defined(__i386__) || defined(__x86_64__)
483typedef user_regs_struct regs_struct;
484#if defined(__i386__)
485#define REG_SP esp
486#else
487#define REG_SP rsp
488#endif
489#define ARCH_IOVEC_FOR_GETREGSET
490// Support ptrace extensions even when compiled without required kernel support
491#ifndef NT_X86_XSTATE
492#define NT_X86_XSTATE 0x202
493#endif
494#ifndef PTRACE_GETREGSET
495#define PTRACE_GETREGSET 0x4204
496#endif
497// Compiler may use FP registers to store pointers.
498static constexpr uptr kExtraRegs[] = {NT_X86_XSTATE, NT_FPREGSET};
499
500#elif defined(__powerpc__) || defined(__powerpc64__)
501typedef pt_regs regs_struct;
502#define REG_SP gpr[PT_R1]
503
504#elif defined(__mips__)
505typedef struct user regs_struct;
506# if SANITIZER_ANDROID
507# define REG_SP regs[EF_R29]
508# else
509# define REG_SP regs[EF_REG29]
510# endif
511
512#elif defined(__aarch64__)
513typedef struct user_pt_regs regs_struct;
514#define REG_SP sp
515static constexpr uptr kExtraRegs[] = {0};
516#define ARCH_IOVEC_FOR_GETREGSET
517
518#elif defined(__loongarch__)
519typedef struct user_pt_regs regs_struct;
520#define REG_SP regs[3]
521static constexpr uptr kExtraRegs[] = {0};
522#define ARCH_IOVEC_FOR_GETREGSET
523
524#elif SANITIZER_RISCV64
525typedef struct user_regs_struct regs_struct;
526// sys/ucontext.h already defines REG_SP as 2. Undefine it first.
527#undef REG_SP
528#define REG_SP sp
529static constexpr uptr kExtraRegs[] = {0};
530#define ARCH_IOVEC_FOR_GETREGSET
531
532#elif defined(__s390__)
533typedef _user_regs_struct regs_struct;
534#define REG_SP gprs[15]
535static constexpr uptr kExtraRegs[] = {0};
536#define ARCH_IOVEC_FOR_GETREGSET
537
538#else
539#error "Unsupported architecture"
540#endif // SANITIZER_ANDROID && defined(__arm__)
541
542tid_t SuspendedThreadsListLinux::GetThreadID(uptr index) const {
543 CHECK_LT(index, thread_ids_.size());
544 return thread_ids_[index];
545}
546
547uptr SuspendedThreadsListLinux::ThreadCount() const {
548 return thread_ids_.size();
549}
550
551bool SuspendedThreadsListLinux::ContainsTid(tid_t thread_id) const {
552 for (uptr i = 0; i < thread_ids_.size(); i++) {
553 if (thread_ids_[i] == thread_id) return true;
554 }
555 return false;
556}
557
558void SuspendedThreadsListLinux::Append(tid_t tid) {
559 thread_ids_.push_back(element: tid);
560}
561
562PtraceRegistersStatus SuspendedThreadsListLinux::GetRegistersAndSP(
563 uptr index, InternalMmapVector<uptr> *buffer, uptr *sp) const {
564 pid_t tid = GetThreadID(index);
565 constexpr uptr uptr_sz = sizeof(uptr);
566 int pterrno;
567#ifdef ARCH_IOVEC_FOR_GETREGSET
568 auto AppendF = [&](uptr regset) {
569 uptr size = buffer->size();
570 // NT_X86_XSTATE requires 64bit alignment.
571 uptr size_up = RoundUpTo(size, boundary: 8 / uptr_sz);
572 buffer->reserve(new_size: Max<uptr>(a: 1024, b: size_up));
573 struct iovec regset_io;
574 for (;; buffer->resize(new_size: buffer->capacity() * 2)) {
575 buffer->resize(new_size: buffer->capacity());
576 uptr available_bytes = (buffer->size() - size_up) * uptr_sz;
577 regset_io.iov_base = buffer->data() + size_up;
578 regset_io.iov_len = available_bytes;
579 bool fail =
580 internal_iserror(retval: internal_ptrace(PTRACE_GETREGSET, pid: tid,
581 addr: (void *)regset, data: (void *)&regset_io),
582 rverrno: &pterrno);
583 if (fail) {
584 VReport(1, "Could not get regset %p from thread %d (errno %d).\n",
585 (void *)regset, tid, pterrno);
586 buffer->resize(new_size: size);
587 return false;
588 }
589
590 // Far enough from the buffer size, no need to resize and repeat.
591 if (regset_io.iov_len + 64 < available_bytes)
592 break;
593 }
594 buffer->resize(new_size: size_up + RoundUpTo(size: regset_io.iov_len, boundary: uptr_sz) / uptr_sz);
595 return true;
596 };
597
598 buffer->clear();
599 bool fail = !AppendF(NT_PRSTATUS);
600 if (!fail) {
601 // Accept the first available and do not report errors.
602 for (uptr regs : kExtraRegs)
603 if (regs && AppendF(regs))
604 break;
605 }
606#else
607 buffer->resize(RoundUpTo(sizeof(regs_struct), uptr_sz) / uptr_sz);
608 bool fail = internal_iserror(
609 internal_ptrace(PTRACE_GETREGS, tid, nullptr, buffer->data()), &pterrno);
610 if (fail)
611 VReport(1, "Could not get registers from thread %d (errno %d).\n", tid,
612 pterrno);
613#endif
614 if (fail) {
615 // ESRCH means that the given thread is not suspended or already dead.
616 // Therefore it's unsafe to inspect its data (e.g. walk through stack) and
617 // we should notify caller about this.
618 return pterrno == ESRCH ? REGISTERS_UNAVAILABLE_FATAL
619 : REGISTERS_UNAVAILABLE;
620 }
621
622 *sp = reinterpret_cast<regs_struct *>(buffer->data())[0].REG_SP;
623 return REGISTERS_AVAILABLE;
624}
625
626} // namespace __sanitizer
627
628#endif // SANITIZER_LINUX && (defined(__x86_64__) || defined(__mips__)
629 // || defined(__aarch64__) || defined(__powerpc64__)
630 // || defined(__s390__) || defined(__i386__) || defined(__arm__)
631 // || SANITIZER_LOONGARCH64
632