| 1 | //===--- InterpBuiltin.cpp - Interpreter for the constexpr VM ---*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | #include "../ExprConstShared.h" |
| 9 | #include "Boolean.h" |
| 10 | #include "EvalEmitter.h" |
| 11 | #include "InterpBuiltinBitCast.h" |
| 12 | #include "InterpHelpers.h" |
| 13 | #include "PrimType.h" |
| 14 | #include "Program.h" |
| 15 | #include "clang/AST/InferAlloc.h" |
| 16 | #include "clang/AST/OSLog.h" |
| 17 | #include "clang/AST/RecordLayout.h" |
| 18 | #include "clang/Basic/Builtins.h" |
| 19 | #include "clang/Basic/TargetBuiltins.h" |
| 20 | #include "clang/Basic/TargetInfo.h" |
| 21 | #include "llvm/ADT/StringExtras.h" |
| 22 | #include "llvm/Support/AllocToken.h" |
| 23 | #include "llvm/Support/ErrorHandling.h" |
| 24 | #include "llvm/Support/SipHash.h" |
| 25 | |
| 26 | namespace clang { |
| 27 | namespace interp { |
| 28 | |
| 29 | [[maybe_unused]] static bool isNoopBuiltin(unsigned ID) { |
| 30 | switch (ID) { |
| 31 | case Builtin::BIas_const: |
| 32 | case Builtin::BIforward: |
| 33 | case Builtin::BIforward_like: |
| 34 | case Builtin::BImove: |
| 35 | case Builtin::BImove_if_noexcept: |
| 36 | case Builtin::BIaddressof: |
| 37 | case Builtin::BI__addressof: |
| 38 | case Builtin::BI__builtin_addressof: |
| 39 | case Builtin::BI__builtin_launder: |
| 40 | return true; |
| 41 | default: |
| 42 | return false; |
| 43 | } |
| 44 | return false; |
| 45 | } |
| 46 | |
| 47 | static void discard(InterpStack &Stk, PrimType T) { |
| 48 | TYPE_SWITCH(T, { Stk.discard<T>(); }); |
| 49 | } |
| 50 | |
| 51 | static uint64_t popToUInt64(const InterpState &S, const Expr *E) { |
| 52 | INT_TYPE_SWITCH(*S.getContext().classify(E->getType()), |
| 53 | return static_cast<uint64_t>(S.Stk.pop<T>())); |
| 54 | } |
| 55 | |
| 56 | static APSInt popToAPSInt(InterpStack &Stk, PrimType T) { |
| 57 | INT_TYPE_SWITCH(T, return Stk.pop<T>().toAPSInt()); |
| 58 | } |
| 59 | |
| 60 | static APSInt popToAPSInt(InterpState &S, const Expr *E) { |
| 61 | return popToAPSInt(Stk&: S.Stk, T: *S.getContext().classify(T: E->getType())); |
| 62 | } |
| 63 | static APSInt popToAPSInt(InterpState &S, QualType T) { |
| 64 | return popToAPSInt(Stk&: S.Stk, T: *S.getContext().classify(T)); |
| 65 | } |
| 66 | |
| 67 | /// Check for common reasons a pointer can't be read from, which |
| 68 | /// are usually not diagnosed in a builtin function. |
| 69 | static bool isReadable(const Pointer &P) { |
| 70 | if (P.isDummy()) |
| 71 | return false; |
| 72 | if (!P.isBlockPointer()) |
| 73 | return false; |
| 74 | if (!P.isLive()) |
| 75 | return false; |
| 76 | if (P.isOnePastEnd()) |
| 77 | return false; |
| 78 | return true; |
| 79 | } |
| 80 | |
| 81 | /// Pushes \p Val on the stack as the type given by \p QT. |
| 82 | static void pushInteger(InterpState &S, const APSInt &Val, QualType QT) { |
| 83 | assert(QT->isSignedIntegerOrEnumerationType() || |
| 84 | QT->isUnsignedIntegerOrEnumerationType()); |
| 85 | OptPrimType T = S.getContext().classify(T: QT); |
| 86 | assert(T); |
| 87 | unsigned BitWidth = S.getASTContext().getIntWidth(T: QT); |
| 88 | |
| 89 | if (T == PT_IntAPS) { |
| 90 | auto Result = S.allocAP<IntegralAP<true>>(BitWidth); |
| 91 | Result.copy(V: Val); |
| 92 | S.Stk.push<IntegralAP<true>>(Args&: Result); |
| 93 | return; |
| 94 | } |
| 95 | |
| 96 | if (T == PT_IntAP) { |
| 97 | auto Result = S.allocAP<IntegralAP<false>>(BitWidth); |
| 98 | Result.copy(V: Val); |
| 99 | S.Stk.push<IntegralAP<false>>(Args&: Result); |
| 100 | return; |
| 101 | } |
| 102 | |
| 103 | if (QT->isSignedIntegerOrEnumerationType()) { |
| 104 | int64_t V = Val.getSExtValue(); |
| 105 | INT_TYPE_SWITCH(*T, { S.Stk.push<T>(T::from(V, BitWidth)); }); |
| 106 | } else { |
| 107 | assert(QT->isUnsignedIntegerOrEnumerationType()); |
| 108 | uint64_t V = Val.getZExtValue(); |
| 109 | INT_TYPE_SWITCH(*T, { S.Stk.push<T>(T::from(V, BitWidth)); }); |
| 110 | } |
| 111 | } |
| 112 | |
| 113 | template <typename T> |
| 114 | static void pushInteger(InterpState &S, T Val, QualType QT) { |
| 115 | if constexpr (std::is_same_v<T, APInt>) |
| 116 | pushInteger(S, Val: APSInt(Val, !std::is_signed_v<T>), QT); |
| 117 | else if constexpr (std::is_same_v<T, APSInt>) |
| 118 | pushInteger(S, Val, QT); |
| 119 | else |
| 120 | pushInteger(S, |
| 121 | Val: APSInt(APInt(sizeof(T) * 8, static_cast<uint64_t>(Val), |
| 122 | std::is_signed_v<T>), |
| 123 | !std::is_signed_v<T>), |
| 124 | QT); |
| 125 | } |
| 126 | |
| 127 | static void assignInteger(InterpState &S, const Pointer &Dest, PrimType ValueT, |
| 128 | const APSInt &Value) { |
| 129 | |
| 130 | if (ValueT == PT_IntAPS) { |
| 131 | Dest.deref<IntegralAP<true>>() = |
| 132 | S.allocAP<IntegralAP<true>>(BitWidth: Value.getBitWidth()); |
| 133 | Dest.deref<IntegralAP<true>>().copy(V: Value); |
| 134 | } else if (ValueT == PT_IntAP) { |
| 135 | Dest.deref<IntegralAP<false>>() = |
| 136 | S.allocAP<IntegralAP<false>>(BitWidth: Value.getBitWidth()); |
| 137 | Dest.deref<IntegralAP<false>>().copy(V: Value); |
| 138 | } else { |
| 139 | INT_TYPE_SWITCH_NO_BOOL( |
| 140 | ValueT, { Dest.deref<T>() = T::from(static_cast<T>(Value)); }); |
| 141 | } |
| 142 | } |
| 143 | |
| 144 | static QualType getElemType(const Pointer &P) { |
| 145 | const Descriptor *Desc = P.getFieldDesc(); |
| 146 | QualType T = Desc->getType(); |
| 147 | if (Desc->isPrimitive()) |
| 148 | return T; |
| 149 | if (T->isPointerType()) |
| 150 | return T->castAs<PointerType>()->getPointeeType(); |
| 151 | if (Desc->isArray()) |
| 152 | return Desc->getElemQualType(); |
| 153 | if (const auto *AT = T->getAsArrayTypeUnsafe()) |
| 154 | return AT->getElementType(); |
| 155 | return T; |
| 156 | } |
| 157 | |
| 158 | static void diagnoseNonConstexprBuiltin(InterpState &S, CodePtr OpPC, |
| 159 | unsigned ID) { |
| 160 | if (!S.diagnosing()) |
| 161 | return; |
| 162 | |
| 163 | auto Loc = S.Current->getSource(PC: OpPC); |
| 164 | if (S.getLangOpts().CPlusPlus11) |
| 165 | S.CCEDiag(SI: Loc, DiagId: diag::note_constexpr_invalid_function) |
| 166 | << /*isConstexpr=*/0 << /*isConstructor=*/0 |
| 167 | << S.getASTContext().BuiltinInfo.getQuotedName(ID); |
| 168 | else |
| 169 | S.CCEDiag(SI: Loc, DiagId: diag::note_invalid_subexpr_in_const_expr); |
| 170 | } |
| 171 | |
| 172 | static llvm::APSInt convertBoolVectorToInt(const Pointer &Val) { |
| 173 | assert(Val.getFieldDesc()->isPrimitiveArray() && |
| 174 | Val.getFieldDesc()->getElemQualType()->isBooleanType() && |
| 175 | "Not a boolean vector" ); |
| 176 | unsigned NumElems = Val.getNumElems(); |
| 177 | |
| 178 | // Each element is one bit, so create an integer with NumElts bits. |
| 179 | llvm::APSInt Result(NumElems, 0); |
| 180 | for (unsigned I = 0; I != NumElems; ++I) { |
| 181 | if (Val.elem<bool>(I)) |
| 182 | Result.setBit(I); |
| 183 | } |
| 184 | |
| 185 | return Result; |
| 186 | } |
| 187 | |
| 188 | // Strict double -> float conversion used for X86 PD2PS/cvtsd2ss intrinsics. |
| 189 | // Reject NaN/Inf/Subnormal inputs and any lossy/inexact conversions. |
| 190 | static bool convertDoubleToFloatStrict(APFloat Src, Floating &Dst, |
| 191 | InterpState &S, const Expr *DiagExpr) { |
| 192 | if (Src.isInfinity()) { |
| 193 | if (S.diagnosing()) |
| 194 | S.CCEDiag(E: DiagExpr, DiagId: diag::note_constexpr_float_arithmetic) << 0; |
| 195 | return false; |
| 196 | } |
| 197 | if (Src.isNaN()) { |
| 198 | if (S.diagnosing()) |
| 199 | S.CCEDiag(E: DiagExpr, DiagId: diag::note_constexpr_float_arithmetic) << 1; |
| 200 | return false; |
| 201 | } |
| 202 | APFloat Val = Src; |
| 203 | bool LosesInfo = false; |
| 204 | APFloat::opStatus Status = Val.convert( |
| 205 | ToSemantics: APFloat::IEEEsingle(), RM: APFloat::rmNearestTiesToEven, losesInfo: &LosesInfo); |
| 206 | if (LosesInfo || Val.isDenormal()) { |
| 207 | if (S.diagnosing()) |
| 208 | S.CCEDiag(E: DiagExpr, DiagId: diag::note_constexpr_float_arithmetic_strict); |
| 209 | return false; |
| 210 | } |
| 211 | if (Status != APFloat::opOK) { |
| 212 | if (S.diagnosing()) |
| 213 | S.CCEDiag(E: DiagExpr, DiagId: diag::note_invalid_subexpr_in_const_expr); |
| 214 | return false; |
| 215 | } |
| 216 | Dst.copy(F: Val); |
| 217 | return true; |
| 218 | } |
| 219 | |
| 220 | static bool interp__builtin_is_constant_evaluated(InterpState &S, CodePtr OpPC, |
| 221 | const InterpFrame *Frame, |
| 222 | const CallExpr *Call) { |
| 223 | unsigned Depth = S.Current->getDepth(); |
| 224 | auto isStdCall = [](const FunctionDecl *F) -> bool { |
| 225 | return F && F->isInStdNamespace() && F->getIdentifier() && |
| 226 | F->getIdentifier()->isStr(Str: "is_constant_evaluated" ); |
| 227 | }; |
| 228 | const InterpFrame *Caller = Frame->Caller; |
| 229 | // The current frame is the one for __builtin_is_constant_evaluated. |
| 230 | // The one above that, potentially the one for std::is_constant_evaluated(). |
| 231 | if (S.inConstantContext() && !S.checkingPotentialConstantExpression() && |
| 232 | S.getEvalStatus().Diag && |
| 233 | (Depth == 0 || (Depth == 1 && isStdCall(Frame->getCallee())))) { |
| 234 | if (Caller && isStdCall(Frame->getCallee())) { |
| 235 | const Expr *E = Caller->getExpr(PC: Caller->getRetPC()); |
| 236 | S.report(Loc: E->getExprLoc(), |
| 237 | DiagId: diag::warn_is_constant_evaluated_always_true_constexpr) |
| 238 | << "std::is_constant_evaluated" << E->getSourceRange(); |
| 239 | } else { |
| 240 | S.report(Loc: Call->getExprLoc(), |
| 241 | DiagId: diag::warn_is_constant_evaluated_always_true_constexpr) |
| 242 | << "__builtin_is_constant_evaluated" << Call->getSourceRange(); |
| 243 | } |
| 244 | } |
| 245 | |
| 246 | S.Stk.push<Boolean>(Args: Boolean::from(Value: S.inConstantContext())); |
| 247 | return true; |
| 248 | } |
| 249 | |
| 250 | // __builtin_assume |
| 251 | // __assume (MS extension) |
| 252 | static bool interp__builtin_assume(InterpState &S, CodePtr OpPC, |
| 253 | const InterpFrame *Frame, |
| 254 | const CallExpr *Call) { |
| 255 | // Nothing to be done here since the argument is NOT evaluated. |
| 256 | assert(Call->getNumArgs() == 1); |
| 257 | return true; |
| 258 | } |
| 259 | |
| 260 | static bool interp__builtin_strcmp(InterpState &S, CodePtr OpPC, |
| 261 | const InterpFrame *Frame, |
| 262 | const CallExpr *Call, unsigned ID) { |
| 263 | uint64_t Limit = ~static_cast<uint64_t>(0); |
| 264 | if (ID == Builtin::BIstrncmp || ID == Builtin::BI__builtin_strncmp || |
| 265 | ID == Builtin::BIwcsncmp || ID == Builtin::BI__builtin_wcsncmp) |
| 266 | Limit = popToUInt64(S, E: Call->getArg(Arg: 2)); |
| 267 | |
| 268 | const Pointer &B = S.Stk.pop<Pointer>(); |
| 269 | const Pointer &A = S.Stk.pop<Pointer>(); |
| 270 | if (ID == Builtin::BIstrcmp || ID == Builtin::BIstrncmp || |
| 271 | ID == Builtin::BIwcscmp || ID == Builtin::BIwcsncmp) |
| 272 | diagnoseNonConstexprBuiltin(S, OpPC, ID); |
| 273 | |
| 274 | if (Limit == 0) { |
| 275 | pushInteger(S, Val: 0, QT: Call->getType()); |
| 276 | return true; |
| 277 | } |
| 278 | |
| 279 | if (!CheckLive(S, OpPC, Ptr: A, AK: AK_Read) || !CheckLive(S, OpPC, Ptr: B, AK: AK_Read)) |
| 280 | return false; |
| 281 | |
| 282 | if (A.isDummy() || B.isDummy()) |
| 283 | return false; |
| 284 | if (!A.isBlockPointer() || !B.isBlockPointer()) |
| 285 | return false; |
| 286 | |
| 287 | bool IsWide = ID == Builtin::BIwcscmp || ID == Builtin::BIwcsncmp || |
| 288 | ID == Builtin::BI__builtin_wcscmp || |
| 289 | ID == Builtin::BI__builtin_wcsncmp; |
| 290 | assert(A.getFieldDesc()->isPrimitiveArray()); |
| 291 | assert(B.getFieldDesc()->isPrimitiveArray()); |
| 292 | |
| 293 | // Different element types shouldn't happen, but with casts they can. |
| 294 | if (!S.getASTContext().hasSameUnqualifiedType(T1: getElemType(P: A), T2: getElemType(P: B))) |
| 295 | return false; |
| 296 | |
| 297 | PrimType ElemT = *S.getContext().classify(T: getElemType(P: A)); |
| 298 | |
| 299 | auto returnResult = [&](int V) -> bool { |
| 300 | pushInteger(S, Val: V, QT: Call->getType()); |
| 301 | return true; |
| 302 | }; |
| 303 | |
| 304 | unsigned IndexA = A.getIndex(); |
| 305 | unsigned IndexB = B.getIndex(); |
| 306 | uint64_t Steps = 0; |
| 307 | for (;; ++IndexA, ++IndexB, ++Steps) { |
| 308 | |
| 309 | if (Steps >= Limit) |
| 310 | break; |
| 311 | const Pointer &PA = A.atIndex(Idx: IndexA); |
| 312 | const Pointer &PB = B.atIndex(Idx: IndexB); |
| 313 | if (!CheckRange(S, OpPC, Ptr: PA, AK: AK_Read) || |
| 314 | !CheckRange(S, OpPC, Ptr: PB, AK: AK_Read)) { |
| 315 | return false; |
| 316 | } |
| 317 | |
| 318 | if (IsWide) { |
| 319 | INT_TYPE_SWITCH(ElemT, { |
| 320 | T CA = PA.deref<T>(); |
| 321 | T CB = PB.deref<T>(); |
| 322 | if (CA > CB) |
| 323 | return returnResult(1); |
| 324 | if (CA < CB) |
| 325 | return returnResult(-1); |
| 326 | if (CA.isZero() || CB.isZero()) |
| 327 | return returnResult(0); |
| 328 | }); |
| 329 | continue; |
| 330 | } |
| 331 | |
| 332 | uint8_t CA = PA.deref<uint8_t>(); |
| 333 | uint8_t CB = PB.deref<uint8_t>(); |
| 334 | |
| 335 | if (CA > CB) |
| 336 | return returnResult(1); |
| 337 | if (CA < CB) |
| 338 | return returnResult(-1); |
| 339 | if (CA == 0 || CB == 0) |
| 340 | return returnResult(0); |
| 341 | } |
| 342 | |
| 343 | return returnResult(0); |
| 344 | } |
| 345 | |
| 346 | static bool interp__builtin_strlen(InterpState &S, CodePtr OpPC, |
| 347 | const InterpFrame *Frame, |
| 348 | const CallExpr *Call, unsigned ID) { |
| 349 | const Pointer &StrPtr = S.Stk.pop<Pointer>().expand(); |
| 350 | |
| 351 | if (ID == Builtin::BIstrlen || ID == Builtin::BIwcslen) |
| 352 | diagnoseNonConstexprBuiltin(S, OpPC, ID); |
| 353 | |
| 354 | if (!CheckArray(S, OpPC, Ptr: StrPtr)) |
| 355 | return false; |
| 356 | |
| 357 | if (!CheckLive(S, OpPC, Ptr: StrPtr, AK: AK_Read)) |
| 358 | return false; |
| 359 | |
| 360 | if (!CheckDummy(S, OpPC, B: StrPtr.block(), AK: AK_Read)) |
| 361 | return false; |
| 362 | |
| 363 | if (!StrPtr.getFieldDesc()->isPrimitiveArray()) |
| 364 | return false; |
| 365 | |
| 366 | assert(StrPtr.getFieldDesc()->isPrimitiveArray()); |
| 367 | unsigned ElemSize = StrPtr.getFieldDesc()->getElemSize(); |
| 368 | |
| 369 | if (ID == Builtin::BI__builtin_wcslen || ID == Builtin::BIwcslen) { |
| 370 | const ASTContext &AC = S.getASTContext(); |
| 371 | unsigned WCharSize = AC.getTypeSizeInChars(T: AC.getWCharType()).getQuantity(); |
| 372 | if (ElemSize != WCharSize) |
| 373 | return false; |
| 374 | } |
| 375 | |
| 376 | size_t Len = 0; |
| 377 | for (size_t I = StrPtr.getIndex();; ++I, ++Len) { |
| 378 | const Pointer &ElemPtr = StrPtr.atIndex(Idx: I); |
| 379 | |
| 380 | if (!CheckRange(S, OpPC, Ptr: ElemPtr, AK: AK_Read)) |
| 381 | return false; |
| 382 | |
| 383 | uint32_t Val; |
| 384 | switch (ElemSize) { |
| 385 | case 1: |
| 386 | Val = ElemPtr.deref<uint8_t>(); |
| 387 | break; |
| 388 | case 2: |
| 389 | Val = ElemPtr.deref<uint16_t>(); |
| 390 | break; |
| 391 | case 4: |
| 392 | Val = ElemPtr.deref<uint32_t>(); |
| 393 | break; |
| 394 | default: |
| 395 | llvm_unreachable("Unsupported char size" ); |
| 396 | } |
| 397 | if (Val == 0) |
| 398 | break; |
| 399 | } |
| 400 | |
| 401 | pushInteger(S, Val: Len, QT: Call->getType()); |
| 402 | |
| 403 | return true; |
| 404 | } |
| 405 | |
| 406 | static bool interp__builtin_nan(InterpState &S, CodePtr OpPC, |
| 407 | const InterpFrame *Frame, const CallExpr *Call, |
| 408 | bool Signaling) { |
| 409 | const Pointer &Arg = S.Stk.pop<Pointer>(); |
| 410 | |
| 411 | if (!CheckLoad(S, OpPC, Ptr: Arg)) |
| 412 | return false; |
| 413 | |
| 414 | assert(Arg.getFieldDesc()->isPrimitiveArray()); |
| 415 | |
| 416 | // Convert the given string to an integer using StringRef's API. |
| 417 | llvm::APInt Fill; |
| 418 | std::string Str; |
| 419 | assert(Arg.getNumElems() >= 1); |
| 420 | for (unsigned I = 0;; ++I) { |
| 421 | const Pointer &Elem = Arg.atIndex(Idx: I); |
| 422 | |
| 423 | if (!CheckLoad(S, OpPC, Ptr: Elem)) |
| 424 | return false; |
| 425 | |
| 426 | if (Elem.deref<int8_t>() == 0) |
| 427 | break; |
| 428 | |
| 429 | Str += Elem.deref<char>(); |
| 430 | } |
| 431 | |
| 432 | // Treat empty strings as if they were zero. |
| 433 | if (Str.empty()) |
| 434 | Fill = llvm::APInt(32, 0); |
| 435 | else if (StringRef(Str).getAsInteger(Radix: 0, Result&: Fill)) |
| 436 | return false; |
| 437 | |
| 438 | const llvm::fltSemantics &TargetSemantics = |
| 439 | S.getASTContext().getFloatTypeSemantics( |
| 440 | T: Call->getDirectCallee()->getReturnType()); |
| 441 | |
| 442 | Floating Result = S.allocFloat(Sem: TargetSemantics); |
| 443 | if (S.getASTContext().getTargetInfo().isNan2008()) { |
| 444 | if (Signaling) |
| 445 | Result.copy( |
| 446 | F: llvm::APFloat::getSNaN(Sem: TargetSemantics, /*Negative=*/false, payload: &Fill)); |
| 447 | else |
| 448 | Result.copy( |
| 449 | F: llvm::APFloat::getQNaN(Sem: TargetSemantics, /*Negative=*/false, payload: &Fill)); |
| 450 | } else { |
| 451 | // Prior to IEEE 754-2008, architectures were allowed to choose whether |
| 452 | // the first bit of their significand was set for qNaN or sNaN. MIPS chose |
| 453 | // a different encoding to what became a standard in 2008, and for pre- |
| 454 | // 2008 revisions, MIPS interpreted sNaN-2008 as qNan and qNaN-2008 as |
| 455 | // sNaN. This is now known as "legacy NaN" encoding. |
| 456 | if (Signaling) |
| 457 | Result.copy( |
| 458 | F: llvm::APFloat::getQNaN(Sem: TargetSemantics, /*Negative=*/false, payload: &Fill)); |
| 459 | else |
| 460 | Result.copy( |
| 461 | F: llvm::APFloat::getSNaN(Sem: TargetSemantics, /*Negative=*/false, payload: &Fill)); |
| 462 | } |
| 463 | |
| 464 | S.Stk.push<Floating>(Args&: Result); |
| 465 | return true; |
| 466 | } |
| 467 | |
| 468 | static bool interp__builtin_inf(InterpState &S, CodePtr OpPC, |
| 469 | const InterpFrame *Frame, |
| 470 | const CallExpr *Call) { |
| 471 | const llvm::fltSemantics &TargetSemantics = |
| 472 | S.getASTContext().getFloatTypeSemantics( |
| 473 | T: Call->getDirectCallee()->getReturnType()); |
| 474 | |
| 475 | Floating Result = S.allocFloat(Sem: TargetSemantics); |
| 476 | Result.copy(F: APFloat::getInf(Sem: TargetSemantics)); |
| 477 | S.Stk.push<Floating>(Args&: Result); |
| 478 | return true; |
| 479 | } |
| 480 | |
| 481 | static bool interp__builtin_copysign(InterpState &S, CodePtr OpPC, |
| 482 | const InterpFrame *Frame) { |
| 483 | const Floating &Arg2 = S.Stk.pop<Floating>(); |
| 484 | const Floating &Arg1 = S.Stk.pop<Floating>(); |
| 485 | Floating Result = S.allocFloat(Sem: Arg1.getSemantics()); |
| 486 | |
| 487 | APFloat Copy = Arg1.getAPFloat(); |
| 488 | Copy.copySign(RHS: Arg2.getAPFloat()); |
| 489 | Result.copy(F: Copy); |
| 490 | S.Stk.push<Floating>(Args&: Result); |
| 491 | |
| 492 | return true; |
| 493 | } |
| 494 | |
| 495 | static bool interp__builtin_fmin(InterpState &S, CodePtr OpPC, |
| 496 | const InterpFrame *Frame, bool IsNumBuiltin) { |
| 497 | const Floating &RHS = S.Stk.pop<Floating>(); |
| 498 | const Floating &LHS = S.Stk.pop<Floating>(); |
| 499 | Floating Result = S.allocFloat(Sem: LHS.getSemantics()); |
| 500 | |
| 501 | if (IsNumBuiltin) |
| 502 | Result.copy(F: llvm::minimumnum(A: LHS.getAPFloat(), B: RHS.getAPFloat())); |
| 503 | else |
| 504 | Result.copy(F: minnum(A: LHS.getAPFloat(), B: RHS.getAPFloat())); |
| 505 | S.Stk.push<Floating>(Args&: Result); |
| 506 | return true; |
| 507 | } |
| 508 | |
| 509 | static bool interp__builtin_fmax(InterpState &S, CodePtr OpPC, |
| 510 | const InterpFrame *Frame, bool IsNumBuiltin) { |
| 511 | const Floating &RHS = S.Stk.pop<Floating>(); |
| 512 | const Floating &LHS = S.Stk.pop<Floating>(); |
| 513 | Floating Result = S.allocFloat(Sem: LHS.getSemantics()); |
| 514 | |
| 515 | if (IsNumBuiltin) |
| 516 | Result.copy(F: llvm::maximumnum(A: LHS.getAPFloat(), B: RHS.getAPFloat())); |
| 517 | else |
| 518 | Result.copy(F: maxnum(A: LHS.getAPFloat(), B: RHS.getAPFloat())); |
| 519 | S.Stk.push<Floating>(Args&: Result); |
| 520 | return true; |
| 521 | } |
| 522 | |
| 523 | /// Defined as __builtin_isnan(...), to accommodate the fact that it can |
| 524 | /// take a float, double, long double, etc. |
| 525 | /// But for us, that's all a Floating anyway. |
| 526 | static bool interp__builtin_isnan(InterpState &S, CodePtr OpPC, |
| 527 | const InterpFrame *Frame, |
| 528 | const CallExpr *Call) { |
| 529 | const Floating &Arg = S.Stk.pop<Floating>(); |
| 530 | |
| 531 | pushInteger(S, Val: Arg.isNan(), QT: Call->getType()); |
| 532 | return true; |
| 533 | } |
| 534 | |
| 535 | static bool interp__builtin_issignaling(InterpState &S, CodePtr OpPC, |
| 536 | const InterpFrame *Frame, |
| 537 | const CallExpr *Call) { |
| 538 | const Floating &Arg = S.Stk.pop<Floating>(); |
| 539 | |
| 540 | pushInteger(S, Val: Arg.isSignaling(), QT: Call->getType()); |
| 541 | return true; |
| 542 | } |
| 543 | |
| 544 | static bool interp__builtin_isinf(InterpState &S, CodePtr OpPC, |
| 545 | const InterpFrame *Frame, bool CheckSign, |
| 546 | const CallExpr *Call) { |
| 547 | const Floating &Arg = S.Stk.pop<Floating>(); |
| 548 | APFloat F = Arg.getAPFloat(); |
| 549 | bool IsInf = F.isInfinity(); |
| 550 | |
| 551 | if (CheckSign) |
| 552 | pushInteger(S, Val: IsInf ? (F.isNegative() ? -1 : 1) : 0, QT: Call->getType()); |
| 553 | else |
| 554 | pushInteger(S, Val: IsInf, QT: Call->getType()); |
| 555 | return true; |
| 556 | } |
| 557 | |
| 558 | static bool interp__builtin_isfinite(InterpState &S, CodePtr OpPC, |
| 559 | const InterpFrame *Frame, |
| 560 | const CallExpr *Call) { |
| 561 | const Floating &Arg = S.Stk.pop<Floating>(); |
| 562 | |
| 563 | pushInteger(S, Val: Arg.isFinite(), QT: Call->getType()); |
| 564 | return true; |
| 565 | } |
| 566 | |
| 567 | static bool interp__builtin_isnormal(InterpState &S, CodePtr OpPC, |
| 568 | const InterpFrame *Frame, |
| 569 | const CallExpr *Call) { |
| 570 | const Floating &Arg = S.Stk.pop<Floating>(); |
| 571 | |
| 572 | pushInteger(S, Val: Arg.isNormal(), QT: Call->getType()); |
| 573 | return true; |
| 574 | } |
| 575 | |
| 576 | static bool interp__builtin_issubnormal(InterpState &S, CodePtr OpPC, |
| 577 | const InterpFrame *Frame, |
| 578 | const CallExpr *Call) { |
| 579 | const Floating &Arg = S.Stk.pop<Floating>(); |
| 580 | |
| 581 | pushInteger(S, Val: Arg.isDenormal(), QT: Call->getType()); |
| 582 | return true; |
| 583 | } |
| 584 | |
| 585 | static bool interp__builtin_iszero(InterpState &S, CodePtr OpPC, |
| 586 | const InterpFrame *Frame, |
| 587 | const CallExpr *Call) { |
| 588 | const Floating &Arg = S.Stk.pop<Floating>(); |
| 589 | |
| 590 | pushInteger(S, Val: Arg.isZero(), QT: Call->getType()); |
| 591 | return true; |
| 592 | } |
| 593 | |
| 594 | static bool interp__builtin_signbit(InterpState &S, CodePtr OpPC, |
| 595 | const InterpFrame *Frame, |
| 596 | const CallExpr *Call) { |
| 597 | const Floating &Arg = S.Stk.pop<Floating>(); |
| 598 | |
| 599 | pushInteger(S, Val: Arg.isNegative(), QT: Call->getType()); |
| 600 | return true; |
| 601 | } |
| 602 | |
| 603 | static bool interp_floating_comparison(InterpState &S, CodePtr OpPC, |
| 604 | const CallExpr *Call, unsigned ID) { |
| 605 | const Floating &RHS = S.Stk.pop<Floating>(); |
| 606 | const Floating &LHS = S.Stk.pop<Floating>(); |
| 607 | |
| 608 | pushInteger( |
| 609 | S, |
| 610 | Val: [&] { |
| 611 | switch (ID) { |
| 612 | case Builtin::BI__builtin_isgreater: |
| 613 | return LHS > RHS; |
| 614 | case Builtin::BI__builtin_isgreaterequal: |
| 615 | return LHS >= RHS; |
| 616 | case Builtin::BI__builtin_isless: |
| 617 | return LHS < RHS; |
| 618 | case Builtin::BI__builtin_islessequal: |
| 619 | return LHS <= RHS; |
| 620 | case Builtin::BI__builtin_islessgreater: { |
| 621 | ComparisonCategoryResult Cmp = LHS.compare(RHS); |
| 622 | return Cmp == ComparisonCategoryResult::Less || |
| 623 | Cmp == ComparisonCategoryResult::Greater; |
| 624 | } |
| 625 | case Builtin::BI__builtin_isunordered: |
| 626 | return LHS.compare(RHS) == ComparisonCategoryResult::Unordered; |
| 627 | default: |
| 628 | llvm_unreachable("Unexpected builtin ID: Should be a floating point " |
| 629 | "comparison function" ); |
| 630 | } |
| 631 | }(), |
| 632 | QT: Call->getType()); |
| 633 | return true; |
| 634 | } |
| 635 | |
| 636 | /// First parameter to __builtin_isfpclass is the floating value, the |
| 637 | /// second one is an integral value. |
| 638 | static bool interp__builtin_isfpclass(InterpState &S, CodePtr OpPC, |
| 639 | const InterpFrame *Frame, |
| 640 | const CallExpr *Call) { |
| 641 | APSInt FPClassArg = popToAPSInt(S, E: Call->getArg(Arg: 1)); |
| 642 | const Floating &F = S.Stk.pop<Floating>(); |
| 643 | |
| 644 | int32_t Result = static_cast<int32_t>( |
| 645 | (F.classify() & std::move(FPClassArg)).getZExtValue()); |
| 646 | pushInteger(S, Val: Result, QT: Call->getType()); |
| 647 | |
| 648 | return true; |
| 649 | } |
| 650 | |
| 651 | /// Five int values followed by one floating value. |
| 652 | /// __builtin_fpclassify(int, int, int, int, int, float) |
| 653 | static bool interp__builtin_fpclassify(InterpState &S, CodePtr OpPC, |
| 654 | const InterpFrame *Frame, |
| 655 | const CallExpr *Call) { |
| 656 | const Floating &Val = S.Stk.pop<Floating>(); |
| 657 | |
| 658 | PrimType IntT = *S.getContext().classify(E: Call->getArg(Arg: 0)); |
| 659 | APSInt Values[5]; |
| 660 | for (unsigned I = 0; I != 5; ++I) |
| 661 | Values[4 - I] = popToAPSInt(Stk&: S.Stk, T: IntT); |
| 662 | |
| 663 | unsigned Index; |
| 664 | switch (Val.getCategory()) { |
| 665 | case APFloat::fcNaN: |
| 666 | Index = 0; |
| 667 | break; |
| 668 | case APFloat::fcInfinity: |
| 669 | Index = 1; |
| 670 | break; |
| 671 | case APFloat::fcNormal: |
| 672 | Index = Val.isDenormal() ? 3 : 2; |
| 673 | break; |
| 674 | case APFloat::fcZero: |
| 675 | Index = 4; |
| 676 | break; |
| 677 | } |
| 678 | |
| 679 | // The last argument is first on the stack. |
| 680 | assert(Index <= 4); |
| 681 | |
| 682 | pushInteger(S, Val: Values[Index], QT: Call->getType()); |
| 683 | return true; |
| 684 | } |
| 685 | |
| 686 | static inline Floating abs(InterpState &S, const Floating &In) { |
| 687 | if (!In.isNegative()) |
| 688 | return In; |
| 689 | |
| 690 | Floating Output = S.allocFloat(Sem: In.getSemantics()); |
| 691 | APFloat New = In.getAPFloat(); |
| 692 | New.changeSign(); |
| 693 | Output.copy(F: New); |
| 694 | return Output; |
| 695 | } |
| 696 | |
| 697 | // The C standard says "fabs raises no floating-point exceptions, |
| 698 | // even if x is a signaling NaN. The returned value is independent of |
| 699 | // the current rounding direction mode." Therefore constant folding can |
| 700 | // proceed without regard to the floating point settings. |
| 701 | // Reference, WG14 N2478 F.10.4.3 |
| 702 | static bool interp__builtin_fabs(InterpState &S, CodePtr OpPC, |
| 703 | const InterpFrame *Frame) { |
| 704 | const Floating &Val = S.Stk.pop<Floating>(); |
| 705 | S.Stk.push<Floating>(Args: abs(S, In: Val)); |
| 706 | return true; |
| 707 | } |
| 708 | |
| 709 | static bool interp__builtin_abs(InterpState &S, CodePtr OpPC, |
| 710 | const InterpFrame *Frame, |
| 711 | const CallExpr *Call) { |
| 712 | APSInt Val = popToAPSInt(S, E: Call->getArg(Arg: 0)); |
| 713 | if (Val == |
| 714 | APSInt(APInt::getSignedMinValue(numBits: Val.getBitWidth()), /*IsUnsigned=*/false)) |
| 715 | return false; |
| 716 | if (Val.isNegative()) |
| 717 | Val.negate(); |
| 718 | pushInteger(S, Val, QT: Call->getType()); |
| 719 | return true; |
| 720 | } |
| 721 | |
| 722 | static bool interp__builtin_popcount(InterpState &S, CodePtr OpPC, |
| 723 | const InterpFrame *Frame, |
| 724 | const CallExpr *Call) { |
| 725 | APSInt Val; |
| 726 | if (Call->getArg(Arg: 0)->getType()->isExtVectorBoolType()) { |
| 727 | const Pointer &Arg = S.Stk.pop<Pointer>(); |
| 728 | Val = convertBoolVectorToInt(Val: Arg); |
| 729 | } else { |
| 730 | Val = popToAPSInt(S, E: Call->getArg(Arg: 0)); |
| 731 | } |
| 732 | pushInteger(S, Val: Val.popcount(), QT: Call->getType()); |
| 733 | return true; |
| 734 | } |
| 735 | |
| 736 | static bool interp__builtin_ia32_crc32(InterpState &S, CodePtr OpPC, |
| 737 | const InterpFrame *Frame, |
| 738 | const CallExpr *Call, |
| 739 | unsigned DataBytes) { |
| 740 | uint64_t DataVal = popToUInt64(S, E: Call->getArg(Arg: 1)); |
| 741 | uint64_t CRCVal = popToUInt64(S, E: Call->getArg(Arg: 0)); |
| 742 | |
| 743 | // CRC32C polynomial (iSCSI polynomial, bit-reversed) |
| 744 | static const uint32_t CRC32C_POLY = 0x82F63B78; |
| 745 | |
| 746 | // Process each byte |
| 747 | uint32_t Result = static_cast<uint32_t>(CRCVal); |
| 748 | for (unsigned I = 0; I != DataBytes; ++I) { |
| 749 | uint8_t Byte = static_cast<uint8_t>((DataVal >> (I * 8)) & 0xFF); |
| 750 | Result ^= Byte; |
| 751 | for (int J = 0; J != 8; ++J) { |
| 752 | Result = (Result >> 1) ^ ((Result & 1) ? CRC32C_POLY : 0); |
| 753 | } |
| 754 | } |
| 755 | |
| 756 | pushInteger(S, Val: Result, QT: Call->getType()); |
| 757 | return true; |
| 758 | } |
| 759 | |
| 760 | static bool interp__builtin_classify_type(InterpState &S, CodePtr OpPC, |
| 761 | const InterpFrame *Frame, |
| 762 | const CallExpr *Call) { |
| 763 | // This is an unevaluated call, so there are no arguments on the stack. |
| 764 | assert(Call->getNumArgs() == 1); |
| 765 | const Expr *Arg = Call->getArg(Arg: 0); |
| 766 | |
| 767 | GCCTypeClass ResultClass = |
| 768 | EvaluateBuiltinClassifyType(T: Arg->getType(), LangOpts: S.getLangOpts()); |
| 769 | int32_t ReturnVal = static_cast<int32_t>(ResultClass); |
| 770 | pushInteger(S, Val: ReturnVal, QT: Call->getType()); |
| 771 | return true; |
| 772 | } |
| 773 | |
| 774 | // __builtin_expect(long, long) |
| 775 | // __builtin_expect_with_probability(long, long, double) |
| 776 | static bool interp__builtin_expect(InterpState &S, CodePtr OpPC, |
| 777 | const InterpFrame *Frame, |
| 778 | const CallExpr *Call) { |
| 779 | // The return value is simply the value of the first parameter. |
| 780 | // We ignore the probability. |
| 781 | unsigned NumArgs = Call->getNumArgs(); |
| 782 | assert(NumArgs == 2 || NumArgs == 3); |
| 783 | |
| 784 | PrimType ArgT = *S.getContext().classify(T: Call->getArg(Arg: 0)->getType()); |
| 785 | if (NumArgs == 3) |
| 786 | S.Stk.discard<Floating>(); |
| 787 | discard(Stk&: S.Stk, T: ArgT); |
| 788 | |
| 789 | APSInt Val = popToAPSInt(Stk&: S.Stk, T: ArgT); |
| 790 | pushInteger(S, Val, QT: Call->getType()); |
| 791 | return true; |
| 792 | } |
| 793 | |
| 794 | static bool interp__builtin_addressof(InterpState &S, CodePtr OpPC, |
| 795 | const InterpFrame *Frame, |
| 796 | const CallExpr *Call) { |
| 797 | #ifndef NDEBUG |
| 798 | assert(Call->getArg(0)->isLValue()); |
| 799 | PrimType PtrT = S.getContext().classify(Call->getArg(0)).value_or(PT_Ptr); |
| 800 | assert(PtrT == PT_Ptr && |
| 801 | "Unsupported pointer type passed to __builtin_addressof()" ); |
| 802 | #endif |
| 803 | return true; |
| 804 | } |
| 805 | |
| 806 | static bool interp__builtin_move(InterpState &S, CodePtr OpPC, |
| 807 | const InterpFrame *Frame, |
| 808 | const CallExpr *Call) { |
| 809 | return Call->getDirectCallee()->isConstexpr(); |
| 810 | } |
| 811 | |
| 812 | static bool interp__builtin_eh_return_data_regno(InterpState &S, CodePtr OpPC, |
| 813 | const InterpFrame *Frame, |
| 814 | const CallExpr *Call) { |
| 815 | APSInt Arg = popToAPSInt(S, E: Call->getArg(Arg: 0)); |
| 816 | |
| 817 | int Result = S.getASTContext().getTargetInfo().getEHDataRegisterNumber( |
| 818 | RegNo: Arg.getZExtValue()); |
| 819 | pushInteger(S, Val: Result, QT: Call->getType()); |
| 820 | return true; |
| 821 | } |
| 822 | |
| 823 | // Two integral values followed by a pointer (lhs, rhs, resultOut) |
| 824 | static bool interp__builtin_overflowop(InterpState &S, CodePtr OpPC, |
| 825 | const CallExpr *Call, |
| 826 | unsigned BuiltinOp) { |
| 827 | const Pointer &ResultPtr = S.Stk.pop<Pointer>(); |
| 828 | if (ResultPtr.isDummy() || !ResultPtr.isBlockPointer()) |
| 829 | return false; |
| 830 | |
| 831 | PrimType RHST = *S.getContext().classify(T: Call->getArg(Arg: 1)->getType()); |
| 832 | PrimType LHST = *S.getContext().classify(T: Call->getArg(Arg: 0)->getType()); |
| 833 | APSInt RHS = popToAPSInt(Stk&: S.Stk, T: RHST); |
| 834 | APSInt LHS = popToAPSInt(Stk&: S.Stk, T: LHST); |
| 835 | QualType ResultType = Call->getArg(Arg: 2)->getType()->getPointeeType(); |
| 836 | PrimType ResultT = *S.getContext().classify(T: ResultType); |
| 837 | bool Overflow; |
| 838 | |
| 839 | APSInt Result; |
| 840 | if (BuiltinOp == Builtin::BI__builtin_add_overflow || |
| 841 | BuiltinOp == Builtin::BI__builtin_sub_overflow || |
| 842 | BuiltinOp == Builtin::BI__builtin_mul_overflow) { |
| 843 | bool IsSigned = LHS.isSigned() || RHS.isSigned() || |
| 844 | ResultType->isSignedIntegerOrEnumerationType(); |
| 845 | bool AllSigned = LHS.isSigned() && RHS.isSigned() && |
| 846 | ResultType->isSignedIntegerOrEnumerationType(); |
| 847 | uint64_t LHSSize = LHS.getBitWidth(); |
| 848 | uint64_t RHSSize = RHS.getBitWidth(); |
| 849 | uint64_t ResultSize = S.getASTContext().getTypeSize(T: ResultType); |
| 850 | uint64_t MaxBits = std::max(a: std::max(a: LHSSize, b: RHSSize), b: ResultSize); |
| 851 | |
| 852 | // Add an additional bit if the signedness isn't uniformly agreed to. We |
| 853 | // could do this ONLY if there is a signed and an unsigned that both have |
| 854 | // MaxBits, but the code to check that is pretty nasty. The issue will be |
| 855 | // caught in the shrink-to-result later anyway. |
| 856 | if (IsSigned && !AllSigned) |
| 857 | ++MaxBits; |
| 858 | |
| 859 | LHS = APSInt(LHS.extOrTrunc(width: MaxBits), !IsSigned); |
| 860 | RHS = APSInt(RHS.extOrTrunc(width: MaxBits), !IsSigned); |
| 861 | Result = APSInt(MaxBits, !IsSigned); |
| 862 | } |
| 863 | |
| 864 | // Find largest int. |
| 865 | switch (BuiltinOp) { |
| 866 | default: |
| 867 | llvm_unreachable("Invalid value for BuiltinOp" ); |
| 868 | case Builtin::BI__builtin_add_overflow: |
| 869 | case Builtin::BI__builtin_sadd_overflow: |
| 870 | case Builtin::BI__builtin_saddl_overflow: |
| 871 | case Builtin::BI__builtin_saddll_overflow: |
| 872 | case Builtin::BI__builtin_uadd_overflow: |
| 873 | case Builtin::BI__builtin_uaddl_overflow: |
| 874 | case Builtin::BI__builtin_uaddll_overflow: |
| 875 | Result = LHS.isSigned() ? LHS.sadd_ov(RHS, Overflow) |
| 876 | : LHS.uadd_ov(RHS, Overflow); |
| 877 | break; |
| 878 | case Builtin::BI__builtin_sub_overflow: |
| 879 | case Builtin::BI__builtin_ssub_overflow: |
| 880 | case Builtin::BI__builtin_ssubl_overflow: |
| 881 | case Builtin::BI__builtin_ssubll_overflow: |
| 882 | case Builtin::BI__builtin_usub_overflow: |
| 883 | case Builtin::BI__builtin_usubl_overflow: |
| 884 | case Builtin::BI__builtin_usubll_overflow: |
| 885 | Result = LHS.isSigned() ? LHS.ssub_ov(RHS, Overflow) |
| 886 | : LHS.usub_ov(RHS, Overflow); |
| 887 | break; |
| 888 | case Builtin::BI__builtin_mul_overflow: |
| 889 | case Builtin::BI__builtin_smul_overflow: |
| 890 | case Builtin::BI__builtin_smull_overflow: |
| 891 | case Builtin::BI__builtin_smulll_overflow: |
| 892 | case Builtin::BI__builtin_umul_overflow: |
| 893 | case Builtin::BI__builtin_umull_overflow: |
| 894 | case Builtin::BI__builtin_umulll_overflow: |
| 895 | Result = LHS.isSigned() ? LHS.smul_ov(RHS, Overflow) |
| 896 | : LHS.umul_ov(RHS, Overflow); |
| 897 | break; |
| 898 | } |
| 899 | |
| 900 | // In the case where multiple sizes are allowed, truncate and see if |
| 901 | // the values are the same. |
| 902 | if (BuiltinOp == Builtin::BI__builtin_add_overflow || |
| 903 | BuiltinOp == Builtin::BI__builtin_sub_overflow || |
| 904 | BuiltinOp == Builtin::BI__builtin_mul_overflow) { |
| 905 | // APSInt doesn't have a TruncOrSelf, so we use extOrTrunc instead, |
| 906 | // since it will give us the behavior of a TruncOrSelf in the case where |
| 907 | // its parameter <= its size. We previously set Result to be at least the |
| 908 | // type-size of the result, so getTypeSize(ResultType) <= Resu |
| 909 | APSInt Temp = Result.extOrTrunc(width: S.getASTContext().getTypeSize(T: ResultType)); |
| 910 | Temp.setIsSigned(ResultType->isSignedIntegerOrEnumerationType()); |
| 911 | |
| 912 | if (!APSInt::isSameValue(I1: Temp, I2: Result)) |
| 913 | Overflow = true; |
| 914 | Result = std::move(Temp); |
| 915 | } |
| 916 | |
| 917 | // Write Result to ResultPtr and put Overflow on the stack. |
| 918 | assignInteger(S, Dest: ResultPtr, ValueT: ResultT, Value: Result); |
| 919 | if (ResultPtr.canBeInitialized()) |
| 920 | ResultPtr.initialize(); |
| 921 | |
| 922 | assert(Call->getDirectCallee()->getReturnType()->isBooleanType()); |
| 923 | S.Stk.push<Boolean>(Args&: Overflow); |
| 924 | return true; |
| 925 | } |
| 926 | |
| 927 | /// Three integral values followed by a pointer (lhs, rhs, carry, carryOut). |
| 928 | static bool interp__builtin_carryop(InterpState &S, CodePtr OpPC, |
| 929 | const InterpFrame *Frame, |
| 930 | const CallExpr *Call, unsigned BuiltinOp) { |
| 931 | const Pointer &CarryOutPtr = S.Stk.pop<Pointer>(); |
| 932 | PrimType LHST = *S.getContext().classify(T: Call->getArg(Arg: 0)->getType()); |
| 933 | PrimType RHST = *S.getContext().classify(T: Call->getArg(Arg: 1)->getType()); |
| 934 | APSInt CarryIn = popToAPSInt(Stk&: S.Stk, T: LHST); |
| 935 | APSInt RHS = popToAPSInt(Stk&: S.Stk, T: RHST); |
| 936 | APSInt LHS = popToAPSInt(Stk&: S.Stk, T: LHST); |
| 937 | |
| 938 | if (CarryOutPtr.isDummy() || !CarryOutPtr.isBlockPointer()) |
| 939 | return false; |
| 940 | |
| 941 | APSInt CarryOut; |
| 942 | |
| 943 | APSInt Result; |
| 944 | // Copy the number of bits and sign. |
| 945 | Result = LHS; |
| 946 | CarryOut = LHS; |
| 947 | |
| 948 | bool FirstOverflowed = false; |
| 949 | bool SecondOverflowed = false; |
| 950 | switch (BuiltinOp) { |
| 951 | default: |
| 952 | llvm_unreachable("Invalid value for BuiltinOp" ); |
| 953 | case Builtin::BI__builtin_addcb: |
| 954 | case Builtin::BI__builtin_addcs: |
| 955 | case Builtin::BI__builtin_addc: |
| 956 | case Builtin::BI__builtin_addcl: |
| 957 | case Builtin::BI__builtin_addcll: |
| 958 | Result = |
| 959 | LHS.uadd_ov(RHS, Overflow&: FirstOverflowed).uadd_ov(RHS: CarryIn, Overflow&: SecondOverflowed); |
| 960 | break; |
| 961 | case Builtin::BI__builtin_subcb: |
| 962 | case Builtin::BI__builtin_subcs: |
| 963 | case Builtin::BI__builtin_subc: |
| 964 | case Builtin::BI__builtin_subcl: |
| 965 | case Builtin::BI__builtin_subcll: |
| 966 | Result = |
| 967 | LHS.usub_ov(RHS, Overflow&: FirstOverflowed).usub_ov(RHS: CarryIn, Overflow&: SecondOverflowed); |
| 968 | break; |
| 969 | } |
| 970 | // It is possible for both overflows to happen but CGBuiltin uses an OR so |
| 971 | // this is consistent. |
| 972 | CarryOut = (uint64_t)(FirstOverflowed | SecondOverflowed); |
| 973 | |
| 974 | QualType CarryOutType = Call->getArg(Arg: 3)->getType()->getPointeeType(); |
| 975 | PrimType CarryOutT = *S.getContext().classify(T: CarryOutType); |
| 976 | assignInteger(S, Dest: CarryOutPtr, ValueT: CarryOutT, Value: CarryOut); |
| 977 | CarryOutPtr.initialize(); |
| 978 | |
| 979 | assert(Call->getType() == Call->getArg(0)->getType()); |
| 980 | pushInteger(S, Val: Result, QT: Call->getType()); |
| 981 | return true; |
| 982 | } |
| 983 | |
| 984 | static bool interp__builtin_clz(InterpState &S, CodePtr OpPC, |
| 985 | const InterpFrame *Frame, const CallExpr *Call, |
| 986 | unsigned BuiltinOp) { |
| 987 | |
| 988 | std::optional<APSInt> Fallback; |
| 989 | if (BuiltinOp == Builtin::BI__builtin_clzg && Call->getNumArgs() == 2) |
| 990 | Fallback = popToAPSInt(S, E: Call->getArg(Arg: 1)); |
| 991 | |
| 992 | APSInt Val; |
| 993 | if (Call->getArg(Arg: 0)->getType()->isExtVectorBoolType()) { |
| 994 | const Pointer &Arg = S.Stk.pop<Pointer>(); |
| 995 | Val = convertBoolVectorToInt(Val: Arg); |
| 996 | } else { |
| 997 | Val = popToAPSInt(S, E: Call->getArg(Arg: 0)); |
| 998 | } |
| 999 | |
| 1000 | // When the argument is 0, the result of GCC builtins is undefined, whereas |
| 1001 | // for Microsoft intrinsics, the result is the bit-width of the argument. |
| 1002 | bool ZeroIsUndefined = BuiltinOp != Builtin::BI__lzcnt16 && |
| 1003 | BuiltinOp != Builtin::BI__lzcnt && |
| 1004 | BuiltinOp != Builtin::BI__lzcnt64; |
| 1005 | |
| 1006 | if (Val == 0) { |
| 1007 | if (Fallback) { |
| 1008 | pushInteger(S, Val: *Fallback, QT: Call->getType()); |
| 1009 | return true; |
| 1010 | } |
| 1011 | |
| 1012 | if (ZeroIsUndefined) |
| 1013 | return false; |
| 1014 | } |
| 1015 | |
| 1016 | pushInteger(S, Val: Val.countl_zero(), QT: Call->getType()); |
| 1017 | return true; |
| 1018 | } |
| 1019 | |
| 1020 | static bool interp__builtin_ctz(InterpState &S, CodePtr OpPC, |
| 1021 | const InterpFrame *Frame, const CallExpr *Call, |
| 1022 | unsigned BuiltinID) { |
| 1023 | std::optional<APSInt> Fallback; |
| 1024 | if (BuiltinID == Builtin::BI__builtin_ctzg && Call->getNumArgs() == 2) |
| 1025 | Fallback = popToAPSInt(S, E: Call->getArg(Arg: 1)); |
| 1026 | |
| 1027 | APSInt Val; |
| 1028 | if (Call->getArg(Arg: 0)->getType()->isExtVectorBoolType()) { |
| 1029 | const Pointer &Arg = S.Stk.pop<Pointer>(); |
| 1030 | Val = convertBoolVectorToInt(Val: Arg); |
| 1031 | } else { |
| 1032 | Val = popToAPSInt(S, E: Call->getArg(Arg: 0)); |
| 1033 | } |
| 1034 | |
| 1035 | if (Val == 0) { |
| 1036 | if (Fallback) { |
| 1037 | pushInteger(S, Val: *Fallback, QT: Call->getType()); |
| 1038 | return true; |
| 1039 | } |
| 1040 | return false; |
| 1041 | } |
| 1042 | |
| 1043 | pushInteger(S, Val: Val.countr_zero(), QT: Call->getType()); |
| 1044 | return true; |
| 1045 | } |
| 1046 | |
| 1047 | static bool interp__builtin_bswap(InterpState &S, CodePtr OpPC, |
| 1048 | const InterpFrame *Frame, |
| 1049 | const CallExpr *Call) { |
| 1050 | const APSInt &Val = popToAPSInt(S, E: Call->getArg(Arg: 0)); |
| 1051 | if (Val.getBitWidth() == 8) |
| 1052 | pushInteger(S, Val, QT: Call->getType()); |
| 1053 | else |
| 1054 | pushInteger(S, Val: Val.byteSwap(), QT: Call->getType()); |
| 1055 | return true; |
| 1056 | } |
| 1057 | |
| 1058 | /// bool __atomic_always_lock_free(size_t, void const volatile*) |
| 1059 | /// bool __atomic_is_lock_free(size_t, void const volatile*) |
| 1060 | static bool interp__builtin_atomic_lock_free(InterpState &S, CodePtr OpPC, |
| 1061 | const InterpFrame *Frame, |
| 1062 | const CallExpr *Call, |
| 1063 | unsigned BuiltinOp) { |
| 1064 | auto returnBool = [&S](bool Value) -> bool { |
| 1065 | S.Stk.push<Boolean>(Args&: Value); |
| 1066 | return true; |
| 1067 | }; |
| 1068 | |
| 1069 | const Pointer &Ptr = S.Stk.pop<Pointer>(); |
| 1070 | uint64_t SizeVal = popToUInt64(S, E: Call->getArg(Arg: 0)); |
| 1071 | |
| 1072 | // For __atomic_is_lock_free(sizeof(_Atomic(T))), if the size is a power |
| 1073 | // of two less than or equal to the maximum inline atomic width, we know it |
| 1074 | // is lock-free. If the size isn't a power of two, or greater than the |
| 1075 | // maximum alignment where we promote atomics, we know it is not lock-free |
| 1076 | // (at least not in the sense of atomic_is_lock_free). Otherwise, |
| 1077 | // the answer can only be determined at runtime; for example, 16-byte |
| 1078 | // atomics have lock-free implementations on some, but not all, |
| 1079 | // x86-64 processors. |
| 1080 | |
| 1081 | // Check power-of-two. |
| 1082 | CharUnits Size = CharUnits::fromQuantity(Quantity: SizeVal); |
| 1083 | if (Size.isPowerOfTwo()) { |
| 1084 | // Check against inlining width. |
| 1085 | unsigned InlineWidthBits = |
| 1086 | S.getASTContext().getTargetInfo().getMaxAtomicInlineWidth(); |
| 1087 | if (Size <= S.getASTContext().toCharUnitsFromBits(BitSize: InlineWidthBits)) { |
| 1088 | |
| 1089 | // OK, we will inline appropriately-aligned operations of this size, |
| 1090 | // and _Atomic(T) is appropriately-aligned. |
| 1091 | if (Size == CharUnits::One()) |
| 1092 | return returnBool(true); |
| 1093 | |
| 1094 | // Same for null pointers. |
| 1095 | assert(BuiltinOp != Builtin::BI__c11_atomic_is_lock_free); |
| 1096 | if (Ptr.isZero()) |
| 1097 | return returnBool(true); |
| 1098 | |
| 1099 | if (Ptr.isIntegralPointer()) { |
| 1100 | uint64_t IntVal = Ptr.getIntegerRepresentation(); |
| 1101 | if (APSInt(APInt(64, IntVal, false), true).isAligned(A: Size.getAsAlign())) |
| 1102 | return returnBool(true); |
| 1103 | } |
| 1104 | |
| 1105 | const Expr *PtrArg = Call->getArg(Arg: 1); |
| 1106 | // Otherwise, check if the type's alignment against Size. |
| 1107 | if (const auto *ICE = dyn_cast<ImplicitCastExpr>(Val: PtrArg)) { |
| 1108 | // Drop the potential implicit-cast to 'const volatile void*', getting |
| 1109 | // the underlying type. |
| 1110 | if (ICE->getCastKind() == CK_BitCast) |
| 1111 | PtrArg = ICE->getSubExpr(); |
| 1112 | } |
| 1113 | |
| 1114 | if (const auto *PtrTy = PtrArg->getType()->getAs<PointerType>()) { |
| 1115 | QualType PointeeType = PtrTy->getPointeeType(); |
| 1116 | if (!PointeeType->isIncompleteType() && |
| 1117 | S.getASTContext().getTypeAlignInChars(T: PointeeType) >= Size) { |
| 1118 | // OK, we will inline operations on this object. |
| 1119 | return returnBool(true); |
| 1120 | } |
| 1121 | } |
| 1122 | } |
| 1123 | } |
| 1124 | |
| 1125 | if (BuiltinOp == Builtin::BI__atomic_always_lock_free) |
| 1126 | return returnBool(false); |
| 1127 | |
| 1128 | return false; |
| 1129 | } |
| 1130 | |
| 1131 | /// bool __c11_atomic_is_lock_free(size_t) |
| 1132 | static bool interp__builtin_c11_atomic_is_lock_free(InterpState &S, |
| 1133 | CodePtr OpPC, |
| 1134 | const InterpFrame *Frame, |
| 1135 | const CallExpr *Call) { |
| 1136 | uint64_t SizeVal = popToUInt64(S, E: Call->getArg(Arg: 0)); |
| 1137 | |
| 1138 | CharUnits Size = CharUnits::fromQuantity(Quantity: SizeVal); |
| 1139 | if (Size.isPowerOfTwo()) { |
| 1140 | // Check against inlining width. |
| 1141 | unsigned InlineWidthBits = |
| 1142 | S.getASTContext().getTargetInfo().getMaxAtomicInlineWidth(); |
| 1143 | if (Size <= S.getASTContext().toCharUnitsFromBits(BitSize: InlineWidthBits)) { |
| 1144 | S.Stk.push<Boolean>(Args: true); |
| 1145 | return true; |
| 1146 | } |
| 1147 | } |
| 1148 | |
| 1149 | return false; // returnBool(false); |
| 1150 | } |
| 1151 | |
| 1152 | /// __builtin_complex(Float A, float B); |
| 1153 | static bool interp__builtin_complex(InterpState &S, CodePtr OpPC, |
| 1154 | const InterpFrame *Frame, |
| 1155 | const CallExpr *Call) { |
| 1156 | const Floating &Arg2 = S.Stk.pop<Floating>(); |
| 1157 | const Floating &Arg1 = S.Stk.pop<Floating>(); |
| 1158 | Pointer &Result = S.Stk.peek<Pointer>(); |
| 1159 | |
| 1160 | Result.elem<Floating>(I: 0) = Arg1; |
| 1161 | Result.elem<Floating>(I: 1) = Arg2; |
| 1162 | Result.initializeAllElements(); |
| 1163 | |
| 1164 | return true; |
| 1165 | } |
| 1166 | |
| 1167 | /// __builtin_is_aligned() |
| 1168 | /// __builtin_align_up() |
| 1169 | /// __builtin_align_down() |
| 1170 | /// The first parameter is either an integer or a pointer. |
| 1171 | /// The second parameter is the requested alignment as an integer. |
| 1172 | static bool interp__builtin_is_aligned_up_down(InterpState &S, CodePtr OpPC, |
| 1173 | const InterpFrame *Frame, |
| 1174 | const CallExpr *Call, |
| 1175 | unsigned BuiltinOp) { |
| 1176 | const APSInt &Alignment = popToAPSInt(S, E: Call->getArg(Arg: 1)); |
| 1177 | |
| 1178 | if (Alignment < 0 || !Alignment.isPowerOf2()) { |
| 1179 | S.FFDiag(E: Call, DiagId: diag::note_constexpr_invalid_alignment) << Alignment; |
| 1180 | return false; |
| 1181 | } |
| 1182 | unsigned SrcWidth = S.getASTContext().getIntWidth(T: Call->getArg(Arg: 0)->getType()); |
| 1183 | APSInt MaxValue(APInt::getOneBitSet(numBits: SrcWidth, BitNo: SrcWidth - 1)); |
| 1184 | if (APSInt::compareValues(I1: Alignment, I2: MaxValue) > 0) { |
| 1185 | S.FFDiag(E: Call, DiagId: diag::note_constexpr_alignment_too_big) |
| 1186 | << MaxValue << Call->getArg(Arg: 0)->getType() << Alignment; |
| 1187 | return false; |
| 1188 | } |
| 1189 | |
| 1190 | // The first parameter is either an integer or a pointer. |
| 1191 | PrimType FirstArgT = *S.Ctx.classify(E: Call->getArg(Arg: 0)); |
| 1192 | |
| 1193 | if (isIntegralType(T: FirstArgT)) { |
| 1194 | const APSInt &Src = popToAPSInt(Stk&: S.Stk, T: FirstArgT); |
| 1195 | APInt AlignMinusOne = Alignment.extOrTrunc(width: Src.getBitWidth()) - 1; |
| 1196 | if (BuiltinOp == Builtin::BI__builtin_align_up) { |
| 1197 | APSInt AlignedVal = |
| 1198 | APSInt((Src + AlignMinusOne) & ~AlignMinusOne, Src.isUnsigned()); |
| 1199 | pushInteger(S, Val: AlignedVal, QT: Call->getType()); |
| 1200 | } else if (BuiltinOp == Builtin::BI__builtin_align_down) { |
| 1201 | APSInt AlignedVal = APSInt(Src & ~AlignMinusOne, Src.isUnsigned()); |
| 1202 | pushInteger(S, Val: AlignedVal, QT: Call->getType()); |
| 1203 | } else { |
| 1204 | assert(*S.Ctx.classify(Call->getType()) == PT_Bool); |
| 1205 | S.Stk.push<Boolean>(Args: (Src & AlignMinusOne) == 0); |
| 1206 | } |
| 1207 | return true; |
| 1208 | } |
| 1209 | assert(FirstArgT == PT_Ptr); |
| 1210 | const Pointer &Ptr = S.Stk.pop<Pointer>(); |
| 1211 | if (!Ptr.isBlockPointer()) |
| 1212 | return false; |
| 1213 | |
| 1214 | // For one-past-end pointers, we can't call getIndex() since it asserts. |
| 1215 | // Use getNumElems() instead which gives the correct index for past-end. |
| 1216 | unsigned PtrOffset = |
| 1217 | Ptr.isElementPastEnd() ? Ptr.getNumElems() : Ptr.getIndex(); |
| 1218 | CharUnits BaseAlignment = |
| 1219 | S.getASTContext().getDeclAlign(D: Ptr.getDeclDesc()->asValueDecl()); |
| 1220 | CharUnits PtrAlign = |
| 1221 | BaseAlignment.alignmentAtOffset(offset: CharUnits::fromQuantity(Quantity: PtrOffset)); |
| 1222 | |
| 1223 | if (BuiltinOp == Builtin::BI__builtin_is_aligned) { |
| 1224 | if (PtrAlign.getQuantity() >= Alignment) { |
| 1225 | S.Stk.push<Boolean>(Args: true); |
| 1226 | return true; |
| 1227 | } |
| 1228 | // If the alignment is not known to be sufficient, some cases could still |
| 1229 | // be aligned at run time. However, if the requested alignment is less or |
| 1230 | // equal to the base alignment and the offset is not aligned, we know that |
| 1231 | // the run-time value can never be aligned. |
| 1232 | if (BaseAlignment.getQuantity() >= Alignment && |
| 1233 | PtrAlign.getQuantity() < Alignment) { |
| 1234 | S.Stk.push<Boolean>(Args: false); |
| 1235 | return true; |
| 1236 | } |
| 1237 | |
| 1238 | S.FFDiag(E: Call->getArg(Arg: 0), DiagId: diag::note_constexpr_alignment_compute) |
| 1239 | << Alignment; |
| 1240 | return false; |
| 1241 | } |
| 1242 | |
| 1243 | assert(BuiltinOp == Builtin::BI__builtin_align_down || |
| 1244 | BuiltinOp == Builtin::BI__builtin_align_up); |
| 1245 | |
| 1246 | // For align_up/align_down, we can return the same value if the alignment |
| 1247 | // is known to be greater or equal to the requested value. |
| 1248 | if (PtrAlign.getQuantity() >= Alignment) { |
| 1249 | S.Stk.push<Pointer>(Args: Ptr); |
| 1250 | return true; |
| 1251 | } |
| 1252 | |
| 1253 | // The alignment could be greater than the minimum at run-time, so we cannot |
| 1254 | // infer much about the resulting pointer value. One case is possible: |
| 1255 | // For `_Alignas(32) char buf[N]; __builtin_align_down(&buf[idx], 32)` we |
| 1256 | // can infer the correct index if the requested alignment is smaller than |
| 1257 | // the base alignment so we can perform the computation on the offset. |
| 1258 | if (BaseAlignment.getQuantity() >= Alignment) { |
| 1259 | assert(Alignment.getBitWidth() <= 64 && |
| 1260 | "Cannot handle > 64-bit address-space" ); |
| 1261 | uint64_t Alignment64 = Alignment.getZExtValue(); |
| 1262 | CharUnits NewOffset = |
| 1263 | CharUnits::fromQuantity(Quantity: BuiltinOp == Builtin::BI__builtin_align_down |
| 1264 | ? llvm::alignDown(Value: PtrOffset, Align: Alignment64) |
| 1265 | : llvm::alignTo(Value: PtrOffset, Align: Alignment64)); |
| 1266 | |
| 1267 | S.Stk.push<Pointer>(Args: Ptr.atIndex(Idx: NewOffset.getQuantity())); |
| 1268 | return true; |
| 1269 | } |
| 1270 | |
| 1271 | // Otherwise, we cannot constant-evaluate the result. |
| 1272 | S.FFDiag(E: Call->getArg(Arg: 0), DiagId: diag::note_constexpr_alignment_adjust) << Alignment; |
| 1273 | return false; |
| 1274 | } |
| 1275 | |
| 1276 | /// __builtin_assume_aligned(Ptr, Alignment[, ExtraOffset]) |
| 1277 | static bool interp__builtin_assume_aligned(InterpState &S, CodePtr OpPC, |
| 1278 | const InterpFrame *Frame, |
| 1279 | const CallExpr *Call) { |
| 1280 | assert(Call->getNumArgs() == 2 || Call->getNumArgs() == 3); |
| 1281 | |
| 1282 | std::optional<APSInt> ; |
| 1283 | if (Call->getNumArgs() == 3) |
| 1284 | ExtraOffset = popToAPSInt(Stk&: S.Stk, T: *S.Ctx.classify(E: Call->getArg(Arg: 2))); |
| 1285 | |
| 1286 | APSInt Alignment = popToAPSInt(Stk&: S.Stk, T: *S.Ctx.classify(E: Call->getArg(Arg: 1))); |
| 1287 | const Pointer &Ptr = S.Stk.pop<Pointer>(); |
| 1288 | |
| 1289 | CharUnits Align = CharUnits::fromQuantity(Quantity: Alignment.getZExtValue()); |
| 1290 | |
| 1291 | // If there is a base object, then it must have the correct alignment. |
| 1292 | if (Ptr.isBlockPointer()) { |
| 1293 | CharUnits BaseAlignment; |
| 1294 | if (const auto *VD = Ptr.getDeclDesc()->asValueDecl()) |
| 1295 | BaseAlignment = S.getASTContext().getDeclAlign(D: VD); |
| 1296 | else if (const auto *E = Ptr.getDeclDesc()->asExpr()) |
| 1297 | BaseAlignment = GetAlignOfExpr(Ctx: S.getASTContext(), E, ExprKind: UETT_AlignOf); |
| 1298 | |
| 1299 | if (BaseAlignment < Align) { |
| 1300 | S.CCEDiag(E: Call->getArg(Arg: 0), |
| 1301 | DiagId: diag::note_constexpr_baa_insufficient_alignment) |
| 1302 | << 0 << BaseAlignment.getQuantity() << Align.getQuantity(); |
| 1303 | return false; |
| 1304 | } |
| 1305 | } |
| 1306 | |
| 1307 | APValue AV = Ptr.toAPValue(ASTCtx: S.getASTContext()); |
| 1308 | CharUnits AVOffset = AV.getLValueOffset(); |
| 1309 | if (ExtraOffset) |
| 1310 | AVOffset -= CharUnits::fromQuantity(Quantity: ExtraOffset->getZExtValue()); |
| 1311 | if (AVOffset.alignTo(Align) != AVOffset) { |
| 1312 | if (Ptr.isBlockPointer()) |
| 1313 | S.CCEDiag(E: Call->getArg(Arg: 0), |
| 1314 | DiagId: diag::note_constexpr_baa_insufficient_alignment) |
| 1315 | << 1 << AVOffset.getQuantity() << Align.getQuantity(); |
| 1316 | else |
| 1317 | S.CCEDiag(E: Call->getArg(Arg: 0), |
| 1318 | DiagId: diag::note_constexpr_baa_value_insufficient_alignment) |
| 1319 | << AVOffset.getQuantity() << Align.getQuantity(); |
| 1320 | return false; |
| 1321 | } |
| 1322 | |
| 1323 | S.Stk.push<Pointer>(Args: Ptr); |
| 1324 | return true; |
| 1325 | } |
| 1326 | |
| 1327 | /// (CarryIn, LHS, RHS, Result) |
| 1328 | static bool interp__builtin_ia32_addcarry_subborrow(InterpState &S, |
| 1329 | CodePtr OpPC, |
| 1330 | const InterpFrame *Frame, |
| 1331 | const CallExpr *Call, |
| 1332 | unsigned BuiltinOp) { |
| 1333 | if (Call->getNumArgs() != 4 || !Call->getArg(Arg: 0)->getType()->isIntegerType() || |
| 1334 | !Call->getArg(Arg: 1)->getType()->isIntegerType() || |
| 1335 | !Call->getArg(Arg: 2)->getType()->isIntegerType()) |
| 1336 | return false; |
| 1337 | |
| 1338 | const Pointer &CarryOutPtr = S.Stk.pop<Pointer>(); |
| 1339 | |
| 1340 | APSInt RHS = popToAPSInt(S, E: Call->getArg(Arg: 2)); |
| 1341 | APSInt LHS = popToAPSInt(S, E: Call->getArg(Arg: 1)); |
| 1342 | APSInt CarryIn = popToAPSInt(S, E: Call->getArg(Arg: 0)); |
| 1343 | |
| 1344 | bool IsAdd = BuiltinOp == clang::X86::BI__builtin_ia32_addcarryx_u32 || |
| 1345 | BuiltinOp == clang::X86::BI__builtin_ia32_addcarryx_u64; |
| 1346 | |
| 1347 | unsigned BitWidth = LHS.getBitWidth(); |
| 1348 | unsigned CarryInBit = CarryIn.ugt(RHS: 0) ? 1 : 0; |
| 1349 | APInt ExResult = |
| 1350 | IsAdd ? (LHS.zext(width: BitWidth + 1) + (RHS.zext(width: BitWidth + 1) + CarryInBit)) |
| 1351 | : (LHS.zext(width: BitWidth + 1) - (RHS.zext(width: BitWidth + 1) + CarryInBit)); |
| 1352 | |
| 1353 | APInt Result = ExResult.extractBits(numBits: BitWidth, bitPosition: 0); |
| 1354 | APSInt CarryOut = |
| 1355 | APSInt(ExResult.extractBits(numBits: 1, bitPosition: BitWidth), /*IsUnsigned=*/true); |
| 1356 | |
| 1357 | QualType CarryOutType = Call->getArg(Arg: 3)->getType()->getPointeeType(); |
| 1358 | PrimType CarryOutT = *S.getContext().classify(T: CarryOutType); |
| 1359 | assignInteger(S, Dest: CarryOutPtr, ValueT: CarryOutT, Value: APSInt(std::move(Result), true)); |
| 1360 | |
| 1361 | pushInteger(S, Val: CarryOut, QT: Call->getType()); |
| 1362 | |
| 1363 | return true; |
| 1364 | } |
| 1365 | |
| 1366 | static bool interp__builtin_os_log_format_buffer_size(InterpState &S, |
| 1367 | CodePtr OpPC, |
| 1368 | const InterpFrame *Frame, |
| 1369 | const CallExpr *Call) { |
| 1370 | analyze_os_log::OSLogBufferLayout Layout; |
| 1371 | analyze_os_log::computeOSLogBufferLayout(Ctx&: S.getASTContext(), E: Call, layout&: Layout); |
| 1372 | pushInteger(S, Val: Layout.size().getQuantity(), QT: Call->getType()); |
| 1373 | return true; |
| 1374 | } |
| 1375 | |
| 1376 | static bool |
| 1377 | interp__builtin_ptrauth_string_discriminator(InterpState &S, CodePtr OpPC, |
| 1378 | const InterpFrame *Frame, |
| 1379 | const CallExpr *Call) { |
| 1380 | const auto &Ptr = S.Stk.pop<Pointer>(); |
| 1381 | assert(Ptr.getFieldDesc()->isPrimitiveArray()); |
| 1382 | |
| 1383 | // This should be created for a StringLiteral, so should alway shold at least |
| 1384 | // one array element. |
| 1385 | assert(Ptr.getFieldDesc()->getNumElems() >= 1); |
| 1386 | StringRef R(&Ptr.deref<char>(), Ptr.getFieldDesc()->getNumElems() - 1); |
| 1387 | uint64_t Result = getPointerAuthStableSipHash(S: R); |
| 1388 | pushInteger(S, Val: Result, QT: Call->getType()); |
| 1389 | return true; |
| 1390 | } |
| 1391 | |
| 1392 | static bool interp__builtin_infer_alloc_token(InterpState &S, CodePtr OpPC, |
| 1393 | const InterpFrame *Frame, |
| 1394 | const CallExpr *Call) { |
| 1395 | const ASTContext &ASTCtx = S.getASTContext(); |
| 1396 | uint64_t BitWidth = ASTCtx.getTypeSize(T: ASTCtx.getSizeType()); |
| 1397 | auto Mode = |
| 1398 | ASTCtx.getLangOpts().AllocTokenMode.value_or(u: llvm::DefaultAllocTokenMode); |
| 1399 | auto MaxTokensOpt = ASTCtx.getLangOpts().AllocTokenMax; |
| 1400 | uint64_t MaxTokens = |
| 1401 | MaxTokensOpt.value_or(u: 0) ? *MaxTokensOpt : (~0ULL >> (64 - BitWidth)); |
| 1402 | |
| 1403 | // We do not read any of the arguments; discard them. |
| 1404 | for (int I = Call->getNumArgs() - 1; I >= 0; --I) |
| 1405 | discard(Stk&: S.Stk, T: S.getContext().classify(E: Call->getArg(Arg: I)).value_or(PT: PT_Ptr)); |
| 1406 | |
| 1407 | // Note: Type inference from a surrounding cast is not supported in |
| 1408 | // constexpr evaluation. |
| 1409 | QualType AllocType = infer_alloc::inferPossibleType(E: Call, Ctx: ASTCtx, CastE: nullptr); |
| 1410 | if (AllocType.isNull()) { |
| 1411 | S.CCEDiag(E: Call, |
| 1412 | DiagId: diag::note_constexpr_infer_alloc_token_type_inference_failed); |
| 1413 | return false; |
| 1414 | } |
| 1415 | |
| 1416 | auto ATMD = infer_alloc::getAllocTokenMetadata(T: AllocType, Ctx: ASTCtx); |
| 1417 | if (!ATMD) { |
| 1418 | S.CCEDiag(E: Call, DiagId: diag::note_constexpr_infer_alloc_token_no_metadata); |
| 1419 | return false; |
| 1420 | } |
| 1421 | |
| 1422 | auto MaybeToken = llvm::getAllocToken(Mode, Metadata: *ATMD, MaxTokens); |
| 1423 | if (!MaybeToken) { |
| 1424 | S.CCEDiag(E: Call, DiagId: diag::note_constexpr_infer_alloc_token_stateful_mode); |
| 1425 | return false; |
| 1426 | } |
| 1427 | |
| 1428 | pushInteger(S, Val: llvm::APInt(BitWidth, *MaybeToken), QT: ASTCtx.getSizeType()); |
| 1429 | return true; |
| 1430 | } |
| 1431 | |
| 1432 | static bool interp__builtin_operator_new(InterpState &S, CodePtr OpPC, |
| 1433 | const InterpFrame *Frame, |
| 1434 | const CallExpr *Call) { |
| 1435 | // A call to __operator_new is only valid within std::allocate<>::allocate. |
| 1436 | // Walk up the call stack to find the appropriate caller and get the |
| 1437 | // element type from it. |
| 1438 | auto [NewCall, ElemType] = S.getStdAllocatorCaller(Name: "allocate" ); |
| 1439 | |
| 1440 | if (ElemType.isNull()) { |
| 1441 | S.FFDiag(E: Call, DiagId: S.getLangOpts().CPlusPlus20 |
| 1442 | ? diag::note_constexpr_new_untyped |
| 1443 | : diag::note_constexpr_new); |
| 1444 | return false; |
| 1445 | } |
| 1446 | assert(NewCall); |
| 1447 | |
| 1448 | if (ElemType->isIncompleteType() || ElemType->isFunctionType()) { |
| 1449 | S.FFDiag(E: Call, DiagId: diag::note_constexpr_new_not_complete_object_type) |
| 1450 | << (ElemType->isIncompleteType() ? 0 : 1) << ElemType; |
| 1451 | return false; |
| 1452 | } |
| 1453 | |
| 1454 | // We only care about the first parameter (the size), so discard all the |
| 1455 | // others. |
| 1456 | { |
| 1457 | unsigned NumArgs = Call->getNumArgs(); |
| 1458 | assert(NumArgs >= 1); |
| 1459 | |
| 1460 | // The std::nothrow_t arg never gets put on the stack. |
| 1461 | if (Call->getArg(Arg: NumArgs - 1)->getType()->isNothrowT()) |
| 1462 | --NumArgs; |
| 1463 | auto Args = ArrayRef(Call->getArgs(), Call->getNumArgs()); |
| 1464 | // First arg is needed. |
| 1465 | Args = Args.drop_front(); |
| 1466 | |
| 1467 | // Discard the rest. |
| 1468 | for (const Expr *Arg : Args) |
| 1469 | discard(Stk&: S.Stk, T: *S.getContext().classify(E: Arg)); |
| 1470 | } |
| 1471 | |
| 1472 | APSInt Bytes = popToAPSInt(S, E: Call->getArg(Arg: 0)); |
| 1473 | CharUnits ElemSize = S.getASTContext().getTypeSizeInChars(T: ElemType); |
| 1474 | assert(!ElemSize.isZero()); |
| 1475 | // Divide the number of bytes by sizeof(ElemType), so we get the number of |
| 1476 | // elements we should allocate. |
| 1477 | APInt NumElems, Remainder; |
| 1478 | APInt ElemSizeAP(Bytes.getBitWidth(), ElemSize.getQuantity()); |
| 1479 | APInt::udivrem(LHS: Bytes, RHS: ElemSizeAP, Quotient&: NumElems, Remainder); |
| 1480 | if (Remainder != 0) { |
| 1481 | // This likely indicates a bug in the implementation of 'std::allocator'. |
| 1482 | S.FFDiag(E: Call, DiagId: diag::note_constexpr_operator_new_bad_size) |
| 1483 | << Bytes << APSInt(ElemSizeAP, true) << ElemType; |
| 1484 | return false; |
| 1485 | } |
| 1486 | |
| 1487 | // NB: The same check we're using in CheckArraySize() |
| 1488 | if (NumElems.getActiveBits() > |
| 1489 | ConstantArrayType::getMaxSizeBits(Context: S.getASTContext()) || |
| 1490 | NumElems.ugt(RHS: Descriptor::MaxArrayElemBytes / ElemSize.getQuantity())) { |
| 1491 | // FIXME: NoThrow check? |
| 1492 | const SourceInfo &Loc = S.Current->getSource(PC: OpPC); |
| 1493 | S.FFDiag(SI: Loc, DiagId: diag::note_constexpr_new_too_large) |
| 1494 | << NumElems.getZExtValue(); |
| 1495 | return false; |
| 1496 | } |
| 1497 | |
| 1498 | if (!CheckArraySize(S, OpPC, NumElems: NumElems.getZExtValue())) |
| 1499 | return false; |
| 1500 | |
| 1501 | bool IsArray = NumElems.ugt(RHS: 1); |
| 1502 | OptPrimType ElemT = S.getContext().classify(T: ElemType); |
| 1503 | DynamicAllocator &Allocator = S.getAllocator(); |
| 1504 | if (ElemT) { |
| 1505 | Block *B = |
| 1506 | Allocator.allocate(Source: NewCall, T: *ElemT, NumElements: NumElems.getZExtValue(), |
| 1507 | EvalID: S.Ctx.getEvalID(), AllocForm: DynamicAllocator::Form::Operator); |
| 1508 | assert(B); |
| 1509 | S.Stk.push<Pointer>(Args: Pointer(B).atIndex(Idx: 0)); |
| 1510 | return true; |
| 1511 | } |
| 1512 | |
| 1513 | assert(!ElemT); |
| 1514 | |
| 1515 | // Composite arrays |
| 1516 | if (IsArray) { |
| 1517 | const Descriptor *Desc = |
| 1518 | S.P.createDescriptor(D: NewCall, Ty: ElemType.getTypePtr(), MDSize: std::nullopt); |
| 1519 | Block *B = |
| 1520 | Allocator.allocate(D: Desc, NumElements: NumElems.getZExtValue(), EvalID: S.Ctx.getEvalID(), |
| 1521 | AllocForm: DynamicAllocator::Form::Operator); |
| 1522 | assert(B); |
| 1523 | S.Stk.push<Pointer>(Args: Pointer(B).atIndex(Idx: 0).narrow()); |
| 1524 | return true; |
| 1525 | } |
| 1526 | |
| 1527 | // Records. Still allocate them as single-element arrays. |
| 1528 | QualType AllocType = S.getASTContext().getConstantArrayType( |
| 1529 | EltTy: ElemType, ArySize: NumElems, SizeExpr: nullptr, ASM: ArraySizeModifier::Normal, IndexTypeQuals: 0); |
| 1530 | |
| 1531 | const Descriptor *Desc = S.P.createDescriptor(D: NewCall, Ty: AllocType.getTypePtr(), |
| 1532 | MDSize: Descriptor::InlineDescMD); |
| 1533 | Block *B = Allocator.allocate(D: Desc, EvalID: S.getContext().getEvalID(), |
| 1534 | AllocForm: DynamicAllocator::Form::Operator); |
| 1535 | assert(B); |
| 1536 | S.Stk.push<Pointer>(Args: Pointer(B).atIndex(Idx: 0).narrow()); |
| 1537 | return true; |
| 1538 | } |
| 1539 | |
| 1540 | static bool interp__builtin_operator_delete(InterpState &S, CodePtr OpPC, |
| 1541 | const InterpFrame *Frame, |
| 1542 | const CallExpr *Call) { |
| 1543 | const Expr *Source = nullptr; |
| 1544 | const Block *BlockToDelete = nullptr; |
| 1545 | |
| 1546 | if (S.checkingPotentialConstantExpression()) { |
| 1547 | S.Stk.discard<Pointer>(); |
| 1548 | return false; |
| 1549 | } |
| 1550 | |
| 1551 | // This is permitted only within a call to std::allocator<T>::deallocate. |
| 1552 | if (!S.getStdAllocatorCaller(Name: "deallocate" )) { |
| 1553 | S.FFDiag(E: Call); |
| 1554 | S.Stk.discard<Pointer>(); |
| 1555 | return true; |
| 1556 | } |
| 1557 | |
| 1558 | { |
| 1559 | const Pointer &Ptr = S.Stk.pop<Pointer>(); |
| 1560 | |
| 1561 | if (Ptr.isZero()) { |
| 1562 | S.CCEDiag(E: Call, DiagId: diag::note_constexpr_deallocate_null); |
| 1563 | return true; |
| 1564 | } |
| 1565 | |
| 1566 | Source = Ptr.getDeclDesc()->asExpr(); |
| 1567 | BlockToDelete = Ptr.block(); |
| 1568 | |
| 1569 | if (!BlockToDelete->isDynamic()) { |
| 1570 | S.FFDiag(E: Call, DiagId: diag::note_constexpr_delete_not_heap_alloc) |
| 1571 | << Ptr.toDiagnosticString(Ctx: S.getASTContext()); |
| 1572 | if (const auto *D = Ptr.getFieldDesc()->asDecl()) |
| 1573 | S.Note(Loc: D->getLocation(), DiagId: diag::note_declared_at); |
| 1574 | } |
| 1575 | } |
| 1576 | assert(BlockToDelete); |
| 1577 | |
| 1578 | DynamicAllocator &Allocator = S.getAllocator(); |
| 1579 | const Descriptor *BlockDesc = BlockToDelete->getDescriptor(); |
| 1580 | std::optional<DynamicAllocator::Form> AllocForm = |
| 1581 | Allocator.getAllocationForm(Source); |
| 1582 | |
| 1583 | if (!Allocator.deallocate(Source, BlockToDelete, S)) { |
| 1584 | // Nothing has been deallocated, this must be a double-delete. |
| 1585 | const SourceInfo &Loc = S.Current->getSource(PC: OpPC); |
| 1586 | S.FFDiag(SI: Loc, DiagId: diag::note_constexpr_double_delete); |
| 1587 | return false; |
| 1588 | } |
| 1589 | assert(AllocForm); |
| 1590 | |
| 1591 | return CheckNewDeleteForms( |
| 1592 | S, OpPC, AllocForm: *AllocForm, DeleteForm: DynamicAllocator::Form::Operator, D: BlockDesc, NewExpr: Source); |
| 1593 | } |
| 1594 | |
| 1595 | static bool interp__builtin_arithmetic_fence(InterpState &S, CodePtr OpPC, |
| 1596 | const InterpFrame *Frame, |
| 1597 | const CallExpr *Call) { |
| 1598 | const Floating &Arg0 = S.Stk.pop<Floating>(); |
| 1599 | S.Stk.push<Floating>(Args: Arg0); |
| 1600 | return true; |
| 1601 | } |
| 1602 | |
| 1603 | static bool interp__builtin_vector_reduce(InterpState &S, CodePtr OpPC, |
| 1604 | const CallExpr *Call, unsigned ID) { |
| 1605 | const Pointer &Arg = S.Stk.pop<Pointer>(); |
| 1606 | assert(Arg.getFieldDesc()->isPrimitiveArray()); |
| 1607 | |
| 1608 | QualType ElemType = Arg.getFieldDesc()->getElemQualType(); |
| 1609 | assert(Call->getType() == ElemType); |
| 1610 | PrimType ElemT = *S.getContext().classify(T: ElemType); |
| 1611 | unsigned NumElems = Arg.getNumElems(); |
| 1612 | |
| 1613 | INT_TYPE_SWITCH_NO_BOOL(ElemT, { |
| 1614 | T Result = Arg.elem<T>(0); |
| 1615 | unsigned BitWidth = Result.bitWidth(); |
| 1616 | for (unsigned I = 1; I != NumElems; ++I) { |
| 1617 | T Elem = Arg.elem<T>(I); |
| 1618 | T PrevResult = Result; |
| 1619 | |
| 1620 | if (ID == Builtin::BI__builtin_reduce_add) { |
| 1621 | if (T::add(Result, Elem, BitWidth, &Result)) { |
| 1622 | unsigned OverflowBits = BitWidth + 1; |
| 1623 | (void)handleOverflow(S, OpPC, |
| 1624 | (PrevResult.toAPSInt(OverflowBits) + |
| 1625 | Elem.toAPSInt(OverflowBits))); |
| 1626 | return false; |
| 1627 | } |
| 1628 | } else if (ID == Builtin::BI__builtin_reduce_mul) { |
| 1629 | if (T::mul(Result, Elem, BitWidth, &Result)) { |
| 1630 | unsigned OverflowBits = BitWidth * 2; |
| 1631 | (void)handleOverflow(S, OpPC, |
| 1632 | (PrevResult.toAPSInt(OverflowBits) * |
| 1633 | Elem.toAPSInt(OverflowBits))); |
| 1634 | return false; |
| 1635 | } |
| 1636 | |
| 1637 | } else if (ID == Builtin::BI__builtin_reduce_and) { |
| 1638 | (void)T::bitAnd(Result, Elem, BitWidth, &Result); |
| 1639 | } else if (ID == Builtin::BI__builtin_reduce_or) { |
| 1640 | (void)T::bitOr(Result, Elem, BitWidth, &Result); |
| 1641 | } else if (ID == Builtin::BI__builtin_reduce_xor) { |
| 1642 | (void)T::bitXor(Result, Elem, BitWidth, &Result); |
| 1643 | } else if (ID == Builtin::BI__builtin_reduce_min) { |
| 1644 | if (Elem < Result) |
| 1645 | Result = Elem; |
| 1646 | } else if (ID == Builtin::BI__builtin_reduce_max) { |
| 1647 | if (Elem > Result) |
| 1648 | Result = Elem; |
| 1649 | } else { |
| 1650 | llvm_unreachable("Unhandled vector reduce builtin" ); |
| 1651 | } |
| 1652 | } |
| 1653 | pushInteger(S, Result.toAPSInt(), Call->getType()); |
| 1654 | }); |
| 1655 | |
| 1656 | return true; |
| 1657 | } |
| 1658 | |
| 1659 | static bool interp__builtin_elementwise_abs(InterpState &S, CodePtr OpPC, |
| 1660 | const InterpFrame *Frame, |
| 1661 | const CallExpr *Call, |
| 1662 | unsigned BuiltinID) { |
| 1663 | assert(Call->getNumArgs() == 1); |
| 1664 | QualType Ty = Call->getArg(Arg: 0)->getType(); |
| 1665 | if (Ty->isIntegerType()) { |
| 1666 | APSInt Val = popToAPSInt(S, E: Call->getArg(Arg: 0)); |
| 1667 | pushInteger(S, Val: Val.abs(), QT: Call->getType()); |
| 1668 | return true; |
| 1669 | } |
| 1670 | |
| 1671 | if (Ty->isFloatingType()) { |
| 1672 | Floating Val = S.Stk.pop<Floating>(); |
| 1673 | Floating Result = abs(S, In: Val); |
| 1674 | S.Stk.push<Floating>(Args&: Result); |
| 1675 | return true; |
| 1676 | } |
| 1677 | |
| 1678 | // Otherwise, the argument must be a vector. |
| 1679 | assert(Call->getArg(0)->getType()->isVectorType()); |
| 1680 | const Pointer &Arg = S.Stk.pop<Pointer>(); |
| 1681 | assert(Arg.getFieldDesc()->isPrimitiveArray()); |
| 1682 | const Pointer &Dst = S.Stk.peek<Pointer>(); |
| 1683 | assert(Dst.getFieldDesc()->isPrimitiveArray()); |
| 1684 | assert(Arg.getFieldDesc()->getNumElems() == |
| 1685 | Dst.getFieldDesc()->getNumElems()); |
| 1686 | |
| 1687 | QualType ElemType = Arg.getFieldDesc()->getElemQualType(); |
| 1688 | PrimType ElemT = *S.getContext().classify(T: ElemType); |
| 1689 | unsigned NumElems = Arg.getNumElems(); |
| 1690 | // we can either have a vector of integer or a vector of floating point |
| 1691 | for (unsigned I = 0; I != NumElems; ++I) { |
| 1692 | if (ElemType->isIntegerType()) { |
| 1693 | INT_TYPE_SWITCH_NO_BOOL(ElemT, { |
| 1694 | Dst.elem<T>(I) = T::from(static_cast<T>( |
| 1695 | APSInt(Arg.elem<T>(I).toAPSInt().abs(), |
| 1696 | ElemType->isUnsignedIntegerOrEnumerationType()))); |
| 1697 | }); |
| 1698 | } else { |
| 1699 | Floating Val = Arg.elem<Floating>(I); |
| 1700 | Dst.elem<Floating>(I) = abs(S, In: Val); |
| 1701 | } |
| 1702 | } |
| 1703 | Dst.initializeAllElements(); |
| 1704 | |
| 1705 | return true; |
| 1706 | } |
| 1707 | |
| 1708 | /// Can be called with an integer or vector as the first and only parameter. |
| 1709 | static bool interp__builtin_elementwise_countzeroes(InterpState &S, |
| 1710 | CodePtr OpPC, |
| 1711 | const InterpFrame *Frame, |
| 1712 | const CallExpr *Call, |
| 1713 | unsigned BuiltinID) { |
| 1714 | bool HasZeroArg = Call->getNumArgs() == 2; |
| 1715 | bool IsCTTZ = BuiltinID == Builtin::BI__builtin_elementwise_ctzg; |
| 1716 | assert(Call->getNumArgs() == 1 || HasZeroArg); |
| 1717 | if (Call->getArg(Arg: 0)->getType()->isIntegerType()) { |
| 1718 | PrimType ArgT = *S.getContext().classify(T: Call->getArg(Arg: 0)->getType()); |
| 1719 | APSInt Val = popToAPSInt(Stk&: S.Stk, T: ArgT); |
| 1720 | std::optional<APSInt> ZeroVal; |
| 1721 | if (HasZeroArg) { |
| 1722 | ZeroVal = Val; |
| 1723 | Val = popToAPSInt(Stk&: S.Stk, T: ArgT); |
| 1724 | } |
| 1725 | |
| 1726 | if (Val.isZero()) { |
| 1727 | if (ZeroVal) { |
| 1728 | pushInteger(S, Val: *ZeroVal, QT: Call->getType()); |
| 1729 | return true; |
| 1730 | } |
| 1731 | // If we haven't been provided the second argument, the result is |
| 1732 | // undefined |
| 1733 | S.FFDiag(SI: S.Current->getSource(PC: OpPC), |
| 1734 | DiagId: diag::note_constexpr_countzeroes_zero) |
| 1735 | << /*IsTrailing=*/IsCTTZ; |
| 1736 | return false; |
| 1737 | } |
| 1738 | |
| 1739 | if (BuiltinID == Builtin::BI__builtin_elementwise_clzg) { |
| 1740 | pushInteger(S, Val: Val.countLeadingZeros(), QT: Call->getType()); |
| 1741 | } else { |
| 1742 | pushInteger(S, Val: Val.countTrailingZeros(), QT: Call->getType()); |
| 1743 | } |
| 1744 | return true; |
| 1745 | } |
| 1746 | // Otherwise, the argument must be a vector. |
| 1747 | const ASTContext &ASTCtx = S.getASTContext(); |
| 1748 | Pointer ZeroArg; |
| 1749 | if (HasZeroArg) { |
| 1750 | assert(Call->getArg(1)->getType()->isVectorType() && |
| 1751 | ASTCtx.hasSameUnqualifiedType(Call->getArg(0)->getType(), |
| 1752 | Call->getArg(1)->getType())); |
| 1753 | (void)ASTCtx; |
| 1754 | ZeroArg = S.Stk.pop<Pointer>(); |
| 1755 | assert(ZeroArg.getFieldDesc()->isPrimitiveArray()); |
| 1756 | } |
| 1757 | assert(Call->getArg(0)->getType()->isVectorType()); |
| 1758 | const Pointer &Arg = S.Stk.pop<Pointer>(); |
| 1759 | assert(Arg.getFieldDesc()->isPrimitiveArray()); |
| 1760 | const Pointer &Dst = S.Stk.peek<Pointer>(); |
| 1761 | assert(Dst.getFieldDesc()->isPrimitiveArray()); |
| 1762 | assert(Arg.getFieldDesc()->getNumElems() == |
| 1763 | Dst.getFieldDesc()->getNumElems()); |
| 1764 | |
| 1765 | QualType ElemType = Arg.getFieldDesc()->getElemQualType(); |
| 1766 | PrimType ElemT = *S.getContext().classify(T: ElemType); |
| 1767 | unsigned NumElems = Arg.getNumElems(); |
| 1768 | |
| 1769 | // FIXME: Reading from uninitialized vector elements? |
| 1770 | for (unsigned I = 0; I != NumElems; ++I) { |
| 1771 | INT_TYPE_SWITCH_NO_BOOL(ElemT, { |
| 1772 | APInt EltVal = Arg.atIndex(I).deref<T>().toAPSInt(); |
| 1773 | if (EltVal.isZero()) { |
| 1774 | if (HasZeroArg) { |
| 1775 | Dst.atIndex(I).deref<T>() = ZeroArg.atIndex(I).deref<T>(); |
| 1776 | } else { |
| 1777 | // If we haven't been provided the second argument, the result is |
| 1778 | // undefined |
| 1779 | S.FFDiag(S.Current->getSource(OpPC), |
| 1780 | diag::note_constexpr_countzeroes_zero) |
| 1781 | << /*IsTrailing=*/IsCTTZ; |
| 1782 | return false; |
| 1783 | } |
| 1784 | } else if (IsCTTZ) { |
| 1785 | Dst.atIndex(I).deref<T>() = T::from(EltVal.countTrailingZeros()); |
| 1786 | } else { |
| 1787 | Dst.atIndex(I).deref<T>() = T::from(EltVal.countLeadingZeros()); |
| 1788 | } |
| 1789 | Dst.atIndex(I).initialize(); |
| 1790 | }); |
| 1791 | } |
| 1792 | |
| 1793 | return true; |
| 1794 | } |
| 1795 | |
| 1796 | static bool interp__builtin_memcpy(InterpState &S, CodePtr OpPC, |
| 1797 | const InterpFrame *Frame, |
| 1798 | const CallExpr *Call, unsigned ID) { |
| 1799 | assert(Call->getNumArgs() == 3); |
| 1800 | const ASTContext &ASTCtx = S.getASTContext(); |
| 1801 | uint64_t Size = popToUInt64(S, E: Call->getArg(Arg: 2)); |
| 1802 | Pointer SrcPtr = S.Stk.pop<Pointer>().expand(); |
| 1803 | Pointer DestPtr = S.Stk.pop<Pointer>().expand(); |
| 1804 | |
| 1805 | if (ID == Builtin::BImemcpy || ID == Builtin::BImemmove) |
| 1806 | diagnoseNonConstexprBuiltin(S, OpPC, ID); |
| 1807 | |
| 1808 | bool Move = |
| 1809 | (ID == Builtin::BI__builtin_memmove || ID == Builtin::BImemmove || |
| 1810 | ID == Builtin::BI__builtin_wmemmove || ID == Builtin::BIwmemmove); |
| 1811 | bool WChar = ID == Builtin::BIwmemcpy || ID == Builtin::BIwmemmove || |
| 1812 | ID == Builtin::BI__builtin_wmemcpy || |
| 1813 | ID == Builtin::BI__builtin_wmemmove; |
| 1814 | |
| 1815 | // If the size is zero, we treat this as always being a valid no-op. |
| 1816 | if (Size == 0) { |
| 1817 | S.Stk.push<Pointer>(Args&: DestPtr); |
| 1818 | return true; |
| 1819 | } |
| 1820 | |
| 1821 | if (SrcPtr.isZero() || DestPtr.isZero()) { |
| 1822 | Pointer DiagPtr = (SrcPtr.isZero() ? SrcPtr : DestPtr); |
| 1823 | S.FFDiag(SI: S.Current->getSource(PC: OpPC), DiagId: diag::note_constexpr_memcpy_null) |
| 1824 | << /*IsMove=*/Move << /*IsWchar=*/WChar << !SrcPtr.isZero() |
| 1825 | << DiagPtr.toDiagnosticString(Ctx: ASTCtx); |
| 1826 | return false; |
| 1827 | } |
| 1828 | |
| 1829 | // Diagnose integral src/dest pointers specially. |
| 1830 | if (SrcPtr.isIntegralPointer() || DestPtr.isIntegralPointer()) { |
| 1831 | std::string DiagVal = "(void *)" ; |
| 1832 | DiagVal += SrcPtr.isIntegralPointer() |
| 1833 | ? std::to_string(val: SrcPtr.getIntegerRepresentation()) |
| 1834 | : std::to_string(val: DestPtr.getIntegerRepresentation()); |
| 1835 | S.FFDiag(SI: S.Current->getSource(PC: OpPC), DiagId: diag::note_constexpr_memcpy_null) |
| 1836 | << Move << WChar << DestPtr.isIntegralPointer() << DiagVal; |
| 1837 | return false; |
| 1838 | } |
| 1839 | |
| 1840 | if (!isReadable(P: DestPtr) || !isReadable(P: SrcPtr)) |
| 1841 | return false; |
| 1842 | |
| 1843 | if (DestPtr.getType()->isIncompleteType()) { |
| 1844 | S.FFDiag(SI: S.Current->getSource(PC: OpPC), |
| 1845 | DiagId: diag::note_constexpr_memcpy_incomplete_type) |
| 1846 | << Move << DestPtr.getType(); |
| 1847 | return false; |
| 1848 | } |
| 1849 | if (SrcPtr.getType()->isIncompleteType()) { |
| 1850 | S.FFDiag(SI: S.Current->getSource(PC: OpPC), |
| 1851 | DiagId: diag::note_constexpr_memcpy_incomplete_type) |
| 1852 | << Move << SrcPtr.getType(); |
| 1853 | return false; |
| 1854 | } |
| 1855 | |
| 1856 | QualType DestElemType = getElemType(P: DestPtr); |
| 1857 | if (DestElemType->isIncompleteType()) { |
| 1858 | S.FFDiag(SI: S.Current->getSource(PC: OpPC), |
| 1859 | DiagId: diag::note_constexpr_memcpy_incomplete_type) |
| 1860 | << Move << DestElemType; |
| 1861 | return false; |
| 1862 | } |
| 1863 | |
| 1864 | size_t RemainingDestElems; |
| 1865 | if (DestPtr.getFieldDesc()->isArray()) { |
| 1866 | RemainingDestElems = DestPtr.isUnknownSizeArray() |
| 1867 | ? 0 |
| 1868 | : (DestPtr.getNumElems() - DestPtr.getIndex()); |
| 1869 | } else { |
| 1870 | RemainingDestElems = 1; |
| 1871 | } |
| 1872 | unsigned DestElemSize = ASTCtx.getTypeSizeInChars(T: DestElemType).getQuantity(); |
| 1873 | |
| 1874 | if (WChar) { |
| 1875 | uint64_t WCharSize = |
| 1876 | ASTCtx.getTypeSizeInChars(T: ASTCtx.getWCharType()).getQuantity(); |
| 1877 | Size *= WCharSize; |
| 1878 | } |
| 1879 | |
| 1880 | if (Size % DestElemSize != 0) { |
| 1881 | S.FFDiag(SI: S.Current->getSource(PC: OpPC), |
| 1882 | DiagId: diag::note_constexpr_memcpy_unsupported) |
| 1883 | << Move << WChar << 0 << DestElemType << Size << DestElemSize; |
| 1884 | return false; |
| 1885 | } |
| 1886 | |
| 1887 | QualType SrcElemType = getElemType(P: SrcPtr); |
| 1888 | size_t RemainingSrcElems; |
| 1889 | if (SrcPtr.getFieldDesc()->isArray()) { |
| 1890 | RemainingSrcElems = SrcPtr.isUnknownSizeArray() |
| 1891 | ? 0 |
| 1892 | : (SrcPtr.getNumElems() - SrcPtr.getIndex()); |
| 1893 | } else { |
| 1894 | RemainingSrcElems = 1; |
| 1895 | } |
| 1896 | unsigned SrcElemSize = ASTCtx.getTypeSizeInChars(T: SrcElemType).getQuantity(); |
| 1897 | |
| 1898 | if (!ASTCtx.hasSameUnqualifiedType(T1: DestElemType, T2: SrcElemType)) { |
| 1899 | S.FFDiag(SI: S.Current->getSource(PC: OpPC), DiagId: diag::note_constexpr_memcpy_type_pun) |
| 1900 | << Move << SrcElemType << DestElemType; |
| 1901 | return false; |
| 1902 | } |
| 1903 | |
| 1904 | if (!DestElemType.isTriviallyCopyableType(Context: ASTCtx)) { |
| 1905 | S.FFDiag(SI: S.Current->getSource(PC: OpPC), DiagId: diag::note_constexpr_memcpy_nontrivial) |
| 1906 | << Move << DestElemType; |
| 1907 | return false; |
| 1908 | } |
| 1909 | |
| 1910 | // Check if we have enough elements to read from and write to. |
| 1911 | size_t RemainingDestBytes = RemainingDestElems * DestElemSize; |
| 1912 | size_t RemainingSrcBytes = RemainingSrcElems * SrcElemSize; |
| 1913 | if (Size > RemainingDestBytes || Size > RemainingSrcBytes) { |
| 1914 | APInt N = APInt(64, Size / DestElemSize); |
| 1915 | S.FFDiag(SI: S.Current->getSource(PC: OpPC), |
| 1916 | DiagId: diag::note_constexpr_memcpy_unsupported) |
| 1917 | << Move << WChar << (Size > RemainingSrcBytes ? 1 : 2) << DestElemType |
| 1918 | << toString(I: N, Radix: 10, /*Signed=*/false); |
| 1919 | return false; |
| 1920 | } |
| 1921 | |
| 1922 | // Check for overlapping memory regions. |
| 1923 | if (!Move && Pointer::pointToSameBlock(A: SrcPtr, B: DestPtr)) { |
| 1924 | // Remove base casts. |
| 1925 | Pointer SrcP = SrcPtr.stripBaseCasts(); |
| 1926 | Pointer DestP = DestPtr.stripBaseCasts(); |
| 1927 | |
| 1928 | unsigned SrcIndex = SrcP.expand().getIndex() * SrcP.elemSize(); |
| 1929 | unsigned DstIndex = DestP.expand().getIndex() * DestP.elemSize(); |
| 1930 | |
| 1931 | if ((SrcIndex <= DstIndex && (SrcIndex + Size) > DstIndex) || |
| 1932 | (DstIndex <= SrcIndex && (DstIndex + Size) > SrcIndex)) { |
| 1933 | S.FFDiag(SI: S.Current->getSource(PC: OpPC), DiagId: diag::note_constexpr_memcpy_overlap) |
| 1934 | << /*IsWChar=*/false; |
| 1935 | return false; |
| 1936 | } |
| 1937 | } |
| 1938 | |
| 1939 | assert(Size % DestElemSize == 0); |
| 1940 | if (!DoMemcpy(S, OpPC, SrcPtr, DestPtr, Size: Bytes(Size).toBits())) |
| 1941 | return false; |
| 1942 | |
| 1943 | S.Stk.push<Pointer>(Args&: DestPtr); |
| 1944 | return true; |
| 1945 | } |
| 1946 | |
| 1947 | /// Determine if T is a character type for which we guarantee that |
| 1948 | /// sizeof(T) == 1. |
| 1949 | static bool isOneByteCharacterType(QualType T) { |
| 1950 | return T->isCharType() || T->isChar8Type(); |
| 1951 | } |
| 1952 | |
| 1953 | static bool interp__builtin_memcmp(InterpState &S, CodePtr OpPC, |
| 1954 | const InterpFrame *Frame, |
| 1955 | const CallExpr *Call, unsigned ID) { |
| 1956 | assert(Call->getNumArgs() == 3); |
| 1957 | uint64_t Size = popToUInt64(S, E: Call->getArg(Arg: 2)); |
| 1958 | const Pointer &PtrB = S.Stk.pop<Pointer>(); |
| 1959 | const Pointer &PtrA = S.Stk.pop<Pointer>(); |
| 1960 | |
| 1961 | if (ID == Builtin::BImemcmp || ID == Builtin::BIbcmp || |
| 1962 | ID == Builtin::BIwmemcmp) |
| 1963 | diagnoseNonConstexprBuiltin(S, OpPC, ID); |
| 1964 | |
| 1965 | if (Size == 0) { |
| 1966 | pushInteger(S, Val: 0, QT: Call->getType()); |
| 1967 | return true; |
| 1968 | } |
| 1969 | |
| 1970 | if (!PtrA.isBlockPointer() || !PtrB.isBlockPointer()) |
| 1971 | return false; |
| 1972 | |
| 1973 | bool IsWide = |
| 1974 | (ID == Builtin::BIwmemcmp || ID == Builtin::BI__builtin_wmemcmp); |
| 1975 | |
| 1976 | const ASTContext &ASTCtx = S.getASTContext(); |
| 1977 | QualType ElemTypeA = getElemType(P: PtrA); |
| 1978 | QualType ElemTypeB = getElemType(P: PtrB); |
| 1979 | // FIXME: This is an arbitrary limitation the current constant interpreter |
| 1980 | // had. We could remove this. |
| 1981 | if (!IsWide && (!isOneByteCharacterType(T: ElemTypeA) || |
| 1982 | !isOneByteCharacterType(T: ElemTypeB))) { |
| 1983 | S.FFDiag(SI: S.Current->getSource(PC: OpPC), |
| 1984 | DiagId: diag::note_constexpr_memcmp_unsupported) |
| 1985 | << ASTCtx.BuiltinInfo.getQuotedName(ID) << PtrA.getType() |
| 1986 | << PtrB.getType(); |
| 1987 | return false; |
| 1988 | } |
| 1989 | |
| 1990 | if (PtrA.isDummy() || PtrB.isDummy()) |
| 1991 | return false; |
| 1992 | |
| 1993 | if (!CheckRange(S, OpPC, Ptr: PtrA, AK: AK_Read) || |
| 1994 | !CheckRange(S, OpPC, Ptr: PtrB, AK: AK_Read)) |
| 1995 | return false; |
| 1996 | |
| 1997 | // Now, read both pointers to a buffer and compare those. |
| 1998 | BitcastBuffer BufferA( |
| 1999 | Bits(ASTCtx.getTypeSize(T: ElemTypeA) * PtrA.getNumElems())); |
| 2000 | readPointerToBuffer(Ctx: S.getContext(), FromPtr: PtrA, Buffer&: BufferA, ReturnOnUninit: false); |
| 2001 | // FIXME: The swapping here is UNDOING something we do when reading the |
| 2002 | // data into the buffer. |
| 2003 | if (ASTCtx.getTargetInfo().isBigEndian()) |
| 2004 | swapBytes(M: BufferA.Data.get(), N: BufferA.byteSize().getQuantity()); |
| 2005 | |
| 2006 | BitcastBuffer BufferB( |
| 2007 | Bits(ASTCtx.getTypeSize(T: ElemTypeB) * PtrB.getNumElems())); |
| 2008 | readPointerToBuffer(Ctx: S.getContext(), FromPtr: PtrB, Buffer&: BufferB, ReturnOnUninit: false); |
| 2009 | // FIXME: The swapping here is UNDOING something we do when reading the |
| 2010 | // data into the buffer. |
| 2011 | if (ASTCtx.getTargetInfo().isBigEndian()) |
| 2012 | swapBytes(M: BufferB.Data.get(), N: BufferB.byteSize().getQuantity()); |
| 2013 | |
| 2014 | size_t MinBufferSize = std::min(a: BufferA.byteSize().getQuantity(), |
| 2015 | b: BufferB.byteSize().getQuantity()); |
| 2016 | |
| 2017 | unsigned ElemSize = 1; |
| 2018 | if (IsWide) |
| 2019 | ElemSize = ASTCtx.getTypeSizeInChars(T: ASTCtx.getWCharType()).getQuantity(); |
| 2020 | // The Size given for the wide variants is in wide-char units. Convert it |
| 2021 | // to bytes. |
| 2022 | size_t ByteSize = Size * ElemSize; |
| 2023 | size_t CmpSize = std::min(a: MinBufferSize, b: ByteSize); |
| 2024 | |
| 2025 | for (size_t I = 0; I != CmpSize; I += ElemSize) { |
| 2026 | if (IsWide) { |
| 2027 | INT_TYPE_SWITCH(*S.getContext().classify(ASTCtx.getWCharType()), { |
| 2028 | T A = *reinterpret_cast<T *>(BufferA.atByte(I)); |
| 2029 | T B = *reinterpret_cast<T *>(BufferB.atByte(I)); |
| 2030 | if (A < B) { |
| 2031 | pushInteger(S, -1, Call->getType()); |
| 2032 | return true; |
| 2033 | } |
| 2034 | if (A > B) { |
| 2035 | pushInteger(S, 1, Call->getType()); |
| 2036 | return true; |
| 2037 | } |
| 2038 | }); |
| 2039 | } else { |
| 2040 | std::byte A = BufferA.deref<std::byte>(Offset: Bytes(I)); |
| 2041 | std::byte B = BufferB.deref<std::byte>(Offset: Bytes(I)); |
| 2042 | |
| 2043 | if (A < B) { |
| 2044 | pushInteger(S, Val: -1, QT: Call->getType()); |
| 2045 | return true; |
| 2046 | } |
| 2047 | if (A > B) { |
| 2048 | pushInteger(S, Val: 1, QT: Call->getType()); |
| 2049 | return true; |
| 2050 | } |
| 2051 | } |
| 2052 | } |
| 2053 | |
| 2054 | // We compared CmpSize bytes above. If the limiting factor was the Size |
| 2055 | // passed, we're done and the result is equality (0). |
| 2056 | if (ByteSize <= CmpSize) { |
| 2057 | pushInteger(S, Val: 0, QT: Call->getType()); |
| 2058 | return true; |
| 2059 | } |
| 2060 | |
| 2061 | // However, if we read all the available bytes but were instructed to read |
| 2062 | // even more, diagnose this as a "read of dereferenced one-past-the-end |
| 2063 | // pointer". This is what would happen if we called CheckLoad() on every array |
| 2064 | // element. |
| 2065 | S.FFDiag(SI: S.Current->getSource(PC: OpPC), DiagId: diag::note_constexpr_access_past_end) |
| 2066 | << AK_Read << S.Current->getRange(PC: OpPC); |
| 2067 | return false; |
| 2068 | } |
| 2069 | |
| 2070 | // __builtin_memchr(ptr, int, int) |
| 2071 | // __builtin_strchr(ptr, int) |
| 2072 | static bool interp__builtin_memchr(InterpState &S, CodePtr OpPC, |
| 2073 | const CallExpr *Call, unsigned ID) { |
| 2074 | if (ID == Builtin::BImemchr || ID == Builtin::BIwcschr || |
| 2075 | ID == Builtin::BIstrchr || ID == Builtin::BIwmemchr) |
| 2076 | diagnoseNonConstexprBuiltin(S, OpPC, ID); |
| 2077 | |
| 2078 | std::optional<APSInt> MaxLength; |
| 2079 | if (Call->getNumArgs() == 3) |
| 2080 | MaxLength = popToAPSInt(S, E: Call->getArg(Arg: 2)); |
| 2081 | |
| 2082 | APSInt Desired = popToAPSInt(S, E: Call->getArg(Arg: 1)); |
| 2083 | const Pointer &Ptr = S.Stk.pop<Pointer>(); |
| 2084 | |
| 2085 | if (MaxLength && MaxLength->isZero()) { |
| 2086 | S.Stk.push<Pointer>(); |
| 2087 | return true; |
| 2088 | } |
| 2089 | |
| 2090 | if (Ptr.isDummy()) { |
| 2091 | if (Ptr.getType()->isIncompleteType()) |
| 2092 | S.FFDiag(SI: S.Current->getSource(PC: OpPC), |
| 2093 | DiagId: diag::note_constexpr_ltor_incomplete_type) |
| 2094 | << Ptr.getType(); |
| 2095 | return false; |
| 2096 | } |
| 2097 | |
| 2098 | // Null is only okay if the given size is 0. |
| 2099 | if (Ptr.isZero()) { |
| 2100 | S.FFDiag(SI: S.Current->getSource(PC: OpPC), DiagId: diag::note_constexpr_access_null) |
| 2101 | << AK_Read; |
| 2102 | return false; |
| 2103 | } |
| 2104 | |
| 2105 | if (!Ptr.isBlockPointer()) |
| 2106 | return false; |
| 2107 | |
| 2108 | QualType ElemTy = Ptr.getFieldDesc()->isArray() |
| 2109 | ? Ptr.getFieldDesc()->getElemQualType() |
| 2110 | : Ptr.getFieldDesc()->getType(); |
| 2111 | bool IsRawByte = ID == Builtin::BImemchr || ID == Builtin::BI__builtin_memchr; |
| 2112 | |
| 2113 | // Give up on byte-oriented matching against multibyte elements. |
| 2114 | if (IsRawByte && !isOneByteCharacterType(T: ElemTy)) { |
| 2115 | S.FFDiag(SI: S.Current->getSource(PC: OpPC), |
| 2116 | DiagId: diag::note_constexpr_memchr_unsupported) |
| 2117 | << S.getASTContext().BuiltinInfo.getQuotedName(ID) << ElemTy; |
| 2118 | return false; |
| 2119 | } |
| 2120 | |
| 2121 | if (!isReadable(P: Ptr)) |
| 2122 | return false; |
| 2123 | |
| 2124 | if (ID == Builtin::BIstrchr || ID == Builtin::BI__builtin_strchr) { |
| 2125 | int64_t DesiredTrunc; |
| 2126 | if (S.getASTContext().CharTy->isSignedIntegerType()) |
| 2127 | DesiredTrunc = |
| 2128 | Desired.trunc(width: S.getASTContext().getCharWidth()).getSExtValue(); |
| 2129 | else |
| 2130 | DesiredTrunc = |
| 2131 | Desired.trunc(width: S.getASTContext().getCharWidth()).getZExtValue(); |
| 2132 | // strchr compares directly to the passed integer, and therefore |
| 2133 | // always fails if given an int that is not a char. |
| 2134 | if (Desired != DesiredTrunc) { |
| 2135 | S.Stk.push<Pointer>(); |
| 2136 | return true; |
| 2137 | } |
| 2138 | } |
| 2139 | |
| 2140 | uint64_t DesiredVal; |
| 2141 | if (ID == Builtin::BIwmemchr || ID == Builtin::BI__builtin_wmemchr || |
| 2142 | ID == Builtin::BIwcschr || ID == Builtin::BI__builtin_wcschr) { |
| 2143 | // wcschr and wmemchr are given a wchar_t to look for. Just use it. |
| 2144 | DesiredVal = Desired.getZExtValue(); |
| 2145 | } else { |
| 2146 | DesiredVal = Desired.trunc(width: S.getASTContext().getCharWidth()).getZExtValue(); |
| 2147 | } |
| 2148 | |
| 2149 | bool StopAtZero = |
| 2150 | (ID == Builtin::BIstrchr || ID == Builtin::BI__builtin_strchr || |
| 2151 | ID == Builtin::BIwcschr || ID == Builtin::BI__builtin_wcschr); |
| 2152 | |
| 2153 | PrimType ElemT = |
| 2154 | IsRawByte ? PT_Sint8 : *S.getContext().classify(T: getElemType(P: Ptr)); |
| 2155 | |
| 2156 | size_t Index = Ptr.getIndex(); |
| 2157 | size_t Step = 0; |
| 2158 | for (;;) { |
| 2159 | const Pointer &ElemPtr = |
| 2160 | (Index + Step) > 0 ? Ptr.atIndex(Idx: Index + Step) : Ptr; |
| 2161 | |
| 2162 | if (!CheckLoad(S, OpPC, Ptr: ElemPtr)) |
| 2163 | return false; |
| 2164 | |
| 2165 | uint64_t V; |
| 2166 | INT_TYPE_SWITCH_NO_BOOL( |
| 2167 | ElemT, { V = static_cast<uint64_t>(ElemPtr.deref<T>().toUnsigned()); }); |
| 2168 | |
| 2169 | if (V == DesiredVal) { |
| 2170 | S.Stk.push<Pointer>(Args: ElemPtr); |
| 2171 | return true; |
| 2172 | } |
| 2173 | |
| 2174 | if (StopAtZero && V == 0) |
| 2175 | break; |
| 2176 | |
| 2177 | ++Step; |
| 2178 | if (MaxLength && Step == MaxLength->getZExtValue()) |
| 2179 | break; |
| 2180 | } |
| 2181 | |
| 2182 | S.Stk.push<Pointer>(); |
| 2183 | return true; |
| 2184 | } |
| 2185 | |
| 2186 | static std::optional<unsigned> computeFullDescSize(const ASTContext &ASTCtx, |
| 2187 | const Descriptor *Desc) { |
| 2188 | if (Desc->isPrimitive()) |
| 2189 | return ASTCtx.getTypeSizeInChars(T: Desc->getType()).getQuantity(); |
| 2190 | if (Desc->isArray()) |
| 2191 | return ASTCtx.getTypeSizeInChars(T: Desc->getElemQualType()).getQuantity() * |
| 2192 | Desc->getNumElems(); |
| 2193 | if (Desc->isRecord()) { |
| 2194 | // Can't use Descriptor::getType() as that may return a pointer type. Look |
| 2195 | // at the decl directly. |
| 2196 | return ASTCtx |
| 2197 | .getTypeSizeInChars( |
| 2198 | T: ASTCtx.getCanonicalTagType(TD: Desc->ElemRecord->getDecl())) |
| 2199 | .getQuantity(); |
| 2200 | } |
| 2201 | |
| 2202 | return std::nullopt; |
| 2203 | } |
| 2204 | |
| 2205 | /// Compute the byte offset of \p Ptr in the full declaration. |
| 2206 | static unsigned computePointerOffset(const ASTContext &ASTCtx, |
| 2207 | const Pointer &Ptr) { |
| 2208 | unsigned Result = 0; |
| 2209 | |
| 2210 | Pointer P = Ptr; |
| 2211 | while (P.isField() || P.isArrayElement()) { |
| 2212 | P = P.expand(); |
| 2213 | const Descriptor *D = P.getFieldDesc(); |
| 2214 | |
| 2215 | if (P.isArrayElement()) { |
| 2216 | unsigned ElemSize = |
| 2217 | ASTCtx.getTypeSizeInChars(T: D->getElemQualType()).getQuantity(); |
| 2218 | if (P.isOnePastEnd()) |
| 2219 | Result += ElemSize * P.getNumElems(); |
| 2220 | else |
| 2221 | Result += ElemSize * P.getIndex(); |
| 2222 | P = P.expand().getArray(); |
| 2223 | } else if (P.isBaseClass()) { |
| 2224 | const auto *RD = cast<CXXRecordDecl>(Val: D->asDecl()); |
| 2225 | bool IsVirtual = Ptr.isVirtualBaseClass(); |
| 2226 | P = P.getBase(); |
| 2227 | const Record *BaseRecord = P.getRecord(); |
| 2228 | |
| 2229 | const ASTRecordLayout &Layout = |
| 2230 | ASTCtx.getASTRecordLayout(D: cast<CXXRecordDecl>(Val: BaseRecord->getDecl())); |
| 2231 | if (IsVirtual) |
| 2232 | Result += Layout.getVBaseClassOffset(VBase: RD).getQuantity(); |
| 2233 | else |
| 2234 | Result += Layout.getBaseClassOffset(Base: RD).getQuantity(); |
| 2235 | } else if (P.isField()) { |
| 2236 | const FieldDecl *FD = P.getField(); |
| 2237 | const ASTRecordLayout &Layout = |
| 2238 | ASTCtx.getASTRecordLayout(D: FD->getParent()); |
| 2239 | unsigned FieldIndex = FD->getFieldIndex(); |
| 2240 | uint64_t FieldOffset = |
| 2241 | ASTCtx.toCharUnitsFromBits(BitSize: Layout.getFieldOffset(FieldNo: FieldIndex)) |
| 2242 | .getQuantity(); |
| 2243 | Result += FieldOffset; |
| 2244 | P = P.getBase(); |
| 2245 | } else |
| 2246 | llvm_unreachable("Unhandled descriptor type" ); |
| 2247 | } |
| 2248 | |
| 2249 | return Result; |
| 2250 | } |
| 2251 | |
| 2252 | /// Does Ptr point to the last subobject? |
| 2253 | static bool pointsToLastObject(const Pointer &Ptr) { |
| 2254 | Pointer P = Ptr; |
| 2255 | while (!P.isRoot()) { |
| 2256 | |
| 2257 | if (P.isArrayElement()) { |
| 2258 | P = P.expand().getArray(); |
| 2259 | continue; |
| 2260 | } |
| 2261 | if (P.isBaseClass()) { |
| 2262 | if (P.getRecord()->getNumFields() > 0) |
| 2263 | return false; |
| 2264 | P = P.getBase(); |
| 2265 | continue; |
| 2266 | } |
| 2267 | |
| 2268 | Pointer Base = P.getBase(); |
| 2269 | if (const Record *R = Base.getRecord()) { |
| 2270 | assert(P.getField()); |
| 2271 | if (P.getField()->getFieldIndex() != R->getNumFields() - 1) |
| 2272 | return false; |
| 2273 | } |
| 2274 | P = Base; |
| 2275 | } |
| 2276 | |
| 2277 | return true; |
| 2278 | } |
| 2279 | |
| 2280 | /// Does Ptr point to the last object AND to a flexible array member? |
| 2281 | static bool isUserWritingOffTheEnd(const ASTContext &Ctx, const Pointer &Ptr) { |
| 2282 | auto isFlexibleArrayMember = [&](const Descriptor *FieldDesc) { |
| 2283 | using FAMKind = LangOptions::StrictFlexArraysLevelKind; |
| 2284 | FAMKind StrictFlexArraysLevel = |
| 2285 | Ctx.getLangOpts().getStrictFlexArraysLevel(); |
| 2286 | |
| 2287 | if (StrictFlexArraysLevel == FAMKind::Default) |
| 2288 | return true; |
| 2289 | |
| 2290 | unsigned NumElems = FieldDesc->getNumElems(); |
| 2291 | if (NumElems == 0 && StrictFlexArraysLevel != FAMKind::IncompleteOnly) |
| 2292 | return true; |
| 2293 | |
| 2294 | if (NumElems == 1 && StrictFlexArraysLevel == FAMKind::OneZeroOrIncomplete) |
| 2295 | return true; |
| 2296 | return false; |
| 2297 | }; |
| 2298 | |
| 2299 | const Descriptor *FieldDesc = Ptr.getFieldDesc(); |
| 2300 | if (!FieldDesc->isArray()) |
| 2301 | return false; |
| 2302 | |
| 2303 | return Ptr.isDummy() && pointsToLastObject(Ptr) && |
| 2304 | isFlexibleArrayMember(FieldDesc); |
| 2305 | } |
| 2306 | |
| 2307 | UnsignedOrNone evaluateBuiltinObjectSize(const ASTContext &ASTCtx, |
| 2308 | unsigned Kind, Pointer &Ptr) { |
| 2309 | if (Ptr.isZero() || !Ptr.isBlockPointer()) |
| 2310 | return std::nullopt; |
| 2311 | |
| 2312 | if (Ptr.isDummy() && Ptr.getType()->isPointerType()) |
| 2313 | return std::nullopt; |
| 2314 | |
| 2315 | // According to the GCC documentation, we want the size of the subobject |
| 2316 | // denoted by the pointer. But that's not quite right -- what we actually |
| 2317 | // want is the size of the immediately-enclosing array, if there is one. |
| 2318 | if (Ptr.isArrayElement()) |
| 2319 | Ptr = Ptr.expand(); |
| 2320 | |
| 2321 | bool DetermineForCompleteObject = Ptr.getFieldDesc() == Ptr.getDeclDesc(); |
| 2322 | const Descriptor *DeclDesc = Ptr.getDeclDesc(); |
| 2323 | assert(DeclDesc); |
| 2324 | |
| 2325 | bool UseFieldDesc = (Kind & 1u); |
| 2326 | bool ReportMinimum = (Kind & 2u); |
| 2327 | if (!UseFieldDesc || DetermineForCompleteObject) { |
| 2328 | // Lower bound, so we can't fall back to this. |
| 2329 | if (ReportMinimum && !DetermineForCompleteObject) |
| 2330 | return std::nullopt; |
| 2331 | |
| 2332 | // Can't read beyond the pointer decl desc. |
| 2333 | if (!UseFieldDesc && !ReportMinimum && DeclDesc->getType()->isPointerType()) |
| 2334 | return std::nullopt; |
| 2335 | } else { |
| 2336 | if (isUserWritingOffTheEnd(Ctx: ASTCtx, Ptr)) { |
| 2337 | // If we cannot determine the size of the initial allocation, then we |
| 2338 | // can't given an accurate upper-bound. However, we are still able to give |
| 2339 | // conservative lower-bounds for Type=3. |
| 2340 | if (Kind == 1) |
| 2341 | return std::nullopt; |
| 2342 | } |
| 2343 | } |
| 2344 | |
| 2345 | // The "closest surrounding subobject" is NOT a base class, |
| 2346 | // so strip the base class casts. |
| 2347 | if (UseFieldDesc && Ptr.isBaseClass()) |
| 2348 | Ptr = Ptr.stripBaseCasts(); |
| 2349 | |
| 2350 | const Descriptor *Desc = UseFieldDesc ? Ptr.getFieldDesc() : DeclDesc; |
| 2351 | assert(Desc); |
| 2352 | |
| 2353 | std::optional<unsigned> FullSize = computeFullDescSize(ASTCtx, Desc); |
| 2354 | if (!FullSize) |
| 2355 | return std::nullopt; |
| 2356 | |
| 2357 | unsigned ByteOffset; |
| 2358 | if (UseFieldDesc) { |
| 2359 | if (Ptr.isBaseClass()) { |
| 2360 | assert(computePointerOffset(ASTCtx, Ptr.getBase()) <= |
| 2361 | computePointerOffset(ASTCtx, Ptr)); |
| 2362 | ByteOffset = computePointerOffset(ASTCtx, Ptr: Ptr.getBase()) - |
| 2363 | computePointerOffset(ASTCtx, Ptr); |
| 2364 | } else { |
| 2365 | if (Ptr.inArray()) |
| 2366 | ByteOffset = |
| 2367 | computePointerOffset(ASTCtx, Ptr) - |
| 2368 | computePointerOffset(ASTCtx, Ptr: Ptr.expand().atIndex(Idx: 0).narrow()); |
| 2369 | else |
| 2370 | ByteOffset = 0; |
| 2371 | } |
| 2372 | } else |
| 2373 | ByteOffset = computePointerOffset(ASTCtx, Ptr); |
| 2374 | |
| 2375 | assert(ByteOffset <= *FullSize); |
| 2376 | return *FullSize - ByteOffset; |
| 2377 | } |
| 2378 | |
| 2379 | static bool interp__builtin_object_size(InterpState &S, CodePtr OpPC, |
| 2380 | const InterpFrame *Frame, |
| 2381 | const CallExpr *Call) { |
| 2382 | const ASTContext &ASTCtx = S.getASTContext(); |
| 2383 | // From the GCC docs: |
| 2384 | // Kind is an integer constant from 0 to 3. If the least significant bit is |
| 2385 | // clear, objects are whole variables. If it is set, a closest surrounding |
| 2386 | // subobject is considered the object a pointer points to. The second bit |
| 2387 | // determines if maximum or minimum of remaining bytes is computed. |
| 2388 | unsigned Kind = popToUInt64(S, E: Call->getArg(Arg: 1)); |
| 2389 | assert(Kind <= 3 && "unexpected kind" ); |
| 2390 | Pointer Ptr = S.Stk.pop<Pointer>(); |
| 2391 | |
| 2392 | if (Call->getArg(Arg: 0)->HasSideEffects(Ctx: ASTCtx)) { |
| 2393 | // "If there are any side effects in them, it returns (size_t) -1 |
| 2394 | // for type 0 or 1 and (size_t) 0 for type 2 or 3." |
| 2395 | pushInteger(S, Val: Kind <= 1 ? -1 : 0, QT: Call->getType()); |
| 2396 | return true; |
| 2397 | } |
| 2398 | |
| 2399 | if (auto Result = evaluateBuiltinObjectSize(ASTCtx, Kind, Ptr)) { |
| 2400 | pushInteger(S, Val: *Result, QT: Call->getType()); |
| 2401 | return true; |
| 2402 | } |
| 2403 | return false; |
| 2404 | } |
| 2405 | |
| 2406 | static bool interp__builtin_is_within_lifetime(InterpState &S, CodePtr OpPC, |
| 2407 | const CallExpr *Call) { |
| 2408 | |
| 2409 | if (!S.inConstantContext()) |
| 2410 | return false; |
| 2411 | |
| 2412 | const Pointer &Ptr = S.Stk.pop<Pointer>(); |
| 2413 | |
| 2414 | auto Error = [&](int Diag) { |
| 2415 | bool CalledFromStd = false; |
| 2416 | const auto *Callee = S.Current->getCallee(); |
| 2417 | if (Callee && Callee->isInStdNamespace()) { |
| 2418 | const IdentifierInfo *Identifier = Callee->getIdentifier(); |
| 2419 | CalledFromStd = Identifier && Identifier->isStr(Str: "is_within_lifetime" ); |
| 2420 | } |
| 2421 | S.CCEDiag(SI: CalledFromStd |
| 2422 | ? S.Current->Caller->getSource(PC: S.Current->getRetPC()) |
| 2423 | : S.Current->getSource(PC: OpPC), |
| 2424 | DiagId: diag::err_invalid_is_within_lifetime) |
| 2425 | << (CalledFromStd ? "std::is_within_lifetime" |
| 2426 | : "__builtin_is_within_lifetime" ) |
| 2427 | << Diag; |
| 2428 | return false; |
| 2429 | }; |
| 2430 | |
| 2431 | if (Ptr.isZero()) |
| 2432 | return Error(0); |
| 2433 | if (Ptr.isOnePastEnd()) |
| 2434 | return Error(1); |
| 2435 | |
| 2436 | bool Result = Ptr.getLifetime() != Lifetime::Ended; |
| 2437 | if (!Ptr.isActive()) { |
| 2438 | Result = false; |
| 2439 | } else { |
| 2440 | if (!CheckLive(S, OpPC, Ptr, AK: AK_Read)) |
| 2441 | return false; |
| 2442 | if (!CheckMutable(S, OpPC, Ptr)) |
| 2443 | return false; |
| 2444 | if (!CheckDummy(S, OpPC, B: Ptr.block(), AK: AK_Read)) |
| 2445 | return false; |
| 2446 | } |
| 2447 | |
| 2448 | // Check if we're currently running an initializer. |
| 2449 | if (llvm::is_contained(Range&: S.InitializingBlocks, Element: Ptr.block())) |
| 2450 | return Error(2); |
| 2451 | if (S.EvaluatingDecl && Ptr.getDeclDesc()->asVarDecl() == S.EvaluatingDecl) |
| 2452 | return Error(2); |
| 2453 | |
| 2454 | pushInteger(S, Val: Result, QT: Call->getType()); |
| 2455 | return true; |
| 2456 | } |
| 2457 | |
| 2458 | static bool interp__builtin_elementwise_int_unaryop( |
| 2459 | InterpState &S, CodePtr OpPC, const CallExpr *Call, |
| 2460 | llvm::function_ref<APInt(const APSInt &)> Fn) { |
| 2461 | assert(Call->getNumArgs() == 1); |
| 2462 | |
| 2463 | // Single integer case. |
| 2464 | if (!Call->getArg(Arg: 0)->getType()->isVectorType()) { |
| 2465 | assert(Call->getType()->isIntegerType()); |
| 2466 | APSInt Src = popToAPSInt(S, E: Call->getArg(Arg: 0)); |
| 2467 | APInt Result = Fn(Src); |
| 2468 | pushInteger(S, Val: APSInt(std::move(Result), !Src.isSigned()), QT: Call->getType()); |
| 2469 | return true; |
| 2470 | } |
| 2471 | |
| 2472 | // Vector case. |
| 2473 | const Pointer &Arg = S.Stk.pop<Pointer>(); |
| 2474 | assert(Arg.getFieldDesc()->isPrimitiveArray()); |
| 2475 | const Pointer &Dst = S.Stk.peek<Pointer>(); |
| 2476 | assert(Dst.getFieldDesc()->isPrimitiveArray()); |
| 2477 | assert(Arg.getFieldDesc()->getNumElems() == |
| 2478 | Dst.getFieldDesc()->getNumElems()); |
| 2479 | |
| 2480 | QualType ElemType = Arg.getFieldDesc()->getElemQualType(); |
| 2481 | PrimType ElemT = *S.getContext().classify(T: ElemType); |
| 2482 | unsigned NumElems = Arg.getNumElems(); |
| 2483 | bool DestUnsigned = Call->getType()->isUnsignedIntegerOrEnumerationType(); |
| 2484 | |
| 2485 | for (unsigned I = 0; I != NumElems; ++I) { |
| 2486 | INT_TYPE_SWITCH_NO_BOOL(ElemT, { |
| 2487 | APSInt Src = Arg.elem<T>(I).toAPSInt(); |
| 2488 | APInt Result = Fn(Src); |
| 2489 | Dst.elem<T>(I) = static_cast<T>(APSInt(std::move(Result), DestUnsigned)); |
| 2490 | }); |
| 2491 | } |
| 2492 | Dst.initializeAllElements(); |
| 2493 | |
| 2494 | return true; |
| 2495 | } |
| 2496 | |
| 2497 | static bool interp__builtin_elementwise_fp_binop( |
| 2498 | InterpState &S, CodePtr OpPC, const CallExpr *Call, |
| 2499 | llvm::function_ref<std::optional<APFloat>( |
| 2500 | const APFloat &, const APFloat &, std::optional<APSInt> RoundingMode)> |
| 2501 | Fn) { |
| 2502 | assert((Call->getNumArgs() == 2) || (Call->getNumArgs() == 3)); |
| 2503 | const auto *VT = Call->getArg(Arg: 0)->getType()->castAs<VectorType>(); |
| 2504 | assert(VT->getElementType()->isFloatingType()); |
| 2505 | unsigned NumElems = VT->getNumElements(); |
| 2506 | |
| 2507 | // Vector case. |
| 2508 | assert(Call->getArg(0)->getType()->isVectorType() && |
| 2509 | Call->getArg(1)->getType()->isVectorType()); |
| 2510 | assert(VT->getElementType() == |
| 2511 | Call->getArg(1)->getType()->castAs<VectorType>()->getElementType()); |
| 2512 | assert(VT->getNumElements() == |
| 2513 | Call->getArg(1)->getType()->castAs<VectorType>()->getNumElements()); |
| 2514 | |
| 2515 | std::optional<APSInt> RoundingMode = std::nullopt; |
| 2516 | if (Call->getNumArgs() == 3) |
| 2517 | RoundingMode = popToAPSInt(S, E: Call->getArg(Arg: 2)); |
| 2518 | |
| 2519 | const Pointer &BPtr = S.Stk.pop<Pointer>(); |
| 2520 | const Pointer &APtr = S.Stk.pop<Pointer>(); |
| 2521 | const Pointer &Dst = S.Stk.peek<Pointer>(); |
| 2522 | for (unsigned ElemIdx = 0; ElemIdx != NumElems; ++ElemIdx) { |
| 2523 | using T = PrimConv<PT_Float>::T; |
| 2524 | APFloat ElemA = APtr.elem<T>(I: ElemIdx).getAPFloat(); |
| 2525 | APFloat ElemB = BPtr.elem<T>(I: ElemIdx).getAPFloat(); |
| 2526 | std::optional<APFloat> Result = Fn(ElemA, ElemB, RoundingMode); |
| 2527 | if (!Result) |
| 2528 | return false; |
| 2529 | Dst.elem<T>(I: ElemIdx) = static_cast<T>(*Result); |
| 2530 | } |
| 2531 | |
| 2532 | Dst.initializeAllElements(); |
| 2533 | |
| 2534 | return true; |
| 2535 | } |
| 2536 | |
| 2537 | static bool interp__builtin_elementwise_int_binop( |
| 2538 | InterpState &S, CodePtr OpPC, const CallExpr *Call, |
| 2539 | llvm::function_ref<APInt(const APSInt &, const APSInt &)> Fn) { |
| 2540 | assert(Call->getNumArgs() == 2); |
| 2541 | |
| 2542 | // Single integer case. |
| 2543 | if (!Call->getArg(Arg: 0)->getType()->isVectorType()) { |
| 2544 | assert(!Call->getArg(1)->getType()->isVectorType()); |
| 2545 | APSInt RHS = popToAPSInt(S, E: Call->getArg(Arg: 1)); |
| 2546 | APSInt LHS = popToAPSInt(S, E: Call->getArg(Arg: 0)); |
| 2547 | APInt Result = Fn(LHS, RHS); |
| 2548 | pushInteger(S, Val: APSInt(std::move(Result), !LHS.isSigned()), QT: Call->getType()); |
| 2549 | return true; |
| 2550 | } |
| 2551 | |
| 2552 | const auto *VT = Call->getArg(Arg: 0)->getType()->castAs<VectorType>(); |
| 2553 | assert(VT->getElementType()->isIntegralOrEnumerationType()); |
| 2554 | PrimType ElemT = *S.getContext().classify(T: VT->getElementType()); |
| 2555 | unsigned NumElems = VT->getNumElements(); |
| 2556 | bool DestUnsigned = Call->getType()->isUnsignedIntegerOrEnumerationType(); |
| 2557 | |
| 2558 | // Vector + Scalar case. |
| 2559 | if (!Call->getArg(Arg: 1)->getType()->isVectorType()) { |
| 2560 | assert(Call->getArg(1)->getType()->isIntegralOrEnumerationType()); |
| 2561 | |
| 2562 | APSInt RHS = popToAPSInt(S, E: Call->getArg(Arg: 1)); |
| 2563 | const Pointer &LHS = S.Stk.pop<Pointer>(); |
| 2564 | const Pointer &Dst = S.Stk.peek<Pointer>(); |
| 2565 | |
| 2566 | for (unsigned I = 0; I != NumElems; ++I) { |
| 2567 | INT_TYPE_SWITCH_NO_BOOL(ElemT, { |
| 2568 | Dst.elem<T>(I) = static_cast<T>( |
| 2569 | APSInt(Fn(LHS.elem<T>(I).toAPSInt(), RHS), DestUnsigned)); |
| 2570 | }); |
| 2571 | } |
| 2572 | Dst.initializeAllElements(); |
| 2573 | return true; |
| 2574 | } |
| 2575 | |
| 2576 | // Vector case. |
| 2577 | assert(Call->getArg(0)->getType()->isVectorType() && |
| 2578 | Call->getArg(1)->getType()->isVectorType()); |
| 2579 | assert(VT->getElementType() == |
| 2580 | Call->getArg(1)->getType()->castAs<VectorType>()->getElementType()); |
| 2581 | assert(VT->getNumElements() == |
| 2582 | Call->getArg(1)->getType()->castAs<VectorType>()->getNumElements()); |
| 2583 | assert(VT->getElementType()->isIntegralOrEnumerationType()); |
| 2584 | |
| 2585 | const Pointer &RHS = S.Stk.pop<Pointer>(); |
| 2586 | const Pointer &LHS = S.Stk.pop<Pointer>(); |
| 2587 | const Pointer &Dst = S.Stk.peek<Pointer>(); |
| 2588 | for (unsigned I = 0; I != NumElems; ++I) { |
| 2589 | INT_TYPE_SWITCH_NO_BOOL(ElemT, { |
| 2590 | APSInt Elem1 = LHS.elem<T>(I).toAPSInt(); |
| 2591 | APSInt Elem2 = RHS.elem<T>(I).toAPSInt(); |
| 2592 | Dst.elem<T>(I) = static_cast<T>(APSInt(Fn(Elem1, Elem2), DestUnsigned)); |
| 2593 | }); |
| 2594 | } |
| 2595 | Dst.initializeAllElements(); |
| 2596 | |
| 2597 | return true; |
| 2598 | } |
| 2599 | |
| 2600 | static bool |
| 2601 | interp__builtin_x86_pack(InterpState &S, CodePtr, const CallExpr *E, |
| 2602 | llvm::function_ref<APInt(const APSInt &)> PackFn) { |
| 2603 | const auto *VT0 = E->getArg(Arg: 0)->getType()->castAs<VectorType>(); |
| 2604 | [[maybe_unused]] const auto *VT1 = |
| 2605 | E->getArg(Arg: 1)->getType()->castAs<VectorType>(); |
| 2606 | assert(VT0 && VT1 && "pack builtin VT0 and VT1 must be VectorType" ); |
| 2607 | assert(VT0->getElementType() == VT1->getElementType() && |
| 2608 | VT0->getNumElements() == VT1->getNumElements() && |
| 2609 | "pack builtin VT0 and VT1 ElementType must be same" ); |
| 2610 | |
| 2611 | const Pointer &RHS = S.Stk.pop<Pointer>(); |
| 2612 | const Pointer &LHS = S.Stk.pop<Pointer>(); |
| 2613 | const Pointer &Dst = S.Stk.peek<Pointer>(); |
| 2614 | |
| 2615 | const ASTContext &ASTCtx = S.getASTContext(); |
| 2616 | unsigned SrcBits = ASTCtx.getIntWidth(T: VT0->getElementType()); |
| 2617 | unsigned LHSVecLen = VT0->getNumElements(); |
| 2618 | unsigned SrcPerLane = 128 / SrcBits; |
| 2619 | unsigned Lanes = LHSVecLen * SrcBits / 128; |
| 2620 | |
| 2621 | PrimType SrcT = *S.getContext().classify(T: VT0->getElementType()); |
| 2622 | PrimType DstT = *S.getContext().classify(T: getElemType(P: Dst)); |
| 2623 | bool IsUnsigend = getElemType(P: Dst)->isUnsignedIntegerType(); |
| 2624 | |
| 2625 | for (unsigned Lane = 0; Lane != Lanes; ++Lane) { |
| 2626 | unsigned BaseSrc = Lane * SrcPerLane; |
| 2627 | unsigned BaseDst = Lane * (2 * SrcPerLane); |
| 2628 | |
| 2629 | for (unsigned I = 0; I != SrcPerLane; ++I) { |
| 2630 | INT_TYPE_SWITCH_NO_BOOL(SrcT, { |
| 2631 | APSInt A = LHS.elem<T>(BaseSrc + I).toAPSInt(); |
| 2632 | APSInt B = RHS.elem<T>(BaseSrc + I).toAPSInt(); |
| 2633 | |
| 2634 | assignInteger(S, Dst.atIndex(BaseDst + I), DstT, |
| 2635 | APSInt(PackFn(A), IsUnsigend)); |
| 2636 | assignInteger(S, Dst.atIndex(BaseDst + SrcPerLane + I), DstT, |
| 2637 | APSInt(PackFn(B), IsUnsigend)); |
| 2638 | }); |
| 2639 | } |
| 2640 | } |
| 2641 | |
| 2642 | Dst.initializeAllElements(); |
| 2643 | return true; |
| 2644 | } |
| 2645 | |
| 2646 | static bool interp__builtin_elementwise_maxmin(InterpState &S, CodePtr OpPC, |
| 2647 | const CallExpr *Call, |
| 2648 | unsigned BuiltinID) { |
| 2649 | assert(Call->getNumArgs() == 2); |
| 2650 | |
| 2651 | QualType Arg0Type = Call->getArg(Arg: 0)->getType(); |
| 2652 | |
| 2653 | // TODO: Support floating-point types. |
| 2654 | if (!(Arg0Type->isIntegerType() || |
| 2655 | (Arg0Type->isVectorType() && |
| 2656 | Arg0Type->castAs<VectorType>()->getElementType()->isIntegerType()))) |
| 2657 | return false; |
| 2658 | |
| 2659 | if (!Arg0Type->isVectorType()) { |
| 2660 | assert(!Call->getArg(1)->getType()->isVectorType()); |
| 2661 | APSInt RHS = popToAPSInt(S, E: Call->getArg(Arg: 1)); |
| 2662 | APSInt LHS = popToAPSInt(S, T: Arg0Type); |
| 2663 | APInt Result; |
| 2664 | if (BuiltinID == Builtin::BI__builtin_elementwise_max) { |
| 2665 | Result = std::max(a: LHS, b: RHS); |
| 2666 | } else if (BuiltinID == Builtin::BI__builtin_elementwise_min) { |
| 2667 | Result = std::min(a: LHS, b: RHS); |
| 2668 | } else { |
| 2669 | llvm_unreachable("Wrong builtin ID" ); |
| 2670 | } |
| 2671 | |
| 2672 | pushInteger(S, Val: APSInt(Result, !LHS.isSigned()), QT: Call->getType()); |
| 2673 | return true; |
| 2674 | } |
| 2675 | |
| 2676 | // Vector case. |
| 2677 | assert(Call->getArg(0)->getType()->isVectorType() && |
| 2678 | Call->getArg(1)->getType()->isVectorType()); |
| 2679 | const auto *VT = Call->getArg(Arg: 0)->getType()->castAs<VectorType>(); |
| 2680 | assert(VT->getElementType() == |
| 2681 | Call->getArg(1)->getType()->castAs<VectorType>()->getElementType()); |
| 2682 | assert(VT->getNumElements() == |
| 2683 | Call->getArg(1)->getType()->castAs<VectorType>()->getNumElements()); |
| 2684 | assert(VT->getElementType()->isIntegralOrEnumerationType()); |
| 2685 | |
| 2686 | const Pointer &RHS = S.Stk.pop<Pointer>(); |
| 2687 | const Pointer &LHS = S.Stk.pop<Pointer>(); |
| 2688 | const Pointer &Dst = S.Stk.peek<Pointer>(); |
| 2689 | PrimType ElemT = *S.getContext().classify(T: VT->getElementType()); |
| 2690 | unsigned NumElems = VT->getNumElements(); |
| 2691 | for (unsigned I = 0; I != NumElems; ++I) { |
| 2692 | APSInt Elem1; |
| 2693 | APSInt Elem2; |
| 2694 | INT_TYPE_SWITCH_NO_BOOL(ElemT, { |
| 2695 | Elem1 = LHS.elem<T>(I).toAPSInt(); |
| 2696 | Elem2 = RHS.elem<T>(I).toAPSInt(); |
| 2697 | }); |
| 2698 | |
| 2699 | APSInt Result; |
| 2700 | if (BuiltinID == Builtin::BI__builtin_elementwise_max) { |
| 2701 | Result = APSInt(std::max(a: Elem1, b: Elem2), |
| 2702 | Call->getType()->isUnsignedIntegerOrEnumerationType()); |
| 2703 | } else if (BuiltinID == Builtin::BI__builtin_elementwise_min) { |
| 2704 | Result = APSInt(std::min(a: Elem1, b: Elem2), |
| 2705 | Call->getType()->isUnsignedIntegerOrEnumerationType()); |
| 2706 | } else { |
| 2707 | llvm_unreachable("Wrong builtin ID" ); |
| 2708 | } |
| 2709 | |
| 2710 | INT_TYPE_SWITCH_NO_BOOL(ElemT, |
| 2711 | { Dst.elem<T>(I) = static_cast<T>(Result); }); |
| 2712 | } |
| 2713 | Dst.initializeAllElements(); |
| 2714 | |
| 2715 | return true; |
| 2716 | } |
| 2717 | |
| 2718 | static bool interp__builtin_ia32_pmul( |
| 2719 | InterpState &S, CodePtr OpPC, const CallExpr *Call, |
| 2720 | llvm::function_ref<APInt(const APSInt &, const APSInt &, const APSInt &, |
| 2721 | const APSInt &)> |
| 2722 | Fn) { |
| 2723 | assert(Call->getArg(0)->getType()->isVectorType() && |
| 2724 | Call->getArg(1)->getType()->isVectorType()); |
| 2725 | const Pointer &RHS = S.Stk.pop<Pointer>(); |
| 2726 | const Pointer &LHS = S.Stk.pop<Pointer>(); |
| 2727 | const Pointer &Dst = S.Stk.peek<Pointer>(); |
| 2728 | |
| 2729 | const auto *VT = Call->getArg(Arg: 0)->getType()->castAs<VectorType>(); |
| 2730 | PrimType ElemT = *S.getContext().classify(T: VT->getElementType()); |
| 2731 | unsigned NumElems = VT->getNumElements(); |
| 2732 | const auto *DestVT = Call->getType()->castAs<VectorType>(); |
| 2733 | PrimType DestElemT = *S.getContext().classify(T: DestVT->getElementType()); |
| 2734 | bool DestUnsigned = Call->getType()->isUnsignedIntegerOrEnumerationType(); |
| 2735 | |
| 2736 | unsigned DstElem = 0; |
| 2737 | for (unsigned I = 0; I != NumElems; I += 2) { |
| 2738 | APSInt Result; |
| 2739 | INT_TYPE_SWITCH_NO_BOOL(ElemT, { |
| 2740 | APSInt LoLHS = LHS.elem<T>(I).toAPSInt(); |
| 2741 | APSInt HiLHS = LHS.elem<T>(I + 1).toAPSInt(); |
| 2742 | APSInt LoRHS = RHS.elem<T>(I).toAPSInt(); |
| 2743 | APSInt HiRHS = RHS.elem<T>(I + 1).toAPSInt(); |
| 2744 | Result = APSInt(Fn(LoLHS, HiLHS, LoRHS, HiRHS), DestUnsigned); |
| 2745 | }); |
| 2746 | |
| 2747 | INT_TYPE_SWITCH_NO_BOOL(DestElemT, |
| 2748 | { Dst.elem<T>(DstElem) = static_cast<T>(Result); }); |
| 2749 | ++DstElem; |
| 2750 | } |
| 2751 | |
| 2752 | Dst.initializeAllElements(); |
| 2753 | return true; |
| 2754 | } |
| 2755 | |
| 2756 | static bool interp_builtin_horizontal_int_binop( |
| 2757 | InterpState &S, CodePtr OpPC, const CallExpr *Call, |
| 2758 | llvm::function_ref<APInt(const APSInt &, const APSInt &)> Fn) { |
| 2759 | const auto *VT = Call->getArg(Arg: 0)->getType()->castAs<VectorType>(); |
| 2760 | PrimType ElemT = *S.getContext().classify(T: VT->getElementType()); |
| 2761 | bool DestUnsigned = Call->getType()->isUnsignedIntegerOrEnumerationType(); |
| 2762 | |
| 2763 | const Pointer &RHS = S.Stk.pop<Pointer>(); |
| 2764 | const Pointer &LHS = S.Stk.pop<Pointer>(); |
| 2765 | const Pointer &Dst = S.Stk.peek<Pointer>(); |
| 2766 | unsigned NumElts = VT->getNumElements(); |
| 2767 | unsigned EltBits = S.getASTContext().getIntWidth(T: VT->getElementType()); |
| 2768 | unsigned EltsPerLane = 128 / EltBits; |
| 2769 | unsigned Lanes = NumElts * EltBits / 128; |
| 2770 | unsigned DestIndex = 0; |
| 2771 | |
| 2772 | for (unsigned Lane = 0; Lane < Lanes; ++Lane) { |
| 2773 | unsigned LaneStart = Lane * EltsPerLane; |
| 2774 | for (unsigned I = 0; I < EltsPerLane; I += 2) { |
| 2775 | INT_TYPE_SWITCH_NO_BOOL(ElemT, { |
| 2776 | APSInt Elem1 = LHS.elem<T>(LaneStart + I).toAPSInt(); |
| 2777 | APSInt Elem2 = LHS.elem<T>(LaneStart + I + 1).toAPSInt(); |
| 2778 | APSInt ResL = APSInt(Fn(Elem1, Elem2), DestUnsigned); |
| 2779 | Dst.elem<T>(DestIndex++) = static_cast<T>(ResL); |
| 2780 | }); |
| 2781 | } |
| 2782 | |
| 2783 | for (unsigned I = 0; I < EltsPerLane; I += 2) { |
| 2784 | INT_TYPE_SWITCH_NO_BOOL(ElemT, { |
| 2785 | APSInt Elem1 = RHS.elem<T>(LaneStart + I).toAPSInt(); |
| 2786 | APSInt Elem2 = RHS.elem<T>(LaneStart + I + 1).toAPSInt(); |
| 2787 | APSInt ResR = APSInt(Fn(Elem1, Elem2), DestUnsigned); |
| 2788 | Dst.elem<T>(DestIndex++) = static_cast<T>(ResR); |
| 2789 | }); |
| 2790 | } |
| 2791 | } |
| 2792 | Dst.initializeAllElements(); |
| 2793 | return true; |
| 2794 | } |
| 2795 | |
| 2796 | static bool interp_builtin_horizontal_fp_binop( |
| 2797 | InterpState &S, CodePtr OpPC, const CallExpr *Call, |
| 2798 | llvm::function_ref<APFloat(const APFloat &, const APFloat &, |
| 2799 | llvm::RoundingMode)> |
| 2800 | Fn) { |
| 2801 | const Pointer &RHS = S.Stk.pop<Pointer>(); |
| 2802 | const Pointer &LHS = S.Stk.pop<Pointer>(); |
| 2803 | const Pointer &Dst = S.Stk.peek<Pointer>(); |
| 2804 | FPOptions FPO = Call->getFPFeaturesInEffect(LO: S.Ctx.getLangOpts()); |
| 2805 | llvm::RoundingMode RM = getRoundingMode(FPO); |
| 2806 | const auto *VT = Call->getArg(Arg: 0)->getType()->castAs<VectorType>(); |
| 2807 | |
| 2808 | unsigned NumElts = VT->getNumElements(); |
| 2809 | unsigned EltBits = S.getASTContext().getTypeSize(T: VT->getElementType()); |
| 2810 | unsigned NumLanes = NumElts * EltBits / 128; |
| 2811 | unsigned NumElemsPerLane = NumElts / NumLanes; |
| 2812 | unsigned HalfElemsPerLane = NumElemsPerLane / 2; |
| 2813 | |
| 2814 | for (unsigned L = 0; L != NumElts; L += NumElemsPerLane) { |
| 2815 | using T = PrimConv<PT_Float>::T; |
| 2816 | for (unsigned E = 0; E != HalfElemsPerLane; ++E) { |
| 2817 | APFloat Elem1 = LHS.elem<T>(I: L + (2 * E) + 0).getAPFloat(); |
| 2818 | APFloat Elem2 = LHS.elem<T>(I: L + (2 * E) + 1).getAPFloat(); |
| 2819 | Dst.elem<T>(I: L + E) = static_cast<T>(Fn(Elem1, Elem2, RM)); |
| 2820 | } |
| 2821 | for (unsigned E = 0; E != HalfElemsPerLane; ++E) { |
| 2822 | APFloat Elem1 = RHS.elem<T>(I: L + (2 * E) + 0).getAPFloat(); |
| 2823 | APFloat Elem2 = RHS.elem<T>(I: L + (2 * E) + 1).getAPFloat(); |
| 2824 | Dst.elem<T>(I: L + E + HalfElemsPerLane) = |
| 2825 | static_cast<T>(Fn(Elem1, Elem2, RM)); |
| 2826 | } |
| 2827 | } |
| 2828 | Dst.initializeAllElements(); |
| 2829 | return true; |
| 2830 | } |
| 2831 | |
| 2832 | static bool interp__builtin_ia32_addsub(InterpState &S, CodePtr OpPC, |
| 2833 | const CallExpr *Call) { |
| 2834 | // Addsub: alternates between subtraction and addition |
| 2835 | // Result[i] = (i % 2 == 0) ? (a[i] - b[i]) : (a[i] + b[i]) |
| 2836 | const Pointer &RHS = S.Stk.pop<Pointer>(); |
| 2837 | const Pointer &LHS = S.Stk.pop<Pointer>(); |
| 2838 | const Pointer &Dst = S.Stk.peek<Pointer>(); |
| 2839 | FPOptions FPO = Call->getFPFeaturesInEffect(LO: S.Ctx.getLangOpts()); |
| 2840 | llvm::RoundingMode RM = getRoundingMode(FPO); |
| 2841 | const auto *VT = Call->getArg(Arg: 0)->getType()->castAs<VectorType>(); |
| 2842 | unsigned NumElems = VT->getNumElements(); |
| 2843 | |
| 2844 | using T = PrimConv<PT_Float>::T; |
| 2845 | for (unsigned I = 0; I != NumElems; ++I) { |
| 2846 | APFloat LElem = LHS.elem<T>(I).getAPFloat(); |
| 2847 | APFloat RElem = RHS.elem<T>(I).getAPFloat(); |
| 2848 | if (I % 2 == 0) { |
| 2849 | // Even indices: subtract |
| 2850 | LElem.subtract(RHS: RElem, RM); |
| 2851 | } else { |
| 2852 | // Odd indices: add |
| 2853 | LElem.add(RHS: RElem, RM); |
| 2854 | } |
| 2855 | Dst.elem<T>(I) = static_cast<T>(LElem); |
| 2856 | } |
| 2857 | Dst.initializeAllElements(); |
| 2858 | return true; |
| 2859 | } |
| 2860 | |
| 2861 | static bool interp__builtin_ia32_pclmulqdq(InterpState &S, CodePtr OpPC, |
| 2862 | const CallExpr *Call) { |
| 2863 | // PCLMULQDQ: carry-less multiplication of selected 64-bit halves |
| 2864 | // imm8 bit 0: selects lower (0) or upper (1) 64 bits of first operand |
| 2865 | // imm8 bit 4: selects lower (0) or upper (1) 64 bits of second operand |
| 2866 | assert(Call->getArg(0)->getType()->isVectorType() && |
| 2867 | Call->getArg(1)->getType()->isVectorType()); |
| 2868 | |
| 2869 | // Extract imm8 argument |
| 2870 | APSInt Imm8 = popToAPSInt(S, E: Call->getArg(Arg: 2)); |
| 2871 | bool SelectUpperA = (Imm8 & 0x01) != 0; |
| 2872 | bool SelectUpperB = (Imm8 & 0x10) != 0; |
| 2873 | |
| 2874 | const Pointer &RHS = S.Stk.pop<Pointer>(); |
| 2875 | const Pointer &LHS = S.Stk.pop<Pointer>(); |
| 2876 | const Pointer &Dst = S.Stk.peek<Pointer>(); |
| 2877 | |
| 2878 | const auto *VT = Call->getArg(Arg: 0)->getType()->castAs<VectorType>(); |
| 2879 | PrimType ElemT = *S.getContext().classify(T: VT->getElementType()); |
| 2880 | unsigned NumElems = VT->getNumElements(); |
| 2881 | const auto *DestVT = Call->getType()->castAs<VectorType>(); |
| 2882 | PrimType DestElemT = *S.getContext().classify(T: DestVT->getElementType()); |
| 2883 | bool DestUnsigned = Call->getType()->isUnsignedIntegerOrEnumerationType(); |
| 2884 | |
| 2885 | // Process each 128-bit lane (2 elements at a time) |
| 2886 | for (unsigned Lane = 0; Lane < NumElems; Lane += 2) { |
| 2887 | APSInt A0, A1, B0, B1; |
| 2888 | INT_TYPE_SWITCH_NO_BOOL(ElemT, { |
| 2889 | A0 = LHS.elem<T>(Lane + 0).toAPSInt(); |
| 2890 | A1 = LHS.elem<T>(Lane + 1).toAPSInt(); |
| 2891 | B0 = RHS.elem<T>(Lane + 0).toAPSInt(); |
| 2892 | B1 = RHS.elem<T>(Lane + 1).toAPSInt(); |
| 2893 | }); |
| 2894 | |
| 2895 | // Select the appropriate 64-bit values based on imm8 |
| 2896 | APInt A = SelectUpperA ? A1 : A0; |
| 2897 | APInt B = SelectUpperB ? B1 : B0; |
| 2898 | |
| 2899 | // Extend both operands to 128 bits for carry-less multiplication |
| 2900 | APInt A128 = A.zext(width: 128); |
| 2901 | APInt B128 = B.zext(width: 128); |
| 2902 | |
| 2903 | // Use APIntOps::clmul for carry-less multiplication |
| 2904 | APInt Result = llvm::APIntOps::clmul(LHS: A128, RHS: B128); |
| 2905 | |
| 2906 | // Split the 128-bit result into two 64-bit halves |
| 2907 | APSInt ResultLow(Result.extractBits(numBits: 64, bitPosition: 0), DestUnsigned); |
| 2908 | APSInt ResultHigh(Result.extractBits(numBits: 64, bitPosition: 64), DestUnsigned); |
| 2909 | |
| 2910 | INT_TYPE_SWITCH_NO_BOOL(DestElemT, { |
| 2911 | Dst.elem<T>(Lane + 0) = static_cast<T>(ResultLow); |
| 2912 | Dst.elem<T>(Lane + 1) = static_cast<T>(ResultHigh); |
| 2913 | }); |
| 2914 | } |
| 2915 | |
| 2916 | Dst.initializeAllElements(); |
| 2917 | return true; |
| 2918 | } |
| 2919 | |
| 2920 | static bool interp__builtin_elementwise_triop_fp( |
| 2921 | InterpState &S, CodePtr OpPC, const CallExpr *Call, |
| 2922 | llvm::function_ref<APFloat(const APFloat &, const APFloat &, |
| 2923 | const APFloat &, llvm::RoundingMode)> |
| 2924 | Fn) { |
| 2925 | assert(Call->getNumArgs() == 3); |
| 2926 | |
| 2927 | FPOptions FPO = Call->getFPFeaturesInEffect(LO: S.Ctx.getLangOpts()); |
| 2928 | llvm::RoundingMode RM = getRoundingMode(FPO); |
| 2929 | QualType Arg1Type = Call->getArg(Arg: 0)->getType(); |
| 2930 | QualType Arg2Type = Call->getArg(Arg: 1)->getType(); |
| 2931 | QualType Arg3Type = Call->getArg(Arg: 2)->getType(); |
| 2932 | |
| 2933 | // Non-vector floating point types. |
| 2934 | if (!Arg1Type->isVectorType()) { |
| 2935 | assert(!Arg2Type->isVectorType()); |
| 2936 | assert(!Arg3Type->isVectorType()); |
| 2937 | (void)Arg2Type; |
| 2938 | (void)Arg3Type; |
| 2939 | |
| 2940 | const Floating &Z = S.Stk.pop<Floating>(); |
| 2941 | const Floating &Y = S.Stk.pop<Floating>(); |
| 2942 | const Floating &X = S.Stk.pop<Floating>(); |
| 2943 | APFloat F = Fn(X.getAPFloat(), Y.getAPFloat(), Z.getAPFloat(), RM); |
| 2944 | Floating Result = S.allocFloat(Sem: X.getSemantics()); |
| 2945 | Result.copy(F); |
| 2946 | S.Stk.push<Floating>(Args&: Result); |
| 2947 | return true; |
| 2948 | } |
| 2949 | |
| 2950 | // Vector type. |
| 2951 | assert(Arg1Type->isVectorType() && Arg2Type->isVectorType() && |
| 2952 | Arg3Type->isVectorType()); |
| 2953 | |
| 2954 | const VectorType *VecTy = Arg1Type->castAs<VectorType>(); |
| 2955 | QualType ElemQT = VecTy->getElementType(); |
| 2956 | unsigned NumElems = VecTy->getNumElements(); |
| 2957 | |
| 2958 | assert(ElemQT == Arg2Type->castAs<VectorType>()->getElementType() && |
| 2959 | ElemQT == Arg3Type->castAs<VectorType>()->getElementType()); |
| 2960 | assert(NumElems == Arg2Type->castAs<VectorType>()->getNumElements() && |
| 2961 | NumElems == Arg3Type->castAs<VectorType>()->getNumElements()); |
| 2962 | assert(ElemQT->isRealFloatingType()); |
| 2963 | (void)ElemQT; |
| 2964 | |
| 2965 | const Pointer &VZ = S.Stk.pop<Pointer>(); |
| 2966 | const Pointer &VY = S.Stk.pop<Pointer>(); |
| 2967 | const Pointer &VX = S.Stk.pop<Pointer>(); |
| 2968 | const Pointer &Dst = S.Stk.peek<Pointer>(); |
| 2969 | for (unsigned I = 0; I != NumElems; ++I) { |
| 2970 | using T = PrimConv<PT_Float>::T; |
| 2971 | APFloat X = VX.elem<T>(I).getAPFloat(); |
| 2972 | APFloat Y = VY.elem<T>(I).getAPFloat(); |
| 2973 | APFloat Z = VZ.elem<T>(I).getAPFloat(); |
| 2974 | APFloat F = Fn(X, Y, Z, RM); |
| 2975 | Dst.elem<Floating>(I) = Floating(F); |
| 2976 | } |
| 2977 | Dst.initializeAllElements(); |
| 2978 | return true; |
| 2979 | } |
| 2980 | |
| 2981 | /// AVX512 predicated move: "Result = Mask[] ? LHS[] : RHS[]". |
| 2982 | static bool interp__builtin_select(InterpState &S, CodePtr OpPC, |
| 2983 | const CallExpr *Call) { |
| 2984 | const Pointer &RHS = S.Stk.pop<Pointer>(); |
| 2985 | const Pointer &LHS = S.Stk.pop<Pointer>(); |
| 2986 | APSInt Mask = popToAPSInt(S, E: Call->getArg(Arg: 0)); |
| 2987 | const Pointer &Dst = S.Stk.peek<Pointer>(); |
| 2988 | |
| 2989 | assert(LHS.getNumElems() == RHS.getNumElems()); |
| 2990 | assert(LHS.getNumElems() == Dst.getNumElems()); |
| 2991 | unsigned NumElems = LHS.getNumElems(); |
| 2992 | PrimType ElemT = LHS.getFieldDesc()->getPrimType(); |
| 2993 | PrimType DstElemT = Dst.getFieldDesc()->getPrimType(); |
| 2994 | |
| 2995 | for (unsigned I = 0; I != NumElems; ++I) { |
| 2996 | if (ElemT == PT_Float) { |
| 2997 | assert(DstElemT == PT_Float); |
| 2998 | Dst.elem<Floating>(I) = |
| 2999 | Mask[I] ? LHS.elem<Floating>(I) : RHS.elem<Floating>(I); |
| 3000 | } else { |
| 3001 | APSInt Elem; |
| 3002 | INT_TYPE_SWITCH(ElemT, { |
| 3003 | Elem = Mask[I] ? LHS.elem<T>(I).toAPSInt() : RHS.elem<T>(I).toAPSInt(); |
| 3004 | }); |
| 3005 | INT_TYPE_SWITCH_NO_BOOL(DstElemT, |
| 3006 | { Dst.elem<T>(I) = static_cast<T>(Elem); }); |
| 3007 | } |
| 3008 | } |
| 3009 | Dst.initializeAllElements(); |
| 3010 | |
| 3011 | return true; |
| 3012 | } |
| 3013 | |
| 3014 | /// Scalar variant of AVX512 predicated select: |
| 3015 | /// Result[i] = (Mask bit 0) ? LHS[i] : RHS[i], but only element 0 may change. |
| 3016 | /// All other elements are taken from RHS. |
| 3017 | static bool interp__builtin_select_scalar(InterpState &S, |
| 3018 | const CallExpr *Call) { |
| 3019 | unsigned N = |
| 3020 | Call->getArg(Arg: 1)->getType()->castAs<VectorType>()->getNumElements(); |
| 3021 | |
| 3022 | const Pointer &W = S.Stk.pop<Pointer>(); |
| 3023 | const Pointer &A = S.Stk.pop<Pointer>(); |
| 3024 | APSInt U = popToAPSInt(S, E: Call->getArg(Arg: 0)); |
| 3025 | const Pointer &Dst = S.Stk.peek<Pointer>(); |
| 3026 | |
| 3027 | bool TakeA0 = U.getZExtValue() & 1ULL; |
| 3028 | |
| 3029 | for (unsigned I = TakeA0; I != N; ++I) |
| 3030 | Dst.elem<Floating>(I) = W.elem<Floating>(I); |
| 3031 | if (TakeA0) |
| 3032 | Dst.elem<Floating>(I: 0) = A.elem<Floating>(I: 0); |
| 3033 | |
| 3034 | Dst.initializeAllElements(); |
| 3035 | return true; |
| 3036 | } |
| 3037 | |
| 3038 | static bool interp__builtin_ia32_test_op( |
| 3039 | InterpState &S, CodePtr OpPC, const CallExpr *Call, |
| 3040 | llvm::function_ref<bool(const APInt &A, const APInt &B)> Fn) { |
| 3041 | const Pointer &RHS = S.Stk.pop<Pointer>(); |
| 3042 | const Pointer &LHS = S.Stk.pop<Pointer>(); |
| 3043 | |
| 3044 | assert(LHS.getNumElems() == RHS.getNumElems()); |
| 3045 | |
| 3046 | unsigned SourceLen = LHS.getNumElems(); |
| 3047 | QualType ElemQT = getElemType(P: LHS); |
| 3048 | OptPrimType ElemPT = S.getContext().classify(T: ElemQT); |
| 3049 | unsigned LaneWidth = S.getASTContext().getTypeSize(T: ElemQT); |
| 3050 | |
| 3051 | APInt AWide(LaneWidth * SourceLen, 0); |
| 3052 | APInt BWide(LaneWidth * SourceLen, 0); |
| 3053 | |
| 3054 | for (unsigned I = 0; I != SourceLen; ++I) { |
| 3055 | APInt ALane; |
| 3056 | APInt BLane; |
| 3057 | |
| 3058 | if (ElemQT->isIntegerType()) { // Get value. |
| 3059 | INT_TYPE_SWITCH_NO_BOOL(*ElemPT, { |
| 3060 | ALane = LHS.elem<T>(I).toAPSInt(); |
| 3061 | BLane = RHS.elem<T>(I).toAPSInt(); |
| 3062 | }); |
| 3063 | } else if (ElemQT->isFloatingType()) { // Get only sign bit. |
| 3064 | using T = PrimConv<PT_Float>::T; |
| 3065 | ALane = LHS.elem<T>(I).getAPFloat().bitcastToAPInt().isNegative(); |
| 3066 | BLane = RHS.elem<T>(I).getAPFloat().bitcastToAPInt().isNegative(); |
| 3067 | } else { // Must be integer or floating type. |
| 3068 | return false; |
| 3069 | } |
| 3070 | AWide.insertBits(SubBits: ALane, bitPosition: I * LaneWidth); |
| 3071 | BWide.insertBits(SubBits: BLane, bitPosition: I * LaneWidth); |
| 3072 | } |
| 3073 | pushInteger(S, Val: Fn(AWide, BWide), QT: Call->getType()); |
| 3074 | return true; |
| 3075 | } |
| 3076 | |
| 3077 | static bool interp__builtin_ia32_movmsk_op(InterpState &S, CodePtr OpPC, |
| 3078 | const CallExpr *Call) { |
| 3079 | assert(Call->getNumArgs() == 1); |
| 3080 | |
| 3081 | const Pointer &Source = S.Stk.pop<Pointer>(); |
| 3082 | |
| 3083 | unsigned SourceLen = Source.getNumElems(); |
| 3084 | QualType ElemQT = getElemType(P: Source); |
| 3085 | OptPrimType ElemT = S.getContext().classify(T: ElemQT); |
| 3086 | unsigned ResultLen = |
| 3087 | S.getASTContext().getTypeSize(T: Call->getType()); // Always 32-bit integer. |
| 3088 | APInt Result(ResultLen, 0); |
| 3089 | |
| 3090 | for (unsigned I = 0; I != SourceLen; ++I) { |
| 3091 | APInt Elem; |
| 3092 | if (ElemQT->isIntegerType()) { |
| 3093 | INT_TYPE_SWITCH_NO_BOOL(*ElemT, { Elem = Source.elem<T>(I).toAPSInt(); }); |
| 3094 | } else if (ElemQT->isRealFloatingType()) { |
| 3095 | using T = PrimConv<PT_Float>::T; |
| 3096 | Elem = Source.elem<T>(I).getAPFloat().bitcastToAPInt(); |
| 3097 | } else { |
| 3098 | return false; |
| 3099 | } |
| 3100 | Result.setBitVal(BitPosition: I, BitValue: Elem.isNegative()); |
| 3101 | } |
| 3102 | pushInteger(S, Val: Result, QT: Call->getType()); |
| 3103 | return true; |
| 3104 | } |
| 3105 | |
| 3106 | static bool interp__builtin_elementwise_triop( |
| 3107 | InterpState &S, CodePtr OpPC, const CallExpr *Call, |
| 3108 | llvm::function_ref<APInt(const APSInt &, const APSInt &, const APSInt &)> |
| 3109 | Fn) { |
| 3110 | assert(Call->getNumArgs() == 3); |
| 3111 | |
| 3112 | QualType Arg0Type = Call->getArg(Arg: 0)->getType(); |
| 3113 | QualType Arg2Type = Call->getArg(Arg: 2)->getType(); |
| 3114 | // Non-vector integer types. |
| 3115 | if (!Arg0Type->isVectorType()) { |
| 3116 | const APSInt &Op2 = popToAPSInt(S, T: Arg2Type); |
| 3117 | const APSInt &Op1 = popToAPSInt(S, E: Call->getArg(Arg: 1)); |
| 3118 | const APSInt &Op0 = popToAPSInt(S, T: Arg0Type); |
| 3119 | APSInt Result = APSInt(Fn(Op0, Op1, Op2), Op0.isUnsigned()); |
| 3120 | pushInteger(S, Val: Result, QT: Call->getType()); |
| 3121 | return true; |
| 3122 | } |
| 3123 | |
| 3124 | const auto *VecT = Arg0Type->castAs<VectorType>(); |
| 3125 | PrimType ElemT = *S.getContext().classify(T: VecT->getElementType()); |
| 3126 | unsigned NumElems = VecT->getNumElements(); |
| 3127 | bool DestUnsigned = Call->getType()->isUnsignedIntegerOrEnumerationType(); |
| 3128 | |
| 3129 | // Vector + Vector + Scalar case. |
| 3130 | if (!Arg2Type->isVectorType()) { |
| 3131 | APSInt Op2 = popToAPSInt(S, T: Arg2Type); |
| 3132 | |
| 3133 | const Pointer &Op1 = S.Stk.pop<Pointer>(); |
| 3134 | const Pointer &Op0 = S.Stk.pop<Pointer>(); |
| 3135 | const Pointer &Dst = S.Stk.peek<Pointer>(); |
| 3136 | for (unsigned I = 0; I != NumElems; ++I) { |
| 3137 | INT_TYPE_SWITCH_NO_BOOL(ElemT, { |
| 3138 | Dst.elem<T>(I) = static_cast<T>(APSInt( |
| 3139 | Fn(Op0.elem<T>(I).toAPSInt(), Op1.elem<T>(I).toAPSInt(), Op2), |
| 3140 | DestUnsigned)); |
| 3141 | }); |
| 3142 | } |
| 3143 | Dst.initializeAllElements(); |
| 3144 | |
| 3145 | return true; |
| 3146 | } |
| 3147 | |
| 3148 | // Vector type. |
| 3149 | const Pointer &Op2 = S.Stk.pop<Pointer>(); |
| 3150 | const Pointer &Op1 = S.Stk.pop<Pointer>(); |
| 3151 | const Pointer &Op0 = S.Stk.pop<Pointer>(); |
| 3152 | const Pointer &Dst = S.Stk.peek<Pointer>(); |
| 3153 | for (unsigned I = 0; I != NumElems; ++I) { |
| 3154 | APSInt Val0, Val1, Val2; |
| 3155 | INT_TYPE_SWITCH_NO_BOOL(ElemT, { |
| 3156 | Val0 = Op0.elem<T>(I).toAPSInt(); |
| 3157 | Val1 = Op1.elem<T>(I).toAPSInt(); |
| 3158 | Val2 = Op2.elem<T>(I).toAPSInt(); |
| 3159 | }); |
| 3160 | APSInt Result = APSInt(Fn(Val0, Val1, Val2), Val0.isUnsigned()); |
| 3161 | INT_TYPE_SWITCH_NO_BOOL(ElemT, |
| 3162 | { Dst.elem<T>(I) = static_cast<T>(Result); }); |
| 3163 | } |
| 3164 | Dst.initializeAllElements(); |
| 3165 | |
| 3166 | return true; |
| 3167 | } |
| 3168 | |
| 3169 | static bool (InterpState &S, CodePtr OpPC, |
| 3170 | const CallExpr *Call, |
| 3171 | unsigned ID) { |
| 3172 | assert(Call->getNumArgs() == 2); |
| 3173 | |
| 3174 | APSInt ImmAPS = popToAPSInt(S, E: Call->getArg(Arg: 1)); |
| 3175 | uint64_t Index = ImmAPS.getZExtValue(); |
| 3176 | |
| 3177 | const Pointer &Src = S.Stk.pop<Pointer>(); |
| 3178 | if (!Src.getFieldDesc()->isPrimitiveArray()) |
| 3179 | return false; |
| 3180 | |
| 3181 | const Pointer &Dst = S.Stk.peek<Pointer>(); |
| 3182 | if (!Dst.getFieldDesc()->isPrimitiveArray()) |
| 3183 | return false; |
| 3184 | |
| 3185 | unsigned SrcElems = Src.getNumElems(); |
| 3186 | unsigned DstElems = Dst.getNumElems(); |
| 3187 | |
| 3188 | unsigned NumLanes = SrcElems / DstElems; |
| 3189 | unsigned Lane = static_cast<unsigned>(Index % NumLanes); |
| 3190 | unsigned = Lane * DstElems; |
| 3191 | |
| 3192 | PrimType ElemT = Src.getFieldDesc()->getPrimType(); |
| 3193 | |
| 3194 | TYPE_SWITCH(ElemT, { |
| 3195 | for (unsigned I = 0; I != DstElems; ++I) { |
| 3196 | Dst.elem<T>(I) = Src.elem<T>(ExtractPos + I); |
| 3197 | } |
| 3198 | }); |
| 3199 | |
| 3200 | Dst.initializeAllElements(); |
| 3201 | return true; |
| 3202 | } |
| 3203 | |
| 3204 | static bool (InterpState &S, |
| 3205 | CodePtr OpPC, |
| 3206 | const CallExpr *Call, |
| 3207 | unsigned ID) { |
| 3208 | assert(Call->getNumArgs() == 4); |
| 3209 | |
| 3210 | APSInt MaskAPS = popToAPSInt(S, E: Call->getArg(Arg: 3)); |
| 3211 | const Pointer &Merge = S.Stk.pop<Pointer>(); |
| 3212 | APSInt ImmAPS = popToAPSInt(S, E: Call->getArg(Arg: 1)); |
| 3213 | const Pointer &Src = S.Stk.pop<Pointer>(); |
| 3214 | |
| 3215 | if (!Src.getFieldDesc()->isPrimitiveArray() || |
| 3216 | !Merge.getFieldDesc()->isPrimitiveArray()) |
| 3217 | return false; |
| 3218 | |
| 3219 | const Pointer &Dst = S.Stk.peek<Pointer>(); |
| 3220 | if (!Dst.getFieldDesc()->isPrimitiveArray()) |
| 3221 | return false; |
| 3222 | |
| 3223 | unsigned SrcElems = Src.getNumElems(); |
| 3224 | unsigned DstElems = Dst.getNumElems(); |
| 3225 | |
| 3226 | unsigned NumLanes = SrcElems / DstElems; |
| 3227 | unsigned Lane = static_cast<unsigned>(ImmAPS.getZExtValue() % NumLanes); |
| 3228 | unsigned Base = Lane * DstElems; |
| 3229 | |
| 3230 | PrimType ElemT = Src.getFieldDesc()->getPrimType(); |
| 3231 | |
| 3232 | TYPE_SWITCH(ElemT, { |
| 3233 | for (unsigned I = 0; I != DstElems; ++I) { |
| 3234 | if (MaskAPS[I]) |
| 3235 | Dst.elem<T>(I) = Src.elem<T>(Base + I); |
| 3236 | else |
| 3237 | Dst.elem<T>(I) = Merge.elem<T>(I); |
| 3238 | } |
| 3239 | }); |
| 3240 | |
| 3241 | Dst.initializeAllElements(); |
| 3242 | return true; |
| 3243 | } |
| 3244 | |
| 3245 | static bool interp__builtin_x86_insert_subvector(InterpState &S, CodePtr OpPC, |
| 3246 | const CallExpr *Call, |
| 3247 | unsigned ID) { |
| 3248 | assert(Call->getNumArgs() == 3); |
| 3249 | |
| 3250 | APSInt ImmAPS = popToAPSInt(S, E: Call->getArg(Arg: 2)); |
| 3251 | uint64_t Index = ImmAPS.getZExtValue(); |
| 3252 | |
| 3253 | const Pointer &SubVec = S.Stk.pop<Pointer>(); |
| 3254 | if (!SubVec.getFieldDesc()->isPrimitiveArray()) |
| 3255 | return false; |
| 3256 | |
| 3257 | const Pointer &BaseVec = S.Stk.pop<Pointer>(); |
| 3258 | if (!BaseVec.getFieldDesc()->isPrimitiveArray()) |
| 3259 | return false; |
| 3260 | |
| 3261 | const Pointer &Dst = S.Stk.peek<Pointer>(); |
| 3262 | |
| 3263 | unsigned BaseElements = BaseVec.getNumElems(); |
| 3264 | unsigned SubElements = SubVec.getNumElems(); |
| 3265 | |
| 3266 | assert(SubElements != 0 && BaseElements != 0 && |
| 3267 | (BaseElements % SubElements) == 0); |
| 3268 | |
| 3269 | unsigned NumLanes = BaseElements / SubElements; |
| 3270 | unsigned Lane = static_cast<unsigned>(Index % NumLanes); |
| 3271 | unsigned InsertPos = Lane * SubElements; |
| 3272 | |
| 3273 | PrimType ElemT = BaseVec.getFieldDesc()->getPrimType(); |
| 3274 | |
| 3275 | TYPE_SWITCH(ElemT, { |
| 3276 | for (unsigned I = 0; I != BaseElements; ++I) |
| 3277 | Dst.elem<T>(I) = BaseVec.elem<T>(I); |
| 3278 | for (unsigned I = 0; I != SubElements; ++I) |
| 3279 | Dst.elem<T>(InsertPos + I) = SubVec.elem<T>(I); |
| 3280 | }); |
| 3281 | |
| 3282 | Dst.initializeAllElements(); |
| 3283 | return true; |
| 3284 | } |
| 3285 | |
| 3286 | static bool interp__builtin_ia32_phminposuw(InterpState &S, CodePtr OpPC, |
| 3287 | const CallExpr *Call) { |
| 3288 | assert(Call->getNumArgs() == 1); |
| 3289 | |
| 3290 | const Pointer &Source = S.Stk.pop<Pointer>(); |
| 3291 | const Pointer &Dest = S.Stk.peek<Pointer>(); |
| 3292 | |
| 3293 | unsigned SourceLen = Source.getNumElems(); |
| 3294 | QualType ElemQT = getElemType(P: Source); |
| 3295 | OptPrimType ElemT = S.getContext().classify(T: ElemQT); |
| 3296 | unsigned ElemBitWidth = S.getASTContext().getTypeSize(T: ElemQT); |
| 3297 | |
| 3298 | bool DestUnsigned = Call->getCallReturnType(Ctx: S.getASTContext()) |
| 3299 | ->castAs<VectorType>() |
| 3300 | ->getElementType() |
| 3301 | ->isUnsignedIntegerOrEnumerationType(); |
| 3302 | |
| 3303 | INT_TYPE_SWITCH_NO_BOOL(*ElemT, { |
| 3304 | APSInt MinIndex(ElemBitWidth, DestUnsigned); |
| 3305 | APSInt MinVal = Source.elem<T>(0).toAPSInt(); |
| 3306 | |
| 3307 | for (unsigned I = 1; I != SourceLen; ++I) { |
| 3308 | APSInt Val = Source.elem<T>(I).toAPSInt(); |
| 3309 | if (MinVal.ugt(Val)) { |
| 3310 | MinVal = Val; |
| 3311 | MinIndex = I; |
| 3312 | } |
| 3313 | } |
| 3314 | |
| 3315 | Dest.elem<T>(0) = static_cast<T>(MinVal); |
| 3316 | Dest.elem<T>(1) = static_cast<T>(MinIndex); |
| 3317 | for (unsigned I = 2; I != SourceLen; ++I) { |
| 3318 | Dest.elem<T>(I) = static_cast<T>(APSInt(ElemBitWidth, DestUnsigned)); |
| 3319 | } |
| 3320 | }); |
| 3321 | Dest.initializeAllElements(); |
| 3322 | return true; |
| 3323 | } |
| 3324 | |
| 3325 | static bool interp__builtin_ia32_pternlog(InterpState &S, CodePtr OpPC, |
| 3326 | const CallExpr *Call, bool MaskZ) { |
| 3327 | assert(Call->getNumArgs() == 5); |
| 3328 | |
| 3329 | APInt U = popToAPSInt(S, E: Call->getArg(Arg: 4)); // Lane mask |
| 3330 | APInt Imm = popToAPSInt(S, E: Call->getArg(Arg: 3)); // Ternary truth table |
| 3331 | const Pointer &C = S.Stk.pop<Pointer>(); |
| 3332 | const Pointer &B = S.Stk.pop<Pointer>(); |
| 3333 | const Pointer &A = S.Stk.pop<Pointer>(); |
| 3334 | const Pointer &Dst = S.Stk.peek<Pointer>(); |
| 3335 | |
| 3336 | unsigned DstLen = A.getNumElems(); |
| 3337 | QualType ElemQT = getElemType(P: A); |
| 3338 | OptPrimType ElemT = S.getContext().classify(T: ElemQT); |
| 3339 | unsigned LaneWidth = S.getASTContext().getTypeSize(T: ElemQT); |
| 3340 | bool DstUnsigned = ElemQT->isUnsignedIntegerOrEnumerationType(); |
| 3341 | |
| 3342 | INT_TYPE_SWITCH_NO_BOOL(*ElemT, { |
| 3343 | for (unsigned I = 0; I != DstLen; ++I) { |
| 3344 | APInt ALane = A.elem<T>(I).toAPSInt(); |
| 3345 | APInt BLane = B.elem<T>(I).toAPSInt(); |
| 3346 | APInt CLane = C.elem<T>(I).toAPSInt(); |
| 3347 | APInt RLane(LaneWidth, 0); |
| 3348 | if (U[I]) { // If lane not masked, compute ternary logic. |
| 3349 | for (unsigned Bit = 0; Bit != LaneWidth; ++Bit) { |
| 3350 | unsigned ABit = ALane[Bit]; |
| 3351 | unsigned BBit = BLane[Bit]; |
| 3352 | unsigned CBit = CLane[Bit]; |
| 3353 | unsigned Idx = (ABit << 2) | (BBit << 1) | (CBit); |
| 3354 | RLane.setBitVal(Bit, Imm[Idx]); |
| 3355 | } |
| 3356 | Dst.elem<T>(I) = static_cast<T>(APSInt(RLane, DstUnsigned)); |
| 3357 | } else if (MaskZ) { // If zero masked, zero the lane. |
| 3358 | Dst.elem<T>(I) = static_cast<T>(APSInt(RLane, DstUnsigned)); |
| 3359 | } else { // Just masked, put in A lane. |
| 3360 | Dst.elem<T>(I) = static_cast<T>(APSInt(ALane, DstUnsigned)); |
| 3361 | } |
| 3362 | } |
| 3363 | }); |
| 3364 | Dst.initializeAllElements(); |
| 3365 | return true; |
| 3366 | } |
| 3367 | |
| 3368 | static bool interp__builtin_vec_ext(InterpState &S, CodePtr OpPC, |
| 3369 | const CallExpr *Call, unsigned ID) { |
| 3370 | assert(Call->getNumArgs() == 2); |
| 3371 | |
| 3372 | APSInt ImmAPS = popToAPSInt(S, E: Call->getArg(Arg: 1)); |
| 3373 | const Pointer &Vec = S.Stk.pop<Pointer>(); |
| 3374 | if (!Vec.getFieldDesc()->isPrimitiveArray()) |
| 3375 | return false; |
| 3376 | |
| 3377 | unsigned NumElems = Vec.getNumElems(); |
| 3378 | unsigned Index = |
| 3379 | static_cast<unsigned>(ImmAPS.getZExtValue() & (NumElems - 1)); |
| 3380 | |
| 3381 | PrimType ElemT = Vec.getFieldDesc()->getPrimType(); |
| 3382 | // FIXME(#161685): Replace float+int split with a numeric-only type switch |
| 3383 | if (ElemT == PT_Float) { |
| 3384 | S.Stk.push<Floating>(Args&: Vec.elem<Floating>(I: Index)); |
| 3385 | return true; |
| 3386 | } |
| 3387 | INT_TYPE_SWITCH_NO_BOOL(ElemT, { |
| 3388 | APSInt V = Vec.elem<T>(Index).toAPSInt(); |
| 3389 | pushInteger(S, V, Call->getType()); |
| 3390 | }); |
| 3391 | |
| 3392 | return true; |
| 3393 | } |
| 3394 | |
| 3395 | static bool interp__builtin_vec_set(InterpState &S, CodePtr OpPC, |
| 3396 | const CallExpr *Call, unsigned ID) { |
| 3397 | assert(Call->getNumArgs() == 3); |
| 3398 | |
| 3399 | APSInt ImmAPS = popToAPSInt(S, E: Call->getArg(Arg: 2)); |
| 3400 | APSInt ValAPS = popToAPSInt(S, E: Call->getArg(Arg: 1)); |
| 3401 | |
| 3402 | const Pointer &Base = S.Stk.pop<Pointer>(); |
| 3403 | if (!Base.getFieldDesc()->isPrimitiveArray()) |
| 3404 | return false; |
| 3405 | |
| 3406 | const Pointer &Dst = S.Stk.peek<Pointer>(); |
| 3407 | |
| 3408 | unsigned NumElems = Base.getNumElems(); |
| 3409 | unsigned Index = |
| 3410 | static_cast<unsigned>(ImmAPS.getZExtValue() & (NumElems - 1)); |
| 3411 | |
| 3412 | PrimType ElemT = Base.getFieldDesc()->getPrimType(); |
| 3413 | INT_TYPE_SWITCH_NO_BOOL(ElemT, { |
| 3414 | for (unsigned I = 0; I != NumElems; ++I) |
| 3415 | Dst.elem<T>(I) = Base.elem<T>(I); |
| 3416 | Dst.elem<T>(Index) = static_cast<T>(ValAPS); |
| 3417 | }); |
| 3418 | |
| 3419 | Dst.initializeAllElements(); |
| 3420 | return true; |
| 3421 | } |
| 3422 | |
| 3423 | static bool evalICmpImm(uint8_t Imm, const APSInt &A, const APSInt &B, |
| 3424 | bool IsUnsigned) { |
| 3425 | switch (Imm & 0x7) { |
| 3426 | case 0x00: // _MM_CMPINT_EQ |
| 3427 | return (A == B); |
| 3428 | case 0x01: // _MM_CMPINT_LT |
| 3429 | return IsUnsigned ? A.ult(RHS: B) : A.slt(RHS: B); |
| 3430 | case 0x02: // _MM_CMPINT_LE |
| 3431 | return IsUnsigned ? A.ule(RHS: B) : A.sle(RHS: B); |
| 3432 | case 0x03: // _MM_CMPINT_FALSE |
| 3433 | return false; |
| 3434 | case 0x04: // _MM_CMPINT_NE |
| 3435 | return (A != B); |
| 3436 | case 0x05: // _MM_CMPINT_NLT |
| 3437 | return IsUnsigned ? A.ugt(RHS: B) : A.sgt(RHS: B); |
| 3438 | case 0x06: // _MM_CMPINT_NLE |
| 3439 | return IsUnsigned ? A.uge(RHS: B) : A.sge(RHS: B); |
| 3440 | case 0x07: // _MM_CMPINT_TRUE |
| 3441 | return true; |
| 3442 | default: |
| 3443 | llvm_unreachable("Invalid Op" ); |
| 3444 | } |
| 3445 | } |
| 3446 | |
| 3447 | static bool interp__builtin_ia32_cmp_mask(InterpState &S, CodePtr OpPC, |
| 3448 | const CallExpr *Call, unsigned ID, |
| 3449 | bool IsUnsigned) { |
| 3450 | assert(Call->getNumArgs() == 4); |
| 3451 | |
| 3452 | APSInt Mask = popToAPSInt(S, E: Call->getArg(Arg: 3)); |
| 3453 | APSInt Opcode = popToAPSInt(S, E: Call->getArg(Arg: 2)); |
| 3454 | unsigned CmpOp = static_cast<unsigned>(Opcode.getZExtValue()); |
| 3455 | const Pointer &RHS = S.Stk.pop<Pointer>(); |
| 3456 | const Pointer &LHS = S.Stk.pop<Pointer>(); |
| 3457 | |
| 3458 | assert(LHS.getNumElems() == RHS.getNumElems()); |
| 3459 | |
| 3460 | APInt RetMask = APInt::getZero(numBits: LHS.getNumElems()); |
| 3461 | unsigned VectorLen = LHS.getNumElems(); |
| 3462 | PrimType ElemT = LHS.getFieldDesc()->getPrimType(); |
| 3463 | |
| 3464 | for (unsigned ElemNum = 0; ElemNum < VectorLen; ++ElemNum) { |
| 3465 | APSInt A, B; |
| 3466 | INT_TYPE_SWITCH_NO_BOOL(ElemT, { |
| 3467 | A = LHS.elem<T>(ElemNum).toAPSInt(); |
| 3468 | B = RHS.elem<T>(ElemNum).toAPSInt(); |
| 3469 | }); |
| 3470 | RetMask.setBitVal(BitPosition: ElemNum, |
| 3471 | BitValue: Mask[ElemNum] && evalICmpImm(Imm: CmpOp, A, B, IsUnsigned)); |
| 3472 | } |
| 3473 | pushInteger(S, Val: RetMask, QT: Call->getType()); |
| 3474 | return true; |
| 3475 | } |
| 3476 | |
| 3477 | static bool interp__builtin_ia32_vpconflict(InterpState &S, CodePtr OpPC, |
| 3478 | const CallExpr *Call) { |
| 3479 | assert(Call->getNumArgs() == 1); |
| 3480 | |
| 3481 | QualType Arg0Type = Call->getArg(Arg: 0)->getType(); |
| 3482 | const auto *VecT = Arg0Type->castAs<VectorType>(); |
| 3483 | PrimType ElemT = *S.getContext().classify(T: VecT->getElementType()); |
| 3484 | unsigned NumElems = VecT->getNumElements(); |
| 3485 | bool DestUnsigned = Call->getType()->isUnsignedIntegerOrEnumerationType(); |
| 3486 | const Pointer &Src = S.Stk.pop<Pointer>(); |
| 3487 | const Pointer &Dst = S.Stk.peek<Pointer>(); |
| 3488 | |
| 3489 | for (unsigned I = 0; I != NumElems; ++I) { |
| 3490 | INT_TYPE_SWITCH_NO_BOOL(ElemT, { |
| 3491 | APSInt ElemI = Src.elem<T>(I).toAPSInt(); |
| 3492 | APInt ConflictMask(ElemI.getBitWidth(), 0); |
| 3493 | for (unsigned J = 0; J != I; ++J) { |
| 3494 | APSInt ElemJ = Src.elem<T>(J).toAPSInt(); |
| 3495 | ConflictMask.setBitVal(J, ElemI == ElemJ); |
| 3496 | } |
| 3497 | Dst.elem<T>(I) = static_cast<T>(APSInt(ConflictMask, DestUnsigned)); |
| 3498 | }); |
| 3499 | } |
| 3500 | Dst.initializeAllElements(); |
| 3501 | return true; |
| 3502 | } |
| 3503 | |
| 3504 | static bool interp__builtin_ia32_cvt_vec2mask(InterpState &S, CodePtr OpPC, |
| 3505 | const CallExpr *Call, |
| 3506 | unsigned ID) { |
| 3507 | assert(Call->getNumArgs() == 1); |
| 3508 | |
| 3509 | const Pointer &Vec = S.Stk.pop<Pointer>(); |
| 3510 | unsigned RetWidth = S.getASTContext().getIntWidth(T: Call->getType()); |
| 3511 | APInt RetMask(RetWidth, 0); |
| 3512 | |
| 3513 | unsigned VectorLen = Vec.getNumElems(); |
| 3514 | PrimType ElemT = Vec.getFieldDesc()->getPrimType(); |
| 3515 | |
| 3516 | for (unsigned ElemNum = 0; ElemNum != VectorLen; ++ElemNum) { |
| 3517 | APSInt A; |
| 3518 | INT_TYPE_SWITCH_NO_BOOL(ElemT, { A = Vec.elem<T>(ElemNum).toAPSInt(); }); |
| 3519 | unsigned MSB = A[A.getBitWidth() - 1]; |
| 3520 | RetMask.setBitVal(BitPosition: ElemNum, BitValue: MSB); |
| 3521 | } |
| 3522 | pushInteger(S, Val: RetMask, QT: Call->getType()); |
| 3523 | return true; |
| 3524 | } |
| 3525 | |
| 3526 | static bool interp__builtin_ia32_cvt_mask2vec(InterpState &S, CodePtr OpPC, |
| 3527 | const CallExpr *Call, |
| 3528 | unsigned ID) { |
| 3529 | assert(Call->getNumArgs() == 1); |
| 3530 | |
| 3531 | APSInt Mask = popToAPSInt(S, E: Call->getArg(Arg: 0)); |
| 3532 | |
| 3533 | const Pointer &Vec = S.Stk.peek<Pointer>(); |
| 3534 | unsigned NumElems = Vec.getNumElems(); |
| 3535 | PrimType ElemT = Vec.getFieldDesc()->getPrimType(); |
| 3536 | |
| 3537 | for (unsigned I = 0; I != NumElems; ++I) { |
| 3538 | bool BitSet = Mask[I]; |
| 3539 | |
| 3540 | INT_TYPE_SWITCH_NO_BOOL( |
| 3541 | ElemT, { Vec.elem<T>(I) = BitSet ? T::from(-1) : T::from(0); }); |
| 3542 | } |
| 3543 | |
| 3544 | Vec.initializeAllElements(); |
| 3545 | |
| 3546 | return true; |
| 3547 | } |
| 3548 | |
| 3549 | static bool interp__builtin_ia32_cvtsd2ss(InterpState &S, CodePtr OpPC, |
| 3550 | const CallExpr *Call, |
| 3551 | bool HasRoundingMask) { |
| 3552 | APSInt Rounding, MaskInt; |
| 3553 | Pointer Src, B, A; |
| 3554 | |
| 3555 | if (HasRoundingMask) { |
| 3556 | assert(Call->getNumArgs() == 5); |
| 3557 | Rounding = popToAPSInt(S, E: Call->getArg(Arg: 4)); |
| 3558 | MaskInt = popToAPSInt(S, E: Call->getArg(Arg: 3)); |
| 3559 | Src = S.Stk.pop<Pointer>(); |
| 3560 | B = S.Stk.pop<Pointer>(); |
| 3561 | A = S.Stk.pop<Pointer>(); |
| 3562 | if (!CheckLoad(S, OpPC, Ptr: A) || !CheckLoad(S, OpPC, Ptr: B) || |
| 3563 | !CheckLoad(S, OpPC, Ptr: Src)) |
| 3564 | return false; |
| 3565 | } else { |
| 3566 | assert(Call->getNumArgs() == 2); |
| 3567 | B = S.Stk.pop<Pointer>(); |
| 3568 | A = S.Stk.pop<Pointer>(); |
| 3569 | if (!CheckLoad(S, OpPC, Ptr: A) || !CheckLoad(S, OpPC, Ptr: B)) |
| 3570 | return false; |
| 3571 | } |
| 3572 | |
| 3573 | const auto *DstVTy = Call->getType()->castAs<VectorType>(); |
| 3574 | unsigned NumElems = DstVTy->getNumElements(); |
| 3575 | const Pointer &Dst = S.Stk.peek<Pointer>(); |
| 3576 | |
| 3577 | // Copy all elements except lane 0 (overwritten below) from A to Dst. |
| 3578 | for (unsigned I = 1; I != NumElems; ++I) |
| 3579 | Dst.elem<Floating>(I) = A.elem<Floating>(I); |
| 3580 | |
| 3581 | // Convert element 0 from double to float, or use Src if masked off. |
| 3582 | if (!HasRoundingMask || (MaskInt.getZExtValue() & 0x1)) { |
| 3583 | assert(S.getASTContext().FloatTy == DstVTy->getElementType() && |
| 3584 | "cvtsd2ss requires float element type in destination vector" ); |
| 3585 | |
| 3586 | Floating Conv = S.allocFloat( |
| 3587 | Sem: S.getASTContext().getFloatTypeSemantics(T: DstVTy->getElementType())); |
| 3588 | APFloat SrcVal = B.elem<Floating>(I: 0).getAPFloat(); |
| 3589 | if (!convertDoubleToFloatStrict(Src: SrcVal, Dst&: Conv, S, DiagExpr: Call)) |
| 3590 | return false; |
| 3591 | Dst.elem<Floating>(I: 0) = Conv; |
| 3592 | } else { |
| 3593 | Dst.elem<Floating>(I: 0) = Src.elem<Floating>(I: 0); |
| 3594 | } |
| 3595 | |
| 3596 | Dst.initializeAllElements(); |
| 3597 | return true; |
| 3598 | } |
| 3599 | |
| 3600 | static bool interp__builtin_ia32_cvtpd2ps(InterpState &S, CodePtr OpPC, |
| 3601 | const CallExpr *Call, bool IsMasked, |
| 3602 | bool HasRounding) { |
| 3603 | |
| 3604 | APSInt MaskVal; |
| 3605 | Pointer PassThrough; |
| 3606 | Pointer Src; |
| 3607 | APSInt Rounding; |
| 3608 | |
| 3609 | if (IsMasked) { |
| 3610 | // Pop in reverse order. |
| 3611 | if (HasRounding) { |
| 3612 | Rounding = popToAPSInt(S, E: Call->getArg(Arg: 3)); |
| 3613 | MaskVal = popToAPSInt(S, E: Call->getArg(Arg: 2)); |
| 3614 | PassThrough = S.Stk.pop<Pointer>(); |
| 3615 | Src = S.Stk.pop<Pointer>(); |
| 3616 | } else { |
| 3617 | MaskVal = popToAPSInt(S, E: Call->getArg(Arg: 2)); |
| 3618 | PassThrough = S.Stk.pop<Pointer>(); |
| 3619 | Src = S.Stk.pop<Pointer>(); |
| 3620 | } |
| 3621 | |
| 3622 | if (!CheckLoad(S, OpPC, Ptr: PassThrough)) |
| 3623 | return false; |
| 3624 | } else { |
| 3625 | // Pop source only. |
| 3626 | Src = S.Stk.pop<Pointer>(); |
| 3627 | } |
| 3628 | |
| 3629 | if (!CheckLoad(S, OpPC, Ptr: Src)) |
| 3630 | return false; |
| 3631 | |
| 3632 | const auto *RetVTy = Call->getType()->castAs<VectorType>(); |
| 3633 | unsigned RetElems = RetVTy->getNumElements(); |
| 3634 | unsigned SrcElems = Src.getNumElems(); |
| 3635 | const Pointer &Dst = S.Stk.peek<Pointer>(); |
| 3636 | |
| 3637 | // Initialize destination with passthrough or zeros. |
| 3638 | for (unsigned I = 0; I != RetElems; ++I) |
| 3639 | if (IsMasked) |
| 3640 | Dst.elem<Floating>(I) = PassThrough.elem<Floating>(I); |
| 3641 | else |
| 3642 | Dst.elem<Floating>(I) = Floating(APFloat(0.0f)); |
| 3643 | |
| 3644 | assert(S.getASTContext().FloatTy == RetVTy->getElementType() && |
| 3645 | "cvtpd2ps requires float element type in return vector" ); |
| 3646 | |
| 3647 | // Convert double to float for enabled elements (only process source elements |
| 3648 | // that exist). |
| 3649 | for (unsigned I = 0; I != SrcElems; ++I) { |
| 3650 | if (IsMasked && !MaskVal[I]) |
| 3651 | continue; |
| 3652 | |
| 3653 | APFloat SrcVal = Src.elem<Floating>(I).getAPFloat(); |
| 3654 | |
| 3655 | Floating Conv = S.allocFloat( |
| 3656 | Sem: S.getASTContext().getFloatTypeSemantics(T: RetVTy->getElementType())); |
| 3657 | if (!convertDoubleToFloatStrict(Src: SrcVal, Dst&: Conv, S, DiagExpr: Call)) |
| 3658 | return false; |
| 3659 | Dst.elem<Floating>(I) = Conv; |
| 3660 | } |
| 3661 | |
| 3662 | Dst.initializeAllElements(); |
| 3663 | return true; |
| 3664 | } |
| 3665 | |
| 3666 | static bool interp__builtin_ia32_shuffle_generic( |
| 3667 | InterpState &S, CodePtr OpPC, const CallExpr *Call, |
| 3668 | llvm::function_ref<std::pair<unsigned, int>(unsigned, unsigned)> |
| 3669 | GetSourceIndex) { |
| 3670 | |
| 3671 | assert(Call->getNumArgs() == 2 || Call->getNumArgs() == 3); |
| 3672 | |
| 3673 | unsigned ShuffleMask = 0; |
| 3674 | Pointer A, MaskVector, B; |
| 3675 | bool IsVectorMask = false; |
| 3676 | bool IsSingleOperand = (Call->getNumArgs() == 2); |
| 3677 | |
| 3678 | if (IsSingleOperand) { |
| 3679 | QualType MaskType = Call->getArg(Arg: 1)->getType(); |
| 3680 | if (MaskType->isVectorType()) { |
| 3681 | IsVectorMask = true; |
| 3682 | MaskVector = S.Stk.pop<Pointer>(); |
| 3683 | A = S.Stk.pop<Pointer>(); |
| 3684 | B = A; |
| 3685 | } else if (MaskType->isIntegerType()) { |
| 3686 | ShuffleMask = popToAPSInt(S, E: Call->getArg(Arg: 1)).getZExtValue(); |
| 3687 | A = S.Stk.pop<Pointer>(); |
| 3688 | B = A; |
| 3689 | } else { |
| 3690 | return false; |
| 3691 | } |
| 3692 | } else { |
| 3693 | QualType Arg2Type = Call->getArg(Arg: 2)->getType(); |
| 3694 | if (Arg2Type->isVectorType()) { |
| 3695 | IsVectorMask = true; |
| 3696 | B = S.Stk.pop<Pointer>(); |
| 3697 | MaskVector = S.Stk.pop<Pointer>(); |
| 3698 | A = S.Stk.pop<Pointer>(); |
| 3699 | } else if (Arg2Type->isIntegerType()) { |
| 3700 | ShuffleMask = popToAPSInt(S, E: Call->getArg(Arg: 2)).getZExtValue(); |
| 3701 | B = S.Stk.pop<Pointer>(); |
| 3702 | A = S.Stk.pop<Pointer>(); |
| 3703 | } else { |
| 3704 | return false; |
| 3705 | } |
| 3706 | } |
| 3707 | |
| 3708 | QualType Arg0Type = Call->getArg(Arg: 0)->getType(); |
| 3709 | const auto *VecT = Arg0Type->castAs<VectorType>(); |
| 3710 | PrimType ElemT = *S.getContext().classify(T: VecT->getElementType()); |
| 3711 | unsigned NumElems = VecT->getNumElements(); |
| 3712 | |
| 3713 | const Pointer &Dst = S.Stk.peek<Pointer>(); |
| 3714 | |
| 3715 | PrimType MaskElemT = PT_Uint32; |
| 3716 | if (IsVectorMask) { |
| 3717 | QualType Arg1Type = Call->getArg(Arg: 1)->getType(); |
| 3718 | const auto *MaskVecT = Arg1Type->castAs<VectorType>(); |
| 3719 | QualType MaskElemType = MaskVecT->getElementType(); |
| 3720 | MaskElemT = *S.getContext().classify(T: MaskElemType); |
| 3721 | } |
| 3722 | |
| 3723 | for (unsigned DstIdx = 0; DstIdx != NumElems; ++DstIdx) { |
| 3724 | if (IsVectorMask) { |
| 3725 | INT_TYPE_SWITCH(MaskElemT, { |
| 3726 | ShuffleMask = static_cast<unsigned>(MaskVector.elem<T>(DstIdx)); |
| 3727 | }); |
| 3728 | } |
| 3729 | |
| 3730 | auto [SrcVecIdx, SrcIdx] = GetSourceIndex(DstIdx, ShuffleMask); |
| 3731 | |
| 3732 | if (SrcIdx < 0) { |
| 3733 | // Zero out this element |
| 3734 | if (ElemT == PT_Float) { |
| 3735 | Dst.elem<Floating>(I: DstIdx) = Floating( |
| 3736 | S.getASTContext().getFloatTypeSemantics(T: VecT->getElementType())); |
| 3737 | } else { |
| 3738 | INT_TYPE_SWITCH_NO_BOOL(ElemT, { Dst.elem<T>(DstIdx) = T::from(0); }); |
| 3739 | } |
| 3740 | } else { |
| 3741 | const Pointer &Src = (SrcVecIdx == 0) ? A : B; |
| 3742 | TYPE_SWITCH(ElemT, { Dst.elem<T>(DstIdx) = Src.elem<T>(SrcIdx); }); |
| 3743 | } |
| 3744 | } |
| 3745 | Dst.initializeAllElements(); |
| 3746 | |
| 3747 | return true; |
| 3748 | } |
| 3749 | |
| 3750 | static bool interp__builtin_ia32_shift_with_count( |
| 3751 | InterpState &S, CodePtr OpPC, const CallExpr *Call, |
| 3752 | llvm::function_ref<APInt(const APInt &, uint64_t)> ShiftOp, |
| 3753 | llvm::function_ref<APInt(const APInt &, unsigned)> OverflowOp) { |
| 3754 | |
| 3755 | assert(Call->getNumArgs() == 2); |
| 3756 | |
| 3757 | const Pointer &Count = S.Stk.pop<Pointer>(); |
| 3758 | const Pointer &Source = S.Stk.pop<Pointer>(); |
| 3759 | |
| 3760 | QualType SourceType = Call->getArg(Arg: 0)->getType(); |
| 3761 | QualType CountType = Call->getArg(Arg: 1)->getType(); |
| 3762 | assert(SourceType->isVectorType() && CountType->isVectorType()); |
| 3763 | |
| 3764 | const auto *SourceVecT = SourceType->castAs<VectorType>(); |
| 3765 | const auto *CountVecT = CountType->castAs<VectorType>(); |
| 3766 | PrimType SourceElemT = *S.getContext().classify(T: SourceVecT->getElementType()); |
| 3767 | PrimType CountElemT = *S.getContext().classify(T: CountVecT->getElementType()); |
| 3768 | |
| 3769 | const Pointer &Dst = S.Stk.peek<Pointer>(); |
| 3770 | |
| 3771 | unsigned DestEltWidth = |
| 3772 | S.getASTContext().getTypeSize(T: SourceVecT->getElementType()); |
| 3773 | bool IsDestUnsigned = SourceVecT->getElementType()->isUnsignedIntegerType(); |
| 3774 | unsigned DestLen = SourceVecT->getNumElements(); |
| 3775 | unsigned CountEltWidth = |
| 3776 | S.getASTContext().getTypeSize(T: CountVecT->getElementType()); |
| 3777 | unsigned NumBitsInQWord = 64; |
| 3778 | unsigned NumCountElts = NumBitsInQWord / CountEltWidth; |
| 3779 | |
| 3780 | uint64_t CountLQWord = 0; |
| 3781 | for (unsigned EltIdx = 0; EltIdx != NumCountElts; ++EltIdx) { |
| 3782 | uint64_t Elt = 0; |
| 3783 | INT_TYPE_SWITCH(CountElemT, |
| 3784 | { Elt = static_cast<uint64_t>(Count.elem<T>(EltIdx)); }); |
| 3785 | CountLQWord |= (Elt << (EltIdx * CountEltWidth)); |
| 3786 | } |
| 3787 | |
| 3788 | for (unsigned EltIdx = 0; EltIdx != DestLen; ++EltIdx) { |
| 3789 | APSInt Elt; |
| 3790 | INT_TYPE_SWITCH(SourceElemT, { Elt = Source.elem<T>(EltIdx).toAPSInt(); }); |
| 3791 | |
| 3792 | APInt Result; |
| 3793 | if (CountLQWord < DestEltWidth) { |
| 3794 | Result = ShiftOp(Elt, CountLQWord); |
| 3795 | } else { |
| 3796 | Result = OverflowOp(Elt, DestEltWidth); |
| 3797 | } |
| 3798 | if (IsDestUnsigned) { |
| 3799 | INT_TYPE_SWITCH(SourceElemT, { |
| 3800 | Dst.elem<T>(EltIdx) = T::from(Result.getZExtValue()); |
| 3801 | }); |
| 3802 | } else { |
| 3803 | INT_TYPE_SWITCH(SourceElemT, { |
| 3804 | Dst.elem<T>(EltIdx) = T::from(Result.getSExtValue()); |
| 3805 | }); |
| 3806 | } |
| 3807 | } |
| 3808 | |
| 3809 | Dst.initializeAllElements(); |
| 3810 | return true; |
| 3811 | } |
| 3812 | |
| 3813 | static bool interp__builtin_ia32_shufbitqmb_mask(InterpState &S, CodePtr OpPC, |
| 3814 | const CallExpr *Call) { |
| 3815 | |
| 3816 | assert(Call->getNumArgs() == 3); |
| 3817 | |
| 3818 | QualType SourceType = Call->getArg(Arg: 0)->getType(); |
| 3819 | QualType ShuffleMaskType = Call->getArg(Arg: 1)->getType(); |
| 3820 | QualType ZeroMaskType = Call->getArg(Arg: 2)->getType(); |
| 3821 | if (!SourceType->isVectorType() || !ShuffleMaskType->isVectorType() || |
| 3822 | !ZeroMaskType->isIntegerType()) { |
| 3823 | return false; |
| 3824 | } |
| 3825 | |
| 3826 | Pointer Source, ShuffleMask; |
| 3827 | APSInt ZeroMask = popToAPSInt(S, E: Call->getArg(Arg: 2)); |
| 3828 | ShuffleMask = S.Stk.pop<Pointer>(); |
| 3829 | Source = S.Stk.pop<Pointer>(); |
| 3830 | |
| 3831 | const auto *SourceVecT = SourceType->castAs<VectorType>(); |
| 3832 | const auto *ShuffleMaskVecT = ShuffleMaskType->castAs<VectorType>(); |
| 3833 | assert(SourceVecT->getNumElements() == ShuffleMaskVecT->getNumElements()); |
| 3834 | assert(ZeroMask.getBitWidth() == SourceVecT->getNumElements()); |
| 3835 | |
| 3836 | PrimType SourceElemT = *S.getContext().classify(T: SourceVecT->getElementType()); |
| 3837 | PrimType ShuffleMaskElemT = |
| 3838 | *S.getContext().classify(T: ShuffleMaskVecT->getElementType()); |
| 3839 | |
| 3840 | unsigned NumBytesInQWord = 8; |
| 3841 | unsigned NumBitsInByte = 8; |
| 3842 | unsigned NumBytes = SourceVecT->getNumElements(); |
| 3843 | unsigned NumQWords = NumBytes / NumBytesInQWord; |
| 3844 | unsigned RetWidth = ZeroMask.getBitWidth(); |
| 3845 | APSInt RetMask(llvm::APInt(RetWidth, 0), /*isUnsigned=*/true); |
| 3846 | |
| 3847 | for (unsigned QWordId = 0; QWordId != NumQWords; ++QWordId) { |
| 3848 | APInt SourceQWord(64, 0); |
| 3849 | for (unsigned ByteIdx = 0; ByteIdx != NumBytesInQWord; ++ByteIdx) { |
| 3850 | uint64_t Byte = 0; |
| 3851 | INT_TYPE_SWITCH(SourceElemT, { |
| 3852 | Byte = static_cast<uint64_t>( |
| 3853 | Source.elem<T>(QWordId * NumBytesInQWord + ByteIdx)); |
| 3854 | }); |
| 3855 | SourceQWord.insertBits(SubBits: APInt(8, Byte & 0xFF), bitPosition: ByteIdx * NumBitsInByte); |
| 3856 | } |
| 3857 | |
| 3858 | for (unsigned ByteIdx = 0; ByteIdx != NumBytesInQWord; ++ByteIdx) { |
| 3859 | unsigned SelIdx = QWordId * NumBytesInQWord + ByteIdx; |
| 3860 | unsigned M = 0; |
| 3861 | INT_TYPE_SWITCH(ShuffleMaskElemT, { |
| 3862 | M = static_cast<unsigned>(ShuffleMask.elem<T>(SelIdx)) & 0x3F; |
| 3863 | }); |
| 3864 | |
| 3865 | if (ZeroMask[SelIdx]) { |
| 3866 | RetMask.setBitVal(BitPosition: SelIdx, BitValue: SourceQWord[M]); |
| 3867 | } |
| 3868 | } |
| 3869 | } |
| 3870 | |
| 3871 | pushInteger(S, Val: RetMask, QT: Call->getType()); |
| 3872 | return true; |
| 3873 | } |
| 3874 | |
| 3875 | static bool interp__builtin_ia32_vcvtps2ph(InterpState &S, CodePtr OpPC, |
| 3876 | const CallExpr *Call) { |
| 3877 | // Arguments are: vector of floats, rounding immediate |
| 3878 | assert(Call->getNumArgs() == 2); |
| 3879 | |
| 3880 | APSInt Imm = popToAPSInt(S, E: Call->getArg(Arg: 1)); |
| 3881 | const Pointer &Src = S.Stk.pop<Pointer>(); |
| 3882 | const Pointer &Dst = S.Stk.peek<Pointer>(); |
| 3883 | |
| 3884 | assert(Src.getFieldDesc()->isPrimitiveArray()); |
| 3885 | assert(Dst.getFieldDesc()->isPrimitiveArray()); |
| 3886 | |
| 3887 | const auto *SrcVTy = Call->getArg(Arg: 0)->getType()->castAs<VectorType>(); |
| 3888 | unsigned SrcNumElems = SrcVTy->getNumElements(); |
| 3889 | const auto *DstVTy = Call->getType()->castAs<VectorType>(); |
| 3890 | unsigned DstNumElems = DstVTy->getNumElements(); |
| 3891 | |
| 3892 | const llvm::fltSemantics &HalfSem = |
| 3893 | S.getASTContext().getFloatTypeSemantics(T: S.getASTContext().HalfTy); |
| 3894 | |
| 3895 | // imm[2] == 1 means use MXCSR rounding mode. |
| 3896 | // In that case, we can only evaluate if the conversion is exact. |
| 3897 | int ImmVal = Imm.getZExtValue(); |
| 3898 | bool UseMXCSR = (ImmVal & 4) != 0; |
| 3899 | bool IsFPConstrained = |
| 3900 | Call->getFPFeaturesInEffect(LO: S.getASTContext().getLangOpts()) |
| 3901 | .isFPConstrained(); |
| 3902 | |
| 3903 | llvm::RoundingMode RM; |
| 3904 | if (!UseMXCSR) { |
| 3905 | switch (ImmVal & 3) { |
| 3906 | case 0: |
| 3907 | RM = llvm::RoundingMode::NearestTiesToEven; |
| 3908 | break; |
| 3909 | case 1: |
| 3910 | RM = llvm::RoundingMode::TowardNegative; |
| 3911 | break; |
| 3912 | case 2: |
| 3913 | RM = llvm::RoundingMode::TowardPositive; |
| 3914 | break; |
| 3915 | case 3: |
| 3916 | RM = llvm::RoundingMode::TowardZero; |
| 3917 | break; |
| 3918 | default: |
| 3919 | llvm_unreachable("Invalid immediate rounding mode" ); |
| 3920 | } |
| 3921 | } else { |
| 3922 | // For MXCSR, we must check for exactness. We can use any rounding mode |
| 3923 | // for the trial conversion since the result is the same if it's exact. |
| 3924 | RM = llvm::RoundingMode::NearestTiesToEven; |
| 3925 | } |
| 3926 | |
| 3927 | QualType DstElemQT = Dst.getFieldDesc()->getElemQualType(); |
| 3928 | PrimType DstElemT = *S.getContext().classify(T: DstElemQT); |
| 3929 | |
| 3930 | for (unsigned I = 0; I != SrcNumElems; ++I) { |
| 3931 | Floating SrcVal = Src.elem<Floating>(I); |
| 3932 | APFloat DstVal = SrcVal.getAPFloat(); |
| 3933 | |
| 3934 | bool LostInfo; |
| 3935 | APFloat::opStatus St = DstVal.convert(ToSemantics: HalfSem, RM, losesInfo: &LostInfo); |
| 3936 | |
| 3937 | if (UseMXCSR && IsFPConstrained && St != APFloat::opOK) { |
| 3938 | S.FFDiag(SI: S.Current->getSource(PC: OpPC), |
| 3939 | DiagId: diag::note_constexpr_dynamic_rounding); |
| 3940 | return false; |
| 3941 | } |
| 3942 | |
| 3943 | INT_TYPE_SWITCH_NO_BOOL(DstElemT, { |
| 3944 | // Convert the destination value's bit pattern to an unsigned integer, |
| 3945 | // then reconstruct the element using the target type's 'from' method. |
| 3946 | uint64_t RawBits = DstVal.bitcastToAPInt().getZExtValue(); |
| 3947 | Dst.elem<T>(I) = T::from(RawBits); |
| 3948 | }); |
| 3949 | } |
| 3950 | |
| 3951 | // Zero out remaining elements if the destination has more elements |
| 3952 | // (e.g., vcvtps2ph converting 4 floats to 8 shorts). |
| 3953 | if (DstNumElems > SrcNumElems) { |
| 3954 | for (unsigned I = SrcNumElems; I != DstNumElems; ++I) { |
| 3955 | INT_TYPE_SWITCH_NO_BOOL(DstElemT, { Dst.elem<T>(I) = T::from(0); }); |
| 3956 | } |
| 3957 | } |
| 3958 | |
| 3959 | Dst.initializeAllElements(); |
| 3960 | return true; |
| 3961 | } |
| 3962 | |
| 3963 | static bool interp__builtin_ia32_multishiftqb(InterpState &S, CodePtr OpPC, |
| 3964 | const CallExpr *Call) { |
| 3965 | assert(Call->getNumArgs() == 2); |
| 3966 | |
| 3967 | QualType ATy = Call->getArg(Arg: 0)->getType(); |
| 3968 | QualType BTy = Call->getArg(Arg: 1)->getType(); |
| 3969 | if (!ATy->isVectorType() || !BTy->isVectorType()) { |
| 3970 | return false; |
| 3971 | } |
| 3972 | |
| 3973 | const Pointer &BPtr = S.Stk.pop<Pointer>(); |
| 3974 | const Pointer &APtr = S.Stk.pop<Pointer>(); |
| 3975 | const auto *AVecT = ATy->castAs<VectorType>(); |
| 3976 | assert(AVecT->getNumElements() == |
| 3977 | BTy->castAs<VectorType>()->getNumElements()); |
| 3978 | |
| 3979 | PrimType ElemT = *S.getContext().classify(T: AVecT->getElementType()); |
| 3980 | |
| 3981 | unsigned NumBytesInQWord = 8; |
| 3982 | unsigned NumBitsInByte = 8; |
| 3983 | unsigned NumBytes = AVecT->getNumElements(); |
| 3984 | unsigned NumQWords = NumBytes / NumBytesInQWord; |
| 3985 | const Pointer &Dst = S.Stk.peek<Pointer>(); |
| 3986 | |
| 3987 | for (unsigned QWordId = 0; QWordId != NumQWords; ++QWordId) { |
| 3988 | APInt BQWord(64, 0); |
| 3989 | for (unsigned ByteIdx = 0; ByteIdx != NumBytesInQWord; ++ByteIdx) { |
| 3990 | unsigned Idx = QWordId * NumBytesInQWord + ByteIdx; |
| 3991 | INT_TYPE_SWITCH(ElemT, { |
| 3992 | uint64_t Byte = static_cast<uint64_t>(BPtr.elem<T>(Idx)); |
| 3993 | BQWord.insertBits(APInt(8, Byte & 0xFF), ByteIdx * NumBitsInByte); |
| 3994 | }); |
| 3995 | } |
| 3996 | |
| 3997 | for (unsigned ByteIdx = 0; ByteIdx != NumBytesInQWord; ++ByteIdx) { |
| 3998 | unsigned Idx = QWordId * NumBytesInQWord + ByteIdx; |
| 3999 | uint64_t Ctrl = 0; |
| 4000 | INT_TYPE_SWITCH( |
| 4001 | ElemT, { Ctrl = static_cast<uint64_t>(APtr.elem<T>(Idx)) & 0x3F; }); |
| 4002 | |
| 4003 | APInt Byte(8, 0); |
| 4004 | for (unsigned BitIdx = 0; BitIdx != NumBitsInByte; ++BitIdx) { |
| 4005 | Byte.setBitVal(BitPosition: BitIdx, BitValue: BQWord[(Ctrl + BitIdx) & 0x3F]); |
| 4006 | } |
| 4007 | INT_TYPE_SWITCH(ElemT, |
| 4008 | { Dst.elem<T>(Idx) = T::from(Byte.getZExtValue()); }); |
| 4009 | } |
| 4010 | } |
| 4011 | |
| 4012 | Dst.initializeAllElements(); |
| 4013 | |
| 4014 | return true; |
| 4015 | } |
| 4016 | |
| 4017 | static bool interp_builtin_ia32_gfni_affine(InterpState &S, CodePtr OpPC, |
| 4018 | const CallExpr *Call, |
| 4019 | bool Inverse) { |
| 4020 | assert(Call->getNumArgs() == 3); |
| 4021 | QualType XType = Call->getArg(Arg: 0)->getType(); |
| 4022 | QualType AType = Call->getArg(Arg: 1)->getType(); |
| 4023 | QualType ImmType = Call->getArg(Arg: 2)->getType(); |
| 4024 | if (!XType->isVectorType() || !AType->isVectorType() || |
| 4025 | !ImmType->isIntegerType()) { |
| 4026 | return false; |
| 4027 | } |
| 4028 | |
| 4029 | Pointer X, A; |
| 4030 | APSInt Imm = popToAPSInt(S, E: Call->getArg(Arg: 2)); |
| 4031 | A = S.Stk.pop<Pointer>(); |
| 4032 | X = S.Stk.pop<Pointer>(); |
| 4033 | |
| 4034 | const Pointer &Dst = S.Stk.peek<Pointer>(); |
| 4035 | const auto *AVecT = AType->castAs<VectorType>(); |
| 4036 | assert(XType->castAs<VectorType>()->getNumElements() == |
| 4037 | AVecT->getNumElements()); |
| 4038 | unsigned NumBytesInQWord = 8; |
| 4039 | unsigned NumBytes = AVecT->getNumElements(); |
| 4040 | unsigned NumBitsInQWord = 64; |
| 4041 | unsigned NumQWords = NumBytes / NumBytesInQWord; |
| 4042 | unsigned NumBitsInByte = 8; |
| 4043 | PrimType AElemT = *S.getContext().classify(T: AVecT->getElementType()); |
| 4044 | |
| 4045 | // computing A*X + Imm |
| 4046 | for (unsigned QWordIdx = 0; QWordIdx != NumQWords; ++QWordIdx) { |
| 4047 | // Extract the QWords from X, A |
| 4048 | APInt XQWord(NumBitsInQWord, 0); |
| 4049 | APInt AQWord(NumBitsInQWord, 0); |
| 4050 | for (unsigned ByteIdx = 0; ByteIdx != NumBytesInQWord; ++ByteIdx) { |
| 4051 | unsigned Idx = QWordIdx * NumBytesInQWord + ByteIdx; |
| 4052 | uint8_t XByte; |
| 4053 | uint8_t AByte; |
| 4054 | INT_TYPE_SWITCH(AElemT, { |
| 4055 | XByte = static_cast<uint8_t>(X.elem<T>(Idx)); |
| 4056 | AByte = static_cast<uint8_t>(A.elem<T>(Idx)); |
| 4057 | }); |
| 4058 | |
| 4059 | XQWord.insertBits(SubBits: APInt(NumBitsInByte, XByte), bitPosition: ByteIdx * NumBitsInByte); |
| 4060 | AQWord.insertBits(SubBits: APInt(NumBitsInByte, AByte), bitPosition: ByteIdx * NumBitsInByte); |
| 4061 | } |
| 4062 | |
| 4063 | for (unsigned ByteIdx = 0; ByteIdx != NumBytesInQWord; ++ByteIdx) { |
| 4064 | unsigned Idx = QWordIdx * NumBytesInQWord + ByteIdx; |
| 4065 | uint8_t XByte = |
| 4066 | XQWord.lshr(shiftAmt: ByteIdx * NumBitsInByte).getLoBits(numBits: 8).getZExtValue(); |
| 4067 | INT_TYPE_SWITCH(AElemT, { |
| 4068 | Dst.elem<T>(Idx) = T::from(GFNIAffine(XByte, AQWord, Imm, Inverse)); |
| 4069 | }); |
| 4070 | } |
| 4071 | } |
| 4072 | Dst.initializeAllElements(); |
| 4073 | return true; |
| 4074 | } |
| 4075 | |
| 4076 | static bool interp__builtin_ia32_gfni_mul(InterpState &S, CodePtr OpPC, |
| 4077 | const CallExpr *Call) { |
| 4078 | assert(Call->getNumArgs() == 2); |
| 4079 | |
| 4080 | QualType AType = Call->getArg(Arg: 0)->getType(); |
| 4081 | QualType BType = Call->getArg(Arg: 1)->getType(); |
| 4082 | if (!AType->isVectorType() || !BType->isVectorType()) { |
| 4083 | return false; |
| 4084 | } |
| 4085 | |
| 4086 | Pointer A, B; |
| 4087 | B = S.Stk.pop<Pointer>(); |
| 4088 | A = S.Stk.pop<Pointer>(); |
| 4089 | |
| 4090 | const Pointer &Dst = S.Stk.peek<Pointer>(); |
| 4091 | const auto *AVecT = AType->castAs<VectorType>(); |
| 4092 | assert(AVecT->getNumElements() == |
| 4093 | BType->castAs<VectorType>()->getNumElements()); |
| 4094 | |
| 4095 | PrimType AElemT = *S.getContext().classify(T: AVecT->getElementType()); |
| 4096 | unsigned NumBytes = A.getNumElems(); |
| 4097 | |
| 4098 | for (unsigned ByteIdx = 0; ByteIdx != NumBytes; ++ByteIdx) { |
| 4099 | uint8_t AByte, BByte; |
| 4100 | INT_TYPE_SWITCH(AElemT, { |
| 4101 | AByte = static_cast<uint8_t>(A.elem<T>(ByteIdx)); |
| 4102 | BByte = static_cast<uint8_t>(B.elem<T>(ByteIdx)); |
| 4103 | Dst.elem<T>(ByteIdx) = T::from(GFNIMul(AByte, BByte)); |
| 4104 | }); |
| 4105 | } |
| 4106 | |
| 4107 | Dst.initializeAllElements(); |
| 4108 | return true; |
| 4109 | } |
| 4110 | |
| 4111 | bool InterpretBuiltin(InterpState &S, CodePtr OpPC, const CallExpr *Call, |
| 4112 | uint32_t BuiltinID) { |
| 4113 | if (!S.getASTContext().BuiltinInfo.isConstantEvaluated(ID: BuiltinID)) |
| 4114 | return Invalid(S, OpPC); |
| 4115 | |
| 4116 | const InterpFrame *Frame = S.Current; |
| 4117 | switch (BuiltinID) { |
| 4118 | case Builtin::BI__builtin_is_constant_evaluated: |
| 4119 | return interp__builtin_is_constant_evaluated(S, OpPC, Frame, Call); |
| 4120 | |
| 4121 | case Builtin::BI__builtin_assume: |
| 4122 | case Builtin::BI__assume: |
| 4123 | return interp__builtin_assume(S, OpPC, Frame, Call); |
| 4124 | |
| 4125 | case Builtin::BI__builtin_strcmp: |
| 4126 | case Builtin::BIstrcmp: |
| 4127 | case Builtin::BI__builtin_strncmp: |
| 4128 | case Builtin::BIstrncmp: |
| 4129 | case Builtin::BI__builtin_wcsncmp: |
| 4130 | case Builtin::BIwcsncmp: |
| 4131 | case Builtin::BI__builtin_wcscmp: |
| 4132 | case Builtin::BIwcscmp: |
| 4133 | return interp__builtin_strcmp(S, OpPC, Frame, Call, ID: BuiltinID); |
| 4134 | |
| 4135 | case Builtin::BI__builtin_strlen: |
| 4136 | case Builtin::BIstrlen: |
| 4137 | case Builtin::BI__builtin_wcslen: |
| 4138 | case Builtin::BIwcslen: |
| 4139 | return interp__builtin_strlen(S, OpPC, Frame, Call, ID: BuiltinID); |
| 4140 | |
| 4141 | case Builtin::BI__builtin_nan: |
| 4142 | case Builtin::BI__builtin_nanf: |
| 4143 | case Builtin::BI__builtin_nanl: |
| 4144 | case Builtin::BI__builtin_nanf16: |
| 4145 | case Builtin::BI__builtin_nanf128: |
| 4146 | return interp__builtin_nan(S, OpPC, Frame, Call, /*Signaling=*/false); |
| 4147 | |
| 4148 | case Builtin::BI__builtin_nans: |
| 4149 | case Builtin::BI__builtin_nansf: |
| 4150 | case Builtin::BI__builtin_nansl: |
| 4151 | case Builtin::BI__builtin_nansf16: |
| 4152 | case Builtin::BI__builtin_nansf128: |
| 4153 | return interp__builtin_nan(S, OpPC, Frame, Call, /*Signaling=*/true); |
| 4154 | |
| 4155 | case Builtin::BI__builtin_huge_val: |
| 4156 | case Builtin::BI__builtin_huge_valf: |
| 4157 | case Builtin::BI__builtin_huge_vall: |
| 4158 | case Builtin::BI__builtin_huge_valf16: |
| 4159 | case Builtin::BI__builtin_huge_valf128: |
| 4160 | case Builtin::BI__builtin_inf: |
| 4161 | case Builtin::BI__builtin_inff: |
| 4162 | case Builtin::BI__builtin_infl: |
| 4163 | case Builtin::BI__builtin_inff16: |
| 4164 | case Builtin::BI__builtin_inff128: |
| 4165 | return interp__builtin_inf(S, OpPC, Frame, Call); |
| 4166 | |
| 4167 | case Builtin::BI__builtin_copysign: |
| 4168 | case Builtin::BI__builtin_copysignf: |
| 4169 | case Builtin::BI__builtin_copysignl: |
| 4170 | case Builtin::BI__builtin_copysignf128: |
| 4171 | return interp__builtin_copysign(S, OpPC, Frame); |
| 4172 | |
| 4173 | case Builtin::BI__builtin_fmin: |
| 4174 | case Builtin::BI__builtin_fminf: |
| 4175 | case Builtin::BI__builtin_fminl: |
| 4176 | case Builtin::BI__builtin_fminf16: |
| 4177 | case Builtin::BI__builtin_fminf128: |
| 4178 | return interp__builtin_fmin(S, OpPC, Frame, /*IsNumBuiltin=*/false); |
| 4179 | |
| 4180 | case Builtin::BI__builtin_fminimum_num: |
| 4181 | case Builtin::BI__builtin_fminimum_numf: |
| 4182 | case Builtin::BI__builtin_fminimum_numl: |
| 4183 | case Builtin::BI__builtin_fminimum_numf16: |
| 4184 | case Builtin::BI__builtin_fminimum_numf128: |
| 4185 | return interp__builtin_fmin(S, OpPC, Frame, /*IsNumBuiltin=*/true); |
| 4186 | |
| 4187 | case Builtin::BI__builtin_fmax: |
| 4188 | case Builtin::BI__builtin_fmaxf: |
| 4189 | case Builtin::BI__builtin_fmaxl: |
| 4190 | case Builtin::BI__builtin_fmaxf16: |
| 4191 | case Builtin::BI__builtin_fmaxf128: |
| 4192 | return interp__builtin_fmax(S, OpPC, Frame, /*IsNumBuiltin=*/false); |
| 4193 | |
| 4194 | case Builtin::BI__builtin_fmaximum_num: |
| 4195 | case Builtin::BI__builtin_fmaximum_numf: |
| 4196 | case Builtin::BI__builtin_fmaximum_numl: |
| 4197 | case Builtin::BI__builtin_fmaximum_numf16: |
| 4198 | case Builtin::BI__builtin_fmaximum_numf128: |
| 4199 | return interp__builtin_fmax(S, OpPC, Frame, /*IsNumBuiltin=*/true); |
| 4200 | |
| 4201 | case Builtin::BI__builtin_isnan: |
| 4202 | return interp__builtin_isnan(S, OpPC, Frame, Call); |
| 4203 | |
| 4204 | case Builtin::BI__builtin_issignaling: |
| 4205 | return interp__builtin_issignaling(S, OpPC, Frame, Call); |
| 4206 | |
| 4207 | case Builtin::BI__builtin_isinf: |
| 4208 | return interp__builtin_isinf(S, OpPC, Frame, /*Sign=*/CheckSign: false, Call); |
| 4209 | |
| 4210 | case Builtin::BI__builtin_isinf_sign: |
| 4211 | return interp__builtin_isinf(S, OpPC, Frame, /*Sign=*/CheckSign: true, Call); |
| 4212 | |
| 4213 | case Builtin::BI__builtin_isfinite: |
| 4214 | return interp__builtin_isfinite(S, OpPC, Frame, Call); |
| 4215 | |
| 4216 | case Builtin::BI__builtin_isnormal: |
| 4217 | return interp__builtin_isnormal(S, OpPC, Frame, Call); |
| 4218 | |
| 4219 | case Builtin::BI__builtin_issubnormal: |
| 4220 | return interp__builtin_issubnormal(S, OpPC, Frame, Call); |
| 4221 | |
| 4222 | case Builtin::BI__builtin_iszero: |
| 4223 | return interp__builtin_iszero(S, OpPC, Frame, Call); |
| 4224 | |
| 4225 | case Builtin::BI__builtin_signbit: |
| 4226 | case Builtin::BI__builtin_signbitf: |
| 4227 | case Builtin::BI__builtin_signbitl: |
| 4228 | return interp__builtin_signbit(S, OpPC, Frame, Call); |
| 4229 | |
| 4230 | case Builtin::BI__builtin_isgreater: |
| 4231 | case Builtin::BI__builtin_isgreaterequal: |
| 4232 | case Builtin::BI__builtin_isless: |
| 4233 | case Builtin::BI__builtin_islessequal: |
| 4234 | case Builtin::BI__builtin_islessgreater: |
| 4235 | case Builtin::BI__builtin_isunordered: |
| 4236 | return interp_floating_comparison(S, OpPC, Call, ID: BuiltinID); |
| 4237 | |
| 4238 | case Builtin::BI__builtin_isfpclass: |
| 4239 | return interp__builtin_isfpclass(S, OpPC, Frame, Call); |
| 4240 | |
| 4241 | case Builtin::BI__builtin_fpclassify: |
| 4242 | return interp__builtin_fpclassify(S, OpPC, Frame, Call); |
| 4243 | |
| 4244 | case Builtin::BI__builtin_fabs: |
| 4245 | case Builtin::BI__builtin_fabsf: |
| 4246 | case Builtin::BI__builtin_fabsl: |
| 4247 | case Builtin::BI__builtin_fabsf128: |
| 4248 | return interp__builtin_fabs(S, OpPC, Frame); |
| 4249 | |
| 4250 | case Builtin::BI__builtin_abs: |
| 4251 | case Builtin::BI__builtin_labs: |
| 4252 | case Builtin::BI__builtin_llabs: |
| 4253 | return interp__builtin_abs(S, OpPC, Frame, Call); |
| 4254 | |
| 4255 | case Builtin::BI__builtin_popcount: |
| 4256 | case Builtin::BI__builtin_popcountl: |
| 4257 | case Builtin::BI__builtin_popcountll: |
| 4258 | case Builtin::BI__builtin_popcountg: |
| 4259 | case Builtin::BI__popcnt16: // Microsoft variants of popcount |
| 4260 | case Builtin::BI__popcnt: |
| 4261 | case Builtin::BI__popcnt64: |
| 4262 | return interp__builtin_popcount(S, OpPC, Frame, Call); |
| 4263 | |
| 4264 | case Builtin::BI__builtin_parity: |
| 4265 | case Builtin::BI__builtin_parityl: |
| 4266 | case Builtin::BI__builtin_parityll: |
| 4267 | return interp__builtin_elementwise_int_unaryop( |
| 4268 | S, OpPC, Call, Fn: [](const APSInt &Val) { |
| 4269 | return APInt(Val.getBitWidth(), Val.popcount() % 2); |
| 4270 | }); |
| 4271 | case Builtin::BI__builtin_clrsb: |
| 4272 | case Builtin::BI__builtin_clrsbl: |
| 4273 | case Builtin::BI__builtin_clrsbll: |
| 4274 | return interp__builtin_elementwise_int_unaryop( |
| 4275 | S, OpPC, Call, Fn: [](const APSInt &Val) { |
| 4276 | return APInt(Val.getBitWidth(), |
| 4277 | Val.getBitWidth() - Val.getSignificantBits()); |
| 4278 | }); |
| 4279 | case Builtin::BI__builtin_bitreverse8: |
| 4280 | case Builtin::BI__builtin_bitreverse16: |
| 4281 | case Builtin::BI__builtin_bitreverse32: |
| 4282 | case Builtin::BI__builtin_bitreverse64: |
| 4283 | return interp__builtin_elementwise_int_unaryop( |
| 4284 | S, OpPC, Call, Fn: [](const APSInt &Val) { return Val.reverseBits(); }); |
| 4285 | |
| 4286 | case Builtin::BI__builtin_classify_type: |
| 4287 | return interp__builtin_classify_type(S, OpPC, Frame, Call); |
| 4288 | |
| 4289 | case Builtin::BI__builtin_expect: |
| 4290 | case Builtin::BI__builtin_expect_with_probability: |
| 4291 | return interp__builtin_expect(S, OpPC, Frame, Call); |
| 4292 | |
| 4293 | case Builtin::BI__builtin_rotateleft8: |
| 4294 | case Builtin::BI__builtin_rotateleft16: |
| 4295 | case Builtin::BI__builtin_rotateleft32: |
| 4296 | case Builtin::BI__builtin_rotateleft64: |
| 4297 | case Builtin::BI__builtin_stdc_rotate_left: |
| 4298 | case Builtin::BI_rotl8: // Microsoft variants of rotate left |
| 4299 | case Builtin::BI_rotl16: |
| 4300 | case Builtin::BI_rotl: |
| 4301 | case Builtin::BI_lrotl: |
| 4302 | case Builtin::BI_rotl64: |
| 4303 | case Builtin::BI__builtin_rotateright8: |
| 4304 | case Builtin::BI__builtin_rotateright16: |
| 4305 | case Builtin::BI__builtin_rotateright32: |
| 4306 | case Builtin::BI__builtin_rotateright64: |
| 4307 | case Builtin::BI__builtin_stdc_rotate_right: |
| 4308 | case Builtin::BI_rotr8: // Microsoft variants of rotate right |
| 4309 | case Builtin::BI_rotr16: |
| 4310 | case Builtin::BI_rotr: |
| 4311 | case Builtin::BI_lrotr: |
| 4312 | case Builtin::BI_rotr64: { |
| 4313 | // Determine if this is a rotate right operation |
| 4314 | bool IsRotateRight; |
| 4315 | switch (BuiltinID) { |
| 4316 | case Builtin::BI__builtin_rotateright8: |
| 4317 | case Builtin::BI__builtin_rotateright16: |
| 4318 | case Builtin::BI__builtin_rotateright32: |
| 4319 | case Builtin::BI__builtin_rotateright64: |
| 4320 | case Builtin::BI__builtin_stdc_rotate_right: |
| 4321 | case Builtin::BI_rotr8: |
| 4322 | case Builtin::BI_rotr16: |
| 4323 | case Builtin::BI_rotr: |
| 4324 | case Builtin::BI_lrotr: |
| 4325 | case Builtin::BI_rotr64: |
| 4326 | IsRotateRight = true; |
| 4327 | break; |
| 4328 | default: |
| 4329 | IsRotateRight = false; |
| 4330 | break; |
| 4331 | } |
| 4332 | |
| 4333 | return interp__builtin_elementwise_int_binop( |
| 4334 | S, OpPC, Call, Fn: [IsRotateRight](const APSInt &Value, APSInt Amount) { |
| 4335 | Amount = NormalizeRotateAmount(Value, Amount); |
| 4336 | return IsRotateRight ? Value.rotr(rotateAmt: Amount.getZExtValue()) |
| 4337 | : Value.rotl(rotateAmt: Amount.getZExtValue()); |
| 4338 | }); |
| 4339 | } |
| 4340 | |
| 4341 | case Builtin::BI__builtin_ffs: |
| 4342 | case Builtin::BI__builtin_ffsl: |
| 4343 | case Builtin::BI__builtin_ffsll: |
| 4344 | return interp__builtin_elementwise_int_unaryop( |
| 4345 | S, OpPC, Call, Fn: [](const APSInt &Val) { |
| 4346 | return APInt(Val.getBitWidth(), |
| 4347 | Val.isZero() ? 0u : Val.countTrailingZeros() + 1u); |
| 4348 | }); |
| 4349 | |
| 4350 | case Builtin::BIaddressof: |
| 4351 | case Builtin::BI__addressof: |
| 4352 | case Builtin::BI__builtin_addressof: |
| 4353 | assert(isNoopBuiltin(BuiltinID)); |
| 4354 | return interp__builtin_addressof(S, OpPC, Frame, Call); |
| 4355 | |
| 4356 | case Builtin::BIas_const: |
| 4357 | case Builtin::BIforward: |
| 4358 | case Builtin::BIforward_like: |
| 4359 | case Builtin::BImove: |
| 4360 | case Builtin::BImove_if_noexcept: |
| 4361 | assert(isNoopBuiltin(BuiltinID)); |
| 4362 | return interp__builtin_move(S, OpPC, Frame, Call); |
| 4363 | |
| 4364 | case Builtin::BI__builtin_eh_return_data_regno: |
| 4365 | return interp__builtin_eh_return_data_regno(S, OpPC, Frame, Call); |
| 4366 | |
| 4367 | case Builtin::BI__builtin_launder: |
| 4368 | assert(isNoopBuiltin(BuiltinID)); |
| 4369 | return true; |
| 4370 | |
| 4371 | case Builtin::BI__builtin_add_overflow: |
| 4372 | case Builtin::BI__builtin_sub_overflow: |
| 4373 | case Builtin::BI__builtin_mul_overflow: |
| 4374 | case Builtin::BI__builtin_sadd_overflow: |
| 4375 | case Builtin::BI__builtin_uadd_overflow: |
| 4376 | case Builtin::BI__builtin_uaddl_overflow: |
| 4377 | case Builtin::BI__builtin_uaddll_overflow: |
| 4378 | case Builtin::BI__builtin_usub_overflow: |
| 4379 | case Builtin::BI__builtin_usubl_overflow: |
| 4380 | case Builtin::BI__builtin_usubll_overflow: |
| 4381 | case Builtin::BI__builtin_umul_overflow: |
| 4382 | case Builtin::BI__builtin_umull_overflow: |
| 4383 | case Builtin::BI__builtin_umulll_overflow: |
| 4384 | case Builtin::BI__builtin_saddl_overflow: |
| 4385 | case Builtin::BI__builtin_saddll_overflow: |
| 4386 | case Builtin::BI__builtin_ssub_overflow: |
| 4387 | case Builtin::BI__builtin_ssubl_overflow: |
| 4388 | case Builtin::BI__builtin_ssubll_overflow: |
| 4389 | case Builtin::BI__builtin_smul_overflow: |
| 4390 | case Builtin::BI__builtin_smull_overflow: |
| 4391 | case Builtin::BI__builtin_smulll_overflow: |
| 4392 | return interp__builtin_overflowop(S, OpPC, Call, BuiltinOp: BuiltinID); |
| 4393 | |
| 4394 | case Builtin::BI__builtin_addcb: |
| 4395 | case Builtin::BI__builtin_addcs: |
| 4396 | case Builtin::BI__builtin_addc: |
| 4397 | case Builtin::BI__builtin_addcl: |
| 4398 | case Builtin::BI__builtin_addcll: |
| 4399 | case Builtin::BI__builtin_subcb: |
| 4400 | case Builtin::BI__builtin_subcs: |
| 4401 | case Builtin::BI__builtin_subc: |
| 4402 | case Builtin::BI__builtin_subcl: |
| 4403 | case Builtin::BI__builtin_subcll: |
| 4404 | return interp__builtin_carryop(S, OpPC, Frame, Call, BuiltinOp: BuiltinID); |
| 4405 | |
| 4406 | case Builtin::BI__builtin_clz: |
| 4407 | case Builtin::BI__builtin_clzl: |
| 4408 | case Builtin::BI__builtin_clzll: |
| 4409 | case Builtin::BI__builtin_clzs: |
| 4410 | case Builtin::BI__builtin_clzg: |
| 4411 | case Builtin::BI__lzcnt16: // Microsoft variants of count leading-zeroes |
| 4412 | case Builtin::BI__lzcnt: |
| 4413 | case Builtin::BI__lzcnt64: |
| 4414 | return interp__builtin_clz(S, OpPC, Frame, Call, BuiltinOp: BuiltinID); |
| 4415 | |
| 4416 | case Builtin::BI__builtin_ctz: |
| 4417 | case Builtin::BI__builtin_ctzl: |
| 4418 | case Builtin::BI__builtin_ctzll: |
| 4419 | case Builtin::BI__builtin_ctzs: |
| 4420 | case Builtin::BI__builtin_ctzg: |
| 4421 | return interp__builtin_ctz(S, OpPC, Frame, Call, BuiltinID); |
| 4422 | |
| 4423 | case Builtin::BI__builtin_elementwise_clzg: |
| 4424 | case Builtin::BI__builtin_elementwise_ctzg: |
| 4425 | return interp__builtin_elementwise_countzeroes(S, OpPC, Frame, Call, |
| 4426 | BuiltinID); |
| 4427 | case Builtin::BI__builtin_bswapg: |
| 4428 | case Builtin::BI__builtin_bswap16: |
| 4429 | case Builtin::BI__builtin_bswap32: |
| 4430 | case Builtin::BI__builtin_bswap64: |
| 4431 | return interp__builtin_bswap(S, OpPC, Frame, Call); |
| 4432 | |
| 4433 | case Builtin::BI__atomic_always_lock_free: |
| 4434 | case Builtin::BI__atomic_is_lock_free: |
| 4435 | return interp__builtin_atomic_lock_free(S, OpPC, Frame, Call, BuiltinOp: BuiltinID); |
| 4436 | |
| 4437 | case Builtin::BI__c11_atomic_is_lock_free: |
| 4438 | return interp__builtin_c11_atomic_is_lock_free(S, OpPC, Frame, Call); |
| 4439 | |
| 4440 | case Builtin::BI__builtin_complex: |
| 4441 | return interp__builtin_complex(S, OpPC, Frame, Call); |
| 4442 | |
| 4443 | case Builtin::BI__builtin_is_aligned: |
| 4444 | case Builtin::BI__builtin_align_up: |
| 4445 | case Builtin::BI__builtin_align_down: |
| 4446 | return interp__builtin_is_aligned_up_down(S, OpPC, Frame, Call, BuiltinOp: BuiltinID); |
| 4447 | |
| 4448 | case Builtin::BI__builtin_assume_aligned: |
| 4449 | return interp__builtin_assume_aligned(S, OpPC, Frame, Call); |
| 4450 | |
| 4451 | case clang::X86::BI__builtin_ia32_crc32qi: |
| 4452 | return interp__builtin_ia32_crc32(S, OpPC, Frame, Call, DataBytes: 1); |
| 4453 | case clang::X86::BI__builtin_ia32_crc32hi: |
| 4454 | return interp__builtin_ia32_crc32(S, OpPC, Frame, Call, DataBytes: 2); |
| 4455 | case clang::X86::BI__builtin_ia32_crc32si: |
| 4456 | return interp__builtin_ia32_crc32(S, OpPC, Frame, Call, DataBytes: 4); |
| 4457 | case clang::X86::BI__builtin_ia32_crc32di: |
| 4458 | return interp__builtin_ia32_crc32(S, OpPC, Frame, Call, DataBytes: 8); |
| 4459 | |
| 4460 | case clang::X86::BI__builtin_ia32_bextr_u32: |
| 4461 | case clang::X86::BI__builtin_ia32_bextr_u64: |
| 4462 | case clang::X86::BI__builtin_ia32_bextri_u32: |
| 4463 | case clang::X86::BI__builtin_ia32_bextri_u64: |
| 4464 | return interp__builtin_elementwise_int_binop( |
| 4465 | S, OpPC, Call, Fn: [](const APSInt &Val, const APSInt &Idx) { |
| 4466 | unsigned BitWidth = Val.getBitWidth(); |
| 4467 | uint64_t Shift = Idx.extractBitsAsZExtValue(numBits: 8, bitPosition: 0); |
| 4468 | uint64_t Length = Idx.extractBitsAsZExtValue(numBits: 8, bitPosition: 8); |
| 4469 | if (Length > BitWidth) { |
| 4470 | Length = BitWidth; |
| 4471 | } |
| 4472 | |
| 4473 | // Handle out of bounds cases. |
| 4474 | if (Length == 0 || Shift >= BitWidth) |
| 4475 | return APInt(BitWidth, 0); |
| 4476 | |
| 4477 | uint64_t Result = Val.getZExtValue() >> Shift; |
| 4478 | Result &= llvm::maskTrailingOnes<uint64_t>(N: Length); |
| 4479 | return APInt(BitWidth, Result); |
| 4480 | }); |
| 4481 | |
| 4482 | case clang::X86::BI__builtin_ia32_bzhi_si: |
| 4483 | case clang::X86::BI__builtin_ia32_bzhi_di: |
| 4484 | return interp__builtin_elementwise_int_binop( |
| 4485 | S, OpPC, Call, Fn: [](const APSInt &Val, const APSInt &Idx) { |
| 4486 | unsigned BitWidth = Val.getBitWidth(); |
| 4487 | uint64_t Index = Idx.extractBitsAsZExtValue(numBits: 8, bitPosition: 0); |
| 4488 | APSInt Result = Val; |
| 4489 | |
| 4490 | if (Index < BitWidth) |
| 4491 | Result.clearHighBits(hiBits: BitWidth - Index); |
| 4492 | |
| 4493 | return Result; |
| 4494 | }); |
| 4495 | |
| 4496 | case clang::X86::BI__builtin_ia32_ktestcqi: |
| 4497 | case clang::X86::BI__builtin_ia32_ktestchi: |
| 4498 | case clang::X86::BI__builtin_ia32_ktestcsi: |
| 4499 | case clang::X86::BI__builtin_ia32_ktestcdi: |
| 4500 | return interp__builtin_elementwise_int_binop( |
| 4501 | S, OpPC, Call, Fn: [](const APSInt &A, const APSInt &B) { |
| 4502 | return APInt(sizeof(unsigned char) * 8, (~A & B) == 0); |
| 4503 | }); |
| 4504 | |
| 4505 | case clang::X86::BI__builtin_ia32_ktestzqi: |
| 4506 | case clang::X86::BI__builtin_ia32_ktestzhi: |
| 4507 | case clang::X86::BI__builtin_ia32_ktestzsi: |
| 4508 | case clang::X86::BI__builtin_ia32_ktestzdi: |
| 4509 | return interp__builtin_elementwise_int_binop( |
| 4510 | S, OpPC, Call, Fn: [](const APSInt &A, const APSInt &B) { |
| 4511 | return APInt(sizeof(unsigned char) * 8, (A & B) == 0); |
| 4512 | }); |
| 4513 | |
| 4514 | case clang::X86::BI__builtin_ia32_kortestcqi: |
| 4515 | case clang::X86::BI__builtin_ia32_kortestchi: |
| 4516 | case clang::X86::BI__builtin_ia32_kortestcsi: |
| 4517 | case clang::X86::BI__builtin_ia32_kortestcdi: |
| 4518 | return interp__builtin_elementwise_int_binop( |
| 4519 | S, OpPC, Call, Fn: [](const APSInt &A, const APSInt &B) { |
| 4520 | return APInt(sizeof(unsigned char) * 8, ~(A | B) == 0); |
| 4521 | }); |
| 4522 | |
| 4523 | case clang::X86::BI__builtin_ia32_kortestzqi: |
| 4524 | case clang::X86::BI__builtin_ia32_kortestzhi: |
| 4525 | case clang::X86::BI__builtin_ia32_kortestzsi: |
| 4526 | case clang::X86::BI__builtin_ia32_kortestzdi: |
| 4527 | return interp__builtin_elementwise_int_binop( |
| 4528 | S, OpPC, Call, Fn: [](const APSInt &A, const APSInt &B) { |
| 4529 | return APInt(sizeof(unsigned char) * 8, (A | B) == 0); |
| 4530 | }); |
| 4531 | |
| 4532 | case clang::X86::BI__builtin_ia32_kshiftliqi: |
| 4533 | case clang::X86::BI__builtin_ia32_kshiftlihi: |
| 4534 | case clang::X86::BI__builtin_ia32_kshiftlisi: |
| 4535 | case clang::X86::BI__builtin_ia32_kshiftlidi: |
| 4536 | return interp__builtin_elementwise_int_binop( |
| 4537 | S, OpPC, Call, Fn: [](const APSInt &LHS, const APSInt &RHS) { |
| 4538 | unsigned Amt = RHS.getZExtValue() & 0xFF; |
| 4539 | if (Amt >= LHS.getBitWidth()) |
| 4540 | return APInt::getZero(numBits: LHS.getBitWidth()); |
| 4541 | return LHS.shl(shiftAmt: Amt); |
| 4542 | }); |
| 4543 | |
| 4544 | case clang::X86::BI__builtin_ia32_kshiftriqi: |
| 4545 | case clang::X86::BI__builtin_ia32_kshiftrihi: |
| 4546 | case clang::X86::BI__builtin_ia32_kshiftrisi: |
| 4547 | case clang::X86::BI__builtin_ia32_kshiftridi: |
| 4548 | return interp__builtin_elementwise_int_binop( |
| 4549 | S, OpPC, Call, Fn: [](const APSInt &LHS, const APSInt &RHS) { |
| 4550 | unsigned Amt = RHS.getZExtValue() & 0xFF; |
| 4551 | if (Amt >= LHS.getBitWidth()) |
| 4552 | return APInt::getZero(numBits: LHS.getBitWidth()); |
| 4553 | return LHS.lshr(shiftAmt: Amt); |
| 4554 | }); |
| 4555 | |
| 4556 | case clang::X86::BI__builtin_ia32_lzcnt_u16: |
| 4557 | case clang::X86::BI__builtin_ia32_lzcnt_u32: |
| 4558 | case clang::X86::BI__builtin_ia32_lzcnt_u64: |
| 4559 | return interp__builtin_elementwise_int_unaryop( |
| 4560 | S, OpPC, Call, Fn: [](const APSInt &Src) { |
| 4561 | return APInt(Src.getBitWidth(), Src.countLeadingZeros()); |
| 4562 | }); |
| 4563 | |
| 4564 | case clang::X86::BI__builtin_ia32_tzcnt_u16: |
| 4565 | case clang::X86::BI__builtin_ia32_tzcnt_u32: |
| 4566 | case clang::X86::BI__builtin_ia32_tzcnt_u64: |
| 4567 | return interp__builtin_elementwise_int_unaryop( |
| 4568 | S, OpPC, Call, Fn: [](const APSInt &Src) { |
| 4569 | return APInt(Src.getBitWidth(), Src.countTrailingZeros()); |
| 4570 | }); |
| 4571 | |
| 4572 | case clang::X86::BI__builtin_ia32_pdep_si: |
| 4573 | case clang::X86::BI__builtin_ia32_pdep_di: |
| 4574 | return interp__builtin_elementwise_int_binop( |
| 4575 | S, OpPC, Call, Fn: [](const APSInt &Val, const APSInt &Mask) { |
| 4576 | unsigned BitWidth = Val.getBitWidth(); |
| 4577 | APInt Result = APInt::getZero(numBits: BitWidth); |
| 4578 | |
| 4579 | for (unsigned I = 0, P = 0; I != BitWidth; ++I) { |
| 4580 | if (Mask[I]) |
| 4581 | Result.setBitVal(BitPosition: I, BitValue: Val[P++]); |
| 4582 | } |
| 4583 | |
| 4584 | return Result; |
| 4585 | }); |
| 4586 | |
| 4587 | case clang::X86::BI__builtin_ia32_pext_si: |
| 4588 | case clang::X86::BI__builtin_ia32_pext_di: |
| 4589 | return interp__builtin_elementwise_int_binop( |
| 4590 | S, OpPC, Call, Fn: [](const APSInt &Val, const APSInt &Mask) { |
| 4591 | unsigned BitWidth = Val.getBitWidth(); |
| 4592 | APInt Result = APInt::getZero(numBits: BitWidth); |
| 4593 | |
| 4594 | for (unsigned I = 0, P = 0; I != BitWidth; ++I) { |
| 4595 | if (Mask[I]) |
| 4596 | Result.setBitVal(BitPosition: P++, BitValue: Val[I]); |
| 4597 | } |
| 4598 | |
| 4599 | return Result; |
| 4600 | }); |
| 4601 | |
| 4602 | case clang::X86::BI__builtin_ia32_addcarryx_u32: |
| 4603 | case clang::X86::BI__builtin_ia32_addcarryx_u64: |
| 4604 | case clang::X86::BI__builtin_ia32_subborrow_u32: |
| 4605 | case clang::X86::BI__builtin_ia32_subborrow_u64: |
| 4606 | return interp__builtin_ia32_addcarry_subborrow(S, OpPC, Frame, Call, |
| 4607 | BuiltinOp: BuiltinID); |
| 4608 | |
| 4609 | case Builtin::BI__builtin_os_log_format_buffer_size: |
| 4610 | return interp__builtin_os_log_format_buffer_size(S, OpPC, Frame, Call); |
| 4611 | |
| 4612 | case Builtin::BI__builtin_ptrauth_string_discriminator: |
| 4613 | return interp__builtin_ptrauth_string_discriminator(S, OpPC, Frame, Call); |
| 4614 | |
| 4615 | case Builtin::BI__builtin_infer_alloc_token: |
| 4616 | return interp__builtin_infer_alloc_token(S, OpPC, Frame, Call); |
| 4617 | |
| 4618 | case Builtin::BI__noop: |
| 4619 | pushInteger(S, Val: 0, QT: Call->getType()); |
| 4620 | return true; |
| 4621 | |
| 4622 | case Builtin::BI__builtin_operator_new: |
| 4623 | return interp__builtin_operator_new(S, OpPC, Frame, Call); |
| 4624 | |
| 4625 | case Builtin::BI__builtin_operator_delete: |
| 4626 | return interp__builtin_operator_delete(S, OpPC, Frame, Call); |
| 4627 | |
| 4628 | case Builtin::BI__arithmetic_fence: |
| 4629 | return interp__builtin_arithmetic_fence(S, OpPC, Frame, Call); |
| 4630 | |
| 4631 | case Builtin::BI__builtin_reduce_add: |
| 4632 | case Builtin::BI__builtin_reduce_mul: |
| 4633 | case Builtin::BI__builtin_reduce_and: |
| 4634 | case Builtin::BI__builtin_reduce_or: |
| 4635 | case Builtin::BI__builtin_reduce_xor: |
| 4636 | case Builtin::BI__builtin_reduce_min: |
| 4637 | case Builtin::BI__builtin_reduce_max: |
| 4638 | return interp__builtin_vector_reduce(S, OpPC, Call, ID: BuiltinID); |
| 4639 | |
| 4640 | case Builtin::BI__builtin_elementwise_popcount: |
| 4641 | return interp__builtin_elementwise_int_unaryop( |
| 4642 | S, OpPC, Call, Fn: [](const APSInt &Src) { |
| 4643 | return APInt(Src.getBitWidth(), Src.popcount()); |
| 4644 | }); |
| 4645 | case Builtin::BI__builtin_elementwise_bitreverse: |
| 4646 | return interp__builtin_elementwise_int_unaryop( |
| 4647 | S, OpPC, Call, Fn: [](const APSInt &Src) { return Src.reverseBits(); }); |
| 4648 | |
| 4649 | case Builtin::BI__builtin_elementwise_abs: |
| 4650 | return interp__builtin_elementwise_abs(S, OpPC, Frame, Call, BuiltinID); |
| 4651 | |
| 4652 | case Builtin::BI__builtin_memcpy: |
| 4653 | case Builtin::BImemcpy: |
| 4654 | case Builtin::BI__builtin_wmemcpy: |
| 4655 | case Builtin::BIwmemcpy: |
| 4656 | case Builtin::BI__builtin_memmove: |
| 4657 | case Builtin::BImemmove: |
| 4658 | case Builtin::BI__builtin_wmemmove: |
| 4659 | case Builtin::BIwmemmove: |
| 4660 | return interp__builtin_memcpy(S, OpPC, Frame, Call, ID: BuiltinID); |
| 4661 | |
| 4662 | case Builtin::BI__builtin_memcmp: |
| 4663 | case Builtin::BImemcmp: |
| 4664 | case Builtin::BI__builtin_bcmp: |
| 4665 | case Builtin::BIbcmp: |
| 4666 | case Builtin::BI__builtin_wmemcmp: |
| 4667 | case Builtin::BIwmemcmp: |
| 4668 | return interp__builtin_memcmp(S, OpPC, Frame, Call, ID: BuiltinID); |
| 4669 | |
| 4670 | case Builtin::BImemchr: |
| 4671 | case Builtin::BI__builtin_memchr: |
| 4672 | case Builtin::BIstrchr: |
| 4673 | case Builtin::BI__builtin_strchr: |
| 4674 | case Builtin::BIwmemchr: |
| 4675 | case Builtin::BI__builtin_wmemchr: |
| 4676 | case Builtin::BIwcschr: |
| 4677 | case Builtin::BI__builtin_wcschr: |
| 4678 | case Builtin::BI__builtin_char_memchr: |
| 4679 | return interp__builtin_memchr(S, OpPC, Call, ID: BuiltinID); |
| 4680 | |
| 4681 | case Builtin::BI__builtin_object_size: |
| 4682 | case Builtin::BI__builtin_dynamic_object_size: |
| 4683 | return interp__builtin_object_size(S, OpPC, Frame, Call); |
| 4684 | |
| 4685 | case Builtin::BI__builtin_is_within_lifetime: |
| 4686 | return interp__builtin_is_within_lifetime(S, OpPC, Call); |
| 4687 | |
| 4688 | case Builtin::BI__builtin_elementwise_add_sat: |
| 4689 | return interp__builtin_elementwise_int_binop( |
| 4690 | S, OpPC, Call, Fn: [](const APSInt &LHS, const APSInt &RHS) { |
| 4691 | return LHS.isSigned() ? LHS.sadd_sat(RHS) : LHS.uadd_sat(RHS); |
| 4692 | }); |
| 4693 | |
| 4694 | case Builtin::BI__builtin_elementwise_sub_sat: |
| 4695 | return interp__builtin_elementwise_int_binop( |
| 4696 | S, OpPC, Call, Fn: [](const APSInt &LHS, const APSInt &RHS) { |
| 4697 | return LHS.isSigned() ? LHS.ssub_sat(RHS) : LHS.usub_sat(RHS); |
| 4698 | }); |
| 4699 | case X86::BI__builtin_ia32_extract128i256: |
| 4700 | case X86::BI__builtin_ia32_vextractf128_pd256: |
| 4701 | case X86::BI__builtin_ia32_vextractf128_ps256: |
| 4702 | case X86::BI__builtin_ia32_vextractf128_si256: |
| 4703 | return interp__builtin_x86_extract_vector(S, OpPC, Call, ID: BuiltinID); |
| 4704 | |
| 4705 | case X86::BI__builtin_ia32_extractf32x4_256_mask: |
| 4706 | case X86::BI__builtin_ia32_extractf32x4_mask: |
| 4707 | case X86::BI__builtin_ia32_extractf32x8_mask: |
| 4708 | case X86::BI__builtin_ia32_extractf64x2_256_mask: |
| 4709 | case X86::BI__builtin_ia32_extractf64x2_512_mask: |
| 4710 | case X86::BI__builtin_ia32_extractf64x4_mask: |
| 4711 | case X86::BI__builtin_ia32_extracti32x4_256_mask: |
| 4712 | case X86::BI__builtin_ia32_extracti32x4_mask: |
| 4713 | case X86::BI__builtin_ia32_extracti32x8_mask: |
| 4714 | case X86::BI__builtin_ia32_extracti64x2_256_mask: |
| 4715 | case X86::BI__builtin_ia32_extracti64x2_512_mask: |
| 4716 | case X86::BI__builtin_ia32_extracti64x4_mask: |
| 4717 | return interp__builtin_x86_extract_vector_masked(S, OpPC, Call, ID: BuiltinID); |
| 4718 | |
| 4719 | case clang::X86::BI__builtin_ia32_pmulhrsw128: |
| 4720 | case clang::X86::BI__builtin_ia32_pmulhrsw256: |
| 4721 | case clang::X86::BI__builtin_ia32_pmulhrsw512: |
| 4722 | return interp__builtin_elementwise_int_binop( |
| 4723 | S, OpPC, Call, Fn: [](const APSInt &LHS, const APSInt &RHS) { |
| 4724 | return (llvm::APIntOps::mulsExtended(C1: LHS, C2: RHS).ashr(ShiftAmt: 14) + 1) |
| 4725 | .extractBits(numBits: 16, bitPosition: 1); |
| 4726 | }); |
| 4727 | |
| 4728 | case clang::X86::BI__builtin_ia32_movmskps: |
| 4729 | case clang::X86::BI__builtin_ia32_movmskpd: |
| 4730 | case clang::X86::BI__builtin_ia32_pmovmskb128: |
| 4731 | case clang::X86::BI__builtin_ia32_pmovmskb256: |
| 4732 | case clang::X86::BI__builtin_ia32_movmskps256: |
| 4733 | case clang::X86::BI__builtin_ia32_movmskpd256: { |
| 4734 | return interp__builtin_ia32_movmsk_op(S, OpPC, Call); |
| 4735 | } |
| 4736 | |
| 4737 | case X86::BI__builtin_ia32_psignb128: |
| 4738 | case X86::BI__builtin_ia32_psignb256: |
| 4739 | case X86::BI__builtin_ia32_psignw128: |
| 4740 | case X86::BI__builtin_ia32_psignw256: |
| 4741 | case X86::BI__builtin_ia32_psignd128: |
| 4742 | case X86::BI__builtin_ia32_psignd256: |
| 4743 | return interp__builtin_elementwise_int_binop( |
| 4744 | S, OpPC, Call, Fn: [](const APInt &AElem, const APInt &BElem) { |
| 4745 | if (BElem.isZero()) |
| 4746 | return APInt::getZero(numBits: AElem.getBitWidth()); |
| 4747 | if (BElem.isNegative()) |
| 4748 | return -AElem; |
| 4749 | return AElem; |
| 4750 | }); |
| 4751 | |
| 4752 | case clang::X86::BI__builtin_ia32_pavgb128: |
| 4753 | case clang::X86::BI__builtin_ia32_pavgw128: |
| 4754 | case clang::X86::BI__builtin_ia32_pavgb256: |
| 4755 | case clang::X86::BI__builtin_ia32_pavgw256: |
| 4756 | case clang::X86::BI__builtin_ia32_pavgb512: |
| 4757 | case clang::X86::BI__builtin_ia32_pavgw512: |
| 4758 | return interp__builtin_elementwise_int_binop(S, OpPC, Call, |
| 4759 | Fn: llvm::APIntOps::avgCeilU); |
| 4760 | |
| 4761 | case clang::X86::BI__builtin_ia32_pmaddubsw128: |
| 4762 | case clang::X86::BI__builtin_ia32_pmaddubsw256: |
| 4763 | case clang::X86::BI__builtin_ia32_pmaddubsw512: |
| 4764 | return interp__builtin_ia32_pmul( |
| 4765 | S, OpPC, Call, |
| 4766 | Fn: [](const APSInt &LoLHS, const APSInt &HiLHS, const APSInt &LoRHS, |
| 4767 | const APSInt &HiRHS) { |
| 4768 | unsigned BitWidth = 2 * LoLHS.getBitWidth(); |
| 4769 | return (LoLHS.zext(width: BitWidth) * LoRHS.sext(width: BitWidth)) |
| 4770 | .sadd_sat(RHS: (HiLHS.zext(width: BitWidth) * HiRHS.sext(width: BitWidth))); |
| 4771 | }); |
| 4772 | |
| 4773 | case clang::X86::BI__builtin_ia32_pmaddwd128: |
| 4774 | case clang::X86::BI__builtin_ia32_pmaddwd256: |
| 4775 | case clang::X86::BI__builtin_ia32_pmaddwd512: |
| 4776 | return interp__builtin_ia32_pmul( |
| 4777 | S, OpPC, Call, |
| 4778 | Fn: [](const APSInt &LoLHS, const APSInt &HiLHS, const APSInt &LoRHS, |
| 4779 | const APSInt &HiRHS) { |
| 4780 | unsigned BitWidth = 2 * LoLHS.getBitWidth(); |
| 4781 | return (LoLHS.sext(width: BitWidth) * LoRHS.sext(width: BitWidth)) + |
| 4782 | (HiLHS.sext(width: BitWidth) * HiRHS.sext(width: BitWidth)); |
| 4783 | }); |
| 4784 | |
| 4785 | case clang::X86::BI__builtin_ia32_pmulhuw128: |
| 4786 | case clang::X86::BI__builtin_ia32_pmulhuw256: |
| 4787 | case clang::X86::BI__builtin_ia32_pmulhuw512: |
| 4788 | return interp__builtin_elementwise_int_binop(S, OpPC, Call, |
| 4789 | Fn: llvm::APIntOps::mulhu); |
| 4790 | |
| 4791 | case clang::X86::BI__builtin_ia32_pmulhw128: |
| 4792 | case clang::X86::BI__builtin_ia32_pmulhw256: |
| 4793 | case clang::X86::BI__builtin_ia32_pmulhw512: |
| 4794 | return interp__builtin_elementwise_int_binop(S, OpPC, Call, |
| 4795 | Fn: llvm::APIntOps::mulhs); |
| 4796 | |
| 4797 | case clang::X86::BI__builtin_ia32_psllv2di: |
| 4798 | case clang::X86::BI__builtin_ia32_psllv4di: |
| 4799 | case clang::X86::BI__builtin_ia32_psllv4si: |
| 4800 | case clang::X86::BI__builtin_ia32_psllv8di: |
| 4801 | case clang::X86::BI__builtin_ia32_psllv8hi: |
| 4802 | case clang::X86::BI__builtin_ia32_psllv8si: |
| 4803 | case clang::X86::BI__builtin_ia32_psllv16hi: |
| 4804 | case clang::X86::BI__builtin_ia32_psllv16si: |
| 4805 | case clang::X86::BI__builtin_ia32_psllv32hi: |
| 4806 | case clang::X86::BI__builtin_ia32_psllwi128: |
| 4807 | case clang::X86::BI__builtin_ia32_psllwi256: |
| 4808 | case clang::X86::BI__builtin_ia32_psllwi512: |
| 4809 | case clang::X86::BI__builtin_ia32_pslldi128: |
| 4810 | case clang::X86::BI__builtin_ia32_pslldi256: |
| 4811 | case clang::X86::BI__builtin_ia32_pslldi512: |
| 4812 | case clang::X86::BI__builtin_ia32_psllqi128: |
| 4813 | case clang::X86::BI__builtin_ia32_psllqi256: |
| 4814 | case clang::X86::BI__builtin_ia32_psllqi512: |
| 4815 | return interp__builtin_elementwise_int_binop( |
| 4816 | S, OpPC, Call, Fn: [](const APSInt &LHS, const APSInt &RHS) { |
| 4817 | if (RHS.uge(RHS: LHS.getBitWidth())) { |
| 4818 | return APInt::getZero(numBits: LHS.getBitWidth()); |
| 4819 | } |
| 4820 | return LHS.shl(shiftAmt: RHS.getZExtValue()); |
| 4821 | }); |
| 4822 | |
| 4823 | case clang::X86::BI__builtin_ia32_psrav4si: |
| 4824 | case clang::X86::BI__builtin_ia32_psrav8di: |
| 4825 | case clang::X86::BI__builtin_ia32_psrav8hi: |
| 4826 | case clang::X86::BI__builtin_ia32_psrav8si: |
| 4827 | case clang::X86::BI__builtin_ia32_psrav16hi: |
| 4828 | case clang::X86::BI__builtin_ia32_psrav16si: |
| 4829 | case clang::X86::BI__builtin_ia32_psrav32hi: |
| 4830 | case clang::X86::BI__builtin_ia32_psravq128: |
| 4831 | case clang::X86::BI__builtin_ia32_psravq256: |
| 4832 | case clang::X86::BI__builtin_ia32_psrawi128: |
| 4833 | case clang::X86::BI__builtin_ia32_psrawi256: |
| 4834 | case clang::X86::BI__builtin_ia32_psrawi512: |
| 4835 | case clang::X86::BI__builtin_ia32_psradi128: |
| 4836 | case clang::X86::BI__builtin_ia32_psradi256: |
| 4837 | case clang::X86::BI__builtin_ia32_psradi512: |
| 4838 | case clang::X86::BI__builtin_ia32_psraqi128: |
| 4839 | case clang::X86::BI__builtin_ia32_psraqi256: |
| 4840 | case clang::X86::BI__builtin_ia32_psraqi512: |
| 4841 | return interp__builtin_elementwise_int_binop( |
| 4842 | S, OpPC, Call, Fn: [](const APSInt &LHS, const APSInt &RHS) { |
| 4843 | if (RHS.uge(RHS: LHS.getBitWidth())) { |
| 4844 | return LHS.ashr(ShiftAmt: LHS.getBitWidth() - 1); |
| 4845 | } |
| 4846 | return LHS.ashr(ShiftAmt: RHS.getZExtValue()); |
| 4847 | }); |
| 4848 | |
| 4849 | case clang::X86::BI__builtin_ia32_psrlv2di: |
| 4850 | case clang::X86::BI__builtin_ia32_psrlv4di: |
| 4851 | case clang::X86::BI__builtin_ia32_psrlv4si: |
| 4852 | case clang::X86::BI__builtin_ia32_psrlv8di: |
| 4853 | case clang::X86::BI__builtin_ia32_psrlv8hi: |
| 4854 | case clang::X86::BI__builtin_ia32_psrlv8si: |
| 4855 | case clang::X86::BI__builtin_ia32_psrlv16hi: |
| 4856 | case clang::X86::BI__builtin_ia32_psrlv16si: |
| 4857 | case clang::X86::BI__builtin_ia32_psrlv32hi: |
| 4858 | case clang::X86::BI__builtin_ia32_psrlwi128: |
| 4859 | case clang::X86::BI__builtin_ia32_psrlwi256: |
| 4860 | case clang::X86::BI__builtin_ia32_psrlwi512: |
| 4861 | case clang::X86::BI__builtin_ia32_psrldi128: |
| 4862 | case clang::X86::BI__builtin_ia32_psrldi256: |
| 4863 | case clang::X86::BI__builtin_ia32_psrldi512: |
| 4864 | case clang::X86::BI__builtin_ia32_psrlqi128: |
| 4865 | case clang::X86::BI__builtin_ia32_psrlqi256: |
| 4866 | case clang::X86::BI__builtin_ia32_psrlqi512: |
| 4867 | return interp__builtin_elementwise_int_binop( |
| 4868 | S, OpPC, Call, Fn: [](const APSInt &LHS, const APSInt &RHS) { |
| 4869 | if (RHS.uge(RHS: LHS.getBitWidth())) { |
| 4870 | return APInt::getZero(numBits: LHS.getBitWidth()); |
| 4871 | } |
| 4872 | return LHS.lshr(shiftAmt: RHS.getZExtValue()); |
| 4873 | }); |
| 4874 | case clang::X86::BI__builtin_ia32_packsswb128: |
| 4875 | case clang::X86::BI__builtin_ia32_packsswb256: |
| 4876 | case clang::X86::BI__builtin_ia32_packsswb512: |
| 4877 | case clang::X86::BI__builtin_ia32_packssdw128: |
| 4878 | case clang::X86::BI__builtin_ia32_packssdw256: |
| 4879 | case clang::X86::BI__builtin_ia32_packssdw512: |
| 4880 | return interp__builtin_x86_pack(S, OpPC, E: Call, PackFn: [](const APSInt &Src) { |
| 4881 | return APInt(Src).truncSSat(width: Src.getBitWidth() / 2); |
| 4882 | }); |
| 4883 | case clang::X86::BI__builtin_ia32_packusdw128: |
| 4884 | case clang::X86::BI__builtin_ia32_packusdw256: |
| 4885 | case clang::X86::BI__builtin_ia32_packusdw512: |
| 4886 | case clang::X86::BI__builtin_ia32_packuswb128: |
| 4887 | case clang::X86::BI__builtin_ia32_packuswb256: |
| 4888 | case clang::X86::BI__builtin_ia32_packuswb512: |
| 4889 | return interp__builtin_x86_pack(S, OpPC, E: Call, PackFn: [](const APSInt &Src) { |
| 4890 | return APInt(Src).truncSSatU(width: Src.getBitWidth() / 2); |
| 4891 | }); |
| 4892 | |
| 4893 | case clang::X86::BI__builtin_ia32_selectss_128: |
| 4894 | case clang::X86::BI__builtin_ia32_selectsd_128: |
| 4895 | case clang::X86::BI__builtin_ia32_selectsh_128: |
| 4896 | case clang::X86::BI__builtin_ia32_selectsbf_128: |
| 4897 | return interp__builtin_select_scalar(S, Call); |
| 4898 | case clang::X86::BI__builtin_ia32_vprotbi: |
| 4899 | case clang::X86::BI__builtin_ia32_vprotdi: |
| 4900 | case clang::X86::BI__builtin_ia32_vprotqi: |
| 4901 | case clang::X86::BI__builtin_ia32_vprotwi: |
| 4902 | case clang::X86::BI__builtin_ia32_prold128: |
| 4903 | case clang::X86::BI__builtin_ia32_prold256: |
| 4904 | case clang::X86::BI__builtin_ia32_prold512: |
| 4905 | case clang::X86::BI__builtin_ia32_prolq128: |
| 4906 | case clang::X86::BI__builtin_ia32_prolq256: |
| 4907 | case clang::X86::BI__builtin_ia32_prolq512: |
| 4908 | return interp__builtin_elementwise_int_binop( |
| 4909 | S, OpPC, Call, |
| 4910 | Fn: [](const APSInt &LHS, const APSInt &RHS) { return LHS.rotl(rotateAmt: RHS); }); |
| 4911 | |
| 4912 | case clang::X86::BI__builtin_ia32_prord128: |
| 4913 | case clang::X86::BI__builtin_ia32_prord256: |
| 4914 | case clang::X86::BI__builtin_ia32_prord512: |
| 4915 | case clang::X86::BI__builtin_ia32_prorq128: |
| 4916 | case clang::X86::BI__builtin_ia32_prorq256: |
| 4917 | case clang::X86::BI__builtin_ia32_prorq512: |
| 4918 | return interp__builtin_elementwise_int_binop( |
| 4919 | S, OpPC, Call, |
| 4920 | Fn: [](const APSInt &LHS, const APSInt &RHS) { return LHS.rotr(rotateAmt: RHS); }); |
| 4921 | |
| 4922 | case Builtin::BI__builtin_elementwise_max: |
| 4923 | case Builtin::BI__builtin_elementwise_min: |
| 4924 | return interp__builtin_elementwise_maxmin(S, OpPC, Call, BuiltinID); |
| 4925 | |
| 4926 | case clang::X86::BI__builtin_ia32_phaddw128: |
| 4927 | case clang::X86::BI__builtin_ia32_phaddw256: |
| 4928 | case clang::X86::BI__builtin_ia32_phaddd128: |
| 4929 | case clang::X86::BI__builtin_ia32_phaddd256: |
| 4930 | return interp_builtin_horizontal_int_binop( |
| 4931 | S, OpPC, Call, |
| 4932 | Fn: [](const APSInt &LHS, const APSInt &RHS) { return LHS + RHS; }); |
| 4933 | case clang::X86::BI__builtin_ia32_phaddsw128: |
| 4934 | case clang::X86::BI__builtin_ia32_phaddsw256: |
| 4935 | return interp_builtin_horizontal_int_binop( |
| 4936 | S, OpPC, Call, |
| 4937 | Fn: [](const APSInt &LHS, const APSInt &RHS) { return LHS.sadd_sat(RHS); }); |
| 4938 | case clang::X86::BI__builtin_ia32_phsubw128: |
| 4939 | case clang::X86::BI__builtin_ia32_phsubw256: |
| 4940 | case clang::X86::BI__builtin_ia32_phsubd128: |
| 4941 | case clang::X86::BI__builtin_ia32_phsubd256: |
| 4942 | return interp_builtin_horizontal_int_binop( |
| 4943 | S, OpPC, Call, |
| 4944 | Fn: [](const APSInt &LHS, const APSInt &RHS) { return LHS - RHS; }); |
| 4945 | case clang::X86::BI__builtin_ia32_phsubsw128: |
| 4946 | case clang::X86::BI__builtin_ia32_phsubsw256: |
| 4947 | return interp_builtin_horizontal_int_binop( |
| 4948 | S, OpPC, Call, |
| 4949 | Fn: [](const APSInt &LHS, const APSInt &RHS) { return LHS.ssub_sat(RHS); }); |
| 4950 | case clang::X86::BI__builtin_ia32_haddpd: |
| 4951 | case clang::X86::BI__builtin_ia32_haddps: |
| 4952 | case clang::X86::BI__builtin_ia32_haddpd256: |
| 4953 | case clang::X86::BI__builtin_ia32_haddps256: |
| 4954 | return interp_builtin_horizontal_fp_binop( |
| 4955 | S, OpPC, Call, |
| 4956 | Fn: [](const APFloat &LHS, const APFloat &RHS, llvm::RoundingMode RM) { |
| 4957 | APFloat F = LHS; |
| 4958 | F.add(RHS, RM); |
| 4959 | return F; |
| 4960 | }); |
| 4961 | case clang::X86::BI__builtin_ia32_hsubpd: |
| 4962 | case clang::X86::BI__builtin_ia32_hsubps: |
| 4963 | case clang::X86::BI__builtin_ia32_hsubpd256: |
| 4964 | case clang::X86::BI__builtin_ia32_hsubps256: |
| 4965 | return interp_builtin_horizontal_fp_binop( |
| 4966 | S, OpPC, Call, |
| 4967 | Fn: [](const APFloat &LHS, const APFloat &RHS, llvm::RoundingMode RM) { |
| 4968 | APFloat F = LHS; |
| 4969 | F.subtract(RHS, RM); |
| 4970 | return F; |
| 4971 | }); |
| 4972 | case clang::X86::BI__builtin_ia32_addsubpd: |
| 4973 | case clang::X86::BI__builtin_ia32_addsubps: |
| 4974 | case clang::X86::BI__builtin_ia32_addsubpd256: |
| 4975 | case clang::X86::BI__builtin_ia32_addsubps256: |
| 4976 | return interp__builtin_ia32_addsub(S, OpPC, Call); |
| 4977 | |
| 4978 | case clang::X86::BI__builtin_ia32_pmuldq128: |
| 4979 | case clang::X86::BI__builtin_ia32_pmuldq256: |
| 4980 | case clang::X86::BI__builtin_ia32_pmuldq512: |
| 4981 | return interp__builtin_ia32_pmul( |
| 4982 | S, OpPC, Call, |
| 4983 | Fn: [](const APSInt &LoLHS, const APSInt &HiLHS, const APSInt &LoRHS, |
| 4984 | const APSInt &HiRHS) { |
| 4985 | return llvm::APIntOps::mulsExtended(C1: LoLHS, C2: LoRHS); |
| 4986 | }); |
| 4987 | |
| 4988 | case clang::X86::BI__builtin_ia32_pmuludq128: |
| 4989 | case clang::X86::BI__builtin_ia32_pmuludq256: |
| 4990 | case clang::X86::BI__builtin_ia32_pmuludq512: |
| 4991 | return interp__builtin_ia32_pmul( |
| 4992 | S, OpPC, Call, |
| 4993 | Fn: [](const APSInt &LoLHS, const APSInt &HiLHS, const APSInt &LoRHS, |
| 4994 | const APSInt &HiRHS) { |
| 4995 | return llvm::APIntOps::muluExtended(C1: LoLHS, C2: LoRHS); |
| 4996 | }); |
| 4997 | |
| 4998 | case clang::X86::BI__builtin_ia32_pclmulqdq128: |
| 4999 | case clang::X86::BI__builtin_ia32_pclmulqdq256: |
| 5000 | case clang::X86::BI__builtin_ia32_pclmulqdq512: |
| 5001 | return interp__builtin_ia32_pclmulqdq(S, OpPC, Call); |
| 5002 | |
| 5003 | case Builtin::BI__builtin_elementwise_fma: |
| 5004 | return interp__builtin_elementwise_triop_fp( |
| 5005 | S, OpPC, Call, |
| 5006 | Fn: [](const APFloat &X, const APFloat &Y, const APFloat &Z, |
| 5007 | llvm::RoundingMode RM) { |
| 5008 | APFloat F = X; |
| 5009 | F.fusedMultiplyAdd(Multiplicand: Y, Addend: Z, RM); |
| 5010 | return F; |
| 5011 | }); |
| 5012 | |
| 5013 | case X86::BI__builtin_ia32_vpmadd52luq128: |
| 5014 | case X86::BI__builtin_ia32_vpmadd52luq256: |
| 5015 | case X86::BI__builtin_ia32_vpmadd52luq512: |
| 5016 | return interp__builtin_elementwise_triop( |
| 5017 | S, OpPC, Call, Fn: [](const APSInt &A, const APSInt &B, const APSInt &C) { |
| 5018 | return A + (B.trunc(width: 52) * C.trunc(width: 52)).zext(width: 64); |
| 5019 | }); |
| 5020 | case X86::BI__builtin_ia32_vpmadd52huq128: |
| 5021 | case X86::BI__builtin_ia32_vpmadd52huq256: |
| 5022 | case X86::BI__builtin_ia32_vpmadd52huq512: |
| 5023 | return interp__builtin_elementwise_triop( |
| 5024 | S, OpPC, Call, Fn: [](const APSInt &A, const APSInt &B, const APSInt &C) { |
| 5025 | return A + llvm::APIntOps::mulhu(C1: B.trunc(width: 52), C2: C.trunc(width: 52)).zext(width: 64); |
| 5026 | }); |
| 5027 | |
| 5028 | case X86::BI__builtin_ia32_vpshldd128: |
| 5029 | case X86::BI__builtin_ia32_vpshldd256: |
| 5030 | case X86::BI__builtin_ia32_vpshldd512: |
| 5031 | case X86::BI__builtin_ia32_vpshldq128: |
| 5032 | case X86::BI__builtin_ia32_vpshldq256: |
| 5033 | case X86::BI__builtin_ia32_vpshldq512: |
| 5034 | case X86::BI__builtin_ia32_vpshldw128: |
| 5035 | case X86::BI__builtin_ia32_vpshldw256: |
| 5036 | case X86::BI__builtin_ia32_vpshldw512: |
| 5037 | return interp__builtin_elementwise_triop( |
| 5038 | S, OpPC, Call, |
| 5039 | Fn: [](const APSInt &Hi, const APSInt &Lo, const APSInt &Amt) { |
| 5040 | return llvm::APIntOps::fshl(Hi, Lo, Shift: Amt); |
| 5041 | }); |
| 5042 | |
| 5043 | case X86::BI__builtin_ia32_vpshrdd128: |
| 5044 | case X86::BI__builtin_ia32_vpshrdd256: |
| 5045 | case X86::BI__builtin_ia32_vpshrdd512: |
| 5046 | case X86::BI__builtin_ia32_vpshrdq128: |
| 5047 | case X86::BI__builtin_ia32_vpshrdq256: |
| 5048 | case X86::BI__builtin_ia32_vpshrdq512: |
| 5049 | case X86::BI__builtin_ia32_vpshrdw128: |
| 5050 | case X86::BI__builtin_ia32_vpshrdw256: |
| 5051 | case X86::BI__builtin_ia32_vpshrdw512: |
| 5052 | // NOTE: Reversed Hi/Lo operands. |
| 5053 | return interp__builtin_elementwise_triop( |
| 5054 | S, OpPC, Call, |
| 5055 | Fn: [](const APSInt &Lo, const APSInt &Hi, const APSInt &Amt) { |
| 5056 | return llvm::APIntOps::fshr(Hi, Lo, Shift: Amt); |
| 5057 | }); |
| 5058 | case X86::BI__builtin_ia32_vpconflictsi_128: |
| 5059 | case X86::BI__builtin_ia32_vpconflictsi_256: |
| 5060 | case X86::BI__builtin_ia32_vpconflictsi_512: |
| 5061 | case X86::BI__builtin_ia32_vpconflictdi_128: |
| 5062 | case X86::BI__builtin_ia32_vpconflictdi_256: |
| 5063 | case X86::BI__builtin_ia32_vpconflictdi_512: |
| 5064 | return interp__builtin_ia32_vpconflict(S, OpPC, Call); |
| 5065 | case clang::X86::BI__builtin_ia32_blendpd: |
| 5066 | case clang::X86::BI__builtin_ia32_blendpd256: |
| 5067 | case clang::X86::BI__builtin_ia32_blendps: |
| 5068 | case clang::X86::BI__builtin_ia32_blendps256: |
| 5069 | case clang::X86::BI__builtin_ia32_pblendw128: |
| 5070 | case clang::X86::BI__builtin_ia32_pblendw256: |
| 5071 | case clang::X86::BI__builtin_ia32_pblendd128: |
| 5072 | case clang::X86::BI__builtin_ia32_pblendd256: |
| 5073 | return interp__builtin_ia32_shuffle_generic( |
| 5074 | S, OpPC, Call, GetSourceIndex: [](unsigned DstIdx, unsigned ShuffleMask) { |
| 5075 | // Bit index for mask. |
| 5076 | unsigned MaskBit = (ShuffleMask >> (DstIdx % 8)) & 0x1; |
| 5077 | unsigned SrcVecIdx = MaskBit ? 1 : 0; // 1 = TrueVec, 0 = FalseVec |
| 5078 | return std::pair<unsigned, int>{SrcVecIdx, static_cast<int>(DstIdx)}; |
| 5079 | }); |
| 5080 | |
| 5081 | |
| 5082 | |
| 5083 | case clang::X86::BI__builtin_ia32_blendvpd: |
| 5084 | case clang::X86::BI__builtin_ia32_blendvpd256: |
| 5085 | case clang::X86::BI__builtin_ia32_blendvps: |
| 5086 | case clang::X86::BI__builtin_ia32_blendvps256: |
| 5087 | return interp__builtin_elementwise_triop_fp( |
| 5088 | S, OpPC, Call, |
| 5089 | Fn: [](const APFloat &F, const APFloat &T, const APFloat &C, |
| 5090 | llvm::RoundingMode) { return C.isNegative() ? T : F; }); |
| 5091 | |
| 5092 | case clang::X86::BI__builtin_ia32_pblendvb128: |
| 5093 | case clang::X86::BI__builtin_ia32_pblendvb256: |
| 5094 | return interp__builtin_elementwise_triop( |
| 5095 | S, OpPC, Call, Fn: [](const APSInt &F, const APSInt &T, const APSInt &C) { |
| 5096 | return ((APInt)C).isNegative() ? T : F; |
| 5097 | }); |
| 5098 | case X86::BI__builtin_ia32_ptestz128: |
| 5099 | case X86::BI__builtin_ia32_ptestz256: |
| 5100 | case X86::BI__builtin_ia32_vtestzps: |
| 5101 | case X86::BI__builtin_ia32_vtestzps256: |
| 5102 | case X86::BI__builtin_ia32_vtestzpd: |
| 5103 | case X86::BI__builtin_ia32_vtestzpd256: |
| 5104 | return interp__builtin_ia32_test_op( |
| 5105 | S, OpPC, Call, |
| 5106 | Fn: [](const APInt &A, const APInt &B) { return (A & B) == 0; }); |
| 5107 | case X86::BI__builtin_ia32_ptestc128: |
| 5108 | case X86::BI__builtin_ia32_ptestc256: |
| 5109 | case X86::BI__builtin_ia32_vtestcps: |
| 5110 | case X86::BI__builtin_ia32_vtestcps256: |
| 5111 | case X86::BI__builtin_ia32_vtestcpd: |
| 5112 | case X86::BI__builtin_ia32_vtestcpd256: |
| 5113 | return interp__builtin_ia32_test_op( |
| 5114 | S, OpPC, Call, |
| 5115 | Fn: [](const APInt &A, const APInt &B) { return (~A & B) == 0; }); |
| 5116 | case X86::BI__builtin_ia32_ptestnzc128: |
| 5117 | case X86::BI__builtin_ia32_ptestnzc256: |
| 5118 | case X86::BI__builtin_ia32_vtestnzcps: |
| 5119 | case X86::BI__builtin_ia32_vtestnzcps256: |
| 5120 | case X86::BI__builtin_ia32_vtestnzcpd: |
| 5121 | case X86::BI__builtin_ia32_vtestnzcpd256: |
| 5122 | return interp__builtin_ia32_test_op( |
| 5123 | S, OpPC, Call, Fn: [](const APInt &A, const APInt &B) { |
| 5124 | return ((A & B) != 0) && ((~A & B) != 0); |
| 5125 | }); |
| 5126 | case X86::BI__builtin_ia32_selectb_128: |
| 5127 | case X86::BI__builtin_ia32_selectb_256: |
| 5128 | case X86::BI__builtin_ia32_selectb_512: |
| 5129 | case X86::BI__builtin_ia32_selectw_128: |
| 5130 | case X86::BI__builtin_ia32_selectw_256: |
| 5131 | case X86::BI__builtin_ia32_selectw_512: |
| 5132 | case X86::BI__builtin_ia32_selectd_128: |
| 5133 | case X86::BI__builtin_ia32_selectd_256: |
| 5134 | case X86::BI__builtin_ia32_selectd_512: |
| 5135 | case X86::BI__builtin_ia32_selectq_128: |
| 5136 | case X86::BI__builtin_ia32_selectq_256: |
| 5137 | case X86::BI__builtin_ia32_selectq_512: |
| 5138 | case X86::BI__builtin_ia32_selectph_128: |
| 5139 | case X86::BI__builtin_ia32_selectph_256: |
| 5140 | case X86::BI__builtin_ia32_selectph_512: |
| 5141 | case X86::BI__builtin_ia32_selectpbf_128: |
| 5142 | case X86::BI__builtin_ia32_selectpbf_256: |
| 5143 | case X86::BI__builtin_ia32_selectpbf_512: |
| 5144 | case X86::BI__builtin_ia32_selectps_128: |
| 5145 | case X86::BI__builtin_ia32_selectps_256: |
| 5146 | case X86::BI__builtin_ia32_selectps_512: |
| 5147 | case X86::BI__builtin_ia32_selectpd_128: |
| 5148 | case X86::BI__builtin_ia32_selectpd_256: |
| 5149 | case X86::BI__builtin_ia32_selectpd_512: |
| 5150 | return interp__builtin_select(S, OpPC, Call); |
| 5151 | |
| 5152 | case X86::BI__builtin_ia32_shufps: |
| 5153 | case X86::BI__builtin_ia32_shufps256: |
| 5154 | case X86::BI__builtin_ia32_shufps512: |
| 5155 | return interp__builtin_ia32_shuffle_generic( |
| 5156 | S, OpPC, Call, GetSourceIndex: [](unsigned DstIdx, unsigned ShuffleMask) { |
| 5157 | unsigned NumElemPerLane = 4; |
| 5158 | unsigned NumSelectableElems = NumElemPerLane / 2; |
| 5159 | unsigned BitsPerElem = 2; |
| 5160 | unsigned IndexMask = 0x3; |
| 5161 | unsigned MaskBits = 8; |
| 5162 | unsigned Lane = DstIdx / NumElemPerLane; |
| 5163 | unsigned ElemInLane = DstIdx % NumElemPerLane; |
| 5164 | unsigned LaneOffset = Lane * NumElemPerLane; |
| 5165 | unsigned SrcIdx = ElemInLane >= NumSelectableElems ? 1 : 0; |
| 5166 | unsigned BitIndex = (DstIdx * BitsPerElem) % MaskBits; |
| 5167 | unsigned Index = (ShuffleMask >> BitIndex) & IndexMask; |
| 5168 | return std::pair<unsigned, int>{SrcIdx, |
| 5169 | static_cast<int>(LaneOffset + Index)}; |
| 5170 | }); |
| 5171 | case X86::BI__builtin_ia32_shufpd: |
| 5172 | case X86::BI__builtin_ia32_shufpd256: |
| 5173 | case X86::BI__builtin_ia32_shufpd512: |
| 5174 | return interp__builtin_ia32_shuffle_generic( |
| 5175 | S, OpPC, Call, GetSourceIndex: [](unsigned DstIdx, unsigned ShuffleMask) { |
| 5176 | unsigned NumElemPerLane = 2; |
| 5177 | unsigned NumSelectableElems = NumElemPerLane / 2; |
| 5178 | unsigned BitsPerElem = 1; |
| 5179 | unsigned IndexMask = 0x1; |
| 5180 | unsigned MaskBits = 8; |
| 5181 | unsigned Lane = DstIdx / NumElemPerLane; |
| 5182 | unsigned ElemInLane = DstIdx % NumElemPerLane; |
| 5183 | unsigned LaneOffset = Lane * NumElemPerLane; |
| 5184 | unsigned SrcIdx = ElemInLane >= NumSelectableElems ? 1 : 0; |
| 5185 | unsigned BitIndex = (DstIdx * BitsPerElem) % MaskBits; |
| 5186 | unsigned Index = (ShuffleMask >> BitIndex) & IndexMask; |
| 5187 | return std::pair<unsigned, int>{SrcIdx, |
| 5188 | static_cast<int>(LaneOffset + Index)}; |
| 5189 | }); |
| 5190 | |
| 5191 | case X86::BI__builtin_ia32_vgf2p8affineinvqb_v16qi: |
| 5192 | case X86::BI__builtin_ia32_vgf2p8affineinvqb_v32qi: |
| 5193 | case X86::BI__builtin_ia32_vgf2p8affineinvqb_v64qi: |
| 5194 | return interp_builtin_ia32_gfni_affine(S, OpPC, Call, Inverse: true); |
| 5195 | case X86::BI__builtin_ia32_vgf2p8affineqb_v16qi: |
| 5196 | case X86::BI__builtin_ia32_vgf2p8affineqb_v32qi: |
| 5197 | case X86::BI__builtin_ia32_vgf2p8affineqb_v64qi: |
| 5198 | return interp_builtin_ia32_gfni_affine(S, OpPC, Call, Inverse: false); |
| 5199 | |
| 5200 | case X86::BI__builtin_ia32_vgf2p8mulb_v16qi: |
| 5201 | case X86::BI__builtin_ia32_vgf2p8mulb_v32qi: |
| 5202 | case X86::BI__builtin_ia32_vgf2p8mulb_v64qi: |
| 5203 | return interp__builtin_ia32_gfni_mul(S, OpPC, Call); |
| 5204 | |
| 5205 | case X86::BI__builtin_ia32_insertps128: |
| 5206 | return interp__builtin_ia32_shuffle_generic( |
| 5207 | S, OpPC, Call, GetSourceIndex: [](unsigned DstIdx, unsigned Mask) { |
| 5208 | // Bits [3:0]: zero mask - if bit is set, zero this element |
| 5209 | if ((Mask & (1 << DstIdx)) != 0) { |
| 5210 | return std::pair<unsigned, int>{0, -1}; |
| 5211 | } |
| 5212 | // Bits [7:6]: select element from source vector Y (0-3) |
| 5213 | // Bits [5:4]: select destination position (0-3) |
| 5214 | unsigned SrcElem = (Mask >> 6) & 0x3; |
| 5215 | unsigned DstElem = (Mask >> 4) & 0x3; |
| 5216 | if (DstIdx == DstElem) { |
| 5217 | // Insert element from source vector (B) at this position |
| 5218 | return std::pair<unsigned, int>{1, static_cast<int>(SrcElem)}; |
| 5219 | } else { |
| 5220 | // Copy from destination vector (A) |
| 5221 | return std::pair<unsigned, int>{0, static_cast<int>(DstIdx)}; |
| 5222 | } |
| 5223 | }); |
| 5224 | case X86::BI__builtin_ia32_permvarsi256: |
| 5225 | case X86::BI__builtin_ia32_permvarsf256: |
| 5226 | case X86::BI__builtin_ia32_permvardf512: |
| 5227 | case X86::BI__builtin_ia32_permvardi512: |
| 5228 | case X86::BI__builtin_ia32_permvarhi128: |
| 5229 | return interp__builtin_ia32_shuffle_generic( |
| 5230 | S, OpPC, Call, GetSourceIndex: [](unsigned DstIdx, unsigned ShuffleMask) { |
| 5231 | int Offset = ShuffleMask & 0x7; |
| 5232 | return std::pair<unsigned, int>{0, Offset}; |
| 5233 | }); |
| 5234 | case X86::BI__builtin_ia32_permvarqi128: |
| 5235 | case X86::BI__builtin_ia32_permvarhi256: |
| 5236 | case X86::BI__builtin_ia32_permvarsi512: |
| 5237 | case X86::BI__builtin_ia32_permvarsf512: |
| 5238 | return interp__builtin_ia32_shuffle_generic( |
| 5239 | S, OpPC, Call, GetSourceIndex: [](unsigned DstIdx, unsigned ShuffleMask) { |
| 5240 | int Offset = ShuffleMask & 0xF; |
| 5241 | return std::pair<unsigned, int>{0, Offset}; |
| 5242 | }); |
| 5243 | case X86::BI__builtin_ia32_permvardi256: |
| 5244 | case X86::BI__builtin_ia32_permvardf256: |
| 5245 | return interp__builtin_ia32_shuffle_generic( |
| 5246 | S, OpPC, Call, GetSourceIndex: [](unsigned DstIdx, unsigned ShuffleMask) { |
| 5247 | int Offset = ShuffleMask & 0x3; |
| 5248 | return std::pair<unsigned, int>{0, Offset}; |
| 5249 | }); |
| 5250 | case X86::BI__builtin_ia32_permvarqi256: |
| 5251 | case X86::BI__builtin_ia32_permvarhi512: |
| 5252 | return interp__builtin_ia32_shuffle_generic( |
| 5253 | S, OpPC, Call, GetSourceIndex: [](unsigned DstIdx, unsigned ShuffleMask) { |
| 5254 | int Offset = ShuffleMask & 0x1F; |
| 5255 | return std::pair<unsigned, int>{0, Offset}; |
| 5256 | }); |
| 5257 | case X86::BI__builtin_ia32_permvarqi512: |
| 5258 | return interp__builtin_ia32_shuffle_generic( |
| 5259 | S, OpPC, Call, GetSourceIndex: [](unsigned DstIdx, unsigned ShuffleMask) { |
| 5260 | int Offset = ShuffleMask & 0x3F; |
| 5261 | return std::pair<unsigned, int>{0, Offset}; |
| 5262 | }); |
| 5263 | case X86::BI__builtin_ia32_vpermi2varq128: |
| 5264 | case X86::BI__builtin_ia32_vpermi2varpd128: |
| 5265 | return interp__builtin_ia32_shuffle_generic( |
| 5266 | S, OpPC, Call, GetSourceIndex: [](unsigned DstIdx, unsigned ShuffleMask) { |
| 5267 | int Offset = ShuffleMask & 0x1; |
| 5268 | unsigned SrcIdx = (ShuffleMask >> 1) & 0x1; |
| 5269 | return std::pair<unsigned, int>{SrcIdx, Offset}; |
| 5270 | }); |
| 5271 | case X86::BI__builtin_ia32_vpermi2vard128: |
| 5272 | case X86::BI__builtin_ia32_vpermi2varps128: |
| 5273 | case X86::BI__builtin_ia32_vpermi2varq256: |
| 5274 | case X86::BI__builtin_ia32_vpermi2varpd256: |
| 5275 | return interp__builtin_ia32_shuffle_generic( |
| 5276 | S, OpPC, Call, GetSourceIndex: [](unsigned DstIdx, unsigned ShuffleMask) { |
| 5277 | int Offset = ShuffleMask & 0x3; |
| 5278 | unsigned SrcIdx = (ShuffleMask >> 2) & 0x1; |
| 5279 | return std::pair<unsigned, int>{SrcIdx, Offset}; |
| 5280 | }); |
| 5281 | case X86::BI__builtin_ia32_vpermi2varhi128: |
| 5282 | case X86::BI__builtin_ia32_vpermi2vard256: |
| 5283 | case X86::BI__builtin_ia32_vpermi2varps256: |
| 5284 | case X86::BI__builtin_ia32_vpermi2varq512: |
| 5285 | case X86::BI__builtin_ia32_vpermi2varpd512: |
| 5286 | return interp__builtin_ia32_shuffle_generic( |
| 5287 | S, OpPC, Call, GetSourceIndex: [](unsigned DstIdx, unsigned ShuffleMask) { |
| 5288 | int Offset = ShuffleMask & 0x7; |
| 5289 | unsigned SrcIdx = (ShuffleMask >> 3) & 0x1; |
| 5290 | return std::pair<unsigned, int>{SrcIdx, Offset}; |
| 5291 | }); |
| 5292 | case X86::BI__builtin_ia32_vpermi2varqi128: |
| 5293 | case X86::BI__builtin_ia32_vpermi2varhi256: |
| 5294 | case X86::BI__builtin_ia32_vpermi2vard512: |
| 5295 | case X86::BI__builtin_ia32_vpermi2varps512: |
| 5296 | return interp__builtin_ia32_shuffle_generic( |
| 5297 | S, OpPC, Call, GetSourceIndex: [](unsigned DstIdx, unsigned ShuffleMask) { |
| 5298 | int Offset = ShuffleMask & 0xF; |
| 5299 | unsigned SrcIdx = (ShuffleMask >> 4) & 0x1; |
| 5300 | return std::pair<unsigned, int>{SrcIdx, Offset}; |
| 5301 | }); |
| 5302 | case X86::BI__builtin_ia32_vpermi2varqi256: |
| 5303 | case X86::BI__builtin_ia32_vpermi2varhi512: |
| 5304 | return interp__builtin_ia32_shuffle_generic( |
| 5305 | S, OpPC, Call, GetSourceIndex: [](unsigned DstIdx, unsigned ShuffleMask) { |
| 5306 | int Offset = ShuffleMask & 0x1F; |
| 5307 | unsigned SrcIdx = (ShuffleMask >> 5) & 0x1; |
| 5308 | return std::pair<unsigned, int>{SrcIdx, Offset}; |
| 5309 | }); |
| 5310 | case X86::BI__builtin_ia32_vpermi2varqi512: |
| 5311 | return interp__builtin_ia32_shuffle_generic( |
| 5312 | S, OpPC, Call, GetSourceIndex: [](unsigned DstIdx, unsigned ShuffleMask) { |
| 5313 | int Offset = ShuffleMask & 0x3F; |
| 5314 | unsigned SrcIdx = (ShuffleMask >> 6) & 0x1; |
| 5315 | return std::pair<unsigned, int>{SrcIdx, Offset}; |
| 5316 | }); |
| 5317 | case X86::BI__builtin_ia32_vperm2f128_pd256: |
| 5318 | case X86::BI__builtin_ia32_vperm2f128_ps256: |
| 5319 | case X86::BI__builtin_ia32_vperm2f128_si256: |
| 5320 | case X86::BI__builtin_ia32_permti256: { |
| 5321 | unsigned NumElements = |
| 5322 | Call->getArg(Arg: 0)->getType()->castAs<VectorType>()->getNumElements(); |
| 5323 | unsigned PreservedBitsCnt = NumElements >> 2; |
| 5324 | return interp__builtin_ia32_shuffle_generic( |
| 5325 | S, OpPC, Call, |
| 5326 | GetSourceIndex: [PreservedBitsCnt](unsigned DstIdx, unsigned ShuffleMask) { |
| 5327 | unsigned ControlBitsCnt = DstIdx >> PreservedBitsCnt << 2; |
| 5328 | unsigned ControlBits = ShuffleMask >> ControlBitsCnt; |
| 5329 | |
| 5330 | if (ControlBits & 0b1000) |
| 5331 | return std::make_pair(x: 0u, y: -1); |
| 5332 | |
| 5333 | unsigned SrcVecIdx = (ControlBits & 0b10) >> 1; |
| 5334 | unsigned PreservedBitsMask = (1 << PreservedBitsCnt) - 1; |
| 5335 | int SrcIdx = ((ControlBits & 0b1) << PreservedBitsCnt) | |
| 5336 | (DstIdx & PreservedBitsMask); |
| 5337 | return std::make_pair(x&: SrcVecIdx, y&: SrcIdx); |
| 5338 | }); |
| 5339 | } |
| 5340 | case X86::BI__builtin_ia32_pshufb128: |
| 5341 | case X86::BI__builtin_ia32_pshufb256: |
| 5342 | case X86::BI__builtin_ia32_pshufb512: |
| 5343 | return interp__builtin_ia32_shuffle_generic( |
| 5344 | S, OpPC, Call, GetSourceIndex: [](unsigned DstIdx, unsigned ShuffleMask) { |
| 5345 | uint8_t Ctlb = static_cast<uint8_t>(ShuffleMask); |
| 5346 | if (Ctlb & 0x80) |
| 5347 | return std::make_pair(x: 0, y: -1); |
| 5348 | |
| 5349 | unsigned LaneBase = (DstIdx / 16) * 16; |
| 5350 | unsigned SrcOffset = Ctlb & 0x0F; |
| 5351 | unsigned SrcIdx = LaneBase + SrcOffset; |
| 5352 | return std::make_pair(x: 0, y: static_cast<int>(SrcIdx)); |
| 5353 | }); |
| 5354 | |
| 5355 | case X86::BI__builtin_ia32_pshuflw: |
| 5356 | case X86::BI__builtin_ia32_pshuflw256: |
| 5357 | case X86::BI__builtin_ia32_pshuflw512: |
| 5358 | return interp__builtin_ia32_shuffle_generic( |
| 5359 | S, OpPC, Call, GetSourceIndex: [](unsigned DstIdx, unsigned ShuffleMask) { |
| 5360 | unsigned LaneBase = (DstIdx / 8) * 8; |
| 5361 | unsigned LaneIdx = DstIdx % 8; |
| 5362 | if (LaneIdx < 4) { |
| 5363 | unsigned Sel = (ShuffleMask >> (2 * LaneIdx)) & 0x3; |
| 5364 | return std::make_pair(x: 0, y: static_cast<int>(LaneBase + Sel)); |
| 5365 | } |
| 5366 | |
| 5367 | return std::make_pair(x: 0, y: static_cast<int>(DstIdx)); |
| 5368 | }); |
| 5369 | |
| 5370 | case X86::BI__builtin_ia32_pshufhw: |
| 5371 | case X86::BI__builtin_ia32_pshufhw256: |
| 5372 | case X86::BI__builtin_ia32_pshufhw512: |
| 5373 | return interp__builtin_ia32_shuffle_generic( |
| 5374 | S, OpPC, Call, GetSourceIndex: [](unsigned DstIdx, unsigned ShuffleMask) { |
| 5375 | unsigned LaneBase = (DstIdx / 8) * 8; |
| 5376 | unsigned LaneIdx = DstIdx % 8; |
| 5377 | if (LaneIdx >= 4) { |
| 5378 | unsigned Sel = (ShuffleMask >> (2 * (LaneIdx - 4))) & 0x3; |
| 5379 | return std::make_pair(x: 0, y: static_cast<int>(LaneBase + 4 + Sel)); |
| 5380 | } |
| 5381 | |
| 5382 | return std::make_pair(x: 0, y: static_cast<int>(DstIdx)); |
| 5383 | }); |
| 5384 | |
| 5385 | case X86::BI__builtin_ia32_pshufd: |
| 5386 | case X86::BI__builtin_ia32_pshufd256: |
| 5387 | case X86::BI__builtin_ia32_pshufd512: |
| 5388 | case X86::BI__builtin_ia32_vpermilps: |
| 5389 | case X86::BI__builtin_ia32_vpermilps256: |
| 5390 | case X86::BI__builtin_ia32_vpermilps512: |
| 5391 | return interp__builtin_ia32_shuffle_generic( |
| 5392 | S, OpPC, Call, GetSourceIndex: [](unsigned DstIdx, unsigned ShuffleMask) { |
| 5393 | unsigned LaneBase = (DstIdx / 4) * 4; |
| 5394 | unsigned LaneIdx = DstIdx % 4; |
| 5395 | unsigned Sel = (ShuffleMask >> (2 * LaneIdx)) & 0x3; |
| 5396 | return std::make_pair(x: 0, y: static_cast<int>(LaneBase + Sel)); |
| 5397 | }); |
| 5398 | |
| 5399 | case X86::BI__builtin_ia32_vpermilvarpd: |
| 5400 | case X86::BI__builtin_ia32_vpermilvarpd256: |
| 5401 | case X86::BI__builtin_ia32_vpermilvarpd512: |
| 5402 | return interp__builtin_ia32_shuffle_generic( |
| 5403 | S, OpPC, Call, GetSourceIndex: [](unsigned DstIdx, unsigned ShuffleMask) { |
| 5404 | unsigned NumElemPerLane = 2; |
| 5405 | unsigned Lane = DstIdx / NumElemPerLane; |
| 5406 | unsigned Offset = ShuffleMask & 0b10 ? 1 : 0; |
| 5407 | return std::make_pair( |
| 5408 | x: 0, y: static_cast<int>(Lane * NumElemPerLane + Offset)); |
| 5409 | }); |
| 5410 | |
| 5411 | case X86::BI__builtin_ia32_vpermilvarps: |
| 5412 | case X86::BI__builtin_ia32_vpermilvarps256: |
| 5413 | case X86::BI__builtin_ia32_vpermilvarps512: |
| 5414 | return interp__builtin_ia32_shuffle_generic( |
| 5415 | S, OpPC, Call, GetSourceIndex: [](unsigned DstIdx, unsigned ShuffleMask) { |
| 5416 | unsigned NumElemPerLane = 4; |
| 5417 | unsigned Lane = DstIdx / NumElemPerLane; |
| 5418 | unsigned Offset = ShuffleMask & 0b11; |
| 5419 | return std::make_pair( |
| 5420 | x: 0, y: static_cast<int>(Lane * NumElemPerLane + Offset)); |
| 5421 | }); |
| 5422 | |
| 5423 | case X86::BI__builtin_ia32_vpermilpd: |
| 5424 | case X86::BI__builtin_ia32_vpermilpd256: |
| 5425 | case X86::BI__builtin_ia32_vpermilpd512: |
| 5426 | return interp__builtin_ia32_shuffle_generic( |
| 5427 | S, OpPC, Call, GetSourceIndex: [](unsigned DstIdx, unsigned Control) { |
| 5428 | unsigned NumElemPerLane = 2; |
| 5429 | unsigned BitsPerElem = 1; |
| 5430 | unsigned MaskBits = 8; |
| 5431 | unsigned IndexMask = 0x1; |
| 5432 | unsigned Lane = DstIdx / NumElemPerLane; |
| 5433 | unsigned LaneOffset = Lane * NumElemPerLane; |
| 5434 | unsigned BitIndex = (DstIdx * BitsPerElem) % MaskBits; |
| 5435 | unsigned Index = (Control >> BitIndex) & IndexMask; |
| 5436 | return std::make_pair(x: 0, y: static_cast<int>(LaneOffset + Index)); |
| 5437 | }); |
| 5438 | |
| 5439 | case X86::BI__builtin_ia32_permdf256: |
| 5440 | case X86::BI__builtin_ia32_permdi256: |
| 5441 | return interp__builtin_ia32_shuffle_generic( |
| 5442 | S, OpPC, Call, GetSourceIndex: [](unsigned DstIdx, unsigned Control) { |
| 5443 | // permute4x64 operates on 4 64-bit elements |
| 5444 | // For element i (0-3), extract bits [2*i+1:2*i] from Control |
| 5445 | unsigned Index = (Control >> (2 * DstIdx)) & 0x3; |
| 5446 | return std::make_pair(x: 0, y: static_cast<int>(Index)); |
| 5447 | }); |
| 5448 | |
| 5449 | case X86::BI__builtin_ia32_vpmultishiftqb128: |
| 5450 | case X86::BI__builtin_ia32_vpmultishiftqb256: |
| 5451 | case X86::BI__builtin_ia32_vpmultishiftqb512: |
| 5452 | return interp__builtin_ia32_multishiftqb(S, OpPC, Call); |
| 5453 | case X86::BI__builtin_ia32_kandqi: |
| 5454 | case X86::BI__builtin_ia32_kandhi: |
| 5455 | case X86::BI__builtin_ia32_kandsi: |
| 5456 | case X86::BI__builtin_ia32_kanddi: |
| 5457 | return interp__builtin_elementwise_int_binop( |
| 5458 | S, OpPC, Call, |
| 5459 | Fn: [](const APSInt &LHS, const APSInt &RHS) { return LHS & RHS; }); |
| 5460 | |
| 5461 | case X86::BI__builtin_ia32_kandnqi: |
| 5462 | case X86::BI__builtin_ia32_kandnhi: |
| 5463 | case X86::BI__builtin_ia32_kandnsi: |
| 5464 | case X86::BI__builtin_ia32_kandndi: |
| 5465 | return interp__builtin_elementwise_int_binop( |
| 5466 | S, OpPC, Call, |
| 5467 | Fn: [](const APSInt &LHS, const APSInt &RHS) { return ~LHS & RHS; }); |
| 5468 | |
| 5469 | case X86::BI__builtin_ia32_korqi: |
| 5470 | case X86::BI__builtin_ia32_korhi: |
| 5471 | case X86::BI__builtin_ia32_korsi: |
| 5472 | case X86::BI__builtin_ia32_kordi: |
| 5473 | return interp__builtin_elementwise_int_binop( |
| 5474 | S, OpPC, Call, |
| 5475 | Fn: [](const APSInt &LHS, const APSInt &RHS) { return LHS | RHS; }); |
| 5476 | |
| 5477 | case X86::BI__builtin_ia32_kxnorqi: |
| 5478 | case X86::BI__builtin_ia32_kxnorhi: |
| 5479 | case X86::BI__builtin_ia32_kxnorsi: |
| 5480 | case X86::BI__builtin_ia32_kxnordi: |
| 5481 | return interp__builtin_elementwise_int_binop( |
| 5482 | S, OpPC, Call, |
| 5483 | Fn: [](const APSInt &LHS, const APSInt &RHS) { return ~(LHS ^ RHS); }); |
| 5484 | |
| 5485 | case X86::BI__builtin_ia32_kxorqi: |
| 5486 | case X86::BI__builtin_ia32_kxorhi: |
| 5487 | case X86::BI__builtin_ia32_kxorsi: |
| 5488 | case X86::BI__builtin_ia32_kxordi: |
| 5489 | return interp__builtin_elementwise_int_binop( |
| 5490 | S, OpPC, Call, |
| 5491 | Fn: [](const APSInt &LHS, const APSInt &RHS) { return LHS ^ RHS; }); |
| 5492 | |
| 5493 | case X86::BI__builtin_ia32_knotqi: |
| 5494 | case X86::BI__builtin_ia32_knothi: |
| 5495 | case X86::BI__builtin_ia32_knotsi: |
| 5496 | case X86::BI__builtin_ia32_knotdi: |
| 5497 | return interp__builtin_elementwise_int_unaryop( |
| 5498 | S, OpPC, Call, Fn: [](const APSInt &Src) { return ~Src; }); |
| 5499 | |
| 5500 | case X86::BI__builtin_ia32_kaddqi: |
| 5501 | case X86::BI__builtin_ia32_kaddhi: |
| 5502 | case X86::BI__builtin_ia32_kaddsi: |
| 5503 | case X86::BI__builtin_ia32_kadddi: |
| 5504 | return interp__builtin_elementwise_int_binop( |
| 5505 | S, OpPC, Call, |
| 5506 | Fn: [](const APSInt &LHS, const APSInt &RHS) { return LHS + RHS; }); |
| 5507 | |
| 5508 | case X86::BI__builtin_ia32_kmovb: |
| 5509 | case X86::BI__builtin_ia32_kmovw: |
| 5510 | case X86::BI__builtin_ia32_kmovd: |
| 5511 | case X86::BI__builtin_ia32_kmovq: |
| 5512 | return interp__builtin_elementwise_int_unaryop( |
| 5513 | S, OpPC, Call, Fn: [](const APSInt &Src) { return Src; }); |
| 5514 | |
| 5515 | case X86::BI__builtin_ia32_kunpckhi: |
| 5516 | case X86::BI__builtin_ia32_kunpckdi: |
| 5517 | case X86::BI__builtin_ia32_kunpcksi: |
| 5518 | return interp__builtin_elementwise_int_binop( |
| 5519 | S, OpPC, Call, Fn: [](const APSInt &A, const APSInt &B) { |
| 5520 | // Generic kunpack: extract lower half of each operand and concatenate |
| 5521 | // Result = A[HalfWidth-1:0] concat B[HalfWidth-1:0] |
| 5522 | unsigned BW = A.getBitWidth(); |
| 5523 | return APSInt(A.trunc(width: BW / 2).concat(NewLSB: B.trunc(width: BW / 2)), |
| 5524 | A.isUnsigned()); |
| 5525 | }); |
| 5526 | |
| 5527 | case X86::BI__builtin_ia32_phminposuw128: |
| 5528 | return interp__builtin_ia32_phminposuw(S, OpPC, Call); |
| 5529 | |
| 5530 | case X86::BI__builtin_ia32_psraq128: |
| 5531 | case X86::BI__builtin_ia32_psraq256: |
| 5532 | case X86::BI__builtin_ia32_psraq512: |
| 5533 | case X86::BI__builtin_ia32_psrad128: |
| 5534 | case X86::BI__builtin_ia32_psrad256: |
| 5535 | case X86::BI__builtin_ia32_psrad512: |
| 5536 | case X86::BI__builtin_ia32_psraw128: |
| 5537 | case X86::BI__builtin_ia32_psraw256: |
| 5538 | case X86::BI__builtin_ia32_psraw512: |
| 5539 | return interp__builtin_ia32_shift_with_count( |
| 5540 | S, OpPC, Call, |
| 5541 | ShiftOp: [](const APInt &Elt, uint64_t Count) { return Elt.ashr(ShiftAmt: Count); }, |
| 5542 | OverflowOp: [](const APInt &Elt, unsigned Width) { return Elt.ashr(ShiftAmt: Width - 1); }); |
| 5543 | |
| 5544 | case X86::BI__builtin_ia32_psllq128: |
| 5545 | case X86::BI__builtin_ia32_psllq256: |
| 5546 | case X86::BI__builtin_ia32_psllq512: |
| 5547 | case X86::BI__builtin_ia32_pslld128: |
| 5548 | case X86::BI__builtin_ia32_pslld256: |
| 5549 | case X86::BI__builtin_ia32_pslld512: |
| 5550 | case X86::BI__builtin_ia32_psllw128: |
| 5551 | case X86::BI__builtin_ia32_psllw256: |
| 5552 | case X86::BI__builtin_ia32_psllw512: |
| 5553 | return interp__builtin_ia32_shift_with_count( |
| 5554 | S, OpPC, Call, |
| 5555 | ShiftOp: [](const APInt &Elt, uint64_t Count) { return Elt.shl(shiftAmt: Count); }, |
| 5556 | OverflowOp: [](const APInt &Elt, unsigned Width) { return APInt::getZero(numBits: Width); }); |
| 5557 | |
| 5558 | case X86::BI__builtin_ia32_psrlq128: |
| 5559 | case X86::BI__builtin_ia32_psrlq256: |
| 5560 | case X86::BI__builtin_ia32_psrlq512: |
| 5561 | case X86::BI__builtin_ia32_psrld128: |
| 5562 | case X86::BI__builtin_ia32_psrld256: |
| 5563 | case X86::BI__builtin_ia32_psrld512: |
| 5564 | case X86::BI__builtin_ia32_psrlw128: |
| 5565 | case X86::BI__builtin_ia32_psrlw256: |
| 5566 | case X86::BI__builtin_ia32_psrlw512: |
| 5567 | return interp__builtin_ia32_shift_with_count( |
| 5568 | S, OpPC, Call, |
| 5569 | ShiftOp: [](const APInt &Elt, uint64_t Count) { return Elt.lshr(shiftAmt: Count); }, |
| 5570 | OverflowOp: [](const APInt &Elt, unsigned Width) { return APInt::getZero(numBits: Width); }); |
| 5571 | |
| 5572 | case X86::BI__builtin_ia32_pternlogd128_mask: |
| 5573 | case X86::BI__builtin_ia32_pternlogd256_mask: |
| 5574 | case X86::BI__builtin_ia32_pternlogd512_mask: |
| 5575 | case X86::BI__builtin_ia32_pternlogq128_mask: |
| 5576 | case X86::BI__builtin_ia32_pternlogq256_mask: |
| 5577 | case X86::BI__builtin_ia32_pternlogq512_mask: |
| 5578 | return interp__builtin_ia32_pternlog(S, OpPC, Call, /*MaskZ=*/false); |
| 5579 | case X86::BI__builtin_ia32_pternlogd128_maskz: |
| 5580 | case X86::BI__builtin_ia32_pternlogd256_maskz: |
| 5581 | case X86::BI__builtin_ia32_pternlogd512_maskz: |
| 5582 | case X86::BI__builtin_ia32_pternlogq128_maskz: |
| 5583 | case X86::BI__builtin_ia32_pternlogq256_maskz: |
| 5584 | case X86::BI__builtin_ia32_pternlogq512_maskz: |
| 5585 | return interp__builtin_ia32_pternlog(S, OpPC, Call, /*MaskZ=*/true); |
| 5586 | case Builtin::BI__builtin_elementwise_fshl: |
| 5587 | return interp__builtin_elementwise_triop(S, OpPC, Call, |
| 5588 | Fn: llvm::APIntOps::fshl); |
| 5589 | case Builtin::BI__builtin_elementwise_fshr: |
| 5590 | return interp__builtin_elementwise_triop(S, OpPC, Call, |
| 5591 | Fn: llvm::APIntOps::fshr); |
| 5592 | |
| 5593 | case X86::BI__builtin_ia32_shuf_f32x4_256: |
| 5594 | case X86::BI__builtin_ia32_shuf_i32x4_256: |
| 5595 | case X86::BI__builtin_ia32_shuf_f64x2_256: |
| 5596 | case X86::BI__builtin_ia32_shuf_i64x2_256: |
| 5597 | case X86::BI__builtin_ia32_shuf_f32x4: |
| 5598 | case X86::BI__builtin_ia32_shuf_i32x4: |
| 5599 | case X86::BI__builtin_ia32_shuf_f64x2: |
| 5600 | case X86::BI__builtin_ia32_shuf_i64x2: { |
| 5601 | // Destination and sources A, B all have the same type. |
| 5602 | QualType VecQT = Call->getArg(Arg: 0)->getType(); |
| 5603 | const auto *VecT = VecQT->castAs<VectorType>(); |
| 5604 | unsigned NumElems = VecT->getNumElements(); |
| 5605 | unsigned ElemBits = S.getASTContext().getTypeSize(T: VecT->getElementType()); |
| 5606 | unsigned LaneBits = 128u; |
| 5607 | unsigned NumLanes = (NumElems * ElemBits) / LaneBits; |
| 5608 | unsigned NumElemsPerLane = LaneBits / ElemBits; |
| 5609 | |
| 5610 | return interp__builtin_ia32_shuffle_generic( |
| 5611 | S, OpPC, Call, |
| 5612 | GetSourceIndex: [NumLanes, NumElemsPerLane](unsigned DstIdx, unsigned ShuffleMask) { |
| 5613 | // DstIdx determines source. ShuffleMask selects lane in source. |
| 5614 | unsigned BitsPerElem = NumLanes / 2; |
| 5615 | unsigned IndexMask = (1u << BitsPerElem) - 1; |
| 5616 | unsigned Lane = DstIdx / NumElemsPerLane; |
| 5617 | unsigned SrcIdx = (Lane < NumLanes / 2) ? 0 : 1; |
| 5618 | unsigned BitIdx = BitsPerElem * Lane; |
| 5619 | unsigned SrcLaneIdx = (ShuffleMask >> BitIdx) & IndexMask; |
| 5620 | unsigned ElemInLane = DstIdx % NumElemsPerLane; |
| 5621 | unsigned IdxToPick = SrcLaneIdx * NumElemsPerLane + ElemInLane; |
| 5622 | return std::pair<unsigned, int>{SrcIdx, IdxToPick}; |
| 5623 | }); |
| 5624 | } |
| 5625 | |
| 5626 | case X86::BI__builtin_ia32_insertf32x4_256: |
| 5627 | case X86::BI__builtin_ia32_inserti32x4_256: |
| 5628 | case X86::BI__builtin_ia32_insertf64x2_256: |
| 5629 | case X86::BI__builtin_ia32_inserti64x2_256: |
| 5630 | case X86::BI__builtin_ia32_insertf32x4: |
| 5631 | case X86::BI__builtin_ia32_inserti32x4: |
| 5632 | case X86::BI__builtin_ia32_insertf64x2_512: |
| 5633 | case X86::BI__builtin_ia32_inserti64x2_512: |
| 5634 | case X86::BI__builtin_ia32_insertf32x8: |
| 5635 | case X86::BI__builtin_ia32_inserti32x8: |
| 5636 | case X86::BI__builtin_ia32_insertf64x4: |
| 5637 | case X86::BI__builtin_ia32_inserti64x4: |
| 5638 | case X86::BI__builtin_ia32_vinsertf128_ps256: |
| 5639 | case X86::BI__builtin_ia32_vinsertf128_pd256: |
| 5640 | case X86::BI__builtin_ia32_vinsertf128_si256: |
| 5641 | case X86::BI__builtin_ia32_insert128i256: |
| 5642 | return interp__builtin_x86_insert_subvector(S, OpPC, Call, ID: BuiltinID); |
| 5643 | |
| 5644 | case clang::X86::BI__builtin_ia32_vcvtps2ph: |
| 5645 | case clang::X86::BI__builtin_ia32_vcvtps2ph256: |
| 5646 | return interp__builtin_ia32_vcvtps2ph(S, OpPC, Call); |
| 5647 | |
| 5648 | case X86::BI__builtin_ia32_vec_ext_v4hi: |
| 5649 | case X86::BI__builtin_ia32_vec_ext_v16qi: |
| 5650 | case X86::BI__builtin_ia32_vec_ext_v8hi: |
| 5651 | case X86::BI__builtin_ia32_vec_ext_v4si: |
| 5652 | case X86::BI__builtin_ia32_vec_ext_v2di: |
| 5653 | case X86::BI__builtin_ia32_vec_ext_v32qi: |
| 5654 | case X86::BI__builtin_ia32_vec_ext_v16hi: |
| 5655 | case X86::BI__builtin_ia32_vec_ext_v8si: |
| 5656 | case X86::BI__builtin_ia32_vec_ext_v4di: |
| 5657 | case X86::BI__builtin_ia32_vec_ext_v4sf: |
| 5658 | return interp__builtin_vec_ext(S, OpPC, Call, ID: BuiltinID); |
| 5659 | |
| 5660 | case X86::BI__builtin_ia32_vec_set_v4hi: |
| 5661 | case X86::BI__builtin_ia32_vec_set_v16qi: |
| 5662 | case X86::BI__builtin_ia32_vec_set_v8hi: |
| 5663 | case X86::BI__builtin_ia32_vec_set_v4si: |
| 5664 | case X86::BI__builtin_ia32_vec_set_v2di: |
| 5665 | case X86::BI__builtin_ia32_vec_set_v32qi: |
| 5666 | case X86::BI__builtin_ia32_vec_set_v16hi: |
| 5667 | case X86::BI__builtin_ia32_vec_set_v8si: |
| 5668 | case X86::BI__builtin_ia32_vec_set_v4di: |
| 5669 | return interp__builtin_vec_set(S, OpPC, Call, ID: BuiltinID); |
| 5670 | |
| 5671 | case X86::BI__builtin_ia32_cvtb2mask128: |
| 5672 | case X86::BI__builtin_ia32_cvtb2mask256: |
| 5673 | case X86::BI__builtin_ia32_cvtb2mask512: |
| 5674 | case X86::BI__builtin_ia32_cvtw2mask128: |
| 5675 | case X86::BI__builtin_ia32_cvtw2mask256: |
| 5676 | case X86::BI__builtin_ia32_cvtw2mask512: |
| 5677 | case X86::BI__builtin_ia32_cvtd2mask128: |
| 5678 | case X86::BI__builtin_ia32_cvtd2mask256: |
| 5679 | case X86::BI__builtin_ia32_cvtd2mask512: |
| 5680 | case X86::BI__builtin_ia32_cvtq2mask128: |
| 5681 | case X86::BI__builtin_ia32_cvtq2mask256: |
| 5682 | case X86::BI__builtin_ia32_cvtq2mask512: |
| 5683 | return interp__builtin_ia32_cvt_vec2mask(S, OpPC, Call, ID: BuiltinID); |
| 5684 | |
| 5685 | case X86::BI__builtin_ia32_cvtmask2b128: |
| 5686 | case X86::BI__builtin_ia32_cvtmask2b256: |
| 5687 | case X86::BI__builtin_ia32_cvtmask2b512: |
| 5688 | case X86::BI__builtin_ia32_cvtmask2w128: |
| 5689 | case X86::BI__builtin_ia32_cvtmask2w256: |
| 5690 | case X86::BI__builtin_ia32_cvtmask2w512: |
| 5691 | case X86::BI__builtin_ia32_cvtmask2d128: |
| 5692 | case X86::BI__builtin_ia32_cvtmask2d256: |
| 5693 | case X86::BI__builtin_ia32_cvtmask2d512: |
| 5694 | case X86::BI__builtin_ia32_cvtmask2q128: |
| 5695 | case X86::BI__builtin_ia32_cvtmask2q256: |
| 5696 | case X86::BI__builtin_ia32_cvtmask2q512: |
| 5697 | return interp__builtin_ia32_cvt_mask2vec(S, OpPC, Call, ID: BuiltinID); |
| 5698 | |
| 5699 | case X86::BI__builtin_ia32_cvtsd2ss: |
| 5700 | return interp__builtin_ia32_cvtsd2ss(S, OpPC, Call, HasRoundingMask: false); |
| 5701 | |
| 5702 | case X86::BI__builtin_ia32_cvtsd2ss_round_mask: |
| 5703 | return interp__builtin_ia32_cvtsd2ss(S, OpPC, Call, HasRoundingMask: true); |
| 5704 | |
| 5705 | case X86::BI__builtin_ia32_cvtpd2ps: |
| 5706 | case X86::BI__builtin_ia32_cvtpd2ps256: |
| 5707 | return interp__builtin_ia32_cvtpd2ps(S, OpPC, Call, IsMasked: false, HasRounding: false); |
| 5708 | case X86::BI__builtin_ia32_cvtpd2ps_mask: |
| 5709 | return interp__builtin_ia32_cvtpd2ps(S, OpPC, Call, IsMasked: true, HasRounding: false); |
| 5710 | case X86::BI__builtin_ia32_cvtpd2ps512_mask: |
| 5711 | return interp__builtin_ia32_cvtpd2ps(S, OpPC, Call, IsMasked: true, HasRounding: true); |
| 5712 | |
| 5713 | case X86::BI__builtin_ia32_cmpb128_mask: |
| 5714 | case X86::BI__builtin_ia32_cmpw128_mask: |
| 5715 | case X86::BI__builtin_ia32_cmpd128_mask: |
| 5716 | case X86::BI__builtin_ia32_cmpq128_mask: |
| 5717 | case X86::BI__builtin_ia32_cmpb256_mask: |
| 5718 | case X86::BI__builtin_ia32_cmpw256_mask: |
| 5719 | case X86::BI__builtin_ia32_cmpd256_mask: |
| 5720 | case X86::BI__builtin_ia32_cmpq256_mask: |
| 5721 | case X86::BI__builtin_ia32_cmpb512_mask: |
| 5722 | case X86::BI__builtin_ia32_cmpw512_mask: |
| 5723 | case X86::BI__builtin_ia32_cmpd512_mask: |
| 5724 | case X86::BI__builtin_ia32_cmpq512_mask: |
| 5725 | return interp__builtin_ia32_cmp_mask(S, OpPC, Call, ID: BuiltinID, |
| 5726 | /*IsUnsigned=*/false); |
| 5727 | |
| 5728 | case X86::BI__builtin_ia32_ucmpb128_mask: |
| 5729 | case X86::BI__builtin_ia32_ucmpw128_mask: |
| 5730 | case X86::BI__builtin_ia32_ucmpd128_mask: |
| 5731 | case X86::BI__builtin_ia32_ucmpq128_mask: |
| 5732 | case X86::BI__builtin_ia32_ucmpb256_mask: |
| 5733 | case X86::BI__builtin_ia32_ucmpw256_mask: |
| 5734 | case X86::BI__builtin_ia32_ucmpd256_mask: |
| 5735 | case X86::BI__builtin_ia32_ucmpq256_mask: |
| 5736 | case X86::BI__builtin_ia32_ucmpb512_mask: |
| 5737 | case X86::BI__builtin_ia32_ucmpw512_mask: |
| 5738 | case X86::BI__builtin_ia32_ucmpd512_mask: |
| 5739 | case X86::BI__builtin_ia32_ucmpq512_mask: |
| 5740 | return interp__builtin_ia32_cmp_mask(S, OpPC, Call, ID: BuiltinID, |
| 5741 | /*IsUnsigned=*/true); |
| 5742 | |
| 5743 | case X86::BI__builtin_ia32_vpshufbitqmb128_mask: |
| 5744 | case X86::BI__builtin_ia32_vpshufbitqmb256_mask: |
| 5745 | case X86::BI__builtin_ia32_vpshufbitqmb512_mask: |
| 5746 | return interp__builtin_ia32_shufbitqmb_mask(S, OpPC, Call); |
| 5747 | |
| 5748 | case X86::BI__builtin_ia32_pslldqi128_byteshift: |
| 5749 | case X86::BI__builtin_ia32_pslldqi256_byteshift: |
| 5750 | case X86::BI__builtin_ia32_pslldqi512_byteshift: |
| 5751 | // These SLLDQ intrinsics always operate on byte elements (8 bits). |
| 5752 | // The lane width is hardcoded to 16 to match the SIMD register size, |
| 5753 | // but the algorithm processes one byte per iteration, |
| 5754 | // so APInt(8, ...) is correct and intentional. |
| 5755 | return interp__builtin_ia32_shuffle_generic( |
| 5756 | S, OpPC, Call, |
| 5757 | GetSourceIndex: [](unsigned DstIdx, unsigned Shift) -> std::pair<unsigned, int> { |
| 5758 | unsigned LaneBase = (DstIdx / 16) * 16; |
| 5759 | unsigned LaneIdx = DstIdx % 16; |
| 5760 | if (LaneIdx < Shift) |
| 5761 | return std::make_pair(x: 0, y: -1); |
| 5762 | |
| 5763 | return std::make_pair(x: 0, |
| 5764 | y: static_cast<int>(LaneBase + LaneIdx - Shift)); |
| 5765 | }); |
| 5766 | |
| 5767 | case X86::BI__builtin_ia32_psrldqi128_byteshift: |
| 5768 | case X86::BI__builtin_ia32_psrldqi256_byteshift: |
| 5769 | case X86::BI__builtin_ia32_psrldqi512_byteshift: |
| 5770 | // These SRLDQ intrinsics always operate on byte elements (8 bits). |
| 5771 | // The lane width is hardcoded to 16 to match the SIMD register size, |
| 5772 | // but the algorithm processes one byte per iteration, |
| 5773 | // so APInt(8, ...) is correct and intentional. |
| 5774 | return interp__builtin_ia32_shuffle_generic( |
| 5775 | S, OpPC, Call, |
| 5776 | GetSourceIndex: [](unsigned DstIdx, unsigned Shift) -> std::pair<unsigned, int> { |
| 5777 | unsigned LaneBase = (DstIdx / 16) * 16; |
| 5778 | unsigned LaneIdx = DstIdx % 16; |
| 5779 | if (LaneIdx + Shift < 16) |
| 5780 | return std::make_pair(x: 0, |
| 5781 | y: static_cast<int>(LaneBase + LaneIdx + Shift)); |
| 5782 | |
| 5783 | return std::make_pair(x: 0, y: -1); |
| 5784 | }); |
| 5785 | |
| 5786 | case X86::BI__builtin_ia32_palignr128: |
| 5787 | case X86::BI__builtin_ia32_palignr256: |
| 5788 | case X86::BI__builtin_ia32_palignr512: |
| 5789 | return interp__builtin_ia32_shuffle_generic( |
| 5790 | S, OpPC, Call, GetSourceIndex: [](unsigned DstIdx, unsigned Shift) { |
| 5791 | // Default to -1 → zero-fill this destination element |
| 5792 | unsigned VecIdx = 1; |
| 5793 | int ElemIdx = -1; |
| 5794 | |
| 5795 | int Lane = DstIdx / 16; |
| 5796 | int Offset = DstIdx % 16; |
| 5797 | |
| 5798 | // Elements come from VecB first, then VecA after the shift boundary |
| 5799 | unsigned ShiftedIdx = Offset + (Shift & 0xFF); |
| 5800 | if (ShiftedIdx < 16) { // from VecB |
| 5801 | ElemIdx = ShiftedIdx + (Lane * 16); |
| 5802 | } else if (ShiftedIdx < 32) { // from VecA |
| 5803 | VecIdx = 0; |
| 5804 | ElemIdx = (ShiftedIdx - 16) + (Lane * 16); |
| 5805 | } |
| 5806 | |
| 5807 | return std::pair<unsigned, int>{VecIdx, ElemIdx}; |
| 5808 | }); |
| 5809 | |
| 5810 | case X86::BI__builtin_ia32_alignd128: |
| 5811 | case X86::BI__builtin_ia32_alignd256: |
| 5812 | case X86::BI__builtin_ia32_alignd512: |
| 5813 | case X86::BI__builtin_ia32_alignq128: |
| 5814 | case X86::BI__builtin_ia32_alignq256: |
| 5815 | case X86::BI__builtin_ia32_alignq512: { |
| 5816 | unsigned NumElems = Call->getType()->castAs<VectorType>()->getNumElements(); |
| 5817 | return interp__builtin_ia32_shuffle_generic( |
| 5818 | S, OpPC, Call, GetSourceIndex: [NumElems](unsigned DstIdx, unsigned Shift) { |
| 5819 | unsigned Imm = Shift & 0xFF; |
| 5820 | unsigned EffectiveShift = Imm & (NumElems - 1); |
| 5821 | unsigned SourcePos = DstIdx + EffectiveShift; |
| 5822 | unsigned VecIdx = SourcePos < NumElems ? 1u : 0u; |
| 5823 | unsigned ElemIdx = SourcePos & (NumElems - 1); |
| 5824 | return std::pair<unsigned, int>{VecIdx, static_cast<int>(ElemIdx)}; |
| 5825 | }); |
| 5826 | } |
| 5827 | |
| 5828 | case clang::X86::BI__builtin_ia32_minps: |
| 5829 | case clang::X86::BI__builtin_ia32_minpd: |
| 5830 | case clang::X86::BI__builtin_ia32_minph128: |
| 5831 | case clang::X86::BI__builtin_ia32_minph256: |
| 5832 | case clang::X86::BI__builtin_ia32_minps256: |
| 5833 | case clang::X86::BI__builtin_ia32_minpd256: |
| 5834 | case clang::X86::BI__builtin_ia32_minps512: |
| 5835 | case clang::X86::BI__builtin_ia32_minpd512: |
| 5836 | case clang::X86::BI__builtin_ia32_minph512: |
| 5837 | return interp__builtin_elementwise_fp_binop( |
| 5838 | S, OpPC, Call, |
| 5839 | Fn: [](const APFloat &A, const APFloat &B, |
| 5840 | std::optional<APSInt>) -> std::optional<APFloat> { |
| 5841 | if (A.isNaN() || A.isInfinity() || A.isDenormal() || B.isNaN() || |
| 5842 | B.isInfinity() || B.isDenormal()) |
| 5843 | return std::nullopt; |
| 5844 | if (A.isZero() && B.isZero()) |
| 5845 | return B; |
| 5846 | return llvm::minimum(A, B); |
| 5847 | }); |
| 5848 | |
| 5849 | case clang::X86::BI__builtin_ia32_maxps: |
| 5850 | case clang::X86::BI__builtin_ia32_maxpd: |
| 5851 | case clang::X86::BI__builtin_ia32_maxph128: |
| 5852 | case clang::X86::BI__builtin_ia32_maxph256: |
| 5853 | case clang::X86::BI__builtin_ia32_maxps256: |
| 5854 | case clang::X86::BI__builtin_ia32_maxpd256: |
| 5855 | case clang::X86::BI__builtin_ia32_maxps512: |
| 5856 | case clang::X86::BI__builtin_ia32_maxpd512: |
| 5857 | case clang::X86::BI__builtin_ia32_maxph512: |
| 5858 | return interp__builtin_elementwise_fp_binop( |
| 5859 | S, OpPC, Call, |
| 5860 | Fn: [](const APFloat &A, const APFloat &B, |
| 5861 | std::optional<APSInt>) -> std::optional<APFloat> { |
| 5862 | if (A.isNaN() || A.isInfinity() || A.isDenormal() || B.isNaN() || |
| 5863 | B.isInfinity() || B.isDenormal()) |
| 5864 | return std::nullopt; |
| 5865 | if (A.isZero() && B.isZero()) |
| 5866 | return B; |
| 5867 | return llvm::maximum(A, B); |
| 5868 | }); |
| 5869 | |
| 5870 | default: |
| 5871 | S.FFDiag(Loc: S.Current->getLocation(PC: OpPC), |
| 5872 | DiagId: diag::note_invalid_subexpr_in_const_expr) |
| 5873 | << S.Current->getRange(PC: OpPC); |
| 5874 | |
| 5875 | return false; |
| 5876 | } |
| 5877 | |
| 5878 | llvm_unreachable("Unhandled builtin ID" ); |
| 5879 | } |
| 5880 | |
| 5881 | bool InterpretOffsetOf(InterpState &S, CodePtr OpPC, const OffsetOfExpr *E, |
| 5882 | ArrayRef<int64_t> ArrayIndices, int64_t &IntResult) { |
| 5883 | CharUnits Result; |
| 5884 | unsigned N = E->getNumComponents(); |
| 5885 | assert(N > 0); |
| 5886 | |
| 5887 | unsigned ArrayIndex = 0; |
| 5888 | QualType CurrentType = E->getTypeSourceInfo()->getType(); |
| 5889 | for (unsigned I = 0; I != N; ++I) { |
| 5890 | const OffsetOfNode &Node = E->getComponent(Idx: I); |
| 5891 | switch (Node.getKind()) { |
| 5892 | case OffsetOfNode::Field: { |
| 5893 | const FieldDecl *MemberDecl = Node.getField(); |
| 5894 | const auto *RD = CurrentType->getAsRecordDecl(); |
| 5895 | if (!RD || RD->isInvalidDecl()) |
| 5896 | return false; |
| 5897 | const ASTRecordLayout &RL = S.getASTContext().getASTRecordLayout(D: RD); |
| 5898 | unsigned FieldIndex = MemberDecl->getFieldIndex(); |
| 5899 | assert(FieldIndex < RL.getFieldCount() && "offsetof field in wrong type" ); |
| 5900 | Result += |
| 5901 | S.getASTContext().toCharUnitsFromBits(BitSize: RL.getFieldOffset(FieldNo: FieldIndex)); |
| 5902 | CurrentType = MemberDecl->getType().getNonReferenceType(); |
| 5903 | break; |
| 5904 | } |
| 5905 | case OffsetOfNode::Array: { |
| 5906 | // When generating bytecode, we put all the index expressions as Sint64 on |
| 5907 | // the stack. |
| 5908 | int64_t Index = ArrayIndices[ArrayIndex]; |
| 5909 | const ArrayType *AT = S.getASTContext().getAsArrayType(T: CurrentType); |
| 5910 | if (!AT) |
| 5911 | return false; |
| 5912 | CurrentType = AT->getElementType(); |
| 5913 | CharUnits ElementSize = S.getASTContext().getTypeSizeInChars(T: CurrentType); |
| 5914 | Result += Index * ElementSize; |
| 5915 | ++ArrayIndex; |
| 5916 | break; |
| 5917 | } |
| 5918 | case OffsetOfNode::Base: { |
| 5919 | const CXXBaseSpecifier *BaseSpec = Node.getBase(); |
| 5920 | if (BaseSpec->isVirtual()) |
| 5921 | return false; |
| 5922 | |
| 5923 | // Find the layout of the class whose base we are looking into. |
| 5924 | const auto *RD = CurrentType->getAsCXXRecordDecl(); |
| 5925 | if (!RD || RD->isInvalidDecl()) |
| 5926 | return false; |
| 5927 | const ASTRecordLayout &RL = S.getASTContext().getASTRecordLayout(D: RD); |
| 5928 | |
| 5929 | // Find the base class itself. |
| 5930 | CurrentType = BaseSpec->getType(); |
| 5931 | const auto *BaseRD = CurrentType->getAsCXXRecordDecl(); |
| 5932 | if (!BaseRD) |
| 5933 | return false; |
| 5934 | |
| 5935 | // Add the offset to the base. |
| 5936 | Result += RL.getBaseClassOffset(Base: BaseRD); |
| 5937 | break; |
| 5938 | } |
| 5939 | case OffsetOfNode::Identifier: |
| 5940 | llvm_unreachable("Dependent OffsetOfExpr?" ); |
| 5941 | } |
| 5942 | } |
| 5943 | |
| 5944 | IntResult = Result.getQuantity(); |
| 5945 | |
| 5946 | return true; |
| 5947 | } |
| 5948 | |
| 5949 | bool SetThreeWayComparisonField(InterpState &S, CodePtr OpPC, |
| 5950 | const Pointer &Ptr, const APSInt &IntValue) { |
| 5951 | |
| 5952 | const Record *R = Ptr.getRecord(); |
| 5953 | assert(R); |
| 5954 | assert(R->getNumFields() == 1); |
| 5955 | |
| 5956 | unsigned FieldOffset = R->getField(I: 0u)->Offset; |
| 5957 | const Pointer &FieldPtr = Ptr.atField(Off: FieldOffset); |
| 5958 | PrimType FieldT = *S.getContext().classify(T: FieldPtr.getType()); |
| 5959 | |
| 5960 | INT_TYPE_SWITCH(FieldT, |
| 5961 | FieldPtr.deref<T>() = T::from(IntValue.getSExtValue())); |
| 5962 | FieldPtr.initialize(); |
| 5963 | return true; |
| 5964 | } |
| 5965 | |
| 5966 | static void zeroAll(Pointer &Dest) { |
| 5967 | const Descriptor *Desc = Dest.getFieldDesc(); |
| 5968 | |
| 5969 | if (Desc->isPrimitive()) { |
| 5970 | TYPE_SWITCH(Desc->getPrimType(), { |
| 5971 | Dest.deref<T>().~T(); |
| 5972 | new (&Dest.deref<T>()) T(); |
| 5973 | }); |
| 5974 | return; |
| 5975 | } |
| 5976 | |
| 5977 | if (Desc->isRecord()) { |
| 5978 | const Record *R = Desc->ElemRecord; |
| 5979 | for (const Record::Field &F : R->fields()) { |
| 5980 | Pointer FieldPtr = Dest.atField(Off: F.Offset); |
| 5981 | zeroAll(Dest&: FieldPtr); |
| 5982 | } |
| 5983 | return; |
| 5984 | } |
| 5985 | |
| 5986 | if (Desc->isPrimitiveArray()) { |
| 5987 | for (unsigned I = 0, N = Desc->getNumElems(); I != N; ++I) { |
| 5988 | TYPE_SWITCH(Desc->getPrimType(), { |
| 5989 | Dest.deref<T>().~T(); |
| 5990 | new (&Dest.deref<T>()) T(); |
| 5991 | }); |
| 5992 | } |
| 5993 | return; |
| 5994 | } |
| 5995 | |
| 5996 | if (Desc->isCompositeArray()) { |
| 5997 | for (unsigned I = 0, N = Desc->getNumElems(); I != N; ++I) { |
| 5998 | Pointer ElemPtr = Dest.atIndex(Idx: I).narrow(); |
| 5999 | zeroAll(Dest&: ElemPtr); |
| 6000 | } |
| 6001 | return; |
| 6002 | } |
| 6003 | } |
| 6004 | |
| 6005 | static bool copyComposite(InterpState &S, CodePtr OpPC, const Pointer &Src, |
| 6006 | Pointer &Dest, bool Activate); |
| 6007 | static bool copyRecord(InterpState &S, CodePtr OpPC, const Pointer &Src, |
| 6008 | Pointer &Dest, bool Activate = false) { |
| 6009 | [[maybe_unused]] const Descriptor *SrcDesc = Src.getFieldDesc(); |
| 6010 | const Descriptor *DestDesc = Dest.getFieldDesc(); |
| 6011 | |
| 6012 | auto copyField = [&](const Record::Field &F, bool Activate) -> bool { |
| 6013 | Pointer DestField = Dest.atField(Off: F.Offset); |
| 6014 | if (OptPrimType FT = S.Ctx.classify(T: F.Decl->getType())) { |
| 6015 | TYPE_SWITCH(*FT, { |
| 6016 | DestField.deref<T>() = Src.atField(F.Offset).deref<T>(); |
| 6017 | if (Src.atField(F.Offset).isInitialized()) |
| 6018 | DestField.initialize(); |
| 6019 | if (Activate) |
| 6020 | DestField.activate(); |
| 6021 | }); |
| 6022 | return true; |
| 6023 | } |
| 6024 | // Composite field. |
| 6025 | return copyComposite(S, OpPC, Src: Src.atField(Off: F.Offset), Dest&: DestField, Activate); |
| 6026 | }; |
| 6027 | |
| 6028 | assert(SrcDesc->isRecord()); |
| 6029 | assert(SrcDesc->ElemRecord == DestDesc->ElemRecord); |
| 6030 | const Record *R = DestDesc->ElemRecord; |
| 6031 | for (const Record::Field &F : R->fields()) { |
| 6032 | if (R->isUnion()) { |
| 6033 | // For unions, only copy the active field. Zero all others. |
| 6034 | const Pointer &SrcField = Src.atField(Off: F.Offset); |
| 6035 | if (SrcField.isActive()) { |
| 6036 | if (!copyField(F, /*Activate=*/true)) |
| 6037 | return false; |
| 6038 | } else { |
| 6039 | if (!CheckMutable(S, OpPC, Ptr: Src.atField(Off: F.Offset))) |
| 6040 | return false; |
| 6041 | Pointer DestField = Dest.atField(Off: F.Offset); |
| 6042 | zeroAll(Dest&: DestField); |
| 6043 | } |
| 6044 | } else { |
| 6045 | if (!copyField(F, Activate)) |
| 6046 | return false; |
| 6047 | } |
| 6048 | } |
| 6049 | |
| 6050 | for (const Record::Base &B : R->bases()) { |
| 6051 | Pointer DestBase = Dest.atField(Off: B.Offset); |
| 6052 | if (!copyRecord(S, OpPC, Src: Src.atField(Off: B.Offset), Dest&: DestBase, Activate)) |
| 6053 | return false; |
| 6054 | } |
| 6055 | |
| 6056 | Dest.initialize(); |
| 6057 | return true; |
| 6058 | } |
| 6059 | |
| 6060 | static bool copyComposite(InterpState &S, CodePtr OpPC, const Pointer &Src, |
| 6061 | Pointer &Dest, bool Activate = false) { |
| 6062 | assert(Src.isLive() && Dest.isLive()); |
| 6063 | |
| 6064 | [[maybe_unused]] const Descriptor *SrcDesc = Src.getFieldDesc(); |
| 6065 | const Descriptor *DestDesc = Dest.getFieldDesc(); |
| 6066 | |
| 6067 | assert(!DestDesc->isPrimitive() && !SrcDesc->isPrimitive()); |
| 6068 | |
| 6069 | if (DestDesc->isPrimitiveArray()) { |
| 6070 | assert(SrcDesc->isPrimitiveArray()); |
| 6071 | assert(SrcDesc->getNumElems() == DestDesc->getNumElems()); |
| 6072 | PrimType ET = DestDesc->getPrimType(); |
| 6073 | for (unsigned I = 0, N = DestDesc->getNumElems(); I != N; ++I) { |
| 6074 | Pointer DestElem = Dest.atIndex(Idx: I); |
| 6075 | TYPE_SWITCH(ET, { |
| 6076 | DestElem.deref<T>() = Src.elem<T>(I); |
| 6077 | DestElem.initialize(); |
| 6078 | }); |
| 6079 | } |
| 6080 | return true; |
| 6081 | } |
| 6082 | |
| 6083 | if (DestDesc->isCompositeArray()) { |
| 6084 | assert(SrcDesc->isCompositeArray()); |
| 6085 | assert(SrcDesc->getNumElems() == DestDesc->getNumElems()); |
| 6086 | for (unsigned I = 0, N = DestDesc->getNumElems(); I != N; ++I) { |
| 6087 | const Pointer &SrcElem = Src.atIndex(Idx: I).narrow(); |
| 6088 | Pointer DestElem = Dest.atIndex(Idx: I).narrow(); |
| 6089 | if (!copyComposite(S, OpPC, Src: SrcElem, Dest&: DestElem, Activate)) |
| 6090 | return false; |
| 6091 | } |
| 6092 | return true; |
| 6093 | } |
| 6094 | |
| 6095 | if (DestDesc->isRecord()) |
| 6096 | return copyRecord(S, OpPC, Src, Dest, Activate); |
| 6097 | return Invalid(S, OpPC); |
| 6098 | } |
| 6099 | |
| 6100 | bool DoMemcpy(InterpState &S, CodePtr OpPC, const Pointer &Src, Pointer &Dest) { |
| 6101 | return copyComposite(S, OpPC, Src, Dest); |
| 6102 | } |
| 6103 | |
| 6104 | } // namespace interp |
| 6105 | } // namespace clang |
| 6106 | |