| 1 | //===- ThreadSafetyCommon.cpp ---------------------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // Implementation of the interfaces declared in ThreadSafetyCommon.h |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "clang/Analysis/Analyses/ThreadSafetyCommon.h" |
| 14 | #include "clang/AST/Attr.h" |
| 15 | #include "clang/AST/Decl.h" |
| 16 | #include "clang/AST/DeclCXX.h" |
| 17 | #include "clang/AST/DeclGroup.h" |
| 18 | #include "clang/AST/DeclObjC.h" |
| 19 | #include "clang/AST/Expr.h" |
| 20 | #include "clang/AST/ExprCXX.h" |
| 21 | #include "clang/AST/OperationKinds.h" |
| 22 | #include "clang/AST/Stmt.h" |
| 23 | #include "clang/AST/Type.h" |
| 24 | #include "clang/Analysis/Analyses/ThreadSafetyTIL.h" |
| 25 | #include "clang/Analysis/CFG.h" |
| 26 | #include "clang/Basic/LLVM.h" |
| 27 | #include "clang/Basic/OperatorKinds.h" |
| 28 | #include "clang/Basic/Specifiers.h" |
| 29 | #include "llvm/ADT/ScopeExit.h" |
| 30 | #include "llvm/ADT/StringExtras.h" |
| 31 | #include "llvm/ADT/StringRef.h" |
| 32 | #include <algorithm> |
| 33 | #include <cassert> |
| 34 | #include <string> |
| 35 | #include <utility> |
| 36 | |
| 37 | using namespace clang; |
| 38 | using namespace threadSafety; |
| 39 | |
| 40 | // From ThreadSafetyUtil.h |
| 41 | std::string threadSafety::getSourceLiteralString(const Expr *CE) { |
| 42 | switch (CE->getStmtClass()) { |
| 43 | case Stmt::IntegerLiteralClass: |
| 44 | return toString(I: cast<IntegerLiteral>(Val: CE)->getValue(), Radix: 10, Signed: true); |
| 45 | case Stmt::StringLiteralClass: { |
| 46 | std::string ret("\"" ); |
| 47 | ret += cast<StringLiteral>(Val: CE)->getString(); |
| 48 | ret += "\"" ; |
| 49 | return ret; |
| 50 | } |
| 51 | case Stmt::CharacterLiteralClass: |
| 52 | case Stmt::CXXNullPtrLiteralExprClass: |
| 53 | case Stmt::GNUNullExprClass: |
| 54 | case Stmt::CXXBoolLiteralExprClass: |
| 55 | case Stmt::FloatingLiteralClass: |
| 56 | case Stmt::ImaginaryLiteralClass: |
| 57 | case Stmt::ObjCStringLiteralClass: |
| 58 | default: |
| 59 | return "#lit" ; |
| 60 | } |
| 61 | } |
| 62 | |
| 63 | // Return true if E is a variable that points to an incomplete Phi node. |
| 64 | static bool isIncompletePhi(const til::SExpr *E) { |
| 65 | if (const auto *Ph = dyn_cast<til::Phi>(Val: E)) |
| 66 | return Ph->status() == til::Phi::PH_Incomplete; |
| 67 | return false; |
| 68 | } |
| 69 | |
| 70 | static constexpr std::pair<StringRef, bool> ClassifyCapabilityFallback{ |
| 71 | /*Kind=*/StringRef("mutex" ), |
| 72 | /*Reentrant=*/false}; |
| 73 | |
| 74 | // Returns pair (Kind, Reentrant). |
| 75 | static std::pair<StringRef, bool> classifyCapability(const TypeDecl &TD) { |
| 76 | if (const auto *CA = TD.getAttr<CapabilityAttr>()) |
| 77 | return {CA->getName(), TD.hasAttr<ReentrantCapabilityAttr>()}; |
| 78 | |
| 79 | return ClassifyCapabilityFallback; |
| 80 | } |
| 81 | |
| 82 | // Returns pair (Kind, Reentrant). |
| 83 | static std::pair<StringRef, bool> classifyCapability(QualType QT) { |
| 84 | // We need to look at the declaration of the type of the value to determine |
| 85 | // which it is. The type should either be a record or a typedef, or a pointer |
| 86 | // or reference thereof. |
| 87 | if (const auto *RD = QT->getAsRecordDecl()) |
| 88 | return classifyCapability(TD: *RD); |
| 89 | if (const auto *TT = QT->getAs<TypedefType>()) |
| 90 | return classifyCapability(TD: *TT->getDecl()); |
| 91 | if (QT->isPointerOrReferenceType()) |
| 92 | return classifyCapability(QT: QT->getPointeeType()); |
| 93 | |
| 94 | return ClassifyCapabilityFallback; |
| 95 | } |
| 96 | |
| 97 | CapabilityExpr::CapabilityExpr(const til::SExpr *E, QualType QT, bool Neg) { |
| 98 | const auto &[Kind, Reentrant] = classifyCapability(QT); |
| 99 | *this = CapabilityExpr(E, Kind, Neg, Reentrant); |
| 100 | } |
| 101 | |
| 102 | using CallingContext = SExprBuilder::CallingContext; |
| 103 | |
| 104 | til::SExpr *SExprBuilder::lookupStmt(const Stmt *S) { return SMap.lookup(Val: S); } |
| 105 | |
| 106 | til::SCFG *SExprBuilder::buildCFG(CFGWalker &Walker) { |
| 107 | Walker.walk(V&: *this); |
| 108 | return Scfg; |
| 109 | } |
| 110 | |
| 111 | static bool isCalleeArrow(const Expr *E) { |
| 112 | const auto *ME = dyn_cast<MemberExpr>(Val: E->IgnoreParenCasts()); |
| 113 | return ME ? ME->isArrow() : false; |
| 114 | } |
| 115 | |
| 116 | /// Translate a clang expression in an attribute to a til::SExpr. |
| 117 | /// Constructs the context from D, DeclExp, and SelfDecl. |
| 118 | /// |
| 119 | /// \param AttrExp The expression to translate. |
| 120 | /// \param D The declaration to which the attribute is attached. |
| 121 | /// \param DeclExp An expression involving the Decl to which the attribute |
| 122 | /// is attached. E.g. the call to a function. |
| 123 | /// \param Self S-expression to substitute for a \ref CXXThisExpr in a call, |
| 124 | /// or argument to a cleanup function. |
| 125 | CapabilityExpr SExprBuilder::translateAttrExpr(const Expr *AttrExp, |
| 126 | const NamedDecl *D, |
| 127 | const Expr *DeclExp, |
| 128 | til::SExpr *Self) { |
| 129 | // If we are processing a raw attribute expression, with no substitutions. |
| 130 | if (!DeclExp && !Self) |
| 131 | return translateAttrExpr(AttrExp, Ctx: nullptr); |
| 132 | |
| 133 | CallingContext Ctx(nullptr, D); |
| 134 | |
| 135 | // Examine DeclExp to find SelfArg and FunArgs, which are used to substitute |
| 136 | // for formal parameters when we call buildMutexID later. |
| 137 | if (!DeclExp) |
| 138 | /* We'll use Self. */; |
| 139 | else if (const auto *ME = dyn_cast<MemberExpr>(Val: DeclExp)) { |
| 140 | Ctx.SelfArg = ME->getBase(); |
| 141 | Ctx.SelfArrow = ME->isArrow(); |
| 142 | } else if (const auto *CE = dyn_cast<CXXMemberCallExpr>(Val: DeclExp)) { |
| 143 | Ctx.SelfArg = CE->getImplicitObjectArgument(); |
| 144 | Ctx.SelfArrow = isCalleeArrow(E: CE->getCallee()); |
| 145 | Ctx.NumArgs = CE->getNumArgs(); |
| 146 | Ctx.FunArgs = CE->getArgs(); |
| 147 | } else if (const auto *CE = dyn_cast<CallExpr>(Val: DeclExp)) { |
| 148 | // Calls to operators that are members need to be treated like member calls. |
| 149 | if (isa<CXXOperatorCallExpr>(Val: CE) && isa<CXXMethodDecl>(Val: D)) { |
| 150 | Ctx.SelfArg = CE->getArg(Arg: 0); |
| 151 | Ctx.SelfArrow = false; |
| 152 | Ctx.NumArgs = CE->getNumArgs() - 1; |
| 153 | Ctx.FunArgs = CE->getArgs() + 1; |
| 154 | } else { |
| 155 | Ctx.NumArgs = CE->getNumArgs(); |
| 156 | Ctx.FunArgs = CE->getArgs(); |
| 157 | } |
| 158 | } else if (const auto *CE = dyn_cast<CXXConstructExpr>(Val: DeclExp)) { |
| 159 | Ctx.SelfArg = nullptr; // Will be set below |
| 160 | Ctx.NumArgs = CE->getNumArgs(); |
| 161 | Ctx.FunArgs = CE->getArgs(); |
| 162 | } |
| 163 | |
| 164 | // Usually we want to substitute the self-argument for "this", but lambdas |
| 165 | // are an exception: "this" on or in a lambda call operator doesn't refer |
| 166 | // to the lambda, but to captured "this" in the context it was created in. |
| 167 | // This can happen for operator calls and member calls, so fix it up here. |
| 168 | if (const auto *CMD = dyn_cast<CXXMethodDecl>(Val: D)) |
| 169 | if (CMD->getParent()->isLambda()) |
| 170 | Ctx.SelfArg = nullptr; |
| 171 | |
| 172 | if (Self) { |
| 173 | assert(!Ctx.SelfArg && "Ambiguous self argument" ); |
| 174 | assert(isa<FunctionDecl>(D) && "Self argument requires function" ); |
| 175 | if (isa<CXXMethodDecl>(Val: D)) |
| 176 | Ctx.SelfArg = Self; |
| 177 | else |
| 178 | Ctx.FunArgs = Self; |
| 179 | |
| 180 | // If the attribute has no arguments, then assume the argument is "this". |
| 181 | if (!AttrExp) |
| 182 | return CapabilityExpr( |
| 183 | Self, cast<CXXMethodDecl>(Val: D)->getFunctionObjectParameterType(), |
| 184 | false); |
| 185 | else // For most attributes. |
| 186 | return translateAttrExpr(AttrExp, Ctx: &Ctx); |
| 187 | } |
| 188 | |
| 189 | // If the attribute has no arguments, then assume the argument is "this". |
| 190 | if (!AttrExp) |
| 191 | return translateAttrExpr(AttrExp: cast<const Expr *>(Val&: Ctx.SelfArg), Ctx: nullptr); |
| 192 | else // For most attributes. |
| 193 | return translateAttrExpr(AttrExp, Ctx: &Ctx); |
| 194 | } |
| 195 | |
| 196 | /// Translate a clang expression in an attribute to a til::SExpr. |
| 197 | // This assumes a CallingContext has already been created. |
| 198 | CapabilityExpr SExprBuilder::translateAttrExpr(const Expr *AttrExp, |
| 199 | CallingContext *Ctx) { |
| 200 | if (!AttrExp) |
| 201 | return CapabilityExpr(); |
| 202 | |
| 203 | if (const auto* SLit = dyn_cast<StringLiteral>(Val: AttrExp)) { |
| 204 | if (SLit->getString() == "*" ) |
| 205 | // The "*" expr is a universal lock, which essentially turns off |
| 206 | // checks until it is removed from the lockset. |
| 207 | return CapabilityExpr(new (Arena) til::Wildcard(), StringRef("wildcard" ), |
| 208 | /*Neg=*/false, /*Reentrant=*/false); |
| 209 | else |
| 210 | // Ignore other string literals for now. |
| 211 | return CapabilityExpr(); |
| 212 | } |
| 213 | |
| 214 | bool Neg = false; |
| 215 | if (const auto *OE = dyn_cast<CXXOperatorCallExpr>(Val: AttrExp)) { |
| 216 | if (OE->getOperator() == OO_Exclaim) { |
| 217 | Neg = true; |
| 218 | AttrExp = OE->getArg(Arg: 0); |
| 219 | } |
| 220 | } |
| 221 | else if (const auto *UO = dyn_cast<UnaryOperator>(Val: AttrExp)) { |
| 222 | if (UO->getOpcode() == UO_LNot) { |
| 223 | Neg = true; |
| 224 | AttrExp = UO->getSubExpr()->IgnoreImplicit(); |
| 225 | } |
| 226 | } |
| 227 | |
| 228 | const til::SExpr *E = translate(S: AttrExp, Ctx); |
| 229 | |
| 230 | // Trap mutex expressions like nullptr, or 0. |
| 231 | // Any literal value is nonsense. |
| 232 | if (!E || isa<til::Literal>(Val: E)) |
| 233 | return CapabilityExpr(); |
| 234 | |
| 235 | // Hack to deal with smart pointers -- strip off top-level pointer casts. |
| 236 | if (const auto *CE = dyn_cast<til::Cast>(Val: E)) { |
| 237 | if (CE->castOpcode() == til::CAST_objToPtr) |
| 238 | E = CE->expr(); |
| 239 | } |
| 240 | return CapabilityExpr(E, AttrExp->getType(), Neg); |
| 241 | } |
| 242 | |
| 243 | til::SExpr *SExprBuilder::translateVariable(const VarDecl *VD, |
| 244 | CallingContext *Ctx) { |
| 245 | assert(VD); |
| 246 | |
| 247 | // General recursion guard for x = f(x). If we are already in the process of |
| 248 | // defining VD, use its pre-assignment value to break the cycle. |
| 249 | if (VarsBeingTranslated.contains(V: VD->getCanonicalDecl())) |
| 250 | return new (Arena) til::LiteralPtr(VD); |
| 251 | |
| 252 | // The closure captures state that is updated to correctly translate chains of |
| 253 | // aliases. Restore it when we are done with recursive translation. |
| 254 | llvm::scope_exit Cleanup([&, RestoreClosure = VarsBeingTranslated.empty() |
| 255 | ? LookupLocalVarExpr |
| 256 | : nullptr] { |
| 257 | VarsBeingTranslated.erase(V: VD->getCanonicalDecl()); |
| 258 | if (VarsBeingTranslated.empty()) |
| 259 | LookupLocalVarExpr = RestoreClosure; |
| 260 | }); |
| 261 | VarsBeingTranslated.insert(V: VD->getCanonicalDecl()); |
| 262 | |
| 263 | QualType Ty = VD->getType(); |
| 264 | if (!VD->isStaticLocal() && Ty->isPointerType()) { |
| 265 | // Substitute local variable aliases with a canonical definition. |
| 266 | if (LookupLocalVarExpr) { |
| 267 | // Attempt to resolve an alias through the more complex local variable map |
| 268 | // lookup. This will fail with complex control-flow graphs (where we |
| 269 | // revert to no alias resolution to retain stable variable names). |
| 270 | if (const Expr *E = LookupLocalVarExpr(VD)) { |
| 271 | til::SExpr *Result = translate(S: E, Ctx); |
| 272 | // Unsupported expression (such as heap allocations) will be undefined; |
| 273 | // rather than failing here, we simply revert to the pointer being the |
| 274 | // canonical variable. |
| 275 | if (Result && !isa<til::Undefined>(Val: Result)) |
| 276 | return Result; |
| 277 | } |
| 278 | } |
| 279 | } |
| 280 | |
| 281 | return new (Arena) til::LiteralPtr(VD); |
| 282 | } |
| 283 | |
| 284 | // Translate a clang statement or expression to a TIL expression. |
| 285 | // Also performs substitution of variables; Ctx provides the context. |
| 286 | // Dispatches on the type of S. |
| 287 | til::SExpr *SExprBuilder::translate(const Stmt *S, CallingContext *Ctx) { |
| 288 | if (!S) |
| 289 | return nullptr; |
| 290 | |
| 291 | // Check if S has already been translated and cached. |
| 292 | // This handles the lookup of SSA names for DeclRefExprs here. |
| 293 | if (til::SExpr *E = lookupStmt(S)) |
| 294 | return E; |
| 295 | |
| 296 | switch (S->getStmtClass()) { |
| 297 | case Stmt::DeclRefExprClass: |
| 298 | return translateDeclRefExpr(DRE: cast<DeclRefExpr>(Val: S), Ctx); |
| 299 | case Stmt::CXXThisExprClass: |
| 300 | return translateCXXThisExpr(TE: cast<CXXThisExpr>(Val: S), Ctx); |
| 301 | case Stmt::MemberExprClass: |
| 302 | return translateMemberExpr(ME: cast<MemberExpr>(Val: S), Ctx); |
| 303 | case Stmt::ObjCIvarRefExprClass: |
| 304 | return translateObjCIVarRefExpr(IVRE: cast<ObjCIvarRefExpr>(Val: S), Ctx); |
| 305 | case Stmt::CallExprClass: |
| 306 | return translateCallExpr(CE: cast<CallExpr>(Val: S), Ctx); |
| 307 | case Stmt::CXXMemberCallExprClass: |
| 308 | return translateCXXMemberCallExpr(ME: cast<CXXMemberCallExpr>(Val: S), Ctx); |
| 309 | case Stmt::CXXOperatorCallExprClass: |
| 310 | return translateCXXOperatorCallExpr(OCE: cast<CXXOperatorCallExpr>(Val: S), Ctx); |
| 311 | case Stmt::UnaryOperatorClass: |
| 312 | return translateUnaryOperator(UO: cast<UnaryOperator>(Val: S), Ctx); |
| 313 | case Stmt::BinaryOperatorClass: |
| 314 | case Stmt::CompoundAssignOperatorClass: |
| 315 | return translateBinaryOperator(BO: cast<BinaryOperator>(Val: S), Ctx); |
| 316 | |
| 317 | case Stmt::ArraySubscriptExprClass: |
| 318 | return translateArraySubscriptExpr(E: cast<ArraySubscriptExpr>(Val: S), Ctx); |
| 319 | case Stmt::ConditionalOperatorClass: |
| 320 | return translateAbstractConditionalOperator( |
| 321 | C: cast<ConditionalOperator>(Val: S), Ctx); |
| 322 | case Stmt::BinaryConditionalOperatorClass: |
| 323 | return translateAbstractConditionalOperator( |
| 324 | C: cast<BinaryConditionalOperator>(Val: S), Ctx); |
| 325 | |
| 326 | // We treat these as no-ops |
| 327 | case Stmt::ConstantExprClass: |
| 328 | return translate(S: cast<ConstantExpr>(Val: S)->getSubExpr(), Ctx); |
| 329 | case Stmt::ParenExprClass: |
| 330 | return translate(S: cast<ParenExpr>(Val: S)->getSubExpr(), Ctx); |
| 331 | case Stmt::ExprWithCleanupsClass: |
| 332 | return translate(S: cast<ExprWithCleanups>(Val: S)->getSubExpr(), Ctx); |
| 333 | case Stmt::CXXBindTemporaryExprClass: |
| 334 | return translate(S: cast<CXXBindTemporaryExpr>(Val: S)->getSubExpr(), Ctx); |
| 335 | case Stmt::MaterializeTemporaryExprClass: |
| 336 | return translate(S: cast<MaterializeTemporaryExpr>(Val: S)->getSubExpr(), Ctx); |
| 337 | |
| 338 | // Collect all literals |
| 339 | case Stmt::CharacterLiteralClass: |
| 340 | return new (Arena) |
| 341 | til::LiteralT<char32_t>(cast<CharacterLiteral>(Val: S)->getValue()); |
| 342 | case Stmt::CXXNullPtrLiteralExprClass: |
| 343 | case Stmt::GNUNullExprClass: |
| 344 | return new (Arena) til::LiteralT(nullptr); |
| 345 | case Stmt::CXXBoolLiteralExprClass: |
| 346 | return new (Arena) til::LiteralT(cast<CXXBoolLiteralExpr>(Val: S)->getValue()); |
| 347 | case Stmt::IntegerLiteralClass: { |
| 348 | const auto *IL = cast<IntegerLiteral>(Val: S); |
| 349 | const auto *BT = cast<BuiltinType>(Val: IL->getType()); |
| 350 | const llvm::APInt &Value = IL->getValue(); |
| 351 | if (BT->isSignedInteger()) |
| 352 | return new (Arena) til::LiteralT(Value.getSExtValue()); |
| 353 | else if (BT->isUnsignedInteger()) |
| 354 | return new (Arena) til::LiteralT(Value.getZExtValue()); |
| 355 | else |
| 356 | llvm_unreachable("Invalid integer type" ); |
| 357 | } |
| 358 | case Stmt::StringLiteralClass: |
| 359 | return new (Arena) til::LiteralT(cast<StringLiteral>(Val: S)->getString()); |
| 360 | case Stmt::ObjCStringLiteralClass: |
| 361 | return new (Arena) |
| 362 | til::LiteralT(cast<ObjCStringLiteral>(Val: S)->getString()->getString()); |
| 363 | |
| 364 | case Stmt::DeclStmtClass: |
| 365 | return translateDeclStmt(S: cast<DeclStmt>(Val: S), Ctx); |
| 366 | case Stmt::StmtExprClass: |
| 367 | return translateStmtExpr(SE: cast<StmtExpr>(Val: S), Ctx); |
| 368 | default: |
| 369 | break; |
| 370 | } |
| 371 | if (const auto *CE = dyn_cast<CastExpr>(Val: S)) |
| 372 | return translateCastExpr(CE, Ctx); |
| 373 | |
| 374 | return new (Arena) til::Undefined(S); |
| 375 | } |
| 376 | |
| 377 | til::SExpr *SExprBuilder::translateDeclRefExpr(const DeclRefExpr *DRE, |
| 378 | CallingContext *Ctx) { |
| 379 | const auto *VD = cast<ValueDecl>(Val: DRE->getDecl()->getCanonicalDecl()); |
| 380 | |
| 381 | // Function parameters require substitution and/or renaming. |
| 382 | if (const auto *PV = dyn_cast<ParmVarDecl>(Val: VD)) { |
| 383 | unsigned I = PV->getFunctionScopeIndex(); |
| 384 | const DeclContext *D = PV->getDeclContext(); |
| 385 | if (Ctx && Ctx->FunArgs) { |
| 386 | const Decl *Canonical = Ctx->AttrDecl->getCanonicalDecl(); |
| 387 | if (isa<FunctionDecl>(Val: D) |
| 388 | ? (cast<FunctionDecl>(Val: D)->getCanonicalDecl() == Canonical) |
| 389 | : (cast<ObjCMethodDecl>(Val: D)->getCanonicalDecl() == Canonical)) { |
| 390 | // Substitute call arguments for references to function parameters |
| 391 | if (const Expr *const *FunArgs = |
| 392 | dyn_cast<const Expr *const *>(Val&: Ctx->FunArgs)) { |
| 393 | assert(I < Ctx->NumArgs); |
| 394 | return translate(S: FunArgs[I], Ctx: Ctx->Prev); |
| 395 | } |
| 396 | |
| 397 | assert(I == 0); |
| 398 | return cast<til::SExpr *>(Val&: Ctx->FunArgs); |
| 399 | } |
| 400 | } |
| 401 | // Map the param back to the param of the original function declaration |
| 402 | // for consistent comparisons. |
| 403 | VD = isa<FunctionDecl>(Val: D) |
| 404 | ? cast<FunctionDecl>(Val: D)->getCanonicalDecl()->getParamDecl(i: I) |
| 405 | : cast<ObjCMethodDecl>(Val: D)->getCanonicalDecl()->getParamDecl(Idx: I); |
| 406 | } |
| 407 | |
| 408 | if (const auto *VarD = dyn_cast<VarDecl>(Val: VD)) |
| 409 | return translateVariable(VD: VarD, Ctx); |
| 410 | |
| 411 | // For non-local variables, treat it as a reference to a named object. |
| 412 | return new (Arena) til::LiteralPtr(VD); |
| 413 | } |
| 414 | |
| 415 | til::SExpr *SExprBuilder::translateCXXThisExpr(const CXXThisExpr *TE, |
| 416 | CallingContext *Ctx) { |
| 417 | // Substitute for 'this' |
| 418 | if (Ctx && Ctx->SelfArg) { |
| 419 | if (const auto *SelfArg = dyn_cast<const Expr *>(Val&: Ctx->SelfArg)) |
| 420 | return translate(S: SelfArg, Ctx: Ctx->Prev); |
| 421 | else |
| 422 | return cast<til::SExpr *>(Val&: Ctx->SelfArg); |
| 423 | } |
| 424 | assert(SelfVar && "We have no variable for 'this'!" ); |
| 425 | return SelfVar; |
| 426 | } |
| 427 | |
| 428 | static const ValueDecl *getValueDeclFromSExpr(const til::SExpr *E) { |
| 429 | if (const auto *V = dyn_cast<til::Variable>(Val: E)) |
| 430 | return V->clangDecl(); |
| 431 | if (const auto *Ph = dyn_cast<til::Phi>(Val: E)) |
| 432 | return Ph->clangDecl(); |
| 433 | if (const auto *P = dyn_cast<til::Project>(Val: E)) |
| 434 | return P->clangDecl(); |
| 435 | if (const auto *L = dyn_cast<til::LiteralPtr>(Val: E)) |
| 436 | return L->clangDecl(); |
| 437 | return nullptr; |
| 438 | } |
| 439 | |
| 440 | static bool hasAnyPointerType(const til::SExpr *E) { |
| 441 | auto *VD = getValueDeclFromSExpr(E); |
| 442 | if (VD && VD->getType()->isAnyPointerType()) |
| 443 | return true; |
| 444 | if (const auto *C = dyn_cast<til::Cast>(Val: E)) |
| 445 | return C->castOpcode() == til::CAST_objToPtr; |
| 446 | |
| 447 | return false; |
| 448 | } |
| 449 | |
| 450 | // Grab the very first declaration of virtual method D |
| 451 | static const CXXMethodDecl *getFirstVirtualDecl(const CXXMethodDecl *D) { |
| 452 | while (true) { |
| 453 | D = D->getCanonicalDecl(); |
| 454 | auto OverriddenMethods = D->overridden_methods(); |
| 455 | if (OverriddenMethods.begin() == OverriddenMethods.end()) |
| 456 | return D; // Method does not override anything |
| 457 | // FIXME: this does not work with multiple inheritance. |
| 458 | D = *OverriddenMethods.begin(); |
| 459 | } |
| 460 | return nullptr; |
| 461 | } |
| 462 | |
| 463 | til::SExpr *SExprBuilder::translateMemberExpr(const MemberExpr *ME, |
| 464 | CallingContext *Ctx) { |
| 465 | til::SExpr *BE = translate(S: ME->getBase(), Ctx); |
| 466 | til::SExpr *E = new (Arena) til::SApply(BE); |
| 467 | |
| 468 | const auto *D = cast<ValueDecl>(Val: ME->getMemberDecl()->getCanonicalDecl()); |
| 469 | if (const auto *VD = dyn_cast<CXXMethodDecl>(Val: D)) |
| 470 | D = getFirstVirtualDecl(D: VD); |
| 471 | |
| 472 | til::Project *P = new (Arena) til::Project(E, D); |
| 473 | if (hasAnyPointerType(E: BE)) |
| 474 | P->setArrow(true); |
| 475 | return P; |
| 476 | } |
| 477 | |
| 478 | til::SExpr *SExprBuilder::translateObjCIVarRefExpr(const ObjCIvarRefExpr *IVRE, |
| 479 | CallingContext *Ctx) { |
| 480 | til::SExpr *BE = translate(S: IVRE->getBase(), Ctx); |
| 481 | til::SExpr *E = new (Arena) til::SApply(BE); |
| 482 | |
| 483 | const auto *D = cast<ObjCIvarDecl>(Val: IVRE->getDecl()->getCanonicalDecl()); |
| 484 | |
| 485 | til::Project *P = new (Arena) til::Project(E, D); |
| 486 | if (hasAnyPointerType(E: BE)) |
| 487 | P->setArrow(true); |
| 488 | return P; |
| 489 | } |
| 490 | |
| 491 | til::SExpr *SExprBuilder::translateCallExpr(const CallExpr *CE, |
| 492 | CallingContext *Ctx, |
| 493 | const Expr *SelfE) { |
| 494 | if (CapabilityExprMode) { |
| 495 | // Handle LOCK_RETURNED |
| 496 | if (const FunctionDecl *FD = CE->getDirectCallee()) { |
| 497 | FD = FD->getMostRecentDecl(); |
| 498 | if (LockReturnedAttr *At = FD->getAttr<LockReturnedAttr>()) { |
| 499 | CallingContext LRCallCtx(Ctx); |
| 500 | LRCallCtx.AttrDecl = CE->getDirectCallee(); |
| 501 | LRCallCtx.SelfArg = SelfE; |
| 502 | LRCallCtx.NumArgs = CE->getNumArgs(); |
| 503 | LRCallCtx.FunArgs = CE->getArgs(); |
| 504 | return const_cast<til::SExpr *>( |
| 505 | translateAttrExpr(AttrExp: At->getArg(), Ctx: &LRCallCtx).sexpr()); |
| 506 | } |
| 507 | } |
| 508 | } |
| 509 | |
| 510 | til::SExpr *E = translate(S: CE->getCallee(), Ctx); |
| 511 | for (const auto *Arg : CE->arguments()) { |
| 512 | til::SExpr *A = translate(S: Arg, Ctx); |
| 513 | E = new (Arena) til::Apply(E, A); |
| 514 | } |
| 515 | return new (Arena) til::Call(E, CE); |
| 516 | } |
| 517 | |
| 518 | til::SExpr *SExprBuilder::translateCXXMemberCallExpr( |
| 519 | const CXXMemberCallExpr *ME, CallingContext *Ctx) { |
| 520 | if (CapabilityExprMode) { |
| 521 | // Ignore calls to get() on smart pointers. |
| 522 | if (ME->getMethodDecl()->getNameAsString() == "get" && |
| 523 | ME->getNumArgs() == 0) { |
| 524 | auto *E = translate(S: ME->getImplicitObjectArgument(), Ctx); |
| 525 | return new (Arena) til::Cast(til::CAST_objToPtr, E); |
| 526 | // return E; |
| 527 | } |
| 528 | } |
| 529 | return translateCallExpr(CE: cast<CallExpr>(Val: ME), Ctx, |
| 530 | SelfE: ME->getImplicitObjectArgument()); |
| 531 | } |
| 532 | |
| 533 | til::SExpr *SExprBuilder::translateCXXOperatorCallExpr( |
| 534 | const CXXOperatorCallExpr *OCE, CallingContext *Ctx) { |
| 535 | if (CapabilityExprMode) { |
| 536 | // Ignore operator * and operator -> on smart pointers. |
| 537 | OverloadedOperatorKind k = OCE->getOperator(); |
| 538 | if (k == OO_Star || k == OO_Arrow) { |
| 539 | auto *E = translate(S: OCE->getArg(Arg: 0), Ctx); |
| 540 | return new (Arena) til::Cast(til::CAST_objToPtr, E); |
| 541 | // return E; |
| 542 | } |
| 543 | } |
| 544 | return translateCallExpr(CE: cast<CallExpr>(Val: OCE), Ctx); |
| 545 | } |
| 546 | |
| 547 | til::SExpr *SExprBuilder::translateUnaryOperator(const UnaryOperator *UO, |
| 548 | CallingContext *Ctx) { |
| 549 | switch (UO->getOpcode()) { |
| 550 | case UO_PostInc: |
| 551 | case UO_PostDec: |
| 552 | case UO_PreInc: |
| 553 | case UO_PreDec: |
| 554 | return new (Arena) til::Undefined(UO); |
| 555 | |
| 556 | case UO_AddrOf: |
| 557 | if (CapabilityExprMode) { |
| 558 | // interpret &Graph::mu_ as an existential. |
| 559 | if (const auto *DRE = dyn_cast<DeclRefExpr>(Val: UO->getSubExpr())) { |
| 560 | if (DRE->getDecl()->isCXXInstanceMember()) { |
| 561 | // This is a pointer-to-member expression, e.g. &MyClass::mu_. |
| 562 | // We interpret this syntax specially, as a wildcard. |
| 563 | auto *W = new (Arena) til::Wildcard(); |
| 564 | return new (Arena) til::Project(W, DRE->getDecl()); |
| 565 | } |
| 566 | } |
| 567 | } |
| 568 | // otherwise, & is a no-op |
| 569 | return translate(S: UO->getSubExpr(), Ctx); |
| 570 | |
| 571 | // We treat these as no-ops |
| 572 | case UO_Deref: |
| 573 | case UO_Plus: |
| 574 | return translate(S: UO->getSubExpr(), Ctx); |
| 575 | |
| 576 | case UO_Minus: |
| 577 | return new (Arena) |
| 578 | til::UnaryOp(til::UOP_Minus, translate(S: UO->getSubExpr(), Ctx)); |
| 579 | case UO_Not: |
| 580 | return new (Arena) |
| 581 | til::UnaryOp(til::UOP_BitNot, translate(S: UO->getSubExpr(), Ctx)); |
| 582 | case UO_LNot: |
| 583 | return new (Arena) |
| 584 | til::UnaryOp(til::UOP_LogicNot, translate(S: UO->getSubExpr(), Ctx)); |
| 585 | |
| 586 | // Currently unsupported |
| 587 | case UO_Real: |
| 588 | case UO_Imag: |
| 589 | case UO_Extension: |
| 590 | case UO_Coawait: |
| 591 | return new (Arena) til::Undefined(UO); |
| 592 | } |
| 593 | return new (Arena) til::Undefined(UO); |
| 594 | } |
| 595 | |
| 596 | til::SExpr *SExprBuilder::translateBinOp(til::TIL_BinaryOpcode Op, |
| 597 | const BinaryOperator *BO, |
| 598 | CallingContext *Ctx, bool Reverse) { |
| 599 | til::SExpr *E0 = translate(S: BO->getLHS(), Ctx); |
| 600 | til::SExpr *E1 = translate(S: BO->getRHS(), Ctx); |
| 601 | if (Reverse) |
| 602 | return new (Arena) til::BinaryOp(Op, E1, E0); |
| 603 | else |
| 604 | return new (Arena) til::BinaryOp(Op, E0, E1); |
| 605 | } |
| 606 | |
| 607 | til::SExpr *SExprBuilder::translateBinAssign(til::TIL_BinaryOpcode Op, |
| 608 | const BinaryOperator *BO, |
| 609 | CallingContext *Ctx, |
| 610 | bool Assign) { |
| 611 | const Expr *LHS = BO->getLHS(); |
| 612 | const Expr *RHS = BO->getRHS(); |
| 613 | til::SExpr *E0 = translate(S: LHS, Ctx); |
| 614 | til::SExpr *E1 = translate(S: RHS, Ctx); |
| 615 | |
| 616 | const ValueDecl *VD = nullptr; |
| 617 | til::SExpr *CV = nullptr; |
| 618 | if (const auto *DRE = dyn_cast<DeclRefExpr>(Val: LHS)) { |
| 619 | VD = DRE->getDecl(); |
| 620 | CV = lookupVarDecl(VD); |
| 621 | } |
| 622 | |
| 623 | if (!Assign) { |
| 624 | til::SExpr *Arg = CV ? CV : new (Arena) til::Load(E0); |
| 625 | E1 = new (Arena) til::BinaryOp(Op, Arg, E1); |
| 626 | E1 = addStatement(E: E1, S: nullptr, VD); |
| 627 | } |
| 628 | if (VD && CV) |
| 629 | return updateVarDecl(VD, E: E1); |
| 630 | return new (Arena) til::Store(E0, E1); |
| 631 | } |
| 632 | |
| 633 | til::SExpr *SExprBuilder::translateBinaryOperator(const BinaryOperator *BO, |
| 634 | CallingContext *Ctx) { |
| 635 | switch (BO->getOpcode()) { |
| 636 | case BO_PtrMemD: |
| 637 | case BO_PtrMemI: |
| 638 | return new (Arena) til::Undefined(BO); |
| 639 | |
| 640 | case BO_Mul: return translateBinOp(Op: til::BOP_Mul, BO, Ctx); |
| 641 | case BO_Div: return translateBinOp(Op: til::BOP_Div, BO, Ctx); |
| 642 | case BO_Rem: return translateBinOp(Op: til::BOP_Rem, BO, Ctx); |
| 643 | case BO_Add: return translateBinOp(Op: til::BOP_Add, BO, Ctx); |
| 644 | case BO_Sub: return translateBinOp(Op: til::BOP_Sub, BO, Ctx); |
| 645 | case BO_Shl: return translateBinOp(Op: til::BOP_Shl, BO, Ctx); |
| 646 | case BO_Shr: return translateBinOp(Op: til::BOP_Shr, BO, Ctx); |
| 647 | case BO_LT: return translateBinOp(Op: til::BOP_Lt, BO, Ctx); |
| 648 | case BO_GT: return translateBinOp(Op: til::BOP_Lt, BO, Ctx, Reverse: true); |
| 649 | case BO_LE: return translateBinOp(Op: til::BOP_Leq, BO, Ctx); |
| 650 | case BO_GE: return translateBinOp(Op: til::BOP_Leq, BO, Ctx, Reverse: true); |
| 651 | case BO_EQ: return translateBinOp(Op: til::BOP_Eq, BO, Ctx); |
| 652 | case BO_NE: return translateBinOp(Op: til::BOP_Neq, BO, Ctx); |
| 653 | case BO_Cmp: return translateBinOp(Op: til::BOP_Cmp, BO, Ctx); |
| 654 | case BO_And: return translateBinOp(Op: til::BOP_BitAnd, BO, Ctx); |
| 655 | case BO_Xor: return translateBinOp(Op: til::BOP_BitXor, BO, Ctx); |
| 656 | case BO_Or: return translateBinOp(Op: til::BOP_BitOr, BO, Ctx); |
| 657 | case BO_LAnd: return translateBinOp(Op: til::BOP_LogicAnd, BO, Ctx); |
| 658 | case BO_LOr: return translateBinOp(Op: til::BOP_LogicOr, BO, Ctx); |
| 659 | |
| 660 | case BO_Assign: return translateBinAssign(Op: til::BOP_Eq, BO, Ctx, Assign: true); |
| 661 | case BO_MulAssign: return translateBinAssign(Op: til::BOP_Mul, BO, Ctx); |
| 662 | case BO_DivAssign: return translateBinAssign(Op: til::BOP_Div, BO, Ctx); |
| 663 | case BO_RemAssign: return translateBinAssign(Op: til::BOP_Rem, BO, Ctx); |
| 664 | case BO_AddAssign: return translateBinAssign(Op: til::BOP_Add, BO, Ctx); |
| 665 | case BO_SubAssign: return translateBinAssign(Op: til::BOP_Sub, BO, Ctx); |
| 666 | case BO_ShlAssign: return translateBinAssign(Op: til::BOP_Shl, BO, Ctx); |
| 667 | case BO_ShrAssign: return translateBinAssign(Op: til::BOP_Shr, BO, Ctx); |
| 668 | case BO_AndAssign: return translateBinAssign(Op: til::BOP_BitAnd, BO, Ctx); |
| 669 | case BO_XorAssign: return translateBinAssign(Op: til::BOP_BitXor, BO, Ctx); |
| 670 | case BO_OrAssign: return translateBinAssign(Op: til::BOP_BitOr, BO, Ctx); |
| 671 | |
| 672 | case BO_Comma: |
| 673 | // The clang CFG should have already processed both sides. |
| 674 | return translate(S: BO->getRHS(), Ctx); |
| 675 | } |
| 676 | return new (Arena) til::Undefined(BO); |
| 677 | } |
| 678 | |
| 679 | til::SExpr *SExprBuilder::translateCastExpr(const CastExpr *CE, |
| 680 | CallingContext *Ctx) { |
| 681 | CastKind K = CE->getCastKind(); |
| 682 | switch (K) { |
| 683 | case CK_LValueToRValue: { |
| 684 | if (const auto *DRE = dyn_cast<DeclRefExpr>(Val: CE->getSubExpr())) { |
| 685 | til::SExpr *E0 = lookupVarDecl(VD: DRE->getDecl()); |
| 686 | if (E0) |
| 687 | return E0; |
| 688 | } |
| 689 | til::SExpr *E0 = translate(S: CE->getSubExpr(), Ctx); |
| 690 | return E0; |
| 691 | // FIXME!! -- get Load working properly |
| 692 | // return new (Arena) til::Load(E0); |
| 693 | } |
| 694 | case CK_NoOp: |
| 695 | case CK_DerivedToBase: |
| 696 | case CK_UncheckedDerivedToBase: |
| 697 | case CK_ArrayToPointerDecay: |
| 698 | case CK_FunctionToPointerDecay: { |
| 699 | til::SExpr *E0 = translate(S: CE->getSubExpr(), Ctx); |
| 700 | return E0; |
| 701 | } |
| 702 | default: { |
| 703 | // FIXME: handle different kinds of casts. |
| 704 | til::SExpr *E0 = translate(S: CE->getSubExpr(), Ctx); |
| 705 | if (CapabilityExprMode) |
| 706 | return E0; |
| 707 | return new (Arena) til::Cast(til::CAST_none, E0); |
| 708 | } |
| 709 | } |
| 710 | } |
| 711 | |
| 712 | til::SExpr * |
| 713 | SExprBuilder::translateArraySubscriptExpr(const ArraySubscriptExpr *E, |
| 714 | CallingContext *Ctx) { |
| 715 | til::SExpr *E0 = translate(S: E->getBase(), Ctx); |
| 716 | til::SExpr *E1 = translate(S: E->getIdx(), Ctx); |
| 717 | return new (Arena) til::ArrayIndex(E0, E1); |
| 718 | } |
| 719 | |
| 720 | til::SExpr * |
| 721 | SExprBuilder::translateAbstractConditionalOperator( |
| 722 | const AbstractConditionalOperator *CO, CallingContext *Ctx) { |
| 723 | auto *C = translate(S: CO->getCond(), Ctx); |
| 724 | auto *T = translate(S: CO->getTrueExpr(), Ctx); |
| 725 | auto *E = translate(S: CO->getFalseExpr(), Ctx); |
| 726 | return new (Arena) til::IfThenElse(C, T, E); |
| 727 | } |
| 728 | |
| 729 | til::SExpr * |
| 730 | SExprBuilder::translateDeclStmt(const DeclStmt *S, CallingContext *Ctx) { |
| 731 | DeclGroupRef DGrp = S->getDeclGroup(); |
| 732 | for (auto *I : DGrp) { |
| 733 | if (auto *VD = dyn_cast_or_null<VarDecl>(Val: I)) { |
| 734 | Expr *E = VD->getInit(); |
| 735 | til::SExpr* SE = translate(S: E, Ctx); |
| 736 | |
| 737 | // Add local variables with trivial type to the variable map |
| 738 | QualType T = VD->getType(); |
| 739 | if (T.isTrivialType(Context: VD->getASTContext())) |
| 740 | return addVarDecl(VD, E: SE); |
| 741 | else { |
| 742 | // TODO: add alloca |
| 743 | } |
| 744 | } |
| 745 | } |
| 746 | return nullptr; |
| 747 | } |
| 748 | |
| 749 | til::SExpr *SExprBuilder::translateStmtExpr(const StmtExpr *SE, |
| 750 | CallingContext *Ctx) { |
| 751 | // The value of a statement expression is the value of the last statement, |
| 752 | // which must be an expression. |
| 753 | const CompoundStmt *CS = SE->getSubStmt(); |
| 754 | return CS->body_empty() ? new (Arena) til::Undefined(SE) |
| 755 | : translate(S: CS->body_back(), Ctx); |
| 756 | } |
| 757 | |
| 758 | // If (E) is non-trivial, then add it to the current basic block, and |
| 759 | // update the statement map so that S refers to E. Returns a new variable |
| 760 | // that refers to E. |
| 761 | // If E is trivial returns E. |
| 762 | til::SExpr *SExprBuilder::addStatement(til::SExpr* E, const Stmt *S, |
| 763 | const ValueDecl *VD) { |
| 764 | if (!E || !CurrentBB || E->block() || til::ThreadSafetyTIL::isTrivial(E)) |
| 765 | return E; |
| 766 | if (VD) |
| 767 | E = new (Arena) til::Variable(E, VD); |
| 768 | CurrentInstructions.push_back(x: E); |
| 769 | if (S) |
| 770 | insertStmt(S, E); |
| 771 | return E; |
| 772 | } |
| 773 | |
| 774 | // Returns the current value of VD, if known, and nullptr otherwise. |
| 775 | til::SExpr *SExprBuilder::lookupVarDecl(const ValueDecl *VD) { |
| 776 | auto It = LVarIdxMap.find(Val: VD); |
| 777 | if (It != LVarIdxMap.end()) { |
| 778 | assert(CurrentLVarMap[It->second].first == VD); |
| 779 | return CurrentLVarMap[It->second].second; |
| 780 | } |
| 781 | return nullptr; |
| 782 | } |
| 783 | |
| 784 | // if E is a til::Variable, update its clangDecl. |
| 785 | static void maybeUpdateVD(til::SExpr *E, const ValueDecl *VD) { |
| 786 | if (!E) |
| 787 | return; |
| 788 | if (auto *V = dyn_cast<til::Variable>(Val: E)) { |
| 789 | if (!V->clangDecl()) |
| 790 | V->setClangDecl(VD); |
| 791 | } |
| 792 | } |
| 793 | |
| 794 | // Adds a new variable declaration. |
| 795 | til::SExpr *SExprBuilder::addVarDecl(const ValueDecl *VD, til::SExpr *E) { |
| 796 | maybeUpdateVD(E, VD); |
| 797 | LVarIdxMap.insert(KV: std::make_pair(x&: VD, y: CurrentLVarMap.size())); |
| 798 | CurrentLVarMap.makeWritable(); |
| 799 | CurrentLVarMap.push_back(Elem: std::make_pair(x&: VD, y&: E)); |
| 800 | return E; |
| 801 | } |
| 802 | |
| 803 | // Updates a current variable declaration. (E.g. by assignment) |
| 804 | til::SExpr *SExprBuilder::updateVarDecl(const ValueDecl *VD, til::SExpr *E) { |
| 805 | maybeUpdateVD(E, VD); |
| 806 | auto It = LVarIdxMap.find(Val: VD); |
| 807 | if (It == LVarIdxMap.end()) { |
| 808 | til::SExpr *Ptr = new (Arena) til::LiteralPtr(VD); |
| 809 | til::SExpr *St = new (Arena) til::Store(Ptr, E); |
| 810 | return St; |
| 811 | } |
| 812 | CurrentLVarMap.makeWritable(); |
| 813 | CurrentLVarMap.elem(i: It->second).second = E; |
| 814 | return E; |
| 815 | } |
| 816 | |
| 817 | // Make a Phi node in the current block for the i^th variable in CurrentVarMap. |
| 818 | // If E != null, sets Phi[CurrentBlockInfo->ArgIndex] = E. |
| 819 | // If E == null, this is a backedge and will be set later. |
| 820 | void SExprBuilder::makePhiNodeVar(unsigned i, unsigned NPreds, til::SExpr *E) { |
| 821 | unsigned ArgIndex = CurrentBlockInfo->ProcessedPredecessors; |
| 822 | assert(ArgIndex > 0 && ArgIndex < NPreds); |
| 823 | |
| 824 | til::SExpr *CurrE = CurrentLVarMap[i].second; |
| 825 | if (CurrE->block() == CurrentBB) { |
| 826 | // We already have a Phi node in the current block, |
| 827 | // so just add the new variable to the Phi node. |
| 828 | auto *Ph = dyn_cast<til::Phi>(Val: CurrE); |
| 829 | assert(Ph && "Expecting Phi node." ); |
| 830 | if (E) |
| 831 | Ph->values()[ArgIndex] = E; |
| 832 | return; |
| 833 | } |
| 834 | |
| 835 | // Make a new phi node: phi(..., E) |
| 836 | // All phi args up to the current index are set to the current value. |
| 837 | til::Phi *Ph = new (Arena) til::Phi(Arena, NPreds); |
| 838 | Ph->values().setValues(Sz: NPreds, C: nullptr); |
| 839 | for (unsigned PIdx = 0; PIdx < ArgIndex; ++PIdx) |
| 840 | Ph->values()[PIdx] = CurrE; |
| 841 | if (E) |
| 842 | Ph->values()[ArgIndex] = E; |
| 843 | Ph->setClangDecl(CurrentLVarMap[i].first); |
| 844 | // If E is from a back-edge, or either E or CurrE are incomplete, then |
| 845 | // mark this node as incomplete; we may need to remove it later. |
| 846 | if (!E || isIncompletePhi(E) || isIncompletePhi(E: CurrE)) |
| 847 | Ph->setStatus(til::Phi::PH_Incomplete); |
| 848 | |
| 849 | // Add Phi node to current block, and update CurrentLVarMap[i] |
| 850 | CurrentArguments.push_back(x: Ph); |
| 851 | if (Ph->status() == til::Phi::PH_Incomplete) |
| 852 | IncompleteArgs.push_back(x: Ph); |
| 853 | |
| 854 | CurrentLVarMap.makeWritable(); |
| 855 | CurrentLVarMap.elem(i).second = Ph; |
| 856 | } |
| 857 | |
| 858 | // Merge values from Map into the current variable map. |
| 859 | // This will construct Phi nodes in the current basic block as necessary. |
| 860 | void SExprBuilder::mergeEntryMap(LVarDefinitionMap Map) { |
| 861 | assert(CurrentBlockInfo && "Not processing a block!" ); |
| 862 | |
| 863 | if (!CurrentLVarMap.valid()) { |
| 864 | // Steal Map, using copy-on-write. |
| 865 | CurrentLVarMap = std::move(Map); |
| 866 | return; |
| 867 | } |
| 868 | if (CurrentLVarMap.sameAs(V: Map)) |
| 869 | return; // Easy merge: maps from different predecessors are unchanged. |
| 870 | |
| 871 | unsigned NPreds = CurrentBB->numPredecessors(); |
| 872 | unsigned ESz = CurrentLVarMap.size(); |
| 873 | unsigned MSz = Map.size(); |
| 874 | unsigned Sz = std::min(a: ESz, b: MSz); |
| 875 | |
| 876 | for (unsigned i = 0; i < Sz; ++i) { |
| 877 | if (CurrentLVarMap[i].first != Map[i].first) { |
| 878 | // We've reached the end of variables in common. |
| 879 | CurrentLVarMap.makeWritable(); |
| 880 | CurrentLVarMap.downsize(i); |
| 881 | break; |
| 882 | } |
| 883 | if (CurrentLVarMap[i].second != Map[i].second) |
| 884 | makePhiNodeVar(i, NPreds, E: Map[i].second); |
| 885 | } |
| 886 | if (ESz > MSz) { |
| 887 | CurrentLVarMap.makeWritable(); |
| 888 | CurrentLVarMap.downsize(i: Map.size()); |
| 889 | } |
| 890 | } |
| 891 | |
| 892 | // Merge a back edge into the current variable map. |
| 893 | // This will create phi nodes for all variables in the variable map. |
| 894 | void SExprBuilder::mergeEntryMapBackEdge() { |
| 895 | // We don't have definitions for variables on the backedge, because we |
| 896 | // haven't gotten that far in the CFG. Thus, when encountering a back edge, |
| 897 | // we conservatively create Phi nodes for all variables. Unnecessary Phi |
| 898 | // nodes will be marked as incomplete, and stripped out at the end. |
| 899 | // |
| 900 | // An Phi node is unnecessary if it only refers to itself and one other |
| 901 | // variable, e.g. x = Phi(y, y, x) can be reduced to x = y. |
| 902 | |
| 903 | assert(CurrentBlockInfo && "Not processing a block!" ); |
| 904 | |
| 905 | if (CurrentBlockInfo->HasBackEdges) |
| 906 | return; |
| 907 | CurrentBlockInfo->HasBackEdges = true; |
| 908 | |
| 909 | CurrentLVarMap.makeWritable(); |
| 910 | unsigned Sz = CurrentLVarMap.size(); |
| 911 | unsigned NPreds = CurrentBB->numPredecessors(); |
| 912 | |
| 913 | for (unsigned i = 0; i < Sz; ++i) |
| 914 | makePhiNodeVar(i, NPreds, E: nullptr); |
| 915 | } |
| 916 | |
| 917 | // Update the phi nodes that were initially created for a back edge |
| 918 | // once the variable definitions have been computed. |
| 919 | // I.e., merge the current variable map into the phi nodes for Blk. |
| 920 | void SExprBuilder::mergePhiNodesBackEdge(const CFGBlock *Blk) { |
| 921 | til::BasicBlock *BB = lookupBlock(B: Blk); |
| 922 | unsigned ArgIndex = BBInfo[Blk->getBlockID()].ProcessedPredecessors; |
| 923 | assert(ArgIndex > 0 && ArgIndex < BB->numPredecessors()); |
| 924 | |
| 925 | for (til::SExpr *PE : BB->arguments()) { |
| 926 | auto *Ph = dyn_cast_or_null<til::Phi>(Val: PE); |
| 927 | assert(Ph && "Expecting Phi Node." ); |
| 928 | assert(Ph->values()[ArgIndex] == nullptr && "Wrong index for back edge." ); |
| 929 | |
| 930 | til::SExpr *E = lookupVarDecl(VD: Ph->clangDecl()); |
| 931 | assert(E && "Couldn't find local variable for Phi node." ); |
| 932 | Ph->values()[ArgIndex] = E; |
| 933 | } |
| 934 | } |
| 935 | |
| 936 | void SExprBuilder::enterCFG(CFG *Cfg, const NamedDecl *D, |
| 937 | const CFGBlock *First) { |
| 938 | // Perform initial setup operations. |
| 939 | unsigned NBlocks = Cfg->getNumBlockIDs(); |
| 940 | Scfg = new (Arena) til::SCFG(Arena, NBlocks); |
| 941 | |
| 942 | // allocate all basic blocks immediately, to handle forward references. |
| 943 | BBInfo.resize(new_size: NBlocks); |
| 944 | BlockMap.resize(new_size: NBlocks, x: nullptr); |
| 945 | // create map from clang blockID to til::BasicBlocks |
| 946 | for (auto *B : *Cfg) { |
| 947 | auto *BB = new (Arena) til::BasicBlock(Arena); |
| 948 | BB->reserveInstructions(Nins: B->size()); |
| 949 | BlockMap[B->getBlockID()] = BB; |
| 950 | } |
| 951 | |
| 952 | CurrentBB = lookupBlock(B: &Cfg->getEntry()); |
| 953 | auto Parms = isa<ObjCMethodDecl>(Val: D) ? cast<ObjCMethodDecl>(Val: D)->parameters() |
| 954 | : cast<FunctionDecl>(Val: D)->parameters(); |
| 955 | for (auto *Pm : Parms) { |
| 956 | QualType T = Pm->getType(); |
| 957 | if (!T.isTrivialType(Context: Pm->getASTContext())) |
| 958 | continue; |
| 959 | |
| 960 | // Add parameters to local variable map. |
| 961 | // FIXME: right now we emulate params with loads; that should be fixed. |
| 962 | til::SExpr *Lp = new (Arena) til::LiteralPtr(Pm); |
| 963 | til::SExpr *Ld = new (Arena) til::Load(Lp); |
| 964 | til::SExpr *V = addStatement(E: Ld, S: nullptr, VD: Pm); |
| 965 | addVarDecl(VD: Pm, E: V); |
| 966 | } |
| 967 | } |
| 968 | |
| 969 | void SExprBuilder::enterCFGBlock(const CFGBlock *B) { |
| 970 | // Initialize TIL basic block and add it to the CFG. |
| 971 | CurrentBB = lookupBlock(B); |
| 972 | CurrentBB->reservePredecessors(NumPreds: B->pred_size()); |
| 973 | Scfg->add(BB: CurrentBB); |
| 974 | |
| 975 | CurrentBlockInfo = &BBInfo[B->getBlockID()]; |
| 976 | |
| 977 | // CurrentLVarMap is moved to ExitMap on block exit. |
| 978 | // FIXME: the entry block will hold function parameters. |
| 979 | // assert(!CurrentLVarMap.valid() && "CurrentLVarMap already initialized."); |
| 980 | } |
| 981 | |
| 982 | void SExprBuilder::handlePredecessor(const CFGBlock *Pred) { |
| 983 | // Compute CurrentLVarMap on entry from ExitMaps of predecessors |
| 984 | |
| 985 | CurrentBB->addPredecessor(Pred: BlockMap[Pred->getBlockID()]); |
| 986 | BlockInfo *PredInfo = &BBInfo[Pred->getBlockID()]; |
| 987 | assert(PredInfo->UnprocessedSuccessors > 0); |
| 988 | |
| 989 | if (--PredInfo->UnprocessedSuccessors == 0) |
| 990 | mergeEntryMap(Map: std::move(PredInfo->ExitMap)); |
| 991 | else |
| 992 | mergeEntryMap(Map: PredInfo->ExitMap.clone()); |
| 993 | |
| 994 | ++CurrentBlockInfo->ProcessedPredecessors; |
| 995 | } |
| 996 | |
| 997 | void SExprBuilder::handlePredecessorBackEdge(const CFGBlock *Pred) { |
| 998 | mergeEntryMapBackEdge(); |
| 999 | } |
| 1000 | |
| 1001 | void SExprBuilder::enterCFGBlockBody(const CFGBlock *B) { |
| 1002 | // The merge*() methods have created arguments. |
| 1003 | // Push those arguments onto the basic block. |
| 1004 | CurrentBB->arguments().reserve( |
| 1005 | Ncp: static_cast<unsigned>(CurrentArguments.size()), A: Arena); |
| 1006 | for (auto *A : CurrentArguments) |
| 1007 | CurrentBB->addArgument(V: A); |
| 1008 | } |
| 1009 | |
| 1010 | void SExprBuilder::handleStatement(const Stmt *S) { |
| 1011 | til::SExpr *E = translate(S, Ctx: nullptr); |
| 1012 | addStatement(E, S); |
| 1013 | } |
| 1014 | |
| 1015 | void SExprBuilder::handleDestructorCall(const VarDecl *VD, |
| 1016 | const CXXDestructorDecl *DD) { |
| 1017 | til::SExpr *Sf = new (Arena) til::LiteralPtr(VD); |
| 1018 | til::SExpr *Dr = new (Arena) til::LiteralPtr(DD); |
| 1019 | til::SExpr *Ap = new (Arena) til::Apply(Dr, Sf); |
| 1020 | til::SExpr *E = new (Arena) til::Call(Ap); |
| 1021 | addStatement(E, S: nullptr); |
| 1022 | } |
| 1023 | |
| 1024 | void SExprBuilder::exitCFGBlockBody(const CFGBlock *B) { |
| 1025 | CurrentBB->instructions().reserve( |
| 1026 | Ncp: static_cast<unsigned>(CurrentInstructions.size()), A: Arena); |
| 1027 | for (auto *V : CurrentInstructions) |
| 1028 | CurrentBB->addInstruction(V); |
| 1029 | |
| 1030 | // Create an appropriate terminator |
| 1031 | unsigned N = B->succ_size(); |
| 1032 | auto It = B->succ_begin(); |
| 1033 | if (N == 1) { |
| 1034 | til::BasicBlock *BB = *It ? lookupBlock(B: *It) : nullptr; |
| 1035 | // TODO: set index |
| 1036 | unsigned Idx = BB ? BB->findPredecessorIndex(BB: CurrentBB) : 0; |
| 1037 | auto *Tm = new (Arena) til::Goto(BB, Idx); |
| 1038 | CurrentBB->setTerminator(Tm); |
| 1039 | } |
| 1040 | else if (N == 2) { |
| 1041 | til::SExpr *C = translate(S: B->getTerminatorCondition(StripParens: true), Ctx: nullptr); |
| 1042 | til::BasicBlock *BB1 = *It ? lookupBlock(B: *It) : nullptr; |
| 1043 | ++It; |
| 1044 | til::BasicBlock *BB2 = *It ? lookupBlock(B: *It) : nullptr; |
| 1045 | // FIXME: make sure these aren't critical edges. |
| 1046 | auto *Tm = new (Arena) til::Branch(C, BB1, BB2); |
| 1047 | CurrentBB->setTerminator(Tm); |
| 1048 | } |
| 1049 | } |
| 1050 | |
| 1051 | void SExprBuilder::handleSuccessor(const CFGBlock *Succ) { |
| 1052 | ++CurrentBlockInfo->UnprocessedSuccessors; |
| 1053 | } |
| 1054 | |
| 1055 | void SExprBuilder::handleSuccessorBackEdge(const CFGBlock *Succ) { |
| 1056 | mergePhiNodesBackEdge(Blk: Succ); |
| 1057 | ++BBInfo[Succ->getBlockID()].ProcessedPredecessors; |
| 1058 | } |
| 1059 | |
| 1060 | void SExprBuilder::exitCFGBlock(const CFGBlock *B) { |
| 1061 | CurrentArguments.clear(); |
| 1062 | CurrentInstructions.clear(); |
| 1063 | CurrentBlockInfo->ExitMap = std::move(CurrentLVarMap); |
| 1064 | CurrentBB = nullptr; |
| 1065 | CurrentBlockInfo = nullptr; |
| 1066 | } |
| 1067 | |
| 1068 | void SExprBuilder::exitCFG(const CFGBlock *Last) { |
| 1069 | for (auto *Ph : IncompleteArgs) { |
| 1070 | if (Ph->status() == til::Phi::PH_Incomplete) |
| 1071 | simplifyIncompleteArg(Ph); |
| 1072 | } |
| 1073 | |
| 1074 | CurrentArguments.clear(); |
| 1075 | CurrentInstructions.clear(); |
| 1076 | IncompleteArgs.clear(); |
| 1077 | } |
| 1078 | |
| 1079 | #ifndef NDEBUG |
| 1080 | namespace { |
| 1081 | |
| 1082 | class TILPrinter : |
| 1083 | public til::PrettyPrinter<TILPrinter, llvm::raw_ostream> {}; |
| 1084 | |
| 1085 | } // namespace |
| 1086 | |
| 1087 | namespace clang { |
| 1088 | namespace threadSafety { |
| 1089 | |
| 1090 | void printSCFG(CFGWalker &Walker) { |
| 1091 | llvm::BumpPtrAllocator Bpa; |
| 1092 | til::MemRegionRef Arena(&Bpa); |
| 1093 | SExprBuilder SxBuilder(Arena); |
| 1094 | til::SCFG *Scfg = SxBuilder.buildCFG(Walker); |
| 1095 | TILPrinter::print(Scfg, llvm::errs()); |
| 1096 | } |
| 1097 | |
| 1098 | } // namespace threadSafety |
| 1099 | } // namespace clang |
| 1100 | #endif // NDEBUG |
| 1101 | |