1 | //===----------------------------------------------------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | // For information see https://libcxx.llvm.org/DesignDocs/TimeZone.html |
10 | |
11 | // TODO TZDB look at optimizations |
12 | // |
13 | // The current algorithm is correct but not efficient. For example, in a named |
14 | // rule based continuation finding the next rule does quite a bit of work, |
15 | // returns the next rule and "forgets" its state. This could be better. |
16 | // |
17 | // It would be possible to cache lookups. If a time for a zone is calculated its |
18 | // sys_info could be kept and the next lookup could test whether the time is in |
19 | // a "known" sys_info. The wording in the Standard hints at this slowness by |
20 | // "suggesting" this could be implemented on the user's side. |
21 | |
22 | // TODO TZDB look at removing quirks |
23 | // |
24 | // The code has some special rules to adjust the timing at the continuation |
25 | // switches. This works correctly, but some of the places feel odd. It would be |
26 | // good to investigate this further and see whether all quirks are needed or |
27 | // that there are better fixes. |
28 | // |
29 | // These quirks often use a 12h interval; this is the scan interval of zdump, |
30 | // which implies there are no sys_info objects with a duration of less than 12h. |
31 | |
32 | #include <algorithm> |
33 | #include <cctype> |
34 | #include <chrono> |
35 | #include <expected> |
36 | #include <map> |
37 | #include <numeric> |
38 | #include <ranges> |
39 | |
40 | #include "include/tzdb/time_zone_private.h" |
41 | #include "include/tzdb/tzdb_list_private.h" |
42 | |
43 | // TODO TZDB remove debug printing |
44 | #ifdef PRINT |
45 | # include <print> |
46 | #endif |
47 | |
48 | _LIBCPP_BEGIN_NAMESPACE_STD |
49 | |
50 | #ifdef PRINT |
51 | template <> |
52 | struct formatter<chrono::sys_info, char> { |
53 | template <class ParseContext> |
54 | constexpr typename ParseContext::iterator parse(ParseContext& ctx) { |
55 | return ctx.begin(); |
56 | } |
57 | |
58 | template <class FormatContext> |
59 | typename FormatContext::iterator format(const chrono::sys_info& info, FormatContext& ctx) const { |
60 | return std::format_to( |
61 | ctx.out(), "[{}, {}) {:%Q%q} {:%Q%q} {}" , info.begin, info.end, info.offset, info.save, info.abbrev); |
62 | } |
63 | }; |
64 | #endif |
65 | |
66 | namespace chrono { |
67 | |
68 | //===----------------------------------------------------------------------===// |
69 | // Details |
70 | //===----------------------------------------------------------------------===// |
71 | |
72 | struct __sys_info { |
73 | sys_info __info; |
74 | bool __can_merge; // Can the returned sys_info object be merged with |
75 | }; |
76 | |
77 | // Return type for helper function to get a sys_info. |
78 | // - The expected result returns the "best" sys_info object. This object can be |
79 | // before the requested time. Sometimes sys_info objects from different |
80 | // continuations share their offset, save, and abbrev and these objects are |
81 | // merged to one sys_info object. The __can_merge flag determines whether the |
82 | // current result can be merged with the next result. |
83 | // - The unexpected result means no sys_info object was found and the time is |
84 | // the time to be used for the next search iteration. |
85 | using __sys_info_result = expected<__sys_info, sys_seconds>; |
86 | |
87 | template <ranges::forward_range _Range, |
88 | class _Type, |
89 | class _Proj = identity, |
90 | indirect_strict_weak_order<const _Type*, projected<ranges::iterator_t<_Range>, _Proj>> _Comp = ranges::less> |
91 | [[nodiscard]] static ranges::borrowed_iterator_t<_Range> |
92 | __binary_find(_Range&& __r, const _Type& __value, _Comp __comp = {}, _Proj __proj = {}) { |
93 | auto __end = ranges::end(__r); |
94 | auto __ret = ranges::lower_bound(ranges::begin(__r), __end, __value, __comp, __proj); |
95 | if (__ret == __end) |
96 | return __end; |
97 | |
98 | // When the value does not match the predicate it's equal and a valid result |
99 | // was found. |
100 | return !std::invoke(__comp, __value, std::invoke(__proj, *__ret)) ? __ret : __end; |
101 | } |
102 | |
103 | // Format based on https://data.iana.org/time-zones/tz-how-to.html |
104 | // |
105 | // 1 a time zone abbreviation that is a string of three or more characters that |
106 | // are either ASCII alphanumerics, "+", or "-" |
107 | // 2 the string "%z", in which case the "%z" will be replaced by a numeric time |
108 | // zone abbreviation |
109 | // 3 a pair of time zone abbreviations separated by a slash ('/'), in which |
110 | // case the first string is the abbreviation for the standard time name and |
111 | // the second string is the abbreviation for the daylight saving time name |
112 | // 4 a string containing "%s", in which case the "%s" will be replaced by the |
113 | // text in the appropriate Rule's LETTER column, and the resulting string |
114 | // should be a time zone abbreviation |
115 | // |
116 | // Rule 1 is not strictly validated since America/Barbados uses a two letter |
117 | // abbreviation AT. |
118 | [[nodiscard]] static string |
119 | __format(const __tz::__continuation& __continuation, const string& __letters, seconds __save) { |
120 | bool __shift = false; |
121 | string __result; |
122 | for (char __c : __continuation.__format) { |
123 | if (__shift) { |
124 | switch (__c) { |
125 | case 's': |
126 | std::ranges::copy(__letters, std::back_inserter(x&: __result)); |
127 | break; |
128 | |
129 | case 'z': { |
130 | if (__continuation.__format.size() != 2) |
131 | std::__throw_runtime_error( |
132 | std::format(fmt: "corrupt tzdb FORMAT field: %z should be the entire contents, instead contains '{}'" , |
133 | args: __continuation.__format) |
134 | .c_str()); |
135 | chrono::hh_mm_ss __offset{__continuation.__stdoff + __save}; |
136 | if (__offset.is_negative()) { |
137 | __result += '-'; |
138 | __offset = chrono::hh_mm_ss{-(__continuation.__stdoff + __save)}; |
139 | } else |
140 | __result += '+'; |
141 | |
142 | if (__offset.minutes() != 0min) |
143 | std::format_to(out_it: std::back_inserter(x&: __result), fmt: "{:%H%M}" , args&: __offset); |
144 | else |
145 | std::format_to(out_it: std::back_inserter(x&: __result), fmt: "{:%H}" , args&: __offset); |
146 | } break; |
147 | |
148 | default: |
149 | std::__throw_runtime_error( |
150 | std::format(fmt: "corrupt tzdb FORMAT field: invalid sequence '%{}' found, expected %s or %z" , args&: __c).c_str()); |
151 | } |
152 | __shift = false; |
153 | |
154 | } else if (__c == '/') { |
155 | if (__save != 0s) |
156 | __result.clear(); |
157 | else |
158 | break; |
159 | |
160 | } else if (__c == '%') { |
161 | __shift = true; |
162 | } else if (__c == '+' || __c == '-' || std::isalnum(__c)) { |
163 | __result.push_back(__c); |
164 | } else { |
165 | std::__throw_runtime_error( |
166 | std::format( |
167 | fmt: "corrupt tzdb FORMAT field: invalid character '{}' found, expected +, -, or an alphanumeric value" , args&: __c) |
168 | .c_str()); |
169 | } |
170 | } |
171 | |
172 | if (__shift) |
173 | std::__throw_runtime_error("corrupt tzdb FORMAT field: input ended with the start of the escape sequence '%'" ); |
174 | |
175 | if (__result.empty()) |
176 | std::__throw_runtime_error("corrupt tzdb FORMAT field: result is empty" ); |
177 | |
178 | return __result; |
179 | } |
180 | |
181 | [[nodiscard]] static sys_seconds __to_sys_seconds(year_month_day __ymd, seconds __seconds) { |
182 | seconds __result = static_cast<sys_days>(__ymd).time_since_epoch() + __seconds; |
183 | return sys_seconds{__result}; |
184 | } |
185 | |
186 | [[nodiscard]] static seconds __at_to_sys_seconds(const __tz::__continuation& __continuation) { |
187 | switch (__continuation.__at.__clock) { |
188 | case __tz::__clock::__local: |
189 | return __continuation.__at.__time - __continuation.__stdoff - |
190 | std::visit( |
191 | visitor: [](const auto& __value) { |
192 | using _Tp = decay_t<decltype(__value)>; |
193 | if constexpr (same_as<_Tp, monostate>) |
194 | return chrono::seconds{0}; |
195 | else if constexpr (same_as<_Tp, __tz::__save>) |
196 | return chrono::duration_cast<seconds>(__value.__time); |
197 | else if constexpr (same_as<_Tp, std::string>) |
198 | // For a named rule based continuation the SAVE depends on the RULE |
199 | // active at the end. This should be determined separately. |
200 | return chrono::seconds{0}; |
201 | else |
202 | static_assert(sizeof(_Tp) == 0); // TODO TZDB static_assert(false); after droping clang-16 support |
203 | |
204 | std::__libcpp_unreachable(); |
205 | }, |
206 | vs: __continuation.__rules); |
207 | |
208 | case __tz::__clock::__universal: |
209 | return __continuation.__at.__time; |
210 | |
211 | case __tz::__clock::__standard: |
212 | return __continuation.__at.__time - __continuation.__stdoff; |
213 | } |
214 | std::__libcpp_unreachable(); |
215 | } |
216 | |
217 | [[nodiscard]] static year_month_day __to_year_month_day(year __year, month __month, __tz::__on __on) { |
218 | return std::visit( |
219 | visitor: [&](const auto& __value) { |
220 | using _Tp = decay_t<decltype(__value)>; |
221 | if constexpr (same_as<_Tp, chrono::day>) |
222 | return year_month_day{__year, __month, __value}; |
223 | else if constexpr (same_as<_Tp, weekday_last>) |
224 | return year_month_day{static_cast<sys_days>(year_month_weekday_last{__year, __month, __value})}; |
225 | else if constexpr (same_as<_Tp, __tz::__constrained_weekday>) |
226 | return __value(__year, __month); |
227 | else |
228 | static_assert(sizeof(_Tp) == 0); // TODO TZDB static_assert(false); after droping clang-16 support |
229 | |
230 | std::__libcpp_unreachable(); |
231 | }, |
232 | vs&: __on); |
233 | } |
234 | |
235 | [[nodiscard]] static sys_seconds __until_to_sys_seconds(const __tz::__continuation& __continuation) { |
236 | // Does UNTIL contain the magic value for the last continuation? |
237 | if (__continuation.__year == chrono::year::min()) |
238 | return sys_seconds::max(); |
239 | |
240 | year_month_day __ymd = chrono::__to_year_month_day(year: __continuation.__year, month: __continuation.__in, on: __continuation.__on); |
241 | return chrono::__to_sys_seconds(__ymd, seconds: chrono::__at_to_sys_seconds(__continuation)); |
242 | } |
243 | |
244 | // Holds the UNTIL time for a continuation with a named rule. |
245 | // |
246 | // Unlike continuations with an fixed SAVE named rules have a variable SAVE. |
247 | // This means when the UNTIL uses the local wall time the actual UNTIL value can |
248 | // only be determined when the SAVE is known. This class holds that abstraction. |
249 | class __named_rule_until { |
250 | public: |
251 | explicit __named_rule_until(const __tz::__continuation& __continuation) |
252 | : __until_{chrono::__until_to_sys_seconds(__continuation)}, |
253 | __needs_adjustment_{ |
254 | // The last continuation of a ZONE has no UNTIL which basically is |
255 | // until the end of _local_ time. This value is expressed by |
256 | // sys_seconds::max(). Subtracting the SAVE leaves large value. |
257 | // However SAVE can be negative, which would add a value to maximum |
258 | // leading to undefined behaviour. In practice this often results in |
259 | // an overflow to a very small value. |
260 | __until_ != sys_seconds::max() && __continuation.__at.__clock == __tz::__clock::__local} {} |
261 | |
262 | // Gives the unadjusted until value, this is useful when the SAVE is not known |
263 | // at all. |
264 | sys_seconds __until() const noexcept { return __until_; } |
265 | |
266 | bool __needs_adjustment() const noexcept { return __needs_adjustment_; } |
267 | |
268 | // Returns the UNTIL adjusted for SAVE. |
269 | sys_seconds operator()(seconds __save) const noexcept { return __until_ - __needs_adjustment_ * __save; } |
270 | |
271 | private: |
272 | sys_seconds __until_; |
273 | bool __needs_adjustment_; |
274 | }; |
275 | |
276 | [[nodiscard]] static seconds __at_to_seconds(seconds __stdoff, const __tz::__rule& __rule) { |
277 | switch (__rule.__at.__clock) { |
278 | case __tz::__clock::__local: |
279 | // Local time and standard time behave the same. This is not |
280 | // correct. Local time needs to adjust for the current saved time. |
281 | // To know the saved time the rules need to be known and sorted. |
282 | // This needs a time so to avoid the chicken and egg adjust the |
283 | // saving of the local time later. |
284 | return __rule.__at.__time - __stdoff; |
285 | |
286 | case __tz::__clock::__universal: |
287 | return __rule.__at.__time; |
288 | |
289 | case __tz::__clock::__standard: |
290 | return __rule.__at.__time - __stdoff; |
291 | } |
292 | std::__libcpp_unreachable(); |
293 | } |
294 | |
295 | [[nodiscard]] static sys_seconds __from_to_sys_seconds(seconds __stdoff, const __tz::__rule& __rule, year __year) { |
296 | year_month_day __ymd = chrono::__to_year_month_day(__year, month: __rule.__in, on: __rule.__on); |
297 | |
298 | seconds __at = chrono::__at_to_seconds(__stdoff, __rule); |
299 | return chrono::__to_sys_seconds(__ymd, seconds: __at); |
300 | } |
301 | |
302 | [[nodiscard]] static sys_seconds __from_to_sys_seconds(seconds __stdoff, const __tz::__rule& __rule) { |
303 | return chrono::__from_to_sys_seconds(__stdoff, __rule, year: __rule.__from); |
304 | } |
305 | |
306 | [[nodiscard]] static const vector<__tz::__rule>& |
307 | __get_rules(const __tz::__rules_storage_type& __rules_db, const string& __rule_name) { |
308 | auto __result = chrono::__binary_find(r: __rules_db, value: __rule_name, comp: {}, proj: [](const auto& __p) { return __p.first; }); |
309 | if (__result == std::end(c: __rules_db)) |
310 | std::__throw_runtime_error(("corrupt tzdb: rule '" + __rule_name + " 'does not exist" ).c_str()); |
311 | |
312 | return __result->second; |
313 | } |
314 | |
315 | // Returns the letters field for a time before the first rule. |
316 | // |
317 | // Per https://data.iana.org/time-zones/tz-how-to.html |
318 | // One wrinkle, not fully explained in zic.8.txt, is what happens when switching |
319 | // to a named rule. To what values should the SAVE and LETTER data be |
320 | // initialized? |
321 | // |
322 | // 1 If at least one transition has happened, use the SAVE and LETTER data from |
323 | // the most recent. |
324 | // 2 If switching to a named rule before any transition has happened, assume |
325 | // standard time (SAVE zero), and use the LETTER data from the earliest |
326 | // transition with a SAVE of zero. |
327 | // |
328 | // This function implements case 2. |
329 | [[nodiscard]] static string __letters_before_first_rule(const vector<__tz::__rule>& __rules) { |
330 | auto __letters = |
331 | __rules // |
332 | | views::filter([](const __tz::__rule& __rule) { return __rule.__save.__time == 0s; }) // |
333 | | views::transform([](const __tz::__rule& __rule) { return __rule.__letters; }) // |
334 | | views::take(1); |
335 | |
336 | if (__letters.empty()) |
337 | std::__throw_runtime_error("corrupt tzdb: rule has zero entries" ); |
338 | |
339 | return __letters.front(); |
340 | } |
341 | |
342 | // Determines the information based on the continuation and the rules. |
343 | // |
344 | // There are several special cases to take into account |
345 | // |
346 | // === Entries before the first rule becomes active === |
347 | // Asia/Hong_Kong |
348 | // 9 - JST 1945 N 18 2 // (1) |
349 | // 8 HK HK%sT // (2) |
350 | // R HK 1946 o - Ap 21 0 1 S // (3) |
351 | // There (1) is active until Novemer 18th 1945 at 02:00, after this time |
352 | // (2) becomes active. The first rule entry for HK (3) becomes active |
353 | // from April 21st 1945 at 01:00. In the period between (2) is active. |
354 | // This entry has an offset. |
355 | // This entry has no save, letters, or dst flag. So in the period |
356 | // after (1) and until (3) no rule entry is associated with the time. |
357 | |
358 | [[nodiscard]] static sys_info __get_sys_info_before_first_rule( |
359 | sys_seconds __begin, |
360 | sys_seconds __end, |
361 | const __tz::__continuation& __continuation, |
362 | const vector<__tz::__rule>& __rules) { |
363 | return sys_info{ |
364 | .begin: __begin, |
365 | .end: __end, |
366 | .offset: __continuation.__stdoff, |
367 | .save: chrono::minutes(0), |
368 | .abbrev: chrono::__format(__continuation, letters: __letters_before_first_rule(__rules), save: 0s)}; |
369 | } |
370 | |
371 | // Returns the sys_info object for a time before the first rule. |
372 | // When this first rule has a SAVE of 0s the sys_info for the time before the |
373 | // first rule and for the first rule are identical and will be merged. |
374 | [[nodiscard]] static sys_info __get_sys_info_before_first_rule( |
375 | sys_seconds __begin, |
376 | sys_seconds __rule_end, // The end used when SAVE != 0s |
377 | sys_seconds __next_end, // The end used when SAVE == 0s the times are merged |
378 | const __tz::__continuation& __continuation, |
379 | const vector<__tz::__rule>& __rules, |
380 | vector<__tz::__rule>::const_iterator __rule) { |
381 | if (__rule->__save.__time != 0s) |
382 | return __get_sys_info_before_first_rule(__begin, end: __rule_end, __continuation, __rules); |
383 | |
384 | return sys_info{ |
385 | .begin: __begin, .end: __next_end, .offset: __continuation.__stdoff, .save: 0min, .abbrev: chrono::__format(__continuation, letters: __rule->__letters, save: 0s)}; |
386 | } |
387 | |
388 | [[nodiscard]] static seconds __at_to_seconds(seconds __stdoff, seconds __save, const __tz::__rule& __rule) { |
389 | switch (__rule.__at.__clock) { |
390 | case __tz::__clock::__local: |
391 | return __rule.__at.__time - __stdoff - __save; |
392 | |
393 | case __tz::__clock::__universal: |
394 | return __rule.__at.__time; |
395 | |
396 | case __tz::__clock::__standard: |
397 | return __rule.__at.__time - __stdoff; |
398 | } |
399 | std::__libcpp_unreachable(); |
400 | } |
401 | |
402 | [[nodiscard]] static sys_seconds |
403 | __rule_to_sys_seconds(seconds __stdoff, seconds __save, const __tz::__rule& __rule, year __year) { |
404 | year_month_day __ymd = chrono::__to_year_month_day(__year, month: __rule.__in, on: __rule.__on); |
405 | |
406 | seconds __at = chrono::__at_to_seconds(__stdoff, __save, __rule); |
407 | return chrono::__to_sys_seconds(__ymd, seconds: __at); |
408 | } |
409 | |
410 | // Returns the first rule after __time. |
411 | // Note that a rule can be "active" in multiple years, this may result in an |
412 | // infinite loop where the same rule is returned every time, use __current to |
413 | // guard against that. |
414 | // |
415 | // When no next rule exists the returned time will be sys_seconds::max(). This |
416 | // can happen in practice. For example, |
417 | // |
418 | // R So 1945 o - May 24 2 2 M |
419 | // R So 1945 o - S 24 3 1 S |
420 | // R So 1945 o - N 18 2s 0 - |
421 | // |
422 | // Has 3 rules that are all only active in 1945. |
423 | [[nodiscard]] static pair<sys_seconds, vector<__tz::__rule>::const_iterator> |
424 | __next_rule(sys_seconds __time, |
425 | seconds __stdoff, |
426 | seconds __save, |
427 | const vector<__tz::__rule>& __rules, |
428 | vector<__tz::__rule>::const_iterator __current) { |
429 | year __year = year_month_day{chrono::floor<days>(t: __time)}.year(); |
430 | |
431 | // Note it would probably be better to store the pairs in a vector and then |
432 | // use min() to get the smallest element |
433 | map<sys_seconds, vector<__tz::__rule>::const_iterator> __candidates; |
434 | // Note this evaluates all rules which is a waste of effort; when the entries |
435 | // are beyond the current year's "next year" (where "next year" is not always |
436 | // year + 1) the algorithm should end. |
437 | for (auto __it = __rules.begin(); __it != __rules.end(); ++__it) { |
438 | for (year __y = __it->__from; __y <= __it->__to; ++__y) { |
439 | // Adding the current entry for the current year may lead to infinite |
440 | // loops due to the SAVE adjustment. Skip these entries. |
441 | if (__y == __year && __it == __current) |
442 | continue; |
443 | |
444 | sys_seconds __t = chrono::__rule_to_sys_seconds(__stdoff, __save, rule: *__it, year: __y); |
445 | if (__t <= __time) |
446 | continue; |
447 | |
448 | _LIBCPP_ASSERT_ARGUMENT_WITHIN_DOMAIN(!__candidates.contains(__t), "duplicated rule" ); |
449 | __candidates[__t] = __it; |
450 | break; |
451 | } |
452 | } |
453 | |
454 | if (!__candidates.empty()) [[likely]] { |
455 | auto __it = __candidates.begin(); |
456 | |
457 | // When no rule is selected the time before the first rule and the first rule |
458 | // should not be merged. |
459 | if (__time == sys_seconds::min()) |
460 | return *__it; |
461 | |
462 | // There can be two constitutive rules that are the same. For example, |
463 | // Hong Kong |
464 | // |
465 | // R HK 1973 o - D 30 3:30 1 S (R1) |
466 | // R HK 1965 1976 - Ap Su>=16 3:30 1 S (R2) |
467 | // |
468 | // 1973-12-29 19:30:00 R1 becomes active. |
469 | // 1974-04-20 18:30:00 R2 becomes active. |
470 | // Both rules have a SAVE of 1 hour and LETTERS are S for both of them. |
471 | while (__it != __candidates.end()) { |
472 | if (__current->__save.__time != __it->second->__save.__time || __current->__letters != __it->second->__letters) |
473 | return *__it; |
474 | |
475 | ++__it; |
476 | } |
477 | } |
478 | |
479 | return {sys_seconds::max(), __rules.end()}; |
480 | } |
481 | |
482 | // Returns the first rule of a set of rules. |
483 | // This is not always the first of the listed rules. For example |
484 | // R Sa 2008 2009 - Mar Su>=8 0 0 - |
485 | // R Sa 2007 2008 - O Su>=8 0 1 - |
486 | // The transition in October 2007 happens before the transition in March 2008. |
487 | [[nodiscard]] static vector<__tz::__rule>::const_iterator |
488 | __first_rule(seconds __stdoff, const vector<__tz::__rule>& __rules) { |
489 | return chrono::__next_rule(time: sys_seconds::min(), __stdoff, save: 0s, __rules, current: __rules.end()).second; |
490 | } |
491 | |
492 | [[nodiscard]] static __sys_info_result __get_sys_info_rule( |
493 | sys_seconds __time, |
494 | sys_seconds __continuation_begin, |
495 | const __tz::__continuation& __continuation, |
496 | const vector<__tz::__rule>& __rules) { |
497 | auto __rule = chrono::__first_rule(stdoff: __continuation.__stdoff, __rules); |
498 | _LIBCPP_ASSERT_ARGUMENT_WITHIN_DOMAIN(__rule != __rules.end(), "the set of rules has no first rule" ); |
499 | |
500 | // Avoid selecting a time before the start of the continuation |
501 | __time = std::max(a: __time, b: __continuation_begin); |
502 | |
503 | sys_seconds __rule_begin = chrono::__from_to_sys_seconds(stdoff: __continuation.__stdoff, rule: *__rule); |
504 | |
505 | // The time sought is very likely inside the current rule. |
506 | // When the continuation's UNTIL uses the local clock there are edge cases |
507 | // where this is not true. |
508 | // |
509 | // Start to walk the rules to find the proper one. |
510 | // |
511 | // For now we just walk all the rules TODO TZDB investigate whether a smarter |
512 | // algorithm would work. |
513 | auto __next = chrono::__next_rule(time: __rule_begin, stdoff: __continuation.__stdoff, save: __rule->__save.__time, __rules, current: __rule); |
514 | |
515 | // Ignore small steps, this happens with America/Punta_Arenas for the |
516 | // transition |
517 | // -4:42:46 - SMT 1927 S |
518 | // -5 x -05/-04 1932 S |
519 | // ... |
520 | // |
521 | // R x 1927 1931 - S 1 0 1 - |
522 | // R x 1928 1932 - Ap 1 0 0 - |
523 | // |
524 | // America/Punta_Arenas Thu Sep 1 04:42:45 1927 UT = Thu Sep 1 00:42:45 1927 -04 isdst=1 gmtoff=-14400 |
525 | // America/Punta_Arenas Sun Apr 1 03:59:59 1928 UT = Sat Mar 31 23:59:59 1928 -04 isdst=1 gmtoff=-14400 |
526 | // America/Punta_Arenas Sun Apr 1 04:00:00 1928 UT = Sat Mar 31 23:00:00 1928 -05 isdst=0 gmtoff=-18000 |
527 | // |
528 | // Without this there will be a transition |
529 | // [1927-09-01 04:42:45, 1927-09-01 05:00:00) -05:00:00 0min -05 |
530 | |
531 | if (sys_seconds __begin = __rule->__save.__time != 0s ? __rule_begin : __next.first; __time < __begin) { |
532 | if (__continuation_begin == sys_seconds::min() || __begin - __continuation_begin > 12h) |
533 | return __sys_info{__get_sys_info_before_first_rule( |
534 | begin: __continuation_begin, rule_end: __rule_begin, next_end: __next.first, __continuation, __rules, __rule), |
535 | false}; |
536 | |
537 | // Europe/Berlin |
538 | // 1 c CE%sT 1945 May 24 2 (C1) |
539 | // 1 So CE%sT 1946 (C2) |
540 | // |
541 | // R c 1944 1945 - Ap M>=1 2s 1 S (R1) |
542 | // |
543 | // R So 1945 o - May 24 2 2 M (R2) |
544 | // |
545 | // When C2 becomes active the time would be before the first rule R2, |
546 | // giving a 1 hour sys_info. |
547 | seconds __save = __rule->__save.__time; |
548 | __named_rule_until __continuation_end{__continuation}; |
549 | sys_seconds __sys_info_end = std::min(a: __continuation_end(__save), b: __next.first); |
550 | |
551 | return __sys_info{ |
552 | sys_info{.begin: __continuation_begin, |
553 | .end: __sys_info_end, |
554 | .offset: __continuation.__stdoff + __save, |
555 | .save: chrono::duration_cast<minutes>(fd: __save), |
556 | .abbrev: chrono::__format(__continuation, letters: __rule->__letters, __save)}, |
557 | __sys_info_end == __continuation_end(__save)}; |
558 | } |
559 | |
560 | // See above for America/Asuncion |
561 | if (__rule->__save.__time == 0s && __time < __next.first) { |
562 | return __sys_info{ |
563 | sys_info{.begin: __continuation_begin, |
564 | .end: __next.first, |
565 | .offset: __continuation.__stdoff, |
566 | .save: 0min, |
567 | .abbrev: chrono::__format(__continuation, letters: __rule->__letters, save: 0s)}, |
568 | false}; |
569 | } |
570 | |
571 | if (__rule->__save.__time != 0s) { |
572 | // another fix for America/Punta_Arenas when not at the start of the |
573 | // sys_info object. |
574 | seconds __save = __rule->__save.__time; |
575 | if (__continuation_begin >= __rule_begin - __save && __time < __next.first) { |
576 | return __sys_info{ |
577 | sys_info{.begin: __continuation_begin, |
578 | .end: __next.first, |
579 | .offset: __continuation.__stdoff + __save, |
580 | .save: chrono::duration_cast<minutes>(fd: __save), |
581 | .abbrev: chrono::__format(__continuation, letters: __rule->__letters, __save)}, |
582 | false}; |
583 | } |
584 | } |
585 | |
586 | __named_rule_until __continuation_end{__continuation}; |
587 | while (__next.second != __rules.end()) { |
588 | #ifdef PRINT |
589 | std::print( |
590 | stderr, |
591 | "Rule for {}: [{}, {}) off={} save={} duration={}\n" , |
592 | __time, |
593 | __rule_begin, |
594 | __next.first, |
595 | __continuation.__stdoff, |
596 | __rule->__save.__time, |
597 | __next.first - __rule_begin); |
598 | #endif |
599 | |
600 | sys_seconds __end = __continuation_end(__rule->__save.__time); |
601 | |
602 | sys_seconds __sys_info_begin = std::max(a: __continuation_begin, b: __rule_begin); |
603 | sys_seconds __sys_info_end = std::min(a: __end, b: __next.first); |
604 | seconds __diff = chrono::abs(d: __sys_info_end - __sys_info_begin); |
605 | |
606 | if (__diff < 12h) { |
607 | // Z America/Argentina/Buenos_Aires -3:53:48 - LMT 1894 O 31 |
608 | // -4:16:48 - CMT 1920 May |
609 | // -4 - -04 1930 D |
610 | // -4 A -04/-03 1969 O 5 |
611 | // -3 A -03/-02 1999 O 3 |
612 | // -4 A -04/-03 2000 Mar 3 |
613 | // ... |
614 | // |
615 | // ... |
616 | // R A 1989 1992 - O Su>=15 0 1 - |
617 | // R A 1999 o - O Su>=1 0 1 - |
618 | // R A 2000 o - Mar 3 0 0 - |
619 | // R A 2007 o - D 30 0 1 - |
620 | // ... |
621 | |
622 | // The 1999 switch uses the same rule, but with a different stdoff. |
623 | // R A 1999 o - O Su>=1 0 1 - |
624 | // stdoff -3 -> 1999-10-03 03:00:00 |
625 | // stdoff -4 -> 1999-10-03 04:00:00 |
626 | // This generates an invalid entry and this is evaluated as a transition. |
627 | // Looking at the zdump like output in libc++ this generates jumps in |
628 | // the UTC time. |
629 | |
630 | __rule = __next.second; |
631 | __next = __next_rule(time: __next.first, stdoff: __continuation.__stdoff, save: __rule->__save.__time, __rules, current: __rule); |
632 | __end = __continuation_end(__rule->__save.__time); |
633 | __sys_info_end = std::min(a: __end, b: __next.first); |
634 | } |
635 | |
636 | if ((__time >= __rule_begin && __time < __next.first) || __next.first >= __end) { |
637 | __sys_info_begin = std::max(a: __continuation_begin, b: __rule_begin); |
638 | __sys_info_end = std::min(a: __end, b: __next.first); |
639 | |
640 | return __sys_info{ |
641 | sys_info{.begin: __sys_info_begin, |
642 | .end: __sys_info_end, |
643 | .offset: __continuation.__stdoff + __rule->__save.__time, |
644 | .save: chrono::duration_cast<minutes>(fd: __rule->__save.__time), |
645 | .abbrev: chrono::__format(__continuation, letters: __rule->__letters, save: __rule->__save.__time)}, |
646 | __sys_info_end == __end}; |
647 | } |
648 | |
649 | __rule_begin = __next.first; |
650 | __rule = __next.second; |
651 | __next = __next_rule(time: __rule_begin, stdoff: __continuation.__stdoff, save: __rule->__save.__time, __rules, current: __rule); |
652 | } |
653 | |
654 | return __sys_info{ |
655 | sys_info{.begin: std::max(a: __continuation_begin, b: __rule_begin), |
656 | .end: __continuation_end(__rule->__save.__time), |
657 | .offset: __continuation.__stdoff + __rule->__save.__time, |
658 | .save: chrono::duration_cast<minutes>(fd: __rule->__save.__time), |
659 | .abbrev: chrono::__format(__continuation, letters: __rule->__letters, save: __rule->__save.__time)}, |
660 | true}; |
661 | } |
662 | |
663 | [[nodiscard]] static __sys_info_result __get_sys_info_basic( |
664 | sys_seconds __time, sys_seconds __continuation_begin, const __tz::__continuation& __continuation, seconds __save) { |
665 | sys_seconds __continuation_end = chrono::__until_to_sys_seconds(__continuation); |
666 | return __sys_info{ |
667 | sys_info{.begin: __continuation_begin, |
668 | .end: __continuation_end, |
669 | .offset: __continuation.__stdoff + __save, |
670 | .save: chrono::duration_cast<minutes>(fd: __save), |
671 | .abbrev: __continuation.__format}, |
672 | true}; |
673 | } |
674 | |
675 | [[nodiscard]] static __sys_info_result |
676 | __get_sys_info(sys_seconds __time, |
677 | sys_seconds __continuation_begin, |
678 | const __tz::__continuation& __continuation, |
679 | const __tz::__rules_storage_type& __rules_db) { |
680 | return std::visit( |
681 | visitor: [&](const auto& __value) { |
682 | using _Tp = decay_t<decltype(__value)>; |
683 | if constexpr (same_as<_Tp, std::string>) |
684 | return chrono::__get_sys_info_rule( |
685 | __time, __continuation_begin, __continuation, rules: __get_rules(__rules_db, __value)); |
686 | else if constexpr (same_as<_Tp, monostate>) |
687 | return chrono::__get_sys_info_basic(__time, __continuation_begin, __continuation, save: chrono::seconds(0)); |
688 | else if constexpr (same_as<_Tp, __tz::__save>) |
689 | return chrono::__get_sys_info_basic(__time, __continuation_begin, __continuation, save: __value.__time); |
690 | else |
691 | static_assert(sizeof(_Tp) == 0); // TODO TZDB static_assert(false); after droping clang-16 support |
692 | |
693 | std::__libcpp_unreachable(); |
694 | }, |
695 | vs: __continuation.__rules); |
696 | } |
697 | |
698 | // The transition from one continuation to the next continuation may result in |
699 | // two constitutive continuations with the same "offset" information. |
700 | // [time.zone.info.sys]/3 |
701 | // The begin and end data members indicate that, for the associated time_zone |
702 | // and time_point, the offset and abbrev are in effect in the range |
703 | // [begin, end). This information can be used to efficiently iterate the |
704 | // transitions of a time_zone. |
705 | // |
706 | // Note that this does considers a change in the SAVE field not to be a |
707 | // different sys_info, zdump does consider this different. |
708 | // LWG XXXX The sys_info range should be affected by save |
709 | // matches the behaviour of the Standard and zdump. |
710 | // |
711 | // Iff the "offsets" are the same '__current.__end' is replaced with |
712 | // '__next.__end', which effectively merges the two objects in one object. The |
713 | // function returns true if a merge occurred. |
714 | [[nodiscard]] bool __merge_continuation(sys_info& __current, const sys_info& __next) { |
715 | if (__current.end != __next.begin) |
716 | return false; |
717 | |
718 | if (__current.offset != __next.offset || __current.abbrev != __next.abbrev || __current.save != __next.save) |
719 | return false; |
720 | |
721 | __current.end = __next.end; |
722 | return true; |
723 | } |
724 | |
725 | //===----------------------------------------------------------------------===// |
726 | // Public API |
727 | //===----------------------------------------------------------------------===// |
728 | |
729 | [[nodiscard]] _LIBCPP_EXPORTED_FROM_ABI time_zone time_zone::__create(unique_ptr<time_zone::__impl>&& __p) { |
730 | _LIBCPP_ASSERT_NON_NULL(__p != nullptr, "initialized time_zone without a valid pimpl object" ); |
731 | time_zone result; |
732 | result.__impl_ = std::move(__p); |
733 | return result; |
734 | } |
735 | |
736 | _LIBCPP_EXPORTED_FROM_ABI time_zone::~time_zone() = default; |
737 | |
738 | [[nodiscard]] _LIBCPP_EXPORTED_FROM_ABI string_view time_zone::__name() const noexcept { return __impl_->__name(); } |
739 | |
740 | [[nodiscard]] _LIBCPP_AVAILABILITY_TZDB _LIBCPP_EXPORTED_FROM_ABI sys_info |
741 | time_zone::__get_info(sys_seconds __time) const { |
742 | optional<sys_info> __result; |
743 | bool __valid_result = false; // true iff __result.has_value() is true and |
744 | // __result.begin <= __time < __result.end is true. |
745 | bool __can_merge = false; |
746 | sys_seconds __continuation_begin = sys_seconds::min(); |
747 | // Iterates over the Zone entry and its continuations. Internally the Zone |
748 | // entry is split in a Zone information and the first continuation. The last |
749 | // continuation has no UNTIL field. This means the loop should always find a |
750 | // continuation. |
751 | // |
752 | // For more information on background of zone information please consult the |
753 | // following information |
754 | // [zic manual](https://www.man7.org/linux/man-pages/man8/zic.8.html) |
755 | // [tz source info](https://data.iana.org/time-zones/tz-how-to.html) |
756 | // On POSIX systems the zdump tool can be useful: |
757 | // zdump -v Asia/Hong_Kong |
758 | // Gives all transitions in the Hong Kong time zone. |
759 | // |
760 | // During iteration the result for the current continuation is returned. If |
761 | // no continuation is applicable it will return the end time as "error". When |
762 | // two continuations are contiguous and contain the "same" information these |
763 | // ranges are merged as one range. |
764 | // The merging requires keeping any result that occurs before __time, |
765 | // likewise when a valid result is found the algorithm needs to test the next |
766 | // continuation to see whether it can be merged. For example, Africa/Ceuta |
767 | // Continuations |
768 | // 0 s WE%sT 1929 (C1) |
769 | // 0 - WET 1967 (C2) |
770 | // 0 Sp WE%sT 1984 Mar 16 (C3) |
771 | // |
772 | // Rules |
773 | // R s 1926 1929 - O Sa>=1 24s 0 - (R1) |
774 | // |
775 | // R Sp 1967 o - Jun 3 12 1 S (R2) |
776 | // |
777 | // The rule R1 is the last rule used in C1. The rule R2 is the first rule in |
778 | // C3. Since R2 is the first rule this means when a continuation uses this |
779 | // rule its value prior to R2 will be SAVE 0 LETTERS of the first entry with a |
780 | // SAVE of 0, in this case WET. |
781 | // This gives the following changes in the information. |
782 | // 1928-10-07 00:00:00 C1 R1 becomes active: offset 0 save 0 abbrev WET |
783 | // 1929-01-01 00:00:00 C2 becomes active: offset 0 save 0 abbrev WET |
784 | // 1967-01-01 00:00:00 C3 becomes active: offset 0 save 0 abbrev WET |
785 | // 1967-06-03 12:00:00 C3 R2 becomes active: offset 0 save 1 abbrev WEST |
786 | // |
787 | // The first 3 entries are contiguous and contain the same information, this |
788 | // means the period [1928-10-07 00:00:00, 1967-06-03 12:00:00) should be |
789 | // returned in one sys_info object. |
790 | |
791 | const auto& __continuations = __impl_->__continuations(); |
792 | const __tz::__rules_storage_type& __rules_db = __impl_->__rules_db(); |
793 | for (auto __it = __continuations.begin(); __it != __continuations.end(); ++__it) { |
794 | const auto& __continuation = *__it; |
795 | __sys_info_result __sys_info = chrono::__get_sys_info(__time, __continuation_begin, __continuation, __rules_db); |
796 | |
797 | if (__sys_info) { |
798 | _LIBCPP_ASSERT_ARGUMENT_WITHIN_DOMAIN( |
799 | __sys_info->__info.begin < __sys_info->__info.end, "invalid sys_info range" ); |
800 | |
801 | // Filters out dummy entries |
802 | // Z America/Argentina/Buenos_Aires -3:53:48 - LMT 1894 O 31 |
803 | // ... |
804 | // -4 A -04/-03 2000 Mar 3 (C1) |
805 | // -3 A -03/-02 (C2) |
806 | // |
807 | // ... |
808 | // R A 2000 o - Mar 3 0 0 - |
809 | // R A 2007 o - D 30 0 1 - |
810 | // ... |
811 | // |
812 | // This results in an entry |
813 | // [2000-03-03 03:00:00, 2000-03-03 04:00:00) -10800s 60min -03 |
814 | // for [C1 & R1, C1, R2) which due to the end of the continuation is an |
815 | // one hour "sys_info". Instead the entry should be ignored and replaced |
816 | // by [C2 & R1, C2 & R2) which is the proper range |
817 | // "[2000-03-03 03:00:00, 2007-12-30 03:00:00) -02:00:00 60min -02 |
818 | |
819 | if (std::holds_alternative<string>(v: __continuation.__rules) && __sys_info->__can_merge && |
820 | __sys_info->__info.begin + 12h > __sys_info->__info.end) { |
821 | __continuation_begin = __sys_info->__info.begin; |
822 | continue; |
823 | } |
824 | |
825 | if (!__result) { |
826 | // First entry found, always keep it. |
827 | __result = __sys_info->__info; |
828 | |
829 | __valid_result = __time >= __result->begin && __time < __result->end; |
830 | __can_merge = __sys_info->__can_merge; |
831 | } else if (__can_merge && chrono::__merge_continuation(current&: *__result, next: __sys_info->__info)) { |
832 | // The results are merged, update the result state. This may |
833 | // "overwrite" a valid sys_info object with another valid sys_info |
834 | // object. |
835 | __valid_result = __time >= __result->begin && __time < __result->end; |
836 | __can_merge = __sys_info->__can_merge; |
837 | } else { |
838 | // Here things get interesting: |
839 | // For example, America/Argentina/San_Luis |
840 | // |
841 | // -3 A -03/-02 2008 Ja 21 (C1) |
842 | // -4 Sa -04/-03 2009 O 11 (C2) |
843 | // |
844 | // R A 2007 o - D 30 0 1 - (R1) |
845 | // |
846 | // R Sa 2007 2008 - O Su>=8 0 1 - (R2) |
847 | // |
848 | // Based on C1 & R1 the end time of C1 is 2008-01-21 03:00:00 |
849 | // Based on C2 & R2 the end time of C1 is 2008-01-21 02:00:00 |
850 | // In this case the earlier time is the real time of the transition. |
851 | // However the algorithm used gives 2008-01-21 03:00:00. |
852 | // |
853 | // So we need to calculate the previous UNTIL in the current context and |
854 | // see whether it's earlier. |
855 | |
856 | // The results could not be merged. |
857 | // - When we have a valid result that result is the final result. |
858 | // - Otherwise the result we had is before __time and the result we got |
859 | // is at a later time (possibly valid). This result is always better |
860 | // than the previous result. |
861 | if (__valid_result) { |
862 | return *__result; |
863 | } else { |
864 | _LIBCPP_ASSERT_ARGUMENT_WITHIN_DOMAIN( |
865 | __it != __continuations.begin(), "the first rule should always seed the result" ); |
866 | const auto& __last = *(__it - 1); |
867 | if (std::holds_alternative<string>(v: __last.__rules)) { |
868 | // Europe/Berlin |
869 | // 1 c CE%sT 1945 May 24 2 (C1) |
870 | // 1 So CE%sT 1946 (C2) |
871 | // |
872 | // R c 1944 1945 - Ap M>=1 2s 1 S (R1) |
873 | // |
874 | // R So 1945 o - May 24 2 2 M (R2) |
875 | // |
876 | // When C2 becomes active the time would be before the first rule R2, |
877 | // giving a 1 hour sys_info. This is not valid and the results need |
878 | // merging. |
879 | |
880 | if (__result->end != __sys_info->__info.begin) { |
881 | // When the UTC gap between the rules is due to the change of |
882 | // offsets adjust the new time to remove the gap. |
883 | sys_seconds __end = __result->end - __result->offset; |
884 | sys_seconds __begin = __sys_info->__info.begin - __sys_info->__info.offset; |
885 | if (__end == __begin) { |
886 | __sys_info->__info.begin = __result->end; |
887 | } |
888 | } |
889 | } |
890 | |
891 | __result = __sys_info->__info; |
892 | __valid_result = __time >= __result->begin && __time < __result->end; |
893 | __can_merge = __sys_info->__can_merge; |
894 | } |
895 | } |
896 | __continuation_begin = __result->end; |
897 | } else { |
898 | __continuation_begin = __sys_info.error(); |
899 | } |
900 | } |
901 | if (__valid_result) |
902 | return *__result; |
903 | |
904 | std::__throw_runtime_error("tzdb: corrupt db" ); |
905 | } |
906 | |
907 | // Is the "__local_time" present in "__first" and "__second". If so the |
908 | // local_info has an ambiguous result. |
909 | [[nodiscard]] static bool |
910 | __is_ambiguous(local_seconds __local_time, const sys_info& __first, const sys_info& __second) { |
911 | std::chrono::local_seconds __end_first{__first.end.time_since_epoch() + __first.offset}; |
912 | std::chrono::local_seconds __begin_second{__second.begin.time_since_epoch() + __second.offset}; |
913 | |
914 | return __local_time < __end_first && __local_time >= __begin_second; |
915 | } |
916 | |
917 | // Determines the result of the "__local_time". This expects the object |
918 | // "__first" to be earlier in time than "__second". |
919 | [[nodiscard]] static local_info |
920 | __get_info(local_seconds __local_time, const sys_info& __first, const sys_info& __second) { |
921 | std::chrono::local_seconds __end_first{__first.end.time_since_epoch() + __first.offset}; |
922 | std::chrono::local_seconds __begin_second{__second.begin.time_since_epoch() + __second.offset}; |
923 | |
924 | if (__local_time < __end_first) { |
925 | if (__local_time >= __begin_second) |
926 | // |--------| |
927 | // |------| |
928 | // ^ |
929 | return {.result: local_info::ambiguous, .first: __first, .second: __second}; |
930 | |
931 | // |--------| |
932 | // |------| |
933 | // ^ |
934 | return {.result: local_info::unique, .first: __first, .second: sys_info{}}; |
935 | } |
936 | |
937 | if (__local_time < __begin_second) |
938 | // |--------| |
939 | // |------| |
940 | // ^ |
941 | return {.result: local_info::nonexistent, .first: __first, .second: __second}; |
942 | |
943 | // |--------| |
944 | // |------| |
945 | // ^ |
946 | return {.result: local_info::unique, .first: __second, .second: sys_info{}}; |
947 | } |
948 | |
949 | [[nodiscard]] _LIBCPP_AVAILABILITY_TZDB _LIBCPP_EXPORTED_FROM_ABI local_info |
950 | time_zone::__get_info(local_seconds __local_time) const { |
951 | seconds __local_seconds = __local_time.time_since_epoch(); |
952 | |
953 | /* An example of a typical year with a DST switch displayed in local time. |
954 | * |
955 | * At the first of April the time goes forward one hour. This means the |
956 | * time marked with ~~ is not a valid local time. This is represented by the |
957 | * nonexistent value in local_info.result. |
958 | * |
959 | * At the first of November the time goes backward one hour. This means the |
960 | * time marked with ^^ happens twice. This is represented by the ambiguous |
961 | * value in local_info.result. |
962 | * |
963 | * 2020.11.01 2021.04.01 2021.11.01 |
964 | * offset +05 offset +05 offset +05 |
965 | * save 0s save 1h save 0s |
966 | * |------------//----------| |
967 | * |---------//--------------| |
968 | * |------------- |
969 | * ~~ ^^ |
970 | * |
971 | * These shifts can happen due to changes in the current time zone for a |
972 | * location. For example, Indian/Kerguelen switched only once. In 1950 from an |
973 | * offset of 0 hours to an offset of +05 hours. |
974 | * |
975 | * During all these shifts the UTC time will not have gaps. |
976 | */ |
977 | |
978 | // The code needs to determine the system time for the local time. There is no |
979 | // information available. Assume the offset between system time and local time |
980 | // is 0s. This gives an initial estimate. |
981 | sys_seconds __guess{__local_seconds}; |
982 | sys_info __info = __get_info(time: __guess); |
983 | |
984 | // At this point the offset can be used to determine an estimate for the local |
985 | // time. Before doing that, determine the offset and validate whether the |
986 | // local time is the range [chrono::local_seconds::min(), |
987 | // chrono::local_seconds::max()). |
988 | if (__local_seconds < 0s && __info.offset > 0s) |
989 | if (__local_seconds - chrono::local_seconds::min().time_since_epoch() < __info.offset) |
990 | return {.result: -1, .first: __info, .second: {}}; |
991 | |
992 | if (__local_seconds > 0s && __info.offset < 0s) |
993 | if (chrono::local_seconds::max().time_since_epoch() - __local_seconds < -__info.offset) |
994 | return {.result: -2, .first: __info, .second: {}}; |
995 | |
996 | // Based on the information found in the sys_info, the local time can be |
997 | // converted to a system time. This resulting time can be in the following |
998 | // locations of the sys_info: |
999 | // |
1000 | // |---------//--------------| |
1001 | // 1 2.1 2.2 2.3 3 |
1002 | // |
1003 | // 1. The estimate is before the returned sys_info object. |
1004 | // The result is either non-existent or unique in the previous sys_info. |
1005 | // 2. The estimate is in the sys_info object |
1006 | // - If the sys_info begin is not sys_seconds::min(), then it might be at |
1007 | // 2.1 and could be ambiguous with the previous or unique. |
1008 | // - If sys_info end is not sys_seconds::max(), then it might be at 2.3 |
1009 | // and could be ambiguous with the next or unique. |
1010 | // - Else it is at 2.2 and always unique. This case happens when a |
1011 | // time zone has no transitions. For example, UTC or GMT+1. |
1012 | // 3. The estimate is after the returned sys_info object. |
1013 | // The result is either non-existent or unique in the next sys_info. |
1014 | // |
1015 | // There is no specification where the "middle" starts. Similar issues can |
1016 | // happen when sys_info objects are "short", then "unique in the next" could |
1017 | // become "ambiguous in the next and the one following". Theoretically there |
1018 | // is the option of the following time-line |
1019 | // |
1020 | // |------------| |
1021 | // |----| |
1022 | // |-----------------| |
1023 | // |
1024 | // However the local_info object only has 2 sys_info objects, so this option |
1025 | // is not tested. |
1026 | |
1027 | sys_seconds __sys_time{__local_seconds - __info.offset}; |
1028 | if (__sys_time < __info.begin) |
1029 | // Case 1 before __info |
1030 | return chrono::__get_info(__local_time, first: __get_info(time: __info.begin - 1s), second: __info); |
1031 | |
1032 | if (__sys_time >= __info.end) |
1033 | // Case 3 after __info |
1034 | return chrono::__get_info(__local_time, first: __info, second: __get_info(time: __info.end)); |
1035 | |
1036 | // Case 2 in __info |
1037 | if (__info.begin != sys_seconds::min()) { |
1038 | // Case 2.1 Not at the beginning, when not ambiguous the result should test |
1039 | // case 2.3. |
1040 | sys_info __prev = __get_info(time: __info.begin - 1s); |
1041 | if (__is_ambiguous(__local_time, first: __prev, second: __info)) |
1042 | return {.result: local_info::ambiguous, .first: __prev, .second: __info}; |
1043 | } |
1044 | |
1045 | if (__info.end == sys_seconds::max()) |
1046 | // At the end so it's case 2.2 |
1047 | return {.result: local_info::unique, .first: __info, .second: sys_info{}}; |
1048 | |
1049 | // This tests case 2.2 or case 2.3. |
1050 | return chrono::__get_info(__local_time, first: __info, second: __get_info(time: __info.end)); |
1051 | } |
1052 | |
1053 | } // namespace chrono |
1054 | |
1055 | _LIBCPP_END_NAMESPACE_STD |
1056 | |