1//===-- sanitizer_win.cpp -------------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file is shared between AddressSanitizer and ThreadSanitizer
10// run-time libraries and implements windows-specific functions from
11// sanitizer_libc.h.
12//===----------------------------------------------------------------------===//
13
14#include "sanitizer_platform.h"
15#if SANITIZER_WINDOWS
16
17#define WIN32_LEAN_AND_MEAN
18#define NOGDI
19#include <windows.h>
20#include <io.h>
21#include <psapi.h>
22#include <stdlib.h>
23
24#include "sanitizer_common.h"
25#include "sanitizer_file.h"
26#include "sanitizer_libc.h"
27#include "sanitizer_mutex.h"
28#include "sanitizer_placement_new.h"
29#include "sanitizer_win_defs.h"
30
31#if defined(PSAPI_VERSION) && PSAPI_VERSION == 1
32#pragma comment(lib, "psapi")
33#endif
34#if SANITIZER_WIN_TRACE
35#include <traceloggingprovider.h>
36// Windows trace logging provider init
37#pragma comment(lib, "advapi32.lib")
38TRACELOGGING_DECLARE_PROVIDER(g_asan_provider);
39// GUID must be the same in utils/AddressSanitizerLoggingProvider.wprp
40TRACELOGGING_DEFINE_PROVIDER(g_asan_provider, "AddressSanitizerLoggingProvider",
41 (0x6c6c766d, 0x3846, 0x4e6a, 0xa4, 0xfb, 0x5b,
42 0x53, 0x0b, 0xd0, 0xf3, 0xfa));
43#else
44#define TraceLoggingUnregister(x)
45#endif
46
47// For WaitOnAddress
48# pragma comment(lib, "synchronization.lib")
49
50// A macro to tell the compiler that this part of the code cannot be reached,
51// if the compiler supports this feature. Since we're using this in
52// code that is called when terminating the process, the expansion of the
53// macro should not terminate the process to avoid infinite recursion.
54#if defined(__clang__)
55# define BUILTIN_UNREACHABLE() __builtin_unreachable()
56#elif defined(__GNUC__) && \
57 (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 5))
58# define BUILTIN_UNREACHABLE() __builtin_unreachable()
59#elif defined(_MSC_VER)
60# define BUILTIN_UNREACHABLE() __assume(0)
61#else
62# define BUILTIN_UNREACHABLE()
63#endif
64
65namespace __sanitizer {
66
67#include "sanitizer_syscall_generic.inc"
68
69// --------------------- sanitizer_common.h
70uptr GetPageSize() {
71 SYSTEM_INFO si;
72 GetSystemInfo(&si);
73 return si.dwPageSize;
74}
75
76uptr GetMmapGranularity() {
77 SYSTEM_INFO si;
78 GetSystemInfo(&si);
79 return si.dwAllocationGranularity;
80}
81
82uptr GetMaxUserVirtualAddress() {
83 SYSTEM_INFO si;
84 GetSystemInfo(&si);
85 return (uptr)si.lpMaximumApplicationAddress;
86}
87
88uptr GetMaxVirtualAddress() {
89 return GetMaxUserVirtualAddress();
90}
91
92bool FileExists(const char *filename) {
93 return ::GetFileAttributesA(filename) != INVALID_FILE_ATTRIBUTES;
94}
95
96bool DirExists(const char *path) {
97 auto attr = ::GetFileAttributesA(path);
98 return (attr != INVALID_FILE_ATTRIBUTES) && (attr & FILE_ATTRIBUTE_DIRECTORY);
99}
100
101uptr internal_getpid() {
102 return GetProcessId(GetCurrentProcess());
103}
104
105int internal_dlinfo(void *handle, int request, void *p) {
106 UNIMPLEMENTED();
107}
108
109// In contrast to POSIX, on Windows GetCurrentThreadId()
110// returns a system-unique identifier.
111tid_t GetTid() {
112 return GetCurrentThreadId();
113}
114
115uptr GetThreadSelf() {
116 return GetTid();
117}
118
119#if !SANITIZER_GO
120void GetThreadStackTopAndBottom(bool at_initialization, uptr *stack_top,
121 uptr *stack_bottom) {
122 CHECK(stack_top);
123 CHECK(stack_bottom);
124 MEMORY_BASIC_INFORMATION mbi;
125 CHECK_NE(VirtualQuery(&mbi /* on stack */, &mbi, sizeof(mbi)), 0);
126 // FIXME: is it possible for the stack to not be a single allocation?
127 // Are these values what ASan expects to get (reserved, not committed;
128 // including stack guard page) ?
129 *stack_top = (uptr)mbi.BaseAddress + mbi.RegionSize;
130 *stack_bottom = (uptr)mbi.AllocationBase;
131}
132#endif // #if !SANITIZER_GO
133
134bool ErrorIsOOM(error_t err) {
135 // TODO: This should check which `err`s correspond to OOM.
136 return false;
137}
138
139void *MmapOrDie(uptr size, const char *mem_type, bool raw_report) {
140 void *rv = VirtualAlloc(0, size, MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);
141 if (rv == 0)
142 ReportMmapFailureAndDie(size, mem_type, "allocate",
143 GetLastError(), raw_report);
144 return rv;
145}
146
147void UnmapOrDie(void *addr, uptr size, bool raw_report) {
148 if (!size || !addr)
149 return;
150
151 MEMORY_BASIC_INFORMATION mbi;
152 CHECK(VirtualQuery(addr, &mbi, sizeof(mbi)));
153
154 // MEM_RELEASE can only be used to unmap whole regions previously mapped with
155 // VirtualAlloc. So we first try MEM_RELEASE since it is better, and if that
156 // fails try MEM_DECOMMIT.
157 if (VirtualFree(addr, 0, MEM_RELEASE) == 0) {
158 if (VirtualFree(addr, size, MEM_DECOMMIT) == 0) {
159 ReportMunmapFailureAndDie(addr, size, GetLastError(), raw_report);
160 }
161 }
162}
163
164static void *ReturnNullptrOnOOMOrDie(uptr size, const char *mem_type,
165 const char *mmap_type) {
166 error_t last_error = GetLastError();
167 if (last_error == ERROR_NOT_ENOUGH_MEMORY)
168 return nullptr;
169 ReportMmapFailureAndDie(size, mem_type, mmap_type, last_error);
170}
171
172void *MmapOrDieOnFatalError(uptr size, const char *mem_type) {
173 void *rv = VirtualAlloc(0, size, MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);
174 if (rv == 0)
175 return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate");
176 return rv;
177}
178
179// We want to map a chunk of address space aligned to 'alignment'.
180void *MmapAlignedOrDieOnFatalError(uptr size, uptr alignment,
181 const char *mem_type) {
182 CHECK(IsPowerOfTwo(size));
183 CHECK(IsPowerOfTwo(alignment));
184
185 // Windows will align our allocations to at least 64K.
186 alignment = Max(alignment, GetMmapGranularity());
187
188 uptr mapped_addr =
189 (uptr)VirtualAlloc(0, size, MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);
190 if (!mapped_addr)
191 return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate aligned");
192
193 // If we got it right on the first try, return. Otherwise, unmap it and go to
194 // the slow path.
195 if (IsAligned(mapped_addr, alignment))
196 return (void*)mapped_addr;
197 if (VirtualFree((void *)mapped_addr, 0, MEM_RELEASE) == 0)
198 ReportMmapFailureAndDie(size, mem_type, "deallocate", GetLastError());
199
200 // If we didn't get an aligned address, overallocate, find an aligned address,
201 // unmap, and try to allocate at that aligned address.
202 int retries = 0;
203 const int kMaxRetries = 10;
204 for (; retries < kMaxRetries &&
205 (mapped_addr == 0 || !IsAligned(mapped_addr, alignment));
206 retries++) {
207 // Overallocate size + alignment bytes.
208 mapped_addr =
209 (uptr)VirtualAlloc(0, size + alignment, MEM_RESERVE, PAGE_NOACCESS);
210 if (!mapped_addr)
211 return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate aligned");
212
213 // Find the aligned address.
214 uptr aligned_addr = RoundUpTo(mapped_addr, alignment);
215
216 // Free the overallocation.
217 if (VirtualFree((void *)mapped_addr, 0, MEM_RELEASE) == 0)
218 ReportMmapFailureAndDie(size, mem_type, "deallocate", GetLastError());
219
220 // Attempt to allocate exactly the number of bytes we need at the aligned
221 // address. This may fail for a number of reasons, in which case we continue
222 // the loop.
223 mapped_addr = (uptr)VirtualAlloc((void *)aligned_addr, size,
224 MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);
225 }
226
227 // Fail if we can't make this work quickly.
228 if (retries == kMaxRetries && mapped_addr == 0)
229 return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate aligned");
230
231 return (void *)mapped_addr;
232}
233
234// ZeroMmapFixedRegion zero's out a region of memory previously returned from a
235// call to one of the MmapFixed* helpers. On non-windows systems this would be
236// done with another mmap, but on windows remapping is not an option.
237// VirtualFree(DECOMMIT)+VirtualAlloc(RECOMMIT) would also be a way to zero the
238// memory, but we can't do this atomically, so instead we fall back to using
239// internal_memset.
240bool ZeroMmapFixedRegion(uptr fixed_addr, uptr size) {
241 internal_memset((void*) fixed_addr, 0, size);
242 return true;
243}
244
245bool MmapFixedNoReserve(uptr fixed_addr, uptr size, const char *name) {
246 // FIXME: is this really "NoReserve"? On Win32 this does not matter much,
247 // but on Win64 it does.
248 (void)name; // unsupported
249#if !SANITIZER_GO && SANITIZER_WINDOWS64
250 // On asan/Windows64, use MEM_COMMIT would result in error
251 // 1455:ERROR_COMMITMENT_LIMIT.
252 // Asan uses exception handler to commit page on demand.
253 void *p = VirtualAlloc((LPVOID)fixed_addr, size, MEM_RESERVE, PAGE_READWRITE);
254#else
255 void *p = VirtualAlloc((LPVOID)fixed_addr, size, MEM_RESERVE | MEM_COMMIT,
256 PAGE_READWRITE);
257#endif
258 if (p == 0) {
259 Report("ERROR: %s failed to "
260 "allocate %p (%zd) bytes at %p (error code: %d)\n",
261 SanitizerToolName, size, size, fixed_addr, GetLastError());
262 return false;
263 }
264 return true;
265}
266
267bool MmapFixedSuperNoReserve(uptr fixed_addr, uptr size, const char *name) {
268 // FIXME: Windows support large pages too. Might be worth checking
269 return MmapFixedNoReserve(fixed_addr, size, name);
270}
271
272// Memory space mapped by 'MmapFixedOrDie' must have been reserved by
273// 'MmapFixedNoAccess'.
274void *MmapFixedOrDie(uptr fixed_addr, uptr size, const char *name) {
275 void *p = VirtualAlloc((LPVOID)fixed_addr, size,
276 MEM_COMMIT, PAGE_READWRITE);
277 if (p == 0) {
278 char mem_type[30];
279 internal_snprintf(mem_type, sizeof(mem_type), "memory at address %p",
280 (void *)fixed_addr);
281 ReportMmapFailureAndDie(size, mem_type, "allocate", GetLastError());
282 }
283 return p;
284}
285
286// Uses fixed_addr for now.
287// Will use offset instead once we've implemented this function for real.
288uptr ReservedAddressRange::Map(uptr fixed_addr, uptr size, const char *name) {
289 return reinterpret_cast<uptr>(MmapFixedOrDieOnFatalError(fixed_addr, size));
290}
291
292uptr ReservedAddressRange::MapOrDie(uptr fixed_addr, uptr size,
293 const char *name) {
294 return reinterpret_cast<uptr>(MmapFixedOrDie(fixed_addr, size));
295}
296
297void ReservedAddressRange::Unmap(uptr addr, uptr size) {
298 // Only unmap if it covers the entire range.
299 CHECK((addr == reinterpret_cast<uptr>(base_)) && (size == size_));
300 // We unmap the whole range, just null out the base.
301 base_ = nullptr;
302 size_ = 0;
303 UnmapOrDie(reinterpret_cast<void*>(addr), size);
304}
305
306void *MmapFixedOrDieOnFatalError(uptr fixed_addr, uptr size, const char *name) {
307 void *p = VirtualAlloc((LPVOID)fixed_addr, size,
308 MEM_COMMIT, PAGE_READWRITE);
309 if (p == 0) {
310 char mem_type[30];
311 internal_snprintf(mem_type, sizeof(mem_type), "memory at address %p",
312 (void *)fixed_addr);
313 return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate");
314 }
315 return p;
316}
317
318void *MmapNoReserveOrDie(uptr size, const char *mem_type) {
319 // FIXME: make this really NoReserve?
320 return MmapOrDie(size, mem_type);
321}
322
323uptr ReservedAddressRange::Init(uptr size, const char *name, uptr fixed_addr) {
324 base_ = fixed_addr ? MmapFixedNoAccess(fixed_addr, size) : MmapNoAccess(size);
325 size_ = size;
326 name_ = name;
327 (void)os_handle_; // unsupported
328 return reinterpret_cast<uptr>(base_);
329}
330
331
332void *MmapFixedNoAccess(uptr fixed_addr, uptr size, const char *name) {
333 (void)name; // unsupported
334 void *res = VirtualAlloc((LPVOID)fixed_addr, size,
335 MEM_RESERVE, PAGE_NOACCESS);
336 if (res == 0)
337 Report("WARNING: %s failed to "
338 "mprotect %p (%zd) bytes at %p (error code: %d)\n",
339 SanitizerToolName, size, size, fixed_addr, GetLastError());
340 return res;
341}
342
343void *MmapNoAccess(uptr size) {
344 void *res = VirtualAlloc(nullptr, size, MEM_RESERVE, PAGE_NOACCESS);
345 if (res == 0)
346 Report("WARNING: %s failed to "
347 "mprotect %p (%zd) bytes (error code: %d)\n",
348 SanitizerToolName, size, size, GetLastError());
349 return res;
350}
351
352bool MprotectNoAccess(uptr addr, uptr size) {
353 DWORD old_protection;
354 return VirtualProtect((LPVOID)addr, size, PAGE_NOACCESS, &old_protection);
355}
356
357bool MprotectReadOnly(uptr addr, uptr size) {
358 DWORD old_protection;
359 return VirtualProtect((LPVOID)addr, size, PAGE_READONLY, &old_protection);
360}
361
362bool MprotectReadWrite(uptr addr, uptr size) {
363 DWORD old_protection;
364 return VirtualProtect((LPVOID)addr, size, PAGE_READWRITE, &old_protection);
365}
366
367void ReleaseMemoryPagesToOS(uptr beg, uptr end) {
368 uptr beg_aligned = RoundDownTo(beg, GetPageSizeCached()),
369 end_aligned = RoundDownTo(end, GetPageSizeCached());
370 CHECK(beg < end); // make sure the region is sane
371 if (beg_aligned == end_aligned) // make sure we're freeing at least 1 page;
372 return;
373 UnmapOrDie((void *)beg, end_aligned - beg_aligned);
374}
375
376void SetShadowRegionHugePageMode(uptr addr, uptr size) {
377 // FIXME: probably similar to ReleaseMemoryToOS.
378}
379
380bool DontDumpShadowMemory(uptr addr, uptr length) {
381 // This is almost useless on 32-bits.
382 // FIXME: add madvise-analog when we move to 64-bits.
383 return true;
384}
385
386uptr MapDynamicShadow(uptr shadow_size_bytes, uptr shadow_scale,
387 uptr min_shadow_base_alignment, UNUSED uptr &high_mem_end,
388 uptr granularity) {
389 const uptr alignment =
390 Max<uptr>(granularity << shadow_scale, 1ULL << min_shadow_base_alignment);
391 const uptr left_padding =
392 Max<uptr>(granularity, 1ULL << min_shadow_base_alignment);
393 uptr space_size = shadow_size_bytes + left_padding;
394 uptr shadow_start = FindAvailableMemoryRange(space_size, alignment,
395 granularity, nullptr, nullptr);
396 CHECK_NE((uptr)0, shadow_start);
397 CHECK(IsAligned(shadow_start, alignment));
398 return shadow_start;
399}
400
401uptr FindAvailableMemoryRange(uptr size, uptr alignment, uptr left_padding,
402 uptr *largest_gap_found,
403 uptr *max_occupied_addr) {
404 uptr address = 0;
405 while (true) {
406 MEMORY_BASIC_INFORMATION info;
407 if (!::VirtualQuery((void*)address, &info, sizeof(info)))
408 return 0;
409
410 if (info.State == MEM_FREE) {
411 uptr shadow_address = RoundUpTo((uptr)info.BaseAddress + left_padding,
412 alignment);
413 if (shadow_address + size < (uptr)info.BaseAddress + info.RegionSize)
414 return shadow_address;
415 }
416
417 // Move to the next region.
418 address = (uptr)info.BaseAddress + info.RegionSize;
419 }
420 return 0;
421}
422
423uptr MapDynamicShadowAndAliases(uptr shadow_size, uptr alias_size,
424 uptr num_aliases, uptr ring_buffer_size) {
425 CHECK(false && "HWASan aliasing is unimplemented on Windows");
426 return 0;
427}
428
429bool MemoryRangeIsAvailable(uptr range_start, uptr range_end) {
430 MEMORY_BASIC_INFORMATION mbi;
431 CHECK(VirtualQuery((void *)range_start, &mbi, sizeof(mbi)));
432 return mbi.Protect == PAGE_NOACCESS &&
433 (uptr)mbi.BaseAddress + mbi.RegionSize >= range_end;
434}
435
436void *MapFileToMemory(const char *file_name, uptr *buff_size) {
437 UNIMPLEMENTED();
438}
439
440void *MapWritableFileToMemory(void *addr, uptr size, fd_t fd, OFF_T offset) {
441 UNIMPLEMENTED();
442}
443
444static const int kMaxEnvNameLength = 128;
445static const DWORD kMaxEnvValueLength = 32767;
446
447namespace {
448
449struct EnvVariable {
450 char name[kMaxEnvNameLength];
451 char value[kMaxEnvValueLength];
452};
453
454} // namespace
455
456static const int kEnvVariables = 5;
457static EnvVariable env_vars[kEnvVariables];
458static int num_env_vars;
459
460const char *GetEnv(const char *name) {
461 // Note: this implementation caches the values of the environment variables
462 // and limits their quantity.
463 for (int i = 0; i < num_env_vars; i++) {
464 if (0 == internal_strcmp(name, env_vars[i].name))
465 return env_vars[i].value;
466 }
467 CHECK_LT(num_env_vars, kEnvVariables);
468 DWORD rv = GetEnvironmentVariableA(name, env_vars[num_env_vars].value,
469 kMaxEnvValueLength);
470 if (rv > 0 && rv < kMaxEnvValueLength) {
471 CHECK_LT(internal_strlen(name), kMaxEnvNameLength);
472 internal_strncpy(env_vars[num_env_vars].name, name, kMaxEnvNameLength);
473 num_env_vars++;
474 return env_vars[num_env_vars - 1].value;
475 }
476 return 0;
477}
478
479const char *GetPwd() {
480 UNIMPLEMENTED();
481}
482
483u32 GetUid() {
484 UNIMPLEMENTED();
485}
486
487namespace {
488struct ModuleInfo {
489 const char *filepath;
490 uptr base_address;
491 uptr end_address;
492};
493
494#if !SANITIZER_GO
495int CompareModulesBase(const void *pl, const void *pr) {
496 const ModuleInfo *l = (const ModuleInfo *)pl, *r = (const ModuleInfo *)pr;
497 if (l->base_address < r->base_address)
498 return -1;
499 return l->base_address > r->base_address;
500}
501#endif
502} // namespace
503
504#if !SANITIZER_GO
505void DumpProcessMap() {
506 Report("Dumping process modules:\n");
507 ListOfModules modules;
508 modules.init();
509 uptr num_modules = modules.size();
510
511 InternalMmapVector<ModuleInfo> module_infos(num_modules);
512 for (size_t i = 0; i < num_modules; ++i) {
513 module_infos[i].filepath = modules[i].full_name();
514 module_infos[i].base_address = modules[i].ranges().front()->beg;
515 module_infos[i].end_address = modules[i].ranges().back()->end;
516 }
517 qsort(module_infos.data(), num_modules, sizeof(ModuleInfo),
518 CompareModulesBase);
519
520 for (size_t i = 0; i < num_modules; ++i) {
521 const ModuleInfo &mi = module_infos[i];
522 if (mi.end_address != 0) {
523 Printf("\t%p-%p %s\n", mi.base_address, mi.end_address,
524 mi.filepath[0] ? mi.filepath : "[no name]");
525 } else if (mi.filepath[0]) {
526 Printf("\t??\?-??? %s\n", mi.filepath);
527 } else {
528 Printf("\t???\n");
529 }
530 }
531}
532#endif
533
534void DisableCoreDumperIfNecessary() {
535 // Do nothing.
536}
537
538void ReExec() {
539 UNIMPLEMENTED();
540}
541
542void PlatformPrepareForSandboxing(void *args) {}
543
544bool StackSizeIsUnlimited() {
545 UNIMPLEMENTED();
546}
547
548void SetStackSizeLimitInBytes(uptr limit) {
549 UNIMPLEMENTED();
550}
551
552bool AddressSpaceIsUnlimited() {
553 UNIMPLEMENTED();
554}
555
556void SetAddressSpaceUnlimited() {
557 UNIMPLEMENTED();
558}
559
560bool IsPathSeparator(const char c) {
561 return c == '\\' || c == '/';
562}
563
564static bool IsAlpha(char c) {
565 c = ToLower(c);
566 return c >= 'a' && c <= 'z';
567}
568
569bool IsAbsolutePath(const char *path) {
570 return path != nullptr && IsAlpha(path[0]) && path[1] == ':' &&
571 IsPathSeparator(path[2]);
572}
573
574void internal_usleep(u64 useconds) { Sleep(useconds / 1000); }
575
576u64 NanoTime() {
577 static LARGE_INTEGER frequency = {};
578 LARGE_INTEGER counter;
579 if (UNLIKELY(frequency.QuadPart == 0)) {
580 QueryPerformanceFrequency(&frequency);
581 CHECK_NE(frequency.QuadPart, 0);
582 }
583 QueryPerformanceCounter(&counter);
584 counter.QuadPart *= 1000ULL * 1000000ULL;
585 counter.QuadPart /= frequency.QuadPart;
586 return counter.QuadPart;
587}
588
589u64 MonotonicNanoTime() { return NanoTime(); }
590
591void Abort() {
592 internal__exit(3);
593}
594
595bool CreateDir(const char *pathname) {
596 return CreateDirectoryA(pathname, nullptr) != 0;
597}
598
599#if !SANITIZER_GO
600// Read the file to extract the ImageBase field from the PE header. If ASLR is
601// disabled and this virtual address is available, the loader will typically
602// load the image at this address. Therefore, we call it the preferred base. Any
603// addresses in the DWARF typically assume that the object has been loaded at
604// this address.
605static uptr GetPreferredBase(const char *modname, char *buf, size_t buf_size) {
606 fd_t fd = OpenFile(modname, RdOnly, nullptr);
607 if (fd == kInvalidFd)
608 return 0;
609 FileCloser closer(fd);
610
611 // Read just the DOS header.
612 IMAGE_DOS_HEADER dos_header;
613 uptr bytes_read;
614 if (!ReadFromFile(fd, &dos_header, sizeof(dos_header), &bytes_read) ||
615 bytes_read != sizeof(dos_header))
616 return 0;
617
618 // The file should start with the right signature.
619 if (dos_header.e_magic != IMAGE_DOS_SIGNATURE)
620 return 0;
621
622 // The layout at e_lfanew is:
623 // "PE\0\0"
624 // IMAGE_FILE_HEADER
625 // IMAGE_OPTIONAL_HEADER
626 // Seek to e_lfanew and read all that data.
627 if (::SetFilePointer(fd, dos_header.e_lfanew, nullptr, FILE_BEGIN) ==
628 INVALID_SET_FILE_POINTER)
629 return 0;
630 if (!ReadFromFile(fd, buf, buf_size, &bytes_read) || bytes_read != buf_size)
631 return 0;
632
633 // Check for "PE\0\0" before the PE header.
634 char *pe_sig = &buf[0];
635 if (internal_memcmp(pe_sig, "PE\0\0", 4) != 0)
636 return 0;
637
638 // Skip over IMAGE_FILE_HEADER. We could do more validation here if we wanted.
639 IMAGE_OPTIONAL_HEADER *pe_header =
640 (IMAGE_OPTIONAL_HEADER *)(pe_sig + 4 + sizeof(IMAGE_FILE_HEADER));
641
642 // Check for more magic in the PE header.
643 if (pe_header->Magic != IMAGE_NT_OPTIONAL_HDR_MAGIC)
644 return 0;
645
646 // Finally, return the ImageBase.
647 return (uptr)pe_header->ImageBase;
648}
649
650void ListOfModules::init() {
651 clearOrInit();
652 HANDLE cur_process = GetCurrentProcess();
653
654 // Query the list of modules. Start by assuming there are no more than 256
655 // modules and retry if that's not sufficient.
656 HMODULE *hmodules = 0;
657 uptr modules_buffer_size = sizeof(HMODULE) * 256;
658 DWORD bytes_required;
659 while (!hmodules) {
660 hmodules = (HMODULE *)MmapOrDie(modules_buffer_size, __FUNCTION__);
661 CHECK(EnumProcessModules(cur_process, hmodules, modules_buffer_size,
662 &bytes_required));
663 if (bytes_required > modules_buffer_size) {
664 // Either there turned out to be more than 256 hmodules, or new hmodules
665 // could have loaded since the last try. Retry.
666 UnmapOrDie(hmodules, modules_buffer_size);
667 hmodules = 0;
668 modules_buffer_size = bytes_required;
669 }
670 }
671
672 InternalMmapVector<char> buf(4 + sizeof(IMAGE_FILE_HEADER) +
673 sizeof(IMAGE_OPTIONAL_HEADER));
674 InternalMmapVector<wchar_t> modname_utf16(kMaxPathLength);
675 InternalMmapVector<char> module_name(kMaxPathLength);
676 // |num_modules| is the number of modules actually present,
677 size_t num_modules = bytes_required / sizeof(HMODULE);
678 for (size_t i = 0; i < num_modules; ++i) {
679 HMODULE handle = hmodules[i];
680 MODULEINFO mi;
681 if (!GetModuleInformation(cur_process, handle, &mi, sizeof(mi)))
682 continue;
683
684 // Get the UTF-16 path and convert to UTF-8.
685 int modname_utf16_len =
686 GetModuleFileNameW(handle, &modname_utf16[0], kMaxPathLength);
687 if (modname_utf16_len == 0)
688 modname_utf16[0] = '\0';
689 int module_name_len = ::WideCharToMultiByte(
690 CP_UTF8, 0, &modname_utf16[0], modname_utf16_len + 1, &module_name[0],
691 kMaxPathLength, NULL, NULL);
692 module_name[module_name_len] = '\0';
693
694 uptr base_address = (uptr)mi.lpBaseOfDll;
695 uptr end_address = (uptr)mi.lpBaseOfDll + mi.SizeOfImage;
696
697 // Adjust the base address of the module so that we get a VA instead of an
698 // RVA when computing the module offset. This helps llvm-symbolizer find the
699 // right DWARF CU. In the common case that the image is loaded at it's
700 // preferred address, we will now print normal virtual addresses.
701 uptr preferred_base =
702 GetPreferredBase(&module_name[0], &buf[0], buf.size());
703 uptr adjusted_base = base_address - preferred_base;
704
705 modules_.push_back(LoadedModule());
706 LoadedModule &cur_module = modules_.back();
707 cur_module.set(&module_name[0], adjusted_base);
708 // We add the whole module as one single address range.
709 cur_module.addAddressRange(base_address, end_address, /*executable*/ true,
710 /*writable*/ true);
711 }
712 UnmapOrDie(hmodules, modules_buffer_size);
713}
714
715void ListOfModules::fallbackInit() { clear(); }
716
717// We can't use atexit() directly at __asan_init time as the CRT is not fully
718// initialized at this point. Place the functions into a vector and use
719// atexit() as soon as it is ready for use (i.e. after .CRT$XIC initializers).
720InternalMmapVectorNoCtor<void (*)(void)> atexit_functions;
721
722static int queueAtexit(void (*function)(void)) {
723 atexit_functions.push_back(function);
724 return 0;
725}
726
727// If Atexit() is being called after RunAtexit() has already been run, it needs
728// to be able to call atexit() directly. Here we use a function ponter to
729// switch out its behaviour.
730// An example of where this is needed is the asan_dynamic runtime on MinGW-w64.
731// On this environment, __asan_init is called during global constructor phase,
732// way after calling the .CRT$XID initializer.
733static int (*volatile queueOrCallAtExit)(void (*)(void)) = &queueAtexit;
734
735int Atexit(void (*function)(void)) { return queueOrCallAtExit(function); }
736
737static int RunAtexit() {
738 TraceLoggingUnregister(g_asan_provider);
739 queueOrCallAtExit = &atexit;
740 int ret = 0;
741 for (uptr i = 0; i < atexit_functions.size(); ++i) {
742 ret |= atexit(atexit_functions[i]);
743 }
744 return ret;
745}
746
747#pragma section(".CRT$XID", long, read)
748__declspec(allocate(".CRT$XID")) int (*__run_atexit)() = RunAtexit;
749#endif
750
751// ------------------ sanitizer_libc.h
752fd_t OpenFile(const char *filename, FileAccessMode mode, error_t *last_error) {
753 // FIXME: Use the wide variants to handle Unicode filenames.
754 fd_t res;
755 if (mode == RdOnly) {
756 res = CreateFileA(filename, GENERIC_READ,
757 FILE_SHARE_READ | FILE_SHARE_WRITE | FILE_SHARE_DELETE,
758 nullptr, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, nullptr);
759 } else if (mode == WrOnly) {
760 res = CreateFileA(filename, GENERIC_WRITE, 0, nullptr, CREATE_ALWAYS,
761 FILE_ATTRIBUTE_NORMAL, nullptr);
762 } else {
763 UNIMPLEMENTED();
764 }
765 CHECK(res != kStdoutFd || kStdoutFd == kInvalidFd);
766 CHECK(res != kStderrFd || kStderrFd == kInvalidFd);
767 if (res == kInvalidFd && last_error)
768 *last_error = GetLastError();
769 return res;
770}
771
772void CloseFile(fd_t fd) {
773 CloseHandle(fd);
774}
775
776bool ReadFromFile(fd_t fd, void *buff, uptr buff_size, uptr *bytes_read,
777 error_t *error_p) {
778 CHECK(fd != kInvalidFd);
779
780 // bytes_read can't be passed directly to ReadFile:
781 // uptr is unsigned long long on 64-bit Windows.
782 unsigned long num_read_long;
783
784 bool success = ::ReadFile(fd, buff, buff_size, &num_read_long, nullptr);
785 if (!success && error_p)
786 *error_p = GetLastError();
787 if (bytes_read)
788 *bytes_read = num_read_long;
789 return success;
790}
791
792bool SupportsColoredOutput(fd_t fd) {
793 // FIXME: support colored output.
794 return false;
795}
796
797bool WriteToFile(fd_t fd, const void *buff, uptr buff_size, uptr *bytes_written,
798 error_t *error_p) {
799 CHECK(fd != kInvalidFd);
800
801 // Handle null optional parameters.
802 error_t dummy_error;
803 error_p = error_p ? error_p : &dummy_error;
804 uptr dummy_bytes_written;
805 bytes_written = bytes_written ? bytes_written : &dummy_bytes_written;
806
807 // Initialize output parameters in case we fail.
808 *error_p = 0;
809 *bytes_written = 0;
810
811 // Map the conventional Unix fds 1 and 2 to Windows handles. They might be
812 // closed, in which case this will fail.
813 if (fd == kStdoutFd || fd == kStderrFd) {
814 fd = GetStdHandle(fd == kStdoutFd ? STD_OUTPUT_HANDLE : STD_ERROR_HANDLE);
815 if (fd == 0) {
816 *error_p = ERROR_INVALID_HANDLE;
817 return false;
818 }
819 }
820
821 DWORD bytes_written_32;
822 if (!WriteFile(fd, buff, buff_size, &bytes_written_32, 0)) {
823 *error_p = GetLastError();
824 return false;
825 } else {
826 *bytes_written = bytes_written_32;
827 return true;
828 }
829}
830
831uptr internal_sched_yield() {
832 Sleep(0);
833 return 0;
834}
835
836void internal__exit(int exitcode) {
837 TraceLoggingUnregister(g_asan_provider);
838 // ExitProcess runs some finalizers, so use TerminateProcess to avoid that.
839 // The debugger doesn't stop on TerminateProcess like it does on ExitProcess,
840 // so add our own breakpoint here.
841 if (::IsDebuggerPresent())
842 __debugbreak();
843 TerminateProcess(GetCurrentProcess(), exitcode);
844 BUILTIN_UNREACHABLE();
845}
846
847uptr internal_ftruncate(fd_t fd, uptr size) {
848 UNIMPLEMENTED();
849}
850
851uptr GetRSS() {
852 PROCESS_MEMORY_COUNTERS counters;
853 if (!GetProcessMemoryInfo(GetCurrentProcess(), &counters, sizeof(counters)))
854 return 0;
855 return counters.WorkingSetSize;
856}
857
858void *internal_start_thread(void *(*func)(void *arg), void *arg) { return 0; }
859void internal_join_thread(void *th) { }
860
861void FutexWait(atomic_uint32_t *p, u32 cmp) {
862 WaitOnAddress(p, &cmp, sizeof(cmp), INFINITE);
863}
864
865void FutexWake(atomic_uint32_t *p, u32 count) {
866 if (count == 1)
867 WakeByAddressSingle(p);
868 else
869 WakeByAddressAll(p);
870}
871
872uptr GetTlsSize() {
873 return 0;
874}
875
876void InitTlsSize() {
877}
878
879void GetThreadStackAndTls(bool main, uptr *stk_addr, uptr *stk_size,
880 uptr *tls_addr, uptr *tls_size) {
881#if SANITIZER_GO
882 *stk_addr = 0;
883 *stk_size = 0;
884 *tls_addr = 0;
885 *tls_size = 0;
886#else
887 uptr stack_top, stack_bottom;
888 GetThreadStackTopAndBottom(main, &stack_top, &stack_bottom);
889 *stk_addr = stack_bottom;
890 *stk_size = stack_top - stack_bottom;
891 *tls_addr = 0;
892 *tls_size = 0;
893#endif
894}
895
896void ReportFile::Write(const char *buffer, uptr length) {
897 SpinMutexLock l(mu);
898 ReopenIfNecessary();
899 if (!WriteToFile(fd, buffer, length)) {
900 // stderr may be closed, but we may be able to print to the debugger
901 // instead. This is the case when launching a program from Visual Studio,
902 // and the following routine should write to its console.
903 OutputDebugStringA(buffer);
904 }
905}
906
907void SetAlternateSignalStack() {
908 // FIXME: Decide what to do on Windows.
909}
910
911void UnsetAlternateSignalStack() {
912 // FIXME: Decide what to do on Windows.
913}
914
915void InstallDeadlySignalHandlers(SignalHandlerType handler) {
916 (void)handler;
917 // FIXME: Decide what to do on Windows.
918}
919
920HandleSignalMode GetHandleSignalMode(int signum) {
921 // FIXME: Decide what to do on Windows.
922 return kHandleSignalNo;
923}
924
925// Check based on flags if we should handle this exception.
926bool IsHandledDeadlyException(DWORD exceptionCode) {
927 switch (exceptionCode) {
928 case EXCEPTION_ACCESS_VIOLATION:
929 case EXCEPTION_ARRAY_BOUNDS_EXCEEDED:
930 case EXCEPTION_STACK_OVERFLOW:
931 case EXCEPTION_DATATYPE_MISALIGNMENT:
932 case EXCEPTION_IN_PAGE_ERROR:
933 return common_flags()->handle_segv;
934 case EXCEPTION_ILLEGAL_INSTRUCTION:
935 case EXCEPTION_PRIV_INSTRUCTION:
936 case EXCEPTION_BREAKPOINT:
937 return common_flags()->handle_sigill;
938 case EXCEPTION_FLT_DENORMAL_OPERAND:
939 case EXCEPTION_FLT_DIVIDE_BY_ZERO:
940 case EXCEPTION_FLT_INEXACT_RESULT:
941 case EXCEPTION_FLT_INVALID_OPERATION:
942 case EXCEPTION_FLT_OVERFLOW:
943 case EXCEPTION_FLT_STACK_CHECK:
944 case EXCEPTION_FLT_UNDERFLOW:
945 case EXCEPTION_INT_DIVIDE_BY_ZERO:
946 case EXCEPTION_INT_OVERFLOW:
947 return common_flags()->handle_sigfpe;
948 }
949 return false;
950}
951
952bool IsAccessibleMemoryRange(uptr beg, uptr size) {
953 SYSTEM_INFO si;
954 GetNativeSystemInfo(&si);
955 uptr page_size = si.dwPageSize;
956 uptr page_mask = ~(page_size - 1);
957
958 for (uptr page = beg & page_mask, end = (beg + size - 1) & page_mask;
959 page <= end;) {
960 MEMORY_BASIC_INFORMATION info;
961 if (VirtualQuery((LPCVOID)page, &info, sizeof(info)) != sizeof(info))
962 return false;
963
964 if (info.Protect == 0 || info.Protect == PAGE_NOACCESS ||
965 info.Protect == PAGE_EXECUTE)
966 return false;
967
968 if (info.RegionSize == 0)
969 return false;
970
971 page += info.RegionSize;
972 }
973
974 return true;
975}
976
977bool SignalContext::IsStackOverflow() const {
978 return (DWORD)GetType() == EXCEPTION_STACK_OVERFLOW;
979}
980
981void SignalContext::InitPcSpBp() {
982 EXCEPTION_RECORD *exception_record = (EXCEPTION_RECORD *)siginfo;
983 CONTEXT *context_record = (CONTEXT *)context;
984
985 pc = (uptr)exception_record->ExceptionAddress;
986# if SANITIZER_WINDOWS64
987# if SANITIZER_ARM64
988 bp = (uptr)context_record->Fp;
989 sp = (uptr)context_record->Sp;
990# else
991 bp = (uptr)context_record->Rbp;
992 sp = (uptr)context_record->Rsp;
993# endif
994# else
995# if SANITIZER_ARM
996 bp = (uptr)context_record->R11;
997 sp = (uptr)context_record->Sp;
998# else
999 bp = (uptr)context_record->Ebp;
1000 sp = (uptr)context_record->Esp;
1001# endif
1002# endif
1003}
1004
1005uptr SignalContext::GetAddress() const {
1006 EXCEPTION_RECORD *exception_record = (EXCEPTION_RECORD *)siginfo;
1007 if (exception_record->ExceptionCode == EXCEPTION_ACCESS_VIOLATION)
1008 return exception_record->ExceptionInformation[1];
1009 return (uptr)exception_record->ExceptionAddress;
1010}
1011
1012bool SignalContext::IsMemoryAccess() const {
1013 return ((EXCEPTION_RECORD *)siginfo)->ExceptionCode ==
1014 EXCEPTION_ACCESS_VIOLATION;
1015}
1016
1017bool SignalContext::IsTrueFaultingAddress() const { return true; }
1018
1019SignalContext::WriteFlag SignalContext::GetWriteFlag() const {
1020 EXCEPTION_RECORD *exception_record = (EXCEPTION_RECORD *)siginfo;
1021
1022 // The write flag is only available for access violation exceptions.
1023 if (exception_record->ExceptionCode != EXCEPTION_ACCESS_VIOLATION)
1024 return SignalContext::Unknown;
1025
1026 // The contents of this array are documented at
1027 // https://docs.microsoft.com/en-us/windows/win32/api/winnt/ns-winnt-exception_record
1028 // The first element indicates read as 0, write as 1, or execute as 8. The
1029 // second element is the faulting address.
1030 switch (exception_record->ExceptionInformation[0]) {
1031 case 0:
1032 return SignalContext::Read;
1033 case 1:
1034 return SignalContext::Write;
1035 case 8:
1036 return SignalContext::Unknown;
1037 }
1038 return SignalContext::Unknown;
1039}
1040
1041void SignalContext::DumpAllRegisters(void *context) {
1042 // FIXME: Implement this.
1043}
1044
1045int SignalContext::GetType() const {
1046 return static_cast<const EXCEPTION_RECORD *>(siginfo)->ExceptionCode;
1047}
1048
1049const char *SignalContext::Describe() const {
1050 unsigned code = GetType();
1051 // Get the string description of the exception if this is a known deadly
1052 // exception.
1053 switch (code) {
1054 case EXCEPTION_ACCESS_VIOLATION:
1055 return "access-violation";
1056 case EXCEPTION_ARRAY_BOUNDS_EXCEEDED:
1057 return "array-bounds-exceeded";
1058 case EXCEPTION_STACK_OVERFLOW:
1059 return "stack-overflow";
1060 case EXCEPTION_DATATYPE_MISALIGNMENT:
1061 return "datatype-misalignment";
1062 case EXCEPTION_IN_PAGE_ERROR:
1063 return "in-page-error";
1064 case EXCEPTION_ILLEGAL_INSTRUCTION:
1065 return "illegal-instruction";
1066 case EXCEPTION_PRIV_INSTRUCTION:
1067 return "priv-instruction";
1068 case EXCEPTION_BREAKPOINT:
1069 return "breakpoint";
1070 case EXCEPTION_FLT_DENORMAL_OPERAND:
1071 return "flt-denormal-operand";
1072 case EXCEPTION_FLT_DIVIDE_BY_ZERO:
1073 return "flt-divide-by-zero";
1074 case EXCEPTION_FLT_INEXACT_RESULT:
1075 return "flt-inexact-result";
1076 case EXCEPTION_FLT_INVALID_OPERATION:
1077 return "flt-invalid-operation";
1078 case EXCEPTION_FLT_OVERFLOW:
1079 return "flt-overflow";
1080 case EXCEPTION_FLT_STACK_CHECK:
1081 return "flt-stack-check";
1082 case EXCEPTION_FLT_UNDERFLOW:
1083 return "flt-underflow";
1084 case EXCEPTION_INT_DIVIDE_BY_ZERO:
1085 return "int-divide-by-zero";
1086 case EXCEPTION_INT_OVERFLOW:
1087 return "int-overflow";
1088 }
1089 return "unknown exception";
1090}
1091
1092uptr ReadBinaryName(/*out*/char *buf, uptr buf_len) {
1093 if (buf_len == 0)
1094 return 0;
1095
1096 // Get the UTF-16 path and convert to UTF-8.
1097 InternalMmapVector<wchar_t> binname_utf16(kMaxPathLength);
1098 int binname_utf16_len =
1099 GetModuleFileNameW(NULL, &binname_utf16[0], kMaxPathLength);
1100 if (binname_utf16_len == 0) {
1101 buf[0] = '\0';
1102 return 0;
1103 }
1104 int binary_name_len =
1105 ::WideCharToMultiByte(CP_UTF8, 0, &binname_utf16[0], binname_utf16_len,
1106 buf, buf_len, NULL, NULL);
1107 if ((unsigned)binary_name_len == buf_len)
1108 --binary_name_len;
1109 buf[binary_name_len] = '\0';
1110 return binary_name_len;
1111}
1112
1113uptr ReadLongProcessName(/*out*/char *buf, uptr buf_len) {
1114 return ReadBinaryName(buf, buf_len);
1115}
1116
1117void CheckVMASize() {
1118 // Do nothing.
1119}
1120
1121void InitializePlatformEarly() {
1122 // Do nothing.
1123}
1124
1125void CheckASLR() {
1126 // Do nothing
1127}
1128
1129void CheckMPROTECT() {
1130 // Do nothing
1131}
1132
1133char **GetArgv() {
1134 // FIXME: Actually implement this function.
1135 return 0;
1136}
1137
1138char **GetEnviron() {
1139 // FIXME: Actually implement this function.
1140 return 0;
1141}
1142
1143pid_t StartSubprocess(const char *program, const char *const argv[],
1144 const char *const envp[], fd_t stdin_fd, fd_t stdout_fd,
1145 fd_t stderr_fd) {
1146 // FIXME: implement on this platform
1147 // Should be implemented based on
1148 // SymbolizerProcess::StarAtSymbolizerSubprocess
1149 // from lib/sanitizer_common/sanitizer_symbolizer_win.cpp.
1150 return -1;
1151}
1152
1153bool IsProcessRunning(pid_t pid) {
1154 // FIXME: implement on this platform.
1155 return false;
1156}
1157
1158int WaitForProcess(pid_t pid) { return -1; }
1159
1160// FIXME implement on this platform.
1161void GetMemoryProfile(fill_profile_f cb, uptr *stats) {}
1162
1163void CheckNoDeepBind(const char *filename, int flag) {
1164 // Do nothing.
1165}
1166
1167// FIXME: implement on this platform.
1168bool GetRandom(void *buffer, uptr length, bool blocking) {
1169 UNIMPLEMENTED();
1170}
1171
1172u32 GetNumberOfCPUs() {
1173 SYSTEM_INFO sysinfo = {};
1174 GetNativeSystemInfo(&sysinfo);
1175 return sysinfo.dwNumberOfProcessors;
1176}
1177
1178#if SANITIZER_WIN_TRACE
1179// TODO(mcgov): Rename this project-wide to PlatformLogInit
1180void AndroidLogInit(void) {
1181 HRESULT hr = TraceLoggingRegister(g_asan_provider);
1182 if (!SUCCEEDED(hr))
1183 return;
1184}
1185
1186void SetAbortMessage(const char *) {}
1187
1188void LogFullErrorReport(const char *buffer) {
1189 if (common_flags()->log_to_syslog) {
1190 InternalMmapVector<wchar_t> filename;
1191 DWORD filename_length = 0;
1192 do {
1193 filename.resize(filename.size() + 0x100);
1194 filename_length =
1195 GetModuleFileNameW(NULL, filename.begin(), filename.size());
1196 } while (filename_length >= filename.size());
1197 TraceLoggingWrite(g_asan_provider, "AsanReportEvent",
1198 TraceLoggingValue(filename.begin(), "ExecutableName"),
1199 TraceLoggingValue(buffer, "AsanReportContents"));
1200 }
1201}
1202#endif // SANITIZER_WIN_TRACE
1203
1204void InitializePlatformCommonFlags(CommonFlags *cf) {}
1205
1206} // namespace __sanitizer
1207
1208#endif // _WIN32
1209