| 1 | //===--- Program.cpp - Bytecode for the constexpr VM ------------*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #include "Program.h" |
| 10 | #include "Context.h" |
| 11 | #include "Function.h" |
| 12 | #include "Integral.h" |
| 13 | #include "PrimType.h" |
| 14 | #include "clang/AST/Decl.h" |
| 15 | #include "clang/AST/DeclCXX.h" |
| 16 | #include "clang/AST/DeclTemplate.h" |
| 17 | |
| 18 | using namespace clang; |
| 19 | using namespace clang::interp; |
| 20 | |
| 21 | unsigned Program::getOrCreateNativePointer(const void *Ptr) { |
| 22 | auto [It, Inserted] = |
| 23 | NativePointerIndices.try_emplace(Key: Ptr, Args: NativePointers.size()); |
| 24 | if (Inserted) |
| 25 | NativePointers.push_back(x: Ptr); |
| 26 | |
| 27 | return It->second; |
| 28 | } |
| 29 | |
| 30 | const void *Program::getNativePointer(unsigned Idx) const { |
| 31 | return NativePointers[Idx]; |
| 32 | } |
| 33 | |
| 34 | unsigned Program::createGlobalString(const StringLiteral *S, const Expr *Base) { |
| 35 | const size_t CharWidth = S->getCharByteWidth(); |
| 36 | const size_t BitWidth = CharWidth * Ctx.getCharBit(); |
| 37 | unsigned StringLength = S->getLength(); |
| 38 | |
| 39 | OptPrimType CharType = |
| 40 | Ctx.classify(T: S->getType()->castAsArrayTypeUnsafe()->getElementType()); |
| 41 | assert(CharType); |
| 42 | |
| 43 | if (!Base) |
| 44 | Base = S; |
| 45 | |
| 46 | // Create a descriptor for the string. |
| 47 | Descriptor *Desc = allocateDescriptor(Args&: Base, Args: *CharType, Args: Descriptor::GlobalMD, |
| 48 | Args: StringLength + 1, |
| 49 | /*isConst=*/Args: true, |
| 50 | /*isTemporary=*/Args: false, |
| 51 | /*isMutable=*/Args: false); |
| 52 | |
| 53 | // Allocate storage for the string. |
| 54 | // The byte length does not include the null terminator. |
| 55 | unsigned GlobalIndex = Globals.size(); |
| 56 | unsigned Sz = Desc->getAllocSize(); |
| 57 | auto *G = new (Allocator, Sz) Global(Ctx.getEvalID(), Desc, /*isStatic=*/true, |
| 58 | /*isExtern=*/false); |
| 59 | G->block()->invokeCtor(); |
| 60 | |
| 61 | new (G->block()->rawData()) |
| 62 | GlobalInlineDescriptor{.InitState: GlobalInitState::Initialized}; |
| 63 | Globals.push_back(x: G); |
| 64 | |
| 65 | const Pointer Ptr(G->block()); |
| 66 | if (CharWidth == 1) { |
| 67 | std::memcpy(dest: &Ptr.elem<char>(I: 0), src: S->getString().data(), n: StringLength); |
| 68 | } else { |
| 69 | // Construct the string in storage. |
| 70 | for (unsigned I = 0; I <= StringLength; ++I) { |
| 71 | uint32_t CodePoint = I == StringLength ? 0 : S->getCodeUnit(i: I); |
| 72 | INT_TYPE_SWITCH_NO_BOOL(*CharType, |
| 73 | Ptr.elem<T>(I) = T::from(CodePoint, BitWidth);); |
| 74 | } |
| 75 | } |
| 76 | Ptr.initializeAllElements(); |
| 77 | |
| 78 | return GlobalIndex; |
| 79 | } |
| 80 | |
| 81 | Pointer Program::getPtrGlobal(unsigned Idx) const { |
| 82 | assert(Idx < Globals.size()); |
| 83 | return Pointer(Globals[Idx]->block()); |
| 84 | } |
| 85 | |
| 86 | UnsignedOrNone Program::getGlobal(const ValueDecl *VD) { |
| 87 | if (auto It = GlobalIndices.find(Val: VD); It != GlobalIndices.end()) |
| 88 | return It->second; |
| 89 | |
| 90 | // Find any previous declarations which were already evaluated. |
| 91 | std::optional<unsigned> Index; |
| 92 | for (const Decl *P = VD->getPreviousDecl(); P; P = P->getPreviousDecl()) { |
| 93 | if (auto It = GlobalIndices.find(Val: P); It != GlobalIndices.end()) { |
| 94 | Index = It->second; |
| 95 | break; |
| 96 | } |
| 97 | } |
| 98 | |
| 99 | // Map the decl to the existing index. |
| 100 | if (Index) |
| 101 | GlobalIndices[VD] = *Index; |
| 102 | |
| 103 | return std::nullopt; |
| 104 | } |
| 105 | |
| 106 | UnsignedOrNone Program::getGlobal(const Expr *E) { |
| 107 | if (auto It = GlobalIndices.find(Val: E); It != GlobalIndices.end()) |
| 108 | return It->second; |
| 109 | return std::nullopt; |
| 110 | } |
| 111 | |
| 112 | UnsignedOrNone Program::getOrCreateGlobal(const ValueDecl *VD, |
| 113 | const Expr *Init) { |
| 114 | if (auto Idx = getGlobal(VD)) |
| 115 | return Idx; |
| 116 | |
| 117 | if (auto Idx = createGlobal(VD, Init)) { |
| 118 | GlobalIndices[VD] = *Idx; |
| 119 | return Idx; |
| 120 | } |
| 121 | return std::nullopt; |
| 122 | } |
| 123 | |
| 124 | unsigned Program::getOrCreateDummy(const DeclTy &D) { |
| 125 | assert(D); |
| 126 | // Dedup blocks since they are immutable and pointers cannot be compared. |
| 127 | if (auto It = DummyVariables.find(Val: D.getOpaqueValue()); |
| 128 | It != DummyVariables.end()) |
| 129 | return It->second; |
| 130 | |
| 131 | QualType QT; |
| 132 | bool IsWeak = false; |
| 133 | if (const auto *E = dyn_cast<const Expr *>(Val: D)) { |
| 134 | QT = E->getType(); |
| 135 | } else { |
| 136 | const auto *VD = cast<ValueDecl>(Val: cast<const Decl *>(Val: D)); |
| 137 | IsWeak = VD->isWeak(); |
| 138 | QT = VD->getType(); |
| 139 | if (QT->isPointerOrReferenceType()) |
| 140 | QT = QT->getPointeeType(); |
| 141 | } |
| 142 | assert(!QT.isNull()); |
| 143 | |
| 144 | Descriptor *Desc; |
| 145 | if (OptPrimType T = Ctx.classify(T: QT)) |
| 146 | Desc = createDescriptor(D, T: *T, /*SourceTy=*/nullptr, MDSize: std::nullopt, |
| 147 | /*IsConst=*/QT.isConstQualified()); |
| 148 | else |
| 149 | Desc = createDescriptor(D, Ty: QT.getTypePtr(), MDSize: std::nullopt, |
| 150 | /*IsConst=*/QT.isConstQualified()); |
| 151 | if (!Desc) |
| 152 | Desc = allocateDescriptor(Args: D); |
| 153 | |
| 154 | assert(Desc); |
| 155 | |
| 156 | // Allocate a block for storage. |
| 157 | unsigned I = Globals.size(); |
| 158 | |
| 159 | auto *G = new (Allocator, Desc->getAllocSize()) |
| 160 | Global(Ctx.getEvalID(), getCurrentDecl(), Desc, /*IsStatic=*/true, |
| 161 | /*IsExtern=*/false, IsWeak, /*IsDummy=*/true); |
| 162 | G->block()->invokeCtor(); |
| 163 | assert(G->block()->isDummy()); |
| 164 | |
| 165 | Globals.push_back(x: G); |
| 166 | DummyVariables[D.getOpaqueValue()] = I; |
| 167 | return I; |
| 168 | } |
| 169 | |
| 170 | UnsignedOrNone Program::createGlobal(const ValueDecl *VD, const Expr *Init) { |
| 171 | bool IsStatic, IsExtern; |
| 172 | bool IsWeak = VD->isWeak(); |
| 173 | if (const auto *Var = dyn_cast<VarDecl>(Val: VD)) { |
| 174 | IsStatic = Context::shouldBeGloballyIndexed(VD); |
| 175 | IsExtern = Var->hasExternalStorage(); |
| 176 | } else if (isa<UnnamedGlobalConstantDecl, MSGuidDecl, |
| 177 | TemplateParamObjectDecl>(Val: VD)) { |
| 178 | IsStatic = true; |
| 179 | IsExtern = false; |
| 180 | } else { |
| 181 | IsStatic = false; |
| 182 | IsExtern = true; |
| 183 | } |
| 184 | |
| 185 | // Register all previous declarations as well. For extern blocks, just replace |
| 186 | // the index with the new variable. |
| 187 | UnsignedOrNone Idx = |
| 188 | createGlobal(D: VD, Ty: VD->getType(), IsStatic, IsExtern, IsWeak, Init); |
| 189 | if (!Idx) |
| 190 | return std::nullopt; |
| 191 | |
| 192 | Global *NewGlobal = Globals[*Idx]; |
| 193 | // Note that this loop has one iteration where Redecl == VD. |
| 194 | for (const Decl *Redecl : VD->redecls()) { |
| 195 | |
| 196 | // If this redecl was registered as a dummy variable, it is now a proper |
| 197 | // global variable and points to the block we just created. |
| 198 | if (auto DummyIt = DummyVariables.find(Val: Redecl); |
| 199 | DummyIt != DummyVariables.end()) { |
| 200 | Global *Dummy = Globals[DummyIt->second]; |
| 201 | Dummy->block()->movePointersTo(B: NewGlobal->block()); |
| 202 | Globals[DummyIt->second] = NewGlobal; |
| 203 | DummyVariables.erase(I: DummyIt); |
| 204 | } |
| 205 | // If the redeclaration hasn't been registered yet at all, we just set its |
| 206 | // global index to Idx. If it has been registered yet, it might have |
| 207 | // pointers pointing to it and we need to transfer those pointers to the new |
| 208 | // block. |
| 209 | auto [Iter, Inserted] = GlobalIndices.try_emplace(Key: Redecl); |
| 210 | if (Inserted) { |
| 211 | GlobalIndices[Redecl] = *Idx; |
| 212 | continue; |
| 213 | } |
| 214 | |
| 215 | if (Redecl != VD) { |
| 216 | if (Block *RedeclBlock = Globals[Iter->second]->block(); |
| 217 | RedeclBlock->isExtern()) { |
| 218 | |
| 219 | // All pointers pointing to the previous extern decl now point to the |
| 220 | // new decl. |
| 221 | // A previous iteration might've already fixed up the pointers for this |
| 222 | // global. |
| 223 | if (RedeclBlock != NewGlobal->block()) |
| 224 | RedeclBlock->movePointersTo(B: NewGlobal->block()); |
| 225 | |
| 226 | Globals[Iter->second] = NewGlobal; |
| 227 | } |
| 228 | } |
| 229 | Iter->second = *Idx; |
| 230 | } |
| 231 | |
| 232 | return *Idx; |
| 233 | } |
| 234 | |
| 235 | UnsignedOrNone Program::createGlobal(const Expr *E) { |
| 236 | if (auto Idx = getGlobal(E)) |
| 237 | return Idx; |
| 238 | if (auto Idx = createGlobal(D: E, Ty: E->getType(), /*isStatic=*/IsStatic: true, |
| 239 | /*isExtern=*/IsExtern: false, /*IsWeak=*/false)) { |
| 240 | GlobalIndices[E] = *Idx; |
| 241 | return *Idx; |
| 242 | } |
| 243 | return std::nullopt; |
| 244 | } |
| 245 | |
| 246 | UnsignedOrNone Program::createGlobal(const DeclTy &D, QualType Ty, |
| 247 | bool IsStatic, bool IsExtern, bool IsWeak, |
| 248 | const Expr *Init) { |
| 249 | // Create a descriptor for the global. |
| 250 | Descriptor *Desc; |
| 251 | const bool IsConst = Ty.isConstQualified(); |
| 252 | const bool IsTemporary = D.dyn_cast<const Expr *>(); |
| 253 | const bool IsVolatile = Ty.isVolatileQualified(); |
| 254 | if (OptPrimType T = Ctx.classify(T: Ty)) |
| 255 | Desc = createDescriptor(D, T: *T, SourceTy: nullptr, MDSize: Descriptor::GlobalMD, IsConst, |
| 256 | IsTemporary, /*IsMutable=*/false, IsVolatile); |
| 257 | else |
| 258 | Desc = createDescriptor(D, Ty: Ty.getTypePtr(), MDSize: Descriptor::GlobalMD, IsConst, |
| 259 | IsTemporary, /*IsMutable=*/false, IsVolatile); |
| 260 | |
| 261 | if (!Desc) |
| 262 | return std::nullopt; |
| 263 | |
| 264 | // Allocate a block for storage. |
| 265 | unsigned I = Globals.size(); |
| 266 | |
| 267 | auto *G = new (Allocator, Desc->getAllocSize()) Global( |
| 268 | Ctx.getEvalID(), getCurrentDecl(), Desc, IsStatic, IsExtern, IsWeak); |
| 269 | G->block()->invokeCtor(); |
| 270 | |
| 271 | // Initialize GlobalInlineDescriptor fields. |
| 272 | auto *GD = new (G->block()->rawData()) GlobalInlineDescriptor(); |
| 273 | if (!Init) |
| 274 | GD->InitState = GlobalInitState::NoInitializer; |
| 275 | Globals.push_back(x: G); |
| 276 | |
| 277 | return I; |
| 278 | } |
| 279 | |
| 280 | Function *Program::getFunction(const FunctionDecl *F) { |
| 281 | F = F->getCanonicalDecl(); |
| 282 | assert(F); |
| 283 | auto It = Funcs.find(Val: F); |
| 284 | return It == Funcs.end() ? nullptr : It->second.get(); |
| 285 | } |
| 286 | |
| 287 | Record *Program::getOrCreateRecord(const RecordDecl *RD) { |
| 288 | // Use the actual definition as a key. |
| 289 | RD = RD->getDefinition(); |
| 290 | if (!RD) |
| 291 | return nullptr; |
| 292 | |
| 293 | if (!RD->isCompleteDefinition()) |
| 294 | return nullptr; |
| 295 | |
| 296 | // Return an existing record if available. Otherwise, we insert nullptr now |
| 297 | // and replace that later, so recursive calls to this function with the same |
| 298 | // RecordDecl don't run into infinite recursion. |
| 299 | auto [It, Inserted] = Records.try_emplace(Key: RD); |
| 300 | if (!Inserted) |
| 301 | return It->second; |
| 302 | |
| 303 | // Number of bytes required by fields and base classes. |
| 304 | unsigned BaseSize = 0; |
| 305 | // Number of bytes required by virtual base. |
| 306 | unsigned VirtSize = 0; |
| 307 | |
| 308 | // Helper to get a base descriptor. |
| 309 | auto GetBaseDesc = [this](const RecordDecl *BD, |
| 310 | const Record *BR) -> const Descriptor * { |
| 311 | if (!BR) |
| 312 | return nullptr; |
| 313 | return allocateDescriptor(Args&: BD, Args&: BR, Args: std::nullopt, /*isConst=*/Args: false, |
| 314 | /*isTemporary=*/Args: false, |
| 315 | /*isMutable=*/Args: false, /*IsVolatile=*/Args: false); |
| 316 | }; |
| 317 | |
| 318 | // Reserve space for base classes. |
| 319 | Record::BaseList Bases; |
| 320 | Record::VirtualBaseList VirtBases; |
| 321 | if (const auto *CD = dyn_cast<CXXRecordDecl>(Val: RD)) { |
| 322 | for (const CXXBaseSpecifier &Spec : CD->bases()) { |
| 323 | if (Spec.isVirtual()) |
| 324 | continue; |
| 325 | |
| 326 | // In error cases, the base might not be a RecordType. |
| 327 | const auto *BD = Spec.getType()->getAsCXXRecordDecl(); |
| 328 | if (!BD) |
| 329 | return nullptr; |
| 330 | const Record *BR = getOrCreateRecord(RD: BD); |
| 331 | |
| 332 | const Descriptor *Desc = GetBaseDesc(BD, BR); |
| 333 | if (!Desc) |
| 334 | return nullptr; |
| 335 | |
| 336 | BaseSize += align(Size: sizeof(InlineDescriptor)); |
| 337 | Bases.push_back(Elt: {.Decl: BD, .Offset: BaseSize, .Desc: Desc, .R: BR}); |
| 338 | BaseSize += align(Size: BR->getSize()); |
| 339 | } |
| 340 | |
| 341 | for (const CXXBaseSpecifier &Spec : CD->vbases()) { |
| 342 | const auto *BD = Spec.getType()->castAsCXXRecordDecl(); |
| 343 | const Record *BR = getOrCreateRecord(RD: BD); |
| 344 | |
| 345 | const Descriptor *Desc = GetBaseDesc(BD, BR); |
| 346 | if (!Desc) |
| 347 | return nullptr; |
| 348 | |
| 349 | VirtSize += align(Size: sizeof(InlineDescriptor)); |
| 350 | VirtBases.push_back(Elt: {.Decl: BD, .Offset: VirtSize, .Desc: Desc, .R: BR}); |
| 351 | VirtSize += align(Size: BR->getSize()); |
| 352 | } |
| 353 | } |
| 354 | |
| 355 | // Reserve space for fields. |
| 356 | Record::FieldList Fields; |
| 357 | for (const FieldDecl *FD : RD->fields()) { |
| 358 | FD = FD->getFirstDecl(); |
| 359 | // Note that we DO create fields and descriptors |
| 360 | // for unnamed bitfields here, even though we later ignore |
| 361 | // them everywhere. That's so the FieldDecl's getFieldIndex() matches. |
| 362 | |
| 363 | // Reserve space for the field's descriptor and the offset. |
| 364 | BaseSize += align(Size: sizeof(InlineDescriptor)); |
| 365 | |
| 366 | // Classify the field and add its metadata. |
| 367 | QualType FT = FD->getType(); |
| 368 | const bool IsConst = FT.isConstQualified(); |
| 369 | const bool IsMutable = FD->isMutable(); |
| 370 | const bool IsVolatile = FT.isVolatileQualified(); |
| 371 | const Descriptor *Desc; |
| 372 | if (OptPrimType T = Ctx.classify(T: FT)) { |
| 373 | Desc = createDescriptor(D: FD, T: *T, SourceTy: nullptr, MDSize: std::nullopt, IsConst, |
| 374 | /*isTemporary=*/IsTemporary: false, IsMutable, IsVolatile); |
| 375 | } else { |
| 376 | Desc = createDescriptor(D: FD, Ty: FT.getTypePtr(), MDSize: std::nullopt, IsConst, |
| 377 | /*isTemporary=*/IsTemporary: false, IsMutable, IsVolatile); |
| 378 | } |
| 379 | if (!Desc) |
| 380 | return nullptr; |
| 381 | Fields.push_back(Elt: {.Decl: FD, .Offset: BaseSize, .Desc: Desc}); |
| 382 | BaseSize += align(Size: Desc->getAllocSize()); |
| 383 | } |
| 384 | |
| 385 | Record *R = new (Allocator) Record(RD, std::move(Bases), std::move(Fields), |
| 386 | std::move(VirtBases), VirtSize, BaseSize); |
| 387 | Records[RD] = R; |
| 388 | return R; |
| 389 | } |
| 390 | |
| 391 | Descriptor *Program::createDescriptor(const DeclTy &D, const Type *Ty, |
| 392 | Descriptor::MetadataSize MDSize, |
| 393 | bool IsConst, bool IsTemporary, |
| 394 | bool IsMutable, bool IsVolatile, |
| 395 | const Expr *Init) { |
| 396 | |
| 397 | // Classes and structures. |
| 398 | if (const auto *RD = Ty->getAsRecordDecl()) { |
| 399 | if (const auto *Record = getOrCreateRecord(RD)) |
| 400 | return allocateDescriptor(Args: D, Args&: Record, Args&: MDSize, Args&: IsConst, Args&: IsTemporary, |
| 401 | Args&: IsMutable, Args&: IsVolatile); |
| 402 | return allocateDescriptor(Args: D, Args&: MDSize); |
| 403 | } |
| 404 | |
| 405 | // Arrays. |
| 406 | if (const auto *ArrayType = Ty->getAsArrayTypeUnsafe()) { |
| 407 | QualType ElemTy = ArrayType->getElementType(); |
| 408 | // Array of well-known bounds. |
| 409 | if (const auto *CAT = dyn_cast<ConstantArrayType>(Val: ArrayType)) { |
| 410 | size_t NumElems = CAT->getZExtSize(); |
| 411 | if (OptPrimType T = Ctx.classify(T: ElemTy)) { |
| 412 | // Arrays of primitives. |
| 413 | unsigned ElemSize = primSize(Type: *T); |
| 414 | if ((Descriptor::MaxArrayElemBytes / ElemSize) < NumElems) { |
| 415 | return nullptr; |
| 416 | } |
| 417 | return allocateDescriptor(Args: D, Args: *T, Args&: MDSize, Args&: NumElems, Args&: IsConst, Args&: IsTemporary, |
| 418 | Args&: IsMutable); |
| 419 | } |
| 420 | // Arrays of composites. In this case, the array is a list of pointers, |
| 421 | // followed by the actual elements. |
| 422 | const Descriptor *ElemDesc = createDescriptor( |
| 423 | D, Ty: ElemTy.getTypePtr(), MDSize: std::nullopt, IsConst, IsTemporary); |
| 424 | if (!ElemDesc) |
| 425 | return nullptr; |
| 426 | unsigned ElemSize = ElemDesc->getAllocSize() + sizeof(InlineDescriptor); |
| 427 | if (std::numeric_limits<unsigned>::max() / ElemSize <= NumElems) |
| 428 | return nullptr; |
| 429 | return allocateDescriptor(Args: D, Args&: Ty, Args&: ElemDesc, Args&: MDSize, Args&: NumElems, Args&: IsConst, |
| 430 | Args&: IsTemporary, Args&: IsMutable); |
| 431 | } |
| 432 | |
| 433 | // Array of unknown bounds - cannot be accessed and pointer arithmetic |
| 434 | // is forbidden on pointers to such objects. |
| 435 | if (isa<IncompleteArrayType>(Val: ArrayType) || |
| 436 | isa<VariableArrayType>(Val: ArrayType)) { |
| 437 | if (OptPrimType T = Ctx.classify(T: ElemTy)) { |
| 438 | return allocateDescriptor(Args: D, Args: *T, Args&: MDSize, Args&: IsConst, Args&: IsTemporary, |
| 439 | Args: Descriptor::UnknownSize{}); |
| 440 | } |
| 441 | const Descriptor *Desc = createDescriptor( |
| 442 | D, Ty: ElemTy.getTypePtr(), MDSize: std::nullopt, IsConst, IsTemporary); |
| 443 | if (!Desc) |
| 444 | return nullptr; |
| 445 | return allocateDescriptor(Args: D, Args&: Desc, Args&: MDSize, Args&: IsTemporary, |
| 446 | Args: Descriptor::UnknownSize{}); |
| 447 | } |
| 448 | } |
| 449 | |
| 450 | // Atomic types. |
| 451 | if (const auto *AT = Ty->getAs<AtomicType>()) { |
| 452 | const Type *InnerTy = AT->getValueType().getTypePtr(); |
| 453 | return createDescriptor(D, Ty: InnerTy, MDSize, IsConst, IsTemporary, |
| 454 | IsMutable); |
| 455 | } |
| 456 | |
| 457 | // Complex types - represented as arrays of elements. |
| 458 | if (const auto *CT = Ty->getAs<ComplexType>()) { |
| 459 | OptPrimType ElemTy = Ctx.classify(T: CT->getElementType()); |
| 460 | if (!ElemTy) |
| 461 | return nullptr; |
| 462 | |
| 463 | return allocateDescriptor(Args: D, Args: *ElemTy, Args&: MDSize, Args: 2, Args&: IsConst, Args&: IsTemporary, |
| 464 | Args&: IsMutable); |
| 465 | } |
| 466 | |
| 467 | // Same with vector types. |
| 468 | if (const auto *VT = Ty->getAs<VectorType>()) { |
| 469 | OptPrimType ElemTy = Ctx.classify(T: VT->getElementType()); |
| 470 | if (!ElemTy) |
| 471 | return nullptr; |
| 472 | |
| 473 | return allocateDescriptor(Args: D, Args: *ElemTy, Args&: MDSize, Args: VT->getNumElements(), Args&: IsConst, |
| 474 | Args&: IsTemporary, Args&: IsMutable); |
| 475 | } |
| 476 | |
| 477 | return nullptr; |
| 478 | } |
| 479 | |