1//===--- Expr.cpp - Expression AST Node Implementation --------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the Expr class and subclasses.
10//
11//===----------------------------------------------------------------------===//
12
13#include "clang/AST/Expr.h"
14#include "clang/AST/APValue.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/ASTLambda.h"
17#include "clang/AST/Attr.h"
18#include "clang/AST/ComputeDependence.h"
19#include "clang/AST/DeclCXX.h"
20#include "clang/AST/DeclObjC.h"
21#include "clang/AST/DeclTemplate.h"
22#include "clang/AST/DependenceFlags.h"
23#include "clang/AST/EvaluatedExprVisitor.h"
24#include "clang/AST/ExprCXX.h"
25#include "clang/AST/IgnoreExpr.h"
26#include "clang/AST/Mangle.h"
27#include "clang/AST/RecordLayout.h"
28#include "clang/Basic/Builtins.h"
29#include "clang/Basic/CharInfo.h"
30#include "clang/Basic/SourceManager.h"
31#include "clang/Basic/TargetInfo.h"
32#include "clang/Lex/Lexer.h"
33#include "clang/Lex/LiteralSupport.h"
34#include "clang/Lex/Preprocessor.h"
35#include "llvm/Support/ErrorHandling.h"
36#include "llvm/Support/Format.h"
37#include "llvm/Support/raw_ostream.h"
38#include <algorithm>
39#include <cstring>
40#include <optional>
41using namespace clang;
42
43const Expr *Expr::getBestDynamicClassTypeExpr() const {
44 const Expr *E = this;
45 while (true) {
46 E = E->IgnoreParenBaseCasts();
47
48 // Follow the RHS of a comma operator.
49 if (auto *BO = dyn_cast<BinaryOperator>(Val: E)) {
50 if (BO->getOpcode() == BO_Comma) {
51 E = BO->getRHS();
52 continue;
53 }
54 }
55
56 // Step into initializer for materialized temporaries.
57 if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Val: E)) {
58 E = MTE->getSubExpr();
59 continue;
60 }
61
62 break;
63 }
64
65 return E;
66}
67
68const CXXRecordDecl *Expr::getBestDynamicClassType() const {
69 const Expr *E = getBestDynamicClassTypeExpr();
70 QualType DerivedType = E->getType();
71 if (const PointerType *PTy = DerivedType->getAs<PointerType>())
72 DerivedType = PTy->getPointeeType();
73
74 while (const ArrayType *ATy = DerivedType->getAsArrayTypeUnsafe())
75 DerivedType = ATy->getElementType();
76
77 if (DerivedType->isDependentType())
78 return nullptr;
79
80 return DerivedType->castAsCXXRecordDecl();
81}
82
83const Expr *Expr::skipRValueSubobjectAdjustments(
84 SmallVectorImpl<const Expr *> &CommaLHSs,
85 SmallVectorImpl<SubobjectAdjustment> &Adjustments) const {
86 const Expr *E = this;
87 while (true) {
88 E = E->IgnoreParens();
89
90 if (const auto *CE = dyn_cast<CastExpr>(Val: E)) {
91 if ((CE->getCastKind() == CK_DerivedToBase ||
92 CE->getCastKind() == CK_UncheckedDerivedToBase) &&
93 E->getType()->isRecordType()) {
94 E = CE->getSubExpr();
95 const auto *Derived = E->getType()->castAsCXXRecordDecl();
96 Adjustments.push_back(Elt: SubobjectAdjustment(CE, Derived));
97 continue;
98 }
99
100 if (CE->getCastKind() == CK_NoOp) {
101 E = CE->getSubExpr();
102 continue;
103 }
104 } else if (const auto *ME = dyn_cast<MemberExpr>(Val: E)) {
105 if (!ME->isArrow()) {
106 assert(ME->getBase()->getType()->getAsRecordDecl());
107 if (const auto *Field = dyn_cast<FieldDecl>(Val: ME->getMemberDecl())) {
108 if (!Field->isBitField() && !Field->getType()->isReferenceType()) {
109 E = ME->getBase();
110 Adjustments.push_back(Elt: SubobjectAdjustment(Field));
111 continue;
112 }
113 }
114 }
115 } else if (const auto *BO = dyn_cast<BinaryOperator>(Val: E)) {
116 if (BO->getOpcode() == BO_PtrMemD) {
117 assert(BO->getRHS()->isPRValue());
118 E = BO->getLHS();
119 const auto *MPT = BO->getRHS()->getType()->getAs<MemberPointerType>();
120 Adjustments.push_back(Elt: SubobjectAdjustment(MPT, BO->getRHS()));
121 continue;
122 }
123 if (BO->getOpcode() == BO_Comma) {
124 CommaLHSs.push_back(Elt: BO->getLHS());
125 E = BO->getRHS();
126 continue;
127 }
128 }
129
130 // Nothing changed.
131 break;
132 }
133 return E;
134}
135
136bool Expr::isKnownToHaveBooleanValue(bool Semantic) const {
137 const Expr *E = IgnoreParens();
138
139 // If this value has _Bool type, it is obvious 0/1.
140 if (E->getType()->isBooleanType()) return true;
141 // If this is a non-scalar-integer type, we don't care enough to try.
142 if (!E->getType()->isIntegralOrEnumerationType()) return false;
143
144 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(Val: E)) {
145 switch (UO->getOpcode()) {
146 case UO_Plus:
147 return UO->getSubExpr()->isKnownToHaveBooleanValue(Semantic);
148 case UO_LNot:
149 return true;
150 default:
151 return false;
152 }
153 }
154
155 // Only look through implicit casts. If the user writes
156 // '(int) (a && b)' treat it as an arbitrary int.
157 // FIXME: Should we look through any cast expression in !Semantic mode?
158 if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(Val: E))
159 return CE->getSubExpr()->isKnownToHaveBooleanValue(Semantic);
160
161 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(Val: E)) {
162 switch (BO->getOpcode()) {
163 default: return false;
164 case BO_LT: // Relational operators.
165 case BO_GT:
166 case BO_LE:
167 case BO_GE:
168 case BO_EQ: // Equality operators.
169 case BO_NE:
170 case BO_LAnd: // AND operator.
171 case BO_LOr: // Logical OR operator.
172 return true;
173
174 case BO_And: // Bitwise AND operator.
175 case BO_Xor: // Bitwise XOR operator.
176 case BO_Or: // Bitwise OR operator.
177 // Handle things like (x==2)|(y==12).
178 return BO->getLHS()->isKnownToHaveBooleanValue(Semantic) &&
179 BO->getRHS()->isKnownToHaveBooleanValue(Semantic);
180
181 case BO_Comma:
182 case BO_Assign:
183 return BO->getRHS()->isKnownToHaveBooleanValue(Semantic);
184 }
185 }
186
187 if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(Val: E))
188 return CO->getTrueExpr()->isKnownToHaveBooleanValue(Semantic) &&
189 CO->getFalseExpr()->isKnownToHaveBooleanValue(Semantic);
190
191 if (isa<ObjCBoolLiteralExpr>(Val: E))
192 return true;
193
194 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(Val: E))
195 return OVE->getSourceExpr()->isKnownToHaveBooleanValue(Semantic);
196
197 if (const FieldDecl *FD = E->getSourceBitField())
198 if (!Semantic && FD->getType()->isUnsignedIntegerType() &&
199 !FD->getBitWidth()->isValueDependent() && FD->getBitWidthValue() == 1)
200 return true;
201
202 return false;
203}
204
205bool Expr::isFlexibleArrayMemberLike(
206 const ASTContext &Ctx,
207 LangOptions::StrictFlexArraysLevelKind StrictFlexArraysLevel,
208 bool IgnoreTemplateOrMacroSubstitution) const {
209 const Expr *E = IgnoreParens();
210 const Decl *D = nullptr;
211
212 if (const auto *ME = dyn_cast<MemberExpr>(Val: E))
213 D = ME->getMemberDecl();
214 else if (const auto *DRE = dyn_cast<DeclRefExpr>(Val: E))
215 D = DRE->getDecl();
216 else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(Val: E))
217 D = IRE->getDecl();
218
219 return Decl::isFlexibleArrayMemberLike(Context: Ctx, D, Ty: E->getType(),
220 StrictFlexArraysLevel,
221 IgnoreTemplateOrMacroSubstitution);
222}
223
224const ValueDecl *
225Expr::getAsBuiltinConstantDeclRef(const ASTContext &Context) const {
226 Expr::EvalResult Eval;
227
228 if (EvaluateAsConstantExpr(Result&: Eval, Ctx: Context)) {
229 APValue &Value = Eval.Val;
230
231 if (Value.isMemberPointer())
232 return Value.getMemberPointerDecl();
233
234 if (Value.isLValue() && Value.getLValueOffset().isZero())
235 return Value.getLValueBase().dyn_cast<const ValueDecl *>();
236 }
237
238 return nullptr;
239}
240
241// Amusing macro metaprogramming hack: check whether a class provides
242// a more specific implementation of getExprLoc().
243//
244// See also Stmt.cpp:{getBeginLoc(),getEndLoc()}.
245namespace {
246 /// This implementation is used when a class provides a custom
247 /// implementation of getExprLoc.
248 template <class E, class T>
249 SourceLocation getExprLocImpl(const Expr *expr,
250 SourceLocation (T::*v)() const) {
251 return static_cast<const E*>(expr)->getExprLoc();
252 }
253
254 /// This implementation is used when a class doesn't provide
255 /// a custom implementation of getExprLoc. Overload resolution
256 /// should pick it over the implementation above because it's
257 /// more specialized according to function template partial ordering.
258 template <class E>
259 SourceLocation getExprLocImpl(const Expr *expr,
260 SourceLocation (Expr::*v)() const) {
261 return static_cast<const E *>(expr)->getBeginLoc();
262 }
263}
264
265QualType Expr::getEnumCoercedType(const ASTContext &Ctx) const {
266 if (isa<EnumType>(Val: getType()))
267 return getType();
268 if (const auto *ECD = getEnumConstantDecl()) {
269 const auto *ED = cast<EnumDecl>(Val: ECD->getDeclContext());
270 if (ED->isCompleteDefinition())
271 return Ctx.getCanonicalTagType(TD: ED);
272 }
273 return getType();
274}
275
276SourceLocation Expr::getExprLoc() const {
277 switch (getStmtClass()) {
278 case Stmt::NoStmtClass: llvm_unreachable("statement without class");
279#define ABSTRACT_STMT(type)
280#define STMT(type, base) \
281 case Stmt::type##Class: break;
282#define EXPR(type, base) \
283 case Stmt::type##Class: return getExprLocImpl<type>(this, &type::getExprLoc);
284#include "clang/AST/StmtNodes.inc"
285 }
286 llvm_unreachable("unknown expression kind");
287}
288
289//===----------------------------------------------------------------------===//
290// Primary Expressions.
291//===----------------------------------------------------------------------===//
292
293static void AssertResultStorageKind(ConstantResultStorageKind Kind) {
294 assert((Kind == ConstantResultStorageKind::APValue ||
295 Kind == ConstantResultStorageKind::Int64 ||
296 Kind == ConstantResultStorageKind::None) &&
297 "Invalid StorageKind Value");
298 (void)Kind;
299}
300
301ConstantResultStorageKind ConstantExpr::getStorageKind(const APValue &Value) {
302 switch (Value.getKind()) {
303 case APValue::None:
304 case APValue::Indeterminate:
305 return ConstantResultStorageKind::None;
306 case APValue::Int:
307 if (!Value.getInt().needsCleanup())
308 return ConstantResultStorageKind::Int64;
309 [[fallthrough]];
310 default:
311 return ConstantResultStorageKind::APValue;
312 }
313}
314
315ConstantResultStorageKind
316ConstantExpr::getStorageKind(const Type *T, const ASTContext &Context) {
317 if (T->isIntegralOrEnumerationType() && Context.getTypeInfo(T).Width <= 64)
318 return ConstantResultStorageKind::Int64;
319 return ConstantResultStorageKind::APValue;
320}
321
322ConstantExpr::ConstantExpr(Expr *SubExpr, ConstantResultStorageKind StorageKind,
323 bool IsImmediateInvocation)
324 : FullExpr(ConstantExprClass, SubExpr) {
325 ConstantExprBits.ResultKind = llvm::to_underlying(E: StorageKind);
326 ConstantExprBits.APValueKind = APValue::None;
327 ConstantExprBits.IsUnsigned = false;
328 ConstantExprBits.BitWidth = 0;
329 ConstantExprBits.HasCleanup = false;
330 ConstantExprBits.IsImmediateInvocation = IsImmediateInvocation;
331
332 if (StorageKind == ConstantResultStorageKind::APValue)
333 ::new (getTrailingObjects<APValue>()) APValue();
334}
335
336ConstantExpr *ConstantExpr::Create(const ASTContext &Context, Expr *E,
337 ConstantResultStorageKind StorageKind,
338 bool IsImmediateInvocation) {
339 assert(!isa<ConstantExpr>(E));
340 AssertResultStorageKind(Kind: StorageKind);
341
342 unsigned Size = totalSizeToAlloc<APValue, uint64_t>(
343 Counts: StorageKind == ConstantResultStorageKind::APValue,
344 Counts: StorageKind == ConstantResultStorageKind::Int64);
345 void *Mem = Context.Allocate(Size, Align: alignof(ConstantExpr));
346 return new (Mem) ConstantExpr(E, StorageKind, IsImmediateInvocation);
347}
348
349ConstantExpr *ConstantExpr::Create(const ASTContext &Context, Expr *E,
350 const APValue &Result) {
351 ConstantResultStorageKind StorageKind = getStorageKind(Value: Result);
352 ConstantExpr *Self = Create(Context, E, StorageKind);
353 Self->SetResult(Value: Result, Context);
354 return Self;
355}
356
357ConstantExpr::ConstantExpr(EmptyShell Empty,
358 ConstantResultStorageKind StorageKind)
359 : FullExpr(ConstantExprClass, Empty) {
360 ConstantExprBits.ResultKind = llvm::to_underlying(E: StorageKind);
361
362 if (StorageKind == ConstantResultStorageKind::APValue)
363 ::new (getTrailingObjects<APValue>()) APValue();
364}
365
366ConstantExpr *ConstantExpr::CreateEmpty(const ASTContext &Context,
367 ConstantResultStorageKind StorageKind) {
368 AssertResultStorageKind(Kind: StorageKind);
369
370 unsigned Size = totalSizeToAlloc<APValue, uint64_t>(
371 Counts: StorageKind == ConstantResultStorageKind::APValue,
372 Counts: StorageKind == ConstantResultStorageKind::Int64);
373 void *Mem = Context.Allocate(Size, Align: alignof(ConstantExpr));
374 return new (Mem) ConstantExpr(EmptyShell(), StorageKind);
375}
376
377void ConstantExpr::MoveIntoResult(APValue &Value, const ASTContext &Context) {
378 assert((unsigned)getStorageKind(Value) <= ConstantExprBits.ResultKind &&
379 "Invalid storage for this value kind");
380 ConstantExprBits.APValueKind = Value.getKind();
381 switch (getResultStorageKind()) {
382 case ConstantResultStorageKind::None:
383 return;
384 case ConstantResultStorageKind::Int64:
385 Int64Result() = *Value.getInt().getRawData();
386 ConstantExprBits.BitWidth = Value.getInt().getBitWidth();
387 ConstantExprBits.IsUnsigned = Value.getInt().isUnsigned();
388 return;
389 case ConstantResultStorageKind::APValue:
390 if (!ConstantExprBits.HasCleanup && Value.needsCleanup()) {
391 ConstantExprBits.HasCleanup = true;
392 Context.addDestruction(Ptr: &APValueResult());
393 }
394 APValueResult() = std::move(Value);
395 return;
396 }
397 llvm_unreachable("Invalid ResultKind Bits");
398}
399
400llvm::APSInt ConstantExpr::getResultAsAPSInt() const {
401 switch (getResultStorageKind()) {
402 case ConstantResultStorageKind::APValue:
403 return APValueResult().getInt();
404 case ConstantResultStorageKind::Int64:
405 return llvm::APSInt(llvm::APInt(ConstantExprBits.BitWidth, Int64Result()),
406 ConstantExprBits.IsUnsigned);
407 default:
408 llvm_unreachable("invalid Accessor");
409 }
410}
411
412APValue ConstantExpr::getAPValueResult() const {
413
414 switch (getResultStorageKind()) {
415 case ConstantResultStorageKind::APValue:
416 return APValueResult();
417 case ConstantResultStorageKind::Int64:
418 return APValue(
419 llvm::APSInt(llvm::APInt(ConstantExprBits.BitWidth, Int64Result()),
420 ConstantExprBits.IsUnsigned));
421 case ConstantResultStorageKind::None:
422 if (ConstantExprBits.APValueKind == APValue::Indeterminate)
423 return APValue::IndeterminateValue();
424 return APValue();
425 }
426 llvm_unreachable("invalid ResultKind");
427}
428
429DeclRefExpr::DeclRefExpr(const ASTContext &Ctx, ValueDecl *D,
430 bool RefersToEnclosingVariableOrCapture, QualType T,
431 ExprValueKind VK, SourceLocation L,
432 const DeclarationNameLoc &LocInfo,
433 NonOdrUseReason NOUR)
434 : Expr(DeclRefExprClass, T, VK, OK_Ordinary), D(D), DNLoc(LocInfo) {
435 DeclRefExprBits.HasQualifier = false;
436 DeclRefExprBits.HasTemplateKWAndArgsInfo = false;
437 DeclRefExprBits.HasFoundDecl = false;
438 DeclRefExprBits.HadMultipleCandidates = false;
439 DeclRefExprBits.RefersToEnclosingVariableOrCapture =
440 RefersToEnclosingVariableOrCapture;
441 DeclRefExprBits.CapturedByCopyInLambdaWithExplicitObjectParameter = false;
442 DeclRefExprBits.NonOdrUseReason = NOUR;
443 DeclRefExprBits.IsImmediateEscalating = false;
444 DeclRefExprBits.Loc = L;
445 setDependence(computeDependence(E: this, Ctx));
446}
447
448DeclRefExpr::DeclRefExpr(const ASTContext &Ctx,
449 NestedNameSpecifierLoc QualifierLoc,
450 SourceLocation TemplateKWLoc, ValueDecl *D,
451 bool RefersToEnclosingVariableOrCapture,
452 const DeclarationNameInfo &NameInfo, NamedDecl *FoundD,
453 const TemplateArgumentListInfo *TemplateArgs,
454 QualType T, ExprValueKind VK, NonOdrUseReason NOUR)
455 : Expr(DeclRefExprClass, T, VK, OK_Ordinary), D(D),
456 DNLoc(NameInfo.getInfo()) {
457 DeclRefExprBits.Loc = NameInfo.getLoc();
458 DeclRefExprBits.HasQualifier = QualifierLoc ? 1 : 0;
459 if (QualifierLoc)
460 new (getTrailingObjects<NestedNameSpecifierLoc>())
461 NestedNameSpecifierLoc(QualifierLoc);
462 DeclRefExprBits.HasFoundDecl = FoundD ? 1 : 0;
463 if (FoundD)
464 *getTrailingObjects<NamedDecl *>() = FoundD;
465 DeclRefExprBits.HasTemplateKWAndArgsInfo
466 = (TemplateArgs || TemplateKWLoc.isValid()) ? 1 : 0;
467 DeclRefExprBits.RefersToEnclosingVariableOrCapture =
468 RefersToEnclosingVariableOrCapture;
469 DeclRefExprBits.CapturedByCopyInLambdaWithExplicitObjectParameter = false;
470 DeclRefExprBits.NonOdrUseReason = NOUR;
471 if (TemplateArgs) {
472 auto Deps = TemplateArgumentDependence::None;
473 getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
474 TemplateKWLoc, List: *TemplateArgs, OutArgArray: getTrailingObjects<TemplateArgumentLoc>(),
475 Deps);
476 assert(!(Deps & TemplateArgumentDependence::Dependent) &&
477 "built a DeclRefExpr with dependent template args");
478 } else if (TemplateKWLoc.isValid()) {
479 getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
480 TemplateKWLoc);
481 }
482 DeclRefExprBits.IsImmediateEscalating = false;
483 DeclRefExprBits.HadMultipleCandidates = 0;
484 setDependence(computeDependence(E: this, Ctx));
485}
486
487DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context,
488 NestedNameSpecifierLoc QualifierLoc,
489 SourceLocation TemplateKWLoc, ValueDecl *D,
490 bool RefersToEnclosingVariableOrCapture,
491 SourceLocation NameLoc, QualType T,
492 ExprValueKind VK, NamedDecl *FoundD,
493 const TemplateArgumentListInfo *TemplateArgs,
494 NonOdrUseReason NOUR) {
495 return Create(Context, QualifierLoc, TemplateKWLoc, D,
496 RefersToEnclosingVariableOrCapture,
497 NameInfo: DeclarationNameInfo(D->getDeclName(), NameLoc),
498 T, VK, FoundD, TemplateArgs, NOUR);
499}
500
501DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context,
502 NestedNameSpecifierLoc QualifierLoc,
503 SourceLocation TemplateKWLoc, ValueDecl *D,
504 bool RefersToEnclosingVariableOrCapture,
505 const DeclarationNameInfo &NameInfo,
506 QualType T, ExprValueKind VK,
507 NamedDecl *FoundD,
508 const TemplateArgumentListInfo *TemplateArgs,
509 NonOdrUseReason NOUR) {
510 // Filter out cases where the found Decl is the same as the value refenenced.
511 if (D == FoundD)
512 FoundD = nullptr;
513
514 bool HasTemplateKWAndArgsInfo = TemplateArgs || TemplateKWLoc.isValid();
515 std::size_t Size =
516 totalSizeToAlloc<NestedNameSpecifierLoc, NamedDecl *,
517 ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>(
518 Counts: QualifierLoc ? 1 : 0, Counts: FoundD ? 1 : 0,
519 Counts: HasTemplateKWAndArgsInfo ? 1 : 0,
520 Counts: TemplateArgs ? TemplateArgs->size() : 0);
521
522 void *Mem = Context.Allocate(Size, Align: alignof(DeclRefExpr));
523 return new (Mem) DeclRefExpr(Context, QualifierLoc, TemplateKWLoc, D,
524 RefersToEnclosingVariableOrCapture, NameInfo,
525 FoundD, TemplateArgs, T, VK, NOUR);
526}
527
528DeclRefExpr *DeclRefExpr::CreateEmpty(const ASTContext &Context,
529 bool HasQualifier,
530 bool HasFoundDecl,
531 bool HasTemplateKWAndArgsInfo,
532 unsigned NumTemplateArgs) {
533 assert(NumTemplateArgs == 0 || HasTemplateKWAndArgsInfo);
534 std::size_t Size =
535 totalSizeToAlloc<NestedNameSpecifierLoc, NamedDecl *,
536 ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>(
537 Counts: HasQualifier ? 1 : 0, Counts: HasFoundDecl ? 1 : 0, Counts: HasTemplateKWAndArgsInfo,
538 Counts: NumTemplateArgs);
539 void *Mem = Context.Allocate(Size, Align: alignof(DeclRefExpr));
540 return new (Mem) DeclRefExpr(EmptyShell());
541}
542
543void DeclRefExpr::setDecl(ValueDecl *NewD) {
544 D = NewD;
545 if (getType()->isUndeducedType())
546 setType(NewD->getType());
547 setDependence(computeDependence(E: this, Ctx: NewD->getASTContext()));
548}
549
550SourceLocation DeclRefExpr::getEndLoc() const {
551 if (hasExplicitTemplateArgs())
552 return getRAngleLoc();
553 return getNameInfo().getEndLoc();
554}
555
556SYCLUniqueStableNameExpr::SYCLUniqueStableNameExpr(SourceLocation OpLoc,
557 SourceLocation LParen,
558 SourceLocation RParen,
559 QualType ResultTy,
560 TypeSourceInfo *TSI)
561 : Expr(SYCLUniqueStableNameExprClass, ResultTy, VK_PRValue, OK_Ordinary),
562 OpLoc(OpLoc), LParen(LParen), RParen(RParen) {
563 setTypeSourceInfo(TSI);
564 setDependence(computeDependence(E: this));
565}
566
567SYCLUniqueStableNameExpr::SYCLUniqueStableNameExpr(EmptyShell Empty,
568 QualType ResultTy)
569 : Expr(SYCLUniqueStableNameExprClass, ResultTy, VK_PRValue, OK_Ordinary) {}
570
571SYCLUniqueStableNameExpr *
572SYCLUniqueStableNameExpr::Create(const ASTContext &Ctx, SourceLocation OpLoc,
573 SourceLocation LParen, SourceLocation RParen,
574 TypeSourceInfo *TSI) {
575 QualType ResultTy = Ctx.getPointerType(T: Ctx.CharTy.withConst());
576 return new (Ctx)
577 SYCLUniqueStableNameExpr(OpLoc, LParen, RParen, ResultTy, TSI);
578}
579
580SYCLUniqueStableNameExpr *
581SYCLUniqueStableNameExpr::CreateEmpty(const ASTContext &Ctx) {
582 QualType ResultTy = Ctx.getPointerType(T: Ctx.CharTy.withConst());
583 return new (Ctx) SYCLUniqueStableNameExpr(EmptyShell(), ResultTy);
584}
585
586std::string SYCLUniqueStableNameExpr::ComputeName(ASTContext &Context) const {
587 return SYCLUniqueStableNameExpr::ComputeName(Context,
588 Ty: getTypeSourceInfo()->getType());
589}
590
591std::string SYCLUniqueStableNameExpr::ComputeName(ASTContext &Context,
592 QualType Ty) {
593 auto MangleCallback = [](ASTContext &Ctx,
594 const NamedDecl *ND) -> UnsignedOrNone {
595 if (const auto *RD = dyn_cast<CXXRecordDecl>(Val: ND))
596 return RD->getDeviceLambdaManglingNumber();
597 return std::nullopt;
598 };
599
600 std::unique_ptr<MangleContext> Ctx{ItaniumMangleContext::create(
601 Context, Diags&: Context.getDiagnostics(), Discriminator: MangleCallback)};
602
603 std::string Buffer;
604 Buffer.reserve(res_arg: 128);
605 llvm::raw_string_ostream Out(Buffer);
606 Ctx->mangleCanonicalTypeName(T: Ty, Out);
607
608 return Buffer;
609}
610
611PredefinedExpr::PredefinedExpr(SourceLocation L, QualType FNTy,
612 PredefinedIdentKind IK, bool IsTransparent,
613 StringLiteral *SL)
614 : Expr(PredefinedExprClass, FNTy, VK_LValue, OK_Ordinary) {
615 PredefinedExprBits.Kind = llvm::to_underlying(E: IK);
616 assert((getIdentKind() == IK) &&
617 "IdentKind do not fit in PredefinedExprBitfields!");
618 bool HasFunctionName = SL != nullptr;
619 PredefinedExprBits.HasFunctionName = HasFunctionName;
620 PredefinedExprBits.IsTransparent = IsTransparent;
621 PredefinedExprBits.Loc = L;
622 if (HasFunctionName)
623 setFunctionName(SL);
624 setDependence(computeDependence(E: this));
625}
626
627PredefinedExpr::PredefinedExpr(EmptyShell Empty, bool HasFunctionName)
628 : Expr(PredefinedExprClass, Empty) {
629 PredefinedExprBits.HasFunctionName = HasFunctionName;
630}
631
632PredefinedExpr *PredefinedExpr::Create(const ASTContext &Ctx, SourceLocation L,
633 QualType FNTy, PredefinedIdentKind IK,
634 bool IsTransparent, StringLiteral *SL) {
635 bool HasFunctionName = SL != nullptr;
636 void *Mem = Ctx.Allocate(Size: totalSizeToAlloc<Stmt *>(Counts: HasFunctionName),
637 Align: alignof(PredefinedExpr));
638 return new (Mem) PredefinedExpr(L, FNTy, IK, IsTransparent, SL);
639}
640
641PredefinedExpr *PredefinedExpr::CreateEmpty(const ASTContext &Ctx,
642 bool HasFunctionName) {
643 void *Mem = Ctx.Allocate(Size: totalSizeToAlloc<Stmt *>(Counts: HasFunctionName),
644 Align: alignof(PredefinedExpr));
645 return new (Mem) PredefinedExpr(EmptyShell(), HasFunctionName);
646}
647
648StringRef PredefinedExpr::getIdentKindName(PredefinedIdentKind IK) {
649 switch (IK) {
650 case PredefinedIdentKind::Func:
651 return "__func__";
652 case PredefinedIdentKind::Function:
653 return "__FUNCTION__";
654 case PredefinedIdentKind::FuncDName:
655 return "__FUNCDNAME__";
656 case PredefinedIdentKind::LFunction:
657 return "L__FUNCTION__";
658 case PredefinedIdentKind::PrettyFunction:
659 return "__PRETTY_FUNCTION__";
660 case PredefinedIdentKind::FuncSig:
661 return "__FUNCSIG__";
662 case PredefinedIdentKind::LFuncSig:
663 return "L__FUNCSIG__";
664 case PredefinedIdentKind::PrettyFunctionNoVirtual:
665 break;
666 }
667 llvm_unreachable("Unknown ident kind for PredefinedExpr");
668}
669
670// FIXME: Maybe this should use DeclPrinter with a special "print predefined
671// expr" policy instead.
672std::string PredefinedExpr::ComputeName(PredefinedIdentKind IK,
673 const Decl *CurrentDecl,
674 bool ForceElaboratedPrinting) {
675 ASTContext &Context = CurrentDecl->getASTContext();
676
677 if (IK == PredefinedIdentKind::FuncDName) {
678 if (const NamedDecl *ND = dyn_cast<NamedDecl>(Val: CurrentDecl)) {
679 std::unique_ptr<MangleContext> MC;
680 MC.reset(p: Context.createMangleContext());
681
682 if (MC->shouldMangleDeclName(D: ND)) {
683 SmallString<256> Buffer;
684 llvm::raw_svector_ostream Out(Buffer);
685 GlobalDecl GD;
686 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Val: ND))
687 GD = GlobalDecl(CD, Ctor_Base);
688 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(Val: ND))
689 GD = GlobalDecl(DD, Dtor_Base);
690 else if (auto FD = dyn_cast<FunctionDecl>(Val: ND)) {
691 GD = FD->isReferenceableKernel() ? GlobalDecl(FD) : GlobalDecl(ND);
692 } else
693 GD = GlobalDecl(ND);
694 MC->mangleName(GD, Out);
695
696 if (!Buffer.empty() && Buffer.front() == '\01')
697 return std::string(Buffer.substr(Start: 1));
698 return std::string(Buffer);
699 }
700 return std::string(ND->getIdentifier()->getName());
701 }
702 return "";
703 }
704 if (isa<BlockDecl>(Val: CurrentDecl)) {
705 // For blocks we only emit something if it is enclosed in a function
706 // For top-level block we'd like to include the name of variable, but we
707 // don't have it at this point.
708 auto DC = CurrentDecl->getDeclContext();
709 if (DC->isFileContext())
710 return "";
711
712 SmallString<256> Buffer;
713 llvm::raw_svector_ostream Out(Buffer);
714 if (auto *DCBlock = dyn_cast<BlockDecl>(Val: DC))
715 // For nested blocks, propagate up to the parent.
716 Out << ComputeName(IK, CurrentDecl: DCBlock);
717 else if (auto *DCDecl = dyn_cast<Decl>(Val: DC))
718 Out << ComputeName(IK, CurrentDecl: DCDecl) << "_block_invoke";
719 return std::string(Out.str());
720 }
721 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Val: CurrentDecl)) {
722 const auto &LO = Context.getLangOpts();
723 bool IsFuncOrFunctionInNonMSVCCompatEnv =
724 ((IK == PredefinedIdentKind::Func ||
725 IK == PredefinedIdentKind ::Function) &&
726 !LO.MSVCCompat);
727 bool IsLFunctionInMSVCCommpatEnv =
728 IK == PredefinedIdentKind::LFunction && LO.MSVCCompat;
729 bool IsFuncOrFunctionOrLFunctionOrFuncDName =
730 IK != PredefinedIdentKind::PrettyFunction &&
731 IK != PredefinedIdentKind::PrettyFunctionNoVirtual &&
732 IK != PredefinedIdentKind::FuncSig &&
733 IK != PredefinedIdentKind::LFuncSig;
734 if ((ForceElaboratedPrinting &&
735 (IsFuncOrFunctionInNonMSVCCompatEnv || IsLFunctionInMSVCCommpatEnv)) ||
736 (!ForceElaboratedPrinting && IsFuncOrFunctionOrLFunctionOrFuncDName))
737 return FD->getNameAsString();
738
739 SmallString<256> Name;
740 llvm::raw_svector_ostream Out(Name);
741
742 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Val: FD)) {
743 if (MD->isVirtual() && IK != PredefinedIdentKind::PrettyFunctionNoVirtual)
744 Out << "virtual ";
745 if (MD->isStatic() && !ForceElaboratedPrinting)
746 Out << "static ";
747 }
748
749 class PrettyCallbacks final : public PrintingCallbacks {
750 public:
751 PrettyCallbacks(const LangOptions &LO) : LO(LO) {}
752 std::string remapPath(StringRef Path) const override {
753 SmallString<128> p(Path);
754 LO.remapPathPrefix(Path&: p);
755 return std::string(p);
756 }
757
758 private:
759 const LangOptions &LO;
760 };
761 PrintingPolicy Policy(Context.getLangOpts());
762 PrettyCallbacks PrettyCB(Context.getLangOpts());
763 Policy.Callbacks = &PrettyCB;
764 if (IK == PredefinedIdentKind::Function && ForceElaboratedPrinting)
765 Policy.SuppressTagKeyword = !LO.MSVCCompat;
766 std::string Proto;
767 llvm::raw_string_ostream POut(Proto);
768
769 const FunctionDecl *Decl = FD;
770 if (const FunctionDecl* Pattern = FD->getTemplateInstantiationPattern())
771 Decl = Pattern;
772
773 // Bail out if the type of the function has not been set yet.
774 // This can notably happen in the trailing return type of a lambda
775 // expression.
776 const Type *Ty = Decl->getType().getTypePtrOrNull();
777 if (!Ty)
778 return "";
779
780 const FunctionType *AFT = Ty->getAs<FunctionType>();
781 const FunctionProtoType *FT = nullptr;
782 if (FD->hasWrittenPrototype())
783 FT = dyn_cast<FunctionProtoType>(Val: AFT);
784
785 if (IK == PredefinedIdentKind::FuncSig ||
786 IK == PredefinedIdentKind::LFuncSig) {
787 switch (AFT->getCallConv()) {
788 case CC_C: POut << "__cdecl "; break;
789 case CC_X86StdCall: POut << "__stdcall "; break;
790 case CC_X86FastCall: POut << "__fastcall "; break;
791 case CC_X86ThisCall: POut << "__thiscall "; break;
792 case CC_X86VectorCall: POut << "__vectorcall "; break;
793 case CC_X86RegCall: POut << "__regcall "; break;
794 // Only bother printing the conventions that MSVC knows about.
795 default: break;
796 }
797 }
798
799 FD->printQualifiedName(OS&: POut, Policy);
800
801 if (IK == PredefinedIdentKind::Function) {
802 Out << Proto;
803 return std::string(Name);
804 }
805
806 POut << "(";
807 if (FT) {
808 for (unsigned i = 0, e = Decl->getNumParams(); i != e; ++i) {
809 if (i) POut << ", ";
810 POut << Decl->getParamDecl(i)->getType().stream(Policy);
811 }
812
813 if (FT->isVariadic()) {
814 if (FD->getNumParams()) POut << ", ";
815 POut << "...";
816 } else if ((IK == PredefinedIdentKind::FuncSig ||
817 IK == PredefinedIdentKind::LFuncSig ||
818 !Context.getLangOpts().CPlusPlus) &&
819 !Decl->getNumParams()) {
820 POut << "void";
821 }
822 }
823 POut << ")";
824
825 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Val: FD)) {
826 assert(FT && "We must have a written prototype in this case.");
827 if (FT->isConst())
828 POut << " const";
829 if (FT->isVolatile())
830 POut << " volatile";
831 RefQualifierKind Ref = MD->getRefQualifier();
832 if (Ref == RQ_LValue)
833 POut << " &";
834 else if (Ref == RQ_RValue)
835 POut << " &&";
836 }
837
838 typedef SmallVector<const ClassTemplateSpecializationDecl *, 8> SpecsTy;
839 SpecsTy Specs;
840 const DeclContext *Ctx = FD->getDeclContext();
841 while (isa_and_nonnull<NamedDecl>(Val: Ctx)) {
842 const ClassTemplateSpecializationDecl *Spec
843 = dyn_cast<ClassTemplateSpecializationDecl>(Val: Ctx);
844 if (Spec && !Spec->isExplicitSpecialization())
845 Specs.push_back(Elt: Spec);
846 Ctx = Ctx->getParent();
847 }
848
849 std::string TemplateParams;
850 llvm::raw_string_ostream TOut(TemplateParams);
851 for (const ClassTemplateSpecializationDecl *D : llvm::reverse(C&: Specs)) {
852 const TemplateParameterList *Params =
853 D->getSpecializedTemplate()->getTemplateParameters();
854 const TemplateArgumentList &Args = D->getTemplateArgs();
855 assert(Params->size() == Args.size());
856 for (unsigned i = 0, numParams = Params->size(); i != numParams; ++i) {
857 StringRef Param = Params->getParam(Idx: i)->getName();
858 if (Param.empty()) continue;
859 TOut << Param << " = ";
860 Args.get(Idx: i).print(Policy, Out&: TOut,
861 IncludeType: TemplateParameterList::shouldIncludeTypeForArgument(
862 Policy, TPL: Params, Idx: i));
863 TOut << ", ";
864 }
865 }
866
867 FunctionTemplateSpecializationInfo *FSI
868 = FD->getTemplateSpecializationInfo();
869 if (FSI && !FSI->isExplicitSpecialization()) {
870 const TemplateParameterList* Params
871 = FSI->getTemplate()->getTemplateParameters();
872 const TemplateArgumentList* Args = FSI->TemplateArguments;
873 assert(Params->size() == Args->size());
874 for (unsigned i = 0, e = Params->size(); i != e; ++i) {
875 StringRef Param = Params->getParam(Idx: i)->getName();
876 if (Param.empty()) continue;
877 TOut << Param << " = ";
878 Args->get(Idx: i).print(Policy, Out&: TOut, /*IncludeType*/ true);
879 TOut << ", ";
880 }
881 }
882
883 if (!TemplateParams.empty()) {
884 // remove the trailing comma and space
885 TemplateParams.resize(n: TemplateParams.size() - 2);
886 POut << " [" << TemplateParams << "]";
887 }
888
889 // Print "auto" for all deduced return types. This includes C++1y return
890 // type deduction and lambdas. For trailing return types resolve the
891 // decltype expression. Otherwise print the real type when this is
892 // not a constructor or destructor.
893 if (isLambdaMethod(DC: FD))
894 Proto = "auto " + Proto;
895 else if (FT && FT->getReturnType()->getAs<DecltypeType>())
896 FT->getReturnType()
897 ->getAs<DecltypeType>()
898 ->getUnderlyingType()
899 .getAsStringInternal(Str&: Proto, Policy);
900 else if (!isa<CXXConstructorDecl>(Val: FD) && !isa<CXXDestructorDecl>(Val: FD))
901 AFT->getReturnType().getAsStringInternal(Str&: Proto, Policy);
902
903 Out << Proto;
904
905 return std::string(Name);
906 }
907 if (const CapturedDecl *CD = dyn_cast<CapturedDecl>(Val: CurrentDecl)) {
908 for (const DeclContext *DC = CD->getParent(); DC; DC = DC->getParent())
909 // Skip to its enclosing function or method, but not its enclosing
910 // CapturedDecl.
911 if (DC->isFunctionOrMethod() && (DC->getDeclKind() != Decl::Captured)) {
912 const Decl *D = Decl::castFromDeclContext(DC);
913 return ComputeName(IK, CurrentDecl: D);
914 }
915 llvm_unreachable("CapturedDecl not inside a function or method");
916 }
917 if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(Val: CurrentDecl)) {
918 SmallString<256> Name;
919 llvm::raw_svector_ostream Out(Name);
920 Out << (MD->isInstanceMethod() ? '-' : '+');
921 Out << '[';
922
923 // For incorrect code, there might not be an ObjCInterfaceDecl. Do
924 // a null check to avoid a crash.
925 if (const ObjCInterfaceDecl *ID = MD->getClassInterface())
926 Out << *ID;
927
928 if (const ObjCCategoryImplDecl *CID =
929 dyn_cast<ObjCCategoryImplDecl>(Val: MD->getDeclContext()))
930 Out << '(' << *CID << ')';
931
932 Out << ' ';
933 MD->getSelector().print(OS&: Out);
934 Out << ']';
935
936 return std::string(Name);
937 }
938 if (isa<TranslationUnitDecl>(Val: CurrentDecl) &&
939 IK == PredefinedIdentKind::PrettyFunction) {
940 // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
941 return "top level";
942 }
943 return "";
944}
945
946void APNumericStorage::setIntValue(const ASTContext &C,
947 const llvm::APInt &Val) {
948 if (hasAllocation())
949 C.Deallocate(Ptr: pVal);
950
951 BitWidth = Val.getBitWidth();
952 unsigned NumWords = Val.getNumWords();
953 const uint64_t* Words = Val.getRawData();
954 if (NumWords > 1) {
955 pVal = new (C) uint64_t[NumWords];
956 std::copy(first: Words, last: Words + NumWords, result: pVal);
957 } else if (NumWords == 1)
958 VAL = Words[0];
959 else
960 VAL = 0;
961}
962
963IntegerLiteral::IntegerLiteral(const ASTContext &C, const llvm::APInt &V,
964 QualType type, SourceLocation l)
965 : Expr(IntegerLiteralClass, type, VK_PRValue, OK_Ordinary), Loc(l) {
966 assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
967 assert(V.getBitWidth() == C.getIntWidth(type) &&
968 "Integer type is not the correct size for constant.");
969 setValue(C, Val: V);
970 setDependence(ExprDependence::None);
971}
972
973IntegerLiteral *
974IntegerLiteral::Create(const ASTContext &C, const llvm::APInt &V,
975 QualType type, SourceLocation l) {
976 return new (C) IntegerLiteral(C, V, type, l);
977}
978
979IntegerLiteral *
980IntegerLiteral::Create(const ASTContext &C, EmptyShell Empty) {
981 return new (C) IntegerLiteral(Empty);
982}
983
984FixedPointLiteral::FixedPointLiteral(const ASTContext &C, const llvm::APInt &V,
985 QualType type, SourceLocation l,
986 unsigned Scale)
987 : Expr(FixedPointLiteralClass, type, VK_PRValue, OK_Ordinary), Loc(l),
988 Scale(Scale) {
989 assert(type->isFixedPointType() && "Illegal type in FixedPointLiteral");
990 assert(V.getBitWidth() == C.getTypeInfo(type).Width &&
991 "Fixed point type is not the correct size for constant.");
992 setValue(C, Val: V);
993 setDependence(ExprDependence::None);
994}
995
996FixedPointLiteral *FixedPointLiteral::CreateFromRawInt(const ASTContext &C,
997 const llvm::APInt &V,
998 QualType type,
999 SourceLocation l,
1000 unsigned Scale) {
1001 return new (C) FixedPointLiteral(C, V, type, l, Scale);
1002}
1003
1004FixedPointLiteral *FixedPointLiteral::Create(const ASTContext &C,
1005 EmptyShell Empty) {
1006 return new (C) FixedPointLiteral(Empty);
1007}
1008
1009std::string FixedPointLiteral::getValueAsString(unsigned Radix) const {
1010 // Currently the longest decimal number that can be printed is the max for an
1011 // unsigned long _Accum: 4294967295.99999999976716935634613037109375
1012 // which is 43 characters.
1013 SmallString<64> S;
1014 FixedPointValueToString(
1015 Str&: S, Val: llvm::APSInt::getUnsigned(X: getValue().getZExtValue()), Scale);
1016 return std::string(S);
1017}
1018
1019void CharacterLiteral::print(unsigned Val, CharacterLiteralKind Kind,
1020 raw_ostream &OS) {
1021 switch (Kind) {
1022 case CharacterLiteralKind::Ascii:
1023 break; // no prefix.
1024 case CharacterLiteralKind::Wide:
1025 OS << 'L';
1026 break;
1027 case CharacterLiteralKind::UTF8:
1028 OS << "u8";
1029 break;
1030 case CharacterLiteralKind::UTF16:
1031 OS << 'u';
1032 break;
1033 case CharacterLiteralKind::UTF32:
1034 OS << 'U';
1035 break;
1036 }
1037
1038 StringRef Escaped = escapeCStyle<EscapeChar::Single>(Ch: Val);
1039 if (!Escaped.empty()) {
1040 OS << "'" << Escaped << "'";
1041 } else {
1042 // A character literal might be sign-extended, which
1043 // would result in an invalid \U escape sequence.
1044 // FIXME: multicharacter literals such as '\xFF\xFF\xFF\xFF'
1045 // are not correctly handled.
1046 if ((Val & ~0xFFu) == ~0xFFu && Kind == CharacterLiteralKind::Ascii)
1047 Val &= 0xFFu;
1048 if (Val < 256 && isPrintable(c: (unsigned char)Val))
1049 OS << "'" << (char)Val << "'";
1050 else if (Val < 256)
1051 OS << "'\\x" << llvm::format(Fmt: "%02x", Vals: Val) << "'";
1052 else if (Val <= 0xFFFF)
1053 OS << "'\\u" << llvm::format(Fmt: "%04x", Vals: Val) << "'";
1054 else
1055 OS << "'\\U" << llvm::format(Fmt: "%08x", Vals: Val) << "'";
1056 }
1057}
1058
1059FloatingLiteral::FloatingLiteral(const ASTContext &C, const llvm::APFloat &V,
1060 bool isexact, QualType Type, SourceLocation L)
1061 : Expr(FloatingLiteralClass, Type, VK_PRValue, OK_Ordinary), Loc(L) {
1062 setSemantics(V.getSemantics());
1063 FloatingLiteralBits.IsExact = isexact;
1064 setValue(C, Val: V);
1065 setDependence(ExprDependence::None);
1066}
1067
1068FloatingLiteral::FloatingLiteral(const ASTContext &C, EmptyShell Empty)
1069 : Expr(FloatingLiteralClass, Empty) {
1070 setRawSemantics(llvm::APFloatBase::S_IEEEhalf);
1071 FloatingLiteralBits.IsExact = false;
1072}
1073
1074FloatingLiteral *
1075FloatingLiteral::Create(const ASTContext &C, const llvm::APFloat &V,
1076 bool isexact, QualType Type, SourceLocation L) {
1077 return new (C) FloatingLiteral(C, V, isexact, Type, L);
1078}
1079
1080FloatingLiteral *
1081FloatingLiteral::Create(const ASTContext &C, EmptyShell Empty) {
1082 return new (C) FloatingLiteral(C, Empty);
1083}
1084
1085/// getValueAsApproximateDouble - This returns the value as an inaccurate
1086/// double. Note that this may cause loss of precision, but is useful for
1087/// debugging dumps, etc.
1088double FloatingLiteral::getValueAsApproximateDouble() const {
1089 llvm::APFloat V = getValue();
1090 bool ignored;
1091 V.convert(ToSemantics: llvm::APFloat::IEEEdouble(), RM: llvm::APFloat::rmNearestTiesToEven,
1092 losesInfo: &ignored);
1093 return V.convertToDouble();
1094}
1095
1096unsigned StringLiteral::mapCharByteWidth(TargetInfo const &Target,
1097 StringLiteralKind SK) {
1098 unsigned CharByteWidth = 0;
1099 switch (SK) {
1100 case StringLiteralKind::Ordinary:
1101 case StringLiteralKind::UTF8:
1102 case StringLiteralKind::Binary:
1103 CharByteWidth = Target.getCharWidth();
1104 break;
1105 case StringLiteralKind::Wide:
1106 CharByteWidth = Target.getWCharWidth();
1107 break;
1108 case StringLiteralKind::UTF16:
1109 CharByteWidth = Target.getChar16Width();
1110 break;
1111 case StringLiteralKind::UTF32:
1112 CharByteWidth = Target.getChar32Width();
1113 break;
1114 case StringLiteralKind::Unevaluated:
1115 return sizeof(char); // Host;
1116 }
1117 assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple");
1118 CharByteWidth /= 8;
1119 assert((CharByteWidth == 1 || CharByteWidth == 2 || CharByteWidth == 4) &&
1120 "The only supported character byte widths are 1,2 and 4!");
1121 return CharByteWidth;
1122}
1123
1124StringLiteral::StringLiteral(const ASTContext &Ctx, StringRef Str,
1125 StringLiteralKind Kind, bool Pascal, QualType Ty,
1126 ArrayRef<SourceLocation> Locs)
1127 : Expr(StringLiteralClass, Ty, VK_LValue, OK_Ordinary) {
1128
1129 unsigned Length = Str.size();
1130
1131 StringLiteralBits.Kind = llvm::to_underlying(E: Kind);
1132 StringLiteralBits.NumConcatenated = Locs.size();
1133
1134 if (Kind != StringLiteralKind::Unevaluated) {
1135 assert(Ctx.getAsConstantArrayType(Ty) &&
1136 "StringLiteral must be of constant array type!");
1137 unsigned CharByteWidth = mapCharByteWidth(Target: Ctx.getTargetInfo(), SK: Kind);
1138 unsigned ByteLength = Str.size();
1139 assert((ByteLength % CharByteWidth == 0) &&
1140 "The size of the data must be a multiple of CharByteWidth!");
1141
1142 // Avoid the expensive division. The compiler should be able to figure it
1143 // out by itself. However as of clang 7, even with the appropriate
1144 // llvm_unreachable added just here, it is not able to do so.
1145 switch (CharByteWidth) {
1146 case 1:
1147 Length = ByteLength;
1148 break;
1149 case 2:
1150 Length = ByteLength / 2;
1151 break;
1152 case 4:
1153 Length = ByteLength / 4;
1154 break;
1155 default:
1156 llvm_unreachable("Unsupported character width!");
1157 }
1158
1159 StringLiteralBits.CharByteWidth = CharByteWidth;
1160 StringLiteralBits.IsPascal = Pascal;
1161 } else {
1162 assert(!Pascal && "Can't make an unevaluated Pascal string");
1163 StringLiteralBits.CharByteWidth = 1;
1164 StringLiteralBits.IsPascal = false;
1165 }
1166
1167 *getTrailingObjects<unsigned>() = Length;
1168
1169 // Initialize the trailing array of SourceLocation.
1170 // This is safe since SourceLocation is POD-like.
1171 llvm::copy(Range&: Locs, Out: getTrailingObjects<SourceLocation>());
1172
1173 // Initialize the trailing array of char holding the string data.
1174 llvm::copy(Range&: Str, Out: getTrailingObjects<char>());
1175
1176 setDependence(ExprDependence::None);
1177}
1178
1179StringLiteral::StringLiteral(EmptyShell Empty, unsigned NumConcatenated,
1180 unsigned Length, unsigned CharByteWidth)
1181 : Expr(StringLiteralClass, Empty) {
1182 StringLiteralBits.CharByteWidth = CharByteWidth;
1183 StringLiteralBits.NumConcatenated = NumConcatenated;
1184 *getTrailingObjects<unsigned>() = Length;
1185}
1186
1187StringLiteral *StringLiteral::Create(const ASTContext &Ctx, StringRef Str,
1188 StringLiteralKind Kind, bool Pascal,
1189 QualType Ty,
1190 ArrayRef<SourceLocation> Locs) {
1191 void *Mem = Ctx.Allocate(Size: totalSizeToAlloc<unsigned, SourceLocation, char>(
1192 Counts: 1, Counts: Locs.size(), Counts: Str.size()),
1193 Align: alignof(StringLiteral));
1194 return new (Mem) StringLiteral(Ctx, Str, Kind, Pascal, Ty, Locs);
1195}
1196
1197StringLiteral *StringLiteral::CreateEmpty(const ASTContext &Ctx,
1198 unsigned NumConcatenated,
1199 unsigned Length,
1200 unsigned CharByteWidth) {
1201 void *Mem = Ctx.Allocate(Size: totalSizeToAlloc<unsigned, SourceLocation, char>(
1202 Counts: 1, Counts: NumConcatenated, Counts: Length * CharByteWidth),
1203 Align: alignof(StringLiteral));
1204 return new (Mem)
1205 StringLiteral(EmptyShell(), NumConcatenated, Length, CharByteWidth);
1206}
1207
1208void StringLiteral::outputString(raw_ostream &OS) const {
1209 switch (getKind()) {
1210 case StringLiteralKind::Unevaluated:
1211 case StringLiteralKind::Ordinary:
1212 case StringLiteralKind::Binary:
1213 break; // no prefix.
1214 case StringLiteralKind::Wide:
1215 OS << 'L';
1216 break;
1217 case StringLiteralKind::UTF8:
1218 OS << "u8";
1219 break;
1220 case StringLiteralKind::UTF16:
1221 OS << 'u';
1222 break;
1223 case StringLiteralKind::UTF32:
1224 OS << 'U';
1225 break;
1226 }
1227 OS << '"';
1228 static const char Hex[] = "0123456789ABCDEF";
1229
1230 unsigned LastSlashX = getLength();
1231 for (unsigned I = 0, N = getLength(); I != N; ++I) {
1232 uint32_t Char = getCodeUnit(i: I);
1233 StringRef Escaped = escapeCStyle<EscapeChar::Double>(Ch: Char);
1234 if (Escaped.empty()) {
1235 // FIXME: Convert UTF-8 back to codepoints before rendering.
1236
1237 // Convert UTF-16 surrogate pairs back to codepoints before rendering.
1238 // Leave invalid surrogates alone; we'll use \x for those.
1239 if (getKind() == StringLiteralKind::UTF16 && I != N - 1 &&
1240 Char >= 0xd800 && Char <= 0xdbff) {
1241 uint32_t Trail = getCodeUnit(i: I + 1);
1242 if (Trail >= 0xdc00 && Trail <= 0xdfff) {
1243 Char = 0x10000 + ((Char - 0xd800) << 10) + (Trail - 0xdc00);
1244 ++I;
1245 }
1246 }
1247
1248 if (Char > 0xff) {
1249 // If this is a wide string, output characters over 0xff using \x
1250 // escapes. Otherwise, this is a UTF-16 or UTF-32 string, and Char is a
1251 // codepoint: use \x escapes for invalid codepoints.
1252 if (getKind() == StringLiteralKind::Wide ||
1253 (Char >= 0xd800 && Char <= 0xdfff) || Char >= 0x110000) {
1254 // FIXME: Is this the best way to print wchar_t?
1255 OS << "\\x";
1256 int Shift = 28;
1257 while ((Char >> Shift) == 0)
1258 Shift -= 4;
1259 for (/**/; Shift >= 0; Shift -= 4)
1260 OS << Hex[(Char >> Shift) & 15];
1261 LastSlashX = I;
1262 continue;
1263 }
1264
1265 if (Char > 0xffff)
1266 OS << "\\U00"
1267 << Hex[(Char >> 20) & 15]
1268 << Hex[(Char >> 16) & 15];
1269 else
1270 OS << "\\u";
1271 OS << Hex[(Char >> 12) & 15]
1272 << Hex[(Char >> 8) & 15]
1273 << Hex[(Char >> 4) & 15]
1274 << Hex[(Char >> 0) & 15];
1275 continue;
1276 }
1277
1278 // If we used \x... for the previous character, and this character is a
1279 // hexadecimal digit, prevent it being slurped as part of the \x.
1280 if (LastSlashX + 1 == I) {
1281 switch (Char) {
1282 case '0': case '1': case '2': case '3': case '4':
1283 case '5': case '6': case '7': case '8': case '9':
1284 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
1285 case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
1286 OS << "\"\"";
1287 }
1288 }
1289
1290 assert(Char <= 0xff &&
1291 "Characters above 0xff should already have been handled.");
1292
1293 if (isPrintable(c: Char))
1294 OS << (char)Char;
1295 else // Output anything hard as an octal escape.
1296 OS << '\\'
1297 << (char)('0' + ((Char >> 6) & 7))
1298 << (char)('0' + ((Char >> 3) & 7))
1299 << (char)('0' + ((Char >> 0) & 7));
1300 } else {
1301 // Handle some common non-printable cases to make dumps prettier.
1302 OS << Escaped;
1303 }
1304 }
1305 OS << '"';
1306}
1307
1308/// getLocationOfByte - Return a source location that points to the specified
1309/// byte of this string literal.
1310///
1311/// Strings are amazingly complex. They can be formed from multiple tokens and
1312/// can have escape sequences in them in addition to the usual trigraph and
1313/// escaped newline business. This routine handles this complexity.
1314///
1315/// The *StartToken sets the first token to be searched in this function and
1316/// the *StartTokenByteOffset is the byte offset of the first token. Before
1317/// returning, it updates the *StartToken to the TokNo of the token being found
1318/// and sets *StartTokenByteOffset to the byte offset of the token in the
1319/// string.
1320/// Using these two parameters can reduce the time complexity from O(n^2) to
1321/// O(n) if one wants to get the location of byte for all the tokens in a
1322/// string.
1323///
1324SourceLocation
1325StringLiteral::getLocationOfByte(unsigned ByteNo, const SourceManager &SM,
1326 const LangOptions &Features,
1327 const TargetInfo &Target, unsigned *StartToken,
1328 unsigned *StartTokenByteOffset) const {
1329 // No source location of bytes for binary literals since they don't come from
1330 // source.
1331 if (getKind() == StringLiteralKind::Binary)
1332 return getStrTokenLoc(TokNum: 0);
1333
1334 assert((getKind() == StringLiteralKind::Ordinary ||
1335 getKind() == StringLiteralKind::UTF8 ||
1336 getKind() == StringLiteralKind::Unevaluated) &&
1337 "Only narrow string literals are currently supported");
1338
1339 // Loop over all of the tokens in this string until we find the one that
1340 // contains the byte we're looking for.
1341 unsigned TokNo = 0;
1342 unsigned StringOffset = 0;
1343 if (StartToken)
1344 TokNo = *StartToken;
1345 if (StartTokenByteOffset) {
1346 StringOffset = *StartTokenByteOffset;
1347 ByteNo -= StringOffset;
1348 }
1349 while (true) {
1350 assert(TokNo < getNumConcatenated() && "Invalid byte number!");
1351 SourceLocation StrTokLoc = getStrTokenLoc(TokNum: TokNo);
1352
1353 // Get the spelling of the string so that we can get the data that makes up
1354 // the string literal, not the identifier for the macro it is potentially
1355 // expanded through.
1356 SourceLocation StrTokSpellingLoc = SM.getSpellingLoc(Loc: StrTokLoc);
1357
1358 // Re-lex the token to get its length and original spelling.
1359 FileIDAndOffset LocInfo = SM.getDecomposedLoc(Loc: StrTokSpellingLoc);
1360 bool Invalid = false;
1361 StringRef Buffer = SM.getBufferData(FID: LocInfo.first, Invalid: &Invalid);
1362 if (Invalid) {
1363 if (StartTokenByteOffset != nullptr)
1364 *StartTokenByteOffset = StringOffset;
1365 if (StartToken != nullptr)
1366 *StartToken = TokNo;
1367 return StrTokSpellingLoc;
1368 }
1369
1370 const char *StrData = Buffer.data()+LocInfo.second;
1371
1372 // Create a lexer starting at the beginning of this token.
1373 Lexer TheLexer(SM.getLocForStartOfFile(FID: LocInfo.first), Features,
1374 Buffer.begin(), StrData, Buffer.end());
1375 Token TheTok;
1376 TheLexer.LexFromRawLexer(Result&: TheTok);
1377
1378 // Use the StringLiteralParser to compute the length of the string in bytes.
1379 StringLiteralParser SLP(TheTok, SM, Features, Target);
1380 unsigned TokNumBytes = SLP.GetStringLength();
1381
1382 // If the byte is in this token, return the location of the byte.
1383 if (ByteNo < TokNumBytes ||
1384 (ByteNo == TokNumBytes && TokNo == getNumConcatenated() - 1)) {
1385 unsigned Offset = SLP.getOffsetOfStringByte(TheTok, ByteNo);
1386
1387 // Now that we know the offset of the token in the spelling, use the
1388 // preprocessor to get the offset in the original source.
1389 if (StartTokenByteOffset != nullptr)
1390 *StartTokenByteOffset = StringOffset;
1391 if (StartToken != nullptr)
1392 *StartToken = TokNo;
1393 return Lexer::AdvanceToTokenCharacter(TokStart: StrTokLoc, Characters: Offset, SM, LangOpts: Features);
1394 }
1395
1396 // Move to the next string token.
1397 StringOffset += TokNumBytes;
1398 ++TokNo;
1399 ByteNo -= TokNumBytes;
1400 }
1401}
1402
1403/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1404/// corresponds to, e.g. "sizeof" or "[pre]++".
1405StringRef UnaryOperator::getOpcodeStr(Opcode Op) {
1406 switch (Op) {
1407#define UNARY_OPERATION(Name, Spelling) case UO_##Name: return Spelling;
1408#include "clang/AST/OperationKinds.def"
1409 }
1410 llvm_unreachable("Unknown unary operator");
1411}
1412
1413UnaryOperatorKind
1414UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) {
1415 switch (OO) {
1416 default: llvm_unreachable("No unary operator for overloaded function");
1417 case OO_PlusPlus: return Postfix ? UO_PostInc : UO_PreInc;
1418 case OO_MinusMinus: return Postfix ? UO_PostDec : UO_PreDec;
1419 case OO_Amp: return UO_AddrOf;
1420 case OO_Star: return UO_Deref;
1421 case OO_Plus: return UO_Plus;
1422 case OO_Minus: return UO_Minus;
1423 case OO_Tilde: return UO_Not;
1424 case OO_Exclaim: return UO_LNot;
1425 case OO_Coawait: return UO_Coawait;
1426 }
1427}
1428
1429OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) {
1430 switch (Opc) {
1431 case UO_PostInc: case UO_PreInc: return OO_PlusPlus;
1432 case UO_PostDec: case UO_PreDec: return OO_MinusMinus;
1433 case UO_AddrOf: return OO_Amp;
1434 case UO_Deref: return OO_Star;
1435 case UO_Plus: return OO_Plus;
1436 case UO_Minus: return OO_Minus;
1437 case UO_Not: return OO_Tilde;
1438 case UO_LNot: return OO_Exclaim;
1439 case UO_Coawait: return OO_Coawait;
1440 default: return OO_None;
1441 }
1442}
1443
1444
1445//===----------------------------------------------------------------------===//
1446// Postfix Operators.
1447//===----------------------------------------------------------------------===//
1448#ifndef NDEBUG
1449static unsigned SizeOfCallExprInstance(Expr::StmtClass SC) {
1450 switch (SC) {
1451 case Expr::CallExprClass:
1452 return sizeof(CallExpr);
1453 case Expr::CXXOperatorCallExprClass:
1454 return sizeof(CXXOperatorCallExpr);
1455 case Expr::CXXMemberCallExprClass:
1456 return sizeof(CXXMemberCallExpr);
1457 case Expr::UserDefinedLiteralClass:
1458 return sizeof(UserDefinedLiteral);
1459 case Expr::CUDAKernelCallExprClass:
1460 return sizeof(CUDAKernelCallExpr);
1461 default:
1462 llvm_unreachable("unexpected class deriving from CallExpr!");
1463 }
1464}
1465#endif
1466
1467// changing the size of SourceLocation, CallExpr, and
1468// subclasses requires careful considerations
1469static_assert(sizeof(SourceLocation) == 4 && sizeof(CXXOperatorCallExpr) <= 32,
1470 "we assume CXXOperatorCallExpr is at most 32 bytes");
1471
1472CallExpr::CallExpr(StmtClass SC, Expr *Fn, ArrayRef<Expr *> PreArgs,
1473 ArrayRef<Expr *> Args, QualType Ty, ExprValueKind VK,
1474 SourceLocation RParenLoc, FPOptionsOverride FPFeatures,
1475 unsigned MinNumArgs, ADLCallKind UsesADL)
1476 : Expr(SC, Ty, VK, OK_Ordinary), RParenLoc(RParenLoc) {
1477 NumArgs = std::max<unsigned>(a: Args.size(), b: MinNumArgs);
1478 unsigned NumPreArgs = PreArgs.size();
1479 CallExprBits.NumPreArgs = NumPreArgs;
1480 assert((NumPreArgs == getNumPreArgs()) && "NumPreArgs overflow!");
1481 assert(SizeOfCallExprInstance(SC) <= OffsetToTrailingObjects &&
1482 "This CallExpr subclass is too big or unsupported");
1483
1484 CallExprBits.UsesADL = static_cast<bool>(UsesADL);
1485
1486 setCallee(Fn);
1487 for (unsigned I = 0; I != NumPreArgs; ++I)
1488 setPreArg(I, PreArg: PreArgs[I]);
1489 for (unsigned I = 0; I != Args.size(); ++I)
1490 setArg(Arg: I, ArgExpr: Args[I]);
1491 for (unsigned I = Args.size(); I != NumArgs; ++I)
1492 setArg(Arg: I, ArgExpr: nullptr);
1493
1494 this->computeDependence();
1495
1496 CallExprBits.HasFPFeatures = FPFeatures.requiresTrailingStorage();
1497 CallExprBits.IsCoroElideSafe = false;
1498 CallExprBits.ExplicitObjectMemFunUsingMemberSyntax = false;
1499 CallExprBits.HasTrailingSourceLoc = false;
1500
1501 if (hasStoredFPFeatures())
1502 setStoredFPFeatures(FPFeatures);
1503}
1504
1505CallExpr::CallExpr(StmtClass SC, unsigned NumPreArgs, unsigned NumArgs,
1506 bool HasFPFeatures, EmptyShell Empty)
1507 : Expr(SC, Empty), NumArgs(NumArgs) {
1508 CallExprBits.NumPreArgs = NumPreArgs;
1509 assert((NumPreArgs == getNumPreArgs()) && "NumPreArgs overflow!");
1510 CallExprBits.HasFPFeatures = HasFPFeatures;
1511 CallExprBits.IsCoroElideSafe = false;
1512 CallExprBits.ExplicitObjectMemFunUsingMemberSyntax = false;
1513 CallExprBits.HasTrailingSourceLoc = false;
1514}
1515
1516CallExpr *CallExpr::Create(const ASTContext &Ctx, Expr *Fn,
1517 ArrayRef<Expr *> Args, QualType Ty, ExprValueKind VK,
1518 SourceLocation RParenLoc,
1519 FPOptionsOverride FPFeatures, unsigned MinNumArgs,
1520 ADLCallKind UsesADL) {
1521 unsigned NumArgs = std::max<unsigned>(a: Args.size(), b: MinNumArgs);
1522 unsigned SizeOfTrailingObjects = CallExpr::sizeOfTrailingObjects(
1523 /*NumPreArgs=*/0, NumArgs, HasFPFeatures: FPFeatures.requiresTrailingStorage());
1524 void *Mem = Ctx.Allocate(
1525 Size: sizeToAllocateForCallExprSubclass<CallExpr>(SizeOfTrailingObjects),
1526 Align: alignof(CallExpr));
1527 CallExpr *E =
1528 new (Mem) CallExpr(CallExprClass, Fn, /*PreArgs=*/{}, Args, Ty, VK,
1529 RParenLoc, FPFeatures, MinNumArgs, UsesADL);
1530 E->updateTrailingSourceLoc();
1531 return E;
1532}
1533
1534CallExpr *CallExpr::CreateEmpty(const ASTContext &Ctx, unsigned NumArgs,
1535 bool HasFPFeatures, EmptyShell Empty) {
1536 unsigned SizeOfTrailingObjects =
1537 CallExpr::sizeOfTrailingObjects(/*NumPreArgs=*/0, NumArgs, HasFPFeatures);
1538 void *Mem = Ctx.Allocate(
1539 Size: sizeToAllocateForCallExprSubclass<CallExpr>(SizeOfTrailingObjects),
1540 Align: alignof(CallExpr));
1541 return new (Mem)
1542 CallExpr(CallExprClass, /*NumPreArgs=*/0, NumArgs, HasFPFeatures, Empty);
1543}
1544
1545Decl *Expr::getReferencedDeclOfCallee() {
1546
1547 // Optimize for the common case first
1548 // (simple function or member function call)
1549 // then try more exotic possibilities.
1550 Expr *CEE = IgnoreImpCasts();
1551
1552 if (auto *DRE = dyn_cast<DeclRefExpr>(Val: CEE))
1553 return DRE->getDecl();
1554
1555 if (auto *ME = dyn_cast<MemberExpr>(Val: CEE))
1556 return ME->getMemberDecl();
1557
1558 CEE = CEE->IgnoreParens();
1559
1560 while (auto *NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(Val: CEE))
1561 CEE = NTTP->getReplacement()->IgnoreParenImpCasts();
1562
1563 // If we're calling a dereference, look at the pointer instead.
1564 while (true) {
1565 if (auto *BO = dyn_cast<BinaryOperator>(Val: CEE)) {
1566 if (BO->isPtrMemOp()) {
1567 CEE = BO->getRHS()->IgnoreParenImpCasts();
1568 continue;
1569 }
1570 } else if (auto *UO = dyn_cast<UnaryOperator>(Val: CEE)) {
1571 if (UO->getOpcode() == UO_Deref || UO->getOpcode() == UO_AddrOf ||
1572 UO->getOpcode() == UO_Plus) {
1573 CEE = UO->getSubExpr()->IgnoreParenImpCasts();
1574 continue;
1575 }
1576 }
1577 break;
1578 }
1579
1580 if (auto *DRE = dyn_cast<DeclRefExpr>(Val: CEE))
1581 return DRE->getDecl();
1582 if (auto *ME = dyn_cast<MemberExpr>(Val: CEE))
1583 return ME->getMemberDecl();
1584 if (auto *BE = dyn_cast<BlockExpr>(Val: CEE))
1585 return BE->getBlockDecl();
1586
1587 return nullptr;
1588}
1589
1590/// If this is a call to a builtin, return the builtin ID. If not, return 0.
1591unsigned CallExpr::getBuiltinCallee() const {
1592 const auto *FDecl = getDirectCallee();
1593 return FDecl ? FDecl->getBuiltinID() : 0;
1594}
1595
1596bool CallExpr::isUnevaluatedBuiltinCall(const ASTContext &Ctx) const {
1597 if (unsigned BI = getBuiltinCallee())
1598 return Ctx.BuiltinInfo.isUnevaluated(ID: BI);
1599 return false;
1600}
1601
1602QualType CallExpr::getCallReturnType(const ASTContext &Ctx) const {
1603 const Expr *Callee = getCallee();
1604 QualType CalleeType = Callee->getType();
1605 if (const auto *FnTypePtr = CalleeType->getAs<PointerType>()) {
1606 CalleeType = FnTypePtr->getPointeeType();
1607 } else if (const auto *BPT = CalleeType->getAs<BlockPointerType>()) {
1608 CalleeType = BPT->getPointeeType();
1609 } else if (CalleeType->isSpecificPlaceholderType(K: BuiltinType::BoundMember)) {
1610 if (isa<CXXPseudoDestructorExpr>(Val: Callee->IgnoreParens()))
1611 return Ctx.VoidTy;
1612
1613 if (isa<UnresolvedMemberExpr>(Val: Callee->IgnoreParens()))
1614 return Ctx.DependentTy;
1615
1616 // This should never be overloaded and so should never return null.
1617 CalleeType = Expr::findBoundMemberType(expr: Callee);
1618 assert(!CalleeType.isNull());
1619 } else if (CalleeType->isRecordType()) {
1620 // If the Callee is a record type, then it is a not-yet-resolved
1621 // dependent call to the call operator of that type.
1622 return Ctx.DependentTy;
1623 } else if (CalleeType->isDependentType() ||
1624 CalleeType->isSpecificPlaceholderType(K: BuiltinType::Overload)) {
1625 return Ctx.DependentTy;
1626 }
1627
1628 const FunctionType *FnType = CalleeType->castAs<FunctionType>();
1629 return FnType->getReturnType();
1630}
1631
1632std::pair<const NamedDecl *, const WarnUnusedResultAttr *>
1633Expr::getUnusedResultAttrImpl(const Decl *Callee, QualType ReturnType) {
1634 // If the callee is marked nodiscard, return that attribute
1635 if (Callee != nullptr)
1636 if (const auto *A = Callee->getAttr<WarnUnusedResultAttr>())
1637 return {nullptr, A};
1638
1639 // If the return type is a struct, union, or enum that is marked nodiscard,
1640 // then return the return type attribute.
1641 if (const TagDecl *TD = ReturnType->getAsTagDecl())
1642 if (const auto *A = TD->getAttr<WarnUnusedResultAttr>())
1643 return {TD, A};
1644
1645 for (const auto *TD = ReturnType->getAs<TypedefType>(); TD;
1646 TD = TD->desugar()->getAs<TypedefType>())
1647 if (const auto *A = TD->getDecl()->getAttr<WarnUnusedResultAttr>())
1648 return {TD->getDecl(), A};
1649 return {nullptr, nullptr};
1650}
1651
1652OffsetOfExpr *OffsetOfExpr::Create(const ASTContext &C, QualType type,
1653 SourceLocation OperatorLoc,
1654 TypeSourceInfo *tsi,
1655 ArrayRef<OffsetOfNode> comps,
1656 ArrayRef<Expr*> exprs,
1657 SourceLocation RParenLoc) {
1658 void *Mem = C.Allocate(
1659 Size: totalSizeToAlloc<OffsetOfNode, Expr *>(Counts: comps.size(), Counts: exprs.size()));
1660
1661 return new (Mem) OffsetOfExpr(C, type, OperatorLoc, tsi, comps, exprs,
1662 RParenLoc);
1663}
1664
1665OffsetOfExpr *OffsetOfExpr::CreateEmpty(const ASTContext &C,
1666 unsigned numComps, unsigned numExprs) {
1667 void *Mem =
1668 C.Allocate(Size: totalSizeToAlloc<OffsetOfNode, Expr *>(Counts: numComps, Counts: numExprs));
1669 return new (Mem) OffsetOfExpr(numComps, numExprs);
1670}
1671
1672OffsetOfExpr::OffsetOfExpr(const ASTContext &C, QualType type,
1673 SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1674 ArrayRef<OffsetOfNode> comps, ArrayRef<Expr *> exprs,
1675 SourceLocation RParenLoc)
1676 : Expr(OffsetOfExprClass, type, VK_PRValue, OK_Ordinary),
1677 OperatorLoc(OperatorLoc), RParenLoc(RParenLoc), TSInfo(tsi),
1678 NumComps(comps.size()), NumExprs(exprs.size()) {
1679 for (unsigned i = 0; i != comps.size(); ++i)
1680 setComponent(Idx: i, ON: comps[i]);
1681 for (unsigned i = 0; i != exprs.size(); ++i)
1682 setIndexExpr(Idx: i, E: exprs[i]);
1683
1684 setDependence(computeDependence(E: this));
1685}
1686
1687IdentifierInfo *OffsetOfNode::getFieldName() const {
1688 assert(getKind() == Field || getKind() == Identifier);
1689 if (getKind() == Field)
1690 return getField()->getIdentifier();
1691
1692 return reinterpret_cast<IdentifierInfo *> (Data & ~(uintptr_t)Mask);
1693}
1694
1695UnaryExprOrTypeTraitExpr::UnaryExprOrTypeTraitExpr(
1696 UnaryExprOrTypeTrait ExprKind, Expr *E, QualType resultType,
1697 SourceLocation op, SourceLocation rp)
1698 : Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_PRValue, OK_Ordinary),
1699 OpLoc(op), RParenLoc(rp) {
1700 assert(ExprKind <= UETT_Last && "invalid enum value!");
1701 UnaryExprOrTypeTraitExprBits.Kind = ExprKind;
1702 assert(static_cast<unsigned>(ExprKind) == UnaryExprOrTypeTraitExprBits.Kind &&
1703 "UnaryExprOrTypeTraitExprBits.Kind overflow!");
1704 UnaryExprOrTypeTraitExprBits.IsType = false;
1705 Argument.Ex = E;
1706 setDependence(computeDependence(E: this));
1707}
1708
1709MemberExpr::MemberExpr(Expr *Base, bool IsArrow, SourceLocation OperatorLoc,
1710 NestedNameSpecifierLoc QualifierLoc,
1711 SourceLocation TemplateKWLoc, ValueDecl *MemberDecl,
1712 DeclAccessPair FoundDecl,
1713 const DeclarationNameInfo &NameInfo,
1714 const TemplateArgumentListInfo *TemplateArgs, QualType T,
1715 ExprValueKind VK, ExprObjectKind OK,
1716 NonOdrUseReason NOUR)
1717 : Expr(MemberExprClass, T, VK, OK), Base(Base), MemberDecl(MemberDecl),
1718 MemberDNLoc(NameInfo.getInfo()), MemberLoc(NameInfo.getLoc()) {
1719 assert(!NameInfo.getName() ||
1720 MemberDecl->getDeclName() == NameInfo.getName());
1721 MemberExprBits.IsArrow = IsArrow;
1722 MemberExprBits.HasQualifier = QualifierLoc.hasQualifier();
1723 MemberExprBits.HasFoundDecl =
1724 FoundDecl.getDecl() != MemberDecl ||
1725 FoundDecl.getAccess() != MemberDecl->getAccess();
1726 MemberExprBits.HasTemplateKWAndArgsInfo =
1727 TemplateArgs || TemplateKWLoc.isValid();
1728 MemberExprBits.HadMultipleCandidates = false;
1729 MemberExprBits.NonOdrUseReason = NOUR;
1730 MemberExprBits.OperatorLoc = OperatorLoc;
1731
1732 if (hasQualifier())
1733 new (getTrailingObjects<NestedNameSpecifierLoc>())
1734 NestedNameSpecifierLoc(QualifierLoc);
1735 if (hasFoundDecl())
1736 *getTrailingObjects<DeclAccessPair>() = FoundDecl;
1737 if (TemplateArgs) {
1738 auto Deps = TemplateArgumentDependence::None;
1739 getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
1740 TemplateKWLoc, List: *TemplateArgs, OutArgArray: getTrailingObjects<TemplateArgumentLoc>(),
1741 Deps);
1742 } else if (TemplateKWLoc.isValid()) {
1743 getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
1744 TemplateKWLoc);
1745 }
1746 setDependence(computeDependence(E: this));
1747}
1748
1749MemberExpr *MemberExpr::Create(
1750 const ASTContext &C, Expr *Base, bool IsArrow, SourceLocation OperatorLoc,
1751 NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc,
1752 ValueDecl *MemberDecl, DeclAccessPair FoundDecl,
1753 DeclarationNameInfo NameInfo, const TemplateArgumentListInfo *TemplateArgs,
1754 QualType T, ExprValueKind VK, ExprObjectKind OK, NonOdrUseReason NOUR) {
1755 bool HasQualifier = QualifierLoc.hasQualifier();
1756 bool HasFoundDecl = FoundDecl.getDecl() != MemberDecl ||
1757 FoundDecl.getAccess() != MemberDecl->getAccess();
1758 bool HasTemplateKWAndArgsInfo = TemplateArgs || TemplateKWLoc.isValid();
1759 std::size_t Size =
1760 totalSizeToAlloc<NestedNameSpecifierLoc, DeclAccessPair,
1761 ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>(
1762 Counts: HasQualifier, Counts: HasFoundDecl, Counts: HasTemplateKWAndArgsInfo,
1763 Counts: TemplateArgs ? TemplateArgs->size() : 0);
1764
1765 void *Mem = C.Allocate(Size, Align: alignof(MemberExpr));
1766 return new (Mem) MemberExpr(Base, IsArrow, OperatorLoc, QualifierLoc,
1767 TemplateKWLoc, MemberDecl, FoundDecl, NameInfo,
1768 TemplateArgs, T, VK, OK, NOUR);
1769}
1770
1771MemberExpr *MemberExpr::CreateEmpty(const ASTContext &Context,
1772 bool HasQualifier, bool HasFoundDecl,
1773 bool HasTemplateKWAndArgsInfo,
1774 unsigned NumTemplateArgs) {
1775 assert((!NumTemplateArgs || HasTemplateKWAndArgsInfo) &&
1776 "template args but no template arg info?");
1777 std::size_t Size =
1778 totalSizeToAlloc<NestedNameSpecifierLoc, DeclAccessPair,
1779 ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>(
1780 Counts: HasQualifier, Counts: HasFoundDecl, Counts: HasTemplateKWAndArgsInfo,
1781 Counts: NumTemplateArgs);
1782 void *Mem = Context.Allocate(Size, Align: alignof(MemberExpr));
1783 return new (Mem) MemberExpr(EmptyShell());
1784}
1785
1786void MemberExpr::setMemberDecl(ValueDecl *NewD) {
1787 MemberDecl = NewD;
1788 if (getType()->isUndeducedType())
1789 setType(NewD->getType());
1790 setDependence(computeDependence(E: this));
1791}
1792
1793SourceLocation MemberExpr::getBeginLoc() const {
1794 if (isImplicitAccess()) {
1795 if (hasQualifier())
1796 return getQualifierLoc().getBeginLoc();
1797 return MemberLoc;
1798 }
1799
1800 // FIXME: We don't want this to happen. Rather, we should be able to
1801 // detect all kinds of implicit accesses more cleanly.
1802 SourceLocation BaseStartLoc = getBase()->getBeginLoc();
1803 if (BaseStartLoc.isValid())
1804 return BaseStartLoc;
1805 return MemberLoc;
1806}
1807SourceLocation MemberExpr::getEndLoc() const {
1808 SourceLocation EndLoc = getMemberNameInfo().getEndLoc();
1809 if (hasExplicitTemplateArgs())
1810 EndLoc = getRAngleLoc();
1811 else if (EndLoc.isInvalid())
1812 EndLoc = getBase()->getEndLoc();
1813 return EndLoc;
1814}
1815
1816bool CastExpr::CastConsistency() const {
1817 switch (getCastKind()) {
1818 case CK_DerivedToBase:
1819 case CK_UncheckedDerivedToBase:
1820 case CK_DerivedToBaseMemberPointer:
1821 case CK_BaseToDerived:
1822 case CK_BaseToDerivedMemberPointer:
1823 assert(!path_empty() && "Cast kind should have a base path!");
1824 break;
1825
1826 case CK_CPointerToObjCPointerCast:
1827 assert(getType()->isObjCObjectPointerType());
1828 assert(getSubExpr()->getType()->isPointerType());
1829 goto CheckNoBasePath;
1830
1831 case CK_BlockPointerToObjCPointerCast:
1832 assert(getType()->isObjCObjectPointerType());
1833 assert(getSubExpr()->getType()->isBlockPointerType());
1834 goto CheckNoBasePath;
1835
1836 case CK_ReinterpretMemberPointer:
1837 assert(getType()->isMemberPointerType());
1838 assert(getSubExpr()->getType()->isMemberPointerType());
1839 goto CheckNoBasePath;
1840
1841 case CK_BitCast:
1842 // Arbitrary casts to C pointer types count as bitcasts.
1843 // Otherwise, we should only have block and ObjC pointer casts
1844 // here if they stay within the type kind.
1845 if (!getType()->isPointerType()) {
1846 assert(getType()->isObjCObjectPointerType() ==
1847 getSubExpr()->getType()->isObjCObjectPointerType());
1848 assert(getType()->isBlockPointerType() ==
1849 getSubExpr()->getType()->isBlockPointerType());
1850 }
1851 goto CheckNoBasePath;
1852
1853 case CK_AnyPointerToBlockPointerCast:
1854 assert(getType()->isBlockPointerType());
1855 assert(getSubExpr()->getType()->isAnyPointerType() &&
1856 !getSubExpr()->getType()->isBlockPointerType());
1857 goto CheckNoBasePath;
1858
1859 case CK_CopyAndAutoreleaseBlockObject:
1860 assert(getType()->isBlockPointerType());
1861 assert(getSubExpr()->getType()->isBlockPointerType());
1862 goto CheckNoBasePath;
1863
1864 case CK_FunctionToPointerDecay:
1865 assert(getType()->isPointerType());
1866 assert(getSubExpr()->getType()->isFunctionType());
1867 goto CheckNoBasePath;
1868
1869 case CK_AddressSpaceConversion: {
1870 auto Ty = getType();
1871 auto SETy = getSubExpr()->getType();
1872 assert(getValueKindForType(Ty) == Expr::getValueKindForType(SETy));
1873 if (isPRValue() && !Ty->isDependentType() && !SETy->isDependentType()) {
1874 Ty = Ty->getPointeeType();
1875 SETy = SETy->getPointeeType();
1876 }
1877 assert((Ty->isDependentType() || SETy->isDependentType()) ||
1878 (!Ty.isNull() && !SETy.isNull() &&
1879 Ty.getAddressSpace() != SETy.getAddressSpace()));
1880 goto CheckNoBasePath;
1881 }
1882 // These should not have an inheritance path.
1883 case CK_Dynamic:
1884 case CK_ToUnion:
1885 case CK_ArrayToPointerDecay:
1886 case CK_NullToMemberPointer:
1887 case CK_NullToPointer:
1888 case CK_ConstructorConversion:
1889 case CK_IntegralToPointer:
1890 case CK_PointerToIntegral:
1891 case CK_ToVoid:
1892 case CK_VectorSplat:
1893 case CK_IntegralCast:
1894 case CK_BooleanToSignedIntegral:
1895 case CK_IntegralToFloating:
1896 case CK_FloatingToIntegral:
1897 case CK_FloatingCast:
1898 case CK_ObjCObjectLValueCast:
1899 case CK_FloatingRealToComplex:
1900 case CK_FloatingComplexToReal:
1901 case CK_FloatingComplexCast:
1902 case CK_FloatingComplexToIntegralComplex:
1903 case CK_IntegralRealToComplex:
1904 case CK_IntegralComplexToReal:
1905 case CK_IntegralComplexCast:
1906 case CK_IntegralComplexToFloatingComplex:
1907 case CK_ARCProduceObject:
1908 case CK_ARCConsumeObject:
1909 case CK_ARCReclaimReturnedObject:
1910 case CK_ARCExtendBlockObject:
1911 case CK_ZeroToOCLOpaqueType:
1912 case CK_IntToOCLSampler:
1913 case CK_FloatingToFixedPoint:
1914 case CK_FixedPointToFloating:
1915 case CK_FixedPointCast:
1916 case CK_FixedPointToIntegral:
1917 case CK_IntegralToFixedPoint:
1918 case CK_MatrixCast:
1919 assert(!getType()->isBooleanType() && "unheralded conversion to bool");
1920 goto CheckNoBasePath;
1921
1922 case CK_Dependent:
1923 case CK_LValueToRValue:
1924 case CK_NoOp:
1925 case CK_AtomicToNonAtomic:
1926 case CK_NonAtomicToAtomic:
1927 case CK_PointerToBoolean:
1928 case CK_IntegralToBoolean:
1929 case CK_FloatingToBoolean:
1930 case CK_MemberPointerToBoolean:
1931 case CK_FloatingComplexToBoolean:
1932 case CK_IntegralComplexToBoolean:
1933 case CK_LValueBitCast: // -> bool&
1934 case CK_LValueToRValueBitCast:
1935 case CK_UserDefinedConversion: // operator bool()
1936 case CK_BuiltinFnToFnPtr:
1937 case CK_FixedPointToBoolean:
1938 case CK_HLSLArrayRValue:
1939 case CK_HLSLVectorTruncation:
1940 case CK_HLSLMatrixTruncation:
1941 case CK_HLSLElementwiseCast:
1942 case CK_HLSLAggregateSplatCast:
1943 CheckNoBasePath:
1944 assert(path_empty() && "Cast kind should not have a base path!");
1945 break;
1946 }
1947 return true;
1948}
1949
1950const char *CastExpr::getCastKindName(CastKind CK) {
1951 switch (CK) {
1952#define CAST_OPERATION(Name) case CK_##Name: return #Name;
1953#include "clang/AST/OperationKinds.def"
1954 }
1955 llvm_unreachable("Unhandled cast kind!");
1956}
1957
1958namespace {
1959// Skip over implicit nodes produced as part of semantic analysis.
1960// Designed for use with IgnoreExprNodes.
1961static Expr *ignoreImplicitSemaNodes(Expr *E) {
1962 if (auto *Materialize = dyn_cast<MaterializeTemporaryExpr>(Val: E))
1963 return Materialize->getSubExpr();
1964
1965 if (auto *Binder = dyn_cast<CXXBindTemporaryExpr>(Val: E))
1966 return Binder->getSubExpr();
1967
1968 if (auto *Full = dyn_cast<FullExpr>(Val: E))
1969 return Full->getSubExpr();
1970
1971 if (auto *CPLIE = dyn_cast<CXXParenListInitExpr>(Val: E);
1972 CPLIE && CPLIE->getInitExprs().size() == 1)
1973 return CPLIE->getInitExprs()[0];
1974
1975 return E;
1976}
1977} // namespace
1978
1979Expr *CastExpr::getSubExprAsWritten() {
1980 const Expr *SubExpr = nullptr;
1981
1982 for (const CastExpr *E = this; E; E = dyn_cast<ImplicitCastExpr>(Val: SubExpr)) {
1983 SubExpr = IgnoreExprNodes(E: E->getSubExpr(), Fns&: ignoreImplicitSemaNodes);
1984
1985 // Conversions by constructor and conversion functions have a
1986 // subexpression describing the call; strip it off.
1987 if (E->getCastKind() == CK_ConstructorConversion) {
1988 SubExpr = IgnoreExprNodes(E: cast<CXXConstructExpr>(Val: SubExpr)->getArg(Arg: 0),
1989 Fns&: ignoreImplicitSemaNodes);
1990 } else if (E->getCastKind() == CK_UserDefinedConversion) {
1991 assert((isa<CallExpr, BlockExpr>(SubExpr)) &&
1992 "Unexpected SubExpr for CK_UserDefinedConversion.");
1993 if (auto *MCE = dyn_cast<CXXMemberCallExpr>(Val: SubExpr))
1994 SubExpr = MCE->getImplicitObjectArgument();
1995 }
1996 }
1997
1998 return const_cast<Expr *>(SubExpr);
1999}
2000
2001NamedDecl *CastExpr::getConversionFunction() const {
2002 const Expr *SubExpr = nullptr;
2003
2004 for (const CastExpr *E = this; E; E = dyn_cast<ImplicitCastExpr>(Val: SubExpr)) {
2005 SubExpr = IgnoreExprNodes(E: E->getSubExpr(), Fns&: ignoreImplicitSemaNodes);
2006
2007 if (E->getCastKind() == CK_ConstructorConversion)
2008 return cast<CXXConstructExpr>(Val: SubExpr)->getConstructor();
2009
2010 if (E->getCastKind() == CK_UserDefinedConversion) {
2011 if (auto *MCE = dyn_cast<CXXMemberCallExpr>(Val: SubExpr))
2012 return MCE->getMethodDecl();
2013 }
2014 }
2015
2016 return nullptr;
2017}
2018
2019CXXBaseSpecifier **CastExpr::path_buffer() {
2020 switch (getStmtClass()) {
2021#define ABSTRACT_STMT(x)
2022#define CASTEXPR(Type, Base) \
2023 case Stmt::Type##Class: \
2024 return static_cast<Type *>(this) \
2025 ->getTrailingObjectsNonStrict<CXXBaseSpecifier *>();
2026#define STMT(Type, Base)
2027#include "clang/AST/StmtNodes.inc"
2028 default:
2029 llvm_unreachable("non-cast expressions not possible here");
2030 }
2031}
2032
2033const FieldDecl *CastExpr::getTargetFieldForToUnionCast(QualType unionType,
2034 QualType opType) {
2035 return getTargetFieldForToUnionCast(RD: unionType->castAsRecordDecl(), opType);
2036}
2037
2038const FieldDecl *CastExpr::getTargetFieldForToUnionCast(const RecordDecl *RD,
2039 QualType OpType) {
2040 auto &Ctx = RD->getASTContext();
2041 RecordDecl::field_iterator Field, FieldEnd;
2042 for (Field = RD->field_begin(), FieldEnd = RD->field_end();
2043 Field != FieldEnd; ++Field) {
2044 if (Ctx.hasSameUnqualifiedType(T1: Field->getType(), T2: OpType) &&
2045 !Field->isUnnamedBitField()) {
2046 return *Field;
2047 }
2048 }
2049 return nullptr;
2050}
2051
2052FPOptionsOverride *CastExpr::getTrailingFPFeatures() {
2053 assert(hasStoredFPFeatures());
2054 switch (getStmtClass()) {
2055 case ImplicitCastExprClass:
2056 return static_cast<ImplicitCastExpr *>(this)
2057 ->getTrailingObjects<FPOptionsOverride>();
2058 case CStyleCastExprClass:
2059 return static_cast<CStyleCastExpr *>(this)
2060 ->getTrailingObjects<FPOptionsOverride>();
2061 case CXXFunctionalCastExprClass:
2062 return static_cast<CXXFunctionalCastExpr *>(this)
2063 ->getTrailingObjects<FPOptionsOverride>();
2064 case CXXStaticCastExprClass:
2065 return static_cast<CXXStaticCastExpr *>(this)
2066 ->getTrailingObjects<FPOptionsOverride>();
2067 default:
2068 llvm_unreachable("Cast does not have FPFeatures");
2069 }
2070}
2071
2072ImplicitCastExpr *ImplicitCastExpr::Create(const ASTContext &C, QualType T,
2073 CastKind Kind, Expr *Operand,
2074 const CXXCastPath *BasePath,
2075 ExprValueKind VK,
2076 FPOptionsOverride FPO) {
2077 unsigned PathSize = (BasePath ? BasePath->size() : 0);
2078 void *Buffer =
2079 C.Allocate(Size: totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>(
2080 Counts: PathSize, Counts: FPO.requiresTrailingStorage()));
2081 // Per C++ [conv.lval]p3, lvalue-to-rvalue conversions on class and
2082 // std::nullptr_t have special semantics not captured by CK_LValueToRValue.
2083 assert((Kind != CK_LValueToRValue ||
2084 !(T->isNullPtrType() || T->getAsCXXRecordDecl())) &&
2085 "invalid type for lvalue-to-rvalue conversion");
2086 ImplicitCastExpr *E =
2087 new (Buffer) ImplicitCastExpr(T, Kind, Operand, PathSize, FPO, VK);
2088 if (PathSize)
2089 llvm::uninitialized_copy(Src: *BasePath,
2090 Dst: E->getTrailingObjects<CXXBaseSpecifier *>());
2091 return E;
2092}
2093
2094ImplicitCastExpr *ImplicitCastExpr::CreateEmpty(const ASTContext &C,
2095 unsigned PathSize,
2096 bool HasFPFeatures) {
2097 void *Buffer =
2098 C.Allocate(Size: totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>(
2099 Counts: PathSize, Counts: HasFPFeatures));
2100 return new (Buffer) ImplicitCastExpr(EmptyShell(), PathSize, HasFPFeatures);
2101}
2102
2103CStyleCastExpr *CStyleCastExpr::Create(const ASTContext &C, QualType T,
2104 ExprValueKind VK, CastKind K, Expr *Op,
2105 const CXXCastPath *BasePath,
2106 FPOptionsOverride FPO,
2107 TypeSourceInfo *WrittenTy,
2108 SourceLocation L, SourceLocation R) {
2109 unsigned PathSize = (BasePath ? BasePath->size() : 0);
2110 void *Buffer =
2111 C.Allocate(Size: totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>(
2112 Counts: PathSize, Counts: FPO.requiresTrailingStorage()));
2113 CStyleCastExpr *E =
2114 new (Buffer) CStyleCastExpr(T, VK, K, Op, PathSize, FPO, WrittenTy, L, R);
2115 if (PathSize)
2116 llvm::uninitialized_copy(Src: *BasePath,
2117 Dst: E->getTrailingObjects<CXXBaseSpecifier *>());
2118 return E;
2119}
2120
2121CStyleCastExpr *CStyleCastExpr::CreateEmpty(const ASTContext &C,
2122 unsigned PathSize,
2123 bool HasFPFeatures) {
2124 void *Buffer =
2125 C.Allocate(Size: totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>(
2126 Counts: PathSize, Counts: HasFPFeatures));
2127 return new (Buffer) CStyleCastExpr(EmptyShell(), PathSize, HasFPFeatures);
2128}
2129
2130/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
2131/// corresponds to, e.g. "<<=".
2132StringRef BinaryOperator::getOpcodeStr(Opcode Op) {
2133 switch (Op) {
2134#define BINARY_OPERATION(Name, Spelling) case BO_##Name: return Spelling;
2135#include "clang/AST/OperationKinds.def"
2136 }
2137 llvm_unreachable("Invalid OpCode!");
2138}
2139
2140BinaryOperatorKind
2141BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) {
2142 switch (OO) {
2143 default: llvm_unreachable("Not an overloadable binary operator");
2144 case OO_Plus: return BO_Add;
2145 case OO_Minus: return BO_Sub;
2146 case OO_Star: return BO_Mul;
2147 case OO_Slash: return BO_Div;
2148 case OO_Percent: return BO_Rem;
2149 case OO_Caret: return BO_Xor;
2150 case OO_Amp: return BO_And;
2151 case OO_Pipe: return BO_Or;
2152 case OO_Equal: return BO_Assign;
2153 case OO_Spaceship: return BO_Cmp;
2154 case OO_Less: return BO_LT;
2155 case OO_Greater: return BO_GT;
2156 case OO_PlusEqual: return BO_AddAssign;
2157 case OO_MinusEqual: return BO_SubAssign;
2158 case OO_StarEqual: return BO_MulAssign;
2159 case OO_SlashEqual: return BO_DivAssign;
2160 case OO_PercentEqual: return BO_RemAssign;
2161 case OO_CaretEqual: return BO_XorAssign;
2162 case OO_AmpEqual: return BO_AndAssign;
2163 case OO_PipeEqual: return BO_OrAssign;
2164 case OO_LessLess: return BO_Shl;
2165 case OO_GreaterGreater: return BO_Shr;
2166 case OO_LessLessEqual: return BO_ShlAssign;
2167 case OO_GreaterGreaterEqual: return BO_ShrAssign;
2168 case OO_EqualEqual: return BO_EQ;
2169 case OO_ExclaimEqual: return BO_NE;
2170 case OO_LessEqual: return BO_LE;
2171 case OO_GreaterEqual: return BO_GE;
2172 case OO_AmpAmp: return BO_LAnd;
2173 case OO_PipePipe: return BO_LOr;
2174 case OO_Comma: return BO_Comma;
2175 case OO_ArrowStar: return BO_PtrMemI;
2176 }
2177}
2178
2179OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) {
2180 static const OverloadedOperatorKind OverOps[] = {
2181 /* .* Cannot be overloaded */OO_None, OO_ArrowStar,
2182 OO_Star, OO_Slash, OO_Percent,
2183 OO_Plus, OO_Minus,
2184 OO_LessLess, OO_GreaterGreater,
2185 OO_Spaceship,
2186 OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual,
2187 OO_EqualEqual, OO_ExclaimEqual,
2188 OO_Amp,
2189 OO_Caret,
2190 OO_Pipe,
2191 OO_AmpAmp,
2192 OO_PipePipe,
2193 OO_Equal, OO_StarEqual,
2194 OO_SlashEqual, OO_PercentEqual,
2195 OO_PlusEqual, OO_MinusEqual,
2196 OO_LessLessEqual, OO_GreaterGreaterEqual,
2197 OO_AmpEqual, OO_CaretEqual,
2198 OO_PipeEqual,
2199 OO_Comma
2200 };
2201 return OverOps[Opc];
2202}
2203
2204bool BinaryOperator::isNullPointerArithmeticExtension(ASTContext &Ctx,
2205 Opcode Opc,
2206 const Expr *LHS,
2207 const Expr *RHS) {
2208 if (Opc != BO_Add)
2209 return false;
2210
2211 // Check that we have one pointer and one integer operand.
2212 const Expr *PExp;
2213 if (LHS->getType()->isPointerType()) {
2214 if (!RHS->getType()->isIntegerType())
2215 return false;
2216 PExp = LHS;
2217 } else if (RHS->getType()->isPointerType()) {
2218 if (!LHS->getType()->isIntegerType())
2219 return false;
2220 PExp = RHS;
2221 } else {
2222 return false;
2223 }
2224
2225 // Workaround for old glibc's __PTR_ALIGN macro
2226 if (auto *Select =
2227 dyn_cast<ConditionalOperator>(Val: PExp->IgnoreParenNoopCasts(Ctx))) {
2228 // If the condition can be constant evaluated, we check the selected arm.
2229 bool EvalResult;
2230 if (!Select->getCond()->EvaluateAsBooleanCondition(Result&: EvalResult, Ctx))
2231 return false;
2232 PExp = EvalResult ? Select->getTrueExpr() : Select->getFalseExpr();
2233 }
2234
2235 // Check that the pointer is a nullptr.
2236 if (!PExp->IgnoreParenCasts()
2237 ->isNullPointerConstant(Ctx, NPC: Expr::NPC_ValueDependentIsNotNull))
2238 return false;
2239
2240 // Check that the pointee type is char-sized.
2241 const PointerType *PTy = PExp->getType()->getAs<PointerType>();
2242 if (!PTy || !PTy->getPointeeType()->isCharType())
2243 return false;
2244
2245 return true;
2246}
2247
2248SourceLocExpr::SourceLocExpr(const ASTContext &Ctx, SourceLocIdentKind Kind,
2249 QualType ResultTy, SourceLocation BLoc,
2250 SourceLocation RParenLoc,
2251 DeclContext *ParentContext)
2252 : Expr(SourceLocExprClass, ResultTy, VK_PRValue, OK_Ordinary),
2253 BuiltinLoc(BLoc), RParenLoc(RParenLoc), ParentContext(ParentContext) {
2254 SourceLocExprBits.Kind = llvm::to_underlying(E: Kind);
2255 // In dependent contexts, function names may change.
2256 setDependence(MayBeDependent(Kind) && ParentContext->isDependentContext()
2257 ? ExprDependence::Value
2258 : ExprDependence::None);
2259}
2260
2261StringRef SourceLocExpr::getBuiltinStr() const {
2262 switch (getIdentKind()) {
2263 case SourceLocIdentKind::File:
2264 return "__builtin_FILE";
2265 case SourceLocIdentKind::FileName:
2266 return "__builtin_FILE_NAME";
2267 case SourceLocIdentKind::Function:
2268 return "__builtin_FUNCTION";
2269 case SourceLocIdentKind::FuncSig:
2270 return "__builtin_FUNCSIG";
2271 case SourceLocIdentKind::Line:
2272 return "__builtin_LINE";
2273 case SourceLocIdentKind::Column:
2274 return "__builtin_COLUMN";
2275 case SourceLocIdentKind::SourceLocStruct:
2276 return "__builtin_source_location";
2277 }
2278 llvm_unreachable("unexpected IdentKind!");
2279}
2280
2281APValue SourceLocExpr::EvaluateInContext(const ASTContext &Ctx,
2282 const Expr *DefaultExpr) const {
2283 SourceLocation Loc;
2284 const DeclContext *Context;
2285
2286 if (const auto *DIE = dyn_cast_if_present<CXXDefaultInitExpr>(Val: DefaultExpr)) {
2287 Loc = DIE->getUsedLocation();
2288 Context = DIE->getUsedContext();
2289 } else if (const auto *DAE =
2290 dyn_cast_if_present<CXXDefaultArgExpr>(Val: DefaultExpr)) {
2291 Loc = DAE->getUsedLocation();
2292 Context = DAE->getUsedContext();
2293 } else {
2294 Loc = getLocation();
2295 Context = getParentContext();
2296 }
2297
2298 // If we are currently parsing a lambda declarator, we might not have a fully
2299 // formed call operator declaration yet, and we could not form a function name
2300 // for it. Because we do not have access to Sema/function scopes here, we
2301 // detect this case by relying on the fact such method doesn't yet have a
2302 // type.
2303 if (const auto *D = dyn_cast<CXXMethodDecl>(Val: Context);
2304 D && D->getFunctionTypeLoc().isNull() && isLambdaCallOperator(MD: D))
2305 Context = D->getParent()->getParent();
2306
2307 PresumedLoc PLoc = Ctx.getSourceManager().getPresumedLoc(
2308 Loc: Ctx.getSourceManager().getExpansionRange(Loc).getEnd());
2309
2310 auto MakeStringLiteral = [&](StringRef Tmp) {
2311 using LValuePathEntry = APValue::LValuePathEntry;
2312 StringLiteral *Res = Ctx.getPredefinedStringLiteralFromCache(Key: Tmp);
2313 // Decay the string to a pointer to the first character.
2314 LValuePathEntry Path[1] = {LValuePathEntry::ArrayIndex(Index: 0)};
2315 return APValue(Res, CharUnits::Zero(), Path, /*OnePastTheEnd=*/false);
2316 };
2317
2318 switch (getIdentKind()) {
2319 case SourceLocIdentKind::FileName: {
2320 // __builtin_FILE_NAME() is a Clang-specific extension that expands to the
2321 // the last part of __builtin_FILE().
2322 SmallString<256> FileName;
2323 clang::Preprocessor::processPathToFileName(
2324 FileName, PLoc, LangOpts: Ctx.getLangOpts(), TI: Ctx.getTargetInfo());
2325 return MakeStringLiteral(FileName);
2326 }
2327 case SourceLocIdentKind::File: {
2328 SmallString<256> Path(PLoc.getFilename());
2329 clang::Preprocessor::processPathForFileMacro(Path, LangOpts: Ctx.getLangOpts(),
2330 TI: Ctx.getTargetInfo());
2331 return MakeStringLiteral(Path);
2332 }
2333 case SourceLocIdentKind::Function:
2334 case SourceLocIdentKind::FuncSig: {
2335 const auto *CurDecl = dyn_cast<Decl>(Val: Context);
2336 const auto Kind = getIdentKind() == SourceLocIdentKind::Function
2337 ? PredefinedIdentKind::Function
2338 : PredefinedIdentKind::FuncSig;
2339 return MakeStringLiteral(
2340 CurDecl ? PredefinedExpr::ComputeName(IK: Kind, CurrentDecl: CurDecl) : std::string(""));
2341 }
2342 case SourceLocIdentKind::Line:
2343 return APValue(Ctx.MakeIntValue(Value: PLoc.getLine(), Type: Ctx.UnsignedIntTy));
2344 case SourceLocIdentKind::Column:
2345 return APValue(Ctx.MakeIntValue(Value: PLoc.getColumn(), Type: Ctx.UnsignedIntTy));
2346 case SourceLocIdentKind::SourceLocStruct: {
2347 // Fill in a std::source_location::__impl structure, by creating an
2348 // artificial file-scoped CompoundLiteralExpr, and returning a pointer to
2349 // that.
2350 const CXXRecordDecl *ImplDecl = getType()->getPointeeCXXRecordDecl();
2351 assert(ImplDecl);
2352
2353 // Construct an APValue for the __impl struct, and get or create a Decl
2354 // corresponding to that. Note that we've already verified that the shape of
2355 // the ImplDecl type is as expected.
2356
2357 APValue Value(APValue::UninitStruct(), 0, 4);
2358 for (const FieldDecl *F : ImplDecl->fields()) {
2359 StringRef Name = F->getName();
2360 if (Name == "_M_file_name") {
2361 SmallString<256> Path(PLoc.getFilename());
2362 clang::Preprocessor::processPathForFileMacro(Path, LangOpts: Ctx.getLangOpts(),
2363 TI: Ctx.getTargetInfo());
2364 Value.getStructField(i: F->getFieldIndex()) = MakeStringLiteral(Path);
2365 } else if (Name == "_M_function_name") {
2366 // Note: this emits the PrettyFunction name -- different than what
2367 // __builtin_FUNCTION() above returns!
2368 const auto *CurDecl = dyn_cast<Decl>(Val: Context);
2369 Value.getStructField(i: F->getFieldIndex()) = MakeStringLiteral(
2370 CurDecl && !isa<TranslationUnitDecl>(Val: CurDecl)
2371 ? StringRef(PredefinedExpr::ComputeName(
2372 IK: PredefinedIdentKind::PrettyFunction, CurrentDecl: CurDecl))
2373 : "");
2374 } else if (Name == "_M_line") {
2375 llvm::APSInt IntVal = Ctx.MakeIntValue(Value: PLoc.getLine(), Type: F->getType());
2376 Value.getStructField(i: F->getFieldIndex()) = APValue(IntVal);
2377 } else if (Name == "_M_column") {
2378 llvm::APSInt IntVal = Ctx.MakeIntValue(Value: PLoc.getColumn(), Type: F->getType());
2379 Value.getStructField(i: F->getFieldIndex()) = APValue(IntVal);
2380 }
2381 }
2382
2383 UnnamedGlobalConstantDecl *GV =
2384 Ctx.getUnnamedGlobalConstantDecl(Ty: getType()->getPointeeType(), Value);
2385
2386 return APValue(GV, CharUnits::Zero(), ArrayRef<APValue::LValuePathEntry>{},
2387 false);
2388 }
2389 }
2390 llvm_unreachable("unhandled case");
2391}
2392
2393EmbedExpr::EmbedExpr(const ASTContext &Ctx, SourceLocation Loc,
2394 EmbedDataStorage *Data, unsigned Begin,
2395 unsigned NumOfElements)
2396 : Expr(EmbedExprClass, Ctx.IntTy, VK_PRValue, OK_Ordinary),
2397 EmbedKeywordLoc(Loc), Ctx(&Ctx), Data(Data), Begin(Begin),
2398 NumOfElements(NumOfElements) {
2399 setDependence(ExprDependence::None);
2400 FakeChildNode = IntegerLiteral::Create(
2401 C: Ctx, V: llvm::APInt::getZero(numBits: Ctx.getTypeSize(T: getType())), type: getType(), l: Loc);
2402 assert(getType()->isSignedIntegerType() && "IntTy should be signed");
2403}
2404
2405InitListExpr::InitListExpr(const ASTContext &C, SourceLocation lbraceloc,
2406 ArrayRef<Expr *> initExprs, SourceLocation rbraceloc)
2407 : Expr(InitListExprClass, QualType(), VK_PRValue, OK_Ordinary),
2408 InitExprs(C, initExprs.size()), LBraceLoc(lbraceloc),
2409 RBraceLoc(rbraceloc), AltForm(nullptr, true) {
2410 sawArrayRangeDesignator(ARD: false);
2411 InitExprs.insert(C, I: InitExprs.end(), From: initExprs.begin(), To: initExprs.end());
2412
2413 setDependence(computeDependence(E: this));
2414}
2415
2416void InitListExpr::reserveInits(const ASTContext &C, unsigned NumInits) {
2417 if (NumInits > InitExprs.size())
2418 InitExprs.reserve(C, N: NumInits);
2419}
2420
2421void InitListExpr::resizeInits(const ASTContext &C, unsigned NumInits) {
2422 InitExprs.resize(C, N: NumInits, NV: nullptr);
2423}
2424
2425Expr *InitListExpr::updateInit(const ASTContext &C, unsigned Init, Expr *expr) {
2426 if (Init >= InitExprs.size()) {
2427 InitExprs.insert(C, I: InitExprs.end(), NumToInsert: Init - InitExprs.size() + 1, Elt: nullptr);
2428 setInit(Init, expr);
2429 return nullptr;
2430 }
2431
2432 Expr *Result = cast_or_null<Expr>(Val: InitExprs[Init]);
2433 setInit(Init, expr);
2434 return Result;
2435}
2436
2437void InitListExpr::setArrayFiller(Expr *filler) {
2438 assert(!hasArrayFiller() && "Filler already set!");
2439 ArrayFillerOrUnionFieldInit = filler;
2440 // Fill out any "holes" in the array due to designated initializers.
2441 Expr **inits = getInits();
2442 for (unsigned i = 0, e = getNumInits(); i != e; ++i)
2443 if (inits[i] == nullptr)
2444 inits[i] = filler;
2445}
2446
2447bool InitListExpr::isStringLiteralInit() const {
2448 if (getNumInits() != 1)
2449 return false;
2450 const ArrayType *AT = getType()->getAsArrayTypeUnsafe();
2451 if (!AT || !AT->getElementType()->isIntegerType())
2452 return false;
2453 // It is possible for getInit() to return null.
2454 const Expr *Init = getInit(Init: 0);
2455 if (!Init)
2456 return false;
2457 Init = Init->IgnoreParenImpCasts();
2458 return isa<StringLiteral>(Val: Init) || isa<ObjCEncodeExpr>(Val: Init);
2459}
2460
2461bool InitListExpr::isTransparent() const {
2462 assert(isSemanticForm() && "syntactic form never semantically transparent");
2463
2464 // A glvalue InitListExpr is always just sugar.
2465 if (isGLValue()) {
2466 assert(getNumInits() == 1 && "multiple inits in glvalue init list");
2467 return true;
2468 }
2469
2470 // Otherwise, we're sugar if and only if we have exactly one initializer that
2471 // is of the same type.
2472 if (getNumInits() != 1 || !getInit(Init: 0))
2473 return false;
2474
2475 // Don't confuse aggregate initialization of a struct X { X &x; }; with a
2476 // transparent struct copy.
2477 if (!getInit(Init: 0)->isPRValue() && getType()->isRecordType())
2478 return false;
2479
2480 return getType().getCanonicalType() ==
2481 getInit(Init: 0)->getType().getCanonicalType();
2482}
2483
2484bool InitListExpr::isIdiomaticZeroInitializer(const LangOptions &LangOpts) const {
2485 assert(isSyntacticForm() && "only test syntactic form as zero initializer");
2486
2487 if (LangOpts.CPlusPlus || getNumInits() != 1 || !getInit(Init: 0)) {
2488 return false;
2489 }
2490
2491 const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(Val: getInit(Init: 0)->IgnoreImplicit());
2492 return Lit && Lit->getValue() == 0;
2493}
2494
2495SourceLocation InitListExpr::getBeginLoc() const {
2496 if (InitListExpr *SyntacticForm = getSyntacticForm())
2497 return SyntacticForm->getBeginLoc();
2498 SourceLocation Beg = LBraceLoc;
2499 if (Beg.isInvalid()) {
2500 // Find the first non-null initializer.
2501 for (InitExprsTy::const_iterator I = InitExprs.begin(),
2502 E = InitExprs.end();
2503 I != E; ++I) {
2504 if (Stmt *S = *I) {
2505 Beg = S->getBeginLoc();
2506 break;
2507 }
2508 }
2509 }
2510 return Beg;
2511}
2512
2513SourceLocation InitListExpr::getEndLoc() const {
2514 if (InitListExpr *SyntacticForm = getSyntacticForm())
2515 return SyntacticForm->getEndLoc();
2516 SourceLocation End = RBraceLoc;
2517 if (End.isInvalid()) {
2518 // Find the first non-null initializer from the end.
2519 for (Stmt *S : llvm::reverse(C: InitExprs)) {
2520 if (S) {
2521 End = S->getEndLoc();
2522 break;
2523 }
2524 }
2525 }
2526 return End;
2527}
2528
2529/// getFunctionType - Return the underlying function type for this block.
2530///
2531const FunctionProtoType *BlockExpr::getFunctionType() const {
2532 // The block pointer is never sugared, but the function type might be.
2533 return cast<BlockPointerType>(Val: getType())
2534 ->getPointeeType()->castAs<FunctionProtoType>();
2535}
2536
2537SourceLocation BlockExpr::getCaretLocation() const {
2538 return TheBlock->getCaretLocation();
2539}
2540const Stmt *BlockExpr::getBody() const {
2541 return TheBlock->getBody();
2542}
2543Stmt *BlockExpr::getBody() {
2544 return TheBlock->getBody();
2545}
2546
2547
2548//===----------------------------------------------------------------------===//
2549// Generic Expression Routines
2550//===----------------------------------------------------------------------===//
2551
2552/// Helper to determine wether \c E is a CXXConstructExpr constructing
2553/// a DecompositionDecl. Used to skip Clang-generated calls to std::get
2554/// for structured bindings.
2555static bool IsDecompositionDeclRefExpr(const Expr *E) {
2556 const auto *Unwrapped = E->IgnoreUnlessSpelledInSource();
2557 const auto *Ref = dyn_cast<DeclRefExpr>(Val: Unwrapped);
2558 if (!Ref)
2559 return false;
2560
2561 return isa_and_nonnull<DecompositionDecl>(Val: Ref->getDecl());
2562}
2563
2564bool Expr::isReadIfDiscardedInCPlusPlus11() const {
2565 // In C++11, discarded-value expressions of a certain form are special,
2566 // according to [expr]p10:
2567 // The lvalue-to-rvalue conversion (4.1) is applied only if the
2568 // expression is a glvalue of volatile-qualified type and it has
2569 // one of the following forms:
2570 if (!isGLValue() || !getType().isVolatileQualified())
2571 return false;
2572
2573 const Expr *E = IgnoreParens();
2574
2575 // - id-expression (5.1.1),
2576 if (isa<DeclRefExpr>(Val: E))
2577 return true;
2578
2579 // - subscripting (5.2.1),
2580 if (isa<ArraySubscriptExpr>(Val: E))
2581 return true;
2582
2583 // - class member access (5.2.5),
2584 if (isa<MemberExpr>(Val: E))
2585 return true;
2586
2587 // - indirection (5.3.1),
2588 if (auto *UO = dyn_cast<UnaryOperator>(Val: E))
2589 if (UO->getOpcode() == UO_Deref)
2590 return true;
2591
2592 if (auto *BO = dyn_cast<BinaryOperator>(Val: E)) {
2593 // - pointer-to-member operation (5.5),
2594 if (BO->isPtrMemOp())
2595 return true;
2596
2597 // - comma expression (5.18) where the right operand is one of the above.
2598 if (BO->getOpcode() == BO_Comma)
2599 return BO->getRHS()->isReadIfDiscardedInCPlusPlus11();
2600 }
2601
2602 // - conditional expression (5.16) where both the second and the third
2603 // operands are one of the above, or
2604 if (auto *CO = dyn_cast<ConditionalOperator>(Val: E))
2605 return CO->getTrueExpr()->isReadIfDiscardedInCPlusPlus11() &&
2606 CO->getFalseExpr()->isReadIfDiscardedInCPlusPlus11();
2607 // The related edge case of "*x ?: *x".
2608 if (auto *BCO =
2609 dyn_cast<BinaryConditionalOperator>(Val: E)) {
2610 if (auto *OVE = dyn_cast<OpaqueValueExpr>(Val: BCO->getTrueExpr()))
2611 return OVE->getSourceExpr()->isReadIfDiscardedInCPlusPlus11() &&
2612 BCO->getFalseExpr()->isReadIfDiscardedInCPlusPlus11();
2613 }
2614
2615 // Objective-C++ extensions to the rule.
2616 if (isa<ObjCIvarRefExpr>(Val: E))
2617 return true;
2618 if (const auto *POE = dyn_cast<PseudoObjectExpr>(Val: E)) {
2619 if (isa<ObjCPropertyRefExpr, ObjCSubscriptRefExpr>(Val: POE->getSyntacticForm()))
2620 return true;
2621 }
2622
2623 return false;
2624}
2625
2626/// isUnusedResultAWarning - Return true if this immediate expression should
2627/// be warned about if the result is unused. If so, fill in Loc and Ranges
2628/// with location to warn on and the source range[s] to report with the
2629/// warning.
2630bool Expr::isUnusedResultAWarning(const Expr *&WarnE, SourceLocation &Loc,
2631 SourceRange &R1, SourceRange &R2,
2632 ASTContext &Ctx) const {
2633 // Don't warn if the expr is type dependent. The type could end up
2634 // instantiating to void.
2635 if (isTypeDependent())
2636 return false;
2637
2638 switch (getStmtClass()) {
2639 default:
2640 if (getType()->isVoidType())
2641 return false;
2642 WarnE = this;
2643 Loc = getExprLoc();
2644 R1 = getSourceRange();
2645 return true;
2646 case ParenExprClass:
2647 return cast<ParenExpr>(Val: this)->getSubExpr()->
2648 isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2649 case GenericSelectionExprClass:
2650 return cast<GenericSelectionExpr>(Val: this)->getResultExpr()->
2651 isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2652 case CoawaitExprClass:
2653 case CoyieldExprClass:
2654 return cast<CoroutineSuspendExpr>(Val: this)->getResumeExpr()->
2655 isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2656 case ChooseExprClass:
2657 return cast<ChooseExpr>(Val: this)->getChosenSubExpr()->
2658 isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2659 case UnaryOperatorClass: {
2660 const UnaryOperator *UO = cast<UnaryOperator>(Val: this);
2661
2662 switch (UO->getOpcode()) {
2663 case UO_Plus:
2664 case UO_Minus:
2665 case UO_AddrOf:
2666 case UO_Not:
2667 case UO_LNot:
2668 case UO_Deref:
2669 break;
2670 case UO_Coawait:
2671 // This is just the 'operator co_await' call inside the guts of a
2672 // dependent co_await call.
2673 case UO_PostInc:
2674 case UO_PostDec:
2675 case UO_PreInc:
2676 case UO_PreDec: // ++/--
2677 return false; // Not a warning.
2678 case UO_Real:
2679 case UO_Imag:
2680 // accessing a piece of a volatile complex is a side-effect.
2681 if (Ctx.getCanonicalType(T: UO->getSubExpr()->getType())
2682 .isVolatileQualified())
2683 return false;
2684 break;
2685 case UO_Extension:
2686 return UO->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2687 }
2688 WarnE = this;
2689 Loc = UO->getOperatorLoc();
2690 R1 = UO->getSubExpr()->getSourceRange();
2691 return true;
2692 }
2693 case BinaryOperatorClass: {
2694 const BinaryOperator *BO = cast<BinaryOperator>(Val: this);
2695 switch (BO->getOpcode()) {
2696 default:
2697 break;
2698 // Consider the RHS of comma for side effects. LHS was checked by
2699 // Sema::CheckCommaOperands.
2700 case BO_Comma:
2701 // ((foo = <blah>), 0) is an idiom for hiding the result (and
2702 // lvalue-ness) of an assignment written in a macro.
2703 if (IntegerLiteral *IE =
2704 dyn_cast<IntegerLiteral>(Val: BO->getRHS()->IgnoreParens()))
2705 if (IE->getValue() == 0)
2706 return false;
2707 return BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2708 // Consider '||', '&&' to have side effects if the LHS or RHS does.
2709 case BO_LAnd:
2710 case BO_LOr:
2711 if (!BO->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) ||
2712 !BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx))
2713 return false;
2714 break;
2715 }
2716 if (BO->isAssignmentOp())
2717 return false;
2718 WarnE = this;
2719 Loc = BO->getOperatorLoc();
2720 R1 = BO->getLHS()->getSourceRange();
2721 R2 = BO->getRHS()->getSourceRange();
2722 return true;
2723 }
2724 case CompoundAssignOperatorClass:
2725 case VAArgExprClass:
2726 case AtomicExprClass:
2727 return false;
2728
2729 case ConditionalOperatorClass: {
2730 // If only one of the LHS or RHS is a warning, the operator might
2731 // be being used for control flow. Only warn if both the LHS and
2732 // RHS are warnings.
2733 const auto *Exp = cast<ConditionalOperator>(Val: this);
2734 return Exp->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) &&
2735 Exp->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2736 }
2737 case BinaryConditionalOperatorClass: {
2738 const auto *Exp = cast<BinaryConditionalOperator>(Val: this);
2739 return Exp->getFalseExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2740 }
2741
2742 case MemberExprClass:
2743 WarnE = this;
2744 Loc = cast<MemberExpr>(Val: this)->getMemberLoc();
2745 R1 = SourceRange(Loc, Loc);
2746 R2 = cast<MemberExpr>(Val: this)->getBase()->getSourceRange();
2747 return true;
2748
2749 case ArraySubscriptExprClass:
2750 WarnE = this;
2751 Loc = cast<ArraySubscriptExpr>(Val: this)->getRBracketLoc();
2752 R1 = cast<ArraySubscriptExpr>(Val: this)->getLHS()->getSourceRange();
2753 R2 = cast<ArraySubscriptExpr>(Val: this)->getRHS()->getSourceRange();
2754 return true;
2755
2756 case CXXOperatorCallExprClass: {
2757 // Warn about operator ==,!=,<,>,<=, and >= even when user-defined operator
2758 // overloads as there is no reasonable way to define these such that they
2759 // have non-trivial, desirable side-effects. See the -Wunused-comparison
2760 // warning: operators == and != are commonly typo'ed, and so warning on them
2761 // provides additional value as well. If this list is updated,
2762 // DiagnoseUnusedComparison should be as well.
2763 const CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(Val: this);
2764 switch (Op->getOperator()) {
2765 default:
2766 break;
2767 case OO_EqualEqual:
2768 case OO_ExclaimEqual:
2769 case OO_Less:
2770 case OO_Greater:
2771 case OO_GreaterEqual:
2772 case OO_LessEqual:
2773 if (Op->getCallReturnType(Ctx)->isReferenceType() ||
2774 Op->getCallReturnType(Ctx)->isVoidType())
2775 break;
2776 WarnE = this;
2777 Loc = Op->getOperatorLoc();
2778 R1 = Op->getSourceRange();
2779 return true;
2780 }
2781
2782 // Fallthrough for generic call handling.
2783 [[fallthrough]];
2784 }
2785 case CallExprClass:
2786 case CXXMemberCallExprClass:
2787 case UserDefinedLiteralClass: {
2788 // If this is a direct call, get the callee.
2789 const CallExpr *CE = cast<CallExpr>(Val: this);
2790 // If the callee has attribute pure, const, or warn_unused_result, warn
2791 // about it. void foo() { strlen("bar"); } should warn.
2792 // Note: If new cases are added here, DiagnoseUnusedExprResult should be
2793 // updated to match for QoI.
2794 const Decl *FD = CE->getCalleeDecl();
2795 bool PureOrConst =
2796 FD && (FD->hasAttr<PureAttr>() || FD->hasAttr<ConstAttr>());
2797 if (CE->hasUnusedResultAttr(Ctx) || PureOrConst) {
2798 WarnE = this;
2799 Loc = getBeginLoc();
2800 R1 = getSourceRange();
2801
2802 if (unsigned NumArgs = CE->getNumArgs())
2803 R2 = SourceRange(CE->getArg(Arg: 0)->getBeginLoc(),
2804 CE->getArg(Arg: NumArgs - 1)->getEndLoc());
2805 return true;
2806 }
2807 return false;
2808 }
2809
2810 // If we don't know precisely what we're looking at, let's not warn.
2811 case UnresolvedLookupExprClass:
2812 case CXXUnresolvedConstructExprClass:
2813 case RecoveryExprClass:
2814 return false;
2815
2816 case CXXTemporaryObjectExprClass:
2817 case CXXConstructExprClass: {
2818 const auto *CE = cast<CXXConstructExpr>(Val: this);
2819 const CXXRecordDecl *Type = getType()->getAsCXXRecordDecl();
2820
2821 if ((Type && Type->hasAttr<WarnUnusedAttr>()) ||
2822 CE->hasUnusedResultAttr(Ctx)) {
2823 WarnE = this;
2824 Loc = getBeginLoc();
2825 R1 = getSourceRange();
2826
2827 if (unsigned NumArgs = CE->getNumArgs())
2828 R2 = SourceRange(CE->getArg(Arg: 0)->getBeginLoc(),
2829 CE->getArg(Arg: NumArgs - 1)->getEndLoc());
2830 return true;
2831 }
2832 return false;
2833 }
2834
2835 case ObjCMessageExprClass: {
2836 const ObjCMessageExpr *ME = cast<ObjCMessageExpr>(Val: this);
2837 if (Ctx.getLangOpts().ObjCAutoRefCount &&
2838 ME->isInstanceMessage() &&
2839 !ME->getType()->isVoidType() &&
2840 ME->getMethodFamily() == OMF_init) {
2841 WarnE = this;
2842 Loc = getExprLoc();
2843 R1 = ME->getSourceRange();
2844 return true;
2845 }
2846
2847 if (ME->hasUnusedResultAttr(Ctx)) {
2848 WarnE = this;
2849 Loc = getExprLoc();
2850 return true;
2851 }
2852
2853 return false;
2854 }
2855
2856 case ObjCPropertyRefExprClass:
2857 case ObjCSubscriptRefExprClass:
2858 WarnE = this;
2859 Loc = getExprLoc();
2860 R1 = getSourceRange();
2861 return true;
2862
2863 case PseudoObjectExprClass: {
2864 const auto *POE = cast<PseudoObjectExpr>(Val: this);
2865
2866 // For some syntactic forms, we should always warn.
2867 if (isa<ObjCPropertyRefExpr, ObjCSubscriptRefExpr>(
2868 Val: POE->getSyntacticForm())) {
2869 WarnE = this;
2870 Loc = getExprLoc();
2871 R1 = getSourceRange();
2872 return true;
2873 }
2874
2875 // For others, we should never warn.
2876 if (auto *BO = dyn_cast<BinaryOperator>(Val: POE->getSyntacticForm()))
2877 if (BO->isAssignmentOp())
2878 return false;
2879 if (auto *UO = dyn_cast<UnaryOperator>(Val: POE->getSyntacticForm()))
2880 if (UO->isIncrementDecrementOp())
2881 return false;
2882
2883 // Otherwise, warn if the result expression would warn.
2884 const Expr *Result = POE->getResultExpr();
2885 return Result && Result->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2886 }
2887
2888 case StmtExprClass: {
2889 // Statement exprs don't logically have side effects themselves, but are
2890 // sometimes used in macros in ways that give them a type that is unused.
2891 // For example ({ blah; foo(); }) will end up with a type if foo has a type.
2892 // however, if the result of the stmt expr is dead, we don't want to emit a
2893 // warning.
2894 const CompoundStmt *CS = cast<StmtExpr>(Val: this)->getSubStmt();
2895 if (!CS->body_empty()) {
2896 if (const Expr *E = dyn_cast<Expr>(Val: CS->body_back()))
2897 return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2898 if (const LabelStmt *Label = dyn_cast<LabelStmt>(Val: CS->body_back()))
2899 if (const Expr *E = dyn_cast<Expr>(Val: Label->getSubStmt()))
2900 return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2901 }
2902
2903 if (getType()->isVoidType())
2904 return false;
2905 WarnE = this;
2906 Loc = cast<StmtExpr>(Val: this)->getLParenLoc();
2907 R1 = getSourceRange();
2908 return true;
2909 }
2910 case CXXFunctionalCastExprClass:
2911 case CStyleCastExprClass: {
2912 // Ignore an explicit cast to void, except in C++98 if the operand is a
2913 // volatile glvalue for which we would trigger an implicit read in any
2914 // other language mode. (Such an implicit read always happens as part of
2915 // the lvalue conversion in C, and happens in C++ for expressions of all
2916 // forms where it seems likely the user intended to trigger a volatile
2917 // load.)
2918 const CastExpr *CE = cast<CastExpr>(Val: this);
2919 const Expr *SubE = CE->getSubExpr()->IgnoreParens();
2920 if (CE->getCastKind() == CK_ToVoid) {
2921 if (Ctx.getLangOpts().CPlusPlus && !Ctx.getLangOpts().CPlusPlus11 &&
2922 SubE->isReadIfDiscardedInCPlusPlus11()) {
2923 // Suppress the "unused value" warning for idiomatic usage of
2924 // '(void)var;' used to suppress "unused variable" warnings.
2925 if (auto *DRE = dyn_cast<DeclRefExpr>(Val: SubE))
2926 if (auto *VD = dyn_cast<VarDecl>(Val: DRE->getDecl()))
2927 if (!VD->isExternallyVisible())
2928 return false;
2929
2930 // The lvalue-to-rvalue conversion would have no effect for an array.
2931 // It's implausible that the programmer expected this to result in a
2932 // volatile array load, so don't warn.
2933 if (SubE->getType()->isArrayType())
2934 return false;
2935
2936 return SubE->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2937 }
2938 return false;
2939 }
2940
2941 // If this is a cast to a constructor conversion, check the operand.
2942 // Otherwise, the result of the cast is unused.
2943 if (CE->getCastKind() == CK_ConstructorConversion)
2944 return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2945 if (CE->getCastKind() == CK_Dependent)
2946 return false;
2947
2948 WarnE = this;
2949 if (const CXXFunctionalCastExpr *CXXCE =
2950 dyn_cast<CXXFunctionalCastExpr>(Val: this)) {
2951 Loc = CXXCE->getBeginLoc();
2952 R1 = CXXCE->getSubExpr()->getSourceRange();
2953 } else {
2954 const CStyleCastExpr *CStyleCE = cast<CStyleCastExpr>(Val: this);
2955 Loc = CStyleCE->getLParenLoc();
2956 R1 = CStyleCE->getSubExpr()->getSourceRange();
2957 }
2958 return true;
2959 }
2960 case ImplicitCastExprClass: {
2961 const CastExpr *ICE = cast<ImplicitCastExpr>(Val: this);
2962
2963 // lvalue-to-rvalue conversion on a volatile lvalue is a side-effect.
2964 if (ICE->getCastKind() == CK_LValueToRValue &&
2965 ICE->getSubExpr()->getType().isVolatileQualified())
2966 return false;
2967
2968 return ICE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2969 }
2970 case CXXDefaultArgExprClass:
2971 return (cast<CXXDefaultArgExpr>(Val: this)
2972 ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
2973 case CXXDefaultInitExprClass:
2974 return (cast<CXXDefaultInitExpr>(Val: this)
2975 ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
2976
2977 case CXXNewExprClass:
2978 // FIXME: In theory, there might be new expressions that don't have side
2979 // effects (e.g. a placement new with an uninitialized POD).
2980 case CXXDeleteExprClass:
2981 return false;
2982 case MaterializeTemporaryExprClass:
2983 return cast<MaterializeTemporaryExpr>(Val: this)
2984 ->getSubExpr()
2985 ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2986 case CXXBindTemporaryExprClass:
2987 return cast<CXXBindTemporaryExpr>(Val: this)->getSubExpr()
2988 ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2989 case ExprWithCleanupsClass:
2990 return cast<ExprWithCleanups>(Val: this)->getSubExpr()
2991 ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2992 case OpaqueValueExprClass:
2993 return cast<OpaqueValueExpr>(Val: this)->getSourceExpr()->isUnusedResultAWarning(
2994 WarnE, Loc, R1, R2, Ctx);
2995 }
2996}
2997
2998/// isOBJCGCCandidate - Check if an expression is objc gc'able.
2999/// returns true, if it is; false otherwise.
3000bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const {
3001 const Expr *E = IgnoreParens();
3002 switch (E->getStmtClass()) {
3003 default:
3004 return false;
3005 case ObjCIvarRefExprClass:
3006 return true;
3007 case Expr::UnaryOperatorClass:
3008 return cast<UnaryOperator>(Val: E)->getSubExpr()->isOBJCGCCandidate(Ctx);
3009 case ImplicitCastExprClass:
3010 return cast<ImplicitCastExpr>(Val: E)->getSubExpr()->isOBJCGCCandidate(Ctx);
3011 case MaterializeTemporaryExprClass:
3012 return cast<MaterializeTemporaryExpr>(Val: E)->getSubExpr()->isOBJCGCCandidate(
3013 Ctx);
3014 case CStyleCastExprClass:
3015 return cast<CStyleCastExpr>(Val: E)->getSubExpr()->isOBJCGCCandidate(Ctx);
3016 case DeclRefExprClass: {
3017 const Decl *D = cast<DeclRefExpr>(Val: E)->getDecl();
3018
3019 if (const VarDecl *VD = dyn_cast<VarDecl>(Val: D)) {
3020 if (VD->hasGlobalStorage())
3021 return true;
3022 QualType T = VD->getType();
3023 // dereferencing to a pointer is always a gc'able candidate,
3024 // unless it is __weak.
3025 return T->isPointerType() &&
3026 (Ctx.getObjCGCAttrKind(Ty: T) != Qualifiers::Weak);
3027 }
3028 return false;
3029 }
3030 case MemberExprClass: {
3031 const MemberExpr *M = cast<MemberExpr>(Val: E);
3032 return M->getBase()->isOBJCGCCandidate(Ctx);
3033 }
3034 case ArraySubscriptExprClass:
3035 return cast<ArraySubscriptExpr>(Val: E)->getBase()->isOBJCGCCandidate(Ctx);
3036 }
3037}
3038
3039bool Expr::isBoundMemberFunction(ASTContext &Ctx) const {
3040 if (isTypeDependent())
3041 return false;
3042 return ClassifyLValue(Ctx) == Expr::LV_MemberFunction;
3043}
3044
3045QualType Expr::findBoundMemberType(const Expr *expr) {
3046 assert(expr->hasPlaceholderType(BuiltinType::BoundMember));
3047
3048 // Bound member expressions are always one of these possibilities:
3049 // x->m x.m x->*y x.*y
3050 // (possibly parenthesized)
3051
3052 expr = expr->IgnoreParens();
3053 if (const MemberExpr *mem = dyn_cast<MemberExpr>(Val: expr)) {
3054 assert(isa<CXXMethodDecl>(mem->getMemberDecl()));
3055 return mem->getMemberDecl()->getType();
3056 }
3057
3058 if (const BinaryOperator *op = dyn_cast<BinaryOperator>(Val: expr)) {
3059 QualType type = op->getRHS()->getType()->castAs<MemberPointerType>()
3060 ->getPointeeType();
3061 assert(type->isFunctionType());
3062 return type;
3063 }
3064
3065 assert(isa<UnresolvedMemberExpr>(expr) || isa<CXXPseudoDestructorExpr>(expr));
3066 return QualType();
3067}
3068
3069Expr *Expr::IgnoreImpCasts() {
3070 return IgnoreExprNodes(E: this, Fns&: IgnoreImplicitCastsSingleStep);
3071}
3072
3073Expr *Expr::IgnoreCasts() {
3074 return IgnoreExprNodes(E: this, Fns&: IgnoreCastsSingleStep);
3075}
3076
3077Expr *Expr::IgnoreImplicit() {
3078 return IgnoreExprNodes(E: this, Fns&: IgnoreImplicitSingleStep);
3079}
3080
3081Expr *Expr::IgnoreImplicitAsWritten() {
3082 return IgnoreExprNodes(E: this, Fns&: IgnoreImplicitAsWrittenSingleStep);
3083}
3084
3085Expr *Expr::IgnoreParens() {
3086 return IgnoreExprNodes(E: this, Fns&: IgnoreParensSingleStep);
3087}
3088
3089Expr *Expr::IgnoreParenImpCasts() {
3090 return IgnoreExprNodes(E: this, Fns&: IgnoreParensSingleStep,
3091 Fns&: IgnoreImplicitCastsExtraSingleStep);
3092}
3093
3094Expr *Expr::IgnoreParenCasts() {
3095 return IgnoreExprNodes(E: this, Fns&: IgnoreParensSingleStep, Fns&: IgnoreCastsSingleStep);
3096}
3097
3098Expr *Expr::IgnoreConversionOperatorSingleStep() {
3099 if (auto *MCE = dyn_cast<CXXMemberCallExpr>(Val: this)) {
3100 if (isa_and_nonnull<CXXConversionDecl>(Val: MCE->getMethodDecl()))
3101 return MCE->getImplicitObjectArgument();
3102 }
3103 return this;
3104}
3105
3106Expr *Expr::IgnoreParenLValueCasts() {
3107 return IgnoreExprNodes(E: this, Fns&: IgnoreParensSingleStep,
3108 Fns&: IgnoreLValueCastsSingleStep);
3109}
3110
3111Expr *Expr::IgnoreParenBaseCasts() {
3112 return IgnoreExprNodes(E: this, Fns&: IgnoreParensSingleStep,
3113 Fns&: IgnoreBaseCastsSingleStep);
3114}
3115
3116Expr *Expr::IgnoreParenNoopCasts(const ASTContext &Ctx) {
3117 auto IgnoreNoopCastsSingleStep = [&Ctx](Expr *E) {
3118 if (auto *CE = dyn_cast<CastExpr>(Val: E)) {
3119 // We ignore integer <-> casts that are of the same width, ptr<->ptr and
3120 // ptr<->int casts of the same width. We also ignore all identity casts.
3121 Expr *SubExpr = CE->getSubExpr();
3122 bool IsIdentityCast =
3123 Ctx.hasSameUnqualifiedType(T1: E->getType(), T2: SubExpr->getType());
3124 bool IsSameWidthCast = (E->getType()->isPointerType() ||
3125 E->getType()->isIntegralType(Ctx)) &&
3126 (SubExpr->getType()->isPointerType() ||
3127 SubExpr->getType()->isIntegralType(Ctx)) &&
3128 (Ctx.getTypeSize(T: E->getType()) ==
3129 Ctx.getTypeSize(T: SubExpr->getType()));
3130
3131 if (IsIdentityCast || IsSameWidthCast)
3132 return SubExpr;
3133 } else if (auto *NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(Val: E))
3134 return NTTP->getReplacement();
3135
3136 return E;
3137 };
3138 return IgnoreExprNodes(E: this, Fns&: IgnoreParensSingleStep,
3139 Fns&: IgnoreNoopCastsSingleStep);
3140}
3141
3142Expr *Expr::IgnoreUnlessSpelledInSource() {
3143 auto IgnoreImplicitConstructorSingleStep = [](Expr *E) {
3144 if (auto *Cast = dyn_cast<CXXFunctionalCastExpr>(Val: E)) {
3145 auto *SE = Cast->getSubExpr();
3146 if (SE->getSourceRange() == E->getSourceRange())
3147 return SE;
3148 }
3149
3150 if (auto *C = dyn_cast<CXXConstructExpr>(Val: E)) {
3151 auto NumArgs = C->getNumArgs();
3152 if (NumArgs == 1 ||
3153 (NumArgs > 1 && isa<CXXDefaultArgExpr>(Val: C->getArg(Arg: 1)))) {
3154 Expr *A = C->getArg(Arg: 0);
3155 if (A->getSourceRange() == E->getSourceRange() || C->isElidable())
3156 return A;
3157 }
3158 }
3159 return E;
3160 };
3161 auto IgnoreImplicitMemberCallSingleStep = [](Expr *E) {
3162 if (auto *C = dyn_cast<CXXMemberCallExpr>(Val: E)) {
3163 Expr *ExprNode = C->getImplicitObjectArgument();
3164 if (ExprNode->getSourceRange() == E->getSourceRange()) {
3165 return ExprNode;
3166 }
3167 if (auto *PE = dyn_cast<ParenExpr>(Val: ExprNode)) {
3168 if (PE->getSourceRange() == C->getSourceRange()) {
3169 return cast<Expr>(Val: PE);
3170 }
3171 }
3172 ExprNode = ExprNode->IgnoreParenImpCasts();
3173 if (ExprNode->getSourceRange() == E->getSourceRange())
3174 return ExprNode;
3175 }
3176 return E;
3177 };
3178
3179 // Used when Clang generates calls to std::get for decomposing
3180 // structured bindings.
3181 auto IgnoreImplicitCallSingleStep = [](Expr *E) {
3182 auto *C = dyn_cast<CallExpr>(Val: E);
3183 if (!C)
3184 return E;
3185
3186 // Looking for calls to a std::get, which usually just takes
3187 // 1 argument (i.e., the structure being decomposed). If it has
3188 // more than 1 argument, the others need to be defaulted.
3189 unsigned NumArgs = C->getNumArgs();
3190 if (NumArgs == 0 || (NumArgs > 1 && !isa<CXXDefaultArgExpr>(Val: C->getArg(Arg: 1))))
3191 return E;
3192
3193 Expr *A = C->getArg(Arg: 0);
3194
3195 // This was spelled out in source. Don't ignore.
3196 if (A->getSourceRange() != E->getSourceRange())
3197 return E;
3198
3199 // If the argument refers to a DecompositionDecl construction,
3200 // ignore it.
3201 if (IsDecompositionDeclRefExpr(E: A))
3202 return A;
3203
3204 return E;
3205 };
3206
3207 return IgnoreExprNodes(
3208 E: this, Fns&: IgnoreImplicitSingleStep, Fns&: IgnoreImplicitCastsExtraSingleStep,
3209 Fns&: IgnoreParensOnlySingleStep, Fns&: IgnoreImplicitConstructorSingleStep,
3210 Fns&: IgnoreImplicitMemberCallSingleStep, Fns&: IgnoreImplicitCallSingleStep);
3211}
3212
3213bool Expr::isDefaultArgument() const {
3214 const Expr *E = this;
3215 if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(Val: E))
3216 E = M->getSubExpr();
3217
3218 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Val: E))
3219 E = ICE->getSubExprAsWritten();
3220
3221 return isa<CXXDefaultArgExpr>(Val: E);
3222}
3223
3224/// Skip over any no-op casts and any temporary-binding
3225/// expressions.
3226static const Expr *skipTemporaryBindingsNoOpCastsAndParens(const Expr *E) {
3227 if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(Val: E))
3228 E = M->getSubExpr();
3229
3230 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Val: E)) {
3231 if (ICE->getCastKind() == CK_NoOp)
3232 E = ICE->getSubExpr();
3233 else
3234 break;
3235 }
3236
3237 while (const CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(Val: E))
3238 E = BE->getSubExpr();
3239
3240 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Val: E)) {
3241 if (ICE->getCastKind() == CK_NoOp)
3242 E = ICE->getSubExpr();
3243 else
3244 break;
3245 }
3246
3247 return E->IgnoreParens();
3248}
3249
3250/// isTemporaryObject - Determines if this expression produces a
3251/// temporary of the given class type.
3252bool Expr::isTemporaryObject(ASTContext &C, const CXXRecordDecl *TempTy) const {
3253 if (!C.hasSameUnqualifiedType(T1: getType(), T2: C.getCanonicalTagType(TD: TempTy)))
3254 return false;
3255
3256 const Expr *E = skipTemporaryBindingsNoOpCastsAndParens(E: this);
3257
3258 // Temporaries are by definition pr-values of class type.
3259 if (!E->Classify(Ctx&: C).isPRValue()) {
3260 // In this context, property reference is a message call and is pr-value.
3261 if (!isa<ObjCPropertyRefExpr>(Val: E))
3262 return false;
3263 }
3264
3265 // Black-list a few cases which yield pr-values of class type that don't
3266 // refer to temporaries of that type:
3267
3268 // - implicit derived-to-base conversions
3269 if (const auto *ICE = dyn_cast<ImplicitCastExpr>(Val: E)) {
3270 switch (ICE->getCastKind()) {
3271 case CK_DerivedToBase:
3272 case CK_UncheckedDerivedToBase:
3273 return false;
3274 default:
3275 break;
3276 }
3277 }
3278
3279 // - member expressions (all)
3280 if (isa<MemberExpr>(Val: E))
3281 return false;
3282
3283 if (const auto *BO = dyn_cast<BinaryOperator>(Val: E))
3284 if (BO->isPtrMemOp())
3285 return false;
3286
3287 // - opaque values (all)
3288 if (isa<OpaqueValueExpr>(Val: E))
3289 return false;
3290
3291 return true;
3292}
3293
3294bool Expr::isImplicitCXXThis() const {
3295 const Expr *E = this;
3296
3297 // Strip away parentheses and casts we don't care about.
3298 while (true) {
3299 if (const ParenExpr *Paren = dyn_cast<ParenExpr>(Val: E)) {
3300 E = Paren->getSubExpr();
3301 continue;
3302 }
3303
3304 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Val: E)) {
3305 if (ICE->getCastKind() == CK_NoOp ||
3306 ICE->getCastKind() == CK_LValueToRValue ||
3307 ICE->getCastKind() == CK_DerivedToBase ||
3308 ICE->getCastKind() == CK_UncheckedDerivedToBase) {
3309 E = ICE->getSubExpr();
3310 continue;
3311 }
3312 }
3313
3314 if (const UnaryOperator* UnOp = dyn_cast<UnaryOperator>(Val: E)) {
3315 if (UnOp->getOpcode() == UO_Extension) {
3316 E = UnOp->getSubExpr();
3317 continue;
3318 }
3319 }
3320
3321 if (const MaterializeTemporaryExpr *M
3322 = dyn_cast<MaterializeTemporaryExpr>(Val: E)) {
3323 E = M->getSubExpr();
3324 continue;
3325 }
3326
3327 break;
3328 }
3329
3330 if (const CXXThisExpr *This = dyn_cast<CXXThisExpr>(Val: E))
3331 return This->isImplicit();
3332
3333 return false;
3334}
3335
3336/// hasAnyTypeDependentArguments - Determines if any of the expressions
3337/// in Exprs is type-dependent.
3338bool Expr::hasAnyTypeDependentArguments(ArrayRef<Expr *> Exprs) {
3339 for (unsigned I = 0; I < Exprs.size(); ++I)
3340 if (Exprs[I]->isTypeDependent())
3341 return true;
3342
3343 return false;
3344}
3345
3346bool Expr::isConstantInitializer(ASTContext &Ctx, bool IsForRef,
3347 const Expr **Culprit) const {
3348 assert(!isValueDependent() &&
3349 "Expression evaluator can't be called on a dependent expression.");
3350
3351 // This function is attempting whether an expression is an initializer
3352 // which can be evaluated at compile-time. It very closely parallels
3353 // ConstExprEmitter in CGExprConstant.cpp; if they don't match, it
3354 // will lead to unexpected results. Like ConstExprEmitter, it falls back
3355 // to isEvaluatable most of the time.
3356 //
3357 // If we ever capture reference-binding directly in the AST, we can
3358 // kill the second parameter.
3359
3360 if (IsForRef) {
3361 if (auto *EWC = dyn_cast<ExprWithCleanups>(Val: this))
3362 return EWC->getSubExpr()->isConstantInitializer(Ctx, IsForRef: true, Culprit);
3363 if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Val: this))
3364 return MTE->getSubExpr()->isConstantInitializer(Ctx, IsForRef: false, Culprit);
3365 EvalResult Result;
3366 if (EvaluateAsLValue(Result, Ctx) && !Result.HasSideEffects)
3367 return true;
3368 if (Culprit)
3369 *Culprit = this;
3370 return false;
3371 }
3372
3373 switch (getStmtClass()) {
3374 default: break;
3375 case Stmt::ExprWithCleanupsClass:
3376 return cast<ExprWithCleanups>(Val: this)->getSubExpr()->isConstantInitializer(
3377 Ctx, IsForRef, Culprit);
3378 case StringLiteralClass:
3379 case ObjCEncodeExprClass:
3380 return true;
3381 case CXXTemporaryObjectExprClass:
3382 case CXXConstructExprClass: {
3383 const CXXConstructExpr *CE = cast<CXXConstructExpr>(Val: this);
3384
3385 if (CE->getConstructor()->isTrivial() &&
3386 CE->getConstructor()->getParent()->hasTrivialDestructor()) {
3387 // Trivial default constructor
3388 if (!CE->getNumArgs()) return true;
3389
3390 // Trivial copy constructor
3391 assert(CE->getNumArgs() == 1 && "trivial ctor with > 1 argument");
3392 return CE->getArg(Arg: 0)->isConstantInitializer(Ctx, IsForRef: false, Culprit);
3393 }
3394
3395 break;
3396 }
3397 case ConstantExprClass: {
3398 // FIXME: We should be able to return "true" here, but it can lead to extra
3399 // error messages. E.g. in Sema/array-init.c.
3400 const Expr *Exp = cast<ConstantExpr>(Val: this)->getSubExpr();
3401 return Exp->isConstantInitializer(Ctx, IsForRef: false, Culprit);
3402 }
3403 case CompoundLiteralExprClass: {
3404 // This handles gcc's extension that allows global initializers like
3405 // "struct x {int x;} x = (struct x) {};".
3406 // FIXME: This accepts other cases it shouldn't!
3407 const Expr *Exp = cast<CompoundLiteralExpr>(Val: this)->getInitializer();
3408 return Exp->isConstantInitializer(Ctx, IsForRef: false, Culprit);
3409 }
3410 case DesignatedInitUpdateExprClass: {
3411 const DesignatedInitUpdateExpr *DIUE = cast<DesignatedInitUpdateExpr>(Val: this);
3412 return DIUE->getBase()->isConstantInitializer(Ctx, IsForRef: false, Culprit) &&
3413 DIUE->getUpdater()->isConstantInitializer(Ctx, IsForRef: false, Culprit);
3414 }
3415 case InitListExprClass: {
3416 // C++ [dcl.init.aggr]p2:
3417 // The elements of an aggregate are:
3418 // - for an array, the array elements in increasing subscript order, or
3419 // - for a class, the direct base classes in declaration order, followed
3420 // by the direct non-static data members (11.4) that are not members of
3421 // an anonymous union, in declaration order.
3422 const InitListExpr *ILE = cast<InitListExpr>(Val: this);
3423 assert(ILE->isSemanticForm() && "InitListExpr must be in semantic form");
3424
3425 if (ILE->isTransparent())
3426 return ILE->getInit(Init: 0)->isConstantInitializer(Ctx, IsForRef: false, Culprit);
3427
3428 if (ILE->getType()->isArrayType()) {
3429 unsigned numInits = ILE->getNumInits();
3430 for (unsigned i = 0; i < numInits; i++) {
3431 if (!ILE->getInit(Init: i)->isConstantInitializer(Ctx, IsForRef: false, Culprit))
3432 return false;
3433 }
3434 return true;
3435 }
3436
3437 if (ILE->getType()->isRecordType()) {
3438 unsigned ElementNo = 0;
3439 auto *RD = ILE->getType()->castAsRecordDecl();
3440
3441 // In C++17, bases were added to the list of members used by aggregate
3442 // initialization.
3443 if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(Val: RD)) {
3444 for (unsigned i = 0, e = CXXRD->getNumBases(); i < e; i++) {
3445 if (ElementNo < ILE->getNumInits()) {
3446 const Expr *Elt = ILE->getInit(Init: ElementNo++);
3447 if (!Elt->isConstantInitializer(Ctx, IsForRef: false, Culprit))
3448 return false;
3449 }
3450 }
3451 }
3452
3453 for (const auto *Field : RD->fields()) {
3454 // If this is a union, skip all the fields that aren't being initialized.
3455 if (RD->isUnion() && ILE->getInitializedFieldInUnion() != Field)
3456 continue;
3457
3458 // Don't emit anonymous bitfields, they just affect layout.
3459 if (Field->isUnnamedBitField())
3460 continue;
3461
3462 if (ElementNo < ILE->getNumInits()) {
3463 const Expr *Elt = ILE->getInit(Init: ElementNo++);
3464 if (Field->isBitField()) {
3465 // Bitfields have to evaluate to an integer.
3466 EvalResult Result;
3467 if (!Elt->EvaluateAsInt(Result, Ctx)) {
3468 if (Culprit)
3469 *Culprit = Elt;
3470 return false;
3471 }
3472 } else {
3473 bool RefType = Field->getType()->isReferenceType();
3474 if (!Elt->isConstantInitializer(Ctx, IsForRef: RefType, Culprit))
3475 return false;
3476 }
3477 }
3478 }
3479 return true;
3480 }
3481
3482 break;
3483 }
3484 case ImplicitValueInitExprClass:
3485 case NoInitExprClass:
3486 return true;
3487 case ParenExprClass:
3488 return cast<ParenExpr>(Val: this)->getSubExpr()
3489 ->isConstantInitializer(Ctx, IsForRef, Culprit);
3490 case GenericSelectionExprClass:
3491 return cast<GenericSelectionExpr>(Val: this)->getResultExpr()
3492 ->isConstantInitializer(Ctx, IsForRef, Culprit);
3493 case ChooseExprClass:
3494 if (cast<ChooseExpr>(Val: this)->isConditionDependent()) {
3495 if (Culprit)
3496 *Culprit = this;
3497 return false;
3498 }
3499 return cast<ChooseExpr>(Val: this)->getChosenSubExpr()
3500 ->isConstantInitializer(Ctx, IsForRef, Culprit);
3501 case UnaryOperatorClass: {
3502 const UnaryOperator* Exp = cast<UnaryOperator>(Val: this);
3503 if (Exp->getOpcode() == UO_Extension)
3504 return Exp->getSubExpr()->isConstantInitializer(Ctx, IsForRef: false, Culprit);
3505 break;
3506 }
3507 case PackIndexingExprClass: {
3508 return cast<PackIndexingExpr>(Val: this)
3509 ->getSelectedExpr()
3510 ->isConstantInitializer(Ctx, IsForRef: false, Culprit);
3511 }
3512 case CXXFunctionalCastExprClass:
3513 case CXXStaticCastExprClass:
3514 case ImplicitCastExprClass:
3515 case CStyleCastExprClass:
3516 case ObjCBridgedCastExprClass:
3517 case CXXDynamicCastExprClass:
3518 case CXXReinterpretCastExprClass:
3519 case CXXAddrspaceCastExprClass:
3520 case CXXConstCastExprClass: {
3521 const CastExpr *CE = cast<CastExpr>(Val: this);
3522
3523 // Handle misc casts we want to ignore.
3524 if (CE->getCastKind() == CK_NoOp ||
3525 CE->getCastKind() == CK_LValueToRValue ||
3526 CE->getCastKind() == CK_ToUnion ||
3527 CE->getCastKind() == CK_ConstructorConversion ||
3528 CE->getCastKind() == CK_NonAtomicToAtomic ||
3529 CE->getCastKind() == CK_AtomicToNonAtomic ||
3530 CE->getCastKind() == CK_NullToPointer ||
3531 CE->getCastKind() == CK_IntToOCLSampler)
3532 return CE->getSubExpr()->isConstantInitializer(Ctx, IsForRef: false, Culprit);
3533
3534 break;
3535 }
3536 case MaterializeTemporaryExprClass:
3537 return cast<MaterializeTemporaryExpr>(Val: this)
3538 ->getSubExpr()
3539 ->isConstantInitializer(Ctx, IsForRef: false, Culprit);
3540
3541 case SubstNonTypeTemplateParmExprClass:
3542 return cast<SubstNonTypeTemplateParmExpr>(Val: this)->getReplacement()
3543 ->isConstantInitializer(Ctx, IsForRef: false, Culprit);
3544 case CXXDefaultArgExprClass:
3545 return cast<CXXDefaultArgExpr>(Val: this)->getExpr()
3546 ->isConstantInitializer(Ctx, IsForRef: false, Culprit);
3547 case CXXDefaultInitExprClass:
3548 return cast<CXXDefaultInitExpr>(Val: this)->getExpr()
3549 ->isConstantInitializer(Ctx, IsForRef: false, Culprit);
3550 }
3551 // Allow certain forms of UB in constant initializers: signed integer
3552 // overflow and floating-point division by zero. We'll give a warning on
3553 // these, but they're common enough that we have to accept them.
3554 if (isEvaluatable(Ctx, AllowSideEffects: SE_AllowUndefinedBehavior))
3555 return true;
3556 if (Culprit)
3557 *Culprit = this;
3558 return false;
3559}
3560
3561bool CallExpr::isBuiltinAssumeFalse(const ASTContext &Ctx) const {
3562 unsigned BuiltinID = getBuiltinCallee();
3563 if (BuiltinID != Builtin::BI__assume &&
3564 BuiltinID != Builtin::BI__builtin_assume)
3565 return false;
3566
3567 const Expr* Arg = getArg(Arg: 0);
3568 bool ArgVal;
3569 return !Arg->isValueDependent() &&
3570 Arg->EvaluateAsBooleanCondition(Result&: ArgVal, Ctx) && !ArgVal;
3571}
3572
3573const AllocSizeAttr *CallExpr::getCalleeAllocSizeAttr() const {
3574 if (const FunctionDecl *DirectCallee = getDirectCallee())
3575 return DirectCallee->getAttr<AllocSizeAttr>();
3576 if (const Decl *IndirectCallee = getCalleeDecl())
3577 return IndirectCallee->getAttr<AllocSizeAttr>();
3578 return nullptr;
3579}
3580
3581std::optional<llvm::APInt>
3582CallExpr::evaluateBytesReturnedByAllocSizeCall(const ASTContext &Ctx) const {
3583 const AllocSizeAttr *AllocSize = getCalleeAllocSizeAttr();
3584
3585 assert(AllocSize && AllocSize->getElemSizeParam().isValid());
3586 unsigned SizeArgNo = AllocSize->getElemSizeParam().getASTIndex();
3587 unsigned BitsInSizeT = Ctx.getTypeSize(T: Ctx.getSizeType());
3588 if (getNumArgs() <= SizeArgNo)
3589 return std::nullopt;
3590
3591 auto EvaluateAsSizeT = [&](const Expr *E, llvm::APSInt &Into) {
3592 Expr::EvalResult ExprResult;
3593 if (E->isValueDependent() ||
3594 !E->EvaluateAsInt(Result&: ExprResult, Ctx, AllowSideEffects: Expr::SE_AllowSideEffects))
3595 return false;
3596 Into = ExprResult.Val.getInt();
3597 if (Into.isNegative() || !Into.isIntN(N: BitsInSizeT))
3598 return false;
3599 Into = Into.zext(width: BitsInSizeT);
3600 return true;
3601 };
3602
3603 llvm::APSInt SizeOfElem;
3604 if (!EvaluateAsSizeT(getArg(Arg: SizeArgNo), SizeOfElem))
3605 return std::nullopt;
3606
3607 if (!AllocSize->getNumElemsParam().isValid())
3608 return SizeOfElem;
3609
3610 llvm::APSInt NumberOfElems;
3611 unsigned NumArgNo = AllocSize->getNumElemsParam().getASTIndex();
3612 if (!EvaluateAsSizeT(getArg(Arg: NumArgNo), NumberOfElems))
3613 return std::nullopt;
3614
3615 bool Overflow;
3616 llvm::APInt BytesAvailable = SizeOfElem.umul_ov(RHS: NumberOfElems, Overflow);
3617 if (Overflow)
3618 return std::nullopt;
3619
3620 return BytesAvailable;
3621}
3622
3623bool CallExpr::isCallToStdMove() const {
3624 return getBuiltinCallee() == Builtin::BImove;
3625}
3626
3627namespace {
3628 /// Look for any side effects within a Stmt.
3629 class SideEffectFinder : public ConstEvaluatedExprVisitor<SideEffectFinder> {
3630 typedef ConstEvaluatedExprVisitor<SideEffectFinder> Inherited;
3631 const bool IncludePossibleEffects;
3632 bool HasSideEffects;
3633
3634 public:
3635 explicit SideEffectFinder(const ASTContext &Context, bool IncludePossible)
3636 : Inherited(Context),
3637 IncludePossibleEffects(IncludePossible), HasSideEffects(false) { }
3638
3639 bool hasSideEffects() const { return HasSideEffects; }
3640
3641 void VisitDecl(const Decl *D) {
3642 if (!D)
3643 return;
3644
3645 // We assume the caller checks subexpressions (eg, the initializer, VLA
3646 // bounds) for side-effects on our behalf.
3647 if (auto *VD = dyn_cast<VarDecl>(Val: D)) {
3648 // Registering a destructor is a side-effect.
3649 if (IncludePossibleEffects && VD->isThisDeclarationADefinition() &&
3650 VD->needsDestruction(Ctx: Context))
3651 HasSideEffects = true;
3652 }
3653 }
3654
3655 void VisitDeclStmt(const DeclStmt *DS) {
3656 for (auto *D : DS->decls())
3657 VisitDecl(D);
3658 Inherited::VisitDeclStmt(S: DS);
3659 }
3660
3661 void VisitExpr(const Expr *E) {
3662 if (!HasSideEffects &&
3663 E->HasSideEffects(Ctx: Context, IncludePossibleEffects))
3664 HasSideEffects = true;
3665 }
3666 };
3667}
3668
3669bool Expr::HasSideEffects(const ASTContext &Ctx,
3670 bool IncludePossibleEffects) const {
3671 // In circumstances where we care about definite side effects instead of
3672 // potential side effects, we want to ignore expressions that are part of a
3673 // macro expansion as a potential side effect.
3674 if (!IncludePossibleEffects && getExprLoc().isMacroID())
3675 return false;
3676
3677 switch (getStmtClass()) {
3678 case NoStmtClass:
3679#define ABSTRACT_STMT(Type)
3680#define STMT(Type, Base) case Type##Class:
3681#define EXPR(Type, Base)
3682#include "clang/AST/StmtNodes.inc"
3683 llvm_unreachable("unexpected Expr kind");
3684
3685 case DependentScopeDeclRefExprClass:
3686 case CXXUnresolvedConstructExprClass:
3687 case CXXDependentScopeMemberExprClass:
3688 case UnresolvedLookupExprClass:
3689 case UnresolvedMemberExprClass:
3690 case PackExpansionExprClass:
3691 case SubstNonTypeTemplateParmPackExprClass:
3692 case FunctionParmPackExprClass:
3693 case RecoveryExprClass:
3694 case CXXFoldExprClass:
3695 // Make a conservative assumption for dependent nodes.
3696 return IncludePossibleEffects;
3697
3698 case DeclRefExprClass:
3699 case ObjCIvarRefExprClass:
3700 case PredefinedExprClass:
3701 case IntegerLiteralClass:
3702 case FixedPointLiteralClass:
3703 case FloatingLiteralClass:
3704 case ImaginaryLiteralClass:
3705 case StringLiteralClass:
3706 case CharacterLiteralClass:
3707 case OffsetOfExprClass:
3708 case ImplicitValueInitExprClass:
3709 case UnaryExprOrTypeTraitExprClass:
3710 case AddrLabelExprClass:
3711 case GNUNullExprClass:
3712 case ArrayInitIndexExprClass:
3713 case NoInitExprClass:
3714 case CXXBoolLiteralExprClass:
3715 case CXXNullPtrLiteralExprClass:
3716 case CXXThisExprClass:
3717 case CXXScalarValueInitExprClass:
3718 case TypeTraitExprClass:
3719 case ArrayTypeTraitExprClass:
3720 case ExpressionTraitExprClass:
3721 case CXXNoexceptExprClass:
3722 case SizeOfPackExprClass:
3723 case ObjCStringLiteralClass:
3724 case ObjCEncodeExprClass:
3725 case ObjCBoolLiteralExprClass:
3726 case ObjCAvailabilityCheckExprClass:
3727 case CXXUuidofExprClass:
3728 case OpaqueValueExprClass:
3729 case SourceLocExprClass:
3730 case EmbedExprClass:
3731 case ConceptSpecializationExprClass:
3732 case RequiresExprClass:
3733 case SYCLUniqueStableNameExprClass:
3734 case PackIndexingExprClass:
3735 case HLSLOutArgExprClass:
3736 case OpenACCAsteriskSizeExprClass:
3737 // These never have a side-effect.
3738 return false;
3739
3740 case ConstantExprClass:
3741 // FIXME: Move this into the "return false;" block above.
3742 return cast<ConstantExpr>(Val: this)->getSubExpr()->HasSideEffects(
3743 Ctx, IncludePossibleEffects);
3744
3745 case CallExprClass:
3746 case CXXOperatorCallExprClass:
3747 case CXXMemberCallExprClass:
3748 case CUDAKernelCallExprClass:
3749 case UserDefinedLiteralClass: {
3750 // We don't know a call definitely has side effects, except for calls
3751 // to pure/const functions that definitely don't.
3752 // If the call itself is considered side-effect free, check the operands.
3753 const Decl *FD = cast<CallExpr>(Val: this)->getCalleeDecl();
3754 bool IsPure = FD && (FD->hasAttr<ConstAttr>() || FD->hasAttr<PureAttr>());
3755 if (IsPure || !IncludePossibleEffects)
3756 break;
3757 return true;
3758 }
3759
3760 case BlockExprClass:
3761 case CXXBindTemporaryExprClass:
3762 if (!IncludePossibleEffects)
3763 break;
3764 return true;
3765
3766 case MSPropertyRefExprClass:
3767 case MSPropertySubscriptExprClass:
3768 case CompoundAssignOperatorClass:
3769 case VAArgExprClass:
3770 case AtomicExprClass:
3771 case CXXThrowExprClass:
3772 case CXXNewExprClass:
3773 case CXXDeleteExprClass:
3774 case CoawaitExprClass:
3775 case DependentCoawaitExprClass:
3776 case CoyieldExprClass:
3777 // These always have a side-effect.
3778 return true;
3779
3780 case StmtExprClass: {
3781 // StmtExprs have a side-effect if any substatement does.
3782 SideEffectFinder Finder(Ctx, IncludePossibleEffects);
3783 Finder.Visit(S: cast<StmtExpr>(Val: this)->getSubStmt());
3784 return Finder.hasSideEffects();
3785 }
3786
3787 case ExprWithCleanupsClass:
3788 if (IncludePossibleEffects)
3789 if (cast<ExprWithCleanups>(Val: this)->cleanupsHaveSideEffects())
3790 return true;
3791 break;
3792
3793 case ParenExprClass:
3794 case ArraySubscriptExprClass:
3795 case MatrixSingleSubscriptExprClass:
3796 case MatrixSubscriptExprClass:
3797 case ArraySectionExprClass:
3798 case OMPArrayShapingExprClass:
3799 case OMPIteratorExprClass:
3800 case MemberExprClass:
3801 case ConditionalOperatorClass:
3802 case BinaryConditionalOperatorClass:
3803 case CompoundLiteralExprClass:
3804 case ExtVectorElementExprClass:
3805 case DesignatedInitExprClass:
3806 case DesignatedInitUpdateExprClass:
3807 case ArrayInitLoopExprClass:
3808 case ParenListExprClass:
3809 case CXXPseudoDestructorExprClass:
3810 case CXXRewrittenBinaryOperatorClass:
3811 case CXXStdInitializerListExprClass:
3812 case SubstNonTypeTemplateParmExprClass:
3813 case MaterializeTemporaryExprClass:
3814 case ShuffleVectorExprClass:
3815 case ConvertVectorExprClass:
3816 case AsTypeExprClass:
3817 case CXXParenListInitExprClass:
3818 // These have a side-effect if any subexpression does.
3819 break;
3820
3821 case UnaryOperatorClass:
3822 if (cast<UnaryOperator>(Val: this)->isIncrementDecrementOp())
3823 return true;
3824 break;
3825
3826 case BinaryOperatorClass:
3827 if (cast<BinaryOperator>(Val: this)->isAssignmentOp())
3828 return true;
3829 break;
3830
3831 case InitListExprClass:
3832 // FIXME: The children for an InitListExpr doesn't include the array filler.
3833 if (const Expr *E = cast<InitListExpr>(Val: this)->getArrayFiller())
3834 if (E->HasSideEffects(Ctx, IncludePossibleEffects))
3835 return true;
3836 break;
3837
3838 case GenericSelectionExprClass:
3839 return cast<GenericSelectionExpr>(Val: this)->getResultExpr()->HasSideEffects(
3840 Ctx, IncludePossibleEffects);
3841
3842 case ChooseExprClass:
3843 return cast<ChooseExpr>(Val: this)->getChosenSubExpr()->HasSideEffects(
3844 Ctx, IncludePossibleEffects);
3845
3846 case CXXDefaultArgExprClass:
3847 return cast<CXXDefaultArgExpr>(Val: this)->getExpr()->HasSideEffects(
3848 Ctx, IncludePossibleEffects);
3849
3850 case CXXDefaultInitExprClass: {
3851 const FieldDecl *FD = cast<CXXDefaultInitExpr>(Val: this)->getField();
3852 if (const Expr *E = FD->getInClassInitializer())
3853 return E->HasSideEffects(Ctx, IncludePossibleEffects);
3854 // If we've not yet parsed the initializer, assume it has side-effects.
3855 return true;
3856 }
3857
3858 case CXXDynamicCastExprClass: {
3859 // A dynamic_cast expression has side-effects if it can throw.
3860 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(Val: this);
3861 if (DCE->getTypeAsWritten()->isReferenceType() &&
3862 DCE->getCastKind() == CK_Dynamic)
3863 return true;
3864 }
3865 [[fallthrough]];
3866 case ImplicitCastExprClass:
3867 case CStyleCastExprClass:
3868 case CXXStaticCastExprClass:
3869 case CXXReinterpretCastExprClass:
3870 case CXXConstCastExprClass:
3871 case CXXAddrspaceCastExprClass:
3872 case CXXFunctionalCastExprClass:
3873 case BuiltinBitCastExprClass: {
3874 // While volatile reads are side-effecting in both C and C++, we treat them
3875 // as having possible (not definite) side-effects. This allows idiomatic
3876 // code to behave without warning, such as sizeof(*v) for a volatile-
3877 // qualified pointer.
3878 if (!IncludePossibleEffects)
3879 break;
3880
3881 const CastExpr *CE = cast<CastExpr>(Val: this);
3882 if (CE->getCastKind() == CK_LValueToRValue &&
3883 CE->getSubExpr()->getType().isVolatileQualified())
3884 return true;
3885 break;
3886 }
3887
3888 case CXXTypeidExprClass: {
3889 const auto *TE = cast<CXXTypeidExpr>(Val: this);
3890 if (!TE->isPotentiallyEvaluated())
3891 return false;
3892
3893 // If this type id expression can throw because of a null pointer, that is a
3894 // side-effect independent of if the operand has a side-effect
3895 if (IncludePossibleEffects && TE->hasNullCheck())
3896 return true;
3897
3898 break;
3899 }
3900
3901 case CXXConstructExprClass:
3902 case CXXTemporaryObjectExprClass: {
3903 const CXXConstructExpr *CE = cast<CXXConstructExpr>(Val: this);
3904 if (!CE->getConstructor()->isTrivial() && IncludePossibleEffects)
3905 return true;
3906 // A trivial constructor does not add any side-effects of its own. Just look
3907 // at its arguments.
3908 break;
3909 }
3910
3911 case CXXInheritedCtorInitExprClass: {
3912 const auto *ICIE = cast<CXXInheritedCtorInitExpr>(Val: this);
3913 if (!ICIE->getConstructor()->isTrivial() && IncludePossibleEffects)
3914 return true;
3915 break;
3916 }
3917
3918 case LambdaExprClass: {
3919 const LambdaExpr *LE = cast<LambdaExpr>(Val: this);
3920 for (Expr *E : LE->capture_inits())
3921 if (E && E->HasSideEffects(Ctx, IncludePossibleEffects))
3922 return true;
3923 return false;
3924 }
3925
3926 case PseudoObjectExprClass: {
3927 // Only look for side-effects in the semantic form, and look past
3928 // OpaqueValueExpr bindings in that form.
3929 const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(Val: this);
3930 for (PseudoObjectExpr::const_semantics_iterator I = PO->semantics_begin(),
3931 E = PO->semantics_end();
3932 I != E; ++I) {
3933 const Expr *Subexpr = *I;
3934 if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Val: Subexpr))
3935 Subexpr = OVE->getSourceExpr();
3936 if (Subexpr->HasSideEffects(Ctx, IncludePossibleEffects))
3937 return true;
3938 }
3939 return false;
3940 }
3941
3942 case ObjCBoxedExprClass:
3943 case ObjCArrayLiteralClass:
3944 case ObjCDictionaryLiteralClass:
3945 case ObjCSelectorExprClass:
3946 case ObjCProtocolExprClass:
3947 case ObjCIsaExprClass:
3948 case ObjCIndirectCopyRestoreExprClass:
3949 case ObjCSubscriptRefExprClass:
3950 case ObjCBridgedCastExprClass:
3951 case ObjCMessageExprClass:
3952 case ObjCPropertyRefExprClass:
3953 // FIXME: Classify these cases better.
3954 if (IncludePossibleEffects)
3955 return true;
3956 break;
3957 }
3958
3959 // Recurse to children.
3960 for (const Stmt *SubStmt : children())
3961 if (SubStmt &&
3962 cast<Expr>(Val: SubStmt)->HasSideEffects(Ctx, IncludePossibleEffects))
3963 return true;
3964
3965 return false;
3966}
3967
3968FPOptions Expr::getFPFeaturesInEffect(const LangOptions &LO) const {
3969 if (auto Call = dyn_cast<CallExpr>(Val: this))
3970 return Call->getFPFeaturesInEffect(LO);
3971 if (auto UO = dyn_cast<UnaryOperator>(Val: this))
3972 return UO->getFPFeaturesInEffect(LO);
3973 if (auto BO = dyn_cast<BinaryOperator>(Val: this))
3974 return BO->getFPFeaturesInEffect(LO);
3975 if (auto Cast = dyn_cast<CastExpr>(Val: this))
3976 return Cast->getFPFeaturesInEffect(LO);
3977 if (auto ConvertVector = dyn_cast<ConvertVectorExpr>(Val: this))
3978 return ConvertVector->getFPFeaturesInEffect(LO);
3979 return FPOptions::defaultWithoutTrailingStorage(LO);
3980}
3981
3982namespace {
3983 /// Look for a call to a non-trivial function within an expression.
3984 class NonTrivialCallFinder : public ConstEvaluatedExprVisitor<NonTrivialCallFinder>
3985 {
3986 typedef ConstEvaluatedExprVisitor<NonTrivialCallFinder> Inherited;
3987
3988 bool NonTrivial;
3989
3990 public:
3991 explicit NonTrivialCallFinder(const ASTContext &Context)
3992 : Inherited(Context), NonTrivial(false) { }
3993
3994 bool hasNonTrivialCall() const { return NonTrivial; }
3995
3996 void VisitCallExpr(const CallExpr *E) {
3997 if (const CXXMethodDecl *Method
3998 = dyn_cast_or_null<const CXXMethodDecl>(Val: E->getCalleeDecl())) {
3999 if (Method->isTrivial()) {
4000 // Recurse to children of the call.
4001 Inherited::VisitStmt(S: E);
4002 return;
4003 }
4004 }
4005
4006 NonTrivial = true;
4007 }
4008
4009 void VisitCXXConstructExpr(const CXXConstructExpr *E) {
4010 if (E->getConstructor()->isTrivial()) {
4011 // Recurse to children of the call.
4012 Inherited::VisitStmt(S: E);
4013 return;
4014 }
4015
4016 NonTrivial = true;
4017 }
4018
4019 void VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr *E) {
4020 // Destructor of the temporary might be null if destructor declaration
4021 // is not valid.
4022 if (const CXXDestructorDecl *DtorDecl =
4023 E->getTemporary()->getDestructor()) {
4024 if (DtorDecl->isTrivial()) {
4025 Inherited::VisitStmt(S: E);
4026 return;
4027 }
4028 }
4029
4030 NonTrivial = true;
4031 }
4032 };
4033}
4034
4035bool Expr::hasNonTrivialCall(const ASTContext &Ctx) const {
4036 NonTrivialCallFinder Finder(Ctx);
4037 Finder.Visit(S: this);
4038 return Finder.hasNonTrivialCall();
4039}
4040
4041/// isNullPointerConstant - C99 6.3.2.3p3 - Return whether this is a null
4042/// pointer constant or not, as well as the specific kind of constant detected.
4043/// Null pointer constants can be integer constant expressions with the
4044/// value zero, casts of zero to void*, nullptr (C++0X), or __null
4045/// (a GNU extension).
4046Expr::NullPointerConstantKind
4047Expr::isNullPointerConstant(ASTContext &Ctx,
4048 NullPointerConstantValueDependence NPC) const {
4049 if (isValueDependent() &&
4050 (!Ctx.getLangOpts().CPlusPlus11 || Ctx.getLangOpts().MSVCCompat)) {
4051 // Error-dependent expr should never be a null pointer.
4052 if (containsErrors())
4053 return NPCK_NotNull;
4054 switch (NPC) {
4055 case NPC_NeverValueDependent:
4056 llvm_unreachable("Unexpected value dependent expression!");
4057 case NPC_ValueDependentIsNull:
4058 if (isTypeDependent() || getType()->isIntegralType(Ctx))
4059 return NPCK_ZeroExpression;
4060 else
4061 return NPCK_NotNull;
4062
4063 case NPC_ValueDependentIsNotNull:
4064 return NPCK_NotNull;
4065 }
4066 }
4067
4068 // Strip off a cast to void*, if it exists. Except in C++.
4069 if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(Val: this)) {
4070 if (!Ctx.getLangOpts().CPlusPlus) {
4071 // Check that it is a cast to void*.
4072 if (const PointerType *PT = CE->getType()->getAs<PointerType>()) {
4073 QualType Pointee = PT->getPointeeType();
4074 Qualifiers Qs = Pointee.getQualifiers();
4075 // Only (void*)0 or equivalent are treated as nullptr. If pointee type
4076 // has non-default address space it is not treated as nullptr.
4077 // (__generic void*)0 in OpenCL 2.0 should not be treated as nullptr
4078 // since it cannot be assigned to a pointer to constant address space.
4079 if (Ctx.getLangOpts().OpenCL &&
4080 Pointee.getAddressSpace() == Ctx.getDefaultOpenCLPointeeAddrSpace())
4081 Qs.removeAddressSpace();
4082
4083 if (Pointee->isVoidType() && Qs.empty() && // to void*
4084 CE->getSubExpr()->getType()->isIntegerType()) // from int
4085 return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
4086 }
4087 }
4088 } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Val: this)) {
4089 // Ignore the ImplicitCastExpr type entirely.
4090 return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
4091 } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(Val: this)) {
4092 // Accept ((void*)0) as a null pointer constant, as many other
4093 // implementations do.
4094 return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
4095 } else if (const GenericSelectionExpr *GE =
4096 dyn_cast<GenericSelectionExpr>(Val: this)) {
4097 if (GE->isResultDependent())
4098 return NPCK_NotNull;
4099 return GE->getResultExpr()->isNullPointerConstant(Ctx, NPC);
4100 } else if (const ChooseExpr *CE = dyn_cast<ChooseExpr>(Val: this)) {
4101 if (CE->isConditionDependent())
4102 return NPCK_NotNull;
4103 return CE->getChosenSubExpr()->isNullPointerConstant(Ctx, NPC);
4104 } else if (const CXXDefaultArgExpr *DefaultArg
4105 = dyn_cast<CXXDefaultArgExpr>(Val: this)) {
4106 // See through default argument expressions.
4107 return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC);
4108 } else if (const CXXDefaultInitExpr *DefaultInit
4109 = dyn_cast<CXXDefaultInitExpr>(Val: this)) {
4110 // See through default initializer expressions.
4111 return DefaultInit->getExpr()->isNullPointerConstant(Ctx, NPC);
4112 } else if (isa<GNUNullExpr>(Val: this)) {
4113 // The GNU __null extension is always a null pointer constant.
4114 return NPCK_GNUNull;
4115 } else if (const MaterializeTemporaryExpr *M
4116 = dyn_cast<MaterializeTemporaryExpr>(Val: this)) {
4117 return M->getSubExpr()->isNullPointerConstant(Ctx, NPC);
4118 } else if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Val: this)) {
4119 if (const Expr *Source = OVE->getSourceExpr())
4120 return Source->isNullPointerConstant(Ctx, NPC);
4121 }
4122
4123 // If the expression has no type information, it cannot be a null pointer
4124 // constant.
4125 if (getType().isNull())
4126 return NPCK_NotNull;
4127
4128 // C++11/C23 nullptr_t is always a null pointer constant.
4129 if (getType()->isNullPtrType())
4130 return NPCK_CXX11_nullptr;
4131
4132 if (const RecordType *UT = getType()->getAsUnionType())
4133 if (!Ctx.getLangOpts().CPlusPlus11 && UT &&
4134 UT->getDecl()->getMostRecentDecl()->hasAttr<TransparentUnionAttr>())
4135 if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(Val: this)){
4136 const Expr *InitExpr = CLE->getInitializer();
4137 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Val: InitExpr))
4138 return ILE->getInit(Init: 0)->isNullPointerConstant(Ctx, NPC);
4139 }
4140 // This expression must be an integer type.
4141 if (!getType()->isIntegerType() ||
4142 (Ctx.getLangOpts().CPlusPlus && getType()->isEnumeralType()))
4143 return NPCK_NotNull;
4144
4145 if (Ctx.getLangOpts().CPlusPlus11) {
4146 // C++11 [conv.ptr]p1: A null pointer constant is an integer literal with
4147 // value zero or a prvalue of type std::nullptr_t.
4148 // Microsoft mode permits C++98 rules reflecting MSVC behavior.
4149 const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(Val: this);
4150 if (Lit && !Lit->getValue())
4151 return NPCK_ZeroLiteral;
4152 if (!Ctx.getLangOpts().MSVCCompat || !isCXX98IntegralConstantExpr(Ctx))
4153 return NPCK_NotNull;
4154 } else {
4155 // If we have an integer constant expression, we need to *evaluate* it and
4156 // test for the value 0.
4157 if (!isIntegerConstantExpr(Ctx))
4158 return NPCK_NotNull;
4159 }
4160
4161 if (EvaluateKnownConstInt(Ctx) != 0)
4162 return NPCK_NotNull;
4163
4164 if (isa<IntegerLiteral>(Val: this))
4165 return NPCK_ZeroLiteral;
4166 return NPCK_ZeroExpression;
4167}
4168
4169/// If this expression is an l-value for an Objective C
4170/// property, find the underlying property reference expression.
4171const ObjCPropertyRefExpr *Expr::getObjCProperty() const {
4172 const Expr *E = this;
4173 while (true) {
4174 assert((E->isLValue() && E->getObjectKind() == OK_ObjCProperty) &&
4175 "expression is not a property reference");
4176 E = E->IgnoreParenCasts();
4177 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(Val: E)) {
4178 if (BO->getOpcode() == BO_Comma) {
4179 E = BO->getRHS();
4180 continue;
4181 }
4182 }
4183
4184 break;
4185 }
4186
4187 return cast<ObjCPropertyRefExpr>(Val: E);
4188}
4189
4190bool Expr::isObjCSelfExpr() const {
4191 const Expr *E = IgnoreParenImpCasts();
4192
4193 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Val: E);
4194 if (!DRE)
4195 return false;
4196
4197 const ImplicitParamDecl *Param = dyn_cast<ImplicitParamDecl>(Val: DRE->getDecl());
4198 if (!Param)
4199 return false;
4200
4201 const ObjCMethodDecl *M = dyn_cast<ObjCMethodDecl>(Val: Param->getDeclContext());
4202 if (!M)
4203 return false;
4204
4205 return M->getSelfDecl() == Param;
4206}
4207
4208FieldDecl *Expr::getSourceBitField() {
4209 Expr *E = this->IgnoreParens();
4210
4211 while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Val: E)) {
4212 if (ICE->getCastKind() == CK_LValueToRValue ||
4213 (ICE->isGLValue() && ICE->getCastKind() == CK_NoOp))
4214 E = ICE->getSubExpr()->IgnoreParens();
4215 else
4216 break;
4217 }
4218
4219 if (MemberExpr *MemRef = dyn_cast<MemberExpr>(Val: E))
4220 if (FieldDecl *Field = dyn_cast<FieldDecl>(Val: MemRef->getMemberDecl()))
4221 if (Field->isBitField())
4222 return Field;
4223
4224 if (ObjCIvarRefExpr *IvarRef = dyn_cast<ObjCIvarRefExpr>(Val: E)) {
4225 FieldDecl *Ivar = IvarRef->getDecl();
4226 if (Ivar->isBitField())
4227 return Ivar;
4228 }
4229
4230 if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(Val: E)) {
4231 if (FieldDecl *Field = dyn_cast<FieldDecl>(Val: DeclRef->getDecl()))
4232 if (Field->isBitField())
4233 return Field;
4234
4235 if (BindingDecl *BD = dyn_cast<BindingDecl>(Val: DeclRef->getDecl()))
4236 if (Expr *E = BD->getBinding())
4237 return E->getSourceBitField();
4238 }
4239
4240 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Val: E)) {
4241 if (BinOp->isAssignmentOp() && BinOp->getLHS())
4242 return BinOp->getLHS()->getSourceBitField();
4243
4244 if (BinOp->getOpcode() == BO_Comma && BinOp->getRHS())
4245 return BinOp->getRHS()->getSourceBitField();
4246 }
4247
4248 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Val: E))
4249 if (UnOp->isPrefix() && UnOp->isIncrementDecrementOp())
4250 return UnOp->getSubExpr()->getSourceBitField();
4251
4252 return nullptr;
4253}
4254
4255EnumConstantDecl *Expr::getEnumConstantDecl() {
4256 Expr *E = this->IgnoreParenImpCasts();
4257 if (auto *DRE = dyn_cast<DeclRefExpr>(Val: E))
4258 return dyn_cast<EnumConstantDecl>(Val: DRE->getDecl());
4259 return nullptr;
4260}
4261
4262bool Expr::refersToVectorElement() const {
4263 // FIXME: Why do we not just look at the ObjectKind here?
4264 const Expr *E = this->IgnoreParens();
4265
4266 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Val: E)) {
4267 if (ICE->isGLValue() && ICE->getCastKind() == CK_NoOp)
4268 E = ICE->getSubExpr()->IgnoreParens();
4269 else
4270 break;
4271 }
4272
4273 if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(Val: E))
4274 return ASE->getBase()->getType()->isVectorType();
4275
4276 if (isa<ExtVectorElementExpr>(Val: E))
4277 return true;
4278
4279 if (auto *DRE = dyn_cast<DeclRefExpr>(Val: E))
4280 if (auto *BD = dyn_cast<BindingDecl>(Val: DRE->getDecl()))
4281 if (auto *E = BD->getBinding())
4282 return E->refersToVectorElement();
4283
4284 return false;
4285}
4286
4287bool Expr::refersToGlobalRegisterVar() const {
4288 const Expr *E = this->IgnoreParenImpCasts();
4289
4290 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Val: E))
4291 if (const auto *VD = dyn_cast<VarDecl>(Val: DRE->getDecl()))
4292 if (VD->getStorageClass() == SC_Register &&
4293 VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
4294 return true;
4295
4296 return false;
4297}
4298
4299bool Expr::isSameComparisonOperand(const Expr* E1, const Expr* E2) {
4300 E1 = E1->IgnoreParens();
4301 E2 = E2->IgnoreParens();
4302
4303 if (E1->getStmtClass() != E2->getStmtClass())
4304 return false;
4305
4306 switch (E1->getStmtClass()) {
4307 default:
4308 return false;
4309 case CXXThisExprClass:
4310 return true;
4311 case DeclRefExprClass: {
4312 // DeclRefExpr without an ImplicitCastExpr can happen for integral
4313 // template parameters.
4314 const auto *DRE1 = cast<DeclRefExpr>(Val: E1);
4315 const auto *DRE2 = cast<DeclRefExpr>(Val: E2);
4316
4317 if (DRE1->getDecl() != DRE2->getDecl())
4318 return false;
4319
4320 if ((DRE1->isPRValue() && DRE2->isPRValue()) ||
4321 (DRE1->isLValue() && DRE2->isLValue()))
4322 return true;
4323
4324 return false;
4325 }
4326 case ImplicitCastExprClass: {
4327 // Peel off implicit casts.
4328 while (true) {
4329 const auto *ICE1 = dyn_cast<ImplicitCastExpr>(Val: E1);
4330 const auto *ICE2 = dyn_cast<ImplicitCastExpr>(Val: E2);
4331 if (!ICE1 || !ICE2)
4332 return false;
4333 if (ICE1->getCastKind() != ICE2->getCastKind())
4334 return isSameComparisonOperand(E1: ICE1->IgnoreParenImpCasts(),
4335 E2: ICE2->IgnoreParenImpCasts());
4336 E1 = ICE1->getSubExpr()->IgnoreParens();
4337 E2 = ICE2->getSubExpr()->IgnoreParens();
4338 // The final cast must be one of these types.
4339 if (ICE1->getCastKind() == CK_LValueToRValue ||
4340 ICE1->getCastKind() == CK_ArrayToPointerDecay ||
4341 ICE1->getCastKind() == CK_FunctionToPointerDecay) {
4342 break;
4343 }
4344 }
4345
4346 const auto *DRE1 = dyn_cast<DeclRefExpr>(Val: E1);
4347 const auto *DRE2 = dyn_cast<DeclRefExpr>(Val: E2);
4348 if (DRE1 && DRE2)
4349 return declaresSameEntity(D1: DRE1->getDecl(), D2: DRE2->getDecl());
4350
4351 const auto *Ivar1 = dyn_cast<ObjCIvarRefExpr>(Val: E1);
4352 const auto *Ivar2 = dyn_cast<ObjCIvarRefExpr>(Val: E2);
4353 if (Ivar1 && Ivar2) {
4354 return Ivar1->isFreeIvar() && Ivar2->isFreeIvar() &&
4355 declaresSameEntity(D1: Ivar1->getDecl(), D2: Ivar2->getDecl());
4356 }
4357
4358 const auto *Array1 = dyn_cast<ArraySubscriptExpr>(Val: E1);
4359 const auto *Array2 = dyn_cast<ArraySubscriptExpr>(Val: E2);
4360 if (Array1 && Array2) {
4361 if (!isSameComparisonOperand(E1: Array1->getBase(), E2: Array2->getBase()))
4362 return false;
4363
4364 auto Idx1 = Array1->getIdx();
4365 auto Idx2 = Array2->getIdx();
4366 const auto Integer1 = dyn_cast<IntegerLiteral>(Val: Idx1);
4367 const auto Integer2 = dyn_cast<IntegerLiteral>(Val: Idx2);
4368 if (Integer1 && Integer2) {
4369 if (!llvm::APInt::isSameValue(I1: Integer1->getValue(),
4370 I2: Integer2->getValue()))
4371 return false;
4372 } else {
4373 if (!isSameComparisonOperand(E1: Idx1, E2: Idx2))
4374 return false;
4375 }
4376
4377 return true;
4378 }
4379
4380 // Walk the MemberExpr chain.
4381 while (isa<MemberExpr>(Val: E1) && isa<MemberExpr>(Val: E2)) {
4382 const auto *ME1 = cast<MemberExpr>(Val: E1);
4383 const auto *ME2 = cast<MemberExpr>(Val: E2);
4384 if (!declaresSameEntity(D1: ME1->getMemberDecl(), D2: ME2->getMemberDecl()))
4385 return false;
4386 if (const auto *D = dyn_cast<VarDecl>(Val: ME1->getMemberDecl()))
4387 if (D->isStaticDataMember())
4388 return true;
4389 E1 = ME1->getBase()->IgnoreParenImpCasts();
4390 E2 = ME2->getBase()->IgnoreParenImpCasts();
4391 }
4392
4393 if (isa<CXXThisExpr>(Val: E1) && isa<CXXThisExpr>(Val: E2))
4394 return true;
4395
4396 // A static member variable can end the MemberExpr chain with either
4397 // a MemberExpr or a DeclRefExpr.
4398 auto getAnyDecl = [](const Expr *E) -> const ValueDecl * {
4399 if (const auto *DRE = dyn_cast<DeclRefExpr>(Val: E))
4400 return DRE->getDecl();
4401 if (const auto *ME = dyn_cast<MemberExpr>(Val: E))
4402 return ME->getMemberDecl();
4403 return nullptr;
4404 };
4405
4406 const ValueDecl *VD1 = getAnyDecl(E1);
4407 const ValueDecl *VD2 = getAnyDecl(E2);
4408 return declaresSameEntity(D1: VD1, D2: VD2);
4409 }
4410 }
4411}
4412
4413/// isArrow - Return true if the base expression is a pointer to vector,
4414/// return false if the base expression is a vector.
4415bool ExtVectorElementExpr::isArrow() const {
4416 return getBase()->getType()->isPointerType();
4417}
4418
4419unsigned ExtVectorElementExpr::getNumElements() const {
4420 if (const VectorType *VT = getType()->getAs<VectorType>())
4421 return VT->getNumElements();
4422 return 1;
4423}
4424
4425/// containsDuplicateElements - Return true if any element access is repeated.
4426bool ExtVectorElementExpr::containsDuplicateElements() const {
4427 // FIXME: Refactor this code to an accessor on the AST node which returns the
4428 // "type" of component access, and share with code below and in Sema.
4429 StringRef Comp = Accessor->getName();
4430
4431 // Halving swizzles do not contain duplicate elements.
4432 if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd")
4433 return false;
4434
4435 // Advance past s-char prefix on hex swizzles.
4436 if (Comp[0] == 's' || Comp[0] == 'S')
4437 Comp = Comp.substr(Start: 1);
4438
4439 for (unsigned i = 0, e = Comp.size(); i != e; ++i)
4440 if (Comp.substr(Start: i + 1).contains(C: Comp[i]))
4441 return true;
4442
4443 return false;
4444}
4445
4446/// getEncodedElementAccess - We encode the fields as a llvm ConstantArray.
4447void ExtVectorElementExpr::getEncodedElementAccess(
4448 SmallVectorImpl<uint32_t> &Elts) const {
4449 StringRef Comp = Accessor->getName();
4450 bool isNumericAccessor = false;
4451 if (Comp[0] == 's' || Comp[0] == 'S') {
4452 Comp = Comp.substr(Start: 1);
4453 isNumericAccessor = true;
4454 }
4455
4456 bool isHi = Comp == "hi";
4457 bool isLo = Comp == "lo";
4458 bool isEven = Comp == "even";
4459 bool isOdd = Comp == "odd";
4460
4461 for (unsigned i = 0, e = getNumElements(); i != e; ++i) {
4462 uint64_t Index;
4463
4464 if (isHi)
4465 Index = e + i;
4466 else if (isLo)
4467 Index = i;
4468 else if (isEven)
4469 Index = 2 * i;
4470 else if (isOdd)
4471 Index = 2 * i + 1;
4472 else
4473 Index = ExtVectorType::getAccessorIdx(c: Comp[i], isNumericAccessor);
4474
4475 Elts.push_back(Elt: Index);
4476 }
4477}
4478
4479ShuffleVectorExpr::ShuffleVectorExpr(const ASTContext &C, ArrayRef<Expr *> args,
4480 QualType Type, SourceLocation BLoc,
4481 SourceLocation RP)
4482 : Expr(ShuffleVectorExprClass, Type, VK_PRValue, OK_Ordinary),
4483 BuiltinLoc(BLoc), RParenLoc(RP) {
4484 ShuffleVectorExprBits.NumExprs = args.size();
4485 SubExprs = new (C) Stmt*[args.size()];
4486 for (unsigned i = 0; i != args.size(); i++)
4487 SubExprs[i] = args[i];
4488
4489 setDependence(computeDependence(E: this));
4490}
4491
4492void ShuffleVectorExpr::setExprs(const ASTContext &C, ArrayRef<Expr *> Exprs) {
4493 if (SubExprs) C.Deallocate(Ptr: SubExprs);
4494
4495 this->ShuffleVectorExprBits.NumExprs = Exprs.size();
4496 SubExprs = new (C) Stmt *[ShuffleVectorExprBits.NumExprs];
4497 llvm::copy(Range&: Exprs, Out: SubExprs);
4498}
4499
4500GenericSelectionExpr::GenericSelectionExpr(
4501 const ASTContext &, SourceLocation GenericLoc, Expr *ControllingExpr,
4502 ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs,
4503 SourceLocation DefaultLoc, SourceLocation RParenLoc,
4504 bool ContainsUnexpandedParameterPack, unsigned ResultIndex)
4505 : Expr(GenericSelectionExprClass, AssocExprs[ResultIndex]->getType(),
4506 AssocExprs[ResultIndex]->getValueKind(),
4507 AssocExprs[ResultIndex]->getObjectKind()),
4508 NumAssocs(AssocExprs.size()), ResultIndex(ResultIndex),
4509 IsExprPredicate(true), DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
4510 assert(AssocTypes.size() == AssocExprs.size() &&
4511 "Must have the same number of association expressions"
4512 " and TypeSourceInfo!");
4513 assert(ResultIndex < NumAssocs && "ResultIndex is out-of-bounds!");
4514
4515 GenericSelectionExprBits.GenericLoc = GenericLoc;
4516 getTrailingObjects<Stmt *>()[getIndexOfControllingExpression()] =
4517 ControllingExpr;
4518 llvm::copy(Range&: AssocExprs,
4519 Out: getTrailingObjects<Stmt *>() + getIndexOfStartOfAssociatedExprs());
4520 llvm::copy(Range&: AssocTypes, Out: getTrailingObjects<TypeSourceInfo *>() +
4521 getIndexOfStartOfAssociatedTypes());
4522
4523 setDependence(computeDependence(E: this, ContainsUnexpandedPack: ContainsUnexpandedParameterPack));
4524}
4525
4526GenericSelectionExpr::GenericSelectionExpr(
4527 const ASTContext &, SourceLocation GenericLoc,
4528 TypeSourceInfo *ControllingType, ArrayRef<TypeSourceInfo *> AssocTypes,
4529 ArrayRef<Expr *> AssocExprs, SourceLocation DefaultLoc,
4530 SourceLocation RParenLoc, bool ContainsUnexpandedParameterPack,
4531 unsigned ResultIndex)
4532 : Expr(GenericSelectionExprClass, AssocExprs[ResultIndex]->getType(),
4533 AssocExprs[ResultIndex]->getValueKind(),
4534 AssocExprs[ResultIndex]->getObjectKind()),
4535 NumAssocs(AssocExprs.size()), ResultIndex(ResultIndex),
4536 IsExprPredicate(false), DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
4537 assert(AssocTypes.size() == AssocExprs.size() &&
4538 "Must have the same number of association expressions"
4539 " and TypeSourceInfo!");
4540 assert(ResultIndex < NumAssocs && "ResultIndex is out-of-bounds!");
4541
4542 GenericSelectionExprBits.GenericLoc = GenericLoc;
4543 getTrailingObjects<TypeSourceInfo *>()[getIndexOfControllingType()] =
4544 ControllingType;
4545 llvm::copy(Range&: AssocExprs,
4546 Out: getTrailingObjects<Stmt *>() + getIndexOfStartOfAssociatedExprs());
4547 llvm::copy(Range&: AssocTypes, Out: getTrailingObjects<TypeSourceInfo *>() +
4548 getIndexOfStartOfAssociatedTypes());
4549
4550 setDependence(computeDependence(E: this, ContainsUnexpandedPack: ContainsUnexpandedParameterPack));
4551}
4552
4553GenericSelectionExpr::GenericSelectionExpr(
4554 const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr,
4555 ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs,
4556 SourceLocation DefaultLoc, SourceLocation RParenLoc,
4557 bool ContainsUnexpandedParameterPack)
4558 : Expr(GenericSelectionExprClass, Context.DependentTy, VK_PRValue,
4559 OK_Ordinary),
4560 NumAssocs(AssocExprs.size()), ResultIndex(ResultDependentIndex),
4561 IsExprPredicate(true), DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
4562 assert(AssocTypes.size() == AssocExprs.size() &&
4563 "Must have the same number of association expressions"
4564 " and TypeSourceInfo!");
4565
4566 GenericSelectionExprBits.GenericLoc = GenericLoc;
4567 getTrailingObjects<Stmt *>()[getIndexOfControllingExpression()] =
4568 ControllingExpr;
4569 llvm::copy(Range&: AssocExprs,
4570 Out: getTrailingObjects<Stmt *>() + getIndexOfStartOfAssociatedExprs());
4571 llvm::copy(Range&: AssocTypes, Out: getTrailingObjects<TypeSourceInfo *>() +
4572 getIndexOfStartOfAssociatedTypes());
4573
4574 setDependence(computeDependence(E: this, ContainsUnexpandedPack: ContainsUnexpandedParameterPack));
4575}
4576
4577GenericSelectionExpr::GenericSelectionExpr(
4578 const ASTContext &Context, SourceLocation GenericLoc,
4579 TypeSourceInfo *ControllingType, ArrayRef<TypeSourceInfo *> AssocTypes,
4580 ArrayRef<Expr *> AssocExprs, SourceLocation DefaultLoc,
4581 SourceLocation RParenLoc, bool ContainsUnexpandedParameterPack)
4582 : Expr(GenericSelectionExprClass, Context.DependentTy, VK_PRValue,
4583 OK_Ordinary),
4584 NumAssocs(AssocExprs.size()), ResultIndex(ResultDependentIndex),
4585 IsExprPredicate(false), DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
4586 assert(AssocTypes.size() == AssocExprs.size() &&
4587 "Must have the same number of association expressions"
4588 " and TypeSourceInfo!");
4589
4590 GenericSelectionExprBits.GenericLoc = GenericLoc;
4591 getTrailingObjects<TypeSourceInfo *>()[getIndexOfControllingType()] =
4592 ControllingType;
4593 llvm::copy(Range&: AssocExprs,
4594 Out: getTrailingObjects<Stmt *>() + getIndexOfStartOfAssociatedExprs());
4595 llvm::copy(Range&: AssocTypes, Out: getTrailingObjects<TypeSourceInfo *>() +
4596 getIndexOfStartOfAssociatedTypes());
4597
4598 setDependence(computeDependence(E: this, ContainsUnexpandedPack: ContainsUnexpandedParameterPack));
4599}
4600
4601GenericSelectionExpr::GenericSelectionExpr(EmptyShell Empty, unsigned NumAssocs)
4602 : Expr(GenericSelectionExprClass, Empty), NumAssocs(NumAssocs) {}
4603
4604GenericSelectionExpr *GenericSelectionExpr::Create(
4605 const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr,
4606 ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs,
4607 SourceLocation DefaultLoc, SourceLocation RParenLoc,
4608 bool ContainsUnexpandedParameterPack, unsigned ResultIndex) {
4609 unsigned NumAssocs = AssocExprs.size();
4610 void *Mem = Context.Allocate(
4611 Size: totalSizeToAlloc<Stmt *, TypeSourceInfo *>(Counts: 1 + NumAssocs, Counts: NumAssocs),
4612 Align: alignof(GenericSelectionExpr));
4613 return new (Mem) GenericSelectionExpr(
4614 Context, GenericLoc, ControllingExpr, AssocTypes, AssocExprs, DefaultLoc,
4615 RParenLoc, ContainsUnexpandedParameterPack, ResultIndex);
4616}
4617
4618GenericSelectionExpr *GenericSelectionExpr::Create(
4619 const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr,
4620 ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs,
4621 SourceLocation DefaultLoc, SourceLocation RParenLoc,
4622 bool ContainsUnexpandedParameterPack) {
4623 unsigned NumAssocs = AssocExprs.size();
4624 void *Mem = Context.Allocate(
4625 Size: totalSizeToAlloc<Stmt *, TypeSourceInfo *>(Counts: 1 + NumAssocs, Counts: NumAssocs),
4626 Align: alignof(GenericSelectionExpr));
4627 return new (Mem) GenericSelectionExpr(
4628 Context, GenericLoc, ControllingExpr, AssocTypes, AssocExprs, DefaultLoc,
4629 RParenLoc, ContainsUnexpandedParameterPack);
4630}
4631
4632GenericSelectionExpr *GenericSelectionExpr::Create(
4633 const ASTContext &Context, SourceLocation GenericLoc,
4634 TypeSourceInfo *ControllingType, ArrayRef<TypeSourceInfo *> AssocTypes,
4635 ArrayRef<Expr *> AssocExprs, SourceLocation DefaultLoc,
4636 SourceLocation RParenLoc, bool ContainsUnexpandedParameterPack,
4637 unsigned ResultIndex) {
4638 unsigned NumAssocs = AssocExprs.size();
4639 void *Mem = Context.Allocate(
4640 Size: totalSizeToAlloc<Stmt *, TypeSourceInfo *>(Counts: 1 + NumAssocs, Counts: NumAssocs),
4641 Align: alignof(GenericSelectionExpr));
4642 return new (Mem) GenericSelectionExpr(
4643 Context, GenericLoc, ControllingType, AssocTypes, AssocExprs, DefaultLoc,
4644 RParenLoc, ContainsUnexpandedParameterPack, ResultIndex);
4645}
4646
4647GenericSelectionExpr *GenericSelectionExpr::Create(
4648 const ASTContext &Context, SourceLocation GenericLoc,
4649 TypeSourceInfo *ControllingType, ArrayRef<TypeSourceInfo *> AssocTypes,
4650 ArrayRef<Expr *> AssocExprs, SourceLocation DefaultLoc,
4651 SourceLocation RParenLoc, bool ContainsUnexpandedParameterPack) {
4652 unsigned NumAssocs = AssocExprs.size();
4653 void *Mem = Context.Allocate(
4654 Size: totalSizeToAlloc<Stmt *, TypeSourceInfo *>(Counts: 1 + NumAssocs, Counts: NumAssocs),
4655 Align: alignof(GenericSelectionExpr));
4656 return new (Mem) GenericSelectionExpr(
4657 Context, GenericLoc, ControllingType, AssocTypes, AssocExprs, DefaultLoc,
4658 RParenLoc, ContainsUnexpandedParameterPack);
4659}
4660
4661GenericSelectionExpr *
4662GenericSelectionExpr::CreateEmpty(const ASTContext &Context,
4663 unsigned NumAssocs) {
4664 void *Mem = Context.Allocate(
4665 Size: totalSizeToAlloc<Stmt *, TypeSourceInfo *>(Counts: 1 + NumAssocs, Counts: NumAssocs),
4666 Align: alignof(GenericSelectionExpr));
4667 return new (Mem) GenericSelectionExpr(EmptyShell(), NumAssocs);
4668}
4669
4670//===----------------------------------------------------------------------===//
4671// DesignatedInitExpr
4672//===----------------------------------------------------------------------===//
4673
4674const IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() const {
4675 assert(isFieldDesignator() && "Only valid on a field designator");
4676 if (FieldInfo.NameOrField & 0x01)
4677 return reinterpret_cast<IdentifierInfo *>(FieldInfo.NameOrField & ~0x01);
4678 return getFieldDecl()->getIdentifier();
4679}
4680
4681DesignatedInitExpr::DesignatedInitExpr(const ASTContext &C, QualType Ty,
4682 ArrayRef<Designator> Designators,
4683 SourceLocation EqualOrColonLoc,
4684 bool GNUSyntax,
4685 ArrayRef<Expr *> IndexExprs, Expr *Init)
4686 : Expr(DesignatedInitExprClass, Ty, Init->getValueKind(),
4687 Init->getObjectKind()),
4688 EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax),
4689 NumDesignators(Designators.size()), NumSubExprs(IndexExprs.size() + 1) {
4690 this->Designators = new (C) Designator[NumDesignators];
4691
4692 // Record the initializer itself.
4693 child_iterator Child = child_begin();
4694 *Child++ = Init;
4695
4696 // Copy the designators and their subexpressions, computing
4697 // value-dependence along the way.
4698 unsigned IndexIdx = 0;
4699 for (unsigned I = 0; I != NumDesignators; ++I) {
4700 this->Designators[I] = Designators[I];
4701 if (this->Designators[I].isArrayDesignator()) {
4702 // Copy the index expressions into permanent storage.
4703 *Child++ = IndexExprs[IndexIdx++];
4704 } else if (this->Designators[I].isArrayRangeDesignator()) {
4705 // Copy the start/end expressions into permanent storage.
4706 *Child++ = IndexExprs[IndexIdx++];
4707 *Child++ = IndexExprs[IndexIdx++];
4708 }
4709 }
4710
4711 assert(IndexIdx == IndexExprs.size() && "Wrong number of index expressions");
4712 setDependence(computeDependence(E: this));
4713}
4714
4715DesignatedInitExpr *DesignatedInitExpr::Create(const ASTContext &C,
4716 ArrayRef<Designator> Designators,
4717 ArrayRef<Expr *> IndexExprs,
4718 SourceLocation ColonOrEqualLoc,
4719 bool UsesColonSyntax,
4720 Expr *Init) {
4721 void *Mem = C.Allocate(Size: totalSizeToAlloc<Stmt *>(Counts: IndexExprs.size() + 1),
4722 Align: alignof(DesignatedInitExpr));
4723 return new (Mem) DesignatedInitExpr(C, C.VoidTy, Designators,
4724 ColonOrEqualLoc, UsesColonSyntax,
4725 IndexExprs, Init);
4726}
4727
4728DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(const ASTContext &C,
4729 unsigned NumIndexExprs) {
4730 void *Mem = C.Allocate(Size: totalSizeToAlloc<Stmt *>(Counts: NumIndexExprs + 1),
4731 Align: alignof(DesignatedInitExpr));
4732 return new (Mem) DesignatedInitExpr(NumIndexExprs + 1);
4733}
4734
4735void DesignatedInitExpr::setDesignators(const ASTContext &C,
4736 const Designator *Desigs,
4737 unsigned NumDesigs) {
4738 Designators = new (C) Designator[NumDesigs];
4739 NumDesignators = NumDesigs;
4740 for (unsigned I = 0; I != NumDesigs; ++I)
4741 Designators[I] = Desigs[I];
4742}
4743
4744SourceRange DesignatedInitExpr::getDesignatorsSourceRange() const {
4745 DesignatedInitExpr *DIE = const_cast<DesignatedInitExpr*>(this);
4746 if (size() == 1)
4747 return DIE->getDesignator(Idx: 0)->getSourceRange();
4748 return SourceRange(DIE->getDesignator(Idx: 0)->getBeginLoc(),
4749 DIE->getDesignator(Idx: size() - 1)->getEndLoc());
4750}
4751
4752SourceLocation DesignatedInitExpr::getBeginLoc() const {
4753 auto *DIE = const_cast<DesignatedInitExpr *>(this);
4754 Designator &First = *DIE->getDesignator(Idx: 0);
4755 if (First.isFieldDesignator()) {
4756 // Skip past implicit designators for anonymous structs/unions, since
4757 // these do not have valid source locations.
4758 for (unsigned int i = 0; i < DIE->size(); i++) {
4759 Designator &Des = *DIE->getDesignator(Idx: i);
4760 SourceLocation retval = GNUSyntax ? Des.getFieldLoc() : Des.getDotLoc();
4761 if (!retval.isValid())
4762 continue;
4763 return retval;
4764 }
4765 }
4766 return First.getLBracketLoc();
4767}
4768
4769SourceLocation DesignatedInitExpr::getEndLoc() const {
4770 return getInit()->getEndLoc();
4771}
4772
4773Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) const {
4774 assert(D.isArrayDesignator() && "Requires array designator");
4775 return getSubExpr(Idx: D.getArrayIndex() + 1);
4776}
4777
4778Expr *DesignatedInitExpr::getArrayRangeStart(const Designator &D) const {
4779 assert(D.isArrayRangeDesignator() && "Requires array range designator");
4780 return getSubExpr(Idx: D.getArrayIndex() + 1);
4781}
4782
4783Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator &D) const {
4784 assert(D.isArrayRangeDesignator() && "Requires array range designator");
4785 return getSubExpr(Idx: D.getArrayIndex() + 2);
4786}
4787
4788/// Replaces the designator at index @p Idx with the series
4789/// of designators in [First, Last).
4790void DesignatedInitExpr::ExpandDesignator(const ASTContext &C, unsigned Idx,
4791 const Designator *First,
4792 const Designator *Last) {
4793 unsigned NumNewDesignators = Last - First;
4794 if (NumNewDesignators == 0) {
4795 std::copy_backward(first: Designators + Idx + 1,
4796 last: Designators + NumDesignators,
4797 result: Designators + Idx);
4798 --NumNewDesignators;
4799 return;
4800 }
4801 if (NumNewDesignators == 1) {
4802 Designators[Idx] = *First;
4803 return;
4804 }
4805
4806 Designator *NewDesignators
4807 = new (C) Designator[NumDesignators - 1 + NumNewDesignators];
4808 std::copy(first: Designators, last: Designators + Idx, result: NewDesignators);
4809 std::copy(first: First, last: Last, result: NewDesignators + Idx);
4810 std::copy(first: Designators + Idx + 1, last: Designators + NumDesignators,
4811 result: NewDesignators + Idx + NumNewDesignators);
4812 Designators = NewDesignators;
4813 NumDesignators = NumDesignators - 1 + NumNewDesignators;
4814}
4815
4816DesignatedInitUpdateExpr::DesignatedInitUpdateExpr(const ASTContext &C,
4817 SourceLocation lBraceLoc,
4818 Expr *baseExpr,
4819 SourceLocation rBraceLoc)
4820 : Expr(DesignatedInitUpdateExprClass, baseExpr->getType(), VK_PRValue,
4821 OK_Ordinary) {
4822 BaseAndUpdaterExprs[0] = baseExpr;
4823
4824 InitListExpr *ILE = new (C) InitListExpr(C, lBraceLoc, {}, rBraceLoc);
4825 ILE->setType(baseExpr->getType());
4826 BaseAndUpdaterExprs[1] = ILE;
4827
4828 // FIXME: this is wrong, set it correctly.
4829 setDependence(ExprDependence::None);
4830}
4831
4832SourceLocation DesignatedInitUpdateExpr::getBeginLoc() const {
4833 return getBase()->getBeginLoc();
4834}
4835
4836SourceLocation DesignatedInitUpdateExpr::getEndLoc() const {
4837 return getBase()->getEndLoc();
4838}
4839
4840ParenListExpr::ParenListExpr(SourceLocation LParenLoc, ArrayRef<Expr *> Exprs,
4841 SourceLocation RParenLoc)
4842 : Expr(ParenListExprClass, QualType(), VK_PRValue, OK_Ordinary),
4843 LParenLoc(LParenLoc), RParenLoc(RParenLoc) {
4844 ParenListExprBits.NumExprs = Exprs.size();
4845 llvm::copy(Range&: Exprs, Out: getTrailingObjects());
4846 setDependence(computeDependence(E: this));
4847}
4848
4849ParenListExpr::ParenListExpr(EmptyShell Empty, unsigned NumExprs)
4850 : Expr(ParenListExprClass, Empty) {
4851 ParenListExprBits.NumExprs = NumExprs;
4852}
4853
4854ParenListExpr *ParenListExpr::Create(const ASTContext &Ctx,
4855 SourceLocation LParenLoc,
4856 ArrayRef<Expr *> Exprs,
4857 SourceLocation RParenLoc) {
4858 void *Mem = Ctx.Allocate(Size: totalSizeToAlloc<Stmt *>(Counts: Exprs.size()),
4859 Align: alignof(ParenListExpr));
4860 return new (Mem) ParenListExpr(LParenLoc, Exprs, RParenLoc);
4861}
4862
4863ParenListExpr *ParenListExpr::CreateEmpty(const ASTContext &Ctx,
4864 unsigned NumExprs) {
4865 void *Mem =
4866 Ctx.Allocate(Size: totalSizeToAlloc<Stmt *>(Counts: NumExprs), Align: alignof(ParenListExpr));
4867 return new (Mem) ParenListExpr(EmptyShell(), NumExprs);
4868}
4869
4870/// Certain overflow-dependent code patterns can have their integer overflow
4871/// sanitization disabled. Check for the common pattern `if (a + b < a)` and
4872/// return the resulting BinaryOperator responsible for the addition so we can
4873/// elide overflow checks during codegen.
4874static std::optional<BinaryOperator *>
4875getOverflowPatternBinOp(const BinaryOperator *E) {
4876 Expr *Addition, *ComparedTo;
4877 if (E->getOpcode() == BO_LT) {
4878 Addition = E->getLHS();
4879 ComparedTo = E->getRHS();
4880 } else if (E->getOpcode() == BO_GT) {
4881 Addition = E->getRHS();
4882 ComparedTo = E->getLHS();
4883 } else {
4884 return {};
4885 }
4886
4887 const Expr *AddLHS = nullptr, *AddRHS = nullptr;
4888 BinaryOperator *BO = dyn_cast<BinaryOperator>(Val: Addition);
4889
4890 if (BO && BO->getOpcode() == clang::BO_Add) {
4891 // now store addends for lookup on other side of '>'
4892 AddLHS = BO->getLHS();
4893 AddRHS = BO->getRHS();
4894 }
4895
4896 if (!AddLHS || !AddRHS)
4897 return {};
4898
4899 const Decl *LHSDecl, *RHSDecl, *OtherDecl;
4900
4901 LHSDecl = AddLHS->IgnoreParenImpCasts()->getReferencedDeclOfCallee();
4902 RHSDecl = AddRHS->IgnoreParenImpCasts()->getReferencedDeclOfCallee();
4903 OtherDecl = ComparedTo->IgnoreParenImpCasts()->getReferencedDeclOfCallee();
4904
4905 if (!OtherDecl)
4906 return {};
4907
4908 if (!LHSDecl && !RHSDecl)
4909 return {};
4910
4911 if ((LHSDecl && LHSDecl == OtherDecl && LHSDecl != RHSDecl) ||
4912 (RHSDecl && RHSDecl == OtherDecl && RHSDecl != LHSDecl))
4913 return BO;
4914 return {};
4915}
4916
4917/// Compute and set the OverflowPatternExclusion bit based on whether the
4918/// BinaryOperator expression matches an overflow pattern being ignored by
4919/// -fsanitize-undefined-ignore-overflow-pattern=add-signed-overflow-test or
4920/// -fsanitize-undefined-ignore-overflow-pattern=add-unsigned-overflow-test
4921static void computeOverflowPatternExclusion(const ASTContext &Ctx,
4922 const BinaryOperator *E) {
4923 std::optional<BinaryOperator *> Result = getOverflowPatternBinOp(E);
4924 if (!Result.has_value())
4925 return;
4926 QualType AdditionResultType = Result.value()->getType();
4927
4928 if ((AdditionResultType->isSignedIntegerType() &&
4929 Ctx.getLangOpts().isOverflowPatternExcluded(
4930 Kind: LangOptions::OverflowPatternExclusionKind::AddSignedOverflowTest)) ||
4931 (AdditionResultType->isUnsignedIntegerType() &&
4932 Ctx.getLangOpts().isOverflowPatternExcluded(
4933 Kind: LangOptions::OverflowPatternExclusionKind::AddUnsignedOverflowTest)))
4934 Result.value()->setExcludedOverflowPattern(true);
4935}
4936
4937BinaryOperator::BinaryOperator(const ASTContext &Ctx, Expr *lhs, Expr *rhs,
4938 Opcode opc, QualType ResTy, ExprValueKind VK,
4939 ExprObjectKind OK, SourceLocation opLoc,
4940 FPOptionsOverride FPFeatures)
4941 : Expr(BinaryOperatorClass, ResTy, VK, OK) {
4942 BinaryOperatorBits.Opc = opc;
4943 assert(!isCompoundAssignmentOp() &&
4944 "Use CompoundAssignOperator for compound assignments");
4945 BinaryOperatorBits.OpLoc = opLoc;
4946 BinaryOperatorBits.ExcludedOverflowPattern = false;
4947 SubExprs[LHS] = lhs;
4948 SubExprs[RHS] = rhs;
4949 computeOverflowPatternExclusion(Ctx, E: this);
4950 BinaryOperatorBits.HasFPFeatures = FPFeatures.requiresTrailingStorage();
4951 if (hasStoredFPFeatures())
4952 setStoredFPFeatures(FPFeatures);
4953 setDependence(computeDependence(E: this));
4954}
4955
4956BinaryOperator::BinaryOperator(const ASTContext &Ctx, Expr *lhs, Expr *rhs,
4957 Opcode opc, QualType ResTy, ExprValueKind VK,
4958 ExprObjectKind OK, SourceLocation opLoc,
4959 FPOptionsOverride FPFeatures, bool dead2)
4960 : Expr(CompoundAssignOperatorClass, ResTy, VK, OK) {
4961 BinaryOperatorBits.Opc = opc;
4962 BinaryOperatorBits.ExcludedOverflowPattern = false;
4963 assert(isCompoundAssignmentOp() &&
4964 "Use CompoundAssignOperator for compound assignments");
4965 BinaryOperatorBits.OpLoc = opLoc;
4966 SubExprs[LHS] = lhs;
4967 SubExprs[RHS] = rhs;
4968 BinaryOperatorBits.HasFPFeatures = FPFeatures.requiresTrailingStorage();
4969 if (hasStoredFPFeatures())
4970 setStoredFPFeatures(FPFeatures);
4971 setDependence(computeDependence(E: this));
4972}
4973
4974BinaryOperator *BinaryOperator::CreateEmpty(const ASTContext &C,
4975 bool HasFPFeatures) {
4976 unsigned Extra = sizeOfTrailingObjects(HasFPFeatures);
4977 void *Mem =
4978 C.Allocate(Size: sizeof(BinaryOperator) + Extra, Align: alignof(BinaryOperator));
4979 return new (Mem) BinaryOperator(EmptyShell());
4980}
4981
4982BinaryOperator *BinaryOperator::Create(const ASTContext &C, Expr *lhs,
4983 Expr *rhs, Opcode opc, QualType ResTy,
4984 ExprValueKind VK, ExprObjectKind OK,
4985 SourceLocation opLoc,
4986 FPOptionsOverride FPFeatures) {
4987 bool HasFPFeatures = FPFeatures.requiresTrailingStorage();
4988 unsigned Extra = sizeOfTrailingObjects(HasFPFeatures);
4989 void *Mem =
4990 C.Allocate(Size: sizeof(BinaryOperator) + Extra, Align: alignof(BinaryOperator));
4991 return new (Mem)
4992 BinaryOperator(C, lhs, rhs, opc, ResTy, VK, OK, opLoc, FPFeatures);
4993}
4994
4995CompoundAssignOperator *
4996CompoundAssignOperator::CreateEmpty(const ASTContext &C, bool HasFPFeatures) {
4997 unsigned Extra = sizeOfTrailingObjects(HasFPFeatures);
4998 void *Mem = C.Allocate(Size: sizeof(CompoundAssignOperator) + Extra,
4999 Align: alignof(CompoundAssignOperator));
5000 return new (Mem) CompoundAssignOperator(C, EmptyShell(), HasFPFeatures);
5001}
5002
5003CompoundAssignOperator *
5004CompoundAssignOperator::Create(const ASTContext &C, Expr *lhs, Expr *rhs,
5005 Opcode opc, QualType ResTy, ExprValueKind VK,
5006 ExprObjectKind OK, SourceLocation opLoc,
5007 FPOptionsOverride FPFeatures,
5008 QualType CompLHSType, QualType CompResultType) {
5009 bool HasFPFeatures = FPFeatures.requiresTrailingStorage();
5010 unsigned Extra = sizeOfTrailingObjects(HasFPFeatures);
5011 void *Mem = C.Allocate(Size: sizeof(CompoundAssignOperator) + Extra,
5012 Align: alignof(CompoundAssignOperator));
5013 return new (Mem)
5014 CompoundAssignOperator(C, lhs, rhs, opc, ResTy, VK, OK, opLoc, FPFeatures,
5015 CompLHSType, CompResultType);
5016}
5017
5018UnaryOperator *UnaryOperator::CreateEmpty(const ASTContext &C,
5019 bool hasFPFeatures) {
5020 void *Mem = C.Allocate(Size: totalSizeToAlloc<FPOptionsOverride>(Counts: hasFPFeatures),
5021 Align: alignof(UnaryOperator));
5022 return new (Mem) UnaryOperator(hasFPFeatures, EmptyShell());
5023}
5024
5025UnaryOperator::UnaryOperator(const ASTContext &Ctx, Expr *input, Opcode opc,
5026 QualType type, ExprValueKind VK, ExprObjectKind OK,
5027 SourceLocation l, bool CanOverflow,
5028 FPOptionsOverride FPFeatures)
5029 : Expr(UnaryOperatorClass, type, VK, OK), Val(input) {
5030 UnaryOperatorBits.Opc = opc;
5031 UnaryOperatorBits.CanOverflow = CanOverflow;
5032 UnaryOperatorBits.Loc = l;
5033 UnaryOperatorBits.HasFPFeatures = FPFeatures.requiresTrailingStorage();
5034 if (hasStoredFPFeatures())
5035 setStoredFPFeatures(FPFeatures);
5036 setDependence(computeDependence(E: this, Ctx));
5037}
5038
5039UnaryOperator *UnaryOperator::Create(const ASTContext &C, Expr *input,
5040 Opcode opc, QualType type,
5041 ExprValueKind VK, ExprObjectKind OK,
5042 SourceLocation l, bool CanOverflow,
5043 FPOptionsOverride FPFeatures) {
5044 bool HasFPFeatures = FPFeatures.requiresTrailingStorage();
5045 unsigned Size = totalSizeToAlloc<FPOptionsOverride>(Counts: HasFPFeatures);
5046 void *Mem = C.Allocate(Size, Align: alignof(UnaryOperator));
5047 return new (Mem)
5048 UnaryOperator(C, input, opc, type, VK, OK, l, CanOverflow, FPFeatures);
5049}
5050
5051const OpaqueValueExpr *OpaqueValueExpr::findInCopyConstruct(const Expr *e) {
5052 if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(Val: e))
5053 e = ewc->getSubExpr();
5054 if (const MaterializeTemporaryExpr *m = dyn_cast<MaterializeTemporaryExpr>(Val: e))
5055 e = m->getSubExpr();
5056 e = cast<CXXConstructExpr>(Val: e)->getArg(Arg: 0);
5057 while (const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(Val: e))
5058 e = ice->getSubExpr();
5059 return cast<OpaqueValueExpr>(Val: e);
5060}
5061
5062PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &Context,
5063 EmptyShell sh,
5064 unsigned numSemanticExprs) {
5065 void *buffer =
5066 Context.Allocate(Size: totalSizeToAlloc<Expr *>(Counts: 1 + numSemanticExprs),
5067 Align: alignof(PseudoObjectExpr));
5068 return new(buffer) PseudoObjectExpr(sh, numSemanticExprs);
5069}
5070
5071PseudoObjectExpr::PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs)
5072 : Expr(PseudoObjectExprClass, shell) {
5073 PseudoObjectExprBits.NumSubExprs = numSemanticExprs + 1;
5074}
5075
5076PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &C, Expr *syntax,
5077 ArrayRef<Expr*> semantics,
5078 unsigned resultIndex) {
5079 assert(syntax && "no syntactic expression!");
5080 assert(semantics.size() && "no semantic expressions!");
5081
5082 QualType type;
5083 ExprValueKind VK;
5084 if (resultIndex == NoResult) {
5085 type = C.VoidTy;
5086 VK = VK_PRValue;
5087 } else {
5088 assert(resultIndex < semantics.size());
5089 type = semantics[resultIndex]->getType();
5090 VK = semantics[resultIndex]->getValueKind();
5091 assert(semantics[resultIndex]->getObjectKind() == OK_Ordinary);
5092 }
5093
5094 void *buffer = C.Allocate(Size: totalSizeToAlloc<Expr *>(Counts: semantics.size() + 1),
5095 Align: alignof(PseudoObjectExpr));
5096 return new(buffer) PseudoObjectExpr(type, VK, syntax, semantics,
5097 resultIndex);
5098}
5099
5100PseudoObjectExpr::PseudoObjectExpr(QualType type, ExprValueKind VK,
5101 Expr *syntax, ArrayRef<Expr *> semantics,
5102 unsigned resultIndex)
5103 : Expr(PseudoObjectExprClass, type, VK, OK_Ordinary) {
5104 PseudoObjectExprBits.NumSubExprs = semantics.size() + 1;
5105 PseudoObjectExprBits.ResultIndex = resultIndex + 1;
5106 MutableArrayRef<Expr *> Trail = getTrailingObjects(N: semantics.size() + 1);
5107 Trail[0] = syntax;
5108
5109 assert(llvm::all_of(semantics,
5110 [](const Expr *E) {
5111 return !isa<OpaqueValueExpr>(E) ||
5112 cast<OpaqueValueExpr>(E)->getSourceExpr() !=
5113 nullptr;
5114 }) &&
5115 "opaque-value semantic expressions for pseudo-object "
5116 "operations must have sources");
5117
5118 llvm::copy(Range&: semantics, Out: Trail.drop_front().begin());
5119 setDependence(computeDependence(E: this));
5120}
5121
5122//===----------------------------------------------------------------------===//
5123// Child Iterators for iterating over subexpressions/substatements
5124//===----------------------------------------------------------------------===//
5125
5126// UnaryExprOrTypeTraitExpr
5127Stmt::child_range UnaryExprOrTypeTraitExpr::children() {
5128 const_child_range CCR =
5129 const_cast<const UnaryExprOrTypeTraitExpr *>(this)->children();
5130 return child_range(cast_away_const(RHS: CCR.begin()), cast_away_const(RHS: CCR.end()));
5131}
5132
5133Stmt::const_child_range UnaryExprOrTypeTraitExpr::children() const {
5134 // If this is of a type and the type is a VLA type (and not a typedef), the
5135 // size expression of the VLA needs to be treated as an executable expression.
5136 // Why isn't this weirdness documented better in StmtIterator?
5137 if (isArgumentType()) {
5138 if (const VariableArrayType *T =
5139 dyn_cast<VariableArrayType>(Val: getArgumentType().getTypePtr()))
5140 return const_child_range(const_child_iterator(T), const_child_iterator());
5141 return const_child_range(const_child_iterator(), const_child_iterator());
5142 }
5143 return const_child_range(&Argument.Ex, &Argument.Ex + 1);
5144}
5145
5146AtomicExpr::AtomicExpr(SourceLocation BLoc, ArrayRef<Expr *> args, QualType t,
5147 AtomicOp op, SourceLocation RP)
5148 : Expr(AtomicExprClass, t, VK_PRValue, OK_Ordinary),
5149 NumSubExprs(args.size()), BuiltinLoc(BLoc), RParenLoc(RP), Op(op) {
5150 assert(args.size() == getNumSubExprs(op) && "wrong number of subexpressions");
5151 for (unsigned i = 0; i != args.size(); i++)
5152 SubExprs[i] = args[i];
5153 setDependence(computeDependence(E: this));
5154}
5155
5156unsigned AtomicExpr::getNumSubExprs(AtomicOp Op) {
5157 switch (Op) {
5158 case AO__c11_atomic_init:
5159 case AO__opencl_atomic_init:
5160 case AO__c11_atomic_load:
5161 case AO__atomic_load_n:
5162 case AO__atomic_test_and_set:
5163 case AO__atomic_clear:
5164 return 2;
5165
5166 case AO__scoped_atomic_load_n:
5167 case AO__opencl_atomic_load:
5168 case AO__hip_atomic_load:
5169 case AO__c11_atomic_store:
5170 case AO__c11_atomic_exchange:
5171 case AO__atomic_load:
5172 case AO__atomic_store:
5173 case AO__atomic_store_n:
5174 case AO__atomic_exchange_n:
5175 case AO__c11_atomic_fetch_add:
5176 case AO__c11_atomic_fetch_sub:
5177 case AO__c11_atomic_fetch_and:
5178 case AO__c11_atomic_fetch_or:
5179 case AO__c11_atomic_fetch_xor:
5180 case AO__c11_atomic_fetch_nand:
5181 case AO__c11_atomic_fetch_max:
5182 case AO__c11_atomic_fetch_min:
5183 case AO__atomic_fetch_add:
5184 case AO__atomic_fetch_sub:
5185 case AO__atomic_fetch_and:
5186 case AO__atomic_fetch_or:
5187 case AO__atomic_fetch_xor:
5188 case AO__atomic_fetch_nand:
5189 case AO__atomic_add_fetch:
5190 case AO__atomic_sub_fetch:
5191 case AO__atomic_and_fetch:
5192 case AO__atomic_or_fetch:
5193 case AO__atomic_xor_fetch:
5194 case AO__atomic_nand_fetch:
5195 case AO__atomic_min_fetch:
5196 case AO__atomic_max_fetch:
5197 case AO__atomic_fetch_min:
5198 case AO__atomic_fetch_max:
5199 case AO__atomic_fetch_uinc:
5200 case AO__atomic_fetch_udec:
5201 return 3;
5202
5203 case AO__scoped_atomic_load:
5204 case AO__scoped_atomic_store:
5205 case AO__scoped_atomic_store_n:
5206 case AO__scoped_atomic_fetch_add:
5207 case AO__scoped_atomic_fetch_sub:
5208 case AO__scoped_atomic_fetch_and:
5209 case AO__scoped_atomic_fetch_or:
5210 case AO__scoped_atomic_fetch_xor:
5211 case AO__scoped_atomic_fetch_nand:
5212 case AO__scoped_atomic_add_fetch:
5213 case AO__scoped_atomic_sub_fetch:
5214 case AO__scoped_atomic_and_fetch:
5215 case AO__scoped_atomic_or_fetch:
5216 case AO__scoped_atomic_xor_fetch:
5217 case AO__scoped_atomic_nand_fetch:
5218 case AO__scoped_atomic_min_fetch:
5219 case AO__scoped_atomic_max_fetch:
5220 case AO__scoped_atomic_fetch_min:
5221 case AO__scoped_atomic_fetch_max:
5222 case AO__scoped_atomic_exchange_n:
5223 case AO__scoped_atomic_fetch_uinc:
5224 case AO__scoped_atomic_fetch_udec:
5225 case AO__hip_atomic_exchange:
5226 case AO__hip_atomic_fetch_add:
5227 case AO__hip_atomic_fetch_sub:
5228 case AO__hip_atomic_fetch_and:
5229 case AO__hip_atomic_fetch_or:
5230 case AO__hip_atomic_fetch_xor:
5231 case AO__hip_atomic_fetch_min:
5232 case AO__hip_atomic_fetch_max:
5233 case AO__opencl_atomic_store:
5234 case AO__hip_atomic_store:
5235 case AO__opencl_atomic_exchange:
5236 case AO__opencl_atomic_fetch_add:
5237 case AO__opencl_atomic_fetch_sub:
5238 case AO__opencl_atomic_fetch_and:
5239 case AO__opencl_atomic_fetch_or:
5240 case AO__opencl_atomic_fetch_xor:
5241 case AO__opencl_atomic_fetch_min:
5242 case AO__opencl_atomic_fetch_max:
5243 case AO__atomic_exchange:
5244 return 4;
5245
5246 case AO__scoped_atomic_exchange:
5247 case AO__c11_atomic_compare_exchange_strong:
5248 case AO__c11_atomic_compare_exchange_weak:
5249 return 5;
5250 case AO__hip_atomic_compare_exchange_strong:
5251 case AO__opencl_atomic_compare_exchange_strong:
5252 case AO__opencl_atomic_compare_exchange_weak:
5253 case AO__hip_atomic_compare_exchange_weak:
5254 case AO__atomic_compare_exchange:
5255 case AO__atomic_compare_exchange_n:
5256 return 6;
5257
5258 case AO__scoped_atomic_compare_exchange:
5259 case AO__scoped_atomic_compare_exchange_n:
5260 return 7;
5261 }
5262 llvm_unreachable("unknown atomic op");
5263}
5264
5265QualType AtomicExpr::getValueType() const {
5266 auto T = getPtr()->getType()->castAs<PointerType>()->getPointeeType();
5267 if (auto AT = T->getAs<AtomicType>())
5268 return AT->getValueType();
5269 return T;
5270}
5271
5272QualType ArraySectionExpr::getBaseOriginalType(const Expr *Base) {
5273 unsigned ArraySectionCount = 0;
5274 while (auto *OASE = dyn_cast<ArraySectionExpr>(Val: Base->IgnoreParens())) {
5275 Base = OASE->getBase();
5276 ++ArraySectionCount;
5277 }
5278 while (auto *ASE =
5279 dyn_cast<ArraySubscriptExpr>(Val: Base->IgnoreParenImpCasts())) {
5280 Base = ASE->getBase();
5281 ++ArraySectionCount;
5282 }
5283 Base = Base->IgnoreParenImpCasts();
5284 auto OriginalTy = Base->getType();
5285 if (auto *DRE = dyn_cast<DeclRefExpr>(Val: Base))
5286 if (auto *PVD = dyn_cast<ParmVarDecl>(Val: DRE->getDecl()))
5287 OriginalTy = PVD->getOriginalType().getNonReferenceType();
5288
5289 for (unsigned Cnt = 0; Cnt < ArraySectionCount; ++Cnt) {
5290 if (OriginalTy->isAnyPointerType())
5291 OriginalTy = OriginalTy->getPointeeType();
5292 else if (OriginalTy->isArrayType())
5293 OriginalTy = OriginalTy->castAsArrayTypeUnsafe()->getElementType();
5294 else
5295 return {};
5296 }
5297 return OriginalTy;
5298}
5299
5300QualType ArraySectionExpr::getElementType() const {
5301 QualType BaseTy = getBase()->IgnoreParenImpCasts()->getType();
5302 // We only have to look into the array section exprs, else we will get the
5303 // type of the base, which should already be valid.
5304 if (auto *ASE = dyn_cast<ArraySectionExpr>(Val: getBase()->IgnoreParenImpCasts()))
5305 BaseTy = ASE->getElementType();
5306
5307 if (BaseTy->isAnyPointerType())
5308 return BaseTy->getPointeeType();
5309 if (BaseTy->isArrayType())
5310 return BaseTy->castAsArrayTypeUnsafe()->getElementType();
5311
5312 // If this isn't a pointer or array, the base is a dependent expression, so
5313 // just return the BaseTy anyway.
5314 assert(BaseTy->isInstantiationDependentType());
5315 return BaseTy;
5316}
5317
5318QualType ArraySectionExpr::getBaseType() const {
5319 // We only have to look into the array section exprs, else we will get the
5320 // type of the base, which should already be valid.
5321 if (auto *ASE = dyn_cast<ArraySectionExpr>(Val: getBase()->IgnoreParenImpCasts()))
5322 return ASE->getElementType();
5323
5324 return getBase()->IgnoreParenImpCasts()->getType();
5325}
5326
5327RecoveryExpr::RecoveryExpr(ASTContext &Ctx, QualType T, SourceLocation BeginLoc,
5328 SourceLocation EndLoc, ArrayRef<Expr *> SubExprs)
5329 : Expr(RecoveryExprClass, T.getNonReferenceType(),
5330 T->isDependentType() ? VK_LValue : getValueKindForType(T),
5331 OK_Ordinary),
5332 BeginLoc(BeginLoc), EndLoc(EndLoc), NumExprs(SubExprs.size()) {
5333 assert(!T.isNull());
5334 assert(!llvm::is_contained(SubExprs, nullptr));
5335
5336 llvm::copy(Range&: SubExprs, Out: getTrailingObjects());
5337 setDependence(computeDependence(E: this));
5338}
5339
5340RecoveryExpr *RecoveryExpr::Create(ASTContext &Ctx, QualType T,
5341 SourceLocation BeginLoc,
5342 SourceLocation EndLoc,
5343 ArrayRef<Expr *> SubExprs) {
5344 void *Mem = Ctx.Allocate(Size: totalSizeToAlloc<Expr *>(Counts: SubExprs.size()),
5345 Align: alignof(RecoveryExpr));
5346 return new (Mem) RecoveryExpr(Ctx, T, BeginLoc, EndLoc, SubExprs);
5347}
5348
5349RecoveryExpr *RecoveryExpr::CreateEmpty(ASTContext &Ctx, unsigned NumSubExprs) {
5350 void *Mem = Ctx.Allocate(Size: totalSizeToAlloc<Expr *>(Counts: NumSubExprs),
5351 Align: alignof(RecoveryExpr));
5352 return new (Mem) RecoveryExpr(EmptyShell(), NumSubExprs);
5353}
5354
5355void OMPArrayShapingExpr::setDimensions(ArrayRef<Expr *> Dims) {
5356 assert(
5357 NumDims == Dims.size() &&
5358 "Preallocated number of dimensions is different from the provided one.");
5359 llvm::copy(Range&: Dims, Out: getTrailingObjects<Expr *>());
5360}
5361
5362void OMPArrayShapingExpr::setBracketsRanges(ArrayRef<SourceRange> BR) {
5363 assert(
5364 NumDims == BR.size() &&
5365 "Preallocated number of dimensions is different from the provided one.");
5366 llvm::copy(Range&: BR, Out: getTrailingObjects<SourceRange>());
5367}
5368
5369OMPArrayShapingExpr::OMPArrayShapingExpr(QualType ExprTy, Expr *Op,
5370 SourceLocation L, SourceLocation R,
5371 ArrayRef<Expr *> Dims)
5372 : Expr(OMPArrayShapingExprClass, ExprTy, VK_LValue, OK_Ordinary), LPLoc(L),
5373 RPLoc(R), NumDims(Dims.size()) {
5374 setBase(Op);
5375 setDimensions(Dims);
5376 setDependence(computeDependence(E: this));
5377}
5378
5379OMPArrayShapingExpr *
5380OMPArrayShapingExpr::Create(const ASTContext &Context, QualType T, Expr *Op,
5381 SourceLocation L, SourceLocation R,
5382 ArrayRef<Expr *> Dims,
5383 ArrayRef<SourceRange> BracketRanges) {
5384 assert(Dims.size() == BracketRanges.size() &&
5385 "Different number of dimensions and brackets ranges.");
5386 void *Mem = Context.Allocate(
5387 Size: totalSizeToAlloc<Expr *, SourceRange>(Counts: Dims.size() + 1, Counts: Dims.size()),
5388 Align: alignof(OMPArrayShapingExpr));
5389 auto *E = new (Mem) OMPArrayShapingExpr(T, Op, L, R, Dims);
5390 E->setBracketsRanges(BracketRanges);
5391 return E;
5392}
5393
5394OMPArrayShapingExpr *OMPArrayShapingExpr::CreateEmpty(const ASTContext &Context,
5395 unsigned NumDims) {
5396 void *Mem = Context.Allocate(
5397 Size: totalSizeToAlloc<Expr *, SourceRange>(Counts: NumDims + 1, Counts: NumDims),
5398 Align: alignof(OMPArrayShapingExpr));
5399 return new (Mem) OMPArrayShapingExpr(EmptyShell(), NumDims);
5400}
5401
5402void OMPIteratorExpr::setIteratorDeclaration(unsigned I, Decl *D) {
5403 getTrailingObjects<Decl *>(N: NumIterators)[I] = D;
5404}
5405
5406void OMPIteratorExpr::setAssignmentLoc(unsigned I, SourceLocation Loc) {
5407 assert(I < NumIterators &&
5408 "Idx is greater or equal the number of iterators definitions.");
5409 getTrailingObjects<
5410 SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) +
5411 static_cast<int>(RangeLocOffset::AssignLoc)] = Loc;
5412}
5413
5414void OMPIteratorExpr::setIteratorRange(unsigned I, Expr *Begin,
5415 SourceLocation ColonLoc, Expr *End,
5416 SourceLocation SecondColonLoc,
5417 Expr *Step) {
5418 assert(I < NumIterators &&
5419 "Idx is greater or equal the number of iterators definitions.");
5420 getTrailingObjects<Expr *>()[I * static_cast<int>(RangeExprOffset::Total) +
5421 static_cast<int>(RangeExprOffset::Begin)] =
5422 Begin;
5423 getTrailingObjects<Expr *>()[I * static_cast<int>(RangeExprOffset::Total) +
5424 static_cast<int>(RangeExprOffset::End)] = End;
5425 getTrailingObjects<Expr *>()[I * static_cast<int>(RangeExprOffset::Total) +
5426 static_cast<int>(RangeExprOffset::Step)] = Step;
5427 getTrailingObjects<
5428 SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) +
5429 static_cast<int>(RangeLocOffset::FirstColonLoc)] =
5430 ColonLoc;
5431 getTrailingObjects<
5432 SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) +
5433 static_cast<int>(RangeLocOffset::SecondColonLoc)] =
5434 SecondColonLoc;
5435}
5436
5437Decl *OMPIteratorExpr::getIteratorDecl(unsigned I) {
5438 return getTrailingObjects<Decl *>()[I];
5439}
5440
5441OMPIteratorExpr::IteratorRange OMPIteratorExpr::getIteratorRange(unsigned I) {
5442 IteratorRange Res;
5443 Res.Begin =
5444 getTrailingObjects<Expr *>()[I * static_cast<int>(
5445 RangeExprOffset::Total) +
5446 static_cast<int>(RangeExprOffset::Begin)];
5447 Res.End =
5448 getTrailingObjects<Expr *>()[I * static_cast<int>(
5449 RangeExprOffset::Total) +
5450 static_cast<int>(RangeExprOffset::End)];
5451 Res.Step =
5452 getTrailingObjects<Expr *>()[I * static_cast<int>(
5453 RangeExprOffset::Total) +
5454 static_cast<int>(RangeExprOffset::Step)];
5455 return Res;
5456}
5457
5458SourceLocation OMPIteratorExpr::getAssignLoc(unsigned I) const {
5459 return getTrailingObjects<
5460 SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) +
5461 static_cast<int>(RangeLocOffset::AssignLoc)];
5462}
5463
5464SourceLocation OMPIteratorExpr::getColonLoc(unsigned I) const {
5465 return getTrailingObjects<
5466 SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) +
5467 static_cast<int>(RangeLocOffset::FirstColonLoc)];
5468}
5469
5470SourceLocation OMPIteratorExpr::getSecondColonLoc(unsigned I) const {
5471 return getTrailingObjects<
5472 SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) +
5473 static_cast<int>(RangeLocOffset::SecondColonLoc)];
5474}
5475
5476void OMPIteratorExpr::setHelper(unsigned I, const OMPIteratorHelperData &D) {
5477 getTrailingObjects<OMPIteratorHelperData>()[I] = D;
5478}
5479
5480OMPIteratorHelperData &OMPIteratorExpr::getHelper(unsigned I) {
5481 return getTrailingObjects<OMPIteratorHelperData>()[I];
5482}
5483
5484const OMPIteratorHelperData &OMPIteratorExpr::getHelper(unsigned I) const {
5485 return getTrailingObjects<OMPIteratorHelperData>()[I];
5486}
5487
5488OMPIteratorExpr::OMPIteratorExpr(
5489 QualType ExprTy, SourceLocation IteratorKwLoc, SourceLocation L,
5490 SourceLocation R, ArrayRef<OMPIteratorExpr::IteratorDefinition> Data,
5491 ArrayRef<OMPIteratorHelperData> Helpers)
5492 : Expr(OMPIteratorExprClass, ExprTy, VK_LValue, OK_Ordinary),
5493 IteratorKwLoc(IteratorKwLoc), LPLoc(L), RPLoc(R),
5494 NumIterators(Data.size()) {
5495 for (unsigned I = 0, E = Data.size(); I < E; ++I) {
5496 const IteratorDefinition &D = Data[I];
5497 setIteratorDeclaration(I, D: D.IteratorDecl);
5498 setAssignmentLoc(I, Loc: D.AssignmentLoc);
5499 setIteratorRange(I, Begin: D.Range.Begin, ColonLoc: D.ColonLoc, End: D.Range.End,
5500 SecondColonLoc: D.SecondColonLoc, Step: D.Range.Step);
5501 setHelper(I, D: Helpers[I]);
5502 }
5503 setDependence(computeDependence(E: this));
5504}
5505
5506OMPIteratorExpr *
5507OMPIteratorExpr::Create(const ASTContext &Context, QualType T,
5508 SourceLocation IteratorKwLoc, SourceLocation L,
5509 SourceLocation R,
5510 ArrayRef<OMPIteratorExpr::IteratorDefinition> Data,
5511 ArrayRef<OMPIteratorHelperData> Helpers) {
5512 assert(Data.size() == Helpers.size() &&
5513 "Data and helpers must have the same size.");
5514 void *Mem = Context.Allocate(
5515 Size: totalSizeToAlloc<Decl *, Expr *, SourceLocation, OMPIteratorHelperData>(
5516 Counts: Data.size(), Counts: Data.size() * static_cast<int>(RangeExprOffset::Total),
5517 Counts: Data.size() * static_cast<int>(RangeLocOffset::Total),
5518 Counts: Helpers.size()),
5519 Align: alignof(OMPIteratorExpr));
5520 return new (Mem) OMPIteratorExpr(T, IteratorKwLoc, L, R, Data, Helpers);
5521}
5522
5523OMPIteratorExpr *OMPIteratorExpr::CreateEmpty(const ASTContext &Context,
5524 unsigned NumIterators) {
5525 void *Mem = Context.Allocate(
5526 Size: totalSizeToAlloc<Decl *, Expr *, SourceLocation, OMPIteratorHelperData>(
5527 Counts: NumIterators, Counts: NumIterators * static_cast<int>(RangeExprOffset::Total),
5528 Counts: NumIterators * static_cast<int>(RangeLocOffset::Total), Counts: NumIterators),
5529 Align: alignof(OMPIteratorExpr));
5530 return new (Mem) OMPIteratorExpr(EmptyShell(), NumIterators);
5531}
5532
5533HLSLOutArgExpr *HLSLOutArgExpr::Create(const ASTContext &C, QualType Ty,
5534 OpaqueValueExpr *Base,
5535 OpaqueValueExpr *OpV, Expr *WB,
5536 bool IsInOut) {
5537 return new (C) HLSLOutArgExpr(Ty, Base, OpV, WB, IsInOut);
5538}
5539
5540HLSLOutArgExpr *HLSLOutArgExpr::CreateEmpty(const ASTContext &C) {
5541 return new (C) HLSLOutArgExpr(EmptyShell());
5542}
5543
5544OpenACCAsteriskSizeExpr *OpenACCAsteriskSizeExpr::Create(const ASTContext &C,
5545 SourceLocation Loc) {
5546 return new (C) OpenACCAsteriskSizeExpr(Loc, C.IntTy);
5547}
5548
5549OpenACCAsteriskSizeExpr *
5550OpenACCAsteriskSizeExpr::CreateEmpty(const ASTContext &C) {
5551 return new (C) OpenACCAsteriskSizeExpr({}, C.IntTy);
5552}
5553
5554ConvertVectorExpr *ConvertVectorExpr::CreateEmpty(const ASTContext &C,
5555 bool hasFPFeatures) {
5556 void *Mem = C.Allocate(Size: totalSizeToAlloc<FPOptionsOverride>(Counts: hasFPFeatures),
5557 Align: alignof(ConvertVectorExpr));
5558 return new (Mem) ConvertVectorExpr(hasFPFeatures, EmptyShell());
5559}
5560
5561ConvertVectorExpr *ConvertVectorExpr::Create(
5562 const ASTContext &C, Expr *SrcExpr, TypeSourceInfo *TI, QualType DstType,
5563 ExprValueKind VK, ExprObjectKind OK, SourceLocation BuiltinLoc,
5564 SourceLocation RParenLoc, FPOptionsOverride FPFeatures) {
5565 bool HasFPFeatures = FPFeatures.requiresTrailingStorage();
5566 unsigned Size = totalSizeToAlloc<FPOptionsOverride>(Counts: HasFPFeatures);
5567 void *Mem = C.Allocate(Size, Align: alignof(ConvertVectorExpr));
5568 return new (Mem) ConvertVectorExpr(SrcExpr, TI, DstType, VK, OK, BuiltinLoc,
5569 RParenLoc, FPFeatures);
5570}
5571
5572APValue &CompoundLiteralExpr::getOrCreateStaticValue(ASTContext &Ctx) const {
5573 assert(hasStaticStorage());
5574 if (!StaticValue) {
5575 StaticValue = new (Ctx) APValue;
5576 Ctx.addDestruction(Ptr: StaticValue);
5577 }
5578 return *StaticValue;
5579}
5580
5581APValue &CompoundLiteralExpr::getStaticValue() const {
5582 assert(StaticValue);
5583 return *StaticValue;
5584}
5585