| 1 | //===------- CGHLSLBuiltins.cpp - Emit LLVM Code for HLSL builtins --------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This contains code to emit HLSL Builtin calls as LLVM code. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "CGBuiltin.h" |
| 14 | #include "CGHLSLRuntime.h" |
| 15 | #include "CodeGenFunction.h" |
| 16 | |
| 17 | using namespace clang; |
| 18 | using namespace CodeGen; |
| 19 | using namespace llvm; |
| 20 | |
| 21 | static Value *handleAsDoubleBuiltin(CodeGenFunction &CGF, const CallExpr *E) { |
| 22 | assert((E->getArg(0)->getType()->hasUnsignedIntegerRepresentation() && |
| 23 | E->getArg(1)->getType()->hasUnsignedIntegerRepresentation()) && |
| 24 | "asdouble operands types mismatch" ); |
| 25 | Value *OpLowBits = CGF.EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 26 | Value *OpHighBits = CGF.EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 27 | |
| 28 | llvm::Type *ResultType = CGF.DoubleTy; |
| 29 | int N = 1; |
| 30 | if (auto *VTy = E->getArg(Arg: 0)->getType()->getAs<clang::VectorType>()) { |
| 31 | N = VTy->getNumElements(); |
| 32 | ResultType = llvm::FixedVectorType::get(ElementType: CGF.DoubleTy, NumElts: N); |
| 33 | } |
| 34 | |
| 35 | if (CGF.CGM.getTarget().getTriple().isDXIL()) |
| 36 | return CGF.Builder.CreateIntrinsic( |
| 37 | /*ReturnType=*/RetTy: ResultType, ID: Intrinsic::dx_asdouble, |
| 38 | Args: {OpLowBits, OpHighBits}, FMFSource: nullptr, Name: "hlsl.asdouble" ); |
| 39 | |
| 40 | if (!E->getArg(Arg: 0)->getType()->isVectorType()) { |
| 41 | OpLowBits = CGF.Builder.CreateVectorSplat(NumElts: 1, V: OpLowBits); |
| 42 | OpHighBits = CGF.Builder.CreateVectorSplat(NumElts: 1, V: OpHighBits); |
| 43 | } |
| 44 | |
| 45 | llvm::SmallVector<int> Mask; |
| 46 | for (int i = 0; i < N; i++) { |
| 47 | Mask.push_back(Elt: i); |
| 48 | Mask.push_back(Elt: i + N); |
| 49 | } |
| 50 | |
| 51 | Value *BitVec = CGF.Builder.CreateShuffleVector(V1: OpLowBits, V2: OpHighBits, Mask); |
| 52 | |
| 53 | return CGF.Builder.CreateBitCast(V: BitVec, DestTy: ResultType); |
| 54 | } |
| 55 | |
| 56 | static Value *handleHlslClip(const CallExpr *E, CodeGenFunction *CGF) { |
| 57 | Value *Op0 = CGF->EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 58 | |
| 59 | Constant *FZeroConst = ConstantFP::getZero(Ty: CGF->FloatTy); |
| 60 | Value *CMP; |
| 61 | Value *LastInstr; |
| 62 | |
| 63 | if (const auto *VecTy = E->getArg(Arg: 0)->getType()->getAs<clang::VectorType>()) { |
| 64 | FZeroConst = ConstantVector::getSplat( |
| 65 | EC: ElementCount::getFixed(MinVal: VecTy->getNumElements()), Elt: FZeroConst); |
| 66 | auto *FCompInst = CGF->Builder.CreateFCmpOLT(LHS: Op0, RHS: FZeroConst); |
| 67 | CMP = CGF->Builder.CreateIntrinsic( |
| 68 | RetTy: CGF->Builder.getInt1Ty(), ID: CGF->CGM.getHLSLRuntime().getAnyIntrinsic(), |
| 69 | Args: {FCompInst}); |
| 70 | } else { |
| 71 | CMP = CGF->Builder.CreateFCmpOLT(LHS: Op0, RHS: FZeroConst); |
| 72 | } |
| 73 | |
| 74 | if (CGF->CGM.getTarget().getTriple().isDXIL()) { |
| 75 | LastInstr = CGF->Builder.CreateIntrinsic(ID: Intrinsic::dx_discard, Args: {CMP}); |
| 76 | } else if (CGF->CGM.getTarget().getTriple().isSPIRV()) { |
| 77 | BasicBlock *LT0 = CGF->createBasicBlock(name: "lt0" , parent: CGF->CurFn); |
| 78 | BasicBlock *End = CGF->createBasicBlock(name: "end" , parent: CGF->CurFn); |
| 79 | |
| 80 | CGF->Builder.CreateCondBr(Cond: CMP, True: LT0, False: End); |
| 81 | |
| 82 | CGF->Builder.SetInsertPoint(LT0); |
| 83 | |
| 84 | CGF->Builder.CreateIntrinsic(ID: Intrinsic::spv_discard, Args: {}); |
| 85 | |
| 86 | LastInstr = CGF->Builder.CreateBr(Dest: End); |
| 87 | CGF->Builder.SetInsertPoint(End); |
| 88 | } else { |
| 89 | llvm_unreachable("Backend Codegen not supported." ); |
| 90 | } |
| 91 | |
| 92 | return LastInstr; |
| 93 | } |
| 94 | |
| 95 | static Value *handleHlslSplitdouble(const CallExpr *E, CodeGenFunction *CGF) { |
| 96 | Value *Op0 = CGF->EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 97 | const auto *OutArg1 = dyn_cast<HLSLOutArgExpr>(Val: E->getArg(Arg: 1)); |
| 98 | const auto *OutArg2 = dyn_cast<HLSLOutArgExpr>(Val: E->getArg(Arg: 2)); |
| 99 | |
| 100 | CallArgList Args; |
| 101 | LValue Op1TmpLValue = |
| 102 | CGF->EmitHLSLOutArgExpr(E: OutArg1, Args, Ty: OutArg1->getType()); |
| 103 | LValue Op2TmpLValue = |
| 104 | CGF->EmitHLSLOutArgExpr(E: OutArg2, Args, Ty: OutArg2->getType()); |
| 105 | |
| 106 | if (CGF->getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) |
| 107 | Args.reverseWritebacks(); |
| 108 | |
| 109 | Value *LowBits = nullptr; |
| 110 | Value *HighBits = nullptr; |
| 111 | |
| 112 | if (CGF->CGM.getTarget().getTriple().isDXIL()) { |
| 113 | llvm::Type *RetElementTy = CGF->Int32Ty; |
| 114 | if (auto *Op0VecTy = E->getArg(Arg: 0)->getType()->getAs<clang::VectorType>()) |
| 115 | RetElementTy = llvm::VectorType::get( |
| 116 | ElementType: CGF->Int32Ty, EC: ElementCount::getFixed(MinVal: Op0VecTy->getNumElements())); |
| 117 | auto *RetTy = llvm::StructType::get(elt1: RetElementTy, elts: RetElementTy); |
| 118 | |
| 119 | CallInst *CI = CGF->Builder.CreateIntrinsic( |
| 120 | RetTy, ID: Intrinsic::dx_splitdouble, Args: {Op0}, FMFSource: nullptr, Name: "hlsl.splitdouble" ); |
| 121 | |
| 122 | LowBits = CGF->Builder.CreateExtractValue(Agg: CI, Idxs: 0); |
| 123 | HighBits = CGF->Builder.CreateExtractValue(Agg: CI, Idxs: 1); |
| 124 | } else { |
| 125 | // For Non DXIL targets we generate the instructions. |
| 126 | |
| 127 | if (!Op0->getType()->isVectorTy()) { |
| 128 | FixedVectorType *DestTy = FixedVectorType::get(ElementType: CGF->Int32Ty, NumElts: 2); |
| 129 | Value *Bitcast = CGF->Builder.CreateBitCast(V: Op0, DestTy); |
| 130 | |
| 131 | LowBits = CGF->Builder.CreateExtractElement(Vec: Bitcast, Idx: (uint64_t)0); |
| 132 | HighBits = CGF->Builder.CreateExtractElement(Vec: Bitcast, Idx: 1); |
| 133 | } else { |
| 134 | int NumElements = 1; |
| 135 | if (const auto *VecTy = |
| 136 | E->getArg(Arg: 0)->getType()->getAs<clang::VectorType>()) |
| 137 | NumElements = VecTy->getNumElements(); |
| 138 | |
| 139 | FixedVectorType *Uint32VecTy = |
| 140 | FixedVectorType::get(ElementType: CGF->Int32Ty, NumElts: NumElements * 2); |
| 141 | Value *Uint32Vec = CGF->Builder.CreateBitCast(V: Op0, DestTy: Uint32VecTy); |
| 142 | if (NumElements == 1) { |
| 143 | LowBits = CGF->Builder.CreateExtractElement(Vec: Uint32Vec, Idx: (uint64_t)0); |
| 144 | HighBits = CGF->Builder.CreateExtractElement(Vec: Uint32Vec, Idx: 1); |
| 145 | } else { |
| 146 | SmallVector<int> EvenMask, OddMask; |
| 147 | for (int I = 0, E = NumElements; I != E; ++I) { |
| 148 | EvenMask.push_back(Elt: I * 2); |
| 149 | OddMask.push_back(Elt: I * 2 + 1); |
| 150 | } |
| 151 | LowBits = CGF->Builder.CreateShuffleVector(V: Uint32Vec, Mask: EvenMask); |
| 152 | HighBits = CGF->Builder.CreateShuffleVector(V: Uint32Vec, Mask: OddMask); |
| 153 | } |
| 154 | } |
| 155 | } |
| 156 | CGF->Builder.CreateStore(Val: LowBits, Addr: Op1TmpLValue.getAddress()); |
| 157 | auto *LastInst = |
| 158 | CGF->Builder.CreateStore(Val: HighBits, Addr: Op2TmpLValue.getAddress()); |
| 159 | CGF->EmitWritebacks(Args); |
| 160 | return LastInst; |
| 161 | } |
| 162 | |
| 163 | static Value *handleHlslWaveActiveBallot(CodeGenFunction &CGF, |
| 164 | const CallExpr *E) { |
| 165 | Value *Cond = CGF.EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 166 | llvm::Type *I32 = CGF.Int32Ty; |
| 167 | |
| 168 | llvm::Type *Vec4I32 = llvm::FixedVectorType::get(ElementType: I32, NumElts: 4); |
| 169 | [[maybe_unused]] llvm::StructType *Struct4I32 = |
| 170 | llvm::StructType::get(Context&: CGF.getLLVMContext(), Elements: {I32, I32, I32, I32}); |
| 171 | |
| 172 | if (CGF.CGM.getTarget().getTriple().isDXIL()) { |
| 173 | // Call DXIL intrinsic: returns { i32, i32, i32, i32 } |
| 174 | llvm::Function *Fn = CGF.CGM.getIntrinsic(IID: Intrinsic::dx_wave_ballot, Tys: {I32}); |
| 175 | |
| 176 | Value *StructVal = CGF.EmitRuntimeCall(callee: Fn, args: Cond); |
| 177 | assert(StructVal->getType() == Struct4I32 && |
| 178 | "dx.wave.ballot must return {i32,i32,i32,i32}" ); |
| 179 | |
| 180 | // Reassemble struct to <4 x i32> |
| 181 | llvm::Value *VecVal = llvm::PoisonValue::get(T: Vec4I32); |
| 182 | for (unsigned I = 0; I < 4; ++I) { |
| 183 | Value *Elt = CGF.Builder.CreateExtractValue(Agg: StructVal, Idxs: I); |
| 184 | VecVal = |
| 185 | CGF.Builder.CreateInsertElement(Vec: VecVal, NewElt: Elt, Idx: CGF.Builder.getInt32(C: I)); |
| 186 | } |
| 187 | |
| 188 | return VecVal; |
| 189 | } |
| 190 | |
| 191 | if (CGF.CGM.getTarget().getTriple().isSPIRV()) |
| 192 | return CGF.EmitRuntimeCall( |
| 193 | callee: CGF.CGM.getIntrinsic(IID: Intrinsic::spv_subgroup_ballot), args: Cond); |
| 194 | |
| 195 | llvm_unreachable( |
| 196 | "WaveActiveBallot is only supported for DXIL and SPIRV targets" ); |
| 197 | } |
| 198 | |
| 199 | static Value *handleElementwiseF16ToF32(CodeGenFunction &CGF, |
| 200 | const CallExpr *E) { |
| 201 | Value *Op0 = CGF.EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 202 | QualType Op0Ty = E->getArg(Arg: 0)->getType(); |
| 203 | llvm::Type *ResType = CGF.FloatTy; |
| 204 | uint64_t NumElements = 0; |
| 205 | if (Op0->getType()->isVectorTy()) { |
| 206 | NumElements = |
| 207 | E->getArg(Arg: 0)->getType()->castAs<clang::VectorType>()->getNumElements(); |
| 208 | ResType = |
| 209 | llvm::VectorType::get(ElementType: ResType, EC: ElementCount::getFixed(MinVal: NumElements)); |
| 210 | } |
| 211 | if (!Op0Ty->hasUnsignedIntegerRepresentation()) |
| 212 | llvm_unreachable( |
| 213 | "f16tof32 operand must have an unsigned int representation" ); |
| 214 | |
| 215 | if (CGF.CGM.getTriple().isDXIL()) |
| 216 | return CGF.Builder.CreateIntrinsic(RetTy: ResType, ID: Intrinsic::dx_legacyf16tof32, |
| 217 | Args: ArrayRef<Value *>{Op0}, FMFSource: nullptr, |
| 218 | Name: "hlsl.f16tof32" ); |
| 219 | |
| 220 | if (CGF.CGM.getTriple().isSPIRV()) { |
| 221 | // We use the SPIRV UnpackHalf2x16 operation to avoid the need for the |
| 222 | // Int16 and Float16 capabilities |
| 223 | auto *UnpackType = |
| 224 | llvm::VectorType::get(ElementType: CGF.FloatTy, EC: ElementCount::getFixed(MinVal: 2)); |
| 225 | |
| 226 | if (NumElements == 0) { |
| 227 | // a scalar input - simply extract the first element of the unpacked |
| 228 | // vector |
| 229 | Value *Unpack = CGF.Builder.CreateIntrinsic( |
| 230 | RetTy: UnpackType, ID: Intrinsic::spv_unpackhalf2x16, Args: ArrayRef<Value *>{Op0}); |
| 231 | return CGF.Builder.CreateExtractElement(Vec: Unpack, Idx: (uint64_t)0); |
| 232 | } |
| 233 | |
| 234 | // a vector input - build a congruent output vector by iterating through |
| 235 | // the input vector calling unpackhalf2x16 for each element |
| 236 | Value *Result = PoisonValue::get(T: ResType); |
| 237 | for (uint64_t I = 0; I < NumElements; I++) { |
| 238 | Value *InVal = CGF.Builder.CreateExtractElement(Vec: Op0, Idx: I); |
| 239 | Value *Unpack = CGF.Builder.CreateIntrinsic( |
| 240 | RetTy: UnpackType, ID: Intrinsic::spv_unpackhalf2x16, Args: ArrayRef<Value *>{InVal}); |
| 241 | Value *Res = CGF.Builder.CreateExtractElement(Vec: Unpack, Idx: (uint64_t)0); |
| 242 | Result = CGF.Builder.CreateInsertElement(Vec: Result, NewElt: Res, Idx: I); |
| 243 | } |
| 244 | return Result; |
| 245 | } |
| 246 | |
| 247 | llvm_unreachable("Intrinsic F16ToF32 not supported by target architecture" ); |
| 248 | } |
| 249 | |
| 250 | static Value *handleElementwiseF32ToF16(CodeGenFunction &CGF, |
| 251 | const CallExpr *E) { |
| 252 | Value *Op0 = CGF.EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 253 | QualType Op0Ty = E->getArg(Arg: 0)->getType(); |
| 254 | llvm::Type *ResType = CGF.IntTy; |
| 255 | uint64_t NumElements = 0; |
| 256 | if (Op0->getType()->isVectorTy()) { |
| 257 | NumElements = |
| 258 | E->getArg(Arg: 0)->getType()->castAs<clang::VectorType>()->getNumElements(); |
| 259 | ResType = |
| 260 | llvm::VectorType::get(ElementType: ResType, EC: ElementCount::getFixed(MinVal: NumElements)); |
| 261 | } |
| 262 | if (!Op0Ty->hasFloatingRepresentation()) |
| 263 | llvm_unreachable("f32tof16 operand must have a float representation" ); |
| 264 | |
| 265 | if (CGF.CGM.getTriple().isDXIL()) |
| 266 | return CGF.Builder.CreateIntrinsic(RetTy: ResType, ID: Intrinsic::dx_legacyf32tof16, |
| 267 | Args: ArrayRef<Value *>{Op0}, FMFSource: nullptr, |
| 268 | Name: "hlsl.f32tof16" ); |
| 269 | |
| 270 | if (CGF.CGM.getTriple().isSPIRV()) { |
| 271 | // We use the SPIRV PackHalf2x16 operation to avoid the need for the |
| 272 | // Int16 and Float16 capabilities |
| 273 | auto *PackType = |
| 274 | llvm::VectorType::get(ElementType: CGF.FloatTy, EC: ElementCount::getFixed(MinVal: 2)); |
| 275 | |
| 276 | if (NumElements == 0) { |
| 277 | // a scalar input - simply insert the scalar in the first element |
| 278 | // of the 2 element float vector |
| 279 | Value *Float2 = Constant::getNullValue(Ty: PackType); |
| 280 | Float2 = CGF.Builder.CreateInsertElement(Vec: Float2, NewElt: Op0, Idx: (uint64_t)0); |
| 281 | Value *Result = CGF.Builder.CreateIntrinsic( |
| 282 | RetTy: ResType, ID: Intrinsic::spv_packhalf2x16, Args: ArrayRef<Value *>{Float2}); |
| 283 | return Result; |
| 284 | } |
| 285 | |
| 286 | // a vector input - build a congruent output vector by iterating through |
| 287 | // the input vector calling packhalf2x16 for each element |
| 288 | Value *Result = PoisonValue::get(T: ResType); |
| 289 | for (uint64_t I = 0; I < NumElements; I++) { |
| 290 | Value *Float2 = Constant::getNullValue(Ty: PackType); |
| 291 | Value *InVal = CGF.Builder.CreateExtractElement(Vec: Op0, Idx: I); |
| 292 | Float2 = CGF.Builder.CreateInsertElement(Vec: Float2, NewElt: InVal, Idx: (uint64_t)0); |
| 293 | Value *Res = CGF.Builder.CreateIntrinsic( |
| 294 | RetTy: CGF.IntTy, ID: Intrinsic::spv_packhalf2x16, Args: ArrayRef<Value *>{Float2}); |
| 295 | Result = CGF.Builder.CreateInsertElement(Vec: Result, NewElt: Res, Idx: I); |
| 296 | } |
| 297 | return Result; |
| 298 | } |
| 299 | |
| 300 | llvm_unreachable("Intrinsic F32ToF16 not supported by target architecture" ); |
| 301 | } |
| 302 | |
| 303 | static Value *emitBufferStride(CodeGenFunction *CGF, const Expr *HandleExpr, |
| 304 | LValue &Stride) { |
| 305 | // Figure out the stride of the buffer elements from the handle type. |
| 306 | auto *HandleTy = |
| 307 | cast<HLSLAttributedResourceType>(Val: HandleExpr->getType().getTypePtr()); |
| 308 | QualType ElementTy = HandleTy->getContainedType(); |
| 309 | Value *StrideValue = CGF->getTypeSize(Ty: ElementTy); |
| 310 | return CGF->Builder.CreateStore(Val: StrideValue, Addr: Stride.getAddress()); |
| 311 | } |
| 312 | |
| 313 | // Return dot product intrinsic that corresponds to the QT scalar type |
| 314 | static Intrinsic::ID getDotProductIntrinsic(CGHLSLRuntime &RT, QualType QT) { |
| 315 | if (QT->isFloatingType()) |
| 316 | return RT.getFDotIntrinsic(); |
| 317 | if (QT->isSignedIntegerType()) |
| 318 | return RT.getSDotIntrinsic(); |
| 319 | assert(QT->isUnsignedIntegerType()); |
| 320 | return RT.getUDotIntrinsic(); |
| 321 | } |
| 322 | |
| 323 | static Intrinsic::ID getFirstBitHighIntrinsic(CGHLSLRuntime &RT, QualType QT) { |
| 324 | if (QT->hasSignedIntegerRepresentation()) { |
| 325 | return RT.getFirstBitSHighIntrinsic(); |
| 326 | } |
| 327 | |
| 328 | assert(QT->hasUnsignedIntegerRepresentation()); |
| 329 | return RT.getFirstBitUHighIntrinsic(); |
| 330 | } |
| 331 | |
| 332 | // Return wave active sum that corresponds to the QT scalar type |
| 333 | static Intrinsic::ID getWaveActiveSumIntrinsic(llvm::Triple::ArchType Arch, |
| 334 | CGHLSLRuntime &RT, QualType QT) { |
| 335 | switch (Arch) { |
| 336 | case llvm::Triple::spirv: |
| 337 | return Intrinsic::spv_wave_reduce_sum; |
| 338 | case llvm::Triple::dxil: { |
| 339 | if (QT->isUnsignedIntegerType()) |
| 340 | return Intrinsic::dx_wave_reduce_usum; |
| 341 | return Intrinsic::dx_wave_reduce_sum; |
| 342 | } |
| 343 | default: |
| 344 | llvm_unreachable("Intrinsic WaveActiveSum" |
| 345 | " not supported by target architecture" ); |
| 346 | } |
| 347 | } |
| 348 | |
| 349 | static Intrinsic::ID getPrefixCountBitsIntrinsic(llvm::Triple::ArchType Arch) { |
| 350 | switch (Arch) { |
| 351 | case llvm::Triple::spirv: |
| 352 | return Intrinsic::spv_subgroup_prefix_bit_count; |
| 353 | case llvm::Triple::dxil: { |
| 354 | return Intrinsic::dx_wave_prefix_bit_count; |
| 355 | } |
| 356 | default: |
| 357 | llvm_unreachable( |
| 358 | "WavePrefixOp instruction not supported by target architecture" ); |
| 359 | } |
| 360 | } |
| 361 | |
| 362 | // Return wave prefix sum that corresponds to the QT scalar type |
| 363 | static Intrinsic::ID getWavePrefixSumIntrinsic(llvm::Triple::ArchType Arch, |
| 364 | CGHLSLRuntime &RT, QualType QT) { |
| 365 | switch (Arch) { |
| 366 | case llvm::Triple::spirv: |
| 367 | return Intrinsic::spv_wave_prefix_sum; |
| 368 | case llvm::Triple::dxil: { |
| 369 | if (QT->isUnsignedIntegerType()) |
| 370 | return Intrinsic::dx_wave_prefix_usum; |
| 371 | return Intrinsic::dx_wave_prefix_sum; |
| 372 | } |
| 373 | default: |
| 374 | llvm_unreachable("Intrinsic WavePrefixSum" |
| 375 | " not supported by target architecture" ); |
| 376 | } |
| 377 | } |
| 378 | |
| 379 | // Returns the mangled name for a builtin function that the SPIR-V backend |
| 380 | // will expand into a spec Constant. |
| 381 | static std::string getSpecConstantFunctionName(clang::QualType SpecConstantType, |
| 382 | ASTContext &Context) { |
| 383 | // The parameter types for our conceptual intrinsic function. |
| 384 | QualType ClangParamTypes[] = {Context.IntTy, SpecConstantType}; |
| 385 | |
| 386 | // Create a temporary FunctionDecl for the builtin fuction. It won't be |
| 387 | // added to the AST. |
| 388 | FunctionProtoType::ExtProtoInfo EPI; |
| 389 | QualType FnType = |
| 390 | Context.getFunctionType(ResultTy: SpecConstantType, Args: ClangParamTypes, EPI); |
| 391 | DeclarationName FuncName = &Context.Idents.get(Name: "__spirv_SpecConstant" ); |
| 392 | FunctionDecl *FnDeclForMangling = FunctionDecl::Create( |
| 393 | C&: Context, DC: Context.getTranslationUnitDecl(), StartLoc: SourceLocation(), |
| 394 | NLoc: SourceLocation(), N: FuncName, T: FnType, /*TSI=*/TInfo: nullptr, SC: SC_Extern); |
| 395 | |
| 396 | // Attach the created parameter declarations to the function declaration. |
| 397 | SmallVector<ParmVarDecl *, 2> ParamDecls; |
| 398 | for (QualType ParamType : ClangParamTypes) { |
| 399 | ParmVarDecl *PD = ParmVarDecl::Create( |
| 400 | C&: Context, DC: FnDeclForMangling, StartLoc: SourceLocation(), IdLoc: SourceLocation(), |
| 401 | /*IdentifierInfo*/ Id: nullptr, T: ParamType, /*TSI*/ TInfo: nullptr, S: SC_None, |
| 402 | /*DefaultArg*/ DefArg: nullptr); |
| 403 | ParamDecls.push_back(Elt: PD); |
| 404 | } |
| 405 | FnDeclForMangling->setParams(ParamDecls); |
| 406 | |
| 407 | // Get the mangled name. |
| 408 | std::string Name; |
| 409 | llvm::raw_string_ostream MangledNameStream(Name); |
| 410 | std::unique_ptr<MangleContext> Mangler(Context.createMangleContext()); |
| 411 | Mangler->mangleName(GD: FnDeclForMangling, MangledNameStream); |
| 412 | MangledNameStream.flush(); |
| 413 | |
| 414 | return Name; |
| 415 | } |
| 416 | |
| 417 | Value *CodeGenFunction::EmitHLSLBuiltinExpr(unsigned BuiltinID, |
| 418 | const CallExpr *E, |
| 419 | ReturnValueSlot ReturnValue) { |
| 420 | if (!getLangOpts().HLSL) |
| 421 | return nullptr; |
| 422 | |
| 423 | switch (BuiltinID) { |
| 424 | case Builtin::BI__builtin_hlsl_adduint64: { |
| 425 | Value *OpA = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 426 | Value *OpB = EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 427 | QualType Arg0Ty = E->getArg(Arg: 0)->getType(); |
| 428 | uint64_t NumElements = Arg0Ty->castAs<VectorType>()->getNumElements(); |
| 429 | assert(Arg0Ty == E->getArg(1)->getType() && |
| 430 | "AddUint64 operand types must match" ); |
| 431 | assert(Arg0Ty->hasIntegerRepresentation() && |
| 432 | "AddUint64 operands must have an integer representation" ); |
| 433 | assert((NumElements == 2 || NumElements == 4) && |
| 434 | "AddUint64 operands must have 2 or 4 elements" ); |
| 435 | |
| 436 | llvm::Value *LowA; |
| 437 | llvm::Value *HighA; |
| 438 | llvm::Value *LowB; |
| 439 | llvm::Value *HighB; |
| 440 | |
| 441 | // Obtain low and high words of inputs A and B |
| 442 | if (NumElements == 2) { |
| 443 | LowA = Builder.CreateExtractElement(Vec: OpA, Idx: (uint64_t)0, Name: "LowA" ); |
| 444 | HighA = Builder.CreateExtractElement(Vec: OpA, Idx: (uint64_t)1, Name: "HighA" ); |
| 445 | LowB = Builder.CreateExtractElement(Vec: OpB, Idx: (uint64_t)0, Name: "LowB" ); |
| 446 | HighB = Builder.CreateExtractElement(Vec: OpB, Idx: (uint64_t)1, Name: "HighB" ); |
| 447 | } else { |
| 448 | LowA = Builder.CreateShuffleVector(V: OpA, Mask: {0, 2}, Name: "LowA" ); |
| 449 | HighA = Builder.CreateShuffleVector(V: OpA, Mask: {1, 3}, Name: "HighA" ); |
| 450 | LowB = Builder.CreateShuffleVector(V: OpB, Mask: {0, 2}, Name: "LowB" ); |
| 451 | HighB = Builder.CreateShuffleVector(V: OpB, Mask: {1, 3}, Name: "HighB" ); |
| 452 | } |
| 453 | |
| 454 | // Use an uadd_with_overflow to compute the sum of low words and obtain a |
| 455 | // carry value |
| 456 | llvm::Value *Carry; |
| 457 | llvm::Value *LowSum = EmitOverflowIntrinsic( |
| 458 | CGF&: *this, IntrinsicID: Intrinsic::uadd_with_overflow, X: LowA, Y: LowB, Carry); |
| 459 | llvm::Value *ZExtCarry = |
| 460 | Builder.CreateZExt(V: Carry, DestTy: HighA->getType(), Name: "CarryZExt" ); |
| 461 | |
| 462 | // Sum the high words and the carry |
| 463 | llvm::Value *HighSum = Builder.CreateAdd(LHS: HighA, RHS: HighB, Name: "HighSum" ); |
| 464 | llvm::Value *HighSumPlusCarry = |
| 465 | Builder.CreateAdd(LHS: HighSum, RHS: ZExtCarry, Name: "HighSumPlusCarry" ); |
| 466 | |
| 467 | if (NumElements == 4) { |
| 468 | return Builder.CreateShuffleVector(V1: LowSum, V2: HighSumPlusCarry, Mask: {0, 2, 1, 3}, |
| 469 | Name: "hlsl.AddUint64" ); |
| 470 | } |
| 471 | |
| 472 | llvm::Value *Result = PoisonValue::get(T: OpA->getType()); |
| 473 | Result = Builder.CreateInsertElement(Vec: Result, NewElt: LowSum, Idx: (uint64_t)0, |
| 474 | Name: "hlsl.AddUint64.upto0" ); |
| 475 | Result = Builder.CreateInsertElement(Vec: Result, NewElt: HighSumPlusCarry, Idx: (uint64_t)1, |
| 476 | Name: "hlsl.AddUint64" ); |
| 477 | return Result; |
| 478 | } |
| 479 | case Builtin::BI__builtin_hlsl_resource_getpointer: { |
| 480 | Value *HandleOp = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 481 | Value *IndexOp = EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 482 | |
| 483 | llvm::Type *RetTy = ConvertType(T: E->getType()); |
| 484 | return Builder.CreateIntrinsic( |
| 485 | RetTy, ID: CGM.getHLSLRuntime().getCreateResourceGetPointerIntrinsic(), |
| 486 | Args: ArrayRef<Value *>{HandleOp, IndexOp}); |
| 487 | } |
| 488 | case Builtin::BI__builtin_hlsl_resource_sample: { |
| 489 | Value *HandleOp = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 490 | Value *SamplerOp = EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 491 | Value *CoordOp = EmitScalarExpr(E: E->getArg(Arg: 2)); |
| 492 | |
| 493 | SmallVector<Value *, 4> Args; |
| 494 | Args.push_back(Elt: HandleOp); |
| 495 | Args.push_back(Elt: SamplerOp); |
| 496 | Args.push_back(Elt: CoordOp); |
| 497 | if (E->getNumArgs() > 3) { |
| 498 | Args.push_back(Elt: EmitScalarExpr(E: E->getArg(Arg: 3))); |
| 499 | } else { |
| 500 | // Default offset is 0. |
| 501 | // We need to know the type of the offset. It should be a vector of i32 |
| 502 | // with the same number of elements as the coordinate, or scalar i32. |
| 503 | llvm::Type *CoordTy = CoordOp->getType(); |
| 504 | llvm::Type *Int32Ty = Builder.getInt32Ty(); |
| 505 | llvm::Type *OffsetTy = Int32Ty; |
| 506 | if (auto *VT = dyn_cast<llvm::FixedVectorType>(Val: CoordTy)) |
| 507 | OffsetTy = llvm::FixedVectorType::get(ElementType: Int32Ty, NumElts: VT->getNumElements()); |
| 508 | Args.push_back(Elt: llvm::Constant::getNullValue(Ty: OffsetTy)); |
| 509 | } |
| 510 | |
| 511 | llvm::Type *RetTy = ConvertType(T: E->getType()); |
| 512 | if (E->getNumArgs() <= 4) { |
| 513 | return Builder.CreateIntrinsic( |
| 514 | RetTy, ID: CGM.getHLSLRuntime().getSampleIntrinsic(), Args); |
| 515 | } |
| 516 | |
| 517 | llvm::Value *Clamp = EmitScalarExpr(E: E->getArg(Arg: 4)); |
| 518 | // The builtin is defined with variadic arguments, so the clamp parameter |
| 519 | // might have been promoted to double. The intrinsic requires a 32-bit |
| 520 | // float. |
| 521 | if (Clamp->getType() != Builder.getFloatTy()) |
| 522 | Clamp = Builder.CreateFPCast(V: Clamp, DestTy: Builder.getFloatTy()); |
| 523 | Args.push_back(Elt: Clamp); |
| 524 | return Builder.CreateIntrinsic( |
| 525 | RetTy, ID: CGM.getHLSLRuntime().getSampleClampIntrinsic(), Args); |
| 526 | } |
| 527 | case Builtin::BI__builtin_hlsl_resource_load_with_status: { |
| 528 | Value *HandleOp = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 529 | Value *IndexOp = EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 530 | |
| 531 | // Get the *address* of the status argument to write to it by reference |
| 532 | LValue StatusLVal = EmitLValue(E: E->getArg(Arg: 2)); |
| 533 | Address StatusAddr = StatusLVal.getAddress(); |
| 534 | |
| 535 | QualType HandleTy = E->getArg(Arg: 0)->getType(); |
| 536 | const HLSLAttributedResourceType *RT = |
| 537 | HandleTy->getAs<HLSLAttributedResourceType>(); |
| 538 | assert(CGM.getTarget().getTriple().getArch() == llvm::Triple::dxil && |
| 539 | "Only DXIL currently implements load with status" ); |
| 540 | |
| 541 | Intrinsic::ID IntrID = RT->getAttrs().RawBuffer |
| 542 | ? llvm::Intrinsic::dx_resource_load_rawbuffer |
| 543 | : llvm::Intrinsic::dx_resource_load_typedbuffer; |
| 544 | |
| 545 | llvm::Type *DataTy = ConvertType(T: E->getType()); |
| 546 | llvm::Type *RetTy = llvm::StructType::get(Context&: Builder.getContext(), |
| 547 | Elements: {DataTy, Builder.getInt1Ty()}); |
| 548 | |
| 549 | SmallVector<Value *, 3> Args; |
| 550 | Args.push_back(Elt: HandleOp); |
| 551 | Args.push_back(Elt: IndexOp); |
| 552 | |
| 553 | if (RT->getAttrs().RawBuffer) { |
| 554 | Value *Offset = Builder.getInt32(C: 0); |
| 555 | Args.push_back(Elt: Offset); |
| 556 | } |
| 557 | |
| 558 | // The load intrinsics give us a (T value, i1 status) pair - |
| 559 | // shepherd these into the return value and out reference respectively. |
| 560 | Value *ResRet = |
| 561 | Builder.CreateIntrinsic(RetTy, ID: IntrID, Args, FMFSource: {}, Name: "ld.struct" ); |
| 562 | Value *LoadedValue = Builder.CreateExtractValue(Agg: ResRet, Idxs: {0}, Name: "ld.value" ); |
| 563 | Value *StatusBit = Builder.CreateExtractValue(Agg: ResRet, Idxs: {1}, Name: "ld.status" ); |
| 564 | Value *ExtendedStatus = |
| 565 | Builder.CreateZExt(V: StatusBit, DestTy: Builder.getInt32Ty(), Name: "ld.status.ext" ); |
| 566 | Builder.CreateStore(Val: ExtendedStatus, Addr: StatusAddr); |
| 567 | |
| 568 | return LoadedValue; |
| 569 | } |
| 570 | case Builtin::BI__builtin_hlsl_resource_uninitializedhandle: { |
| 571 | llvm::Type *HandleTy = CGM.getTypes().ConvertType(T: E->getType()); |
| 572 | return llvm::PoisonValue::get(T: HandleTy); |
| 573 | } |
| 574 | case Builtin::BI__builtin_hlsl_resource_handlefrombinding: { |
| 575 | llvm::Type *HandleTy = CGM.getTypes().ConvertType(T: E->getType()); |
| 576 | Value *RegisterOp = EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 577 | Value *SpaceOp = EmitScalarExpr(E: E->getArg(Arg: 2)); |
| 578 | Value *RangeOp = EmitScalarExpr(E: E->getArg(Arg: 3)); |
| 579 | Value *IndexOp = EmitScalarExpr(E: E->getArg(Arg: 4)); |
| 580 | Value *Name = EmitScalarExpr(E: E->getArg(Arg: 5)); |
| 581 | llvm::Intrinsic::ID IntrinsicID = |
| 582 | CGM.getHLSLRuntime().getCreateHandleFromBindingIntrinsic(); |
| 583 | SmallVector<Value *> Args{SpaceOp, RegisterOp, RangeOp, IndexOp, Name}; |
| 584 | return Builder.CreateIntrinsic(RetTy: HandleTy, ID: IntrinsicID, Args); |
| 585 | } |
| 586 | case Builtin::BI__builtin_hlsl_resource_handlefromimplicitbinding: { |
| 587 | llvm::Type *HandleTy = CGM.getTypes().ConvertType(T: E->getType()); |
| 588 | Value *OrderID = EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 589 | Value *SpaceOp = EmitScalarExpr(E: E->getArg(Arg: 2)); |
| 590 | Value *RangeOp = EmitScalarExpr(E: E->getArg(Arg: 3)); |
| 591 | Value *IndexOp = EmitScalarExpr(E: E->getArg(Arg: 4)); |
| 592 | Value *Name = EmitScalarExpr(E: E->getArg(Arg: 5)); |
| 593 | llvm::Intrinsic::ID IntrinsicID = |
| 594 | CGM.getHLSLRuntime().getCreateHandleFromImplicitBindingIntrinsic(); |
| 595 | SmallVector<Value *> Args{OrderID, SpaceOp, RangeOp, IndexOp, Name}; |
| 596 | return Builder.CreateIntrinsic(RetTy: HandleTy, ID: IntrinsicID, Args); |
| 597 | } |
| 598 | case Builtin::BI__builtin_hlsl_resource_counterhandlefromimplicitbinding: { |
| 599 | Value *MainHandle = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 600 | if (!CGM.getTriple().isSPIRV()) |
| 601 | return MainHandle; |
| 602 | |
| 603 | llvm::Type *HandleTy = CGM.getTypes().ConvertType(T: E->getType()); |
| 604 | Value *OrderID = EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 605 | Value *SpaceOp = EmitScalarExpr(E: E->getArg(Arg: 2)); |
| 606 | llvm::Intrinsic::ID IntrinsicID = |
| 607 | llvm::Intrinsic::spv_resource_counterhandlefromimplicitbinding; |
| 608 | SmallVector<Value *> Args{MainHandle, OrderID, SpaceOp}; |
| 609 | return Builder.CreateIntrinsic(RetTy: HandleTy, ID: IntrinsicID, Args); |
| 610 | } |
| 611 | case Builtin::BI__builtin_hlsl_resource_nonuniformindex: { |
| 612 | Value *IndexOp = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 613 | llvm::Type *RetTy = ConvertType(T: E->getType()); |
| 614 | return Builder.CreateIntrinsic( |
| 615 | RetTy, ID: CGM.getHLSLRuntime().getNonUniformResourceIndexIntrinsic(), |
| 616 | Args: ArrayRef<Value *>{IndexOp}); |
| 617 | } |
| 618 | case Builtin::BI__builtin_hlsl_resource_getdimensions_x: { |
| 619 | Value *Handle = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 620 | LValue Dim = EmitLValue(E: E->getArg(Arg: 1)); |
| 621 | llvm::Type *RetTy = llvm::Type::getInt32Ty(C&: getLLVMContext()); |
| 622 | Value *DimValue = Builder.CreateIntrinsic( |
| 623 | RetTy, ID: CGM.getHLSLRuntime().getGetDimensionsXIntrinsic(), |
| 624 | Args: ArrayRef<Value *>{Handle}); |
| 625 | return Builder.CreateStore(Val: DimValue, Addr: Dim.getAddress()); |
| 626 | } |
| 627 | case Builtin::BI__builtin_hlsl_resource_getstride: { |
| 628 | LValue Stride = EmitLValue(E: E->getArg(Arg: 1)); |
| 629 | return emitBufferStride(CGF: this, HandleExpr: E->getArg(Arg: 0), Stride); |
| 630 | } |
| 631 | case Builtin::BI__builtin_hlsl_all: { |
| 632 | Value *Op0 = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 633 | return Builder.CreateIntrinsic( |
| 634 | /*ReturnType=*/RetTy: llvm::Type::getInt1Ty(C&: getLLVMContext()), |
| 635 | ID: CGM.getHLSLRuntime().getAllIntrinsic(), Args: ArrayRef<Value *>{Op0}, FMFSource: nullptr, |
| 636 | Name: "hlsl.all" ); |
| 637 | } |
| 638 | case Builtin::BI__builtin_hlsl_and: { |
| 639 | Value *Op0 = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 640 | Value *Op1 = EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 641 | return Builder.CreateAnd(LHS: Op0, RHS: Op1, Name: "hlsl.and" ); |
| 642 | } |
| 643 | case Builtin::BI__builtin_hlsl_or: { |
| 644 | Value *Op0 = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 645 | Value *Op1 = EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 646 | return Builder.CreateOr(LHS: Op0, RHS: Op1, Name: "hlsl.or" ); |
| 647 | } |
| 648 | case Builtin::BI__builtin_hlsl_any: { |
| 649 | Value *Op0 = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 650 | return Builder.CreateIntrinsic( |
| 651 | /*ReturnType=*/RetTy: llvm::Type::getInt1Ty(C&: getLLVMContext()), |
| 652 | ID: CGM.getHLSLRuntime().getAnyIntrinsic(), Args: ArrayRef<Value *>{Op0}, FMFSource: nullptr, |
| 653 | Name: "hlsl.any" ); |
| 654 | } |
| 655 | case Builtin::BI__builtin_hlsl_asdouble: |
| 656 | return handleAsDoubleBuiltin(CGF&: *this, E); |
| 657 | case Builtin::BI__builtin_hlsl_elementwise_clamp: { |
| 658 | Value *OpX = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 659 | Value *OpMin = EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 660 | Value *OpMax = EmitScalarExpr(E: E->getArg(Arg: 2)); |
| 661 | |
| 662 | QualType Ty = E->getArg(Arg: 0)->getType(); |
| 663 | if (auto *VecTy = Ty->getAs<VectorType>()) |
| 664 | Ty = VecTy->getElementType(); |
| 665 | |
| 666 | Intrinsic::ID Intr; |
| 667 | if (Ty->isFloatingType()) { |
| 668 | Intr = CGM.getHLSLRuntime().getNClampIntrinsic(); |
| 669 | } else if (Ty->isUnsignedIntegerType()) { |
| 670 | Intr = CGM.getHLSLRuntime().getUClampIntrinsic(); |
| 671 | } else { |
| 672 | assert(Ty->isSignedIntegerType()); |
| 673 | Intr = CGM.getHLSLRuntime().getSClampIntrinsic(); |
| 674 | } |
| 675 | return Builder.CreateIntrinsic( |
| 676 | /*ReturnType=*/RetTy: OpX->getType(), ID: Intr, |
| 677 | Args: ArrayRef<Value *>{OpX, OpMin, OpMax}, FMFSource: nullptr, Name: "hlsl.clamp" ); |
| 678 | } |
| 679 | case Builtin::BI__builtin_hlsl_crossf16: |
| 680 | case Builtin::BI__builtin_hlsl_crossf32: { |
| 681 | Value *Op0 = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 682 | Value *Op1 = EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 683 | assert(E->getArg(0)->getType()->hasFloatingRepresentation() && |
| 684 | E->getArg(1)->getType()->hasFloatingRepresentation() && |
| 685 | "cross operands must have a float representation" ); |
| 686 | // make sure each vector has exactly 3 elements |
| 687 | assert( |
| 688 | E->getArg(0)->getType()->castAs<VectorType>()->getNumElements() == 3 && |
| 689 | E->getArg(1)->getType()->castAs<VectorType>()->getNumElements() == 3 && |
| 690 | "input vectors must have 3 elements each" ); |
| 691 | return Builder.CreateIntrinsic( |
| 692 | /*ReturnType=*/RetTy: Op0->getType(), ID: CGM.getHLSLRuntime().getCrossIntrinsic(), |
| 693 | Args: ArrayRef<Value *>{Op0, Op1}, FMFSource: nullptr, Name: "hlsl.cross" ); |
| 694 | } |
| 695 | case Builtin::BI__builtin_hlsl_dot: { |
| 696 | Value *Op0 = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 697 | Value *Op1 = EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 698 | llvm::Type *T0 = Op0->getType(); |
| 699 | llvm::Type *T1 = Op1->getType(); |
| 700 | |
| 701 | // If the arguments are scalars, just emit a multiply |
| 702 | if (!T0->isVectorTy() && !T1->isVectorTy()) { |
| 703 | if (T0->isFloatingPointTy()) |
| 704 | return Builder.CreateFMul(L: Op0, R: Op1, Name: "hlsl.dot" ); |
| 705 | |
| 706 | if (T0->isIntegerTy()) |
| 707 | return Builder.CreateMul(LHS: Op0, RHS: Op1, Name: "hlsl.dot" ); |
| 708 | |
| 709 | llvm_unreachable( |
| 710 | "Scalar dot product is only supported on ints and floats." ); |
| 711 | } |
| 712 | // For vectors, validate types and emit the appropriate intrinsic |
| 713 | assert(CGM.getContext().hasSameUnqualifiedType(E->getArg(0)->getType(), |
| 714 | E->getArg(1)->getType()) && |
| 715 | "Dot product operands must have the same type." ); |
| 716 | |
| 717 | auto *VecTy0 = E->getArg(Arg: 0)->getType()->castAs<VectorType>(); |
| 718 | assert(VecTy0 && "Dot product argument must be a vector." ); |
| 719 | |
| 720 | return Builder.CreateIntrinsic( |
| 721 | /*ReturnType=*/RetTy: T0->getScalarType(), |
| 722 | ID: getDotProductIntrinsic(RT&: CGM.getHLSLRuntime(), QT: VecTy0->getElementType()), |
| 723 | Args: ArrayRef<Value *>{Op0, Op1}, FMFSource: nullptr, Name: "hlsl.dot" ); |
| 724 | } |
| 725 | case Builtin::BI__builtin_hlsl_dot4add_i8packed: { |
| 726 | Value *X = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 727 | Value *Y = EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 728 | Value *Acc = EmitScalarExpr(E: E->getArg(Arg: 2)); |
| 729 | |
| 730 | Intrinsic::ID ID = CGM.getHLSLRuntime().getDot4AddI8PackedIntrinsic(); |
| 731 | // Note that the argument order disagrees between the builtin and the |
| 732 | // intrinsic here. |
| 733 | return Builder.CreateIntrinsic( |
| 734 | /*ReturnType=*/RetTy: Acc->getType(), ID, Args: ArrayRef<Value *>{Acc, X, Y}, |
| 735 | FMFSource: nullptr, Name: "hlsl.dot4add.i8packed" ); |
| 736 | } |
| 737 | case Builtin::BI__builtin_hlsl_dot4add_u8packed: { |
| 738 | Value *X = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 739 | Value *Y = EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 740 | Value *Acc = EmitScalarExpr(E: E->getArg(Arg: 2)); |
| 741 | |
| 742 | Intrinsic::ID ID = CGM.getHLSLRuntime().getDot4AddU8PackedIntrinsic(); |
| 743 | // Note that the argument order disagrees between the builtin and the |
| 744 | // intrinsic here. |
| 745 | return Builder.CreateIntrinsic( |
| 746 | /*ReturnType=*/RetTy: Acc->getType(), ID, Args: ArrayRef<Value *>{Acc, X, Y}, |
| 747 | FMFSource: nullptr, Name: "hlsl.dot4add.u8packed" ); |
| 748 | } |
| 749 | case Builtin::BI__builtin_hlsl_elementwise_firstbithigh: { |
| 750 | Value *X = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 751 | |
| 752 | return Builder.CreateIntrinsic( |
| 753 | /*ReturnType=*/RetTy: ConvertType(T: E->getType()), |
| 754 | ID: getFirstBitHighIntrinsic(RT&: CGM.getHLSLRuntime(), QT: E->getArg(Arg: 0)->getType()), |
| 755 | Args: ArrayRef<Value *>{X}, FMFSource: nullptr, Name: "hlsl.firstbithigh" ); |
| 756 | } |
| 757 | case Builtin::BI__builtin_hlsl_elementwise_firstbitlow: { |
| 758 | Value *X = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 759 | |
| 760 | return Builder.CreateIntrinsic( |
| 761 | /*ReturnType=*/RetTy: ConvertType(T: E->getType()), |
| 762 | ID: CGM.getHLSLRuntime().getFirstBitLowIntrinsic(), Args: ArrayRef<Value *>{X}, |
| 763 | FMFSource: nullptr, Name: "hlsl.firstbitlow" ); |
| 764 | } |
| 765 | case Builtin::BI__builtin_hlsl_lerp: { |
| 766 | Value *X = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 767 | Value *Y = EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 768 | Value *S = EmitScalarExpr(E: E->getArg(Arg: 2)); |
| 769 | if (!E->getArg(Arg: 0)->getType()->hasFloatingRepresentation()) |
| 770 | llvm_unreachable("lerp operand must have a float representation" ); |
| 771 | return Builder.CreateIntrinsic( |
| 772 | /*ReturnType=*/RetTy: X->getType(), ID: CGM.getHLSLRuntime().getLerpIntrinsic(), |
| 773 | Args: ArrayRef<Value *>{X, Y, S}, FMFSource: nullptr, Name: "hlsl.lerp" ); |
| 774 | } |
| 775 | case Builtin::BI__builtin_hlsl_normalize: { |
| 776 | Value *X = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 777 | |
| 778 | assert(E->getArg(0)->getType()->hasFloatingRepresentation() && |
| 779 | "normalize operand must have a float representation" ); |
| 780 | |
| 781 | return Builder.CreateIntrinsic( |
| 782 | /*ReturnType=*/RetTy: X->getType(), |
| 783 | ID: CGM.getHLSLRuntime().getNormalizeIntrinsic(), Args: ArrayRef<Value *>{X}, |
| 784 | FMFSource: nullptr, Name: "hlsl.normalize" ); |
| 785 | } |
| 786 | case Builtin::BI__builtin_hlsl_elementwise_degrees: { |
| 787 | Value *X = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 788 | |
| 789 | assert(E->getArg(0)->getType()->hasFloatingRepresentation() && |
| 790 | "degree operand must have a float representation" ); |
| 791 | |
| 792 | return Builder.CreateIntrinsic( |
| 793 | /*ReturnType=*/RetTy: X->getType(), ID: CGM.getHLSLRuntime().getDegreesIntrinsic(), |
| 794 | Args: ArrayRef<Value *>{X}, FMFSource: nullptr, Name: "hlsl.degrees" ); |
| 795 | } |
| 796 | case Builtin::BI__builtin_hlsl_elementwise_f16tof32: { |
| 797 | return handleElementwiseF16ToF32(CGF&: *this, E); |
| 798 | } |
| 799 | case Builtin::BI__builtin_hlsl_elementwise_f32tof16: { |
| 800 | return handleElementwiseF32ToF16(CGF&: *this, E); |
| 801 | } |
| 802 | case Builtin::BI__builtin_hlsl_elementwise_frac: { |
| 803 | Value *Op0 = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 804 | if (!E->getArg(Arg: 0)->getType()->hasFloatingRepresentation()) |
| 805 | llvm_unreachable("frac operand must have a float representation" ); |
| 806 | return Builder.CreateIntrinsic( |
| 807 | /*ReturnType=*/RetTy: Op0->getType(), ID: CGM.getHLSLRuntime().getFracIntrinsic(), |
| 808 | Args: ArrayRef<Value *>{Op0}, FMFSource: nullptr, Name: "hlsl.frac" ); |
| 809 | } |
| 810 | case Builtin::BI__builtin_hlsl_elementwise_isinf: { |
| 811 | Value *Op0 = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 812 | llvm::Type *Xty = Op0->getType(); |
| 813 | llvm::Type *retType = llvm::Type::getInt1Ty(C&: this->getLLVMContext()); |
| 814 | if (Xty->isVectorTy()) { |
| 815 | auto *XVecTy = E->getArg(Arg: 0)->getType()->castAs<VectorType>(); |
| 816 | retType = llvm::VectorType::get( |
| 817 | ElementType: retType, EC: ElementCount::getFixed(MinVal: XVecTy->getNumElements())); |
| 818 | } |
| 819 | if (!E->getArg(Arg: 0)->getType()->hasFloatingRepresentation()) |
| 820 | llvm_unreachable("isinf operand must have a float representation" ); |
| 821 | return Builder.CreateIntrinsic( |
| 822 | RetTy: retType, ID: CGM.getHLSLRuntime().getIsInfIntrinsic(), |
| 823 | Args: ArrayRef<Value *>{Op0}, FMFSource: nullptr, Name: "hlsl.isinf" ); |
| 824 | } |
| 825 | case Builtin::BI__builtin_hlsl_elementwise_isnan: { |
| 826 | Value *Op0 = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 827 | llvm::Type *Xty = Op0->getType(); |
| 828 | llvm::Type *retType = llvm::Type::getInt1Ty(C&: this->getLLVMContext()); |
| 829 | if (Xty->isVectorTy()) { |
| 830 | auto *XVecTy = E->getArg(Arg: 0)->getType()->castAs<VectorType>(); |
| 831 | retType = llvm::VectorType::get( |
| 832 | ElementType: retType, EC: ElementCount::getFixed(MinVal: XVecTy->getNumElements())); |
| 833 | } |
| 834 | if (!E->getArg(Arg: 0)->getType()->hasFloatingRepresentation()) |
| 835 | llvm_unreachable("isnan operand must have a float representation" ); |
| 836 | return Builder.CreateIntrinsic( |
| 837 | RetTy: retType, ID: CGM.getHLSLRuntime().getIsNaNIntrinsic(), |
| 838 | Args: ArrayRef<Value *>{Op0}, FMFSource: nullptr, Name: "hlsl.isnan" ); |
| 839 | } |
| 840 | case Builtin::BI__builtin_hlsl_mad: { |
| 841 | Value *M = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 842 | Value *A = EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 843 | Value *B = EmitScalarExpr(E: E->getArg(Arg: 2)); |
| 844 | if (E->getArg(Arg: 0)->getType()->hasFloatingRepresentation()) |
| 845 | return Builder.CreateIntrinsic( |
| 846 | /*ReturnType*/ RetTy: M->getType(), ID: Intrinsic::fmuladd, |
| 847 | Args: ArrayRef<Value *>{M, A, B}, FMFSource: nullptr, Name: "hlsl.fmad" ); |
| 848 | |
| 849 | if (E->getArg(Arg: 0)->getType()->hasSignedIntegerRepresentation()) { |
| 850 | if (CGM.getTarget().getTriple().getArch() == llvm::Triple::dxil) |
| 851 | return Builder.CreateIntrinsic( |
| 852 | /*ReturnType*/ RetTy: M->getType(), ID: Intrinsic::dx_imad, |
| 853 | Args: ArrayRef<Value *>{M, A, B}, FMFSource: nullptr, Name: "dx.imad" ); |
| 854 | |
| 855 | Value *Mul = Builder.CreateNSWMul(LHS: M, RHS: A); |
| 856 | return Builder.CreateNSWAdd(LHS: Mul, RHS: B); |
| 857 | } |
| 858 | assert(E->getArg(0)->getType()->hasUnsignedIntegerRepresentation()); |
| 859 | if (CGM.getTarget().getTriple().getArch() == llvm::Triple::dxil) |
| 860 | return Builder.CreateIntrinsic( |
| 861 | /*ReturnType=*/RetTy: M->getType(), ID: Intrinsic::dx_umad, |
| 862 | Args: ArrayRef<Value *>{M, A, B}, FMFSource: nullptr, Name: "dx.umad" ); |
| 863 | |
| 864 | Value *Mul = Builder.CreateNUWMul(LHS: M, RHS: A); |
| 865 | return Builder.CreateNUWAdd(LHS: Mul, RHS: B); |
| 866 | } |
| 867 | case Builtin::BI__builtin_hlsl_elementwise_rcp: { |
| 868 | Value *Op0 = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 869 | if (!E->getArg(Arg: 0)->getType()->hasFloatingRepresentation()) |
| 870 | llvm_unreachable("rcp operand must have a float representation" ); |
| 871 | llvm::Type *Ty = Op0->getType(); |
| 872 | llvm::Type *EltTy = Ty->getScalarType(); |
| 873 | Constant *One = Ty->isVectorTy() |
| 874 | ? ConstantVector::getSplat( |
| 875 | EC: ElementCount::getFixed( |
| 876 | MinVal: cast<FixedVectorType>(Val: Ty)->getNumElements()), |
| 877 | Elt: ConstantFP::get(Ty: EltTy, V: 1.0)) |
| 878 | : ConstantFP::get(Ty: EltTy, V: 1.0); |
| 879 | return Builder.CreateFDiv(L: One, R: Op0, Name: "hlsl.rcp" ); |
| 880 | } |
| 881 | case Builtin::BI__builtin_hlsl_elementwise_rsqrt: { |
| 882 | Value *Op0 = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 883 | if (!E->getArg(Arg: 0)->getType()->hasFloatingRepresentation()) |
| 884 | llvm_unreachable("rsqrt operand must have a float representation" ); |
| 885 | return Builder.CreateIntrinsic( |
| 886 | /*ReturnType=*/RetTy: Op0->getType(), ID: CGM.getHLSLRuntime().getRsqrtIntrinsic(), |
| 887 | Args: ArrayRef<Value *>{Op0}, FMFSource: nullptr, Name: "hlsl.rsqrt" ); |
| 888 | } |
| 889 | case Builtin::BI__builtin_hlsl_elementwise_saturate: { |
| 890 | Value *Op0 = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 891 | assert(E->getArg(0)->getType()->hasFloatingRepresentation() && |
| 892 | "saturate operand must have a float representation" ); |
| 893 | return Builder.CreateIntrinsic( |
| 894 | /*ReturnType=*/RetTy: Op0->getType(), |
| 895 | ID: CGM.getHLSLRuntime().getSaturateIntrinsic(), Args: ArrayRef<Value *>{Op0}, |
| 896 | FMFSource: nullptr, Name: "hlsl.saturate" ); |
| 897 | } |
| 898 | case Builtin::BI__builtin_hlsl_wave_prefix_count_bits: { |
| 899 | Value *Op = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 900 | assert(Op->getType()->isIntegerTy(1) && |
| 901 | "WavePrefixBitCount operand must be a boolean type" ); |
| 902 | |
| 903 | Intrinsic::ID IID = |
| 904 | getPrefixCountBitsIntrinsic(Arch: getTarget().getTriple().getArch()); |
| 905 | |
| 906 | return EmitRuntimeCall( |
| 907 | callee: Intrinsic::getOrInsertDeclaration(M: &CGM.getModule(), id: IID), args: ArrayRef{Op}, |
| 908 | name: "hlsl.wave.prefix.bit.count" ); |
| 909 | } |
| 910 | case Builtin::BI__builtin_hlsl_select: { |
| 911 | Value *OpCond = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 912 | RValue RValTrue = EmitAnyExpr(E: E->getArg(Arg: 1)); |
| 913 | Value *OpTrue = |
| 914 | RValTrue.isScalar() |
| 915 | ? RValTrue.getScalarVal() |
| 916 | : Builder.CreateLoad(Addr: RValTrue.getAggregateAddress(), Name: "true_val" ); |
| 917 | RValue RValFalse = EmitAnyExpr(E: E->getArg(Arg: 2)); |
| 918 | Value *OpFalse = |
| 919 | RValFalse.isScalar() |
| 920 | ? RValFalse.getScalarVal() |
| 921 | : Builder.CreateLoad(Addr: RValFalse.getAggregateAddress(), Name: "false_val" ); |
| 922 | if (auto *VTy = E->getType()->getAs<VectorType>()) { |
| 923 | if (!OpTrue->getType()->isVectorTy()) |
| 924 | OpTrue = |
| 925 | Builder.CreateVectorSplat(NumElts: VTy->getNumElements(), V: OpTrue, Name: "splat" ); |
| 926 | if (!OpFalse->getType()->isVectorTy()) |
| 927 | OpFalse = |
| 928 | Builder.CreateVectorSplat(NumElts: VTy->getNumElements(), V: OpFalse, Name: "splat" ); |
| 929 | } |
| 930 | |
| 931 | Value *SelectVal = |
| 932 | Builder.CreateSelect(C: OpCond, True: OpTrue, False: OpFalse, Name: "hlsl.select" ); |
| 933 | if (!RValTrue.isScalar()) |
| 934 | Builder.CreateStore(Val: SelectVal, Addr: ReturnValue.getAddress(), |
| 935 | IsVolatile: ReturnValue.isVolatile()); |
| 936 | |
| 937 | return SelectVal; |
| 938 | } |
| 939 | case Builtin::BI__builtin_hlsl_step: { |
| 940 | Value *Op0 = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 941 | Value *Op1 = EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 942 | assert(E->getArg(0)->getType()->hasFloatingRepresentation() && |
| 943 | E->getArg(1)->getType()->hasFloatingRepresentation() && |
| 944 | "step operands must have a float representation" ); |
| 945 | return Builder.CreateIntrinsic( |
| 946 | /*ReturnType=*/RetTy: Op0->getType(), ID: CGM.getHLSLRuntime().getStepIntrinsic(), |
| 947 | Args: ArrayRef<Value *>{Op0, Op1}, FMFSource: nullptr, Name: "hlsl.step" ); |
| 948 | } |
| 949 | case Builtin::BI__builtin_hlsl_wave_active_all_true: { |
| 950 | Value *Op = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 951 | assert(Op->getType()->isIntegerTy(1) && |
| 952 | "Intrinsic WaveActiveAllTrue operand must be a bool" ); |
| 953 | |
| 954 | Intrinsic::ID ID = CGM.getHLSLRuntime().getWaveActiveAllTrueIntrinsic(); |
| 955 | return EmitRuntimeCall( |
| 956 | callee: Intrinsic::getOrInsertDeclaration(M: &CGM.getModule(), id: ID), args: {Op}); |
| 957 | } |
| 958 | case Builtin::BI__builtin_hlsl_wave_active_any_true: { |
| 959 | Value *Op = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 960 | assert(Op->getType()->isIntegerTy(1) && |
| 961 | "Intrinsic WaveActiveAnyTrue operand must be a bool" ); |
| 962 | |
| 963 | Intrinsic::ID ID = CGM.getHLSLRuntime().getWaveActiveAnyTrueIntrinsic(); |
| 964 | return EmitRuntimeCall( |
| 965 | callee: Intrinsic::getOrInsertDeclaration(M: &CGM.getModule(), id: ID), args: {Op}); |
| 966 | } |
| 967 | case Builtin::BI__builtin_hlsl_wave_active_ballot: { |
| 968 | [[maybe_unused]] Value *Op = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 969 | assert(Op->getType()->isIntegerTy(1) && |
| 970 | "Intrinsic WaveActiveBallot operand must be a bool" ); |
| 971 | |
| 972 | return handleHlslWaveActiveBallot(CGF&: *this, E); |
| 973 | } |
| 974 | case Builtin::BI__builtin_hlsl_wave_active_count_bits: { |
| 975 | Value *OpExpr = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 976 | Intrinsic::ID ID = CGM.getHLSLRuntime().getWaveActiveCountBitsIntrinsic(); |
| 977 | return EmitRuntimeCall( |
| 978 | callee: Intrinsic::getOrInsertDeclaration(M: &CGM.getModule(), id: ID), |
| 979 | args: ArrayRef{OpExpr}); |
| 980 | } |
| 981 | case Builtin::BI__builtin_hlsl_wave_active_sum: { |
| 982 | // Due to the use of variadic arguments, explicitly retreive argument |
| 983 | Value *OpExpr = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 984 | Intrinsic::ID IID = getWaveActiveSumIntrinsic( |
| 985 | Arch: getTarget().getTriple().getArch(), RT&: CGM.getHLSLRuntime(), |
| 986 | QT: E->getArg(Arg: 0)->getType()); |
| 987 | |
| 988 | return EmitRuntimeCall(callee: Intrinsic::getOrInsertDeclaration( |
| 989 | M: &CGM.getModule(), id: IID, Tys: {OpExpr->getType()}), |
| 990 | args: ArrayRef{OpExpr}, name: "hlsl.wave.active.sum" ); |
| 991 | } |
| 992 | case Builtin::BI__builtin_hlsl_wave_active_max: { |
| 993 | // Due to the use of variadic arguments, explicitly retreive argument |
| 994 | Value *OpExpr = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 995 | QualType QT = E->getArg(Arg: 0)->getType(); |
| 996 | Intrinsic::ID IID; |
| 997 | if (QT->isUnsignedIntegerType()) |
| 998 | IID = CGM.getHLSLRuntime().getWaveActiveUMaxIntrinsic(); |
| 999 | else |
| 1000 | IID = CGM.getHLSLRuntime().getWaveActiveMaxIntrinsic(); |
| 1001 | |
| 1002 | return EmitRuntimeCall(callee: Intrinsic::getOrInsertDeclaration( |
| 1003 | M: &CGM.getModule(), id: IID, Tys: {OpExpr->getType()}), |
| 1004 | args: ArrayRef{OpExpr}, name: "hlsl.wave.active.max" ); |
| 1005 | } |
| 1006 | case Builtin::BI__builtin_hlsl_wave_active_min: { |
| 1007 | // Due to the use of variadic arguments, explicitly retreive argument |
| 1008 | Value *OpExpr = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 1009 | QualType QT = E->getArg(Arg: 0)->getType(); |
| 1010 | Intrinsic::ID IID; |
| 1011 | if (QT->isUnsignedIntegerType()) |
| 1012 | IID = CGM.getHLSLRuntime().getWaveActiveUMinIntrinsic(); |
| 1013 | else |
| 1014 | IID = CGM.getHLSLRuntime().getWaveActiveMinIntrinsic(); |
| 1015 | |
| 1016 | return EmitRuntimeCall(callee: Intrinsic::getOrInsertDeclaration( |
| 1017 | M: &CGM.getModule(), id: IID, Tys: {OpExpr->getType()}), |
| 1018 | args: ArrayRef{OpExpr}, name: "hlsl.wave.active.min" ); |
| 1019 | } |
| 1020 | case Builtin::BI__builtin_hlsl_wave_get_lane_index: { |
| 1021 | // We don't define a SPIR-V intrinsic, instead it is a SPIR-V built-in |
| 1022 | // defined in SPIRVBuiltins.td. So instead we manually get the matching name |
| 1023 | // for the DirectX intrinsic and the demangled builtin name |
| 1024 | switch (CGM.getTarget().getTriple().getArch()) { |
| 1025 | case llvm::Triple::dxil: |
| 1026 | return EmitRuntimeCall(callee: Intrinsic::getOrInsertDeclaration( |
| 1027 | M: &CGM.getModule(), id: Intrinsic::dx_wave_getlaneindex)); |
| 1028 | case llvm::Triple::spirv: |
| 1029 | return EmitRuntimeCall(callee: CGM.CreateRuntimeFunction( |
| 1030 | Ty: llvm::FunctionType::get(Result: IntTy, Params: {}, isVarArg: false), |
| 1031 | Name: "__hlsl_wave_get_lane_index" , ExtraAttrs: {}, Local: false, AssumeConvergent: true)); |
| 1032 | default: |
| 1033 | llvm_unreachable( |
| 1034 | "Intrinsic WaveGetLaneIndex not supported by target architecture" ); |
| 1035 | } |
| 1036 | } |
| 1037 | case Builtin::BI__builtin_hlsl_wave_is_first_lane: { |
| 1038 | Intrinsic::ID ID = CGM.getHLSLRuntime().getWaveIsFirstLaneIntrinsic(); |
| 1039 | return EmitRuntimeCall( |
| 1040 | callee: Intrinsic::getOrInsertDeclaration(M: &CGM.getModule(), id: ID)); |
| 1041 | } |
| 1042 | case Builtin::BI__builtin_hlsl_wave_get_lane_count: { |
| 1043 | Intrinsic::ID ID = CGM.getHLSLRuntime().getWaveGetLaneCountIntrinsic(); |
| 1044 | return EmitRuntimeCall( |
| 1045 | callee: Intrinsic::getOrInsertDeclaration(M: &CGM.getModule(), id: ID)); |
| 1046 | } |
| 1047 | case Builtin::BI__builtin_hlsl_wave_read_lane_at: { |
| 1048 | // Due to the use of variadic arguments we must explicitly retreive them and |
| 1049 | // create our function type. |
| 1050 | Value *OpExpr = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 1051 | Value *OpIndex = EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 1052 | return EmitRuntimeCall( |
| 1053 | callee: Intrinsic::getOrInsertDeclaration( |
| 1054 | M: &CGM.getModule(), id: CGM.getHLSLRuntime().getWaveReadLaneAtIntrinsic(), |
| 1055 | Tys: {OpExpr->getType()}), |
| 1056 | args: ArrayRef{OpExpr, OpIndex}, name: "hlsl.wave.readlane" ); |
| 1057 | } |
| 1058 | case Builtin::BI__builtin_hlsl_wave_prefix_sum: { |
| 1059 | Value *OpExpr = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 1060 | Intrinsic::ID IID = getWavePrefixSumIntrinsic( |
| 1061 | Arch: getTarget().getTriple().getArch(), RT&: CGM.getHLSLRuntime(), |
| 1062 | QT: E->getArg(Arg: 0)->getType()); |
| 1063 | return EmitRuntimeCall(callee: Intrinsic::getOrInsertDeclaration( |
| 1064 | M: &CGM.getModule(), id: IID, Tys: {OpExpr->getType()}), |
| 1065 | args: ArrayRef{OpExpr}, name: "hlsl.wave.prefix.sum" ); |
| 1066 | } |
| 1067 | case Builtin::BI__builtin_hlsl_elementwise_sign: { |
| 1068 | auto *Arg0 = E->getArg(Arg: 0); |
| 1069 | Value *Op0 = EmitScalarExpr(E: Arg0); |
| 1070 | llvm::Type *Xty = Op0->getType(); |
| 1071 | llvm::Type *retType = llvm::Type::getInt32Ty(C&: this->getLLVMContext()); |
| 1072 | if (Xty->isVectorTy()) { |
| 1073 | auto *XVecTy = Arg0->getType()->castAs<VectorType>(); |
| 1074 | retType = llvm::VectorType::get( |
| 1075 | ElementType: retType, EC: ElementCount::getFixed(MinVal: XVecTy->getNumElements())); |
| 1076 | } |
| 1077 | assert((Arg0->getType()->hasFloatingRepresentation() || |
| 1078 | Arg0->getType()->hasIntegerRepresentation()) && |
| 1079 | "sign operand must have a float or int representation" ); |
| 1080 | |
| 1081 | if (Arg0->getType()->hasUnsignedIntegerRepresentation()) { |
| 1082 | Value *Cmp = Builder.CreateICmpEQ(LHS: Op0, RHS: ConstantInt::get(Ty: Xty, V: 0)); |
| 1083 | return Builder.CreateSelect(C: Cmp, True: ConstantInt::get(Ty: retType, V: 0), |
| 1084 | False: ConstantInt::get(Ty: retType, V: 1), Name: "hlsl.sign" ); |
| 1085 | } |
| 1086 | |
| 1087 | return Builder.CreateIntrinsic( |
| 1088 | RetTy: retType, ID: CGM.getHLSLRuntime().getSignIntrinsic(), |
| 1089 | Args: ArrayRef<Value *>{Op0}, FMFSource: nullptr, Name: "hlsl.sign" ); |
| 1090 | } |
| 1091 | case Builtin::BI__builtin_hlsl_elementwise_radians: { |
| 1092 | Value *Op0 = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 1093 | assert(E->getArg(0)->getType()->hasFloatingRepresentation() && |
| 1094 | "radians operand must have a float representation" ); |
| 1095 | return Builder.CreateIntrinsic( |
| 1096 | /*ReturnType=*/RetTy: Op0->getType(), |
| 1097 | ID: CGM.getHLSLRuntime().getRadiansIntrinsic(), Args: ArrayRef<Value *>{Op0}, |
| 1098 | FMFSource: nullptr, Name: "hlsl.radians" ); |
| 1099 | } |
| 1100 | case Builtin::BI__builtin_hlsl_buffer_update_counter: { |
| 1101 | Value *ResHandle = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 1102 | Value *Offset = EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 1103 | Value *OffsetI8 = Builder.CreateIntCast(V: Offset, DestTy: Int8Ty, isSigned: true); |
| 1104 | return Builder.CreateIntrinsic( |
| 1105 | /*ReturnType=*/RetTy: Offset->getType(), |
| 1106 | ID: CGM.getHLSLRuntime().getBufferUpdateCounterIntrinsic(), |
| 1107 | Args: ArrayRef<Value *>{ResHandle, OffsetI8}, FMFSource: nullptr); |
| 1108 | } |
| 1109 | case Builtin::BI__builtin_hlsl_elementwise_splitdouble: { |
| 1110 | |
| 1111 | assert((E->getArg(0)->getType()->hasFloatingRepresentation() && |
| 1112 | E->getArg(1)->getType()->hasUnsignedIntegerRepresentation() && |
| 1113 | E->getArg(2)->getType()->hasUnsignedIntegerRepresentation()) && |
| 1114 | "asuint operands types mismatch" ); |
| 1115 | return handleHlslSplitdouble(E, CGF: this); |
| 1116 | } |
| 1117 | case Builtin::BI__builtin_hlsl_elementwise_clip: |
| 1118 | assert(E->getArg(0)->getType()->hasFloatingRepresentation() && |
| 1119 | "clip operands types mismatch" ); |
| 1120 | return handleHlslClip(E, CGF: this); |
| 1121 | case Builtin::BI__builtin_hlsl_group_memory_barrier_with_group_sync: { |
| 1122 | Intrinsic::ID ID = |
| 1123 | CGM.getHLSLRuntime().getGroupMemoryBarrierWithGroupSyncIntrinsic(); |
| 1124 | return EmitRuntimeCall( |
| 1125 | callee: Intrinsic::getOrInsertDeclaration(M: &CGM.getModule(), id: ID)); |
| 1126 | } |
| 1127 | case Builtin::BI__builtin_hlsl_elementwise_ddx_coarse: { |
| 1128 | Value *Op0 = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 1129 | if (!E->getArg(Arg: 0)->getType()->hasFloatingRepresentation()) |
| 1130 | llvm_unreachable("ddx_coarse operand must have a float representation" ); |
| 1131 | Intrinsic::ID ID = CGM.getHLSLRuntime().getDdxCoarseIntrinsic(); |
| 1132 | return Builder.CreateIntrinsic(/*ReturnType=*/RetTy: Op0->getType(), ID, |
| 1133 | Args: ArrayRef<Value *>{Op0}, FMFSource: nullptr, |
| 1134 | Name: "hlsl.ddx.coarse" ); |
| 1135 | } |
| 1136 | case Builtin::BI__builtin_hlsl_elementwise_ddy_coarse: { |
| 1137 | Value *Op0 = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 1138 | if (!E->getArg(Arg: 0)->getType()->hasFloatingRepresentation()) |
| 1139 | llvm_unreachable("ddy_coarse operand must have a float representation" ); |
| 1140 | Intrinsic::ID ID = CGM.getHLSLRuntime().getDdyCoarseIntrinsic(); |
| 1141 | return Builder.CreateIntrinsic(/*ReturnType=*/RetTy: Op0->getType(), ID, |
| 1142 | Args: ArrayRef<Value *>{Op0}, FMFSource: nullptr, |
| 1143 | Name: "hlsl.ddy.coarse" ); |
| 1144 | } |
| 1145 | case Builtin::BI__builtin_hlsl_elementwise_ddx_fine: { |
| 1146 | Value *Op0 = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 1147 | if (!E->getArg(Arg: 0)->getType()->hasFloatingRepresentation()) |
| 1148 | llvm_unreachable("ddx_fine operand must have a float representation" ); |
| 1149 | Intrinsic::ID ID = CGM.getHLSLRuntime().getDdxFineIntrinsic(); |
| 1150 | return Builder.CreateIntrinsic(/*ReturnType=*/RetTy: Op0->getType(), ID, |
| 1151 | Args: ArrayRef<Value *>{Op0}, FMFSource: nullptr, |
| 1152 | Name: "hlsl.ddx.fine" ); |
| 1153 | } |
| 1154 | case Builtin::BI__builtin_hlsl_elementwise_ddy_fine: { |
| 1155 | Value *Op0 = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 1156 | if (!E->getArg(Arg: 0)->getType()->hasFloatingRepresentation()) |
| 1157 | llvm_unreachable("ddy_fine operand must have a float representation" ); |
| 1158 | Intrinsic::ID ID = CGM.getHLSLRuntime().getDdyFineIntrinsic(); |
| 1159 | return Builder.CreateIntrinsic(/*ReturnType=*/RetTy: Op0->getType(), ID, |
| 1160 | Args: ArrayRef<Value *>{Op0}, FMFSource: nullptr, |
| 1161 | Name: "hlsl.ddy.fine" ); |
| 1162 | } |
| 1163 | case Builtin::BI__builtin_get_spirv_spec_constant_bool: |
| 1164 | case Builtin::BI__builtin_get_spirv_spec_constant_short: |
| 1165 | case Builtin::BI__builtin_get_spirv_spec_constant_ushort: |
| 1166 | case Builtin::BI__builtin_get_spirv_spec_constant_int: |
| 1167 | case Builtin::BI__builtin_get_spirv_spec_constant_uint: |
| 1168 | case Builtin::BI__builtin_get_spirv_spec_constant_longlong: |
| 1169 | case Builtin::BI__builtin_get_spirv_spec_constant_ulonglong: |
| 1170 | case Builtin::BI__builtin_get_spirv_spec_constant_half: |
| 1171 | case Builtin::BI__builtin_get_spirv_spec_constant_float: |
| 1172 | case Builtin::BI__builtin_get_spirv_spec_constant_double: { |
| 1173 | llvm::Function *SpecConstantFn = getSpecConstantFunction(SpecConstantType: E->getType()); |
| 1174 | llvm::Value *SpecId = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 1175 | llvm::Value *DefaultVal = EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 1176 | llvm::Value *Args[] = {SpecId, DefaultVal}; |
| 1177 | return Builder.CreateCall(Callee: SpecConstantFn, Args); |
| 1178 | } |
| 1179 | } |
| 1180 | return nullptr; |
| 1181 | } |
| 1182 | |
| 1183 | llvm::Function *clang::CodeGen::CodeGenFunction::getSpecConstantFunction( |
| 1184 | const clang::QualType &SpecConstantType) { |
| 1185 | |
| 1186 | // Find or create the declaration for the function. |
| 1187 | llvm::Module *M = &CGM.getModule(); |
| 1188 | std::string MangledName = |
| 1189 | getSpecConstantFunctionName(SpecConstantType, Context&: getContext()); |
| 1190 | llvm::Function *SpecConstantFn = M->getFunction(Name: MangledName); |
| 1191 | |
| 1192 | if (!SpecConstantFn) { |
| 1193 | llvm::Type *IntType = ConvertType(T: getContext().IntTy); |
| 1194 | llvm::Type *RetTy = ConvertType(T: SpecConstantType); |
| 1195 | llvm::Type *ArgTypes[] = {IntType, RetTy}; |
| 1196 | llvm::FunctionType *FnTy = llvm::FunctionType::get(Result: RetTy, Params: ArgTypes, isVarArg: false); |
| 1197 | SpecConstantFn = llvm::Function::Create( |
| 1198 | Ty: FnTy, Linkage: llvm::GlobalValue::ExternalLinkage, N: MangledName, M); |
| 1199 | } |
| 1200 | return SpecConstantFn; |
| 1201 | } |
| 1202 | |