1//===--- SemaDeclObjC.cpp - Semantic Analysis for ObjC Declarations -------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements semantic analysis for Objective C declarations.
10//
11//===----------------------------------------------------------------------===//
12
13#include "TypeLocBuilder.h"
14#include "clang/AST/ASTConsumer.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/ASTMutationListener.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/DynamicRecursiveASTVisitor.h"
19#include "clang/AST/Expr.h"
20#include "clang/AST/ExprObjC.h"
21#include "clang/Basic/SourceManager.h"
22#include "clang/Basic/TargetInfo.h"
23#include "clang/Sema/DeclSpec.h"
24#include "clang/Sema/DelayedDiagnostic.h"
25#include "clang/Sema/Initialization.h"
26#include "clang/Sema/Lookup.h"
27#include "clang/Sema/Scope.h"
28#include "clang/Sema/ScopeInfo.h"
29#include "clang/Sema/SemaObjC.h"
30#include "llvm/ADT/DenseMap.h"
31#include "llvm/ADT/DenseSet.h"
32
33using namespace clang;
34
35/// Check whether the given method, which must be in the 'init'
36/// family, is a valid member of that family.
37///
38/// \param receiverTypeIfCall - if null, check this as if declaring it;
39/// if non-null, check this as if making a call to it with the given
40/// receiver type
41///
42/// \return true to indicate that there was an error and appropriate
43/// actions were taken
44bool SemaObjC::checkInitMethod(ObjCMethodDecl *method,
45 QualType receiverTypeIfCall) {
46 ASTContext &Context = getASTContext();
47 if (method->isInvalidDecl()) return true;
48
49 // This castAs is safe: methods that don't return an object
50 // pointer won't be inferred as inits and will reject an explicit
51 // objc_method_family(init).
52
53 // We ignore protocols here. Should we? What about Class?
54
55 const ObjCObjectType *result =
56 method->getReturnType()->castAs<ObjCObjectPointerType>()->getObjectType();
57
58 if (result->isObjCId()) {
59 return false;
60 } else if (result->isObjCClass()) {
61 // fall through: always an error
62 } else {
63 ObjCInterfaceDecl *resultClass = result->getInterface();
64 assert(resultClass && "unexpected object type!");
65
66 // It's okay for the result type to still be a forward declaration
67 // if we're checking an interface declaration.
68 if (!resultClass->hasDefinition()) {
69 if (receiverTypeIfCall.isNull() &&
70 !isa<ObjCImplementationDecl>(Val: method->getDeclContext()))
71 return false;
72
73 // Otherwise, we try to compare class types.
74 } else {
75 // If this method was declared in a protocol, we can't check
76 // anything unless we have a receiver type that's an interface.
77 const ObjCInterfaceDecl *receiverClass = nullptr;
78 if (isa<ObjCProtocolDecl>(Val: method->getDeclContext())) {
79 if (receiverTypeIfCall.isNull())
80 return false;
81
82 receiverClass = receiverTypeIfCall->castAs<ObjCObjectPointerType>()
83 ->getInterfaceDecl();
84
85 // This can be null for calls to e.g. id<Foo>.
86 if (!receiverClass) return false;
87 } else {
88 receiverClass = method->getClassInterface();
89 assert(receiverClass && "method not associated with a class!");
90 }
91
92 // If either class is a subclass of the other, it's fine.
93 if (receiverClass->isSuperClassOf(I: resultClass) ||
94 resultClass->isSuperClassOf(I: receiverClass))
95 return false;
96 }
97 }
98
99 SourceLocation loc = method->getLocation();
100
101 // If we're in a system header, and this is not a call, just make
102 // the method unusable.
103 if (receiverTypeIfCall.isNull() &&
104 SemaRef.getSourceManager().isInSystemHeader(Loc: loc)) {
105 method->addAttr(A: UnavailableAttr::CreateImplicit(Ctx&: Context, Message: "",
106 ImplicitReason: UnavailableAttr::IR_ARCInitReturnsUnrelated, Range: loc));
107 return true;
108 }
109
110 // Otherwise, it's an error.
111 Diag(Loc: loc, DiagID: diag::err_arc_init_method_unrelated_result_type);
112 method->setInvalidDecl();
113 return true;
114}
115
116/// Issue a warning if the parameter of the overridden method is non-escaping
117/// but the parameter of the overriding method is not.
118static bool diagnoseNoescape(const ParmVarDecl *NewD, const ParmVarDecl *OldD,
119 Sema &S) {
120 if (OldD->hasAttr<NoEscapeAttr>() && !NewD->hasAttr<NoEscapeAttr>()) {
121 S.Diag(Loc: NewD->getLocation(), DiagID: diag::warn_overriding_method_missing_noescape);
122 S.Diag(Loc: OldD->getLocation(), DiagID: diag::note_overridden_marked_noescape);
123 return false;
124 }
125
126 return true;
127}
128
129/// Produce additional diagnostics if a category conforms to a protocol that
130/// defines a method taking a non-escaping parameter.
131static void diagnoseNoescape(const ParmVarDecl *NewD, const ParmVarDecl *OldD,
132 const ObjCCategoryDecl *CD,
133 const ObjCProtocolDecl *PD, Sema &S) {
134 if (!diagnoseNoescape(NewD, OldD, S))
135 S.Diag(Loc: CD->getLocation(), DiagID: diag::note_cat_conform_to_noescape_prot)
136 << CD->IsClassExtension() << PD
137 << cast<ObjCMethodDecl>(Val: NewD->getDeclContext());
138}
139
140void SemaObjC::CheckObjCMethodOverride(ObjCMethodDecl *NewMethod,
141 const ObjCMethodDecl *Overridden) {
142 ASTContext &Context = getASTContext();
143 if (Overridden->hasRelatedResultType() &&
144 !NewMethod->hasRelatedResultType()) {
145 // This can only happen when the method follows a naming convention that
146 // implies a related result type, and the original (overridden) method has
147 // a suitable return type, but the new (overriding) method does not have
148 // a suitable return type.
149 QualType ResultType = NewMethod->getReturnType();
150 SourceRange ResultTypeRange = NewMethod->getReturnTypeSourceRange();
151
152 // Figure out which class this method is part of, if any.
153 ObjCInterfaceDecl *CurrentClass
154 = dyn_cast<ObjCInterfaceDecl>(Val: NewMethod->getDeclContext());
155 if (!CurrentClass) {
156 DeclContext *DC = NewMethod->getDeclContext();
157 if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(Val: DC))
158 CurrentClass = Cat->getClassInterface();
159 else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(Val: DC))
160 CurrentClass = Impl->getClassInterface();
161 else if (ObjCCategoryImplDecl *CatImpl
162 = dyn_cast<ObjCCategoryImplDecl>(Val: DC))
163 CurrentClass = CatImpl->getClassInterface();
164 }
165
166 if (CurrentClass) {
167 Diag(Loc: NewMethod->getLocation(),
168 DiagID: diag::warn_related_result_type_compatibility_class)
169 << Context.getObjCInterfaceType(Decl: CurrentClass)
170 << ResultType
171 << ResultTypeRange;
172 } else {
173 Diag(Loc: NewMethod->getLocation(),
174 DiagID: diag::warn_related_result_type_compatibility_protocol)
175 << ResultType
176 << ResultTypeRange;
177 }
178
179 if (ObjCMethodFamily Family = Overridden->getMethodFamily())
180 Diag(Loc: Overridden->getLocation(),
181 DiagID: diag::note_related_result_type_family)
182 << /*overridden method*/ 0
183 << Family;
184 else
185 Diag(Loc: Overridden->getLocation(),
186 DiagID: diag::note_related_result_type_overridden);
187 }
188
189 if ((NewMethod->hasAttr<NSReturnsRetainedAttr>() !=
190 Overridden->hasAttr<NSReturnsRetainedAttr>())) {
191 Diag(Loc: NewMethod->getLocation(),
192 DiagID: getLangOpts().ObjCAutoRefCount
193 ? diag::err_nsreturns_retained_attribute_mismatch
194 : diag::warn_nsreturns_retained_attribute_mismatch)
195 << 1;
196 Diag(Loc: Overridden->getLocation(), DiagID: diag::note_previous_decl) << "method";
197 }
198 if ((NewMethod->hasAttr<NSReturnsNotRetainedAttr>() !=
199 Overridden->hasAttr<NSReturnsNotRetainedAttr>())) {
200 Diag(Loc: NewMethod->getLocation(),
201 DiagID: getLangOpts().ObjCAutoRefCount
202 ? diag::err_nsreturns_retained_attribute_mismatch
203 : diag::warn_nsreturns_retained_attribute_mismatch)
204 << 0;
205 Diag(Loc: Overridden->getLocation(), DiagID: diag::note_previous_decl) << "method";
206 }
207
208 ObjCMethodDecl::param_const_iterator oi = Overridden->param_begin(),
209 oe = Overridden->param_end();
210 for (ObjCMethodDecl::param_iterator ni = NewMethod->param_begin(),
211 ne = NewMethod->param_end();
212 ni != ne && oi != oe; ++ni, ++oi) {
213 const ParmVarDecl *oldDecl = (*oi);
214 ParmVarDecl *newDecl = (*ni);
215 if (newDecl->hasAttr<NSConsumedAttr>() !=
216 oldDecl->hasAttr<NSConsumedAttr>()) {
217 Diag(Loc: newDecl->getLocation(),
218 DiagID: getLangOpts().ObjCAutoRefCount
219 ? diag::err_nsconsumed_attribute_mismatch
220 : diag::warn_nsconsumed_attribute_mismatch);
221 Diag(Loc: oldDecl->getLocation(), DiagID: diag::note_previous_decl) << "parameter";
222 }
223
224 diagnoseNoescape(NewD: newDecl, OldD: oldDecl, S&: SemaRef);
225 }
226}
227
228/// Check a method declaration for compatibility with the Objective-C
229/// ARC conventions.
230bool SemaObjC::CheckARCMethodDecl(ObjCMethodDecl *method) {
231 ASTContext &Context = getASTContext();
232 ObjCMethodFamily family = method->getMethodFamily();
233 switch (family) {
234 case OMF_None:
235 case OMF_finalize:
236 case OMF_retain:
237 case OMF_release:
238 case OMF_autorelease:
239 case OMF_retainCount:
240 case OMF_self:
241 case OMF_initialize:
242 case OMF_performSelector:
243 return false;
244
245 case OMF_dealloc:
246 if (!Context.hasSameType(T1: method->getReturnType(), T2: Context.VoidTy)) {
247 SourceRange ResultTypeRange = method->getReturnTypeSourceRange();
248 if (ResultTypeRange.isInvalid())
249 Diag(Loc: method->getLocation(), DiagID: diag::err_dealloc_bad_result_type)
250 << method->getReturnType()
251 << FixItHint::CreateInsertion(InsertionLoc: method->getSelectorLoc(Index: 0), Code: "(void)");
252 else
253 Diag(Loc: method->getLocation(), DiagID: diag::err_dealloc_bad_result_type)
254 << method->getReturnType()
255 << FixItHint::CreateReplacement(RemoveRange: ResultTypeRange, Code: "void");
256 return true;
257 }
258 return false;
259
260 case OMF_init:
261 // If the method doesn't obey the init rules, don't bother annotating it.
262 if (checkInitMethod(method, receiverTypeIfCall: QualType()))
263 return true;
264
265 method->addAttr(A: NSConsumesSelfAttr::CreateImplicit(Ctx&: Context));
266
267 // Don't add a second copy of this attribute, but otherwise don't
268 // let it be suppressed.
269 if (method->hasAttr<NSReturnsRetainedAttr>())
270 return false;
271 break;
272
273 case OMF_alloc:
274 case OMF_copy:
275 case OMF_mutableCopy:
276 case OMF_new:
277 if (method->hasAttr<NSReturnsRetainedAttr>() ||
278 method->hasAttr<NSReturnsNotRetainedAttr>() ||
279 method->hasAttr<NSReturnsAutoreleasedAttr>())
280 return false;
281 break;
282 }
283
284 method->addAttr(A: NSReturnsRetainedAttr::CreateImplicit(Ctx&: Context));
285 return false;
286}
287
288static void DiagnoseObjCImplementedDeprecations(Sema &S, const NamedDecl *ND,
289 SourceLocation ImplLoc) {
290 if (!ND)
291 return;
292 bool IsCategory = false;
293 StringRef RealizedPlatform;
294 AvailabilityResult Availability = ND->getAvailability(
295 /*Message=*/nullptr, /*EnclosingVersion=*/VersionTuple(),
296 RealizedPlatform: &RealizedPlatform);
297 if (Availability != AR_Deprecated) {
298 if (isa<ObjCMethodDecl>(Val: ND)) {
299 if (Availability != AR_Unavailable)
300 return;
301 if (RealizedPlatform.empty())
302 RealizedPlatform = S.Context.getTargetInfo().getPlatformName();
303 // Warn about implementing unavailable methods, unless the unavailable
304 // is for an app extension.
305 if (RealizedPlatform.ends_with(Suffix: "_app_extension"))
306 return;
307 S.Diag(Loc: ImplLoc, DiagID: diag::warn_unavailable_def);
308 S.Diag(Loc: ND->getLocation(), DiagID: diag::note_method_declared_at)
309 << ND->getDeclName();
310 return;
311 }
312 if (const auto *CD = dyn_cast<ObjCCategoryDecl>(Val: ND)) {
313 if (!CD->getClassInterface()->isDeprecated())
314 return;
315 ND = CD->getClassInterface();
316 IsCategory = true;
317 } else
318 return;
319 }
320 S.Diag(Loc: ImplLoc, DiagID: diag::warn_deprecated_def)
321 << (isa<ObjCMethodDecl>(Val: ND)
322 ? /*Method*/ 0
323 : isa<ObjCCategoryDecl>(Val: ND) || IsCategory ? /*Category*/ 2
324 : /*Class*/ 1);
325 if (isa<ObjCMethodDecl>(Val: ND))
326 S.Diag(Loc: ND->getLocation(), DiagID: diag::note_method_declared_at)
327 << ND->getDeclName();
328 else
329 S.Diag(Loc: ND->getLocation(), DiagID: diag::note_previous_decl)
330 << (isa<ObjCCategoryDecl>(Val: ND) ? "category" : "class");
331}
332
333/// AddAnyMethodToGlobalPool - Add any method, instance or factory to global
334/// pool.
335void SemaObjC::AddAnyMethodToGlobalPool(Decl *D) {
336 ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(Val: D);
337
338 // If we don't have a valid method decl, simply return.
339 if (!MDecl)
340 return;
341 if (MDecl->isInstanceMethod())
342 AddInstanceMethodToGlobalPool(Method: MDecl, impl: true);
343 else
344 AddFactoryMethodToGlobalPool(Method: MDecl, impl: true);
345}
346
347/// HasExplicitOwnershipAttr - returns true when pointer to ObjC pointer
348/// has explicit ownership attribute; false otherwise.
349static bool
350HasExplicitOwnershipAttr(Sema &S, ParmVarDecl *Param) {
351 QualType T = Param->getType();
352
353 if (const PointerType *PT = T->getAs<PointerType>()) {
354 T = PT->getPointeeType();
355 } else if (const ReferenceType *RT = T->getAs<ReferenceType>()) {
356 T = RT->getPointeeType();
357 } else {
358 return true;
359 }
360
361 // If we have a lifetime qualifier, but it's local, we must have
362 // inferred it. So, it is implicit.
363 return !T.getLocalQualifiers().hasObjCLifetime();
364}
365
366/// ActOnStartOfObjCMethodDef - This routine sets up parameters; invisible
367/// and user declared, in the method definition's AST.
368void SemaObjC::ActOnStartOfObjCMethodDef(Scope *FnBodyScope, Decl *D) {
369 ASTContext &Context = getASTContext();
370 SemaRef.ImplicitlyRetainedSelfLocs.clear();
371 assert((SemaRef.getCurMethodDecl() == nullptr) && "Methodparsing confused");
372 ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(Val: D);
373
374 SemaRef.PushExpressionEvaluationContext(
375 NewContext: SemaRef.ExprEvalContexts.back().Context);
376
377 // If we don't have a valid method decl, simply return.
378 if (!MDecl)
379 return;
380
381 QualType ResultType = MDecl->getReturnType();
382 if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
383 !MDecl->isInvalidDecl() &&
384 SemaRef.RequireCompleteType(Loc: MDecl->getLocation(), T: ResultType,
385 DiagID: diag::err_func_def_incomplete_result))
386 MDecl->setInvalidDecl();
387
388 // Allow all of Sema to see that we are entering a method definition.
389 SemaRef.PushDeclContext(S: FnBodyScope, DC: MDecl);
390 SemaRef.PushFunctionScope();
391
392 // Create Decl objects for each parameter, entrring them in the scope for
393 // binding to their use.
394
395 // Insert the invisible arguments, self and _cmd!
396 MDecl->createImplicitParams(Context, ID: MDecl->getClassInterface());
397
398 SemaRef.PushOnScopeChains(D: MDecl->getSelfDecl(), S: FnBodyScope);
399 SemaRef.PushOnScopeChains(D: MDecl->getCmdDecl(), S: FnBodyScope);
400
401 // The ObjC parser requires parameter names so there's no need to check.
402 SemaRef.CheckParmsForFunctionDef(Parameters: MDecl->parameters(),
403 /*CheckParameterNames=*/false);
404
405 // Introduce all of the other parameters into this scope.
406 for (auto *Param : MDecl->parameters()) {
407 if (!Param->isInvalidDecl() && getLangOpts().ObjCAutoRefCount &&
408 !HasExplicitOwnershipAttr(S&: SemaRef, Param))
409 Diag(Loc: Param->getLocation(), DiagID: diag::warn_arc_strong_pointer_objc_pointer) <<
410 Param->getType();
411
412 if (Param->getIdentifier())
413 SemaRef.PushOnScopeChains(D: Param, S: FnBodyScope);
414 }
415
416 // In ARC, disallow definition of retain/release/autorelease/retainCount
417 if (getLangOpts().ObjCAutoRefCount) {
418 switch (MDecl->getMethodFamily()) {
419 case OMF_retain:
420 case OMF_retainCount:
421 case OMF_release:
422 case OMF_autorelease:
423 Diag(Loc: MDecl->getLocation(), DiagID: diag::err_arc_illegal_method_def)
424 << 0 << MDecl->getSelector();
425 break;
426
427 case OMF_None:
428 case OMF_dealloc:
429 case OMF_finalize:
430 case OMF_alloc:
431 case OMF_init:
432 case OMF_mutableCopy:
433 case OMF_copy:
434 case OMF_new:
435 case OMF_self:
436 case OMF_initialize:
437 case OMF_performSelector:
438 break;
439 }
440 }
441
442 // Warn on deprecated methods under -Wdeprecated-implementations,
443 // and prepare for warning on missing super calls.
444 if (ObjCInterfaceDecl *IC = MDecl->getClassInterface()) {
445 ObjCMethodDecl *IMD =
446 IC->lookupMethod(Sel: MDecl->getSelector(), isInstance: MDecl->isInstanceMethod());
447
448 if (IMD) {
449 ObjCImplDecl *ImplDeclOfMethodDef =
450 dyn_cast<ObjCImplDecl>(Val: MDecl->getDeclContext());
451 ObjCContainerDecl *ContDeclOfMethodDecl =
452 dyn_cast<ObjCContainerDecl>(Val: IMD->getDeclContext());
453 ObjCImplDecl *ImplDeclOfMethodDecl = nullptr;
454 if (ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(Val: ContDeclOfMethodDecl))
455 ImplDeclOfMethodDecl = OID->getImplementation();
456 else if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(Val: ContDeclOfMethodDecl)) {
457 if (CD->IsClassExtension()) {
458 if (ObjCInterfaceDecl *OID = CD->getClassInterface())
459 ImplDeclOfMethodDecl = OID->getImplementation();
460 } else
461 ImplDeclOfMethodDecl = CD->getImplementation();
462 }
463 // No need to issue deprecated warning if deprecated mehod in class/category
464 // is being implemented in its own implementation (no overriding is involved).
465 if (!ImplDeclOfMethodDecl || ImplDeclOfMethodDecl != ImplDeclOfMethodDef)
466 DiagnoseObjCImplementedDeprecations(S&: SemaRef, ND: IMD, ImplLoc: MDecl->getLocation());
467 }
468
469 if (MDecl->getMethodFamily() == OMF_init) {
470 if (MDecl->isDesignatedInitializerForTheInterface()) {
471 SemaRef.getCurFunction()->ObjCIsDesignatedInit = true;
472 SemaRef.getCurFunction()->ObjCWarnForNoDesignatedInitChain =
473 IC->getSuperClass() != nullptr;
474 } else if (IC->hasDesignatedInitializers()) {
475 SemaRef.getCurFunction()->ObjCIsSecondaryInit = true;
476 SemaRef.getCurFunction()->ObjCWarnForNoInitDelegation = true;
477 }
478 }
479
480 // If this is "dealloc" or "finalize", set some bit here.
481 // Then in ActOnSuperMessage() (SemaExprObjC), set it back to false.
482 // Finally, in ActOnFinishFunctionBody() (SemaDecl), warn if flag is set.
483 // Only do this if the current class actually has a superclass.
484 if (const ObjCInterfaceDecl *SuperClass = IC->getSuperClass()) {
485 ObjCMethodFamily Family = MDecl->getMethodFamily();
486 if (Family == OMF_dealloc) {
487 if (!(getLangOpts().ObjCAutoRefCount ||
488 getLangOpts().getGC() == LangOptions::GCOnly))
489 SemaRef.getCurFunction()->ObjCShouldCallSuper = true;
490
491 } else if (Family == OMF_finalize) {
492 if (Context.getLangOpts().getGC() != LangOptions::NonGC)
493 SemaRef.getCurFunction()->ObjCShouldCallSuper = true;
494
495 } else {
496 const ObjCMethodDecl *SuperMethod =
497 SuperClass->lookupMethod(Sel: MDecl->getSelector(),
498 isInstance: MDecl->isInstanceMethod());
499 SemaRef.getCurFunction()->ObjCShouldCallSuper =
500 (SuperMethod && SuperMethod->hasAttr<ObjCRequiresSuperAttr>());
501 }
502 }
503 }
504
505 // Some function attributes (like OptimizeNoneAttr) need actions before
506 // parsing body started.
507 SemaRef.applyFunctionAttributesBeforeParsingBody(FD: D);
508}
509
510namespace {
511
512// Callback to only accept typo corrections that are Objective-C classes.
513// If an ObjCInterfaceDecl* is given to the constructor, then the validation
514// function will reject corrections to that class.
515class ObjCInterfaceValidatorCCC final : public CorrectionCandidateCallback {
516 public:
517 ObjCInterfaceValidatorCCC() : CurrentIDecl(nullptr) {}
518 explicit ObjCInterfaceValidatorCCC(ObjCInterfaceDecl *IDecl)
519 : CurrentIDecl(IDecl) {}
520
521 bool ValidateCandidate(const TypoCorrection &candidate) override {
522 ObjCInterfaceDecl *ID = candidate.getCorrectionDeclAs<ObjCInterfaceDecl>();
523 return ID && !declaresSameEntity(D1: ID, D2: CurrentIDecl);
524 }
525
526 std::unique_ptr<CorrectionCandidateCallback> clone() override {
527 return std::make_unique<ObjCInterfaceValidatorCCC>(args&: *this);
528 }
529
530 private:
531 ObjCInterfaceDecl *CurrentIDecl;
532};
533
534} // end anonymous namespace
535
536static void diagnoseUseOfProtocols(Sema &TheSema,
537 ObjCContainerDecl *CD,
538 ObjCProtocolDecl *const *ProtoRefs,
539 unsigned NumProtoRefs,
540 const SourceLocation *ProtoLocs) {
541 assert(ProtoRefs);
542 // Diagnose availability in the context of the ObjC container.
543 Sema::ContextRAII SavedContext(TheSema, CD);
544 for (unsigned i = 0; i < NumProtoRefs; ++i) {
545 (void)TheSema.DiagnoseUseOfDecl(D: ProtoRefs[i], Locs: ProtoLocs[i],
546 /*UnknownObjCClass=*/nullptr,
547 /*ObjCPropertyAccess=*/false,
548 /*AvoidPartialAvailabilityChecks=*/true);
549 }
550}
551
552void SemaObjC::ActOnSuperClassOfClassInterface(
553 Scope *S, SourceLocation AtInterfaceLoc, ObjCInterfaceDecl *IDecl,
554 IdentifierInfo *ClassName, SourceLocation ClassLoc,
555 IdentifierInfo *SuperName, SourceLocation SuperLoc,
556 ArrayRef<ParsedType> SuperTypeArgs, SourceRange SuperTypeArgsRange) {
557 ASTContext &Context = getASTContext();
558 // Check if a different kind of symbol declared in this scope.
559 NamedDecl *PrevDecl = SemaRef.LookupSingleName(
560 S: SemaRef.TUScope, Name: SuperName, Loc: SuperLoc, NameKind: Sema::LookupOrdinaryName);
561
562 if (!PrevDecl) {
563 // Try to correct for a typo in the superclass name without correcting
564 // to the class we're defining.
565 ObjCInterfaceValidatorCCC CCC(IDecl);
566 if (TypoCorrection Corrected = SemaRef.CorrectTypo(
567 Typo: DeclarationNameInfo(SuperName, SuperLoc), LookupKind: Sema::LookupOrdinaryName,
568 S: SemaRef.TUScope, SS: nullptr, CCC, Mode: CorrectTypoKind::ErrorRecovery)) {
569 SemaRef.diagnoseTypo(Correction: Corrected, TypoDiag: PDiag(DiagID: diag::err_undef_superclass_suggest)
570 << SuperName << ClassName);
571 PrevDecl = Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>();
572 }
573 }
574
575 if (declaresSameEntity(D1: PrevDecl, D2: IDecl)) {
576 Diag(Loc: SuperLoc, DiagID: diag::err_recursive_superclass)
577 << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
578 IDecl->setEndOfDefinitionLoc(ClassLoc);
579 } else {
580 ObjCInterfaceDecl *SuperClassDecl =
581 dyn_cast_or_null<ObjCInterfaceDecl>(Val: PrevDecl);
582 QualType SuperClassType;
583
584 // Diagnose classes that inherit from deprecated classes.
585 if (SuperClassDecl) {
586 (void)SemaRef.DiagnoseUseOfDecl(D: SuperClassDecl, Locs: SuperLoc);
587 SuperClassType = Context.getObjCInterfaceType(Decl: SuperClassDecl);
588 }
589
590 if (PrevDecl && !SuperClassDecl) {
591 // The previous declaration was not a class decl. Check if we have a
592 // typedef. If we do, get the underlying class type.
593 if (const TypedefNameDecl *TDecl =
594 dyn_cast_or_null<TypedefNameDecl>(Val: PrevDecl)) {
595 QualType T = TDecl->getUnderlyingType();
596 if (T->isObjCObjectType()) {
597 if (NamedDecl *IDecl = T->castAs<ObjCObjectType>()->getInterface()) {
598 SuperClassDecl = dyn_cast<ObjCInterfaceDecl>(Val: IDecl);
599 SuperClassType = Context.getTypeDeclType(
600 Keyword: ElaboratedTypeKeyword::None, /*Qualifier=*/std::nullopt, Decl: TDecl);
601
602 // This handles the following case:
603 // @interface NewI @end
604 // typedef NewI DeprI __attribute__((deprecated("blah")))
605 // @interface SI : DeprI /* warn here */ @end
606 (void)SemaRef.DiagnoseUseOfDecl(
607 D: const_cast<TypedefNameDecl *>(TDecl), Locs: SuperLoc);
608 }
609 }
610 }
611
612 // This handles the following case:
613 //
614 // typedef int SuperClass;
615 // @interface MyClass : SuperClass {} @end
616 //
617 if (!SuperClassDecl) {
618 Diag(Loc: SuperLoc, DiagID: diag::err_redefinition_different_kind) << SuperName;
619 Diag(Loc: PrevDecl->getLocation(), DiagID: diag::note_previous_definition);
620 }
621 }
622
623 if (!isa_and_nonnull<TypedefNameDecl>(Val: PrevDecl)) {
624 if (!SuperClassDecl)
625 Diag(Loc: SuperLoc, DiagID: diag::err_undef_superclass)
626 << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
627 else if (SemaRef.RequireCompleteType(
628 Loc: SuperLoc, T: SuperClassType, DiagID: diag::err_forward_superclass,
629 Args: SuperClassDecl->getDeclName(), Args: ClassName,
630 Args: SourceRange(AtInterfaceLoc, ClassLoc))) {
631 SuperClassDecl = nullptr;
632 SuperClassType = QualType();
633 }
634 }
635
636 if (SuperClassType.isNull()) {
637 assert(!SuperClassDecl && "Failed to set SuperClassType?");
638 return;
639 }
640
641 // Handle type arguments on the superclass.
642 TypeSourceInfo *SuperClassTInfo = nullptr;
643 if (!SuperTypeArgs.empty()) {
644 TypeResult fullSuperClassType = actOnObjCTypeArgsAndProtocolQualifiers(
645 S, Loc: SuperLoc, BaseType: SemaRef.CreateParsedType(T: SuperClassType, TInfo: nullptr),
646 TypeArgsLAngleLoc: SuperTypeArgsRange.getBegin(), TypeArgs: SuperTypeArgs,
647 TypeArgsRAngleLoc: SuperTypeArgsRange.getEnd(), ProtocolLAngleLoc: SourceLocation(), Protocols: {}, ProtocolLocs: {},
648 ProtocolRAngleLoc: SourceLocation());
649 if (!fullSuperClassType.isUsable())
650 return;
651
652 SuperClassType =
653 SemaRef.GetTypeFromParser(Ty: fullSuperClassType.get(), TInfo: &SuperClassTInfo);
654 }
655
656 if (!SuperClassTInfo) {
657 SuperClassTInfo = Context.getTrivialTypeSourceInfo(T: SuperClassType,
658 Loc: SuperLoc);
659 }
660
661 IDecl->setSuperClass(SuperClassTInfo);
662 IDecl->setEndOfDefinitionLoc(SuperClassTInfo->getTypeLoc().getEndLoc());
663 getASTContext().addObjCSubClass(D: IDecl->getSuperClass(), SubClass: IDecl);
664 }
665}
666
667DeclResult SemaObjC::actOnObjCTypeParam(
668 Scope *S, ObjCTypeParamVariance variance, SourceLocation varianceLoc,
669 unsigned index, IdentifierInfo *paramName, SourceLocation paramLoc,
670 SourceLocation colonLoc, ParsedType parsedTypeBound) {
671 ASTContext &Context = getASTContext();
672 // If there was an explicitly-provided type bound, check it.
673 TypeSourceInfo *typeBoundInfo = nullptr;
674 if (parsedTypeBound) {
675 // The type bound can be any Objective-C pointer type.
676 QualType typeBound =
677 SemaRef.GetTypeFromParser(Ty: parsedTypeBound, TInfo: &typeBoundInfo);
678 if (typeBound->isObjCObjectPointerType()) {
679 // okay
680 } else if (typeBound->isObjCObjectType()) {
681 // The user forgot the * on an Objective-C pointer type, e.g.,
682 // "T : NSView".
683 SourceLocation starLoc =
684 SemaRef.getLocForEndOfToken(Loc: typeBoundInfo->getTypeLoc().getEndLoc());
685 Diag(Loc: typeBoundInfo->getTypeLoc().getBeginLoc(),
686 DiagID: diag::err_objc_type_param_bound_missing_pointer)
687 << typeBound << paramName
688 << FixItHint::CreateInsertion(InsertionLoc: starLoc, Code: " *");
689
690 // Create a new type location builder so we can update the type
691 // location information we have.
692 TypeLocBuilder builder;
693 builder.pushFullCopy(L: typeBoundInfo->getTypeLoc());
694
695 // Create the Objective-C pointer type.
696 typeBound = Context.getObjCObjectPointerType(OIT: typeBound);
697 ObjCObjectPointerTypeLoc newT
698 = builder.push<ObjCObjectPointerTypeLoc>(T: typeBound);
699 newT.setStarLoc(starLoc);
700
701 // Form the new type source information.
702 typeBoundInfo = builder.getTypeSourceInfo(Context, T: typeBound);
703 } else {
704 // Not a valid type bound.
705 Diag(Loc: typeBoundInfo->getTypeLoc().getBeginLoc(),
706 DiagID: diag::err_objc_type_param_bound_nonobject)
707 << typeBound << paramName;
708
709 // Forget the bound; we'll default to id later.
710 typeBoundInfo = nullptr;
711 }
712
713 // Type bounds cannot have qualifiers (even indirectly) or explicit
714 // nullability.
715 if (typeBoundInfo) {
716 QualType typeBound = typeBoundInfo->getType();
717 TypeLoc qual = typeBoundInfo->getTypeLoc().findExplicitQualifierLoc();
718 if (qual || typeBound.hasQualifiers()) {
719 bool diagnosed = false;
720 SourceRange rangeToRemove;
721 if (qual) {
722 if (auto attr = qual.getAs<AttributedTypeLoc>()) {
723 rangeToRemove = attr.getLocalSourceRange();
724 if (attr.getTypePtr()->getImmediateNullability()) {
725 Diag(Loc: attr.getBeginLoc(),
726 DiagID: diag::err_objc_type_param_bound_explicit_nullability)
727 << paramName << typeBound
728 << FixItHint::CreateRemoval(RemoveRange: rangeToRemove);
729 diagnosed = true;
730 }
731 }
732 }
733
734 if (!diagnosed) {
735 Diag(Loc: qual ? qual.getBeginLoc()
736 : typeBoundInfo->getTypeLoc().getBeginLoc(),
737 DiagID: diag::err_objc_type_param_bound_qualified)
738 << paramName << typeBound
739 << typeBound.getQualifiers().getAsString()
740 << FixItHint::CreateRemoval(RemoveRange: rangeToRemove);
741 }
742
743 // If the type bound has qualifiers other than CVR, we need to strip
744 // them or we'll probably assert later when trying to apply new
745 // qualifiers.
746 Qualifiers quals = typeBound.getQualifiers();
747 quals.removeCVRQualifiers();
748 if (!quals.empty()) {
749 typeBoundInfo =
750 Context.getTrivialTypeSourceInfo(T: typeBound.getUnqualifiedType());
751 }
752 }
753 }
754 }
755
756 // If there was no explicit type bound (or we removed it due to an error),
757 // use 'id' instead.
758 if (!typeBoundInfo) {
759 colonLoc = SourceLocation();
760 typeBoundInfo = Context.getTrivialTypeSourceInfo(T: Context.getObjCIdType());
761 }
762
763 // Create the type parameter.
764 return ObjCTypeParamDecl::Create(ctx&: Context, dc: SemaRef.CurContext, variance,
765 varianceLoc, index, nameLoc: paramLoc, name: paramName,
766 colonLoc, boundInfo: typeBoundInfo);
767}
768
769ObjCTypeParamList *
770SemaObjC::actOnObjCTypeParamList(Scope *S, SourceLocation lAngleLoc,
771 ArrayRef<Decl *> typeParamsIn,
772 SourceLocation rAngleLoc) {
773 ASTContext &Context = getASTContext();
774 // We know that the array only contains Objective-C type parameters.
775 ArrayRef<ObjCTypeParamDecl *>
776 typeParams(
777 reinterpret_cast<ObjCTypeParamDecl * const *>(typeParamsIn.data()),
778 typeParamsIn.size());
779
780 // Diagnose redeclarations of type parameters.
781 // We do this now because Objective-C type parameters aren't pushed into
782 // scope until later (after the instance variable block), but we want the
783 // diagnostics to occur right after we parse the type parameter list.
784 llvm::SmallDenseMap<IdentifierInfo *, ObjCTypeParamDecl *> knownParams;
785 for (auto *typeParam : typeParams) {
786 auto known = knownParams.find(Val: typeParam->getIdentifier());
787 if (known != knownParams.end()) {
788 Diag(Loc: typeParam->getLocation(), DiagID: diag::err_objc_type_param_redecl)
789 << typeParam->getIdentifier()
790 << SourceRange(known->second->getLocation());
791
792 typeParam->setInvalidDecl();
793 } else {
794 knownParams.insert(KV: std::make_pair(x: typeParam->getIdentifier(), y&: typeParam));
795
796 // Push the type parameter into scope.
797 SemaRef.PushOnScopeChains(D: typeParam, S, /*AddToContext=*/false);
798 }
799 }
800
801 // Create the parameter list.
802 return ObjCTypeParamList::create(ctx&: Context, lAngleLoc, typeParams, rAngleLoc);
803}
804
805void SemaObjC::popObjCTypeParamList(Scope *S,
806 ObjCTypeParamList *typeParamList) {
807 for (auto *typeParam : *typeParamList) {
808 if (!typeParam->isInvalidDecl()) {
809 S->RemoveDecl(D: typeParam);
810 SemaRef.IdResolver.RemoveDecl(D: typeParam);
811 }
812 }
813}
814
815namespace {
816 /// The context in which an Objective-C type parameter list occurs, for use
817 /// in diagnostics.
818 enum class TypeParamListContext {
819 ForwardDeclaration,
820 Definition,
821 Category,
822 Extension
823 };
824} // end anonymous namespace
825
826/// Check consistency between two Objective-C type parameter lists, e.g.,
827/// between a category/extension and an \@interface or between an \@class and an
828/// \@interface.
829static bool checkTypeParamListConsistency(Sema &S,
830 ObjCTypeParamList *prevTypeParams,
831 ObjCTypeParamList *newTypeParams,
832 TypeParamListContext newContext) {
833 // If the sizes don't match, complain about that.
834 if (prevTypeParams->size() != newTypeParams->size()) {
835 SourceLocation diagLoc;
836 if (newTypeParams->size() > prevTypeParams->size()) {
837 diagLoc = newTypeParams->begin()[prevTypeParams->size()]->getLocation();
838 } else {
839 diagLoc = S.getLocForEndOfToken(Loc: newTypeParams->back()->getEndLoc());
840 }
841
842 S.Diag(Loc: diagLoc, DiagID: diag::err_objc_type_param_arity_mismatch)
843 << static_cast<unsigned>(newContext)
844 << (newTypeParams->size() > prevTypeParams->size())
845 << prevTypeParams->size()
846 << newTypeParams->size();
847
848 return true;
849 }
850
851 // Match up the type parameters.
852 for (unsigned i = 0, n = prevTypeParams->size(); i != n; ++i) {
853 ObjCTypeParamDecl *prevTypeParam = prevTypeParams->begin()[i];
854 ObjCTypeParamDecl *newTypeParam = newTypeParams->begin()[i];
855
856 // Check for consistency of the variance.
857 if (newTypeParam->getVariance() != prevTypeParam->getVariance()) {
858 if (newTypeParam->getVariance() == ObjCTypeParamVariance::Invariant &&
859 newContext != TypeParamListContext::Definition) {
860 // When the new type parameter is invariant and is not part
861 // of the definition, just propagate the variance.
862 newTypeParam->setVariance(prevTypeParam->getVariance());
863 } else if (prevTypeParam->getVariance()
864 == ObjCTypeParamVariance::Invariant &&
865 !(isa<ObjCInterfaceDecl>(Val: prevTypeParam->getDeclContext()) &&
866 cast<ObjCInterfaceDecl>(Val: prevTypeParam->getDeclContext())
867 ->getDefinition() == prevTypeParam->getDeclContext())) {
868 // When the old parameter is invariant and was not part of the
869 // definition, just ignore the difference because it doesn't
870 // matter.
871 } else {
872 {
873 // Diagnose the conflict and update the second declaration.
874 SourceLocation diagLoc = newTypeParam->getVarianceLoc();
875 if (diagLoc.isInvalid())
876 diagLoc = newTypeParam->getBeginLoc();
877
878 auto diag = S.Diag(Loc: diagLoc,
879 DiagID: diag::err_objc_type_param_variance_conflict)
880 << static_cast<unsigned>(newTypeParam->getVariance())
881 << newTypeParam->getDeclName()
882 << static_cast<unsigned>(prevTypeParam->getVariance())
883 << prevTypeParam->getDeclName();
884 switch (prevTypeParam->getVariance()) {
885 case ObjCTypeParamVariance::Invariant:
886 diag << FixItHint::CreateRemoval(RemoveRange: newTypeParam->getVarianceLoc());
887 break;
888
889 case ObjCTypeParamVariance::Covariant:
890 case ObjCTypeParamVariance::Contravariant: {
891 StringRef newVarianceStr
892 = prevTypeParam->getVariance() == ObjCTypeParamVariance::Covariant
893 ? "__covariant"
894 : "__contravariant";
895 if (newTypeParam->getVariance()
896 == ObjCTypeParamVariance::Invariant) {
897 diag << FixItHint::CreateInsertion(InsertionLoc: newTypeParam->getBeginLoc(),
898 Code: (newVarianceStr + " ").str());
899 } else {
900 diag << FixItHint::CreateReplacement(RemoveRange: newTypeParam->getVarianceLoc(),
901 Code: newVarianceStr);
902 }
903 }
904 }
905 }
906
907 S.Diag(Loc: prevTypeParam->getLocation(), DiagID: diag::note_objc_type_param_here)
908 << prevTypeParam->getDeclName();
909
910 // Override the variance.
911 newTypeParam->setVariance(prevTypeParam->getVariance());
912 }
913 }
914
915 // If the bound types match, there's nothing to do.
916 if (S.Context.hasSameType(T1: prevTypeParam->getUnderlyingType(),
917 T2: newTypeParam->getUnderlyingType()))
918 continue;
919
920 // If the new type parameter's bound was explicit, complain about it being
921 // different from the original.
922 if (newTypeParam->hasExplicitBound()) {
923 SourceRange newBoundRange = newTypeParam->getTypeSourceInfo()
924 ->getTypeLoc().getSourceRange();
925 S.Diag(Loc: newBoundRange.getBegin(), DiagID: diag::err_objc_type_param_bound_conflict)
926 << newTypeParam->getUnderlyingType()
927 << newTypeParam->getDeclName()
928 << prevTypeParam->hasExplicitBound()
929 << prevTypeParam->getUnderlyingType()
930 << (newTypeParam->getDeclName() == prevTypeParam->getDeclName())
931 << prevTypeParam->getDeclName()
932 << FixItHint::CreateReplacement(
933 RemoveRange: newBoundRange,
934 Code: prevTypeParam->getUnderlyingType().getAsString(
935 Policy: S.Context.getPrintingPolicy()));
936
937 S.Diag(Loc: prevTypeParam->getLocation(), DiagID: diag::note_objc_type_param_here)
938 << prevTypeParam->getDeclName();
939
940 // Override the new type parameter's bound type with the previous type,
941 // so that it's consistent.
942 S.Context.adjustObjCTypeParamBoundType(Orig: prevTypeParam, New: newTypeParam);
943 continue;
944 }
945
946 // The new type parameter got the implicit bound of 'id'. That's okay for
947 // categories and extensions (overwrite it later), but not for forward
948 // declarations and @interfaces, because those must be standalone.
949 if (newContext == TypeParamListContext::ForwardDeclaration ||
950 newContext == TypeParamListContext::Definition) {
951 // Diagnose this problem for forward declarations and definitions.
952 SourceLocation insertionLoc
953 = S.getLocForEndOfToken(Loc: newTypeParam->getLocation());
954 std::string newCode
955 = " : " + prevTypeParam->getUnderlyingType().getAsString(
956 Policy: S.Context.getPrintingPolicy());
957 S.Diag(Loc: newTypeParam->getLocation(),
958 DiagID: diag::err_objc_type_param_bound_missing)
959 << prevTypeParam->getUnderlyingType()
960 << newTypeParam->getDeclName()
961 << (newContext == TypeParamListContext::ForwardDeclaration)
962 << FixItHint::CreateInsertion(InsertionLoc: insertionLoc, Code: newCode);
963
964 S.Diag(Loc: prevTypeParam->getLocation(), DiagID: diag::note_objc_type_param_here)
965 << prevTypeParam->getDeclName();
966 }
967
968 // Update the new type parameter's bound to match the previous one.
969 S.Context.adjustObjCTypeParamBoundType(Orig: prevTypeParam, New: newTypeParam);
970 }
971
972 return false;
973}
974
975ObjCInterfaceDecl *SemaObjC::ActOnStartClassInterface(
976 Scope *S, SourceLocation AtInterfaceLoc, IdentifierInfo *ClassName,
977 SourceLocation ClassLoc, ObjCTypeParamList *typeParamList,
978 IdentifierInfo *SuperName, SourceLocation SuperLoc,
979 ArrayRef<ParsedType> SuperTypeArgs, SourceRange SuperTypeArgsRange,
980 Decl *const *ProtoRefs, unsigned NumProtoRefs,
981 const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc,
982 const ParsedAttributesView &AttrList, SkipBodyInfo *SkipBody) {
983 assert(ClassName && "Missing class identifier");
984
985 ASTContext &Context = getASTContext();
986 // Check for another declaration kind with the same name.
987 NamedDecl *PrevDecl = SemaRef.LookupSingleName(
988 S: SemaRef.TUScope, Name: ClassName, Loc: ClassLoc, NameKind: Sema::LookupOrdinaryName,
989 Redecl: SemaRef.forRedeclarationInCurContext());
990
991 if (PrevDecl && !isa<ObjCInterfaceDecl>(Val: PrevDecl)) {
992 Diag(Loc: ClassLoc, DiagID: diag::err_redefinition_different_kind) << ClassName;
993 Diag(Loc: PrevDecl->getLocation(), DiagID: diag::note_previous_definition);
994 }
995
996 // Create a declaration to describe this @interface.
997 ObjCInterfaceDecl* PrevIDecl = dyn_cast_or_null<ObjCInterfaceDecl>(Val: PrevDecl);
998
999 if (PrevIDecl && PrevIDecl->getIdentifier() != ClassName) {
1000 // A previous decl with a different name is because of
1001 // @compatibility_alias, for example:
1002 // \code
1003 // @class NewImage;
1004 // @compatibility_alias OldImage NewImage;
1005 // \endcode
1006 // A lookup for 'OldImage' will return the 'NewImage' decl.
1007 //
1008 // In such a case use the real declaration name, instead of the alias one,
1009 // otherwise we will break IdentifierResolver and redecls-chain invariants.
1010 // FIXME: If necessary, add a bit to indicate that this ObjCInterfaceDecl
1011 // has been aliased.
1012 ClassName = PrevIDecl->getIdentifier();
1013 }
1014
1015 // If there was a forward declaration with type parameters, check
1016 // for consistency.
1017 if (PrevIDecl) {
1018 if (ObjCTypeParamList *prevTypeParamList = PrevIDecl->getTypeParamList()) {
1019 if (typeParamList) {
1020 // Both have type parameter lists; check for consistency.
1021 if (checkTypeParamListConsistency(S&: SemaRef, prevTypeParams: prevTypeParamList,
1022 newTypeParams: typeParamList,
1023 newContext: TypeParamListContext::Definition)) {
1024 typeParamList = nullptr;
1025 }
1026 } else {
1027 Diag(Loc: ClassLoc, DiagID: diag::err_objc_parameterized_forward_class_first)
1028 << ClassName;
1029 Diag(Loc: prevTypeParamList->getLAngleLoc(), DiagID: diag::note_previous_decl)
1030 << ClassName;
1031
1032 // Clone the type parameter list.
1033 SmallVector<ObjCTypeParamDecl *, 4> clonedTypeParams;
1034 for (auto *typeParam : *prevTypeParamList) {
1035 clonedTypeParams.push_back(Elt: ObjCTypeParamDecl::Create(
1036 ctx&: Context, dc: SemaRef.CurContext, variance: typeParam->getVariance(),
1037 varianceLoc: SourceLocation(), index: typeParam->getIndex(), nameLoc: SourceLocation(),
1038 name: typeParam->getIdentifier(), colonLoc: SourceLocation(),
1039 boundInfo: Context.getTrivialTypeSourceInfo(
1040 T: typeParam->getUnderlyingType())));
1041 }
1042
1043 typeParamList = ObjCTypeParamList::create(ctx&: Context,
1044 lAngleLoc: SourceLocation(),
1045 typeParams: clonedTypeParams,
1046 rAngleLoc: SourceLocation());
1047 }
1048 }
1049 }
1050
1051 ObjCInterfaceDecl *IDecl =
1052 ObjCInterfaceDecl::Create(C: Context, DC: SemaRef.CurContext, atLoc: AtInterfaceLoc,
1053 Id: ClassName, typeParamList, PrevDecl: PrevIDecl, ClassLoc);
1054 if (PrevIDecl) {
1055 // Class already seen. Was it a definition?
1056 if (ObjCInterfaceDecl *Def = PrevIDecl->getDefinition()) {
1057 if (SkipBody && !SemaRef.hasVisibleDefinition(D: Def)) {
1058 SkipBody->CheckSameAsPrevious = true;
1059 SkipBody->New = IDecl;
1060 SkipBody->Previous = Def;
1061 } else {
1062 Diag(Loc: AtInterfaceLoc, DiagID: diag::err_duplicate_class_def)
1063 << PrevIDecl->getDeclName();
1064 Diag(Loc: Def->getLocation(), DiagID: diag::note_previous_definition);
1065 IDecl->setInvalidDecl();
1066 }
1067 }
1068 }
1069
1070 SemaRef.ProcessDeclAttributeList(S: SemaRef.TUScope, D: IDecl, AttrList);
1071 SemaRef.AddPragmaAttributes(S: SemaRef.TUScope, D: IDecl);
1072 SemaRef.ProcessAPINotes(D: IDecl);
1073
1074 // Merge attributes from previous declarations.
1075 if (PrevIDecl)
1076 SemaRef.mergeDeclAttributes(New: IDecl, Old: PrevIDecl);
1077
1078 SemaRef.PushOnScopeChains(D: IDecl, S: SemaRef.TUScope);
1079
1080 // Start the definition of this class. If we're in a redefinition case, there
1081 // may already be a definition, so we'll end up adding to it.
1082 if (SkipBody && SkipBody->CheckSameAsPrevious)
1083 IDecl->startDuplicateDefinitionForComparison();
1084 else if (!IDecl->hasDefinition())
1085 IDecl->startDefinition();
1086
1087 if (SuperName) {
1088 // Diagnose availability in the context of the @interface.
1089 Sema::ContextRAII SavedContext(SemaRef, IDecl);
1090
1091 ActOnSuperClassOfClassInterface(S, AtInterfaceLoc, IDecl,
1092 ClassName, ClassLoc,
1093 SuperName, SuperLoc, SuperTypeArgs,
1094 SuperTypeArgsRange);
1095 } else { // we have a root class.
1096 IDecl->setEndOfDefinitionLoc(ClassLoc);
1097 }
1098
1099 // Check then save referenced protocols.
1100 if (NumProtoRefs) {
1101 diagnoseUseOfProtocols(TheSema&: SemaRef, CD: IDecl, ProtoRefs: (ObjCProtocolDecl *const *)ProtoRefs,
1102 NumProtoRefs, ProtoLocs);
1103 IDecl->setProtocolList(List: (ObjCProtocolDecl*const*)ProtoRefs, Num: NumProtoRefs,
1104 Locs: ProtoLocs, C&: Context);
1105 IDecl->setEndOfDefinitionLoc(EndProtoLoc);
1106 }
1107
1108 CheckObjCDeclScope(D: IDecl);
1109 ActOnObjCContainerStartDefinition(IDecl);
1110 return IDecl;
1111}
1112
1113/// ActOnTypedefedProtocols - this action finds protocol list as part of the
1114/// typedef'ed use for a qualified super class and adds them to the list
1115/// of the protocols.
1116void SemaObjC::ActOnTypedefedProtocols(
1117 SmallVectorImpl<Decl *> &ProtocolRefs,
1118 SmallVectorImpl<SourceLocation> &ProtocolLocs, IdentifierInfo *SuperName,
1119 SourceLocation SuperLoc) {
1120 if (!SuperName)
1121 return;
1122 NamedDecl *IDecl = SemaRef.LookupSingleName(
1123 S: SemaRef.TUScope, Name: SuperName, Loc: SuperLoc, NameKind: Sema::LookupOrdinaryName);
1124 if (!IDecl)
1125 return;
1126
1127 if (const TypedefNameDecl *TDecl = dyn_cast_or_null<TypedefNameDecl>(Val: IDecl)) {
1128 QualType T = TDecl->getUnderlyingType();
1129 if (T->isObjCObjectType())
1130 if (const ObjCObjectType *OPT = T->getAs<ObjCObjectType>()) {
1131 ProtocolRefs.append(in_start: OPT->qual_begin(), in_end: OPT->qual_end());
1132 // FIXME: Consider whether this should be an invalid loc since the loc
1133 // is not actually pointing to a protocol name reference but to the
1134 // typedef reference. Note that the base class name loc is also pointing
1135 // at the typedef.
1136 ProtocolLocs.append(NumInputs: OPT->getNumProtocols(), Elt: SuperLoc);
1137 }
1138 }
1139}
1140
1141/// ActOnCompatibilityAlias - this action is called after complete parsing of
1142/// a \@compatibility_alias declaration. It sets up the alias relationships.
1143Decl *SemaObjC::ActOnCompatibilityAlias(SourceLocation AtLoc,
1144 IdentifierInfo *AliasName,
1145 SourceLocation AliasLocation,
1146 IdentifierInfo *ClassName,
1147 SourceLocation ClassLocation) {
1148 ASTContext &Context = getASTContext();
1149 // Look for previous declaration of alias name
1150 NamedDecl *ADecl = SemaRef.LookupSingleName(
1151 S: SemaRef.TUScope, Name: AliasName, Loc: AliasLocation, NameKind: Sema::LookupOrdinaryName,
1152 Redecl: SemaRef.forRedeclarationInCurContext());
1153 if (ADecl) {
1154 Diag(Loc: AliasLocation, DiagID: diag::err_conflicting_aliasing_type) << AliasName;
1155 Diag(Loc: ADecl->getLocation(), DiagID: diag::note_previous_declaration);
1156 return nullptr;
1157 }
1158 // Check for class declaration
1159 NamedDecl *CDeclU = SemaRef.LookupSingleName(
1160 S: SemaRef.TUScope, Name: ClassName, Loc: ClassLocation, NameKind: Sema::LookupOrdinaryName,
1161 Redecl: SemaRef.forRedeclarationInCurContext());
1162 if (const TypedefNameDecl *TDecl =
1163 dyn_cast_or_null<TypedefNameDecl>(Val: CDeclU)) {
1164 QualType T = TDecl->getUnderlyingType();
1165 if (T->isObjCObjectType()) {
1166 if (NamedDecl *IDecl = T->castAs<ObjCObjectType>()->getInterface()) {
1167 ClassName = IDecl->getIdentifier();
1168 CDeclU = SemaRef.LookupSingleName(
1169 S: SemaRef.TUScope, Name: ClassName, Loc: ClassLocation, NameKind: Sema::LookupOrdinaryName,
1170 Redecl: SemaRef.forRedeclarationInCurContext());
1171 }
1172 }
1173 }
1174 ObjCInterfaceDecl *CDecl = dyn_cast_or_null<ObjCInterfaceDecl>(Val: CDeclU);
1175 if (!CDecl) {
1176 Diag(Loc: ClassLocation, DiagID: diag::warn_undef_interface) << ClassName;
1177 if (CDeclU)
1178 Diag(Loc: CDeclU->getLocation(), DiagID: diag::note_previous_declaration);
1179 return nullptr;
1180 }
1181
1182 // Everything checked out, instantiate a new alias declaration AST.
1183 ObjCCompatibleAliasDecl *AliasDecl = ObjCCompatibleAliasDecl::Create(
1184 C&: Context, DC: SemaRef.CurContext, L: AtLoc, Id: AliasName, aliasedClass: CDecl);
1185
1186 if (!CheckObjCDeclScope(D: AliasDecl))
1187 SemaRef.PushOnScopeChains(D: AliasDecl, S: SemaRef.TUScope);
1188
1189 return AliasDecl;
1190}
1191
1192bool SemaObjC::CheckForwardProtocolDeclarationForCircularDependency(
1193 IdentifierInfo *PName, SourceLocation &Ploc, SourceLocation PrevLoc,
1194 const ObjCList<ObjCProtocolDecl> &PList) {
1195
1196 bool res = false;
1197 for (ObjCList<ObjCProtocolDecl>::iterator I = PList.begin(),
1198 E = PList.end(); I != E; ++I) {
1199 if (ObjCProtocolDecl *PDecl = LookupProtocol(II: (*I)->getIdentifier(), IdLoc: Ploc)) {
1200 if (PDecl->getIdentifier() == PName) {
1201 Diag(Loc: Ploc, DiagID: diag::err_protocol_has_circular_dependency);
1202 Diag(Loc: PrevLoc, DiagID: diag::note_previous_definition);
1203 res = true;
1204 }
1205
1206 if (!PDecl->hasDefinition())
1207 continue;
1208
1209 if (CheckForwardProtocolDeclarationForCircularDependency(PName, Ploc,
1210 PrevLoc: PDecl->getLocation(), PList: PDecl->getReferencedProtocols()))
1211 res = true;
1212 }
1213 }
1214 return res;
1215}
1216
1217ObjCProtocolDecl *SemaObjC::ActOnStartProtocolInterface(
1218 SourceLocation AtProtoInterfaceLoc, IdentifierInfo *ProtocolName,
1219 SourceLocation ProtocolLoc, Decl *const *ProtoRefs, unsigned NumProtoRefs,
1220 const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc,
1221 const ParsedAttributesView &AttrList, SkipBodyInfo *SkipBody) {
1222 ASTContext &Context = getASTContext();
1223 bool err = false;
1224 // FIXME: Deal with AttrList.
1225 assert(ProtocolName && "Missing protocol identifier");
1226 ObjCProtocolDecl *PrevDecl = LookupProtocol(
1227 II: ProtocolName, IdLoc: ProtocolLoc, Redecl: SemaRef.forRedeclarationInCurContext());
1228 ObjCProtocolDecl *PDecl = nullptr;
1229 if (ObjCProtocolDecl *Def = PrevDecl? PrevDecl->getDefinition() : nullptr) {
1230 // Create a new protocol that is completely distinct from previous
1231 // declarations, and do not make this protocol available for name lookup.
1232 // That way, we'll end up completely ignoring the duplicate.
1233 // FIXME: Can we turn this into an error?
1234 PDecl = ObjCProtocolDecl::Create(C&: Context, DC: SemaRef.CurContext, Id: ProtocolName,
1235 nameLoc: ProtocolLoc, atStartLoc: AtProtoInterfaceLoc,
1236 /*PrevDecl=*/Def);
1237
1238 if (SkipBody && !SemaRef.hasVisibleDefinition(D: Def)) {
1239 SkipBody->CheckSameAsPrevious = true;
1240 SkipBody->New = PDecl;
1241 SkipBody->Previous = Def;
1242 } else {
1243 // If we already have a definition, complain.
1244 Diag(Loc: ProtocolLoc, DiagID: diag::warn_duplicate_protocol_def) << ProtocolName;
1245 Diag(Loc: Def->getLocation(), DiagID: diag::note_previous_definition);
1246 }
1247
1248 // If we are using modules, add the decl to the context in order to
1249 // serialize something meaningful.
1250 if (getLangOpts().Modules)
1251 SemaRef.PushOnScopeChains(D: PDecl, S: SemaRef.TUScope);
1252 PDecl->startDuplicateDefinitionForComparison();
1253 } else {
1254 if (PrevDecl) {
1255 // Check for circular dependencies among protocol declarations. This can
1256 // only happen if this protocol was forward-declared.
1257 ObjCList<ObjCProtocolDecl> PList;
1258 PList.set(InList: (ObjCProtocolDecl *const*)ProtoRefs, Elts: NumProtoRefs, Ctx&: Context);
1259 err = CheckForwardProtocolDeclarationForCircularDependency(
1260 PName: ProtocolName, Ploc&: ProtocolLoc, PrevLoc: PrevDecl->getLocation(), PList);
1261 }
1262
1263 // Create the new declaration.
1264 PDecl = ObjCProtocolDecl::Create(C&: Context, DC: SemaRef.CurContext, Id: ProtocolName,
1265 nameLoc: ProtocolLoc, atStartLoc: AtProtoInterfaceLoc,
1266 /*PrevDecl=*/PrevDecl);
1267
1268 SemaRef.PushOnScopeChains(D: PDecl, S: SemaRef.TUScope);
1269 PDecl->startDefinition();
1270 }
1271
1272 SemaRef.ProcessDeclAttributeList(S: SemaRef.TUScope, D: PDecl, AttrList);
1273 SemaRef.AddPragmaAttributes(S: SemaRef.TUScope, D: PDecl);
1274 SemaRef.ProcessAPINotes(D: PDecl);
1275
1276 // Merge attributes from previous declarations.
1277 if (PrevDecl)
1278 SemaRef.mergeDeclAttributes(New: PDecl, Old: PrevDecl);
1279
1280 if (!err && NumProtoRefs ) {
1281 /// Check then save referenced protocols.
1282 diagnoseUseOfProtocols(TheSema&: SemaRef, CD: PDecl, ProtoRefs: (ObjCProtocolDecl *const *)ProtoRefs,
1283 NumProtoRefs, ProtoLocs);
1284 PDecl->setProtocolList(List: (ObjCProtocolDecl*const*)ProtoRefs, Num: NumProtoRefs,
1285 Locs: ProtoLocs, C&: Context);
1286 }
1287
1288 CheckObjCDeclScope(D: PDecl);
1289 ActOnObjCContainerStartDefinition(IDecl: PDecl);
1290 return PDecl;
1291}
1292
1293static bool NestedProtocolHasNoDefinition(ObjCProtocolDecl *PDecl,
1294 ObjCProtocolDecl *&UndefinedProtocol) {
1295 if (!PDecl->hasDefinition() ||
1296 !PDecl->getDefinition()->isUnconditionallyVisible()) {
1297 UndefinedProtocol = PDecl;
1298 return true;
1299 }
1300
1301 for (auto *PI : PDecl->protocols())
1302 if (NestedProtocolHasNoDefinition(PDecl: PI, UndefinedProtocol)) {
1303 UndefinedProtocol = PI;
1304 return true;
1305 }
1306 return false;
1307}
1308
1309/// FindProtocolDeclaration - This routine looks up protocols and
1310/// issues an error if they are not declared. It returns list of
1311/// protocol declarations in its 'Protocols' argument.
1312void SemaObjC::FindProtocolDeclaration(bool WarnOnDeclarations,
1313 bool ForObjCContainer,
1314 ArrayRef<IdentifierLoc> ProtocolId,
1315 SmallVectorImpl<Decl *> &Protocols) {
1316 for (const IdentifierLoc &Pair : ProtocolId) {
1317 ObjCProtocolDecl *PDecl =
1318 LookupProtocol(II: Pair.getIdentifierInfo(), IdLoc: Pair.getLoc());
1319 if (!PDecl) {
1320 DeclFilterCCC<ObjCProtocolDecl> CCC{};
1321 TypoCorrection Corrected = SemaRef.CorrectTypo(
1322 Typo: DeclarationNameInfo(Pair.getIdentifierInfo(), Pair.getLoc()),
1323 LookupKind: Sema::LookupObjCProtocolName, S: SemaRef.TUScope, SS: nullptr, CCC,
1324 Mode: CorrectTypoKind::ErrorRecovery);
1325 if ((PDecl = Corrected.getCorrectionDeclAs<ObjCProtocolDecl>()))
1326 SemaRef.diagnoseTypo(Correction: Corrected,
1327 TypoDiag: PDiag(DiagID: diag::err_undeclared_protocol_suggest)
1328 << Pair.getIdentifierInfo());
1329 }
1330
1331 if (!PDecl) {
1332 Diag(Loc: Pair.getLoc(), DiagID: diag::err_undeclared_protocol)
1333 << Pair.getIdentifierInfo();
1334 continue;
1335 }
1336 // If this is a forward protocol declaration, get its definition.
1337 if (!PDecl->isThisDeclarationADefinition() && PDecl->getDefinition())
1338 PDecl = PDecl->getDefinition();
1339
1340 // For an objc container, delay protocol reference checking until after we
1341 // can set the objc decl as the availability context, otherwise check now.
1342 if (!ForObjCContainer) {
1343 (void)SemaRef.DiagnoseUseOfDecl(D: PDecl, Locs: Pair.getLoc());
1344 }
1345
1346 // If this is a forward declaration and we are supposed to warn in this
1347 // case, do it.
1348 // FIXME: Recover nicely in the hidden case.
1349 ObjCProtocolDecl *UndefinedProtocol;
1350
1351 if (WarnOnDeclarations &&
1352 NestedProtocolHasNoDefinition(PDecl, UndefinedProtocol)) {
1353 Diag(Loc: Pair.getLoc(), DiagID: diag::warn_undef_protocolref)
1354 << Pair.getIdentifierInfo();
1355 Diag(Loc: UndefinedProtocol->getLocation(), DiagID: diag::note_protocol_decl_undefined)
1356 << UndefinedProtocol;
1357 }
1358 Protocols.push_back(Elt: PDecl);
1359 }
1360}
1361
1362namespace {
1363// Callback to only accept typo corrections that are either
1364// Objective-C protocols or valid Objective-C type arguments.
1365class ObjCTypeArgOrProtocolValidatorCCC final
1366 : public CorrectionCandidateCallback {
1367 ASTContext &Context;
1368 Sema::LookupNameKind LookupKind;
1369 public:
1370 ObjCTypeArgOrProtocolValidatorCCC(ASTContext &context,
1371 Sema::LookupNameKind lookupKind)
1372 : Context(context), LookupKind(lookupKind) { }
1373
1374 bool ValidateCandidate(const TypoCorrection &candidate) override {
1375 // If we're allowed to find protocols and we have a protocol, accept it.
1376 if (LookupKind != Sema::LookupOrdinaryName) {
1377 if (candidate.getCorrectionDeclAs<ObjCProtocolDecl>())
1378 return true;
1379 }
1380
1381 // If we're allowed to find type names and we have one, accept it.
1382 if (LookupKind != Sema::LookupObjCProtocolName) {
1383 // If we have a type declaration, we might accept this result.
1384 if (auto typeDecl = candidate.getCorrectionDeclAs<TypeDecl>()) {
1385 // If we found a tag declaration outside of C++, skip it. This
1386 // can happy because we look for any name when there is no
1387 // bias to protocol or type names.
1388 if (isa<RecordDecl>(Val: typeDecl) && !Context.getLangOpts().CPlusPlus)
1389 return false;
1390
1391 // Make sure the type is something we would accept as a type
1392 // argument.
1393 if (CanQualType type = Context.getCanonicalTypeDeclType(TD: typeDecl);
1394 type->isDependentType() ||
1395 isa<ObjCObjectPointerType, BlockPointerType, ObjCObjectType>(Val: type))
1396 return true;
1397
1398 return false;
1399 }
1400
1401 // If we have an Objective-C class type, accept it; there will
1402 // be another fix to add the '*'.
1403 if (candidate.getCorrectionDeclAs<ObjCInterfaceDecl>())
1404 return true;
1405
1406 return false;
1407 }
1408
1409 return false;
1410 }
1411
1412 std::unique_ptr<CorrectionCandidateCallback> clone() override {
1413 return std::make_unique<ObjCTypeArgOrProtocolValidatorCCC>(args&: *this);
1414 }
1415};
1416} // end anonymous namespace
1417
1418void SemaObjC::DiagnoseTypeArgsAndProtocols(IdentifierInfo *ProtocolId,
1419 SourceLocation ProtocolLoc,
1420 IdentifierInfo *TypeArgId,
1421 SourceLocation TypeArgLoc,
1422 bool SelectProtocolFirst) {
1423 Diag(Loc: TypeArgLoc, DiagID: diag::err_objc_type_args_and_protocols)
1424 << SelectProtocolFirst << TypeArgId << ProtocolId
1425 << SourceRange(ProtocolLoc);
1426}
1427
1428void SemaObjC::actOnObjCTypeArgsOrProtocolQualifiers(
1429 Scope *S, ParsedType baseType, SourceLocation lAngleLoc,
1430 ArrayRef<IdentifierInfo *> identifiers,
1431 ArrayRef<SourceLocation> identifierLocs, SourceLocation rAngleLoc,
1432 SourceLocation &typeArgsLAngleLoc, SmallVectorImpl<ParsedType> &typeArgs,
1433 SourceLocation &typeArgsRAngleLoc, SourceLocation &protocolLAngleLoc,
1434 SmallVectorImpl<Decl *> &protocols, SourceLocation &protocolRAngleLoc,
1435 bool warnOnIncompleteProtocols) {
1436 ASTContext &Context = getASTContext();
1437 // Local function that updates the declaration specifiers with
1438 // protocol information.
1439 unsigned numProtocolsResolved = 0;
1440 auto resolvedAsProtocols = [&] {
1441 assert(numProtocolsResolved == identifiers.size() && "Unresolved protocols");
1442
1443 // Determine whether the base type is a parameterized class, in
1444 // which case we want to warn about typos such as
1445 // "NSArray<NSObject>" (that should be NSArray<NSObject *>).
1446 ObjCInterfaceDecl *baseClass = nullptr;
1447 QualType base = SemaRef.GetTypeFromParser(Ty: baseType, TInfo: nullptr);
1448 bool allAreTypeNames = false;
1449 SourceLocation firstClassNameLoc;
1450 if (!base.isNull()) {
1451 if (const auto *objcObjectType = base->getAs<ObjCObjectType>()) {
1452 baseClass = objcObjectType->getInterface();
1453 if (baseClass) {
1454 if (auto typeParams = baseClass->getTypeParamList()) {
1455 if (typeParams->size() == numProtocolsResolved) {
1456 // Note that we should be looking for type names, too.
1457 allAreTypeNames = true;
1458 }
1459 }
1460 }
1461 }
1462 }
1463
1464 for (unsigned i = 0, n = protocols.size(); i != n; ++i) {
1465 ObjCProtocolDecl *&proto
1466 = reinterpret_cast<ObjCProtocolDecl *&>(protocols[i]);
1467 // For an objc container, delay protocol reference checking until after we
1468 // can set the objc decl as the availability context, otherwise check now.
1469 if (!warnOnIncompleteProtocols) {
1470 (void)SemaRef.DiagnoseUseOfDecl(D: proto, Locs: identifierLocs[i]);
1471 }
1472
1473 // If this is a forward protocol declaration, get its definition.
1474 if (!proto->isThisDeclarationADefinition() && proto->getDefinition())
1475 proto = proto->getDefinition();
1476
1477 // If this is a forward declaration and we are supposed to warn in this
1478 // case, do it.
1479 // FIXME: Recover nicely in the hidden case.
1480 ObjCProtocolDecl *forwardDecl = nullptr;
1481 if (warnOnIncompleteProtocols &&
1482 NestedProtocolHasNoDefinition(PDecl: proto, UndefinedProtocol&: forwardDecl)) {
1483 Diag(Loc: identifierLocs[i], DiagID: diag::warn_undef_protocolref)
1484 << proto->getDeclName();
1485 Diag(Loc: forwardDecl->getLocation(), DiagID: diag::note_protocol_decl_undefined)
1486 << forwardDecl;
1487 }
1488
1489 // If everything this far has been a type name (and we care
1490 // about such things), check whether this name refers to a type
1491 // as well.
1492 if (allAreTypeNames) {
1493 if (auto *decl =
1494 SemaRef.LookupSingleName(S, Name: identifiers[i], Loc: identifierLocs[i],
1495 NameKind: Sema::LookupOrdinaryName)) {
1496 if (isa<ObjCInterfaceDecl>(Val: decl)) {
1497 if (firstClassNameLoc.isInvalid())
1498 firstClassNameLoc = identifierLocs[i];
1499 } else if (!isa<TypeDecl>(Val: decl)) {
1500 // Not a type.
1501 allAreTypeNames = false;
1502 }
1503 } else {
1504 allAreTypeNames = false;
1505 }
1506 }
1507 }
1508
1509 // All of the protocols listed also have type names, and at least
1510 // one is an Objective-C class name. Check whether all of the
1511 // protocol conformances are declared by the base class itself, in
1512 // which case we warn.
1513 if (allAreTypeNames && firstClassNameLoc.isValid()) {
1514 llvm::SmallPtrSet<ObjCProtocolDecl*, 8> knownProtocols;
1515 Context.CollectInheritedProtocols(CDecl: baseClass, Protocols&: knownProtocols);
1516 bool allProtocolsDeclared = true;
1517 for (auto *proto : protocols) {
1518 if (knownProtocols.count(Ptr: static_cast<ObjCProtocolDecl *>(proto)) == 0) {
1519 allProtocolsDeclared = false;
1520 break;
1521 }
1522 }
1523
1524 if (allProtocolsDeclared) {
1525 Diag(Loc: firstClassNameLoc, DiagID: diag::warn_objc_redundant_qualified_class_type)
1526 << baseClass->getDeclName() << SourceRange(lAngleLoc, rAngleLoc)
1527 << FixItHint::CreateInsertion(
1528 InsertionLoc: SemaRef.getLocForEndOfToken(Loc: firstClassNameLoc), Code: " *");
1529 }
1530 }
1531
1532 protocolLAngleLoc = lAngleLoc;
1533 protocolRAngleLoc = rAngleLoc;
1534 assert(protocols.size() == identifierLocs.size());
1535 };
1536
1537 // Attempt to resolve all of the identifiers as protocols.
1538 for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
1539 ObjCProtocolDecl *proto = LookupProtocol(II: identifiers[i], IdLoc: identifierLocs[i]);
1540 protocols.push_back(Elt: proto);
1541 if (proto)
1542 ++numProtocolsResolved;
1543 }
1544
1545 // If all of the names were protocols, these were protocol qualifiers.
1546 if (numProtocolsResolved == identifiers.size())
1547 return resolvedAsProtocols();
1548
1549 // Attempt to resolve all of the identifiers as type names or
1550 // Objective-C class names. The latter is technically ill-formed,
1551 // but is probably something like \c NSArray<NSView *> missing the
1552 // \c*.
1553 typedef llvm::PointerUnion<TypeDecl *, ObjCInterfaceDecl *> TypeOrClassDecl;
1554 SmallVector<TypeOrClassDecl, 4> typeDecls;
1555 unsigned numTypeDeclsResolved = 0;
1556 for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
1557 NamedDecl *decl = SemaRef.LookupSingleName(
1558 S, Name: identifiers[i], Loc: identifierLocs[i], NameKind: Sema::LookupOrdinaryName);
1559 if (!decl) {
1560 typeDecls.push_back(Elt: TypeOrClassDecl());
1561 continue;
1562 }
1563
1564 if (auto typeDecl = dyn_cast<TypeDecl>(Val: decl)) {
1565 typeDecls.push_back(Elt: typeDecl);
1566 ++numTypeDeclsResolved;
1567 continue;
1568 }
1569
1570 if (auto objcClass = dyn_cast<ObjCInterfaceDecl>(Val: decl)) {
1571 typeDecls.push_back(Elt: objcClass);
1572 ++numTypeDeclsResolved;
1573 continue;
1574 }
1575
1576 typeDecls.push_back(Elt: TypeOrClassDecl());
1577 }
1578
1579 AttributeFactory attrFactory;
1580
1581 // Local function that forms a reference to the given type or
1582 // Objective-C class declaration.
1583 auto resolveTypeReference = [&](TypeOrClassDecl typeDecl, SourceLocation loc)
1584 -> TypeResult {
1585 // Form declaration specifiers. They simply refer to the type.
1586 DeclSpec DS(attrFactory);
1587 const char* prevSpec; // unused
1588 unsigned diagID; // unused
1589 QualType type;
1590 if (auto *actualTypeDecl = dyn_cast<TypeDecl *>(Val&: typeDecl))
1591 type =
1592 Context.getTypeDeclType(Keyword: ElaboratedTypeKeyword::None,
1593 /*Qualifier=*/std::nullopt, Decl: actualTypeDecl);
1594 else
1595 type = Context.getObjCInterfaceType(Decl: cast<ObjCInterfaceDecl *>(Val&: typeDecl));
1596 TypeSourceInfo *parsedTSInfo = Context.getTrivialTypeSourceInfo(T: type, Loc: loc);
1597 ParsedType parsedType = SemaRef.CreateParsedType(T: type, TInfo: parsedTSInfo);
1598 DS.SetTypeSpecType(T: DeclSpec::TST_typename, Loc: loc, PrevSpec&: prevSpec, DiagID&: diagID,
1599 Rep: parsedType, Policy: Context.getPrintingPolicy());
1600 // Use the identifier location for the type source range.
1601 DS.SetRangeStart(loc);
1602 DS.SetRangeEnd(loc);
1603
1604 // Form the declarator.
1605 Declarator D(DS, ParsedAttributesView::none(), DeclaratorContext::TypeName);
1606
1607 // If we have a typedef of an Objective-C class type that is missing a '*',
1608 // add the '*'.
1609 if (type->getAs<ObjCInterfaceType>()) {
1610 SourceLocation starLoc = SemaRef.getLocForEndOfToken(Loc: loc);
1611 D.AddTypeInfo(TI: DeclaratorChunk::getPointer(/*TypeQuals=*/0, Loc: starLoc,
1612 ConstQualLoc: SourceLocation(),
1613 VolatileQualLoc: SourceLocation(),
1614 RestrictQualLoc: SourceLocation(),
1615 AtomicQualLoc: SourceLocation(),
1616 UnalignedQualLoc: SourceLocation()),
1617 EndLoc: starLoc);
1618
1619 // Diagnose the missing '*'.
1620 Diag(Loc: loc, DiagID: diag::err_objc_type_arg_missing_star)
1621 << type
1622 << FixItHint::CreateInsertion(InsertionLoc: starLoc, Code: " *");
1623 }
1624
1625 // Convert this to a type.
1626 return SemaRef.ActOnTypeName(D);
1627 };
1628
1629 // Local function that updates the declaration specifiers with
1630 // type argument information.
1631 auto resolvedAsTypeDecls = [&] {
1632 // We did not resolve these as protocols.
1633 protocols.clear();
1634
1635 assert(numTypeDeclsResolved == identifiers.size() && "Unresolved type decl");
1636 // Map type declarations to type arguments.
1637 for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
1638 // Map type reference to a type.
1639 TypeResult type = resolveTypeReference(typeDecls[i], identifierLocs[i]);
1640 if (!type.isUsable()) {
1641 typeArgs.clear();
1642 return;
1643 }
1644
1645 typeArgs.push_back(Elt: type.get());
1646 }
1647
1648 typeArgsLAngleLoc = lAngleLoc;
1649 typeArgsRAngleLoc = rAngleLoc;
1650 };
1651
1652 // If all of the identifiers can be resolved as type names or
1653 // Objective-C class names, we have type arguments.
1654 if (numTypeDeclsResolved == identifiers.size())
1655 return resolvedAsTypeDecls();
1656
1657 // Error recovery: some names weren't found, or we have a mix of
1658 // type and protocol names. Go resolve all of the unresolved names
1659 // and complain if we can't find a consistent answer.
1660 Sema::LookupNameKind lookupKind = Sema::LookupAnyName;
1661 for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
1662 // If we already have a protocol or type. Check whether it is the
1663 // right thing.
1664 if (protocols[i] || typeDecls[i]) {
1665 // If we haven't figured out whether we want types or protocols
1666 // yet, try to figure it out from this name.
1667 if (lookupKind == Sema::LookupAnyName) {
1668 // If this name refers to both a protocol and a type (e.g., \c
1669 // NSObject), don't conclude anything yet.
1670 if (protocols[i] && typeDecls[i])
1671 continue;
1672
1673 // Otherwise, let this name decide whether we'll be correcting
1674 // toward types or protocols.
1675 lookupKind = protocols[i] ? Sema::LookupObjCProtocolName
1676 : Sema::LookupOrdinaryName;
1677 continue;
1678 }
1679
1680 // If we want protocols and we have a protocol, there's nothing
1681 // more to do.
1682 if (lookupKind == Sema::LookupObjCProtocolName && protocols[i])
1683 continue;
1684
1685 // If we want types and we have a type declaration, there's
1686 // nothing more to do.
1687 if (lookupKind == Sema::LookupOrdinaryName && typeDecls[i])
1688 continue;
1689
1690 // We have a conflict: some names refer to protocols and others
1691 // refer to types.
1692 DiagnoseTypeArgsAndProtocols(ProtocolId: identifiers[0], ProtocolLoc: identifierLocs[0],
1693 TypeArgId: identifiers[i], TypeArgLoc: identifierLocs[i],
1694 SelectProtocolFirst: protocols[i] != nullptr);
1695
1696 protocols.clear();
1697 typeArgs.clear();
1698 return;
1699 }
1700
1701 // Perform typo correction on the name.
1702 ObjCTypeArgOrProtocolValidatorCCC CCC(Context, lookupKind);
1703 TypoCorrection corrected = SemaRef.CorrectTypo(
1704 Typo: DeclarationNameInfo(identifiers[i], identifierLocs[i]), LookupKind: lookupKind, S,
1705 SS: nullptr, CCC, Mode: CorrectTypoKind::ErrorRecovery);
1706 if (corrected) {
1707 // Did we find a protocol?
1708 if (auto proto = corrected.getCorrectionDeclAs<ObjCProtocolDecl>()) {
1709 SemaRef.diagnoseTypo(Correction: corrected,
1710 TypoDiag: PDiag(DiagID: diag::err_undeclared_protocol_suggest)
1711 << identifiers[i]);
1712 lookupKind = Sema::LookupObjCProtocolName;
1713 protocols[i] = proto;
1714 ++numProtocolsResolved;
1715 continue;
1716 }
1717
1718 // Did we find a type?
1719 if (auto typeDecl = corrected.getCorrectionDeclAs<TypeDecl>()) {
1720 SemaRef.diagnoseTypo(Correction: corrected,
1721 TypoDiag: PDiag(DiagID: diag::err_unknown_typename_suggest)
1722 << identifiers[i]);
1723 lookupKind = Sema::LookupOrdinaryName;
1724 typeDecls[i] = typeDecl;
1725 ++numTypeDeclsResolved;
1726 continue;
1727 }
1728
1729 // Did we find an Objective-C class?
1730 if (auto objcClass = corrected.getCorrectionDeclAs<ObjCInterfaceDecl>()) {
1731 SemaRef.diagnoseTypo(Correction: corrected,
1732 TypoDiag: PDiag(DiagID: diag::err_unknown_type_or_class_name_suggest)
1733 << identifiers[i] << true);
1734 lookupKind = Sema::LookupOrdinaryName;
1735 typeDecls[i] = objcClass;
1736 ++numTypeDeclsResolved;
1737 continue;
1738 }
1739 }
1740
1741 // We couldn't find anything.
1742 Diag(Loc: identifierLocs[i],
1743 DiagID: (lookupKind == Sema::LookupAnyName ? diag::err_objc_type_arg_missing
1744 : lookupKind == Sema::LookupObjCProtocolName
1745 ? diag::err_undeclared_protocol
1746 : diag::err_unknown_typename))
1747 << identifiers[i];
1748 protocols.clear();
1749 typeArgs.clear();
1750 return;
1751 }
1752
1753 // If all of the names were (corrected to) protocols, these were
1754 // protocol qualifiers.
1755 if (numProtocolsResolved == identifiers.size())
1756 return resolvedAsProtocols();
1757
1758 // Otherwise, all of the names were (corrected to) types.
1759 assert(numTypeDeclsResolved == identifiers.size() && "Not all types?");
1760 return resolvedAsTypeDecls();
1761}
1762
1763/// DiagnoseClassExtensionDupMethods - Check for duplicate declaration of
1764/// a class method in its extension.
1765///
1766void SemaObjC::DiagnoseClassExtensionDupMethods(ObjCCategoryDecl *CAT,
1767 ObjCInterfaceDecl *ID) {
1768 if (!ID)
1769 return; // Possibly due to previous error
1770
1771 llvm::DenseMap<Selector, const ObjCMethodDecl*> MethodMap;
1772 for (auto *MD : ID->methods())
1773 MethodMap[MD->getSelector()] = MD;
1774
1775 if (MethodMap.empty())
1776 return;
1777 for (const auto *Method : CAT->methods()) {
1778 const ObjCMethodDecl *&PrevMethod = MethodMap[Method->getSelector()];
1779 if (PrevMethod &&
1780 (PrevMethod->isInstanceMethod() == Method->isInstanceMethod()) &&
1781 !MatchTwoMethodDeclarations(Method, PrevMethod)) {
1782 Diag(Loc: Method->getLocation(), DiagID: diag::err_duplicate_method_decl)
1783 << Method->getDeclName();
1784 Diag(Loc: PrevMethod->getLocation(), DiagID: diag::note_previous_declaration);
1785 }
1786 }
1787}
1788
1789/// ActOnForwardProtocolDeclaration - Handle \@protocol foo;
1790SemaObjC::DeclGroupPtrTy SemaObjC::ActOnForwardProtocolDeclaration(
1791 SourceLocation AtProtocolLoc, ArrayRef<IdentifierLoc> IdentList,
1792 const ParsedAttributesView &attrList) {
1793 ASTContext &Context = getASTContext();
1794 SmallVector<Decl *, 8> DeclsInGroup;
1795 for (const IdentifierLoc &IdentPair : IdentList) {
1796 IdentifierInfo *Ident = IdentPair.getIdentifierInfo();
1797 ObjCProtocolDecl *PrevDecl = LookupProtocol(
1798 II: Ident, IdLoc: IdentPair.getLoc(), Redecl: SemaRef.forRedeclarationInCurContext());
1799 ObjCProtocolDecl *PDecl =
1800 ObjCProtocolDecl::Create(C&: Context, DC: SemaRef.CurContext, Id: Ident,
1801 nameLoc: IdentPair.getLoc(), atStartLoc: AtProtocolLoc, PrevDecl);
1802
1803 SemaRef.PushOnScopeChains(D: PDecl, S: SemaRef.TUScope);
1804 CheckObjCDeclScope(D: PDecl);
1805
1806 SemaRef.ProcessDeclAttributeList(S: SemaRef.TUScope, D: PDecl, AttrList: attrList);
1807 SemaRef.AddPragmaAttributes(S: SemaRef.TUScope, D: PDecl);
1808
1809 if (PrevDecl)
1810 SemaRef.mergeDeclAttributes(New: PDecl, Old: PrevDecl);
1811
1812 DeclsInGroup.push_back(Elt: PDecl);
1813 }
1814
1815 return SemaRef.BuildDeclaratorGroup(Group: DeclsInGroup);
1816}
1817
1818ObjCCategoryDecl *SemaObjC::ActOnStartCategoryInterface(
1819 SourceLocation AtInterfaceLoc, const IdentifierInfo *ClassName,
1820 SourceLocation ClassLoc, ObjCTypeParamList *typeParamList,
1821 const IdentifierInfo *CategoryName, SourceLocation CategoryLoc,
1822 Decl *const *ProtoRefs, unsigned NumProtoRefs,
1823 const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc,
1824 const ParsedAttributesView &AttrList) {
1825 ASTContext &Context = getASTContext();
1826 ObjCCategoryDecl *CDecl;
1827 ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(Id&: ClassName, IdLoc: ClassLoc, TypoCorrection: true);
1828
1829 /// Check that class of this category is already completely declared.
1830
1831 if (!IDecl ||
1832 SemaRef.RequireCompleteType(Loc: ClassLoc, T: Context.getObjCInterfaceType(Decl: IDecl),
1833 DiagID: diag::err_category_forward_interface,
1834 Args: CategoryName == nullptr)) {
1835 // Create an invalid ObjCCategoryDecl to serve as context for
1836 // the enclosing method declarations. We mark the decl invalid
1837 // to make it clear that this isn't a valid AST.
1838 CDecl = ObjCCategoryDecl::Create(C&: Context, DC: SemaRef.CurContext,
1839 AtLoc: AtInterfaceLoc, ClassNameLoc: ClassLoc, CategoryNameLoc: CategoryLoc,
1840 Id: CategoryName, IDecl, typeParamList);
1841 CDecl->setInvalidDecl();
1842 SemaRef.CurContext->addDecl(D: CDecl);
1843
1844 if (!IDecl)
1845 Diag(Loc: ClassLoc, DiagID: diag::err_undef_interface) << ClassName;
1846 ActOnObjCContainerStartDefinition(IDecl: CDecl);
1847 return CDecl;
1848 }
1849
1850 if (!CategoryName && IDecl->getImplementation()) {
1851 Diag(Loc: ClassLoc, DiagID: diag::err_class_extension_after_impl) << ClassName;
1852 Diag(Loc: IDecl->getImplementation()->getLocation(),
1853 DiagID: diag::note_implementation_declared);
1854 }
1855
1856 if (CategoryName) {
1857 /// Check for duplicate interface declaration for this category
1858 if (ObjCCategoryDecl *Previous
1859 = IDecl->FindCategoryDeclaration(CategoryId: CategoryName)) {
1860 // Class extensions can be declared multiple times, categories cannot.
1861 Diag(Loc: CategoryLoc, DiagID: diag::warn_dup_category_def)
1862 << ClassName << CategoryName;
1863 Diag(Loc: Previous->getLocation(), DiagID: diag::note_previous_definition);
1864 }
1865 }
1866
1867 // If we have a type parameter list, check it.
1868 if (typeParamList) {
1869 if (auto prevTypeParamList = IDecl->getTypeParamList()) {
1870 if (checkTypeParamListConsistency(
1871 S&: SemaRef, prevTypeParams: prevTypeParamList, newTypeParams: typeParamList,
1872 newContext: CategoryName ? TypeParamListContext::Category
1873 : TypeParamListContext::Extension))
1874 typeParamList = nullptr;
1875 } else {
1876 Diag(Loc: typeParamList->getLAngleLoc(),
1877 DiagID: diag::err_objc_parameterized_category_nonclass)
1878 << (CategoryName != nullptr)
1879 << ClassName
1880 << typeParamList->getSourceRange();
1881
1882 typeParamList = nullptr;
1883 }
1884 }
1885
1886 CDecl = ObjCCategoryDecl::Create(C&: Context, DC: SemaRef.CurContext, AtLoc: AtInterfaceLoc,
1887 ClassNameLoc: ClassLoc, CategoryNameLoc: CategoryLoc, Id: CategoryName, IDecl,
1888 typeParamList);
1889 // FIXME: PushOnScopeChains?
1890 SemaRef.CurContext->addDecl(D: CDecl);
1891
1892 // Process the attributes before looking at protocols to ensure that the
1893 // availability attribute is attached to the category to provide availability
1894 // checking for protocol uses.
1895 SemaRef.ProcessDeclAttributeList(S: SemaRef.TUScope, D: CDecl, AttrList);
1896 SemaRef.AddPragmaAttributes(S: SemaRef.TUScope, D: CDecl);
1897
1898 if (NumProtoRefs) {
1899 diagnoseUseOfProtocols(TheSema&: SemaRef, CD: CDecl, ProtoRefs: (ObjCProtocolDecl *const *)ProtoRefs,
1900 NumProtoRefs, ProtoLocs);
1901 CDecl->setProtocolList(List: (ObjCProtocolDecl*const*)ProtoRefs, Num: NumProtoRefs,
1902 Locs: ProtoLocs, C&: Context);
1903 // Protocols in the class extension belong to the class.
1904 if (CDecl->IsClassExtension())
1905 IDecl->mergeClassExtensionProtocolList(List: (ObjCProtocolDecl*const*)ProtoRefs,
1906 Num: NumProtoRefs, C&: Context);
1907 }
1908
1909 CheckObjCDeclScope(D: CDecl);
1910 ActOnObjCContainerStartDefinition(IDecl: CDecl);
1911 return CDecl;
1912}
1913
1914/// ActOnStartCategoryImplementation - Perform semantic checks on the
1915/// category implementation declaration and build an ObjCCategoryImplDecl
1916/// object.
1917ObjCCategoryImplDecl *SemaObjC::ActOnStartCategoryImplementation(
1918 SourceLocation AtCatImplLoc, const IdentifierInfo *ClassName,
1919 SourceLocation ClassLoc, const IdentifierInfo *CatName,
1920 SourceLocation CatLoc, const ParsedAttributesView &Attrs) {
1921 ASTContext &Context = getASTContext();
1922 ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(Id&: ClassName, IdLoc: ClassLoc, TypoCorrection: true);
1923 ObjCCategoryDecl *CatIDecl = nullptr;
1924 if (IDecl && IDecl->hasDefinition()) {
1925 CatIDecl = IDecl->FindCategoryDeclaration(CategoryId: CatName);
1926 if (!CatIDecl) {
1927 // Category @implementation with no corresponding @interface.
1928 // Create and install one.
1929 CatIDecl =
1930 ObjCCategoryDecl::Create(C&: Context, DC: SemaRef.CurContext, AtLoc: AtCatImplLoc,
1931 ClassNameLoc: ClassLoc, CategoryNameLoc: CatLoc, Id: CatName, IDecl,
1932 /*typeParamList=*/nullptr);
1933 CatIDecl->setImplicit();
1934 }
1935 }
1936
1937 ObjCCategoryImplDecl *CDecl =
1938 ObjCCategoryImplDecl::Create(C&: Context, DC: SemaRef.CurContext, Id: CatName, classInterface: IDecl,
1939 nameLoc: ClassLoc, atStartLoc: AtCatImplLoc, CategoryNameLoc: CatLoc);
1940 /// Check that class of this category is already completely declared.
1941 if (!IDecl) {
1942 Diag(Loc: ClassLoc, DiagID: diag::err_undef_interface) << ClassName;
1943 CDecl->setInvalidDecl();
1944 } else if (SemaRef.RequireCompleteType(Loc: ClassLoc,
1945 T: Context.getObjCInterfaceType(Decl: IDecl),
1946 DiagID: diag::err_undef_interface)) {
1947 CDecl->setInvalidDecl();
1948 }
1949
1950 SemaRef.ProcessDeclAttributeList(S: SemaRef.TUScope, D: CDecl, AttrList: Attrs);
1951 SemaRef.AddPragmaAttributes(S: SemaRef.TUScope, D: CDecl);
1952
1953 // FIXME: PushOnScopeChains?
1954 SemaRef.CurContext->addDecl(D: CDecl);
1955
1956 // If the interface has the objc_runtime_visible attribute, we
1957 // cannot implement a category for it.
1958 if (IDecl && IDecl->hasAttr<ObjCRuntimeVisibleAttr>()) {
1959 Diag(Loc: ClassLoc, DiagID: diag::err_objc_runtime_visible_category)
1960 << IDecl->getDeclName();
1961 }
1962
1963 /// Check that CatName, category name, is not used in another implementation.
1964 if (CatIDecl) {
1965 if (CatIDecl->getImplementation()) {
1966 Diag(Loc: ClassLoc, DiagID: diag::err_dup_implementation_category) << ClassName
1967 << CatName;
1968 Diag(Loc: CatIDecl->getImplementation()->getLocation(),
1969 DiagID: diag::note_previous_definition);
1970 CDecl->setInvalidDecl();
1971 } else {
1972 CatIDecl->setImplementation(CDecl);
1973 // Warn on implementating category of deprecated class under
1974 // -Wdeprecated-implementations flag.
1975 DiagnoseObjCImplementedDeprecations(S&: SemaRef, ND: CatIDecl,
1976 ImplLoc: CDecl->getLocation());
1977 }
1978 }
1979
1980 CheckObjCDeclScope(D: CDecl);
1981 ActOnObjCContainerStartDefinition(IDecl: CDecl);
1982 return CDecl;
1983}
1984
1985ObjCImplementationDecl *SemaObjC::ActOnStartClassImplementation(
1986 SourceLocation AtClassImplLoc, const IdentifierInfo *ClassName,
1987 SourceLocation ClassLoc, const IdentifierInfo *SuperClassname,
1988 SourceLocation SuperClassLoc, const ParsedAttributesView &Attrs) {
1989 ASTContext &Context = getASTContext();
1990 ObjCInterfaceDecl *IDecl = nullptr;
1991 // Check for another declaration kind with the same name.
1992 NamedDecl *PrevDecl = SemaRef.LookupSingleName(
1993 S: SemaRef.TUScope, Name: ClassName, Loc: ClassLoc, NameKind: Sema::LookupOrdinaryName,
1994 Redecl: SemaRef.forRedeclarationInCurContext());
1995 if (PrevDecl && !isa<ObjCInterfaceDecl>(Val: PrevDecl)) {
1996 Diag(Loc: ClassLoc, DiagID: diag::err_redefinition_different_kind) << ClassName;
1997 Diag(Loc: PrevDecl->getLocation(), DiagID: diag::note_previous_definition);
1998 } else if ((IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(Val: PrevDecl))) {
1999 // FIXME: This will produce an error if the definition of the interface has
2000 // been imported from a module but is not visible.
2001 SemaRef.RequireCompleteType(Loc: ClassLoc, T: Context.getObjCInterfaceType(Decl: IDecl),
2002 DiagID: diag::warn_undef_interface);
2003 } else {
2004 // We did not find anything with the name ClassName; try to correct for
2005 // typos in the class name.
2006 ObjCInterfaceValidatorCCC CCC{};
2007 TypoCorrection Corrected = SemaRef.CorrectTypo(
2008 Typo: DeclarationNameInfo(ClassName, ClassLoc), LookupKind: Sema::LookupOrdinaryName,
2009 S: SemaRef.TUScope, SS: nullptr, CCC, Mode: CorrectTypoKind::NonError);
2010 if (Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>()) {
2011 // Suggest the (potentially) correct interface name. Don't provide a
2012 // code-modification hint or use the typo name for recovery, because
2013 // this is just a warning. The program may actually be correct.
2014 SemaRef.diagnoseTypo(
2015 Correction: Corrected, TypoDiag: PDiag(DiagID: diag::warn_undef_interface_suggest) << ClassName,
2016 /*ErrorRecovery*/ false);
2017 } else {
2018 Diag(Loc: ClassLoc, DiagID: diag::warn_undef_interface) << ClassName;
2019 }
2020 }
2021
2022 // Check that super class name is valid class name
2023 ObjCInterfaceDecl *SDecl = nullptr;
2024 if (SuperClassname) {
2025 // Check if a different kind of symbol declared in this scope.
2026 PrevDecl =
2027 SemaRef.LookupSingleName(S: SemaRef.TUScope, Name: SuperClassname, Loc: SuperClassLoc,
2028 NameKind: Sema::LookupOrdinaryName);
2029 if (PrevDecl && !isa<ObjCInterfaceDecl>(Val: PrevDecl)) {
2030 Diag(Loc: SuperClassLoc, DiagID: diag::err_redefinition_different_kind)
2031 << SuperClassname;
2032 Diag(Loc: PrevDecl->getLocation(), DiagID: diag::note_previous_definition);
2033 } else {
2034 SDecl = dyn_cast_or_null<ObjCInterfaceDecl>(Val: PrevDecl);
2035 if (SDecl && !SDecl->hasDefinition())
2036 SDecl = nullptr;
2037 if (!SDecl)
2038 Diag(Loc: SuperClassLoc, DiagID: diag::err_undef_superclass)
2039 << SuperClassname << ClassName;
2040 else if (IDecl && !declaresSameEntity(D1: IDecl->getSuperClass(), D2: SDecl)) {
2041 // This implementation and its interface do not have the same
2042 // super class.
2043 Diag(Loc: SuperClassLoc, DiagID: diag::err_conflicting_super_class)
2044 << SDecl->getDeclName();
2045 Diag(Loc: SDecl->getLocation(), DiagID: diag::note_previous_definition);
2046 }
2047 }
2048 }
2049
2050 if (!IDecl) {
2051 // Legacy case of @implementation with no corresponding @interface.
2052 // Build, chain & install the interface decl into the identifier.
2053
2054 // FIXME: Do we support attributes on the @implementation? If so we should
2055 // copy them over.
2056 IDecl =
2057 ObjCInterfaceDecl::Create(C: Context, DC: SemaRef.CurContext, atLoc: AtClassImplLoc,
2058 Id: ClassName, /*typeParamList=*/nullptr,
2059 /*PrevDecl=*/nullptr, ClassLoc, isInternal: true);
2060 SemaRef.AddPragmaAttributes(S: SemaRef.TUScope, D: IDecl);
2061 IDecl->startDefinition();
2062 if (SDecl) {
2063 IDecl->setSuperClass(Context.getTrivialTypeSourceInfo(
2064 T: Context.getObjCInterfaceType(Decl: SDecl),
2065 Loc: SuperClassLoc));
2066 IDecl->setEndOfDefinitionLoc(SuperClassLoc);
2067 } else {
2068 IDecl->setEndOfDefinitionLoc(ClassLoc);
2069 }
2070
2071 SemaRef.PushOnScopeChains(D: IDecl, S: SemaRef.TUScope);
2072 } else {
2073 // Mark the interface as being completed, even if it was just as
2074 // @class ....;
2075 // declaration; the user cannot reopen it.
2076 if (!IDecl->hasDefinition())
2077 IDecl->startDefinition();
2078 }
2079
2080 ObjCImplementationDecl *IMPDecl =
2081 ObjCImplementationDecl::Create(C&: Context, DC: SemaRef.CurContext, classInterface: IDecl, superDecl: SDecl,
2082 nameLoc: ClassLoc, atStartLoc: AtClassImplLoc, superLoc: SuperClassLoc);
2083
2084 SemaRef.ProcessDeclAttributeList(S: SemaRef.TUScope, D: IMPDecl, AttrList: Attrs);
2085 SemaRef.AddPragmaAttributes(S: SemaRef.TUScope, D: IMPDecl);
2086
2087 if (CheckObjCDeclScope(D: IMPDecl)) {
2088 ActOnObjCContainerStartDefinition(IDecl: IMPDecl);
2089 return IMPDecl;
2090 }
2091
2092 // Check that there is no duplicate implementation of this class.
2093 if (IDecl->getImplementation()) {
2094 // FIXME: Don't leak everything!
2095 Diag(Loc: ClassLoc, DiagID: diag::err_dup_implementation_class) << ClassName;
2096 Diag(Loc: IDecl->getImplementation()->getLocation(),
2097 DiagID: diag::note_previous_definition);
2098 IMPDecl->setInvalidDecl();
2099 } else { // add it to the list.
2100 IDecl->setImplementation(IMPDecl);
2101 SemaRef.PushOnScopeChains(D: IMPDecl, S: SemaRef.TUScope);
2102 // Warn on implementating deprecated class under
2103 // -Wdeprecated-implementations flag.
2104 DiagnoseObjCImplementedDeprecations(S&: SemaRef, ND: IDecl, ImplLoc: IMPDecl->getLocation());
2105 }
2106
2107 // If the superclass has the objc_runtime_visible attribute, we
2108 // cannot implement a subclass of it.
2109 if (IDecl->getSuperClass() &&
2110 IDecl->getSuperClass()->hasAttr<ObjCRuntimeVisibleAttr>()) {
2111 Diag(Loc: ClassLoc, DiagID: diag::err_objc_runtime_visible_subclass)
2112 << IDecl->getDeclName()
2113 << IDecl->getSuperClass()->getDeclName();
2114 }
2115
2116 ActOnObjCContainerStartDefinition(IDecl: IMPDecl);
2117 return IMPDecl;
2118}
2119
2120SemaObjC::DeclGroupPtrTy
2121SemaObjC::ActOnFinishObjCImplementation(Decl *ObjCImpDecl,
2122 ArrayRef<Decl *> Decls) {
2123 SmallVector<Decl *, 64> DeclsInGroup;
2124 DeclsInGroup.reserve(N: Decls.size() + 1);
2125
2126 for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
2127 Decl *Dcl = Decls[i];
2128 if (!Dcl)
2129 continue;
2130 if (Dcl->getDeclContext()->isFileContext())
2131 Dcl->setTopLevelDeclInObjCContainer();
2132 DeclsInGroup.push_back(Elt: Dcl);
2133 }
2134
2135 DeclsInGroup.push_back(Elt: ObjCImpDecl);
2136
2137 // Reset the cached layout if there are any ivars added to
2138 // the implementation.
2139 if (auto *ImplD = dyn_cast<ObjCImplementationDecl>(Val: ObjCImpDecl))
2140 if (!ImplD->ivar_empty())
2141 getASTContext().ResetObjCLayout(D: ImplD->getClassInterface());
2142
2143 return SemaRef.BuildDeclaratorGroup(Group: DeclsInGroup);
2144}
2145
2146void SemaObjC::CheckImplementationIvars(ObjCImplementationDecl *ImpDecl,
2147 ObjCIvarDecl **ivars, unsigned numIvars,
2148 SourceLocation RBrace) {
2149 assert(ImpDecl && "missing implementation decl");
2150 ASTContext &Context = getASTContext();
2151 ObjCInterfaceDecl* IDecl = ImpDecl->getClassInterface();
2152 if (!IDecl)
2153 return;
2154 /// Check case of non-existing \@interface decl.
2155 /// (legacy objective-c \@implementation decl without an \@interface decl).
2156 /// Add implementations's ivar to the synthesize class's ivar list.
2157 if (IDecl->isImplicitInterfaceDecl()) {
2158 IDecl->setEndOfDefinitionLoc(RBrace);
2159 // Add ivar's to class's DeclContext.
2160 for (unsigned i = 0, e = numIvars; i != e; ++i) {
2161 ivars[i]->setLexicalDeclContext(ImpDecl);
2162 // In a 'fragile' runtime the ivar was added to the implicit
2163 // ObjCInterfaceDecl while in a 'non-fragile' runtime the ivar is
2164 // only in the ObjCImplementationDecl. In the non-fragile case the ivar
2165 // therefore also needs to be propagated to the ObjCInterfaceDecl.
2166 if (!getLangOpts().ObjCRuntime.isFragile())
2167 IDecl->makeDeclVisibleInContext(D: ivars[i]);
2168 ImpDecl->addDecl(D: ivars[i]);
2169 }
2170
2171 return;
2172 }
2173 // If implementation has empty ivar list, just return.
2174 if (numIvars == 0)
2175 return;
2176
2177 assert(ivars && "missing @implementation ivars");
2178 if (getLangOpts().ObjCRuntime.isNonFragile()) {
2179 if (ImpDecl->getSuperClass())
2180 Diag(Loc: ImpDecl->getLocation(), DiagID: diag::warn_on_superclass_use);
2181 for (unsigned i = 0; i < numIvars; i++) {
2182 ObjCIvarDecl* ImplIvar = ivars[i];
2183 if (const ObjCIvarDecl *ClsIvar =
2184 IDecl->getIvarDecl(Id: ImplIvar->getIdentifier())) {
2185 Diag(Loc: ImplIvar->getLocation(), DiagID: diag::err_duplicate_ivar_declaration);
2186 Diag(Loc: ClsIvar->getLocation(), DiagID: diag::note_previous_definition);
2187 continue;
2188 }
2189 // Check class extensions (unnamed categories) for duplicate ivars.
2190 for (const auto *CDecl : IDecl->visible_extensions()) {
2191 if (const ObjCIvarDecl *ClsExtIvar =
2192 CDecl->getIvarDecl(Id: ImplIvar->getIdentifier())) {
2193 Diag(Loc: ImplIvar->getLocation(), DiagID: diag::err_duplicate_ivar_declaration);
2194 Diag(Loc: ClsExtIvar->getLocation(), DiagID: diag::note_previous_definition);
2195 continue;
2196 }
2197 }
2198 // Instance ivar to Implementation's DeclContext.
2199 ImplIvar->setLexicalDeclContext(ImpDecl);
2200 IDecl->makeDeclVisibleInContext(D: ImplIvar);
2201 ImpDecl->addDecl(D: ImplIvar);
2202 }
2203 return;
2204 }
2205 // Check interface's Ivar list against those in the implementation.
2206 // names and types must match.
2207 //
2208 unsigned j = 0;
2209 ObjCInterfaceDecl::ivar_iterator
2210 IVI = IDecl->ivar_begin(), IVE = IDecl->ivar_end();
2211 for (; numIvars > 0 && IVI != IVE; ++IVI) {
2212 ObjCIvarDecl* ImplIvar = ivars[j++];
2213 ObjCIvarDecl* ClsIvar = *IVI;
2214 assert (ImplIvar && "missing implementation ivar");
2215 assert (ClsIvar && "missing class ivar");
2216
2217 // First, make sure the types match.
2218 if (!Context.hasSameType(T1: ImplIvar->getType(), T2: ClsIvar->getType())) {
2219 Diag(Loc: ImplIvar->getLocation(), DiagID: diag::err_conflicting_ivar_type)
2220 << ImplIvar->getIdentifier()
2221 << ImplIvar->getType() << ClsIvar->getType();
2222 Diag(Loc: ClsIvar->getLocation(), DiagID: diag::note_previous_definition);
2223 } else if (ImplIvar->isBitField() && ClsIvar->isBitField() &&
2224 ImplIvar->getBitWidthValue() != ClsIvar->getBitWidthValue()) {
2225 Diag(Loc: ImplIvar->getBitWidth()->getBeginLoc(),
2226 DiagID: diag::err_conflicting_ivar_bitwidth)
2227 << ImplIvar->getIdentifier();
2228 Diag(Loc: ClsIvar->getBitWidth()->getBeginLoc(),
2229 DiagID: diag::note_previous_definition);
2230 }
2231 // Make sure the names are identical.
2232 if (ImplIvar->getIdentifier() != ClsIvar->getIdentifier()) {
2233 Diag(Loc: ImplIvar->getLocation(), DiagID: diag::err_conflicting_ivar_name)
2234 << ImplIvar->getIdentifier() << ClsIvar->getIdentifier();
2235 Diag(Loc: ClsIvar->getLocation(), DiagID: diag::note_previous_definition);
2236 }
2237 --numIvars;
2238 }
2239
2240 if (numIvars > 0)
2241 Diag(Loc: ivars[j]->getLocation(), DiagID: diag::err_inconsistent_ivar_count);
2242 else if (IVI != IVE)
2243 Diag(Loc: IVI->getLocation(), DiagID: diag::err_inconsistent_ivar_count);
2244}
2245
2246static bool shouldWarnUndefinedMethod(const ObjCMethodDecl *M) {
2247 // No point warning no definition of method which is 'unavailable'.
2248 return M->getAvailability() != AR_Unavailable;
2249}
2250
2251static void WarnUndefinedMethod(Sema &S, ObjCImplDecl *Impl,
2252 ObjCMethodDecl *method, bool &IncompleteImpl,
2253 unsigned DiagID,
2254 NamedDecl *NeededFor = nullptr) {
2255 if (!shouldWarnUndefinedMethod(M: method))
2256 return;
2257
2258 // FIXME: For now ignore 'IncompleteImpl'.
2259 // Previously we grouped all unimplemented methods under a single
2260 // warning, but some users strongly voiced that they would prefer
2261 // separate warnings. We will give that approach a try, as that
2262 // matches what we do with protocols.
2263 {
2264 const SemaBase::SemaDiagnosticBuilder &B =
2265 S.Diag(Loc: Impl->getLocation(), DiagID);
2266 B << method;
2267 if (NeededFor)
2268 B << NeededFor;
2269
2270 // Add an empty definition at the end of the @implementation.
2271 std::string FixItStr;
2272 llvm::raw_string_ostream Out(FixItStr);
2273 method->print(Out, Policy: Impl->getASTContext().getPrintingPolicy());
2274 Out << " {\n}\n\n";
2275
2276 SourceLocation Loc = Impl->getAtEndRange().getBegin();
2277 B << FixItHint::CreateInsertion(InsertionLoc: Loc, Code: FixItStr);
2278 }
2279
2280 // Issue a note to the original declaration.
2281 SourceLocation MethodLoc = method->getBeginLoc();
2282 if (MethodLoc.isValid())
2283 S.Diag(Loc: MethodLoc, DiagID: diag::note_method_declared_at) << method;
2284}
2285
2286/// Determines if type B can be substituted for type A. Returns true if we can
2287/// guarantee that anything that the user will do to an object of type A can
2288/// also be done to an object of type B. This is trivially true if the two
2289/// types are the same, or if B is a subclass of A. It becomes more complex
2290/// in cases where protocols are involved.
2291///
2292/// Object types in Objective-C describe the minimum requirements for an
2293/// object, rather than providing a complete description of a type. For
2294/// example, if A is a subclass of B, then B* may refer to an instance of A.
2295/// The principle of substitutability means that we may use an instance of A
2296/// anywhere that we may use an instance of B - it will implement all of the
2297/// ivars of B and all of the methods of B.
2298///
2299/// This substitutability is important when type checking methods, because
2300/// the implementation may have stricter type definitions than the interface.
2301/// The interface specifies minimum requirements, but the implementation may
2302/// have more accurate ones. For example, a method may privately accept
2303/// instances of B, but only publish that it accepts instances of A. Any
2304/// object passed to it will be type checked against B, and so will implicitly
2305/// by a valid A*. Similarly, a method may return a subclass of the class that
2306/// it is declared as returning.
2307///
2308/// This is most important when considering subclassing. A method in a
2309/// subclass must accept any object as an argument that its superclass's
2310/// implementation accepts. It may, however, accept a more general type
2311/// without breaking substitutability (i.e. you can still use the subclass
2312/// anywhere that you can use the superclass, but not vice versa). The
2313/// converse requirement applies to return types: the return type for a
2314/// subclass method must be a valid object of the kind that the superclass
2315/// advertises, but it may be specified more accurately. This avoids the need
2316/// for explicit down-casting by callers.
2317///
2318/// Note: This is a stricter requirement than for assignment.
2319static bool isObjCTypeSubstitutable(ASTContext &Context,
2320 const ObjCObjectPointerType *A,
2321 const ObjCObjectPointerType *B,
2322 bool rejectId) {
2323 // Reject a protocol-unqualified id.
2324 if (rejectId && B->isObjCIdType()) return false;
2325
2326 // If B is a qualified id, then A must also be a qualified id and it must
2327 // implement all of the protocols in B. It may not be a qualified class.
2328 // For example, MyClass<A> can be assigned to id<A>, but MyClass<A> is a
2329 // stricter definition so it is not substitutable for id<A>.
2330 if (B->isObjCQualifiedIdType()) {
2331 return A->isObjCQualifiedIdType() &&
2332 Context.ObjCQualifiedIdTypesAreCompatible(LHS: A, RHS: B, ForCompare: false);
2333 }
2334
2335 /*
2336 // id is a special type that bypasses type checking completely. We want a
2337 // warning when it is used in one place but not another.
2338 if (C.isObjCIdType(A) || C.isObjCIdType(B)) return false;
2339
2340
2341 // If B is a qualified id, then A must also be a qualified id (which it isn't
2342 // if we've got this far)
2343 if (B->isObjCQualifiedIdType()) return false;
2344 */
2345
2346 // Now we know that A and B are (potentially-qualified) class types. The
2347 // normal rules for assignment apply.
2348 return Context.canAssignObjCInterfaces(LHSOPT: A, RHSOPT: B);
2349}
2350
2351static SourceRange getTypeRange(TypeSourceInfo *TSI) {
2352 return (TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange());
2353}
2354
2355/// Determine whether two set of Objective-C declaration qualifiers conflict.
2356static bool objcModifiersConflict(Decl::ObjCDeclQualifier x,
2357 Decl::ObjCDeclQualifier y) {
2358 return (x & ~Decl::OBJC_TQ_CSNullability) !=
2359 (y & ~Decl::OBJC_TQ_CSNullability);
2360}
2361
2362static bool CheckMethodOverrideReturn(Sema &S,
2363 ObjCMethodDecl *MethodImpl,
2364 ObjCMethodDecl *MethodDecl,
2365 bool IsProtocolMethodDecl,
2366 bool IsOverridingMode,
2367 bool Warn) {
2368 if (IsProtocolMethodDecl &&
2369 objcModifiersConflict(x: MethodDecl->getObjCDeclQualifier(),
2370 y: MethodImpl->getObjCDeclQualifier())) {
2371 if (Warn) {
2372 S.Diag(Loc: MethodImpl->getLocation(),
2373 DiagID: (IsOverridingMode
2374 ? diag::warn_conflicting_overriding_ret_type_modifiers
2375 : diag::warn_conflicting_ret_type_modifiers))
2376 << MethodImpl->getDeclName()
2377 << MethodImpl->getReturnTypeSourceRange();
2378 S.Diag(Loc: MethodDecl->getLocation(), DiagID: diag::note_previous_declaration)
2379 << MethodDecl->getReturnTypeSourceRange();
2380 }
2381 else
2382 return false;
2383 }
2384 if (Warn && IsOverridingMode &&
2385 !isa<ObjCImplementationDecl>(Val: MethodImpl->getDeclContext()) &&
2386 !S.Context.hasSameNullabilityTypeQualifier(SubT: MethodImpl->getReturnType(),
2387 SuperT: MethodDecl->getReturnType(),
2388 IsParam: false)) {
2389 auto nullabilityMethodImpl = *MethodImpl->getReturnType()->getNullability();
2390 auto nullabilityMethodDecl = *MethodDecl->getReturnType()->getNullability();
2391 S.Diag(Loc: MethodImpl->getLocation(),
2392 DiagID: diag::warn_conflicting_nullability_attr_overriding_ret_types)
2393 << DiagNullabilityKind(nullabilityMethodImpl,
2394 ((MethodImpl->getObjCDeclQualifier() &
2395 Decl::OBJC_TQ_CSNullability) != 0))
2396 << DiagNullabilityKind(nullabilityMethodDecl,
2397 ((MethodDecl->getObjCDeclQualifier() &
2398 Decl::OBJC_TQ_CSNullability) != 0));
2399 S.Diag(Loc: MethodDecl->getLocation(), DiagID: diag::note_previous_declaration);
2400 }
2401
2402 if (S.Context.hasSameUnqualifiedType(T1: MethodImpl->getReturnType(),
2403 T2: MethodDecl->getReturnType()))
2404 return true;
2405 if (!Warn)
2406 return false;
2407
2408 unsigned DiagID =
2409 IsOverridingMode ? diag::warn_conflicting_overriding_ret_types
2410 : diag::warn_conflicting_ret_types;
2411
2412 // Mismatches between ObjC pointers go into a different warning
2413 // category, and sometimes they're even completely explicitly allowed.
2414 if (const ObjCObjectPointerType *ImplPtrTy =
2415 MethodImpl->getReturnType()->getAs<ObjCObjectPointerType>()) {
2416 if (const ObjCObjectPointerType *IfacePtrTy =
2417 MethodDecl->getReturnType()->getAs<ObjCObjectPointerType>()) {
2418 // Allow non-matching return types as long as they don't violate
2419 // the principle of substitutability. Specifically, we permit
2420 // return types that are subclasses of the declared return type,
2421 // or that are more-qualified versions of the declared type.
2422 if (isObjCTypeSubstitutable(Context&: S.Context, A: IfacePtrTy, B: ImplPtrTy, rejectId: false))
2423 return false;
2424
2425 DiagID =
2426 IsOverridingMode ? diag::warn_non_covariant_overriding_ret_types
2427 : diag::warn_non_covariant_ret_types;
2428 }
2429 }
2430
2431 S.Diag(Loc: MethodImpl->getLocation(), DiagID)
2432 << MethodImpl->getDeclName() << MethodDecl->getReturnType()
2433 << MethodImpl->getReturnType()
2434 << MethodImpl->getReturnTypeSourceRange();
2435 S.Diag(Loc: MethodDecl->getLocation(), DiagID: IsOverridingMode
2436 ? diag::note_previous_declaration
2437 : diag::note_previous_definition)
2438 << MethodDecl->getReturnTypeSourceRange();
2439 return false;
2440}
2441
2442static bool CheckMethodOverrideParam(Sema &S,
2443 ObjCMethodDecl *MethodImpl,
2444 ObjCMethodDecl *MethodDecl,
2445 ParmVarDecl *ImplVar,
2446 ParmVarDecl *IfaceVar,
2447 bool IsProtocolMethodDecl,
2448 bool IsOverridingMode,
2449 bool Warn) {
2450 if (IsProtocolMethodDecl &&
2451 objcModifiersConflict(x: ImplVar->getObjCDeclQualifier(),
2452 y: IfaceVar->getObjCDeclQualifier())) {
2453 if (Warn) {
2454 if (IsOverridingMode)
2455 S.Diag(Loc: ImplVar->getLocation(),
2456 DiagID: diag::warn_conflicting_overriding_param_modifiers)
2457 << getTypeRange(TSI: ImplVar->getTypeSourceInfo())
2458 << MethodImpl->getDeclName();
2459 else S.Diag(Loc: ImplVar->getLocation(),
2460 DiagID: diag::warn_conflicting_param_modifiers)
2461 << getTypeRange(TSI: ImplVar->getTypeSourceInfo())
2462 << MethodImpl->getDeclName();
2463 S.Diag(Loc: IfaceVar->getLocation(), DiagID: diag::note_previous_declaration)
2464 << getTypeRange(TSI: IfaceVar->getTypeSourceInfo());
2465 }
2466 else
2467 return false;
2468 }
2469
2470 QualType ImplTy = ImplVar->getType();
2471 QualType IfaceTy = IfaceVar->getType();
2472 if (Warn && IsOverridingMode &&
2473 !isa<ObjCImplementationDecl>(Val: MethodImpl->getDeclContext()) &&
2474 !S.Context.hasSameNullabilityTypeQualifier(SubT: ImplTy, SuperT: IfaceTy, IsParam: true)) {
2475 S.Diag(Loc: ImplVar->getLocation(),
2476 DiagID: diag::warn_conflicting_nullability_attr_overriding_param_types)
2477 << DiagNullabilityKind(*ImplTy->getNullability(),
2478 ((ImplVar->getObjCDeclQualifier() &
2479 Decl::OBJC_TQ_CSNullability) != 0))
2480 << DiagNullabilityKind(*IfaceTy->getNullability(),
2481 ((IfaceVar->getObjCDeclQualifier() &
2482 Decl::OBJC_TQ_CSNullability) != 0));
2483 S.Diag(Loc: IfaceVar->getLocation(), DiagID: diag::note_previous_declaration);
2484 }
2485 if (S.Context.hasSameUnqualifiedType(T1: ImplTy, T2: IfaceTy))
2486 return true;
2487
2488 if (!Warn)
2489 return false;
2490 unsigned DiagID =
2491 IsOverridingMode ? diag::warn_conflicting_overriding_param_types
2492 : diag::warn_conflicting_param_types;
2493
2494 // Mismatches between ObjC pointers go into a different warning
2495 // category, and sometimes they're even completely explicitly allowed..
2496 if (const ObjCObjectPointerType *ImplPtrTy =
2497 ImplTy->getAs<ObjCObjectPointerType>()) {
2498 if (const ObjCObjectPointerType *IfacePtrTy =
2499 IfaceTy->getAs<ObjCObjectPointerType>()) {
2500 // Allow non-matching argument types as long as they don't
2501 // violate the principle of substitutability. Specifically, the
2502 // implementation must accept any objects that the superclass
2503 // accepts, however it may also accept others.
2504 if (isObjCTypeSubstitutable(Context&: S.Context, A: ImplPtrTy, B: IfacePtrTy, rejectId: true))
2505 return false;
2506
2507 DiagID =
2508 IsOverridingMode ? diag::warn_non_contravariant_overriding_param_types
2509 : diag::warn_non_contravariant_param_types;
2510 }
2511 }
2512
2513 S.Diag(Loc: ImplVar->getLocation(), DiagID)
2514 << getTypeRange(TSI: ImplVar->getTypeSourceInfo())
2515 << MethodImpl->getDeclName() << IfaceTy << ImplTy;
2516 S.Diag(Loc: IfaceVar->getLocation(),
2517 DiagID: (IsOverridingMode ? diag::note_previous_declaration
2518 : diag::note_previous_definition))
2519 << getTypeRange(TSI: IfaceVar->getTypeSourceInfo());
2520 return false;
2521}
2522
2523/// In ARC, check whether the conventional meanings of the two methods
2524/// match. If they don't, it's a hard error.
2525static bool checkMethodFamilyMismatch(Sema &S, ObjCMethodDecl *impl,
2526 ObjCMethodDecl *decl) {
2527 ObjCMethodFamily implFamily = impl->getMethodFamily();
2528 ObjCMethodFamily declFamily = decl->getMethodFamily();
2529 if (implFamily == declFamily) return false;
2530
2531 // Since conventions are sorted by selector, the only possibility is
2532 // that the types differ enough to cause one selector or the other
2533 // to fall out of the family.
2534 assert(implFamily == OMF_None || declFamily == OMF_None);
2535
2536 // No further diagnostics required on invalid declarations.
2537 if (impl->isInvalidDecl() || decl->isInvalidDecl()) return true;
2538
2539 const ObjCMethodDecl *unmatched = impl;
2540 ObjCMethodFamily family = declFamily;
2541 unsigned errorID = diag::err_arc_lost_method_convention;
2542 unsigned noteID = diag::note_arc_lost_method_convention;
2543 if (declFamily == OMF_None) {
2544 unmatched = decl;
2545 family = implFamily;
2546 errorID = diag::err_arc_gained_method_convention;
2547 noteID = diag::note_arc_gained_method_convention;
2548 }
2549
2550 // Indexes into a %select clause in the diagnostic.
2551 enum FamilySelector {
2552 F_alloc, F_copy, F_mutableCopy = F_copy, F_init, F_new
2553 };
2554 FamilySelector familySelector = FamilySelector();
2555
2556 switch (family) {
2557 case OMF_None: llvm_unreachable("logic error, no method convention");
2558 case OMF_retain:
2559 case OMF_release:
2560 case OMF_autorelease:
2561 case OMF_dealloc:
2562 case OMF_finalize:
2563 case OMF_retainCount:
2564 case OMF_self:
2565 case OMF_initialize:
2566 case OMF_performSelector:
2567 // Mismatches for these methods don't change ownership
2568 // conventions, so we don't care.
2569 return false;
2570
2571 case OMF_init: familySelector = F_init; break;
2572 case OMF_alloc: familySelector = F_alloc; break;
2573 case OMF_copy: familySelector = F_copy; break;
2574 case OMF_mutableCopy: familySelector = F_mutableCopy; break;
2575 case OMF_new: familySelector = F_new; break;
2576 }
2577
2578 enum ReasonSelector { R_NonObjectReturn, R_UnrelatedReturn };
2579 ReasonSelector reasonSelector;
2580
2581 // The only reason these methods don't fall within their families is
2582 // due to unusual result types.
2583 if (unmatched->getReturnType()->isObjCObjectPointerType()) {
2584 reasonSelector = R_UnrelatedReturn;
2585 } else {
2586 reasonSelector = R_NonObjectReturn;
2587 }
2588
2589 S.Diag(Loc: impl->getLocation(), DiagID: errorID) << int(familySelector) << int(reasonSelector);
2590 S.Diag(Loc: decl->getLocation(), DiagID: noteID) << int(familySelector) << int(reasonSelector);
2591
2592 return true;
2593}
2594
2595void SemaObjC::WarnConflictingTypedMethods(ObjCMethodDecl *ImpMethodDecl,
2596 ObjCMethodDecl *MethodDecl,
2597 bool IsProtocolMethodDecl) {
2598 if (getLangOpts().ObjCAutoRefCount &&
2599 checkMethodFamilyMismatch(S&: SemaRef, impl: ImpMethodDecl, decl: MethodDecl))
2600 return;
2601
2602 CheckMethodOverrideReturn(S&: SemaRef, MethodImpl: ImpMethodDecl, MethodDecl,
2603 IsProtocolMethodDecl, IsOverridingMode: false, Warn: true);
2604
2605 for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
2606 IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(),
2607 EF = MethodDecl->param_end();
2608 IM != EM && IF != EF; ++IM, ++IF) {
2609 CheckMethodOverrideParam(S&: SemaRef, MethodImpl: ImpMethodDecl, MethodDecl, ImplVar: *IM, IfaceVar: *IF,
2610 IsProtocolMethodDecl, IsOverridingMode: false, Warn: true);
2611 }
2612
2613 if (ImpMethodDecl->isVariadic() != MethodDecl->isVariadic()) {
2614 Diag(Loc: ImpMethodDecl->getLocation(),
2615 DiagID: diag::warn_conflicting_variadic);
2616 Diag(Loc: MethodDecl->getLocation(), DiagID: diag::note_previous_declaration);
2617 }
2618}
2619
2620void SemaObjC::CheckConflictingOverridingMethod(ObjCMethodDecl *Method,
2621 ObjCMethodDecl *Overridden,
2622 bool IsProtocolMethodDecl) {
2623
2624 CheckMethodOverrideReturn(S&: SemaRef, MethodImpl: Method, MethodDecl: Overridden, IsProtocolMethodDecl,
2625 IsOverridingMode: true, Warn: true);
2626
2627 for (ObjCMethodDecl::param_iterator IM = Method->param_begin(),
2628 IF = Overridden->param_begin(), EM = Method->param_end(),
2629 EF = Overridden->param_end();
2630 IM != EM && IF != EF; ++IM, ++IF) {
2631 CheckMethodOverrideParam(S&: SemaRef, MethodImpl: Method, MethodDecl: Overridden, ImplVar: *IM, IfaceVar: *IF,
2632 IsProtocolMethodDecl, IsOverridingMode: true, Warn: true);
2633 }
2634
2635 if (Method->isVariadic() != Overridden->isVariadic()) {
2636 Diag(Loc: Method->getLocation(),
2637 DiagID: diag::warn_conflicting_overriding_variadic);
2638 Diag(Loc: Overridden->getLocation(), DiagID: diag::note_previous_declaration);
2639 }
2640}
2641
2642/// WarnExactTypedMethods - This routine issues a warning if method
2643/// implementation declaration matches exactly that of its declaration.
2644void SemaObjC::WarnExactTypedMethods(ObjCMethodDecl *ImpMethodDecl,
2645 ObjCMethodDecl *MethodDecl,
2646 bool IsProtocolMethodDecl) {
2647 ASTContext &Context = getASTContext();
2648 // don't issue warning when protocol method is optional because primary
2649 // class is not required to implement it and it is safe for protocol
2650 // to implement it.
2651 if (MethodDecl->getImplementationControl() ==
2652 ObjCImplementationControl::Optional)
2653 return;
2654 // don't issue warning when primary class's method is
2655 // deprecated/unavailable.
2656 if (MethodDecl->hasAttr<UnavailableAttr>() ||
2657 MethodDecl->hasAttr<DeprecatedAttr>())
2658 return;
2659
2660 bool match = CheckMethodOverrideReturn(S&: SemaRef, MethodImpl: ImpMethodDecl, MethodDecl,
2661 IsProtocolMethodDecl, IsOverridingMode: false, Warn: false);
2662 if (match)
2663 for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
2664 IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(),
2665 EF = MethodDecl->param_end();
2666 IM != EM && IF != EF; ++IM, ++IF) {
2667 match = CheckMethodOverrideParam(S&: SemaRef, MethodImpl: ImpMethodDecl, MethodDecl, ImplVar: *IM,
2668 IfaceVar: *IF, IsProtocolMethodDecl, IsOverridingMode: false, Warn: false);
2669 if (!match)
2670 break;
2671 }
2672 if (match)
2673 match = (ImpMethodDecl->isVariadic() == MethodDecl->isVariadic());
2674 if (match)
2675 match = !(MethodDecl->isClassMethod() &&
2676 MethodDecl->getSelector() == GetNullarySelector(name: "load", Ctx&: Context));
2677
2678 if (match) {
2679 Diag(Loc: ImpMethodDecl->getLocation(),
2680 DiagID: diag::warn_category_method_impl_match);
2681 Diag(Loc: MethodDecl->getLocation(), DiagID: diag::note_method_declared_at)
2682 << MethodDecl->getDeclName();
2683 }
2684}
2685
2686/// FIXME: Type hierarchies in Objective-C can be deep. We could most likely
2687/// improve the efficiency of selector lookups and type checking by associating
2688/// with each protocol / interface / category the flattened instance tables. If
2689/// we used an immutable set to keep the table then it wouldn't add significant
2690/// memory cost and it would be handy for lookups.
2691
2692typedef llvm::DenseSet<IdentifierInfo*> ProtocolNameSet;
2693typedef std::unique_ptr<ProtocolNameSet> LazyProtocolNameSet;
2694
2695static void findProtocolsWithExplicitImpls(const ObjCProtocolDecl *PDecl,
2696 ProtocolNameSet &PNS) {
2697 if (PDecl->hasAttr<ObjCExplicitProtocolImplAttr>())
2698 PNS.insert(V: PDecl->getIdentifier());
2699 for (const auto *PI : PDecl->protocols())
2700 findProtocolsWithExplicitImpls(PDecl: PI, PNS);
2701}
2702
2703/// Recursively populates a set with all conformed protocols in a class
2704/// hierarchy that have the 'objc_protocol_requires_explicit_implementation'
2705/// attribute.
2706static void findProtocolsWithExplicitImpls(const ObjCInterfaceDecl *Super,
2707 ProtocolNameSet &PNS) {
2708 if (!Super)
2709 return;
2710
2711 for (const auto *I : Super->all_referenced_protocols())
2712 findProtocolsWithExplicitImpls(PDecl: I, PNS);
2713
2714 findProtocolsWithExplicitImpls(Super: Super->getSuperClass(), PNS);
2715}
2716
2717/// CheckProtocolMethodDefs - This routine checks unimplemented methods
2718/// Declared in protocol, and those referenced by it.
2719static void CheckProtocolMethodDefs(
2720 Sema &S, ObjCImplDecl *Impl, ObjCProtocolDecl *PDecl, bool &IncompleteImpl,
2721 const SemaObjC::SelectorSet &InsMap, const SemaObjC::SelectorSet &ClsMap,
2722 ObjCContainerDecl *CDecl, LazyProtocolNameSet &ProtocolsExplictImpl) {
2723 ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(Val: CDecl);
2724 ObjCInterfaceDecl *IDecl = C ? C->getClassInterface()
2725 : dyn_cast<ObjCInterfaceDecl>(Val: CDecl);
2726 assert (IDecl && "CheckProtocolMethodDefs - IDecl is null");
2727
2728 ObjCInterfaceDecl *Super = IDecl->getSuperClass();
2729 ObjCInterfaceDecl *NSIDecl = nullptr;
2730
2731 // If this protocol is marked 'objc_protocol_requires_explicit_implementation'
2732 // then we should check if any class in the super class hierarchy also
2733 // conforms to this protocol, either directly or via protocol inheritance.
2734 // If so, we can skip checking this protocol completely because we
2735 // know that a parent class already satisfies this protocol.
2736 //
2737 // Note: we could generalize this logic for all protocols, and merely
2738 // add the limit on looking at the super class chain for just
2739 // specially marked protocols. This may be a good optimization. This
2740 // change is restricted to 'objc_protocol_requires_explicit_implementation'
2741 // protocols for now for controlled evaluation.
2742 if (PDecl->hasAttr<ObjCExplicitProtocolImplAttr>()) {
2743 if (!ProtocolsExplictImpl) {
2744 ProtocolsExplictImpl.reset(p: new ProtocolNameSet);
2745 findProtocolsWithExplicitImpls(Super, PNS&: *ProtocolsExplictImpl);
2746 }
2747 if (ProtocolsExplictImpl->contains(V: PDecl->getIdentifier()))
2748 return;
2749
2750 // If no super class conforms to the protocol, we should not search
2751 // for methods in the super class to implicitly satisfy the protocol.
2752 Super = nullptr;
2753 }
2754
2755 if (S.getLangOpts().ObjCRuntime.isNeXTFamily()) {
2756 // check to see if class implements forwardInvocation method and objects
2757 // of this class are derived from 'NSProxy' so that to forward requests
2758 // from one object to another.
2759 // Under such conditions, which means that every method possible is
2760 // implemented in the class, we should not issue "Method definition not
2761 // found" warnings.
2762 // FIXME: Use a general GetUnarySelector method for this.
2763 const IdentifierInfo *II = &S.Context.Idents.get(Name: "forwardInvocation");
2764 Selector fISelector = S.Context.Selectors.getSelector(NumArgs: 1, IIV: &II);
2765 if (InsMap.count(Ptr: fISelector))
2766 // Is IDecl derived from 'NSProxy'? If so, no instance methods
2767 // need be implemented in the implementation.
2768 NSIDecl = IDecl->lookupInheritedClass(ICName: &S.Context.Idents.get(Name: "NSProxy"));
2769 }
2770
2771 // If this is a forward protocol declaration, get its definition.
2772 if (!PDecl->isThisDeclarationADefinition() &&
2773 PDecl->getDefinition())
2774 PDecl = PDecl->getDefinition();
2775
2776 // If a method lookup fails locally we still need to look and see if
2777 // the method was implemented by a base class or an inherited
2778 // protocol. This lookup is slow, but occurs rarely in correct code
2779 // and otherwise would terminate in a warning.
2780
2781 // check unimplemented instance methods.
2782 if (!NSIDecl)
2783 for (auto *method : PDecl->instance_methods()) {
2784 if (method->getImplementationControl() !=
2785 ObjCImplementationControl::Optional &&
2786 !method->isPropertyAccessor() &&
2787 !InsMap.count(Ptr: method->getSelector()) &&
2788 (!Super || !Super->lookupMethod(
2789 Sel: method->getSelector(), isInstance: true /* instance */,
2790 shallowCategoryLookup: false /* shallowCategory */, followSuper: true /* followsSuper */,
2791 C: nullptr /* category */))) {
2792 // If a method is not implemented in the category implementation but
2793 // has been declared in its primary class, superclass,
2794 // or in one of their protocols, no need to issue the warning.
2795 // This is because method will be implemented in the primary class
2796 // or one of its super class implementation.
2797
2798 // Ugly, but necessary. Method declared in protocol might have
2799 // have been synthesized due to a property declared in the class which
2800 // uses the protocol.
2801 if (ObjCMethodDecl *MethodInClass = IDecl->lookupMethod(
2802 Sel: method->getSelector(), isInstance: true /* instance */,
2803 shallowCategoryLookup: true /* shallowCategoryLookup */, followSuper: false /* followSuper */))
2804 if (C || MethodInClass->isPropertyAccessor())
2805 continue;
2806 unsigned DIAG = diag::warn_unimplemented_protocol_method;
2807 if (!S.Diags.isIgnored(DiagID: DIAG, Loc: Impl->getLocation())) {
2808 WarnUndefinedMethod(S, Impl, method, IncompleteImpl, DiagID: DIAG, NeededFor: PDecl);
2809 }
2810 }
2811 }
2812 // check unimplemented class methods
2813 for (auto *method : PDecl->class_methods()) {
2814 if (method->getImplementationControl() !=
2815 ObjCImplementationControl::Optional &&
2816 !ClsMap.count(Ptr: method->getSelector()) &&
2817 (!Super || !Super->lookupMethod(
2818 Sel: method->getSelector(), isInstance: false /* class method */,
2819 shallowCategoryLookup: false /* shallowCategoryLookup */,
2820 followSuper: true /* followSuper */, C: nullptr /* category */))) {
2821 // See above comment for instance method lookups.
2822 if (C && IDecl->lookupMethod(Sel: method->getSelector(),
2823 isInstance: false /* class */,
2824 shallowCategoryLookup: true /* shallowCategoryLookup */,
2825 followSuper: false /* followSuper */))
2826 continue;
2827
2828 unsigned DIAG = diag::warn_unimplemented_protocol_method;
2829 if (!S.Diags.isIgnored(DiagID: DIAG, Loc: Impl->getLocation())) {
2830 WarnUndefinedMethod(S, Impl, method, IncompleteImpl, DiagID: DIAG, NeededFor: PDecl);
2831 }
2832 }
2833 }
2834 // Check on this protocols's referenced protocols, recursively.
2835 for (auto *PI : PDecl->protocols())
2836 CheckProtocolMethodDefs(S, Impl, PDecl: PI, IncompleteImpl, InsMap, ClsMap, CDecl,
2837 ProtocolsExplictImpl);
2838}
2839
2840/// MatchAllMethodDeclarations - Check methods declared in interface
2841/// or protocol against those declared in their implementations.
2842///
2843void SemaObjC::MatchAllMethodDeclarations(
2844 const SelectorSet &InsMap, const SelectorSet &ClsMap,
2845 SelectorSet &InsMapSeen, SelectorSet &ClsMapSeen, ObjCImplDecl *IMPDecl,
2846 ObjCContainerDecl *CDecl, bool &IncompleteImpl, bool ImmediateClass,
2847 bool WarnCategoryMethodImpl) {
2848 // Check and see if instance methods in class interface have been
2849 // implemented in the implementation class. If so, their types match.
2850 for (auto *I : CDecl->instance_methods()) {
2851 if (!InsMapSeen.insert(Ptr: I->getSelector()).second)
2852 continue;
2853 if (!I->isPropertyAccessor() &&
2854 !InsMap.count(Ptr: I->getSelector())) {
2855 if (ImmediateClass)
2856 WarnUndefinedMethod(S&: SemaRef, Impl: IMPDecl, method: I, IncompleteImpl,
2857 DiagID: diag::warn_undef_method_impl);
2858 continue;
2859 } else {
2860 ObjCMethodDecl *ImpMethodDecl =
2861 IMPDecl->getInstanceMethod(Sel: I->getSelector());
2862 assert(CDecl->getInstanceMethod(I->getSelector(), true/*AllowHidden*/) &&
2863 "Expected to find the method through lookup as well");
2864 // ImpMethodDecl may be null as in a @dynamic property.
2865 if (ImpMethodDecl) {
2866 // Skip property accessor function stubs.
2867 if (ImpMethodDecl->isSynthesizedAccessorStub())
2868 continue;
2869 if (!WarnCategoryMethodImpl)
2870 WarnConflictingTypedMethods(ImpMethodDecl, MethodDecl: I,
2871 IsProtocolMethodDecl: isa<ObjCProtocolDecl>(Val: CDecl));
2872 else if (!I->isPropertyAccessor())
2873 WarnExactTypedMethods(ImpMethodDecl, MethodDecl: I, IsProtocolMethodDecl: isa<ObjCProtocolDecl>(Val: CDecl));
2874 }
2875 }
2876 }
2877
2878 // Check and see if class methods in class interface have been
2879 // implemented in the implementation class. If so, their types match.
2880 for (auto *I : CDecl->class_methods()) {
2881 if (!ClsMapSeen.insert(Ptr: I->getSelector()).second)
2882 continue;
2883 if (!I->isPropertyAccessor() &&
2884 !ClsMap.count(Ptr: I->getSelector())) {
2885 if (ImmediateClass)
2886 WarnUndefinedMethod(S&: SemaRef, Impl: IMPDecl, method: I, IncompleteImpl,
2887 DiagID: diag::warn_undef_method_impl);
2888 } else {
2889 ObjCMethodDecl *ImpMethodDecl =
2890 IMPDecl->getClassMethod(Sel: I->getSelector());
2891 assert(CDecl->getClassMethod(I->getSelector(), true/*AllowHidden*/) &&
2892 "Expected to find the method through lookup as well");
2893 // ImpMethodDecl may be null as in a @dynamic property.
2894 if (ImpMethodDecl) {
2895 // Skip property accessor function stubs.
2896 if (ImpMethodDecl->isSynthesizedAccessorStub())
2897 continue;
2898 if (!WarnCategoryMethodImpl)
2899 WarnConflictingTypedMethods(ImpMethodDecl, MethodDecl: I,
2900 IsProtocolMethodDecl: isa<ObjCProtocolDecl>(Val: CDecl));
2901 else if (!I->isPropertyAccessor())
2902 WarnExactTypedMethods(ImpMethodDecl, MethodDecl: I, IsProtocolMethodDecl: isa<ObjCProtocolDecl>(Val: CDecl));
2903 }
2904 }
2905 }
2906
2907 if (ObjCProtocolDecl *PD = dyn_cast<ObjCProtocolDecl> (Val: CDecl)) {
2908 // Also, check for methods declared in protocols inherited by
2909 // this protocol.
2910 for (auto *PI : PD->protocols())
2911 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2912 IMPDecl, CDecl: PI, IncompleteImpl, ImmediateClass: false,
2913 WarnCategoryMethodImpl);
2914 }
2915
2916 if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (Val: CDecl)) {
2917 // when checking that methods in implementation match their declaration,
2918 // i.e. when WarnCategoryMethodImpl is false, check declarations in class
2919 // extension; as well as those in categories.
2920 if (!WarnCategoryMethodImpl) {
2921 for (auto *Cat : I->visible_categories())
2922 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2923 IMPDecl, CDecl: Cat, IncompleteImpl,
2924 ImmediateClass: ImmediateClass && Cat->IsClassExtension(),
2925 WarnCategoryMethodImpl);
2926 } else {
2927 // Also methods in class extensions need be looked at next.
2928 for (auto *Ext : I->visible_extensions())
2929 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2930 IMPDecl, CDecl: Ext, IncompleteImpl, ImmediateClass: false,
2931 WarnCategoryMethodImpl);
2932 }
2933
2934 // Check for any implementation of a methods declared in protocol.
2935 for (auto *PI : I->all_referenced_protocols())
2936 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2937 IMPDecl, CDecl: PI, IncompleteImpl, ImmediateClass: false,
2938 WarnCategoryMethodImpl);
2939
2940 // FIXME. For now, we are not checking for exact match of methods
2941 // in category implementation and its primary class's super class.
2942 if (!WarnCategoryMethodImpl && I->getSuperClass())
2943 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2944 IMPDecl,
2945 CDecl: I->getSuperClass(), IncompleteImpl, ImmediateClass: false);
2946 }
2947}
2948
2949/// CheckCategoryVsClassMethodMatches - Checks that methods implemented in
2950/// category matches with those implemented in its primary class and
2951/// warns each time an exact match is found.
2952void SemaObjC::CheckCategoryVsClassMethodMatches(
2953 ObjCCategoryImplDecl *CatIMPDecl) {
2954 // Get category's primary class.
2955 ObjCCategoryDecl *CatDecl = CatIMPDecl->getCategoryDecl();
2956 if (!CatDecl)
2957 return;
2958 ObjCInterfaceDecl *IDecl = CatDecl->getClassInterface();
2959 if (!IDecl)
2960 return;
2961 ObjCInterfaceDecl *SuperIDecl = IDecl->getSuperClass();
2962 SelectorSet InsMap, ClsMap;
2963
2964 for (const auto *I : CatIMPDecl->instance_methods()) {
2965 Selector Sel = I->getSelector();
2966 // When checking for methods implemented in the category, skip over
2967 // those declared in category class's super class. This is because
2968 // the super class must implement the method.
2969 if (SuperIDecl && SuperIDecl->lookupMethod(Sel, isInstance: true))
2970 continue;
2971 InsMap.insert(Ptr: Sel);
2972 }
2973
2974 for (const auto *I : CatIMPDecl->class_methods()) {
2975 Selector Sel = I->getSelector();
2976 if (SuperIDecl && SuperIDecl->lookupMethod(Sel, isInstance: false))
2977 continue;
2978 ClsMap.insert(Ptr: Sel);
2979 }
2980 if (InsMap.empty() && ClsMap.empty())
2981 return;
2982
2983 SelectorSet InsMapSeen, ClsMapSeen;
2984 bool IncompleteImpl = false;
2985 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2986 IMPDecl: CatIMPDecl, CDecl: IDecl,
2987 IncompleteImpl, ImmediateClass: false,
2988 WarnCategoryMethodImpl: true /*WarnCategoryMethodImpl*/);
2989}
2990
2991void SemaObjC::ImplMethodsVsClassMethods(Scope *S, ObjCImplDecl *IMPDecl,
2992 ObjCContainerDecl *CDecl,
2993 bool IncompleteImpl) {
2994 SelectorSet InsMap;
2995 // Check and see if instance methods in class interface have been
2996 // implemented in the implementation class.
2997 for (const auto *I : IMPDecl->instance_methods())
2998 InsMap.insert(Ptr: I->getSelector());
2999
3000 // Add the selectors for getters/setters of @dynamic properties.
3001 for (const auto *PImpl : IMPDecl->property_impls()) {
3002 // We only care about @dynamic implementations.
3003 if (PImpl->getPropertyImplementation() != ObjCPropertyImplDecl::Dynamic)
3004 continue;
3005
3006 const auto *P = PImpl->getPropertyDecl();
3007 if (!P) continue;
3008
3009 InsMap.insert(Ptr: P->getGetterName());
3010 if (!P->getSetterName().isNull())
3011 InsMap.insert(Ptr: P->getSetterName());
3012 }
3013
3014 // Check and see if properties declared in the interface have either 1)
3015 // an implementation or 2) there is a @synthesize/@dynamic implementation
3016 // of the property in the @implementation.
3017 if (const ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(Val: CDecl)) {
3018 bool SynthesizeProperties = getLangOpts().ObjCDefaultSynthProperties &&
3019 getLangOpts().ObjCRuntime.isNonFragile() &&
3020 !IDecl->isObjCRequiresPropertyDefs();
3021 DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, SynthesizeProperties);
3022 }
3023
3024 // Diagnose null-resettable synthesized setters.
3025 diagnoseNullResettableSynthesizedSetters(impDecl: IMPDecl);
3026
3027 SelectorSet ClsMap;
3028 for (const auto *I : IMPDecl->class_methods())
3029 ClsMap.insert(Ptr: I->getSelector());
3030
3031 // Check for type conflict of methods declared in a class/protocol and
3032 // its implementation; if any.
3033 SelectorSet InsMapSeen, ClsMapSeen;
3034 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
3035 IMPDecl, CDecl,
3036 IncompleteImpl, ImmediateClass: true);
3037
3038 // check all methods implemented in category against those declared
3039 // in its primary class.
3040 if (ObjCCategoryImplDecl *CatDecl =
3041 dyn_cast<ObjCCategoryImplDecl>(Val: IMPDecl))
3042 CheckCategoryVsClassMethodMatches(CatIMPDecl: CatDecl);
3043
3044 // Check the protocol list for unimplemented methods in the @implementation
3045 // class.
3046 // Check and see if class methods in class interface have been
3047 // implemented in the implementation class.
3048
3049 LazyProtocolNameSet ExplicitImplProtocols;
3050
3051 if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (Val: CDecl)) {
3052 for (auto *PI : I->all_referenced_protocols())
3053 CheckProtocolMethodDefs(S&: SemaRef, Impl: IMPDecl, PDecl: PI, IncompleteImpl, InsMap,
3054 ClsMap, CDecl: I, ProtocolsExplictImpl&: ExplicitImplProtocols);
3055 } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(Val: CDecl)) {
3056 // For extended class, unimplemented methods in its protocols will
3057 // be reported in the primary class.
3058 if (!C->IsClassExtension()) {
3059 for (auto *P : C->protocols())
3060 CheckProtocolMethodDefs(S&: SemaRef, Impl: IMPDecl, PDecl: P, IncompleteImpl, InsMap,
3061 ClsMap, CDecl, ProtocolsExplictImpl&: ExplicitImplProtocols);
3062 DiagnoseUnimplementedProperties(S, IMPDecl, CDecl,
3063 /*SynthesizeProperties=*/false);
3064 }
3065 } else
3066 llvm_unreachable("invalid ObjCContainerDecl type.");
3067}
3068
3069SemaObjC::DeclGroupPtrTy SemaObjC::ActOnForwardClassDeclaration(
3070 SourceLocation AtClassLoc, IdentifierInfo **IdentList,
3071 SourceLocation *IdentLocs, ArrayRef<ObjCTypeParamList *> TypeParamLists,
3072 unsigned NumElts) {
3073 ASTContext &Context = getASTContext();
3074 SmallVector<Decl *, 8> DeclsInGroup;
3075 for (unsigned i = 0; i != NumElts; ++i) {
3076 // Check for another declaration kind with the same name.
3077 NamedDecl *PrevDecl = SemaRef.LookupSingleName(
3078 S: SemaRef.TUScope, Name: IdentList[i], Loc: IdentLocs[i], NameKind: Sema::LookupOrdinaryName,
3079 Redecl: SemaRef.forRedeclarationInCurContext());
3080 if (PrevDecl && !isa<ObjCInterfaceDecl>(Val: PrevDecl)) {
3081 // GCC apparently allows the following idiom:
3082 //
3083 // typedef NSObject < XCElementTogglerP > XCElementToggler;
3084 // @class XCElementToggler;
3085 //
3086 // Here we have chosen to ignore the forward class declaration
3087 // with a warning. Since this is the implied behavior.
3088 TypedefNameDecl *TDD = dyn_cast<TypedefNameDecl>(Val: PrevDecl);
3089 if (!TDD || !TDD->getUnderlyingType()->isObjCObjectType()) {
3090 Diag(Loc: AtClassLoc, DiagID: diag::err_redefinition_different_kind) << IdentList[i];
3091 Diag(Loc: PrevDecl->getLocation(), DiagID: diag::note_previous_definition);
3092 } else {
3093 // a forward class declaration matching a typedef name of a class refers
3094 // to the underlying class. Just ignore the forward class with a warning
3095 // as this will force the intended behavior which is to lookup the
3096 // typedef name.
3097 if (isa<ObjCObjectType>(Val: TDD->getUnderlyingType())) {
3098 Diag(Loc: AtClassLoc, DiagID: diag::warn_forward_class_redefinition)
3099 << IdentList[i];
3100 Diag(Loc: PrevDecl->getLocation(), DiagID: diag::note_previous_definition);
3101 continue;
3102 }
3103 }
3104 }
3105
3106 // Create a declaration to describe this forward declaration.
3107 ObjCInterfaceDecl *PrevIDecl
3108 = dyn_cast_or_null<ObjCInterfaceDecl>(Val: PrevDecl);
3109
3110 IdentifierInfo *ClassName = IdentList[i];
3111 if (PrevIDecl && PrevIDecl->getIdentifier() != ClassName) {
3112 // A previous decl with a different name is because of
3113 // @compatibility_alias, for example:
3114 // \code
3115 // @class NewImage;
3116 // @compatibility_alias OldImage NewImage;
3117 // \endcode
3118 // A lookup for 'OldImage' will return the 'NewImage' decl.
3119 //
3120 // In such a case use the real declaration name, instead of the alias one,
3121 // otherwise we will break IdentifierResolver and redecls-chain invariants.
3122 // FIXME: If necessary, add a bit to indicate that this ObjCInterfaceDecl
3123 // has been aliased.
3124 ClassName = PrevIDecl->getIdentifier();
3125 }
3126
3127 // If this forward declaration has type parameters, compare them with the
3128 // type parameters of the previous declaration.
3129 ObjCTypeParamList *TypeParams = TypeParamLists[i];
3130 if (PrevIDecl && TypeParams) {
3131 if (ObjCTypeParamList *PrevTypeParams = PrevIDecl->getTypeParamList()) {
3132 // Check for consistency with the previous declaration.
3133 if (checkTypeParamListConsistency(
3134 S&: SemaRef, prevTypeParams: PrevTypeParams, newTypeParams: TypeParams,
3135 newContext: TypeParamListContext::ForwardDeclaration)) {
3136 TypeParams = nullptr;
3137 }
3138 } else if (ObjCInterfaceDecl *Def = PrevIDecl->getDefinition()) {
3139 // The @interface does not have type parameters. Complain.
3140 Diag(Loc: IdentLocs[i], DiagID: diag::err_objc_parameterized_forward_class)
3141 << ClassName
3142 << TypeParams->getSourceRange();
3143 Diag(Loc: Def->getLocation(), DiagID: diag::note_defined_here)
3144 << ClassName;
3145
3146 TypeParams = nullptr;
3147 }
3148 }
3149
3150 ObjCInterfaceDecl *IDecl = ObjCInterfaceDecl::Create(
3151 C: Context, DC: SemaRef.CurContext, atLoc: AtClassLoc, Id: ClassName, typeParamList: TypeParams,
3152 PrevDecl: PrevIDecl, ClassLoc: IdentLocs[i]);
3153 IDecl->setAtEndRange(IdentLocs[i]);
3154
3155 if (PrevIDecl)
3156 SemaRef.mergeDeclAttributes(New: IDecl, Old: PrevIDecl);
3157
3158 SemaRef.PushOnScopeChains(D: IDecl, S: SemaRef.TUScope);
3159 CheckObjCDeclScope(D: IDecl);
3160 DeclsInGroup.push_back(Elt: IDecl);
3161 }
3162
3163 return SemaRef.BuildDeclaratorGroup(Group: DeclsInGroup);
3164}
3165
3166static bool tryMatchRecordTypes(ASTContext &Context,
3167 SemaObjC::MethodMatchStrategy strategy,
3168 const Type *left, const Type *right);
3169
3170static bool matchTypes(ASTContext &Context,
3171 SemaObjC::MethodMatchStrategy strategy, QualType leftQT,
3172 QualType rightQT) {
3173 const Type *left =
3174 Context.getCanonicalType(T: leftQT).getUnqualifiedType().getTypePtr();
3175 const Type *right =
3176 Context.getCanonicalType(T: rightQT).getUnqualifiedType().getTypePtr();
3177
3178 if (left == right) return true;
3179
3180 // If we're doing a strict match, the types have to match exactly.
3181 if (strategy == SemaObjC::MMS_strict)
3182 return false;
3183
3184 if (left->isIncompleteType() || right->isIncompleteType()) return false;
3185
3186 // Otherwise, use this absurdly complicated algorithm to try to
3187 // validate the basic, low-level compatibility of the two types.
3188
3189 // As a minimum, require the sizes and alignments to match.
3190 TypeInfo LeftTI = Context.getTypeInfo(T: left);
3191 TypeInfo RightTI = Context.getTypeInfo(T: right);
3192 if (LeftTI.Width != RightTI.Width)
3193 return false;
3194
3195 if (LeftTI.Align != RightTI.Align)
3196 return false;
3197
3198 // Consider all the kinds of non-dependent canonical types:
3199 // - functions and arrays aren't possible as return and parameter types
3200
3201 // - vector types of equal size can be arbitrarily mixed
3202 if (isa<VectorType>(Val: left)) return isa<VectorType>(Val: right);
3203 if (isa<VectorType>(Val: right)) return false;
3204
3205 // - references should only match references of identical type
3206 // - structs, unions, and Objective-C objects must match more-or-less
3207 // exactly
3208 // - everything else should be a scalar
3209 if (!left->isScalarType() || !right->isScalarType())
3210 return tryMatchRecordTypes(Context, strategy, left, right);
3211
3212 // Make scalars agree in kind, except count bools as chars, and group
3213 // all non-member pointers together.
3214 Type::ScalarTypeKind leftSK = left->getScalarTypeKind();
3215 Type::ScalarTypeKind rightSK = right->getScalarTypeKind();
3216 if (leftSK == Type::STK_Bool) leftSK = Type::STK_Integral;
3217 if (rightSK == Type::STK_Bool) rightSK = Type::STK_Integral;
3218 if (leftSK == Type::STK_CPointer || leftSK == Type::STK_BlockPointer)
3219 leftSK = Type::STK_ObjCObjectPointer;
3220 if (rightSK == Type::STK_CPointer || rightSK == Type::STK_BlockPointer)
3221 rightSK = Type::STK_ObjCObjectPointer;
3222
3223 // Note that data member pointers and function member pointers don't
3224 // intermix because of the size differences.
3225
3226 return (leftSK == rightSK);
3227}
3228
3229static bool tryMatchRecordTypes(ASTContext &Context,
3230 SemaObjC::MethodMatchStrategy strategy,
3231 const Type *lt, const Type *rt) {
3232 assert(lt && rt && lt != rt);
3233
3234 if (!isa<RecordType>(Val: lt) || !isa<RecordType>(Val: rt)) return false;
3235 RecordDecl *left = cast<RecordType>(Val: lt)->getDecl()->getDefinitionOrSelf();
3236 RecordDecl *right = cast<RecordType>(Val: rt)->getDecl()->getDefinitionOrSelf();
3237
3238 // Require union-hood to match.
3239 if (left->isUnion() != right->isUnion()) return false;
3240
3241 // Require an exact match if either is non-POD.
3242 if ((isa<CXXRecordDecl>(Val: left) && !cast<CXXRecordDecl>(Val: left)->isPOD()) ||
3243 (isa<CXXRecordDecl>(Val: right) && !cast<CXXRecordDecl>(Val: right)->isPOD()))
3244 return false;
3245
3246 // Require size and alignment to match.
3247 TypeInfo LeftTI = Context.getTypeInfo(T: lt);
3248 TypeInfo RightTI = Context.getTypeInfo(T: rt);
3249 if (LeftTI.Width != RightTI.Width)
3250 return false;
3251
3252 if (LeftTI.Align != RightTI.Align)
3253 return false;
3254
3255 // Require fields to match.
3256 RecordDecl::field_iterator li = left->field_begin(), le = left->field_end();
3257 RecordDecl::field_iterator ri = right->field_begin(), re = right->field_end();
3258 for (; li != le && ri != re; ++li, ++ri) {
3259 if (!matchTypes(Context, strategy, leftQT: li->getType(), rightQT: ri->getType()))
3260 return false;
3261 }
3262 return (li == le && ri == re);
3263}
3264
3265/// MatchTwoMethodDeclarations - Checks that two methods have matching type and
3266/// returns true, or false, accordingly.
3267/// TODO: Handle protocol list; such as id<p1,p2> in type comparisons
3268bool SemaObjC::MatchTwoMethodDeclarations(const ObjCMethodDecl *left,
3269 const ObjCMethodDecl *right,
3270 MethodMatchStrategy strategy) {
3271 ASTContext &Context = getASTContext();
3272 if (!matchTypes(Context, strategy, leftQT: left->getReturnType(),
3273 rightQT: right->getReturnType()))
3274 return false;
3275
3276 // If either is hidden, it is not considered to match.
3277 if (!left->isUnconditionallyVisible() || !right->isUnconditionallyVisible())
3278 return false;
3279
3280 if (left->isDirectMethod() != right->isDirectMethod())
3281 return false;
3282
3283 if (getLangOpts().ObjCAutoRefCount &&
3284 (left->hasAttr<NSReturnsRetainedAttr>()
3285 != right->hasAttr<NSReturnsRetainedAttr>() ||
3286 left->hasAttr<NSConsumesSelfAttr>()
3287 != right->hasAttr<NSConsumesSelfAttr>()))
3288 return false;
3289
3290 ObjCMethodDecl::param_const_iterator
3291 li = left->param_begin(), le = left->param_end(), ri = right->param_begin(),
3292 re = right->param_end();
3293
3294 for (; li != le && ri != re; ++li, ++ri) {
3295 assert(ri != right->param_end() && "Param mismatch");
3296 const ParmVarDecl *lparm = *li, *rparm = *ri;
3297
3298 if (!matchTypes(Context, strategy, leftQT: lparm->getType(), rightQT: rparm->getType()))
3299 return false;
3300
3301 if (getLangOpts().ObjCAutoRefCount &&
3302 lparm->hasAttr<NSConsumedAttr>() != rparm->hasAttr<NSConsumedAttr>())
3303 return false;
3304 }
3305 return true;
3306}
3307
3308static bool isMethodContextSameForKindofLookup(ObjCMethodDecl *Method,
3309 ObjCMethodDecl *MethodInList) {
3310 auto *MethodProtocol = dyn_cast<ObjCProtocolDecl>(Val: Method->getDeclContext());
3311 auto *MethodInListProtocol =
3312 dyn_cast<ObjCProtocolDecl>(Val: MethodInList->getDeclContext());
3313 // If this method belongs to a protocol but the method in list does not, or
3314 // vice versa, we say the context is not the same.
3315 if ((MethodProtocol && !MethodInListProtocol) ||
3316 (!MethodProtocol && MethodInListProtocol))
3317 return false;
3318
3319 if (MethodProtocol && MethodInListProtocol)
3320 return true;
3321
3322 ObjCInterfaceDecl *MethodInterface = Method->getClassInterface();
3323 ObjCInterfaceDecl *MethodInListInterface =
3324 MethodInList->getClassInterface();
3325 return MethodInterface == MethodInListInterface;
3326}
3327
3328void SemaObjC::addMethodToGlobalList(ObjCMethodList *List,
3329 ObjCMethodDecl *Method) {
3330 // Record at the head of the list whether there were 0, 1, or >= 2 methods
3331 // inside categories.
3332 if (ObjCCategoryDecl *CD =
3333 dyn_cast<ObjCCategoryDecl>(Val: Method->getDeclContext()))
3334 if (!CD->IsClassExtension() && List->getBits() < 2)
3335 List->setBits(List->getBits() + 1);
3336
3337 // If the list is empty, make it a singleton list.
3338 if (List->getMethod() == nullptr) {
3339 List->setMethod(Method);
3340 List->setNext(nullptr);
3341 return;
3342 }
3343
3344 // We've seen a method with this name, see if we have already seen this type
3345 // signature.
3346 ObjCMethodList *Previous = List;
3347 ObjCMethodList *ListWithSameDeclaration = nullptr;
3348 for (; List; Previous = List, List = List->getNext()) {
3349 // If we are building a module, keep all of the methods.
3350 if (getLangOpts().isCompilingModule())
3351 continue;
3352
3353 bool SameDeclaration = MatchTwoMethodDeclarations(left: Method,
3354 right: List->getMethod());
3355 // Looking for method with a type bound requires the correct context exists.
3356 // We need to insert a method into the list if the context is different.
3357 // If the method's declaration matches the list
3358 // a> the method belongs to a different context: we need to insert it, in
3359 // order to emit the availability message, we need to prioritize over
3360 // availability among the methods with the same declaration.
3361 // b> the method belongs to the same context: there is no need to insert a
3362 // new entry.
3363 // If the method's declaration does not match the list, we insert it to the
3364 // end.
3365 if (!SameDeclaration ||
3366 !isMethodContextSameForKindofLookup(Method, MethodInList: List->getMethod())) {
3367 // Even if two method types do not match, we would like to say
3368 // there is more than one declaration so unavailability/deprecated
3369 // warning is not too noisy.
3370 if (!Method->isDefined())
3371 List->setHasMoreThanOneDecl(true);
3372
3373 // For methods with the same declaration, the one that is deprecated
3374 // should be put in the front for better diagnostics.
3375 if (Method->isDeprecated() && SameDeclaration &&
3376 !ListWithSameDeclaration && !List->getMethod()->isDeprecated())
3377 ListWithSameDeclaration = List;
3378
3379 if (Method->isUnavailable() && SameDeclaration &&
3380 !ListWithSameDeclaration &&
3381 List->getMethod()->getAvailability() < AR_Deprecated)
3382 ListWithSameDeclaration = List;
3383 continue;
3384 }
3385
3386 ObjCMethodDecl *PrevObjCMethod = List->getMethod();
3387
3388 // Propagate the 'defined' bit.
3389 if (Method->isDefined())
3390 PrevObjCMethod->setDefined(true);
3391 else {
3392 // Objective-C doesn't allow an @interface for a class after its
3393 // @implementation. So if Method is not defined and there already is
3394 // an entry for this type signature, Method has to be for a different
3395 // class than PrevObjCMethod.
3396 List->setHasMoreThanOneDecl(true);
3397 }
3398
3399 // If a method is deprecated, push it in the global pool.
3400 // This is used for better diagnostics.
3401 if (Method->isDeprecated()) {
3402 if (!PrevObjCMethod->isDeprecated())
3403 List->setMethod(Method);
3404 }
3405 // If the new method is unavailable, push it into global pool
3406 // unless previous one is deprecated.
3407 if (Method->isUnavailable()) {
3408 if (PrevObjCMethod->getAvailability() < AR_Deprecated)
3409 List->setMethod(Method);
3410 }
3411
3412 return;
3413 }
3414
3415 // We have a new signature for an existing method - add it.
3416 // This is extremely rare. Only 1% of Cocoa selectors are "overloaded".
3417 ObjCMethodList *Mem = SemaRef.BumpAlloc.Allocate<ObjCMethodList>();
3418
3419 // We insert it right before ListWithSameDeclaration.
3420 if (ListWithSameDeclaration) {
3421 auto *List = new (Mem) ObjCMethodList(*ListWithSameDeclaration);
3422 // FIXME: should we clear the other bits in ListWithSameDeclaration?
3423 ListWithSameDeclaration->setMethod(Method);
3424 ListWithSameDeclaration->setNext(List);
3425 return;
3426 }
3427
3428 Previous->setNext(new (Mem) ObjCMethodList(Method));
3429}
3430
3431/// Read the contents of the method pool for a given selector from
3432/// external storage.
3433void SemaObjC::ReadMethodPool(Selector Sel) {
3434 assert(SemaRef.ExternalSource && "We need an external AST source");
3435 SemaRef.ExternalSource->ReadMethodPool(Sel);
3436}
3437
3438void SemaObjC::updateOutOfDateSelector(Selector Sel) {
3439 if (!SemaRef.ExternalSource)
3440 return;
3441 SemaRef.ExternalSource->updateOutOfDateSelector(Sel);
3442}
3443
3444void SemaObjC::AddMethodToGlobalPool(ObjCMethodDecl *Method, bool impl,
3445 bool instance) {
3446 // Ignore methods of invalid containers.
3447 if (cast<Decl>(Val: Method->getDeclContext())->isInvalidDecl())
3448 return;
3449
3450 if (SemaRef.ExternalSource)
3451 ReadMethodPool(Sel: Method->getSelector());
3452
3453 auto &Lists = MethodPool[Method->getSelector()];
3454
3455 Method->setDefined(impl);
3456
3457 ObjCMethodList &Entry = instance ? Lists.first : Lists.second;
3458 addMethodToGlobalList(List: &Entry, Method);
3459}
3460
3461/// Determines if this is an "acceptable" loose mismatch in the global
3462/// method pool. This exists mostly as a hack to get around certain
3463/// global mismatches which we can't afford to make warnings / errors.
3464/// Really, what we want is a way to take a method out of the global
3465/// method pool.
3466static bool isAcceptableMethodMismatch(ObjCMethodDecl *chosen,
3467 ObjCMethodDecl *other) {
3468 if (!chosen->isInstanceMethod())
3469 return false;
3470
3471 if (chosen->isDirectMethod() != other->isDirectMethod())
3472 return false;
3473
3474 Selector sel = chosen->getSelector();
3475 if (!sel.isUnarySelector() || sel.getNameForSlot(argIndex: 0) != "length")
3476 return false;
3477
3478 // Don't complain about mismatches for -length if the method we
3479 // chose has an integral result type.
3480 return (chosen->getReturnType()->isIntegerType());
3481}
3482
3483/// Return true if the given method is wthin the type bound.
3484static bool FilterMethodsByTypeBound(ObjCMethodDecl *Method,
3485 const ObjCObjectType *TypeBound) {
3486 if (!TypeBound)
3487 return true;
3488
3489 if (TypeBound->isObjCId())
3490 // FIXME: should we handle the case of bounding to id<A, B> differently?
3491 return true;
3492
3493 auto *BoundInterface = TypeBound->getInterface();
3494 assert(BoundInterface && "unexpected object type!");
3495
3496 // Check if the Method belongs to a protocol. We should allow any method
3497 // defined in any protocol, because any subclass could adopt the protocol.
3498 auto *MethodProtocol = dyn_cast<ObjCProtocolDecl>(Val: Method->getDeclContext());
3499 if (MethodProtocol) {
3500 return true;
3501 }
3502
3503 // If the Method belongs to a class, check if it belongs to the class
3504 // hierarchy of the class bound.
3505 if (ObjCInterfaceDecl *MethodInterface = Method->getClassInterface()) {
3506 // We allow methods declared within classes that are part of the hierarchy
3507 // of the class bound (superclass of, subclass of, or the same as the class
3508 // bound).
3509 return MethodInterface == BoundInterface ||
3510 MethodInterface->isSuperClassOf(I: BoundInterface) ||
3511 BoundInterface->isSuperClassOf(I: MethodInterface);
3512 }
3513 llvm_unreachable("unknown method context");
3514}
3515
3516/// We first select the type of the method: Instance or Factory, then collect
3517/// all methods with that type.
3518bool SemaObjC::CollectMultipleMethodsInGlobalPool(
3519 Selector Sel, SmallVectorImpl<ObjCMethodDecl *> &Methods,
3520 bool InstanceFirst, bool CheckTheOther, const ObjCObjectType *TypeBound) {
3521 if (SemaRef.ExternalSource)
3522 ReadMethodPool(Sel);
3523
3524 GlobalMethodPool::iterator Pos = MethodPool.find(Val: Sel);
3525 if (Pos == MethodPool.end())
3526 return false;
3527
3528 // Gather the non-hidden methods.
3529 ObjCMethodList &MethList = InstanceFirst ? Pos->second.first :
3530 Pos->second.second;
3531 for (ObjCMethodList *M = &MethList; M; M = M->getNext())
3532 if (M->getMethod() && M->getMethod()->isUnconditionallyVisible()) {
3533 if (FilterMethodsByTypeBound(Method: M->getMethod(), TypeBound))
3534 Methods.push_back(Elt: M->getMethod());
3535 }
3536
3537 // Return if we find any method with the desired kind.
3538 if (!Methods.empty())
3539 return Methods.size() > 1;
3540
3541 if (!CheckTheOther)
3542 return false;
3543
3544 // Gather the other kind.
3545 ObjCMethodList &MethList2 = InstanceFirst ? Pos->second.second :
3546 Pos->second.first;
3547 for (ObjCMethodList *M = &MethList2; M; M = M->getNext())
3548 if (M->getMethod() && M->getMethod()->isUnconditionallyVisible()) {
3549 if (FilterMethodsByTypeBound(Method: M->getMethod(), TypeBound))
3550 Methods.push_back(Elt: M->getMethod());
3551 }
3552
3553 return Methods.size() > 1;
3554}
3555
3556bool SemaObjC::AreMultipleMethodsInGlobalPool(
3557 Selector Sel, ObjCMethodDecl *BestMethod, SourceRange R,
3558 bool receiverIdOrClass, SmallVectorImpl<ObjCMethodDecl *> &Methods) {
3559 // Diagnose finding more than one method in global pool.
3560 SmallVector<ObjCMethodDecl *, 4> FilteredMethods;
3561 FilteredMethods.push_back(Elt: BestMethod);
3562
3563 for (auto *M : Methods)
3564 if (M != BestMethod && !M->hasAttr<UnavailableAttr>())
3565 FilteredMethods.push_back(Elt: M);
3566
3567 if (FilteredMethods.size() > 1)
3568 DiagnoseMultipleMethodInGlobalPool(Methods&: FilteredMethods, Sel, R,
3569 receiverIdOrClass);
3570
3571 GlobalMethodPool::iterator Pos = MethodPool.find(Val: Sel);
3572 // Test for no method in the pool which should not trigger any warning by
3573 // caller.
3574 if (Pos == MethodPool.end())
3575 return true;
3576 ObjCMethodList &MethList =
3577 BestMethod->isInstanceMethod() ? Pos->second.first : Pos->second.second;
3578 return MethList.hasMoreThanOneDecl();
3579}
3580
3581ObjCMethodDecl *SemaObjC::LookupMethodInGlobalPool(Selector Sel, SourceRange R,
3582 bool receiverIdOrClass,
3583 bool instance) {
3584 if (SemaRef.ExternalSource)
3585 ReadMethodPool(Sel);
3586
3587 GlobalMethodPool::iterator Pos = MethodPool.find(Val: Sel);
3588 if (Pos == MethodPool.end())
3589 return nullptr;
3590
3591 // Gather the non-hidden methods.
3592 ObjCMethodList &MethList = instance ? Pos->second.first : Pos->second.second;
3593 for (ObjCMethodList *M = &MethList; M; M = M->getNext()) {
3594 if (M->getMethod() && M->getMethod()->isUnconditionallyVisible())
3595 return M->getMethod();
3596 }
3597 return nullptr;
3598}
3599
3600void SemaObjC::DiagnoseMultipleMethodInGlobalPool(
3601 SmallVectorImpl<ObjCMethodDecl *> &Methods, Selector Sel, SourceRange R,
3602 bool receiverIdOrClass) {
3603 // We found multiple methods, so we may have to complain.
3604 bool issueDiagnostic = false, issueError = false;
3605
3606 // We support a warning which complains about *any* difference in
3607 // method signature.
3608 bool strictSelectorMatch =
3609 receiverIdOrClass &&
3610 !getDiagnostics().isIgnored(DiagID: diag::warn_strict_multiple_method_decl,
3611 Loc: R.getBegin());
3612 if (strictSelectorMatch) {
3613 for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
3614 if (!MatchTwoMethodDeclarations(left: Methods[0], right: Methods[I], strategy: MMS_strict)) {
3615 issueDiagnostic = true;
3616 break;
3617 }
3618 }
3619 }
3620
3621 // If we didn't see any strict differences, we won't see any loose
3622 // differences. In ARC, however, we also need to check for loose
3623 // mismatches, because most of them are errors.
3624 if (!strictSelectorMatch ||
3625 (issueDiagnostic && getLangOpts().ObjCAutoRefCount))
3626 for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
3627 // This checks if the methods differ in type mismatch.
3628 if (!MatchTwoMethodDeclarations(left: Methods[0], right: Methods[I], strategy: MMS_loose) &&
3629 !isAcceptableMethodMismatch(chosen: Methods[0], other: Methods[I])) {
3630 issueDiagnostic = true;
3631 if (getLangOpts().ObjCAutoRefCount)
3632 issueError = true;
3633 break;
3634 }
3635 }
3636
3637 if (issueDiagnostic) {
3638 if (issueError)
3639 Diag(Loc: R.getBegin(), DiagID: diag::err_arc_multiple_method_decl) << Sel << R;
3640 else if (strictSelectorMatch)
3641 Diag(Loc: R.getBegin(), DiagID: diag::warn_strict_multiple_method_decl) << Sel << R;
3642 else
3643 Diag(Loc: R.getBegin(), DiagID: diag::warn_multiple_method_decl) << Sel << R;
3644
3645 Diag(Loc: Methods[0]->getBeginLoc(),
3646 DiagID: issueError ? diag::note_possibility : diag::note_using)
3647 << Methods[0]->getSourceRange();
3648 for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
3649 Diag(Loc: Methods[I]->getBeginLoc(), DiagID: diag::note_also_found)
3650 << Methods[I]->getSourceRange();
3651 }
3652 }
3653}
3654
3655ObjCMethodDecl *SemaObjC::LookupImplementedMethodInGlobalPool(Selector Sel) {
3656 GlobalMethodPool::iterator Pos = MethodPool.find(Val: Sel);
3657 if (Pos == MethodPool.end())
3658 return nullptr;
3659
3660 auto &Methods = Pos->second;
3661 for (const ObjCMethodList *Method = &Methods.first; Method;
3662 Method = Method->getNext())
3663 if (Method->getMethod() &&
3664 (Method->getMethod()->isDefined() ||
3665 Method->getMethod()->isPropertyAccessor()))
3666 return Method->getMethod();
3667
3668 for (const ObjCMethodList *Method = &Methods.second; Method;
3669 Method = Method->getNext())
3670 if (Method->getMethod() &&
3671 (Method->getMethod()->isDefined() ||
3672 Method->getMethod()->isPropertyAccessor()))
3673 return Method->getMethod();
3674 return nullptr;
3675}
3676
3677static void
3678HelperSelectorsForTypoCorrection(
3679 SmallVectorImpl<const ObjCMethodDecl *> &BestMethod,
3680 StringRef Typo, const ObjCMethodDecl * Method) {
3681 const unsigned MaxEditDistance = 1;
3682 unsigned BestEditDistance = MaxEditDistance + 1;
3683 std::string MethodName = Method->getSelector().getAsString();
3684
3685 unsigned MinPossibleEditDistance = abs(x: (int)MethodName.size() - (int)Typo.size());
3686 if (MinPossibleEditDistance > 0 &&
3687 Typo.size() / MinPossibleEditDistance < 1)
3688 return;
3689 unsigned EditDistance = Typo.edit_distance(Other: MethodName, AllowReplacements: true, MaxEditDistance);
3690 if (EditDistance > MaxEditDistance)
3691 return;
3692 if (EditDistance == BestEditDistance)
3693 BestMethod.push_back(Elt: Method);
3694 else if (EditDistance < BestEditDistance) {
3695 BestMethod.clear();
3696 BestMethod.push_back(Elt: Method);
3697 }
3698}
3699
3700static bool HelperIsMethodInObjCType(Sema &S, Selector Sel,
3701 QualType ObjectType) {
3702 if (ObjectType.isNull())
3703 return true;
3704 if (S.ObjC().LookupMethodInObjectType(Sel, Ty: ObjectType,
3705 IsInstance: true /*Instance method*/))
3706 return true;
3707 return S.ObjC().LookupMethodInObjectType(Sel, Ty: ObjectType,
3708 IsInstance: false /*Class method*/) != nullptr;
3709}
3710
3711const ObjCMethodDecl *
3712SemaObjC::SelectorsForTypoCorrection(Selector Sel, QualType ObjectType) {
3713 unsigned NumArgs = Sel.getNumArgs();
3714 SmallVector<const ObjCMethodDecl *, 8> Methods;
3715 bool ObjectIsId = true, ObjectIsClass = true;
3716 if (ObjectType.isNull())
3717 ObjectIsId = ObjectIsClass = false;
3718 else if (!ObjectType->isObjCObjectPointerType())
3719 return nullptr;
3720 else if (const ObjCObjectPointerType *ObjCPtr =
3721 ObjectType->getAsObjCInterfacePointerType()) {
3722 ObjectType = QualType(ObjCPtr->getInterfaceType(), 0);
3723 ObjectIsId = ObjectIsClass = false;
3724 }
3725 else if (ObjectType->isObjCIdType() || ObjectType->isObjCQualifiedIdType())
3726 ObjectIsClass = false;
3727 else if (ObjectType->isObjCClassType() || ObjectType->isObjCQualifiedClassType())
3728 ObjectIsId = false;
3729 else
3730 return nullptr;
3731
3732 for (GlobalMethodPool::iterator b = MethodPool.begin(),
3733 e = MethodPool.end(); b != e; b++) {
3734 // instance methods
3735 for (ObjCMethodList *M = &b->second.first; M; M=M->getNext())
3736 if (M->getMethod() &&
3737 (M->getMethod()->getSelector().getNumArgs() == NumArgs) &&
3738 (M->getMethod()->getSelector() != Sel)) {
3739 if (ObjectIsId)
3740 Methods.push_back(Elt: M->getMethod());
3741 else if (!ObjectIsClass &&
3742 HelperIsMethodInObjCType(
3743 S&: SemaRef, Sel: M->getMethod()->getSelector(), ObjectType))
3744 Methods.push_back(Elt: M->getMethod());
3745 }
3746 // class methods
3747 for (ObjCMethodList *M = &b->second.second; M; M=M->getNext())
3748 if (M->getMethod() &&
3749 (M->getMethod()->getSelector().getNumArgs() == NumArgs) &&
3750 (M->getMethod()->getSelector() != Sel)) {
3751 if (ObjectIsClass)
3752 Methods.push_back(Elt: M->getMethod());
3753 else if (!ObjectIsId &&
3754 HelperIsMethodInObjCType(
3755 S&: SemaRef, Sel: M->getMethod()->getSelector(), ObjectType))
3756 Methods.push_back(Elt: M->getMethod());
3757 }
3758 }
3759
3760 SmallVector<const ObjCMethodDecl *, 8> SelectedMethods;
3761 for (unsigned i = 0, e = Methods.size(); i < e; i++) {
3762 HelperSelectorsForTypoCorrection(BestMethod&: SelectedMethods,
3763 Typo: Sel.getAsString(), Method: Methods[i]);
3764 }
3765 return (SelectedMethods.size() == 1) ? SelectedMethods[0] : nullptr;
3766}
3767
3768/// DiagnoseDuplicateIvars -
3769/// Check for duplicate ivars in the entire class at the start of
3770/// \@implementation. This becomes necessary because class extension can
3771/// add ivars to a class in random order which will not be known until
3772/// class's \@implementation is seen.
3773void SemaObjC::DiagnoseDuplicateIvars(ObjCInterfaceDecl *ID,
3774 ObjCInterfaceDecl *SID) {
3775 for (auto *Ivar : ID->ivars()) {
3776 if (Ivar->isInvalidDecl())
3777 continue;
3778 if (IdentifierInfo *II = Ivar->getIdentifier()) {
3779 ObjCIvarDecl* prevIvar = SID->lookupInstanceVariable(IVarName: II);
3780 if (prevIvar) {
3781 Diag(Loc: Ivar->getLocation(), DiagID: diag::err_duplicate_member) << II;
3782 Diag(Loc: prevIvar->getLocation(), DiagID: diag::note_previous_declaration);
3783 Ivar->setInvalidDecl();
3784 }
3785 }
3786 }
3787}
3788
3789/// Diagnose attempts to define ARC-__weak ivars when __weak is disabled.
3790static void DiagnoseWeakIvars(Sema &S, ObjCImplementationDecl *ID) {
3791 if (S.getLangOpts().ObjCWeak) return;
3792
3793 for (auto ivar = ID->getClassInterface()->all_declared_ivar_begin();
3794 ivar; ivar = ivar->getNextIvar()) {
3795 if (ivar->isInvalidDecl()) continue;
3796 if (ivar->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
3797 if (S.getLangOpts().ObjCWeakRuntime) {
3798 S.Diag(Loc: ivar->getLocation(), DiagID: diag::err_arc_weak_disabled);
3799 } else {
3800 S.Diag(Loc: ivar->getLocation(), DiagID: diag::err_arc_weak_no_runtime);
3801 }
3802 }
3803 }
3804}
3805
3806/// Diagnose attempts to use flexible array member with retainable object type.
3807static void DiagnoseRetainableFlexibleArrayMember(Sema &S,
3808 ObjCInterfaceDecl *ID) {
3809 if (!S.getLangOpts().ObjCAutoRefCount)
3810 return;
3811
3812 for (auto ivar = ID->all_declared_ivar_begin(); ivar;
3813 ivar = ivar->getNextIvar()) {
3814 if (ivar->isInvalidDecl())
3815 continue;
3816 QualType IvarTy = ivar->getType();
3817 if (IvarTy->isIncompleteArrayType() &&
3818 (IvarTy.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) &&
3819 IvarTy->isObjCLifetimeType()) {
3820 S.Diag(Loc: ivar->getLocation(), DiagID: diag::err_flexible_array_arc_retainable);
3821 ivar->setInvalidDecl();
3822 }
3823 }
3824}
3825
3826SemaObjC::ObjCContainerKind SemaObjC::getObjCContainerKind() const {
3827 switch (SemaRef.CurContext->getDeclKind()) {
3828 case Decl::ObjCInterface:
3829 return SemaObjC::OCK_Interface;
3830 case Decl::ObjCProtocol:
3831 return SemaObjC::OCK_Protocol;
3832 case Decl::ObjCCategory:
3833 if (cast<ObjCCategoryDecl>(Val: SemaRef.CurContext)->IsClassExtension())
3834 return SemaObjC::OCK_ClassExtension;
3835 return SemaObjC::OCK_Category;
3836 case Decl::ObjCImplementation:
3837 return SemaObjC::OCK_Implementation;
3838 case Decl::ObjCCategoryImpl:
3839 return SemaObjC::OCK_CategoryImplementation;
3840
3841 default:
3842 return SemaObjC::OCK_None;
3843 }
3844}
3845
3846static bool IsVariableSizedType(QualType T) {
3847 if (T->isIncompleteArrayType())
3848 return true;
3849 const auto *RD = T->getAsRecordDecl();
3850 return RD && RD->hasFlexibleArrayMember();
3851}
3852
3853static void DiagnoseVariableSizedIvars(Sema &S, ObjCContainerDecl *OCD) {
3854 ObjCInterfaceDecl *IntfDecl = nullptr;
3855 ObjCInterfaceDecl::ivar_range Ivars = llvm::make_range(
3856 x: ObjCInterfaceDecl::ivar_iterator(), y: ObjCInterfaceDecl::ivar_iterator());
3857 if ((IntfDecl = dyn_cast<ObjCInterfaceDecl>(Val: OCD))) {
3858 Ivars = IntfDecl->ivars();
3859 } else if (auto *ImplDecl = dyn_cast<ObjCImplementationDecl>(Val: OCD)) {
3860 IntfDecl = ImplDecl->getClassInterface();
3861 Ivars = ImplDecl->ivars();
3862 } else if (auto *CategoryDecl = dyn_cast<ObjCCategoryDecl>(Val: OCD)) {
3863 if (CategoryDecl->IsClassExtension()) {
3864 IntfDecl = CategoryDecl->getClassInterface();
3865 Ivars = CategoryDecl->ivars();
3866 }
3867 }
3868
3869 // Check if variable sized ivar is in interface and visible to subclasses.
3870 if (!isa<ObjCInterfaceDecl>(Val: OCD)) {
3871 for (auto *ivar : Ivars) {
3872 if (!ivar->isInvalidDecl() && IsVariableSizedType(T: ivar->getType())) {
3873 S.Diag(Loc: ivar->getLocation(), DiagID: diag::warn_variable_sized_ivar_visibility)
3874 << ivar->getDeclName() << ivar->getType();
3875 }
3876 }
3877 }
3878
3879 // Subsequent checks require interface decl.
3880 if (!IntfDecl)
3881 return;
3882
3883 // Check if variable sized ivar is followed by another ivar.
3884 for (ObjCIvarDecl *ivar = IntfDecl->all_declared_ivar_begin(); ivar;
3885 ivar = ivar->getNextIvar()) {
3886 if (ivar->isInvalidDecl() || !ivar->getNextIvar())
3887 continue;
3888 QualType IvarTy = ivar->getType();
3889 bool IsInvalidIvar = false;
3890 if (IvarTy->isIncompleteArrayType()) {
3891 S.Diag(Loc: ivar->getLocation(), DiagID: diag::err_flexible_array_not_at_end)
3892 << ivar->getDeclName() << IvarTy
3893 << TagTypeKind::Class; // Use "class" for Obj-C.
3894 IsInvalidIvar = true;
3895 } else if (const auto *RD = IvarTy->getAsRecordDecl();
3896 RD && RD->hasFlexibleArrayMember()) {
3897 S.Diag(Loc: ivar->getLocation(), DiagID: diag::err_objc_variable_sized_type_not_at_end)
3898 << ivar->getDeclName() << IvarTy;
3899 IsInvalidIvar = true;
3900 }
3901 if (IsInvalidIvar) {
3902 S.Diag(Loc: ivar->getNextIvar()->getLocation(),
3903 DiagID: diag::note_next_ivar_declaration)
3904 << ivar->getNextIvar()->getSynthesize();
3905 ivar->setInvalidDecl();
3906 }
3907 }
3908
3909 // Check if ObjC container adds ivars after variable sized ivar in superclass.
3910 // Perform the check only if OCD is the first container to declare ivars to
3911 // avoid multiple warnings for the same ivar.
3912 ObjCIvarDecl *FirstIvar =
3913 (Ivars.begin() == Ivars.end()) ? nullptr : *Ivars.begin();
3914 if (FirstIvar && (FirstIvar == IntfDecl->all_declared_ivar_begin())) {
3915 const ObjCInterfaceDecl *SuperClass = IntfDecl->getSuperClass();
3916 while (SuperClass && SuperClass->ivar_empty())
3917 SuperClass = SuperClass->getSuperClass();
3918 if (SuperClass) {
3919 auto IvarIter = SuperClass->ivar_begin();
3920 std::advance(i&: IvarIter, n: SuperClass->ivar_size() - 1);
3921 const ObjCIvarDecl *LastIvar = *IvarIter;
3922 if (IsVariableSizedType(T: LastIvar->getType())) {
3923 S.Diag(Loc: FirstIvar->getLocation(),
3924 DiagID: diag::warn_superclass_variable_sized_type_not_at_end)
3925 << FirstIvar->getDeclName() << LastIvar->getDeclName()
3926 << LastIvar->getType() << SuperClass->getDeclName();
3927 S.Diag(Loc: LastIvar->getLocation(), DiagID: diag::note_entity_declared_at)
3928 << LastIvar->getDeclName();
3929 }
3930 }
3931 }
3932}
3933
3934static void DiagnoseCategoryDirectMembersProtocolConformance(
3935 Sema &S, ObjCProtocolDecl *PDecl, ObjCCategoryDecl *CDecl);
3936
3937static void DiagnoseCategoryDirectMembersProtocolConformance(
3938 Sema &S, ObjCCategoryDecl *CDecl,
3939 const llvm::iterator_range<ObjCProtocolList::iterator> &Protocols) {
3940 for (auto *PI : Protocols)
3941 DiagnoseCategoryDirectMembersProtocolConformance(S, PDecl: PI, CDecl);
3942}
3943
3944static void DiagnoseCategoryDirectMembersProtocolConformance(
3945 Sema &S, ObjCProtocolDecl *PDecl, ObjCCategoryDecl *CDecl) {
3946 if (!PDecl->isThisDeclarationADefinition() && PDecl->getDefinition())
3947 PDecl = PDecl->getDefinition();
3948
3949 llvm::SmallVector<const Decl *, 4> DirectMembers;
3950 const auto *IDecl = CDecl->getClassInterface();
3951 for (auto *MD : PDecl->methods()) {
3952 if (!MD->isPropertyAccessor()) {
3953 if (const auto *CMD =
3954 IDecl->getMethod(Sel: MD->getSelector(), isInstance: MD->isInstanceMethod())) {
3955 if (CMD->isDirectMethod())
3956 DirectMembers.push_back(Elt: CMD);
3957 }
3958 }
3959 }
3960 for (auto *PD : PDecl->properties()) {
3961 if (const auto *CPD = IDecl->FindPropertyVisibleInPrimaryClass(
3962 PropertyId: PD->getIdentifier(),
3963 QueryKind: PD->isClassProperty()
3964 ? ObjCPropertyQueryKind::OBJC_PR_query_class
3965 : ObjCPropertyQueryKind::OBJC_PR_query_instance)) {
3966 if (CPD->isDirectProperty())
3967 DirectMembers.push_back(Elt: CPD);
3968 }
3969 }
3970 if (!DirectMembers.empty()) {
3971 S.Diag(Loc: CDecl->getLocation(), DiagID: diag::err_objc_direct_protocol_conformance)
3972 << CDecl->IsClassExtension() << CDecl << PDecl << IDecl;
3973 for (const auto *MD : DirectMembers)
3974 S.Diag(Loc: MD->getLocation(), DiagID: diag::note_direct_member_here);
3975 return;
3976 }
3977
3978 // Check on this protocols's referenced protocols, recursively.
3979 DiagnoseCategoryDirectMembersProtocolConformance(S, CDecl,
3980 Protocols: PDecl->protocols());
3981}
3982
3983// Note: For class/category implementations, allMethods is always null.
3984Decl *SemaObjC::ActOnAtEnd(Scope *S, SourceRange AtEnd,
3985 ArrayRef<Decl *> allMethods,
3986 ArrayRef<DeclGroupPtrTy> allTUVars) {
3987 ASTContext &Context = getASTContext();
3988 if (getObjCContainerKind() == SemaObjC::OCK_None)
3989 return nullptr;
3990
3991 assert(AtEnd.isValid() && "Invalid location for '@end'");
3992
3993 auto *OCD = cast<ObjCContainerDecl>(Val: SemaRef.CurContext);
3994 Decl *ClassDecl = OCD;
3995
3996 bool isInterfaceDeclKind =
3997 isa<ObjCInterfaceDecl>(Val: ClassDecl) || isa<ObjCCategoryDecl>(Val: ClassDecl)
3998 || isa<ObjCProtocolDecl>(Val: ClassDecl);
3999 bool checkIdenticalMethods = isa<ObjCImplementationDecl>(Val: ClassDecl);
4000
4001 // Make synthesized accessor stub functions visible.
4002 // ActOnPropertyImplDecl() creates them as not visible in case
4003 // they are overridden by an explicit method that is encountered
4004 // later.
4005 if (auto *OID = dyn_cast<ObjCImplementationDecl>(Val: SemaRef.CurContext)) {
4006 for (auto *PropImpl : OID->property_impls()) {
4007 if (auto *Getter = PropImpl->getGetterMethodDecl())
4008 if (Getter->isSynthesizedAccessorStub())
4009 OID->addDecl(D: Getter);
4010 if (auto *Setter = PropImpl->getSetterMethodDecl())
4011 if (Setter->isSynthesizedAccessorStub())
4012 OID->addDecl(D: Setter);
4013 }
4014 }
4015
4016 // FIXME: Remove these and use the ObjCContainerDecl/DeclContext.
4017 llvm::DenseMap<Selector, const ObjCMethodDecl*> InsMap;
4018 llvm::DenseMap<Selector, const ObjCMethodDecl*> ClsMap;
4019
4020 for (unsigned i = 0, e = allMethods.size(); i != e; i++ ) {
4021 ObjCMethodDecl *Method =
4022 cast_or_null<ObjCMethodDecl>(Val: allMethods[i]);
4023
4024 if (!Method) continue; // Already issued a diagnostic.
4025 if (Method->isInstanceMethod()) {
4026 /// Check for instance method of the same name with incompatible types
4027 const ObjCMethodDecl *&PrevMethod = InsMap[Method->getSelector()];
4028 bool match = PrevMethod ? MatchTwoMethodDeclarations(left: Method, right: PrevMethod)
4029 : false;
4030 if ((isInterfaceDeclKind && PrevMethod && !match)
4031 || (checkIdenticalMethods && match)) {
4032 Diag(Loc: Method->getLocation(), DiagID: diag::err_duplicate_method_decl)
4033 << Method->getDeclName();
4034 Diag(Loc: PrevMethod->getLocation(), DiagID: diag::note_previous_declaration);
4035 Method->setInvalidDecl();
4036 } else {
4037 if (PrevMethod) {
4038 Method->setAsRedeclaration(PrevMethod);
4039 if (!Context.getSourceManager().isInSystemHeader(
4040 Loc: Method->getLocation()))
4041 Diag(Loc: Method->getLocation(), DiagID: diag::warn_duplicate_method_decl)
4042 << Method->getDeclName();
4043 Diag(Loc: PrevMethod->getLocation(), DiagID: diag::note_previous_declaration);
4044 }
4045 InsMap[Method->getSelector()] = Method;
4046 /// The following allows us to typecheck messages to "id".
4047 AddInstanceMethodToGlobalPool(Method);
4048 }
4049 } else {
4050 /// Check for class method of the same name with incompatible types
4051 const ObjCMethodDecl *&PrevMethod = ClsMap[Method->getSelector()];
4052 bool match = PrevMethod ? MatchTwoMethodDeclarations(left: Method, right: PrevMethod)
4053 : false;
4054 if ((isInterfaceDeclKind && PrevMethod && !match)
4055 || (checkIdenticalMethods && match)) {
4056 Diag(Loc: Method->getLocation(), DiagID: diag::err_duplicate_method_decl)
4057 << Method->getDeclName();
4058 Diag(Loc: PrevMethod->getLocation(), DiagID: diag::note_previous_declaration);
4059 Method->setInvalidDecl();
4060 } else {
4061 if (PrevMethod) {
4062 Method->setAsRedeclaration(PrevMethod);
4063 if (!Context.getSourceManager().isInSystemHeader(
4064 Loc: Method->getLocation()))
4065 Diag(Loc: Method->getLocation(), DiagID: diag::warn_duplicate_method_decl)
4066 << Method->getDeclName();
4067 Diag(Loc: PrevMethod->getLocation(), DiagID: diag::note_previous_declaration);
4068 }
4069 ClsMap[Method->getSelector()] = Method;
4070 AddFactoryMethodToGlobalPool(Method);
4071 }
4072 }
4073 }
4074 if (isa<ObjCInterfaceDecl>(Val: ClassDecl)) {
4075 // Nothing to do here.
4076 } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(Val: ClassDecl)) {
4077 // Categories are used to extend the class by declaring new methods.
4078 // By the same token, they are also used to add new properties. No
4079 // need to compare the added property to those in the class.
4080
4081 if (C->IsClassExtension()) {
4082 ObjCInterfaceDecl *CCPrimary = C->getClassInterface();
4083 DiagnoseClassExtensionDupMethods(CAT: C, ID: CCPrimary);
4084 }
4085
4086 DiagnoseCategoryDirectMembersProtocolConformance(S&: SemaRef, CDecl: C,
4087 Protocols: C->protocols());
4088 }
4089 if (ObjCContainerDecl *CDecl = dyn_cast<ObjCContainerDecl>(Val: ClassDecl)) {
4090 if (CDecl->getIdentifier())
4091 // ProcessPropertyDecl is responsible for diagnosing conflicts with any
4092 // user-defined setter/getter. It also synthesizes setter/getter methods
4093 // and adds them to the DeclContext and global method pools.
4094 for (auto *I : CDecl->properties())
4095 ProcessPropertyDecl(property: I);
4096 CDecl->setAtEndRange(AtEnd);
4097 }
4098 if (ObjCImplementationDecl *IC=dyn_cast<ObjCImplementationDecl>(Val: ClassDecl)) {
4099 IC->setAtEndRange(AtEnd);
4100 if (ObjCInterfaceDecl* IDecl = IC->getClassInterface()) {
4101 // Any property declared in a class extension might have user
4102 // declared setter or getter in current class extension or one
4103 // of the other class extensions. Mark them as synthesized as
4104 // property will be synthesized when property with same name is
4105 // seen in the @implementation.
4106 for (const auto *Ext : IDecl->visible_extensions()) {
4107 for (const auto *Property : Ext->instance_properties()) {
4108 // Skip over properties declared @dynamic
4109 if (const ObjCPropertyImplDecl *PIDecl
4110 = IC->FindPropertyImplDecl(propertyId: Property->getIdentifier(),
4111 queryKind: Property->getQueryKind()))
4112 if (PIDecl->getPropertyImplementation()
4113 == ObjCPropertyImplDecl::Dynamic)
4114 continue;
4115
4116 for (const auto *Ext : IDecl->visible_extensions()) {
4117 if (ObjCMethodDecl *GetterMethod =
4118 Ext->getInstanceMethod(Sel: Property->getGetterName()))
4119 GetterMethod->setPropertyAccessor(true);
4120 if (!Property->isReadOnly())
4121 if (ObjCMethodDecl *SetterMethod
4122 = Ext->getInstanceMethod(Sel: Property->getSetterName()))
4123 SetterMethod->setPropertyAccessor(true);
4124 }
4125 }
4126 }
4127 ImplMethodsVsClassMethods(S, IMPDecl: IC, CDecl: IDecl);
4128 AtomicPropertySetterGetterRules(IMPDecl: IC, IDecl);
4129 DiagnoseOwningPropertyGetterSynthesis(D: IC);
4130 DiagnoseUnusedBackingIvarInAccessor(S, ImplD: IC);
4131 if (IDecl->hasDesignatedInitializers())
4132 DiagnoseMissingDesignatedInitOverrides(ImplD: IC, IFD: IDecl);
4133 DiagnoseWeakIvars(S&: SemaRef, ID: IC);
4134 DiagnoseRetainableFlexibleArrayMember(S&: SemaRef, ID: IDecl);
4135
4136 bool HasRootClassAttr = IDecl->hasAttr<ObjCRootClassAttr>();
4137 if (IDecl->getSuperClass() == nullptr) {
4138 // This class has no superclass, so check that it has been marked with
4139 // __attribute((objc_root_class)).
4140 if (!HasRootClassAttr) {
4141 SourceLocation DeclLoc(IDecl->getLocation());
4142 SourceLocation SuperClassLoc(SemaRef.getLocForEndOfToken(Loc: DeclLoc));
4143 Diag(Loc: DeclLoc, DiagID: diag::warn_objc_root_class_missing)
4144 << IDecl->getIdentifier();
4145 // See if NSObject is in the current scope, and if it is, suggest
4146 // adding " : NSObject " to the class declaration.
4147 NamedDecl *IF = SemaRef.LookupSingleName(
4148 S: SemaRef.TUScope, Name: NSAPIObj->getNSClassId(K: NSAPI::ClassId_NSObject),
4149 Loc: DeclLoc, NameKind: Sema::LookupOrdinaryName);
4150 ObjCInterfaceDecl *NSObjectDecl = dyn_cast_or_null<ObjCInterfaceDecl>(Val: IF);
4151 if (NSObjectDecl && NSObjectDecl->getDefinition()) {
4152 Diag(Loc: SuperClassLoc, DiagID: diag::note_objc_needs_superclass)
4153 << FixItHint::CreateInsertion(InsertionLoc: SuperClassLoc, Code: " : NSObject ");
4154 } else {
4155 Diag(Loc: SuperClassLoc, DiagID: diag::note_objc_needs_superclass);
4156 }
4157 }
4158 } else if (HasRootClassAttr) {
4159 // Complain that only root classes may have this attribute.
4160 Diag(Loc: IDecl->getLocation(), DiagID: diag::err_objc_root_class_subclass);
4161 }
4162
4163 if (const ObjCInterfaceDecl *Super = IDecl->getSuperClass()) {
4164 // An interface can subclass another interface with a
4165 // objc_subclassing_restricted attribute when it has that attribute as
4166 // well (because of interfaces imported from Swift). Therefore we have
4167 // to check if we can subclass in the implementation as well.
4168 if (IDecl->hasAttr<ObjCSubclassingRestrictedAttr>() &&
4169 Super->hasAttr<ObjCSubclassingRestrictedAttr>()) {
4170 Diag(Loc: IC->getLocation(), DiagID: diag::err_restricted_superclass_mismatch);
4171 Diag(Loc: Super->getLocation(), DiagID: diag::note_class_declared);
4172 }
4173 }
4174
4175 if (IDecl->hasAttr<ObjCClassStubAttr>())
4176 Diag(Loc: IC->getLocation(), DiagID: diag::err_implementation_of_class_stub);
4177
4178 if (getLangOpts().ObjCRuntime.isNonFragile()) {
4179 while (IDecl->getSuperClass()) {
4180 DiagnoseDuplicateIvars(ID: IDecl, SID: IDecl->getSuperClass());
4181 IDecl = IDecl->getSuperClass();
4182 }
4183 }
4184 }
4185 SetIvarInitializers(IC);
4186 } else if (ObjCCategoryImplDecl* CatImplClass =
4187 dyn_cast<ObjCCategoryImplDecl>(Val: ClassDecl)) {
4188 CatImplClass->setAtEndRange(AtEnd);
4189
4190 // Find category interface decl and then check that all methods declared
4191 // in this interface are implemented in the category @implementation.
4192 if (ObjCInterfaceDecl* IDecl = CatImplClass->getClassInterface()) {
4193 if (ObjCCategoryDecl *Cat
4194 = IDecl->FindCategoryDeclaration(CategoryId: CatImplClass->getIdentifier())) {
4195 ImplMethodsVsClassMethods(S, IMPDecl: CatImplClass, CDecl: Cat);
4196 }
4197 }
4198 } else if (const auto *IntfDecl = dyn_cast<ObjCInterfaceDecl>(Val: ClassDecl)) {
4199 if (const ObjCInterfaceDecl *Super = IntfDecl->getSuperClass()) {
4200 if (!IntfDecl->hasAttr<ObjCSubclassingRestrictedAttr>() &&
4201 Super->hasAttr<ObjCSubclassingRestrictedAttr>()) {
4202 Diag(Loc: IntfDecl->getLocation(), DiagID: diag::err_restricted_superclass_mismatch);
4203 Diag(Loc: Super->getLocation(), DiagID: diag::note_class_declared);
4204 }
4205 }
4206
4207 if (IntfDecl->hasAttr<ObjCClassStubAttr>() &&
4208 !IntfDecl->hasAttr<ObjCSubclassingRestrictedAttr>())
4209 Diag(Loc: IntfDecl->getLocation(), DiagID: diag::err_class_stub_subclassing_mismatch);
4210 }
4211 DiagnoseVariableSizedIvars(S&: SemaRef, OCD);
4212 if (isInterfaceDeclKind) {
4213 // Reject invalid vardecls.
4214 for (unsigned i = 0, e = allTUVars.size(); i != e; i++) {
4215 DeclGroupRef DG = allTUVars[i].get();
4216 for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
4217 if (VarDecl *VDecl = dyn_cast<VarDecl>(Val: *I)) {
4218 if (!VDecl->hasExternalStorage())
4219 Diag(Loc: VDecl->getLocation(), DiagID: diag::err_objc_var_decl_inclass);
4220 }
4221 }
4222 }
4223 ActOnObjCContainerFinishDefinition();
4224
4225 for (unsigned i = 0, e = allTUVars.size(); i != e; i++) {
4226 DeclGroupRef DG = allTUVars[i].get();
4227 for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
4228 (*I)->setTopLevelDeclInObjCContainer();
4229 SemaRef.Consumer.HandleTopLevelDeclInObjCContainer(D: DG);
4230 }
4231
4232 SemaRef.ActOnDocumentableDecl(D: ClassDecl);
4233 return ClassDecl;
4234}
4235
4236/// CvtQTToAstBitMask - utility routine to produce an AST bitmask for
4237/// objective-c's type qualifier from the parser version of the same info.
4238static Decl::ObjCDeclQualifier
4239CvtQTToAstBitMask(ObjCDeclSpec::ObjCDeclQualifier PQTVal) {
4240 return (Decl::ObjCDeclQualifier) (unsigned) PQTVal;
4241}
4242
4243/// Check whether the declared result type of the given Objective-C
4244/// method declaration is compatible with the method's class.
4245///
4246static SemaObjC::ResultTypeCompatibilityKind
4247CheckRelatedResultTypeCompatibility(Sema &S, ObjCMethodDecl *Method,
4248 ObjCInterfaceDecl *CurrentClass) {
4249 QualType ResultType = Method->getReturnType();
4250
4251 // If an Objective-C method inherits its related result type, then its
4252 // declared result type must be compatible with its own class type. The
4253 // declared result type is compatible if:
4254 if (const ObjCObjectPointerType *ResultObjectType
4255 = ResultType->getAs<ObjCObjectPointerType>()) {
4256 // - it is id or qualified id, or
4257 if (ResultObjectType->isObjCIdType() ||
4258 ResultObjectType->isObjCQualifiedIdType())
4259 return SemaObjC::RTC_Compatible;
4260
4261 if (CurrentClass) {
4262 if (ObjCInterfaceDecl *ResultClass
4263 = ResultObjectType->getInterfaceDecl()) {
4264 // - it is the same as the method's class type, or
4265 if (declaresSameEntity(D1: CurrentClass, D2: ResultClass))
4266 return SemaObjC::RTC_Compatible;
4267
4268 // - it is a superclass of the method's class type
4269 if (ResultClass->isSuperClassOf(I: CurrentClass))
4270 return SemaObjC::RTC_Compatible;
4271 }
4272 } else {
4273 // Any Objective-C pointer type might be acceptable for a protocol
4274 // method; we just don't know.
4275 return SemaObjC::RTC_Unknown;
4276 }
4277 }
4278
4279 return SemaObjC::RTC_Incompatible;
4280}
4281
4282namespace {
4283/// A helper class for searching for methods which a particular method
4284/// overrides.
4285class OverrideSearch {
4286public:
4287 const ObjCMethodDecl *Method;
4288 llvm::SmallSetVector<ObjCMethodDecl*, 4> Overridden;
4289 bool Recursive;
4290
4291public:
4292 OverrideSearch(Sema &S, const ObjCMethodDecl *method) : Method(method) {
4293 Selector selector = method->getSelector();
4294
4295 // Bypass this search if we've never seen an instance/class method
4296 // with this selector before.
4297 SemaObjC::GlobalMethodPool::iterator it =
4298 S.ObjC().MethodPool.find(Val: selector);
4299 if (it == S.ObjC().MethodPool.end()) {
4300 if (!S.getExternalSource()) return;
4301 S.ObjC().ReadMethodPool(Sel: selector);
4302
4303 it = S.ObjC().MethodPool.find(Val: selector);
4304 if (it == S.ObjC().MethodPool.end())
4305 return;
4306 }
4307 const ObjCMethodList &list =
4308 method->isInstanceMethod() ? it->second.first : it->second.second;
4309 if (!list.getMethod()) return;
4310
4311 const ObjCContainerDecl *container
4312 = cast<ObjCContainerDecl>(Val: method->getDeclContext());
4313
4314 // Prevent the search from reaching this container again. This is
4315 // important with categories, which override methods from the
4316 // interface and each other.
4317 if (const ObjCCategoryDecl *Category =
4318 dyn_cast<ObjCCategoryDecl>(Val: container)) {
4319 searchFromContainer(container);
4320 if (const ObjCInterfaceDecl *Interface = Category->getClassInterface())
4321 searchFromContainer(container: Interface);
4322 } else {
4323 searchFromContainer(container);
4324 }
4325 }
4326
4327 typedef decltype(Overridden)::iterator iterator;
4328 iterator begin() const { return Overridden.begin(); }
4329 iterator end() const { return Overridden.end(); }
4330
4331private:
4332 void searchFromContainer(const ObjCContainerDecl *container) {
4333 if (container->isInvalidDecl()) return;
4334
4335 switch (container->getDeclKind()) {
4336#define OBJCCONTAINER(type, base) \
4337 case Decl::type: \
4338 searchFrom(cast<type##Decl>(container)); \
4339 break;
4340#define ABSTRACT_DECL(expansion)
4341#define DECL(type, base) \
4342 case Decl::type:
4343#include "clang/AST/DeclNodes.inc"
4344 llvm_unreachable("not an ObjC container!");
4345 }
4346 }
4347
4348 void searchFrom(const ObjCProtocolDecl *protocol) {
4349 if (!protocol->hasDefinition())
4350 return;
4351
4352 // A method in a protocol declaration overrides declarations from
4353 // referenced ("parent") protocols.
4354 search(protocols: protocol->getReferencedProtocols());
4355 }
4356
4357 void searchFrom(const ObjCCategoryDecl *category) {
4358 // A method in a category declaration overrides declarations from
4359 // the main class and from protocols the category references.
4360 // The main class is handled in the constructor.
4361 search(protocols: category->getReferencedProtocols());
4362 }
4363
4364 void searchFrom(const ObjCCategoryImplDecl *impl) {
4365 // A method in a category definition that has a category
4366 // declaration overrides declarations from the category
4367 // declaration.
4368 if (ObjCCategoryDecl *category = impl->getCategoryDecl()) {
4369 search(container: category);
4370 if (ObjCInterfaceDecl *Interface = category->getClassInterface())
4371 search(container: Interface);
4372
4373 // Otherwise it overrides declarations from the class.
4374 } else if (const auto *Interface = impl->getClassInterface()) {
4375 search(container: Interface);
4376 }
4377 }
4378
4379 void searchFrom(const ObjCInterfaceDecl *iface) {
4380 // A method in a class declaration overrides declarations from
4381 if (!iface->hasDefinition())
4382 return;
4383
4384 // - categories,
4385 for (auto *Cat : iface->known_categories())
4386 search(container: Cat);
4387
4388 // - the super class, and
4389 if (ObjCInterfaceDecl *super = iface->getSuperClass())
4390 search(container: super);
4391
4392 // - any referenced protocols.
4393 search(protocols: iface->getReferencedProtocols());
4394 }
4395
4396 void searchFrom(const ObjCImplementationDecl *impl) {
4397 // A method in a class implementation overrides declarations from
4398 // the class interface.
4399 if (const auto *Interface = impl->getClassInterface())
4400 search(container: Interface);
4401 }
4402
4403 void search(const ObjCProtocolList &protocols) {
4404 for (const auto *Proto : protocols)
4405 search(container: Proto);
4406 }
4407
4408 void search(const ObjCContainerDecl *container) {
4409 // Check for a method in this container which matches this selector.
4410 ObjCMethodDecl *meth = container->getMethod(Sel: Method->getSelector(),
4411 isInstance: Method->isInstanceMethod(),
4412 /*AllowHidden=*/true);
4413
4414 // If we find one, record it and bail out.
4415 if (meth) {
4416 Overridden.insert(X: meth);
4417 return;
4418 }
4419
4420 // Otherwise, search for methods that a hypothetical method here
4421 // would have overridden.
4422
4423 // Note that we're now in a recursive case.
4424 Recursive = true;
4425
4426 searchFromContainer(container);
4427 }
4428};
4429} // end anonymous namespace
4430
4431void SemaObjC::CheckObjCMethodDirectOverrides(ObjCMethodDecl *method,
4432 ObjCMethodDecl *overridden) {
4433 if (overridden->isDirectMethod()) {
4434 const auto *attr = overridden->getAttr<ObjCDirectAttr>();
4435 Diag(Loc: method->getLocation(), DiagID: diag::err_objc_override_direct_method);
4436 Diag(Loc: attr->getLocation(), DiagID: diag::note_previous_declaration);
4437 } else if (method->isDirectMethod()) {
4438 const auto *attr = method->getAttr<ObjCDirectAttr>();
4439 Diag(Loc: attr->getLocation(), DiagID: diag::err_objc_direct_on_override)
4440 << isa<ObjCProtocolDecl>(Val: overridden->getDeclContext());
4441 Diag(Loc: overridden->getLocation(), DiagID: diag::note_previous_declaration);
4442 }
4443}
4444
4445void SemaObjC::CheckObjCMethodOverrides(ObjCMethodDecl *ObjCMethod,
4446 ObjCInterfaceDecl *CurrentClass,
4447 ResultTypeCompatibilityKind RTC) {
4448 ASTContext &Context = getASTContext();
4449 if (!ObjCMethod)
4450 return;
4451 auto IsMethodInCurrentClass = [CurrentClass](const ObjCMethodDecl *M) {
4452 // Checking canonical decl works across modules.
4453 return M->getClassInterface()->getCanonicalDecl() ==
4454 CurrentClass->getCanonicalDecl();
4455 };
4456 // Search for overridden methods and merge information down from them.
4457 OverrideSearch overrides(SemaRef, ObjCMethod);
4458 // Keep track if the method overrides any method in the class's base classes,
4459 // its protocols, or its categories' protocols; we will keep that info
4460 // in the ObjCMethodDecl.
4461 // For this info, a method in an implementation is not considered as
4462 // overriding the same method in the interface or its categories.
4463 bool hasOverriddenMethodsInBaseOrProtocol = false;
4464 for (ObjCMethodDecl *overridden : overrides) {
4465 if (!hasOverriddenMethodsInBaseOrProtocol) {
4466 if (isa<ObjCProtocolDecl>(Val: overridden->getDeclContext()) ||
4467 !IsMethodInCurrentClass(overridden) || overridden->isOverriding()) {
4468 CheckObjCMethodDirectOverrides(method: ObjCMethod, overridden);
4469 hasOverriddenMethodsInBaseOrProtocol = true;
4470 } else if (isa<ObjCImplDecl>(Val: ObjCMethod->getDeclContext())) {
4471 // OverrideSearch will return as "overridden" the same method in the
4472 // interface. For hasOverriddenMethodsInBaseOrProtocol, we need to
4473 // check whether a category of a base class introduced a method with the
4474 // same selector, after the interface method declaration.
4475 // To avoid unnecessary lookups in the majority of cases, we use the
4476 // extra info bits in GlobalMethodPool to check whether there were any
4477 // category methods with this selector.
4478 GlobalMethodPool::iterator It =
4479 MethodPool.find(Val: ObjCMethod->getSelector());
4480 if (It != MethodPool.end()) {
4481 ObjCMethodList &List =
4482 ObjCMethod->isInstanceMethod()? It->second.first: It->second.second;
4483 unsigned CategCount = List.getBits();
4484 if (CategCount > 0) {
4485 // If the method is in a category we'll do lookup if there were at
4486 // least 2 category methods recorded, otherwise only one will do.
4487 if (CategCount > 1 ||
4488 !isa<ObjCCategoryImplDecl>(Val: overridden->getDeclContext())) {
4489 OverrideSearch overrides(SemaRef, overridden);
4490 for (ObjCMethodDecl *SuperOverridden : overrides) {
4491 if (isa<ObjCProtocolDecl>(Val: SuperOverridden->getDeclContext()) ||
4492 !IsMethodInCurrentClass(SuperOverridden)) {
4493 CheckObjCMethodDirectOverrides(method: ObjCMethod, overridden: SuperOverridden);
4494 hasOverriddenMethodsInBaseOrProtocol = true;
4495 overridden->setOverriding(true);
4496 break;
4497 }
4498 }
4499 }
4500 }
4501 }
4502 }
4503 }
4504
4505 // Propagate down the 'related result type' bit from overridden methods.
4506 if (RTC != SemaObjC::RTC_Incompatible && overridden->hasRelatedResultType())
4507 ObjCMethod->setRelatedResultType();
4508
4509 // Then merge the declarations.
4510 SemaRef.mergeObjCMethodDecls(New: ObjCMethod, Old: overridden);
4511
4512 if (ObjCMethod->isImplicit() && overridden->isImplicit())
4513 continue; // Conflicting properties are detected elsewhere.
4514
4515 // Check for overriding methods
4516 if (isa<ObjCInterfaceDecl>(Val: ObjCMethod->getDeclContext()) ||
4517 isa<ObjCImplementationDecl>(Val: ObjCMethod->getDeclContext()))
4518 CheckConflictingOverridingMethod(Method: ObjCMethod, Overridden: overridden,
4519 IsProtocolMethodDecl: isa<ObjCProtocolDecl>(Val: overridden->getDeclContext()));
4520
4521 if (CurrentClass && overridden->getDeclContext() != CurrentClass &&
4522 isa<ObjCInterfaceDecl>(Val: overridden->getDeclContext()) &&
4523 !overridden->isImplicit() /* not meant for properties */) {
4524 ObjCMethodDecl::param_iterator ParamI = ObjCMethod->param_begin(),
4525 E = ObjCMethod->param_end();
4526 ObjCMethodDecl::param_iterator PrevI = overridden->param_begin(),
4527 PrevE = overridden->param_end();
4528 for (; ParamI != E && PrevI != PrevE; ++ParamI, ++PrevI) {
4529 assert(PrevI != overridden->param_end() && "Param mismatch");
4530 QualType T1 = Context.getCanonicalType(T: (*ParamI)->getType());
4531 QualType T2 = Context.getCanonicalType(T: (*PrevI)->getType());
4532 // If type of argument of method in this class does not match its
4533 // respective argument type in the super class method, issue warning;
4534 if (!Context.typesAreCompatible(T1, T2)) {
4535 Diag(Loc: (*ParamI)->getLocation(), DiagID: diag::ext_typecheck_base_super)
4536 << T1 << T2;
4537 Diag(Loc: overridden->getLocation(), DiagID: diag::note_previous_declaration);
4538 break;
4539 }
4540 }
4541 }
4542 }
4543
4544 ObjCMethod->setOverriding(hasOverriddenMethodsInBaseOrProtocol);
4545}
4546
4547/// Merge type nullability from for a redeclaration of the same entity,
4548/// producing the updated type of the redeclared entity.
4549static QualType mergeTypeNullabilityForRedecl(Sema &S, SourceLocation loc,
4550 QualType type,
4551 bool usesCSKeyword,
4552 SourceLocation prevLoc,
4553 QualType prevType,
4554 bool prevUsesCSKeyword) {
4555 // Determine the nullability of both types.
4556 auto nullability = type->getNullability();
4557 auto prevNullability = prevType->getNullability();
4558
4559 // Easy case: both have nullability.
4560 if (nullability.has_value() == prevNullability.has_value()) {
4561 // Neither has nullability; continue.
4562 if (!nullability)
4563 return type;
4564
4565 // The nullabilities are equivalent; do nothing.
4566 if (*nullability == *prevNullability)
4567 return type;
4568
4569 // Complain about mismatched nullability.
4570 S.Diag(Loc: loc, DiagID: diag::err_nullability_conflicting)
4571 << DiagNullabilityKind(*nullability, usesCSKeyword)
4572 << DiagNullabilityKind(*prevNullability, prevUsesCSKeyword);
4573 return type;
4574 }
4575
4576 // If it's the redeclaration that has nullability, don't change anything.
4577 if (nullability)
4578 return type;
4579
4580 // Otherwise, provide the result with the same nullability.
4581 return S.Context.getAttributedType(nullability: *prevNullability, modifiedType: type, equivalentType: type);
4582}
4583
4584/// Merge information from the declaration of a method in the \@interface
4585/// (or a category/extension) into the corresponding method in the
4586/// @implementation (for a class or category).
4587static void mergeInterfaceMethodToImpl(Sema &S,
4588 ObjCMethodDecl *method,
4589 ObjCMethodDecl *prevMethod) {
4590 // Merge the objc_requires_super attribute.
4591 if (prevMethod->hasAttr<ObjCRequiresSuperAttr>() &&
4592 !method->hasAttr<ObjCRequiresSuperAttr>()) {
4593 // merge the attribute into implementation.
4594 method->addAttr(
4595 A: ObjCRequiresSuperAttr::CreateImplicit(Ctx&: S.Context,
4596 Range: method->getLocation()));
4597 }
4598
4599 // Merge nullability of the result type.
4600 QualType newReturnType
4601 = mergeTypeNullabilityForRedecl(
4602 S, loc: method->getReturnTypeSourceRange().getBegin(),
4603 type: method->getReturnType(),
4604 usesCSKeyword: method->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability,
4605 prevLoc: prevMethod->getReturnTypeSourceRange().getBegin(),
4606 prevType: prevMethod->getReturnType(),
4607 prevUsesCSKeyword: prevMethod->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability);
4608 method->setReturnType(newReturnType);
4609
4610 // Handle each of the parameters.
4611 unsigned numParams = method->param_size();
4612 unsigned numPrevParams = prevMethod->param_size();
4613 for (unsigned i = 0, n = std::min(a: numParams, b: numPrevParams); i != n; ++i) {
4614 ParmVarDecl *param = method->param_begin()[i];
4615 ParmVarDecl *prevParam = prevMethod->param_begin()[i];
4616
4617 // Merge nullability.
4618 QualType newParamType
4619 = mergeTypeNullabilityForRedecl(
4620 S, loc: param->getLocation(), type: param->getType(),
4621 usesCSKeyword: param->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability,
4622 prevLoc: prevParam->getLocation(), prevType: prevParam->getType(),
4623 prevUsesCSKeyword: prevParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability);
4624 param->setType(newParamType);
4625 }
4626}
4627
4628/// Verify that the method parameters/return value have types that are supported
4629/// by the x86 target.
4630static void checkObjCMethodX86VectorTypes(Sema &SemaRef,
4631 const ObjCMethodDecl *Method) {
4632 assert(SemaRef.getASTContext().getTargetInfo().getTriple().getArch() ==
4633 llvm::Triple::x86 &&
4634 "x86-specific check invoked for a different target");
4635 SourceLocation Loc;
4636 QualType T;
4637 for (const ParmVarDecl *P : Method->parameters()) {
4638 if (P->getType()->isVectorType()) {
4639 Loc = P->getBeginLoc();
4640 T = P->getType();
4641 break;
4642 }
4643 }
4644 if (Loc.isInvalid()) {
4645 if (Method->getReturnType()->isVectorType()) {
4646 Loc = Method->getReturnTypeSourceRange().getBegin();
4647 T = Method->getReturnType();
4648 } else
4649 return;
4650 }
4651
4652 // Vector parameters/return values are not supported by objc_msgSend on x86 in
4653 // iOS < 9 and macOS < 10.11.
4654 const auto &Triple = SemaRef.getASTContext().getTargetInfo().getTriple();
4655 VersionTuple AcceptedInVersion;
4656 if (Triple.getOS() == llvm::Triple::IOS)
4657 AcceptedInVersion = VersionTuple(/*Major=*/9);
4658 else if (Triple.isMacOSX())
4659 AcceptedInVersion = VersionTuple(/*Major=*/10, /*Minor=*/11);
4660 else
4661 return;
4662 if (SemaRef.getASTContext().getTargetInfo().getPlatformMinVersion() >=
4663 AcceptedInVersion)
4664 return;
4665 SemaRef.Diag(Loc, DiagID: diag::err_objc_method_unsupported_param_ret_type)
4666 << T << (Method->getReturnType()->isVectorType() ? /*return value*/ 1
4667 : /*parameter*/ 0)
4668 << (Triple.isMacOSX() ? "macOS 10.11" : "iOS 9");
4669}
4670
4671static void mergeObjCDirectMembers(Sema &S, Decl *CD, ObjCMethodDecl *Method) {
4672 if (!Method->isDirectMethod() && !Method->hasAttr<UnavailableAttr>() &&
4673 CD->hasAttr<ObjCDirectMembersAttr>()) {
4674 Method->addAttr(
4675 A: ObjCDirectAttr::CreateImplicit(Ctx&: S.Context, Range: Method->getLocation()));
4676 }
4677}
4678
4679static void checkObjCDirectMethodClashes(Sema &S, ObjCInterfaceDecl *IDecl,
4680 ObjCMethodDecl *Method,
4681 ObjCImplDecl *ImpDecl = nullptr) {
4682 auto Sel = Method->getSelector();
4683 bool isInstance = Method->isInstanceMethod();
4684 bool diagnosed = false;
4685
4686 auto diagClash = [&](const ObjCMethodDecl *IMD) {
4687 if (diagnosed || IMD->isImplicit())
4688 return;
4689 if (Method->isDirectMethod() || IMD->isDirectMethod()) {
4690 S.Diag(Loc: Method->getLocation(), DiagID: diag::err_objc_direct_duplicate_decl)
4691 << Method->isDirectMethod() << /* method */ 0 << IMD->isDirectMethod()
4692 << Method->getDeclName();
4693 S.Diag(Loc: IMD->getLocation(), DiagID: diag::note_previous_declaration);
4694 diagnosed = true;
4695 }
4696 };
4697
4698 // Look for any other declaration of this method anywhere we can see in this
4699 // compilation unit.
4700 //
4701 // We do not use IDecl->lookupMethod() because we have specific needs:
4702 //
4703 // - we absolutely do not need to walk protocols, because
4704 // diag::err_objc_direct_on_protocol has already been emitted
4705 // during parsing if there's a conflict,
4706 //
4707 // - when we do not find a match in a given @interface container,
4708 // we need to attempt looking it up in the @implementation block if the
4709 // translation unit sees it to find more clashes.
4710
4711 if (auto *IMD = IDecl->getMethod(Sel, isInstance))
4712 diagClash(IMD);
4713 else if (auto *Impl = IDecl->getImplementation())
4714 if (Impl != ImpDecl)
4715 if (auto *IMD = IDecl->getImplementation()->getMethod(Sel, isInstance))
4716 diagClash(IMD);
4717
4718 for (const auto *Cat : IDecl->visible_categories())
4719 if (auto *IMD = Cat->getMethod(Sel, isInstance))
4720 diagClash(IMD);
4721 else if (auto CatImpl = Cat->getImplementation())
4722 if (CatImpl != ImpDecl)
4723 if (auto *IMD = Cat->getMethod(Sel, isInstance))
4724 diagClash(IMD);
4725}
4726
4727ParmVarDecl *SemaObjC::ActOnMethodParmDeclaration(Scope *S,
4728 ObjCArgInfo &ArgInfo,
4729 int ParamIndex,
4730 bool MethodDefinition) {
4731 ASTContext &Context = getASTContext();
4732 QualType ArgType;
4733 TypeSourceInfo *TSI;
4734
4735 if (!ArgInfo.Type) {
4736 ArgType = Context.getObjCIdType();
4737 TSI = nullptr;
4738 } else {
4739 ArgType = SemaRef.GetTypeFromParser(Ty: ArgInfo.Type, TInfo: &TSI);
4740 }
4741 LookupResult R(SemaRef, ArgInfo.Name, ArgInfo.NameLoc,
4742 Sema::LookupOrdinaryName,
4743 SemaRef.forRedeclarationInCurContext());
4744 SemaRef.LookupName(R, S);
4745 if (R.isSingleResult()) {
4746 NamedDecl *PrevDecl = R.getFoundDecl();
4747 if (S->isDeclScope(D: PrevDecl)) {
4748 Diag(Loc: ArgInfo.NameLoc,
4749 DiagID: (MethodDefinition ? diag::warn_method_param_redefinition
4750 : diag::warn_method_param_declaration))
4751 << ArgInfo.Name;
4752 Diag(Loc: PrevDecl->getLocation(), DiagID: diag::note_previous_declaration);
4753 }
4754 }
4755 SourceLocation StartLoc =
4756 TSI ? TSI->getTypeLoc().getBeginLoc() : ArgInfo.NameLoc;
4757
4758 // Temporarily put parameter variables in the translation unit. This is what
4759 // ActOnParamDeclarator does in the case of C arguments to the Objective-C
4760 // method too.
4761 ParmVarDecl *Param = SemaRef.CheckParameter(
4762 DC: Context.getTranslationUnitDecl(), StartLoc, NameLoc: ArgInfo.NameLoc, Name: ArgInfo.Name,
4763 T: ArgType, TSInfo: TSI, SC: SC_None);
4764 Param->setObjCMethodScopeInfo(ParamIndex);
4765 Param->setObjCDeclQualifier(
4766 CvtQTToAstBitMask(PQTVal: ArgInfo.DeclSpec.getObjCDeclQualifier()));
4767
4768 // Apply the attributes to the parameter.
4769 SemaRef.ProcessDeclAttributeList(S: SemaRef.TUScope, D: Param, AttrList: ArgInfo.ArgAttrs);
4770 SemaRef.AddPragmaAttributes(S: SemaRef.TUScope, D: Param);
4771 if (Param->hasAttr<BlocksAttr>()) {
4772 Diag(Loc: Param->getLocation(), DiagID: diag::err_block_on_nonlocal);
4773 Param->setInvalidDecl();
4774 }
4775
4776 S->AddDecl(D: Param);
4777 SemaRef.IdResolver.AddDecl(D: Param);
4778 return Param;
4779}
4780
4781Decl *SemaObjC::ActOnMethodDeclaration(
4782 Scope *S, SourceLocation MethodLoc, SourceLocation EndLoc,
4783 tok::TokenKind MethodType, ObjCDeclSpec &ReturnQT, ParsedType ReturnType,
4784 ArrayRef<SourceLocation> SelectorLocs, Selector Sel,
4785 // optional arguments. The number of types/arguments is obtained
4786 // from the Sel.getNumArgs().
4787 ParmVarDecl **ArgInfo, DeclaratorChunk::ParamInfo *CParamInfo,
4788 unsigned CNumArgs, // c-style args
4789 const ParsedAttributesView &AttrList, tok::ObjCKeywordKind MethodDeclKind,
4790 bool isVariadic, bool MethodDefinition) {
4791 ASTContext &Context = getASTContext();
4792 // Make sure we can establish a context for the method.
4793 if (!SemaRef.CurContext->isObjCContainer()) {
4794 Diag(Loc: MethodLoc, DiagID: diag::err_missing_method_context);
4795 return nullptr;
4796 }
4797
4798 Decl *ClassDecl = cast<ObjCContainerDecl>(Val: SemaRef.CurContext);
4799 QualType resultDeclType;
4800
4801 bool HasRelatedResultType = false;
4802 TypeSourceInfo *ReturnTInfo = nullptr;
4803 if (ReturnType) {
4804 resultDeclType = SemaRef.GetTypeFromParser(Ty: ReturnType, TInfo: &ReturnTInfo);
4805
4806 if (SemaRef.CheckFunctionReturnType(T: resultDeclType, Loc: MethodLoc))
4807 return nullptr;
4808
4809 QualType bareResultType = resultDeclType;
4810 (void)AttributedType::stripOuterNullability(T&: bareResultType);
4811 HasRelatedResultType = (bareResultType == Context.getObjCInstanceType());
4812 } else { // get the type for "id".
4813 resultDeclType = Context.getObjCIdType();
4814 Diag(Loc: MethodLoc, DiagID: diag::warn_missing_method_return_type)
4815 << FixItHint::CreateInsertion(InsertionLoc: SelectorLocs.front(), Code: "(id)");
4816 }
4817
4818 ObjCMethodDecl *ObjCMethod = ObjCMethodDecl::Create(
4819 C&: Context, beginLoc: MethodLoc, endLoc: EndLoc, SelInfo: Sel, T: resultDeclType, ReturnTInfo,
4820 contextDecl: SemaRef.CurContext, isInstance: MethodType == tok::minus, isVariadic,
4821 /*isPropertyAccessor=*/false, /*isSynthesizedAccessorStub=*/false,
4822 /*isImplicitlyDeclared=*/false, /*isDefined=*/false,
4823 impControl: MethodDeclKind == tok::objc_optional
4824 ? ObjCImplementationControl::Optional
4825 : ObjCImplementationControl::Required,
4826 HasRelatedResultType);
4827
4828 SmallVector<ParmVarDecl*, 16> Params;
4829 for (unsigned I = 0; I < Sel.getNumArgs(); ++I) {
4830 ParmVarDecl *Param = ArgInfo[I];
4831 Param->setDeclContext(ObjCMethod);
4832 SemaRef.ProcessAPINotes(D: Param);
4833 Params.push_back(Elt: Param);
4834 }
4835
4836 for (unsigned i = 0, e = CNumArgs; i != e; ++i) {
4837 ParmVarDecl *Param = cast<ParmVarDecl>(Val: CParamInfo[i].Param);
4838 QualType ArgType = Param->getType();
4839 if (ArgType.isNull())
4840 ArgType = Context.getObjCIdType();
4841 else
4842 // Perform the default array/function conversions (C99 6.7.5.3p[7,8]).
4843 ArgType = Context.getAdjustedParameterType(T: ArgType);
4844
4845 Param->setDeclContext(ObjCMethod);
4846 Params.push_back(Elt: Param);
4847 }
4848
4849 ObjCMethod->setMethodParams(C&: Context, Params, SelLocs: SelectorLocs);
4850 ObjCMethod->setObjCDeclQualifier(
4851 CvtQTToAstBitMask(PQTVal: ReturnQT.getObjCDeclQualifier()));
4852
4853 SemaRef.ProcessDeclAttributeList(S: SemaRef.TUScope, D: ObjCMethod, AttrList);
4854 SemaRef.AddPragmaAttributes(S: SemaRef.TUScope, D: ObjCMethod);
4855 SemaRef.ProcessAPINotes(D: ObjCMethod);
4856
4857 // Add the method now.
4858 const ObjCMethodDecl *PrevMethod = nullptr;
4859 if (ObjCImplDecl *ImpDecl = dyn_cast<ObjCImplDecl>(Val: ClassDecl)) {
4860 if (MethodType == tok::minus) {
4861 PrevMethod = ImpDecl->getInstanceMethod(Sel);
4862 ImpDecl->addInstanceMethod(method: ObjCMethod);
4863 } else {
4864 PrevMethod = ImpDecl->getClassMethod(Sel);
4865 ImpDecl->addClassMethod(method: ObjCMethod);
4866 }
4867
4868 // If this method overrides a previous @synthesize declaration,
4869 // register it with the property. Linear search through all
4870 // properties here, because the autosynthesized stub hasn't been
4871 // made visible yet, so it can be overridden by a later
4872 // user-specified implementation.
4873 for (ObjCPropertyImplDecl *PropertyImpl : ImpDecl->property_impls()) {
4874 if (auto *Setter = PropertyImpl->getSetterMethodDecl())
4875 if (Setter->getSelector() == Sel &&
4876 Setter->isInstanceMethod() == ObjCMethod->isInstanceMethod()) {
4877 assert(Setter->isSynthesizedAccessorStub() && "autosynth stub expected");
4878 PropertyImpl->setSetterMethodDecl(ObjCMethod);
4879 }
4880 if (auto *Getter = PropertyImpl->getGetterMethodDecl())
4881 if (Getter->getSelector() == Sel &&
4882 Getter->isInstanceMethod() == ObjCMethod->isInstanceMethod()) {
4883 assert(Getter->isSynthesizedAccessorStub() && "autosynth stub expected");
4884 PropertyImpl->setGetterMethodDecl(ObjCMethod);
4885 break;
4886 }
4887 }
4888
4889 // A method is either tagged direct explicitly, or inherits it from its
4890 // canonical declaration.
4891 //
4892 // We have to do the merge upfront and not in mergeInterfaceMethodToImpl()
4893 // because IDecl->lookupMethod() returns more possible matches than just
4894 // the canonical declaration.
4895 if (!ObjCMethod->isDirectMethod()) {
4896 const ObjCMethodDecl *CanonicalMD = ObjCMethod->getCanonicalDecl();
4897 if (CanonicalMD->isDirectMethod()) {
4898 const auto *attr = CanonicalMD->getAttr<ObjCDirectAttr>();
4899 ObjCMethod->addAttr(
4900 A: ObjCDirectAttr::CreateImplicit(Ctx&: Context, Range: attr->getLocation()));
4901 }
4902 }
4903
4904 // Merge information from the @interface declaration into the
4905 // @implementation.
4906 if (ObjCInterfaceDecl *IDecl = ImpDecl->getClassInterface()) {
4907 if (auto *IMD = IDecl->lookupMethod(Sel: ObjCMethod->getSelector(),
4908 isInstance: ObjCMethod->isInstanceMethod())) {
4909 mergeInterfaceMethodToImpl(S&: SemaRef, method: ObjCMethod, prevMethod: IMD);
4910
4911 // The Idecl->lookupMethod() above will find declarations for ObjCMethod
4912 // in one of these places:
4913 //
4914 // (1) the canonical declaration in an @interface container paired
4915 // with the ImplDecl,
4916 // (2) non canonical declarations in @interface not paired with the
4917 // ImplDecl for the same Class,
4918 // (3) any superclass container.
4919 //
4920 // Direct methods only allow for canonical declarations in the matching
4921 // container (case 1).
4922 //
4923 // Direct methods overriding a superclass declaration (case 3) is
4924 // handled during overrides checks in CheckObjCMethodOverrides().
4925 //
4926 // We deal with same-class container mismatches (Case 2) here.
4927 if (IDecl == IMD->getClassInterface()) {
4928 auto diagContainerMismatch = [&] {
4929 int decl = 0, impl = 0;
4930
4931 if (auto *Cat = dyn_cast<ObjCCategoryDecl>(Val: IMD->getDeclContext()))
4932 decl = Cat->IsClassExtension() ? 1 : 2;
4933
4934 if (isa<ObjCCategoryImplDecl>(Val: ImpDecl))
4935 impl = 1 + (decl != 0);
4936
4937 Diag(Loc: ObjCMethod->getLocation(),
4938 DiagID: diag::err_objc_direct_impl_decl_mismatch)
4939 << decl << impl;
4940 Diag(Loc: IMD->getLocation(), DiagID: diag::note_previous_declaration);
4941 };
4942
4943 if (ObjCMethod->isDirectMethod()) {
4944 const auto *attr = ObjCMethod->getAttr<ObjCDirectAttr>();
4945 if (ObjCMethod->getCanonicalDecl() != IMD) {
4946 diagContainerMismatch();
4947 } else if (!IMD->isDirectMethod()) {
4948 Diag(Loc: attr->getLocation(), DiagID: diag::err_objc_direct_missing_on_decl);
4949 Diag(Loc: IMD->getLocation(), DiagID: diag::note_previous_declaration);
4950 }
4951 } else if (IMD->isDirectMethod()) {
4952 const auto *attr = IMD->getAttr<ObjCDirectAttr>();
4953 if (ObjCMethod->getCanonicalDecl() != IMD) {
4954 diagContainerMismatch();
4955 } else {
4956 ObjCMethod->addAttr(
4957 A: ObjCDirectAttr::CreateImplicit(Ctx&: Context, Range: attr->getLocation()));
4958 }
4959 }
4960 }
4961
4962 // Warn about defining -dealloc in a category.
4963 if (isa<ObjCCategoryImplDecl>(Val: ImpDecl) && IMD->isOverriding() &&
4964 ObjCMethod->getSelector().getMethodFamily() == OMF_dealloc) {
4965 Diag(Loc: ObjCMethod->getLocation(), DiagID: diag::warn_dealloc_in_category)
4966 << ObjCMethod->getDeclName();
4967 }
4968 } else {
4969 mergeObjCDirectMembers(S&: SemaRef, CD: ClassDecl, Method: ObjCMethod);
4970 checkObjCDirectMethodClashes(S&: SemaRef, IDecl, Method: ObjCMethod, ImpDecl);
4971 }
4972
4973 // Warn if a method declared in a protocol to which a category or
4974 // extension conforms is non-escaping and the implementation's method is
4975 // escaping.
4976 for (auto *C : IDecl->visible_categories())
4977 for (auto &P : C->protocols())
4978 if (auto *IMD = P->lookupMethod(Sel: ObjCMethod->getSelector(),
4979 isInstance: ObjCMethod->isInstanceMethod())) {
4980 assert(ObjCMethod->parameters().size() ==
4981 IMD->parameters().size() &&
4982 "Methods have different number of parameters");
4983 auto OI = IMD->param_begin(), OE = IMD->param_end();
4984 auto NI = ObjCMethod->param_begin();
4985 for (; OI != OE; ++OI, ++NI)
4986 diagnoseNoescape(NewD: *NI, OldD: *OI, CD: C, PD: P, S&: SemaRef);
4987 }
4988 }
4989 } else {
4990 if (!isa<ObjCProtocolDecl>(Val: ClassDecl)) {
4991 mergeObjCDirectMembers(S&: SemaRef, CD: ClassDecl, Method: ObjCMethod);
4992
4993 ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(Val: ClassDecl);
4994 if (!IDecl)
4995 IDecl = cast<ObjCCategoryDecl>(Val: ClassDecl)->getClassInterface();
4996 // For valid code, we should always know the primary interface
4997 // declaration by now, however for invalid code we'll keep parsing
4998 // but we won't find the primary interface and IDecl will be nil.
4999 if (IDecl)
5000 checkObjCDirectMethodClashes(S&: SemaRef, IDecl, Method: ObjCMethod);
5001 }
5002
5003 cast<DeclContext>(Val: ClassDecl)->addDecl(D: ObjCMethod);
5004 }
5005
5006 if (PrevMethod) {
5007 // You can never have two method definitions with the same name.
5008 Diag(Loc: ObjCMethod->getLocation(), DiagID: diag::err_duplicate_method_decl)
5009 << ObjCMethod->getDeclName();
5010 Diag(Loc: PrevMethod->getLocation(), DiagID: diag::note_previous_declaration);
5011 ObjCMethod->setInvalidDecl();
5012 return ObjCMethod;
5013 }
5014
5015 // If this Objective-C method does not have a related result type, but we
5016 // are allowed to infer related result types, try to do so based on the
5017 // method family.
5018 ObjCInterfaceDecl *CurrentClass = dyn_cast<ObjCInterfaceDecl>(Val: ClassDecl);
5019 if (!CurrentClass) {
5020 if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(Val: ClassDecl))
5021 CurrentClass = Cat->getClassInterface();
5022 else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(Val: ClassDecl))
5023 CurrentClass = Impl->getClassInterface();
5024 else if (ObjCCategoryImplDecl *CatImpl
5025 = dyn_cast<ObjCCategoryImplDecl>(Val: ClassDecl))
5026 CurrentClass = CatImpl->getClassInterface();
5027 }
5028
5029 ResultTypeCompatibilityKind RTC =
5030 CheckRelatedResultTypeCompatibility(S&: SemaRef, Method: ObjCMethod, CurrentClass);
5031
5032 CheckObjCMethodOverrides(ObjCMethod, CurrentClass, RTC);
5033
5034 bool ARCError = false;
5035 if (getLangOpts().ObjCAutoRefCount)
5036 ARCError = CheckARCMethodDecl(method: ObjCMethod);
5037
5038 // Infer the related result type when possible.
5039 if (!ARCError && RTC == SemaObjC::RTC_Compatible &&
5040 !ObjCMethod->hasRelatedResultType() &&
5041 getLangOpts().ObjCInferRelatedResultType) {
5042 bool InferRelatedResultType = false;
5043 switch (ObjCMethod->getMethodFamily()) {
5044 case OMF_None:
5045 case OMF_copy:
5046 case OMF_dealloc:
5047 case OMF_finalize:
5048 case OMF_mutableCopy:
5049 case OMF_release:
5050 case OMF_retainCount:
5051 case OMF_initialize:
5052 case OMF_performSelector:
5053 break;
5054
5055 case OMF_alloc:
5056 case OMF_new:
5057 InferRelatedResultType = ObjCMethod->isClassMethod();
5058 break;
5059
5060 case OMF_init:
5061 case OMF_autorelease:
5062 case OMF_retain:
5063 case OMF_self:
5064 InferRelatedResultType = ObjCMethod->isInstanceMethod();
5065 break;
5066 }
5067
5068 if (InferRelatedResultType &&
5069 !ObjCMethod->getReturnType()->isObjCIndependentClassType())
5070 ObjCMethod->setRelatedResultType();
5071 }
5072
5073 if (MethodDefinition &&
5074 Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
5075 checkObjCMethodX86VectorTypes(SemaRef, Method: ObjCMethod);
5076
5077 // + load method cannot have availability attributes. It get called on
5078 // startup, so it has to have the availability of the deployment target.
5079 if (const auto *attr = ObjCMethod->getAttr<AvailabilityAttr>()) {
5080 if (ObjCMethod->isClassMethod() &&
5081 ObjCMethod->getSelector().getAsString() == "load") {
5082 Diag(Loc: attr->getLocation(), DiagID: diag::warn_availability_on_static_initializer)
5083 << 0;
5084 ObjCMethod->dropAttr<AvailabilityAttr>();
5085 }
5086 }
5087
5088 // Insert the invisible arguments, self and _cmd!
5089 ObjCMethod->createImplicitParams(Context, ID: ObjCMethod->getClassInterface());
5090
5091 SemaRef.ActOnDocumentableDecl(D: ObjCMethod);
5092
5093 return ObjCMethod;
5094}
5095
5096bool SemaObjC::CheckObjCDeclScope(Decl *D) {
5097 // Following is also an error. But it is caused by a missing @end
5098 // and diagnostic is issued elsewhere.
5099 if (isa<ObjCContainerDecl>(Val: SemaRef.CurContext->getRedeclContext()))
5100 return false;
5101
5102 // If we switched context to translation unit while we are still lexically in
5103 // an objc container, it means the parser missed emitting an error.
5104 if (isa<TranslationUnitDecl>(
5105 Val: SemaRef.getCurLexicalContext()->getRedeclContext()))
5106 return false;
5107
5108 Diag(Loc: D->getLocation(), DiagID: diag::err_objc_decls_may_only_appear_in_global_scope);
5109 D->setInvalidDecl();
5110
5111 return true;
5112}
5113
5114/// Called whenever \@defs(ClassName) is encountered in the source. Inserts the
5115/// instance variables of ClassName into Decls.
5116void SemaObjC::ActOnDefs(Scope *S, Decl *TagD, SourceLocation DeclStart,
5117 const IdentifierInfo *ClassName,
5118 SmallVectorImpl<Decl *> &Decls) {
5119 ASTContext &Context = getASTContext();
5120 // Check that ClassName is a valid class
5121 ObjCInterfaceDecl *Class = getObjCInterfaceDecl(Id&: ClassName, IdLoc: DeclStart);
5122 if (!Class) {
5123 Diag(Loc: DeclStart, DiagID: diag::err_undef_interface) << ClassName;
5124 return;
5125 }
5126 if (getLangOpts().ObjCRuntime.isNonFragile()) {
5127 Diag(Loc: DeclStart, DiagID: diag::err_atdef_nonfragile_interface);
5128 return;
5129 }
5130
5131 // Collect the instance variables
5132 SmallVector<const ObjCIvarDecl*, 32> Ivars;
5133 Context.DeepCollectObjCIvars(OI: Class, leafClass: true, Ivars);
5134 // For each ivar, create a fresh ObjCAtDefsFieldDecl.
5135 for (unsigned i = 0; i < Ivars.size(); i++) {
5136 const FieldDecl* ID = Ivars[i];
5137 RecordDecl *Record = dyn_cast<RecordDecl>(Val: TagD);
5138 Decl *FD = ObjCAtDefsFieldDecl::Create(C&: Context, DC: Record,
5139 /*FIXME: StartL=*/StartLoc: ID->getLocation(),
5140 IdLoc: ID->getLocation(),
5141 Id: ID->getIdentifier(), T: ID->getType(),
5142 BW: ID->getBitWidth());
5143 Decls.push_back(Elt: FD);
5144 }
5145
5146 // Introduce all of these fields into the appropriate scope.
5147 for (SmallVectorImpl<Decl*>::iterator D = Decls.begin();
5148 D != Decls.end(); ++D) {
5149 FieldDecl *FD = cast<FieldDecl>(Val: *D);
5150 if (getLangOpts().CPlusPlus)
5151 SemaRef.PushOnScopeChains(D: FD, S);
5152 else if (RecordDecl *Record = dyn_cast<RecordDecl>(Val: TagD))
5153 Record->addDecl(D: FD);
5154 }
5155}
5156
5157/// Build a type-check a new Objective-C exception variable declaration.
5158VarDecl *SemaObjC::BuildObjCExceptionDecl(TypeSourceInfo *TInfo, QualType T,
5159 SourceLocation StartLoc,
5160 SourceLocation IdLoc,
5161 const IdentifierInfo *Id,
5162 bool Invalid) {
5163 ASTContext &Context = getASTContext();
5164 // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
5165 // duration shall not be qualified by an address-space qualifier."
5166 // Since all parameters have automatic store duration, they can not have
5167 // an address space.
5168 if (T.getAddressSpace() != LangAS::Default) {
5169 Diag(Loc: IdLoc, DiagID: diag::err_arg_with_address_space);
5170 Invalid = true;
5171 }
5172
5173 // An @catch parameter must be an unqualified object pointer type;
5174 // FIXME: Recover from "NSObject foo" by inserting the * in "NSObject *foo"?
5175 if (Invalid) {
5176 // Don't do any further checking.
5177 } else if (T->isDependentType()) {
5178 // Okay: we don't know what this type will instantiate to.
5179 } else if (T->isObjCQualifiedIdType()) {
5180 Invalid = true;
5181 Diag(Loc: IdLoc, DiagID: diag::err_illegal_qualifiers_on_catch_parm);
5182 } else if (T->isObjCIdType()) {
5183 // Okay: we don't know what this type will instantiate to.
5184 } else if (!T->isObjCObjectPointerType()) {
5185 Invalid = true;
5186 Diag(Loc: IdLoc, DiagID: diag::err_catch_param_not_objc_type);
5187 } else if (!T->castAs<ObjCObjectPointerType>()->getInterfaceType()) {
5188 Invalid = true;
5189 Diag(Loc: IdLoc, DiagID: diag::err_catch_param_not_objc_type);
5190 }
5191
5192 VarDecl *New = VarDecl::Create(C&: Context, DC: SemaRef.CurContext, StartLoc, IdLoc,
5193 Id, T, TInfo, S: SC_None);
5194 New->setExceptionVariable(true);
5195
5196 // In ARC, infer 'retaining' for variables of retainable type.
5197 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(decl: New))
5198 Invalid = true;
5199
5200 if (Invalid)
5201 New->setInvalidDecl();
5202 return New;
5203}
5204
5205Decl *SemaObjC::ActOnObjCExceptionDecl(Scope *S, Declarator &D) {
5206 const DeclSpec &DS = D.getDeclSpec();
5207
5208 // We allow the "register" storage class on exception variables because
5209 // GCC did, but we drop it completely. Any other storage class is an error.
5210 if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
5211 Diag(Loc: DS.getStorageClassSpecLoc(), DiagID: diag::warn_register_objc_catch_parm)
5212 << FixItHint::CreateRemoval(RemoveRange: SourceRange(DS.getStorageClassSpecLoc()));
5213 } else if (DeclSpec::SCS SCS = DS.getStorageClassSpec()) {
5214 Diag(Loc: DS.getStorageClassSpecLoc(), DiagID: diag::err_storage_spec_on_catch_parm)
5215 << DeclSpec::getSpecifierName(S: SCS);
5216 }
5217 if (DS.isInlineSpecified())
5218 Diag(Loc: DS.getInlineSpecLoc(), DiagID: diag::err_inline_non_function)
5219 << getLangOpts().CPlusPlus17;
5220 if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
5221 Diag(Loc: D.getDeclSpec().getThreadStorageClassSpecLoc(),
5222 DiagID: diag::err_invalid_thread)
5223 << DeclSpec::getSpecifierName(S: TSCS);
5224 D.getMutableDeclSpec().ClearStorageClassSpecs();
5225
5226 SemaRef.DiagnoseFunctionSpecifiers(DS: D.getDeclSpec());
5227
5228 // Check that there are no default arguments inside the type of this
5229 // exception object (C++ only).
5230 if (getLangOpts().CPlusPlus)
5231 SemaRef.CheckExtraCXXDefaultArguments(D);
5232
5233 TypeSourceInfo *TInfo = SemaRef.GetTypeForDeclarator(D);
5234 QualType ExceptionType = TInfo->getType();
5235
5236 VarDecl *New = BuildObjCExceptionDecl(TInfo, T: ExceptionType,
5237 StartLoc: D.getSourceRange().getBegin(),
5238 IdLoc: D.getIdentifierLoc(),
5239 Id: D.getIdentifier(),
5240 Invalid: D.isInvalidType());
5241
5242 // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
5243 if (D.getCXXScopeSpec().isSet()) {
5244 Diag(Loc: D.getIdentifierLoc(), DiagID: diag::err_qualified_objc_catch_parm)
5245 << D.getCXXScopeSpec().getRange();
5246 New->setInvalidDecl();
5247 }
5248
5249 // Add the parameter declaration into this scope.
5250 S->AddDecl(D: New);
5251 if (D.getIdentifier())
5252 SemaRef.IdResolver.AddDecl(D: New);
5253
5254 SemaRef.ProcessDeclAttributes(S, D: New, PD: D);
5255
5256 if (New->hasAttr<BlocksAttr>())
5257 Diag(Loc: New->getLocation(), DiagID: diag::err_block_on_nonlocal);
5258 return New;
5259}
5260
5261/// CollectIvarsToConstructOrDestruct - Collect those ivars which require
5262/// initialization.
5263void SemaObjC::CollectIvarsToConstructOrDestruct(
5264 ObjCInterfaceDecl *OI, SmallVectorImpl<ObjCIvarDecl *> &Ivars) {
5265 ASTContext &Context = getASTContext();
5266 for (ObjCIvarDecl *Iv = OI->all_declared_ivar_begin(); Iv;
5267 Iv= Iv->getNextIvar()) {
5268 QualType QT = Context.getBaseElementType(QT: Iv->getType());
5269 if (QT->isRecordType())
5270 Ivars.push_back(Elt: Iv);
5271 }
5272}
5273
5274void SemaObjC::DiagnoseUseOfUnimplementedSelectors() {
5275 ASTContext &Context = getASTContext();
5276 // Load referenced selectors from the external source.
5277 if (SemaRef.ExternalSource) {
5278 SmallVector<std::pair<Selector, SourceLocation>, 4> Sels;
5279 SemaRef.ExternalSource->ReadReferencedSelectors(Sels);
5280 for (unsigned I = 0, N = Sels.size(); I != N; ++I)
5281 ReferencedSelectors[Sels[I].first] = Sels[I].second;
5282 }
5283
5284 // Warning will be issued only when selector table is
5285 // generated (which means there is at lease one implementation
5286 // in the TU). This is to match gcc's behavior.
5287 if (ReferencedSelectors.empty() ||
5288 !Context.AnyObjCImplementation())
5289 return;
5290 for (auto &SelectorAndLocation : ReferencedSelectors) {
5291 Selector Sel = SelectorAndLocation.first;
5292 SourceLocation Loc = SelectorAndLocation.second;
5293 if (!LookupImplementedMethodInGlobalPool(Sel))
5294 Diag(Loc, DiagID: diag::warn_unimplemented_selector) << Sel;
5295 }
5296}
5297
5298ObjCIvarDecl *
5299SemaObjC::GetIvarBackingPropertyAccessor(const ObjCMethodDecl *Method,
5300 const ObjCPropertyDecl *&PDecl) const {
5301 if (Method->isClassMethod())
5302 return nullptr;
5303 const ObjCInterfaceDecl *IDecl = Method->getClassInterface();
5304 if (!IDecl)
5305 return nullptr;
5306 Method = IDecl->lookupMethod(Sel: Method->getSelector(), /*isInstance=*/true,
5307 /*shallowCategoryLookup=*/false,
5308 /*followSuper=*/false);
5309 if (!Method || !Method->isPropertyAccessor())
5310 return nullptr;
5311 if ((PDecl = Method->findPropertyDecl()))
5312 if (ObjCIvarDecl *IV = PDecl->getPropertyIvarDecl()) {
5313 // property backing ivar must belong to property's class
5314 // or be a private ivar in class's implementation.
5315 // FIXME. fix the const-ness issue.
5316 IV = const_cast<ObjCInterfaceDecl *>(IDecl)->lookupInstanceVariable(
5317 IVarName: IV->getIdentifier());
5318 return IV;
5319 }
5320 return nullptr;
5321}
5322
5323namespace {
5324/// Used by SemaObjC::DiagnoseUnusedBackingIvarInAccessor to check if a property
5325/// accessor references the backing ivar.
5326class UnusedBackingIvarChecker : public DynamicRecursiveASTVisitor {
5327public:
5328 Sema &S;
5329 const ObjCMethodDecl *Method;
5330 const ObjCIvarDecl *IvarD;
5331 bool AccessedIvar;
5332 bool InvokedSelfMethod;
5333
5334 UnusedBackingIvarChecker(Sema &S, const ObjCMethodDecl *Method,
5335 const ObjCIvarDecl *IvarD)
5336 : S(S), Method(Method), IvarD(IvarD), AccessedIvar(false),
5337 InvokedSelfMethod(false) {
5338 assert(IvarD);
5339 }
5340
5341 bool VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) override {
5342 if (E->getDecl() == IvarD) {
5343 AccessedIvar = true;
5344 return false;
5345 }
5346 return true;
5347 }
5348
5349 bool VisitObjCMessageExpr(ObjCMessageExpr *E) override {
5350 if (E->getReceiverKind() == ObjCMessageExpr::Instance &&
5351 S.ObjC().isSelfExpr(RExpr: E->getInstanceReceiver(), Method)) {
5352 InvokedSelfMethod = true;
5353 }
5354 return true;
5355 }
5356};
5357} // end anonymous namespace
5358
5359void SemaObjC::DiagnoseUnusedBackingIvarInAccessor(
5360 Scope *S, const ObjCImplementationDecl *ImplD) {
5361 if (S->hasUnrecoverableErrorOccurred())
5362 return;
5363
5364 for (const auto *CurMethod : ImplD->instance_methods()) {
5365 unsigned DIAG = diag::warn_unused_property_backing_ivar;
5366 SourceLocation Loc = CurMethod->getLocation();
5367 if (getDiagnostics().isIgnored(DiagID: DIAG, Loc))
5368 continue;
5369
5370 const ObjCPropertyDecl *PDecl;
5371 const ObjCIvarDecl *IV = GetIvarBackingPropertyAccessor(Method: CurMethod, PDecl);
5372 if (!IV)
5373 continue;
5374
5375 if (CurMethod->isSynthesizedAccessorStub())
5376 continue;
5377
5378 UnusedBackingIvarChecker Checker(SemaRef, CurMethod, IV);
5379 Checker.TraverseStmt(S: CurMethod->getBody());
5380 if (Checker.AccessedIvar)
5381 continue;
5382
5383 // Do not issue this warning if backing ivar is used somewhere and accessor
5384 // implementation makes a self call. This is to prevent false positive in
5385 // cases where the ivar is accessed by another method that the accessor
5386 // delegates to.
5387 if (!IV->isReferenced() || !Checker.InvokedSelfMethod) {
5388 Diag(Loc, DiagID: DIAG) << IV;
5389 Diag(Loc: PDecl->getLocation(), DiagID: diag::note_property_declare);
5390 }
5391 }
5392}
5393
5394QualType SemaObjC::AdjustParameterTypeForObjCAutoRefCount(
5395 QualType T, SourceLocation NameLoc, TypeSourceInfo *TSInfo) {
5396 ASTContext &Context = getASTContext();
5397 // In ARC, infer a lifetime qualifier for appropriate parameter types.
5398 if (!getLangOpts().ObjCAutoRefCount ||
5399 T.getObjCLifetime() != Qualifiers::OCL_None || !T->isObjCLifetimeType())
5400 return T;
5401
5402 Qualifiers::ObjCLifetime Lifetime;
5403
5404 // Special cases for arrays:
5405 // - if it's const, use __unsafe_unretained
5406 // - otherwise, it's an error
5407 if (T->isArrayType()) {
5408 if (!T.isConstQualified()) {
5409 if (SemaRef.DelayedDiagnostics.shouldDelayDiagnostics())
5410 SemaRef.DelayedDiagnostics.add(
5411 diag: sema::DelayedDiagnostic::makeForbiddenType(
5412 loc: NameLoc, diagnostic: diag::err_arc_array_param_no_ownership, type: T, argument: false));
5413 else
5414 Diag(Loc: NameLoc, DiagID: diag::err_arc_array_param_no_ownership)
5415 << TSInfo->getTypeLoc().getSourceRange();
5416 }
5417 Lifetime = Qualifiers::OCL_ExplicitNone;
5418 } else {
5419 Lifetime = T->getObjCARCImplicitLifetime();
5420 }
5421 T = Context.getLifetimeQualifiedType(type: T, lifetime: Lifetime);
5422
5423 return T;
5424}
5425
5426ObjCInterfaceDecl *SemaObjC::getObjCInterfaceDecl(const IdentifierInfo *&Id,
5427 SourceLocation IdLoc,
5428 bool DoTypoCorrection) {
5429 // The third "scope" argument is 0 since we aren't enabling lazy built-in
5430 // creation from this context.
5431 NamedDecl *IDecl = SemaRef.LookupSingleName(S: SemaRef.TUScope, Name: Id, Loc: IdLoc,
5432 NameKind: Sema::LookupOrdinaryName);
5433
5434 if (!IDecl && DoTypoCorrection) {
5435 // Perform typo correction at the given location, but only if we
5436 // find an Objective-C class name.
5437 DeclFilterCCC<ObjCInterfaceDecl> CCC{};
5438 if (TypoCorrection C = SemaRef.CorrectTypo(
5439 Typo: DeclarationNameInfo(Id, IdLoc), LookupKind: Sema::LookupOrdinaryName,
5440 S: SemaRef.TUScope, SS: nullptr, CCC, Mode: CorrectTypoKind::ErrorRecovery)) {
5441 SemaRef.diagnoseTypo(Correction: C, TypoDiag: PDiag(DiagID: diag::err_undef_interface_suggest) << Id);
5442 IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>();
5443 Id = IDecl->getIdentifier();
5444 }
5445 }
5446 ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(Val: IDecl);
5447 // This routine must always return a class definition, if any.
5448 if (Def && Def->getDefinition())
5449 Def = Def->getDefinition();
5450 return Def;
5451}
5452
5453bool SemaObjC::inferObjCARCLifetime(ValueDecl *decl) {
5454 ASTContext &Context = getASTContext();
5455 QualType type = decl->getType();
5456 Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
5457 if (lifetime == Qualifiers::OCL_Autoreleasing) {
5458 // Various kinds of declaration aren't allowed to be __autoreleasing.
5459 unsigned kind = -1U;
5460 if (VarDecl *var = dyn_cast<VarDecl>(Val: decl)) {
5461 if (var->hasAttr<BlocksAttr>())
5462 kind = 0; // __block
5463 else if (!var->hasLocalStorage())
5464 kind = 1; // global
5465 } else if (isa<ObjCIvarDecl>(Val: decl)) {
5466 kind = 3; // ivar
5467 } else if (isa<FieldDecl>(Val: decl)) {
5468 kind = 2; // field
5469 }
5470
5471 if (kind != -1U) {
5472 Diag(Loc: decl->getLocation(), DiagID: diag::err_arc_autoreleasing_var) << kind;
5473 }
5474 } else if (lifetime == Qualifiers::OCL_None) {
5475 // Try to infer lifetime.
5476 if (!type->isObjCLifetimeType())
5477 return false;
5478
5479 lifetime = type->getObjCARCImplicitLifetime();
5480 type = Context.getLifetimeQualifiedType(type, lifetime);
5481 decl->setType(type);
5482 }
5483
5484 if (VarDecl *var = dyn_cast<VarDecl>(Val: decl)) {
5485 // Thread-local variables cannot have lifetime.
5486 if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
5487 var->getTLSKind()) {
5488 Diag(Loc: var->getLocation(), DiagID: diag::err_arc_thread_ownership)
5489 << var->getType();
5490 return true;
5491 }
5492 }
5493
5494 return false;
5495}
5496
5497ObjCContainerDecl *SemaObjC::getObjCDeclContext() const {
5498 return (dyn_cast_or_null<ObjCContainerDecl>(Val: SemaRef.CurContext));
5499}
5500
5501void SemaObjC::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
5502 if (!getLangOpts().CPlusPlus)
5503 return;
5504 if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
5505 ASTContext &Context = getASTContext();
5506 SmallVector<ObjCIvarDecl *, 8> ivars;
5507 CollectIvarsToConstructOrDestruct(OI: OID, Ivars&: ivars);
5508 if (ivars.empty())
5509 return;
5510 SmallVector<CXXCtorInitializer *, 32> AllToInit;
5511 for (unsigned i = 0; i < ivars.size(); i++) {
5512 FieldDecl *Field = ivars[i];
5513 if (Field->isInvalidDecl())
5514 continue;
5515
5516 CXXCtorInitializer *Member;
5517 InitializedEntity InitEntity = InitializedEntity::InitializeMember(Member: Field);
5518 InitializationKind InitKind =
5519 InitializationKind::CreateDefault(InitLoc: ObjCImplementation->getLocation());
5520
5521 InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, {});
5522 ExprResult MemberInit =
5523 InitSeq.Perform(S&: SemaRef, Entity: InitEntity, Kind: InitKind, Args: {});
5524 MemberInit = SemaRef.MaybeCreateExprWithCleanups(SubExpr: MemberInit);
5525 // Note, MemberInit could actually come back empty if no initialization
5526 // is required (e.g., because it would call a trivial default constructor)
5527 if (!MemberInit.get() || MemberInit.isInvalid())
5528 continue;
5529
5530 Member = new (Context)
5531 CXXCtorInitializer(Context, Field, SourceLocation(), SourceLocation(),
5532 MemberInit.getAs<Expr>(), SourceLocation());
5533 AllToInit.push_back(Elt: Member);
5534
5535 // Be sure that the destructor is accessible and is marked as referenced.
5536 if (auto *RD = Context.getBaseElementType(QT: Field->getType())
5537 ->getAsCXXRecordDecl()) {
5538 if (CXXDestructorDecl *Destructor = SemaRef.LookupDestructor(Class: RD)) {
5539 SemaRef.MarkFunctionReferenced(Loc: Field->getLocation(), Func: Destructor);
5540 SemaRef.CheckDestructorAccess(
5541 Loc: Field->getLocation(), Dtor: Destructor,
5542 PDiag: PDiag(DiagID: diag::err_access_dtor_ivar)
5543 << Context.getBaseElementType(QT: Field->getType()));
5544 }
5545 }
5546 }
5547 ObjCImplementation->setIvarInitializers(C&: Context, initializers: AllToInit.data(),
5548 numInitializers: AllToInit.size());
5549 }
5550}
5551
5552/// TranslateIvarVisibility - Translate visibility from a token ID to an
5553/// AST enum value.
5554static ObjCIvarDecl::AccessControl
5555TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
5556 switch (ivarVisibility) {
5557 default:
5558 llvm_unreachable("Unknown visitibility kind");
5559 case tok::objc_private:
5560 return ObjCIvarDecl::Private;
5561 case tok::objc_public:
5562 return ObjCIvarDecl::Public;
5563 case tok::objc_protected:
5564 return ObjCIvarDecl::Protected;
5565 case tok::objc_package:
5566 return ObjCIvarDecl::Package;
5567 }
5568}
5569
5570/// ActOnIvar - Each ivar field of an objective-c class is passed into this
5571/// in order to create an IvarDecl object for it.
5572Decl *SemaObjC::ActOnIvar(Scope *S, SourceLocation DeclStart, Declarator &D,
5573 Expr *BitWidth, tok::ObjCKeywordKind Visibility) {
5574
5575 const IdentifierInfo *II = D.getIdentifier();
5576 SourceLocation Loc = DeclStart;
5577 if (II)
5578 Loc = D.getIdentifierLoc();
5579
5580 // FIXME: Unnamed fields can be handled in various different ways, for
5581 // example, unnamed unions inject all members into the struct namespace!
5582
5583 TypeSourceInfo *TInfo = SemaRef.GetTypeForDeclarator(D);
5584 QualType T = TInfo->getType();
5585 ASTContext &Context = getASTContext();
5586 if (Context.getLangOpts().PointerAuthObjcInterfaceSel &&
5587 !T.getPointerAuth()) {
5588 if (Context.isObjCSelType(T: T.getUnqualifiedType())) {
5589 if (auto PAQ = Context.getObjCMemberSelTypePtrAuth())
5590 T = Context.getPointerAuthType(Ty: T, PointerAuth: PAQ);
5591 }
5592 }
5593
5594 if (BitWidth) {
5595 // 6.7.2.1p3, 6.7.2.1p4
5596 BitWidth =
5597 SemaRef.VerifyBitField(FieldLoc: Loc, FieldName: II, FieldTy: T, /*IsMsStruct*/ false, BitWidth)
5598 .get();
5599 if (!BitWidth)
5600 D.setInvalidType();
5601 } else {
5602 // Not a bitfield.
5603
5604 // validate II.
5605 }
5606 if (T->isReferenceType()) {
5607 Diag(Loc, DiagID: diag::err_ivar_reference_type);
5608 D.setInvalidType();
5609 }
5610 // C99 6.7.2.1p8: A member of a structure or union may have any type other
5611 // than a variably modified type.
5612 else if (T->isVariablyModifiedType()) {
5613 if (!SemaRef.tryToFixVariablyModifiedVarType(
5614 TInfo, T, Loc, FailedFoldDiagID: diag::err_typecheck_ivar_variable_size))
5615 D.setInvalidType();
5616 }
5617
5618 // Get the visibility (access control) for this ivar.
5619 ObjCIvarDecl::AccessControl ac = Visibility != tok::objc_not_keyword
5620 ? TranslateIvarVisibility(ivarVisibility: Visibility)
5621 : ObjCIvarDecl::None;
5622 // Must set ivar's DeclContext to its enclosing interface.
5623 ObjCContainerDecl *EnclosingDecl =
5624 cast<ObjCContainerDecl>(Val: SemaRef.CurContext);
5625 if (!EnclosingDecl || EnclosingDecl->isInvalidDecl())
5626 return nullptr;
5627 ObjCContainerDecl *EnclosingContext;
5628 if (ObjCImplementationDecl *IMPDecl =
5629 dyn_cast<ObjCImplementationDecl>(Val: EnclosingDecl)) {
5630 if (getLangOpts().ObjCRuntime.isFragile()) {
5631 // Case of ivar declared in an implementation. Context is that of its
5632 // class.
5633 EnclosingContext = IMPDecl->getClassInterface();
5634 assert(EnclosingContext && "Implementation has no class interface!");
5635 } else
5636 EnclosingContext = EnclosingDecl;
5637 } else {
5638 if (ObjCCategoryDecl *CDecl = dyn_cast<ObjCCategoryDecl>(Val: EnclosingDecl)) {
5639 if (getLangOpts().ObjCRuntime.isFragile() || !CDecl->IsClassExtension()) {
5640 Diag(Loc, DiagID: diag::err_misplaced_ivar) << CDecl->IsClassExtension();
5641 return nullptr;
5642 }
5643 }
5644 EnclosingContext = EnclosingDecl;
5645 }
5646
5647 // Construct the decl.
5648 ObjCIvarDecl *NewID =
5649 ObjCIvarDecl::Create(C&: getASTContext(), DC: EnclosingContext, StartLoc: DeclStart, IdLoc: Loc,
5650 Id: II, T, TInfo, ac, BW: BitWidth);
5651
5652 if (T->containsErrors())
5653 NewID->setInvalidDecl();
5654
5655 if (II) {
5656 NamedDecl *PrevDecl =
5657 SemaRef.LookupSingleName(S, Name: II, Loc, NameKind: Sema::LookupMemberName,
5658 Redecl: RedeclarationKind::ForVisibleRedeclaration);
5659 if (PrevDecl && SemaRef.isDeclInScope(D: PrevDecl, Ctx: EnclosingContext, S) &&
5660 !isa<TagDecl>(Val: PrevDecl)) {
5661 Diag(Loc, DiagID: diag::err_duplicate_member) << II;
5662 Diag(Loc: PrevDecl->getLocation(), DiagID: diag::note_previous_declaration);
5663 NewID->setInvalidDecl();
5664 }
5665 }
5666
5667 // Process attributes attached to the ivar.
5668 SemaRef.ProcessDeclAttributes(S, D: NewID, PD: D);
5669
5670 if (D.isInvalidType())
5671 NewID->setInvalidDecl();
5672
5673 // In ARC, infer 'retaining' for ivars of retainable type.
5674 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(decl: NewID))
5675 NewID->setInvalidDecl();
5676
5677 if (D.getDeclSpec().isModulePrivateSpecified())
5678 NewID->setModulePrivate();
5679
5680 if (II) {
5681 // FIXME: When interfaces are DeclContexts, we'll need to add
5682 // these to the interface.
5683 S->AddDecl(D: NewID);
5684 SemaRef.IdResolver.AddDecl(D: NewID);
5685 }
5686
5687 if (getLangOpts().ObjCRuntime.isNonFragile() && !NewID->isInvalidDecl() &&
5688 isa<ObjCInterfaceDecl>(Val: EnclosingDecl))
5689 Diag(Loc, DiagID: diag::warn_ivars_in_interface);
5690
5691 return NewID;
5692}
5693