| 1 | //===- SemaHLSL.cpp - Semantic Analysis for HLSL constructs ---------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // This implements Semantic Analysis for HLSL constructs. |
| 9 | //===----------------------------------------------------------------------===// |
| 10 | |
| 11 | #include "clang/Sema/SemaHLSL.h" |
| 12 | #include "clang/AST/ASTConsumer.h" |
| 13 | #include "clang/AST/ASTContext.h" |
| 14 | #include "clang/AST/Attr.h" |
| 15 | #include "clang/AST/Attrs.inc" |
| 16 | #include "clang/AST/Decl.h" |
| 17 | #include "clang/AST/DeclBase.h" |
| 18 | #include "clang/AST/DeclCXX.h" |
| 19 | #include "clang/AST/DeclarationName.h" |
| 20 | #include "clang/AST/DynamicRecursiveASTVisitor.h" |
| 21 | #include "clang/AST/Expr.h" |
| 22 | #include "clang/AST/HLSLResource.h" |
| 23 | #include "clang/AST/Type.h" |
| 24 | #include "clang/AST/TypeBase.h" |
| 25 | #include "clang/AST/TypeLoc.h" |
| 26 | #include "clang/Basic/Builtins.h" |
| 27 | #include "clang/Basic/DiagnosticSema.h" |
| 28 | #include "clang/Basic/IdentifierTable.h" |
| 29 | #include "clang/Basic/LLVM.h" |
| 30 | #include "clang/Basic/SourceLocation.h" |
| 31 | #include "clang/Basic/Specifiers.h" |
| 32 | #include "clang/Basic/TargetInfo.h" |
| 33 | #include "clang/Sema/Initialization.h" |
| 34 | #include "clang/Sema/Lookup.h" |
| 35 | #include "clang/Sema/ParsedAttr.h" |
| 36 | #include "clang/Sema/Sema.h" |
| 37 | #include "clang/Sema/Template.h" |
| 38 | #include "llvm/ADT/ArrayRef.h" |
| 39 | #include "llvm/ADT/STLExtras.h" |
| 40 | #include "llvm/ADT/SmallVector.h" |
| 41 | #include "llvm/ADT/StringExtras.h" |
| 42 | #include "llvm/ADT/StringRef.h" |
| 43 | #include "llvm/ADT/Twine.h" |
| 44 | #include "llvm/Frontend/HLSL/HLSLBinding.h" |
| 45 | #include "llvm/Frontend/HLSL/RootSignatureValidations.h" |
| 46 | #include "llvm/Support/Casting.h" |
| 47 | #include "llvm/Support/DXILABI.h" |
| 48 | #include "llvm/Support/ErrorHandling.h" |
| 49 | #include "llvm/Support/FormatVariadic.h" |
| 50 | #include "llvm/TargetParser/Triple.h" |
| 51 | #include <cmath> |
| 52 | #include <cstddef> |
| 53 | #include <iterator> |
| 54 | #include <utility> |
| 55 | |
| 56 | using namespace clang; |
| 57 | using namespace clang::hlsl; |
| 58 | using RegisterType = HLSLResourceBindingAttr::RegisterType; |
| 59 | |
| 60 | static CXXRecordDecl *createHostLayoutStruct(Sema &S, |
| 61 | CXXRecordDecl *StructDecl); |
| 62 | |
| 63 | static RegisterType getRegisterType(ResourceClass RC) { |
| 64 | switch (RC) { |
| 65 | case ResourceClass::SRV: |
| 66 | return RegisterType::SRV; |
| 67 | case ResourceClass::UAV: |
| 68 | return RegisterType::UAV; |
| 69 | case ResourceClass::CBuffer: |
| 70 | return RegisterType::CBuffer; |
| 71 | case ResourceClass::Sampler: |
| 72 | return RegisterType::Sampler; |
| 73 | } |
| 74 | llvm_unreachable("unexpected ResourceClass value" ); |
| 75 | } |
| 76 | |
| 77 | static RegisterType getRegisterType(const HLSLAttributedResourceType *ResTy) { |
| 78 | return getRegisterType(RC: ResTy->getAttrs().ResourceClass); |
| 79 | } |
| 80 | |
| 81 | // Converts the first letter of string Slot to RegisterType. |
| 82 | // Returns false if the letter does not correspond to a valid register type. |
| 83 | static bool convertToRegisterType(StringRef Slot, RegisterType *RT) { |
| 84 | assert(RT != nullptr); |
| 85 | switch (Slot[0]) { |
| 86 | case 't': |
| 87 | case 'T': |
| 88 | *RT = RegisterType::SRV; |
| 89 | return true; |
| 90 | case 'u': |
| 91 | case 'U': |
| 92 | *RT = RegisterType::UAV; |
| 93 | return true; |
| 94 | case 'b': |
| 95 | case 'B': |
| 96 | *RT = RegisterType::CBuffer; |
| 97 | return true; |
| 98 | case 's': |
| 99 | case 'S': |
| 100 | *RT = RegisterType::Sampler; |
| 101 | return true; |
| 102 | case 'c': |
| 103 | case 'C': |
| 104 | *RT = RegisterType::C; |
| 105 | return true; |
| 106 | case 'i': |
| 107 | case 'I': |
| 108 | *RT = RegisterType::I; |
| 109 | return true; |
| 110 | default: |
| 111 | return false; |
| 112 | } |
| 113 | } |
| 114 | |
| 115 | static ResourceClass getResourceClass(RegisterType RT) { |
| 116 | switch (RT) { |
| 117 | case RegisterType::SRV: |
| 118 | return ResourceClass::SRV; |
| 119 | case RegisterType::UAV: |
| 120 | return ResourceClass::UAV; |
| 121 | case RegisterType::CBuffer: |
| 122 | return ResourceClass::CBuffer; |
| 123 | case RegisterType::Sampler: |
| 124 | return ResourceClass::Sampler; |
| 125 | case RegisterType::C: |
| 126 | case RegisterType::I: |
| 127 | // Deliberately falling through to the unreachable below. |
| 128 | break; |
| 129 | } |
| 130 | llvm_unreachable("unexpected RegisterType value" ); |
| 131 | } |
| 132 | |
| 133 | static Builtin::ID getSpecConstBuiltinId(const Type *Type) { |
| 134 | const auto *BT = dyn_cast<BuiltinType>(Val: Type); |
| 135 | if (!BT) { |
| 136 | if (!Type->isEnumeralType()) |
| 137 | return Builtin::NotBuiltin; |
| 138 | return Builtin::BI__builtin_get_spirv_spec_constant_int; |
| 139 | } |
| 140 | |
| 141 | switch (BT->getKind()) { |
| 142 | case BuiltinType::Bool: |
| 143 | return Builtin::BI__builtin_get_spirv_spec_constant_bool; |
| 144 | case BuiltinType::Short: |
| 145 | return Builtin::BI__builtin_get_spirv_spec_constant_short; |
| 146 | case BuiltinType::Int: |
| 147 | return Builtin::BI__builtin_get_spirv_spec_constant_int; |
| 148 | case BuiltinType::LongLong: |
| 149 | return Builtin::BI__builtin_get_spirv_spec_constant_longlong; |
| 150 | case BuiltinType::UShort: |
| 151 | return Builtin::BI__builtin_get_spirv_spec_constant_ushort; |
| 152 | case BuiltinType::UInt: |
| 153 | return Builtin::BI__builtin_get_spirv_spec_constant_uint; |
| 154 | case BuiltinType::ULongLong: |
| 155 | return Builtin::BI__builtin_get_spirv_spec_constant_ulonglong; |
| 156 | case BuiltinType::Half: |
| 157 | return Builtin::BI__builtin_get_spirv_spec_constant_half; |
| 158 | case BuiltinType::Float: |
| 159 | return Builtin::BI__builtin_get_spirv_spec_constant_float; |
| 160 | case BuiltinType::Double: |
| 161 | return Builtin::BI__builtin_get_spirv_spec_constant_double; |
| 162 | default: |
| 163 | return Builtin::NotBuiltin; |
| 164 | } |
| 165 | } |
| 166 | |
| 167 | DeclBindingInfo *ResourceBindings::addDeclBindingInfo(const VarDecl *VD, |
| 168 | ResourceClass ResClass) { |
| 169 | assert(getDeclBindingInfo(VD, ResClass) == nullptr && |
| 170 | "DeclBindingInfo already added" ); |
| 171 | assert(!hasBindingInfoForDecl(VD) || BindingsList.back().Decl == VD); |
| 172 | // VarDecl may have multiple entries for different resource classes. |
| 173 | // DeclToBindingListIndex stores the index of the first binding we saw |
| 174 | // for this decl. If there are any additional ones then that index |
| 175 | // shouldn't be updated. |
| 176 | DeclToBindingListIndex.try_emplace(Key: VD, Args: BindingsList.size()); |
| 177 | return &BindingsList.emplace_back(Args&: VD, Args&: ResClass); |
| 178 | } |
| 179 | |
| 180 | DeclBindingInfo *ResourceBindings::getDeclBindingInfo(const VarDecl *VD, |
| 181 | ResourceClass ResClass) { |
| 182 | auto Entry = DeclToBindingListIndex.find(Val: VD); |
| 183 | if (Entry != DeclToBindingListIndex.end()) { |
| 184 | for (unsigned Index = Entry->getSecond(); |
| 185 | Index < BindingsList.size() && BindingsList[Index].Decl == VD; |
| 186 | ++Index) { |
| 187 | if (BindingsList[Index].ResClass == ResClass) |
| 188 | return &BindingsList[Index]; |
| 189 | } |
| 190 | } |
| 191 | return nullptr; |
| 192 | } |
| 193 | |
| 194 | bool ResourceBindings::hasBindingInfoForDecl(const VarDecl *VD) const { |
| 195 | return DeclToBindingListIndex.contains(Val: VD); |
| 196 | } |
| 197 | |
| 198 | SemaHLSL::SemaHLSL(Sema &S) : SemaBase(S) {} |
| 199 | |
| 200 | Decl *SemaHLSL::ActOnStartBuffer(Scope *BufferScope, bool CBuffer, |
| 201 | SourceLocation KwLoc, IdentifierInfo *Ident, |
| 202 | SourceLocation IdentLoc, |
| 203 | SourceLocation LBrace) { |
| 204 | // For anonymous namespace, take the location of the left brace. |
| 205 | DeclContext *LexicalParent = SemaRef.getCurLexicalContext(); |
| 206 | HLSLBufferDecl *Result = HLSLBufferDecl::Create( |
| 207 | C&: getASTContext(), LexicalParent, CBuffer, KwLoc, ID: Ident, IDLoc: IdentLoc, LBrace); |
| 208 | |
| 209 | // if CBuffer is false, then it's a TBuffer |
| 210 | auto RC = CBuffer ? llvm::hlsl::ResourceClass::CBuffer |
| 211 | : llvm::hlsl::ResourceClass::SRV; |
| 212 | Result->addAttr(A: HLSLResourceClassAttr::CreateImplicit(Ctx&: getASTContext(), ResourceClass: RC)); |
| 213 | |
| 214 | SemaRef.PushOnScopeChains(D: Result, S: BufferScope); |
| 215 | SemaRef.PushDeclContext(S: BufferScope, DC: Result); |
| 216 | |
| 217 | return Result; |
| 218 | } |
| 219 | |
| 220 | static unsigned calculateLegacyCbufferFieldAlign(const ASTContext &Context, |
| 221 | QualType T) { |
| 222 | // Arrays and Structs are always aligned to new buffer rows |
| 223 | if (T->isArrayType() || T->isStructureType()) |
| 224 | return 16; |
| 225 | |
| 226 | // Vectors are aligned to the type they contain |
| 227 | if (const VectorType *VT = T->getAs<VectorType>()) |
| 228 | return calculateLegacyCbufferFieldAlign(Context, T: VT->getElementType()); |
| 229 | |
| 230 | assert(Context.getTypeSize(T) <= 64 && |
| 231 | "Scalar bit widths larger than 64 not supported" ); |
| 232 | |
| 233 | // Scalar types are aligned to their byte width |
| 234 | return Context.getTypeSize(T) / 8; |
| 235 | } |
| 236 | |
| 237 | // Calculate the size of a legacy cbuffer type in bytes based on |
| 238 | // https://learn.microsoft.com/en-us/windows/win32/direct3dhlsl/dx-graphics-hlsl-packing-rules |
| 239 | static unsigned calculateLegacyCbufferSize(const ASTContext &Context, |
| 240 | QualType T) { |
| 241 | constexpr unsigned CBufferAlign = 16; |
| 242 | if (const auto *RD = T->getAsRecordDecl()) { |
| 243 | unsigned Size = 0; |
| 244 | for (const FieldDecl *Field : RD->fields()) { |
| 245 | QualType Ty = Field->getType(); |
| 246 | unsigned FieldSize = calculateLegacyCbufferSize(Context, T: Ty); |
| 247 | unsigned FieldAlign = calculateLegacyCbufferFieldAlign(Context, T: Ty); |
| 248 | |
| 249 | // If the field crosses the row boundary after alignment it drops to the |
| 250 | // next row |
| 251 | unsigned AlignSize = llvm::alignTo(Value: Size, Align: FieldAlign); |
| 252 | if ((AlignSize % CBufferAlign) + FieldSize > CBufferAlign) { |
| 253 | FieldAlign = CBufferAlign; |
| 254 | } |
| 255 | |
| 256 | Size = llvm::alignTo(Value: Size, Align: FieldAlign); |
| 257 | Size += FieldSize; |
| 258 | } |
| 259 | return Size; |
| 260 | } |
| 261 | |
| 262 | if (const ConstantArrayType *AT = Context.getAsConstantArrayType(T)) { |
| 263 | unsigned ElementCount = AT->getSize().getZExtValue(); |
| 264 | if (ElementCount == 0) |
| 265 | return 0; |
| 266 | |
| 267 | unsigned ElementSize = |
| 268 | calculateLegacyCbufferSize(Context, T: AT->getElementType()); |
| 269 | unsigned AlignedElementSize = llvm::alignTo(Value: ElementSize, Align: CBufferAlign); |
| 270 | return AlignedElementSize * (ElementCount - 1) + ElementSize; |
| 271 | } |
| 272 | |
| 273 | if (const VectorType *VT = T->getAs<VectorType>()) { |
| 274 | unsigned ElementCount = VT->getNumElements(); |
| 275 | unsigned ElementSize = |
| 276 | calculateLegacyCbufferSize(Context, T: VT->getElementType()); |
| 277 | return ElementSize * ElementCount; |
| 278 | } |
| 279 | |
| 280 | return Context.getTypeSize(T) / 8; |
| 281 | } |
| 282 | |
| 283 | // Validate packoffset: |
| 284 | // - if packoffset it used it must be set on all declarations inside the buffer |
| 285 | // - packoffset ranges must not overlap |
| 286 | static void validatePackoffset(Sema &S, HLSLBufferDecl *BufDecl) { |
| 287 | llvm::SmallVector<std::pair<VarDecl *, HLSLPackOffsetAttr *>> PackOffsetVec; |
| 288 | |
| 289 | // Make sure the packoffset annotations are either on all declarations |
| 290 | // or on none. |
| 291 | bool HasPackOffset = false; |
| 292 | bool HasNonPackOffset = false; |
| 293 | for (auto *Field : BufDecl->buffer_decls()) { |
| 294 | VarDecl *Var = dyn_cast<VarDecl>(Val: Field); |
| 295 | if (!Var) |
| 296 | continue; |
| 297 | if (Field->hasAttr<HLSLPackOffsetAttr>()) { |
| 298 | PackOffsetVec.emplace_back(Args&: Var, Args: Field->getAttr<HLSLPackOffsetAttr>()); |
| 299 | HasPackOffset = true; |
| 300 | } else { |
| 301 | HasNonPackOffset = true; |
| 302 | } |
| 303 | } |
| 304 | |
| 305 | if (!HasPackOffset) |
| 306 | return; |
| 307 | |
| 308 | if (HasNonPackOffset) |
| 309 | S.Diag(Loc: BufDecl->getLocation(), DiagID: diag::warn_hlsl_packoffset_mix); |
| 310 | |
| 311 | // Make sure there is no overlap in packoffset - sort PackOffsetVec by offset |
| 312 | // and compare adjacent values. |
| 313 | bool IsValid = true; |
| 314 | ASTContext &Context = S.getASTContext(); |
| 315 | std::sort(first: PackOffsetVec.begin(), last: PackOffsetVec.end(), |
| 316 | comp: [](const std::pair<VarDecl *, HLSLPackOffsetAttr *> &LHS, |
| 317 | const std::pair<VarDecl *, HLSLPackOffsetAttr *> &RHS) { |
| 318 | return LHS.second->getOffsetInBytes() < |
| 319 | RHS.second->getOffsetInBytes(); |
| 320 | }); |
| 321 | for (unsigned i = 0; i < PackOffsetVec.size() - 1; i++) { |
| 322 | VarDecl *Var = PackOffsetVec[i].first; |
| 323 | HLSLPackOffsetAttr *Attr = PackOffsetVec[i].second; |
| 324 | unsigned Size = calculateLegacyCbufferSize(Context, T: Var->getType()); |
| 325 | unsigned Begin = Attr->getOffsetInBytes(); |
| 326 | unsigned End = Begin + Size; |
| 327 | unsigned NextBegin = PackOffsetVec[i + 1].second->getOffsetInBytes(); |
| 328 | if (End > NextBegin) { |
| 329 | VarDecl *NextVar = PackOffsetVec[i + 1].first; |
| 330 | S.Diag(Loc: NextVar->getLocation(), DiagID: diag::err_hlsl_packoffset_overlap) |
| 331 | << NextVar << Var; |
| 332 | IsValid = false; |
| 333 | } |
| 334 | } |
| 335 | BufDecl->setHasValidPackoffset(IsValid); |
| 336 | } |
| 337 | |
| 338 | // Returns true if the array has a zero size = if any of the dimensions is 0 |
| 339 | static bool isZeroSizedArray(const ConstantArrayType *CAT) { |
| 340 | while (CAT && !CAT->isZeroSize()) |
| 341 | CAT = dyn_cast<ConstantArrayType>( |
| 342 | Val: CAT->getElementType()->getUnqualifiedDesugaredType()); |
| 343 | return CAT != nullptr; |
| 344 | } |
| 345 | |
| 346 | static bool isResourceRecordTypeOrArrayOf(VarDecl *VD) { |
| 347 | const Type *Ty = VD->getType().getTypePtr(); |
| 348 | return Ty->isHLSLResourceRecord() || Ty->isHLSLResourceRecordArray(); |
| 349 | } |
| 350 | |
| 351 | static const HLSLAttributedResourceType * |
| 352 | getResourceArrayHandleType(VarDecl *VD) { |
| 353 | assert(VD->getType()->isHLSLResourceRecordArray() && |
| 354 | "expected array of resource records" ); |
| 355 | const Type *Ty = VD->getType()->getUnqualifiedDesugaredType(); |
| 356 | while (const ArrayType *AT = dyn_cast<ArrayType>(Val: Ty)) |
| 357 | Ty = AT->getArrayElementTypeNoTypeQual()->getUnqualifiedDesugaredType(); |
| 358 | return HLSLAttributedResourceType::findHandleTypeOnResource(RT: Ty); |
| 359 | } |
| 360 | |
| 361 | // Returns true if the type is a leaf element type that is not valid to be |
| 362 | // included in HLSL Buffer, such as a resource class, empty struct, zero-sized |
| 363 | // array, or a builtin intangible type. Returns false it is a valid leaf element |
| 364 | // type or if it is a record type that needs to be inspected further. |
| 365 | static bool isInvalidConstantBufferLeafElementType(const Type *Ty) { |
| 366 | Ty = Ty->getUnqualifiedDesugaredType(); |
| 367 | if (Ty->isHLSLResourceRecord() || Ty->isHLSLResourceRecordArray()) |
| 368 | return true; |
| 369 | if (const auto *RD = Ty->getAsCXXRecordDecl()) |
| 370 | return RD->isEmpty(); |
| 371 | if (Ty->isConstantArrayType() && |
| 372 | isZeroSizedArray(CAT: cast<ConstantArrayType>(Val: Ty))) |
| 373 | return true; |
| 374 | if (Ty->isHLSLBuiltinIntangibleType() || Ty->isHLSLAttributedResourceType()) |
| 375 | return true; |
| 376 | return false; |
| 377 | } |
| 378 | |
| 379 | // Returns true if the struct contains at least one element that prevents it |
| 380 | // from being included inside HLSL Buffer as is, such as an intangible type, |
| 381 | // empty struct, or zero-sized array. If it does, a new implicit layout struct |
| 382 | // needs to be created for HLSL Buffer use that will exclude these unwanted |
| 383 | // declarations (see createHostLayoutStruct function). |
| 384 | static bool requiresImplicitBufferLayoutStructure(const CXXRecordDecl *RD) { |
| 385 | if (RD->isHLSLIntangible() || RD->isEmpty()) |
| 386 | return true; |
| 387 | // check fields |
| 388 | for (const FieldDecl *Field : RD->fields()) { |
| 389 | QualType Ty = Field->getType(); |
| 390 | if (isInvalidConstantBufferLeafElementType(Ty: Ty.getTypePtr())) |
| 391 | return true; |
| 392 | if (const auto *RD = Ty->getAsCXXRecordDecl(); |
| 393 | RD && requiresImplicitBufferLayoutStructure(RD)) |
| 394 | return true; |
| 395 | } |
| 396 | // check bases |
| 397 | for (const CXXBaseSpecifier &Base : RD->bases()) |
| 398 | if (requiresImplicitBufferLayoutStructure( |
| 399 | RD: Base.getType()->castAsCXXRecordDecl())) |
| 400 | return true; |
| 401 | return false; |
| 402 | } |
| 403 | |
| 404 | static CXXRecordDecl *findRecordDeclInContext(IdentifierInfo *II, |
| 405 | DeclContext *DC) { |
| 406 | CXXRecordDecl *RD = nullptr; |
| 407 | for (NamedDecl *Decl : |
| 408 | DC->getNonTransparentContext()->lookup(Name: DeclarationName(II))) { |
| 409 | if (CXXRecordDecl *FoundRD = dyn_cast<CXXRecordDecl>(Val: Decl)) { |
| 410 | assert(RD == nullptr && |
| 411 | "there should be at most 1 record by a given name in a scope" ); |
| 412 | RD = FoundRD; |
| 413 | } |
| 414 | } |
| 415 | return RD; |
| 416 | } |
| 417 | |
| 418 | // Creates a name for buffer layout struct using the provide name base. |
| 419 | // If the name must be unique (not previously defined), a suffix is added |
| 420 | // until a unique name is found. |
| 421 | static IdentifierInfo *getHostLayoutStructName(Sema &S, NamedDecl *BaseDecl, |
| 422 | bool MustBeUnique) { |
| 423 | ASTContext &AST = S.getASTContext(); |
| 424 | |
| 425 | IdentifierInfo *NameBaseII = BaseDecl->getIdentifier(); |
| 426 | llvm::SmallString<64> Name("__cblayout_" ); |
| 427 | if (NameBaseII) { |
| 428 | Name.append(RHS: NameBaseII->getName()); |
| 429 | } else { |
| 430 | // anonymous struct |
| 431 | Name.append(RHS: "anon" ); |
| 432 | MustBeUnique = true; |
| 433 | } |
| 434 | |
| 435 | size_t NameLength = Name.size(); |
| 436 | IdentifierInfo *II = &AST.Idents.get(Name, TokenCode: tok::TokenKind::identifier); |
| 437 | if (!MustBeUnique) |
| 438 | return II; |
| 439 | |
| 440 | unsigned suffix = 0; |
| 441 | while (true) { |
| 442 | if (suffix != 0) { |
| 443 | Name.append(RHS: "_" ); |
| 444 | Name.append(RHS: llvm::Twine(suffix).str()); |
| 445 | II = &AST.Idents.get(Name, TokenCode: tok::TokenKind::identifier); |
| 446 | } |
| 447 | if (!findRecordDeclInContext(II, DC: BaseDecl->getDeclContext())) |
| 448 | return II; |
| 449 | // declaration with that name already exists - increment suffix and try |
| 450 | // again until unique name is found |
| 451 | suffix++; |
| 452 | Name.truncate(N: NameLength); |
| 453 | }; |
| 454 | } |
| 455 | |
| 456 | // Creates a field declaration of given name and type for HLSL buffer layout |
| 457 | // struct. Returns nullptr if the type cannot be use in HLSL Buffer layout. |
| 458 | static FieldDecl *createFieldForHostLayoutStruct(Sema &S, const Type *Ty, |
| 459 | IdentifierInfo *II, |
| 460 | CXXRecordDecl *LayoutStruct) { |
| 461 | if (isInvalidConstantBufferLeafElementType(Ty)) |
| 462 | return nullptr; |
| 463 | |
| 464 | if (auto *RD = Ty->getAsCXXRecordDecl()) { |
| 465 | if (requiresImplicitBufferLayoutStructure(RD)) { |
| 466 | RD = createHostLayoutStruct(S, StructDecl: RD); |
| 467 | if (!RD) |
| 468 | return nullptr; |
| 469 | Ty = S.Context.getCanonicalTagType(TD: RD)->getTypePtr(); |
| 470 | } |
| 471 | } |
| 472 | |
| 473 | QualType QT = QualType(Ty, 0); |
| 474 | ASTContext &AST = S.getASTContext(); |
| 475 | TypeSourceInfo *TSI = AST.getTrivialTypeSourceInfo(T: QT, Loc: SourceLocation()); |
| 476 | auto *Field = FieldDecl::Create(C: AST, DC: LayoutStruct, StartLoc: SourceLocation(), |
| 477 | IdLoc: SourceLocation(), Id: II, T: QT, TInfo: TSI, BW: nullptr, Mutable: false, |
| 478 | InitStyle: InClassInitStyle::ICIS_NoInit); |
| 479 | Field->setAccess(AccessSpecifier::AS_public); |
| 480 | return Field; |
| 481 | } |
| 482 | |
| 483 | // Creates host layout struct for a struct included in HLSL Buffer. |
| 484 | // The layout struct will include only fields that are allowed in HLSL buffer. |
| 485 | // These fields will be filtered out: |
| 486 | // - resource classes |
| 487 | // - empty structs |
| 488 | // - zero-sized arrays |
| 489 | // Returns nullptr if the resulting layout struct would be empty. |
| 490 | static CXXRecordDecl *createHostLayoutStruct(Sema &S, |
| 491 | CXXRecordDecl *StructDecl) { |
| 492 | assert(requiresImplicitBufferLayoutStructure(StructDecl) && |
| 493 | "struct is already HLSL buffer compatible" ); |
| 494 | |
| 495 | ASTContext &AST = S.getASTContext(); |
| 496 | DeclContext *DC = StructDecl->getDeclContext(); |
| 497 | IdentifierInfo *II = getHostLayoutStructName(S, BaseDecl: StructDecl, MustBeUnique: false); |
| 498 | |
| 499 | // reuse existing if the layout struct if it already exists |
| 500 | if (CXXRecordDecl *RD = findRecordDeclInContext(II, DC)) |
| 501 | return RD; |
| 502 | |
| 503 | CXXRecordDecl *LS = |
| 504 | CXXRecordDecl::Create(C: AST, TK: TagDecl::TagKind::Struct, DC, StartLoc: SourceLocation(), |
| 505 | IdLoc: SourceLocation(), Id: II); |
| 506 | LS->setImplicit(true); |
| 507 | LS->addAttr(A: PackedAttr::CreateImplicit(Ctx&: AST)); |
| 508 | LS->startDefinition(); |
| 509 | |
| 510 | // copy base struct, create HLSL Buffer compatible version if needed |
| 511 | if (unsigned NumBases = StructDecl->getNumBases()) { |
| 512 | assert(NumBases == 1 && "HLSL supports only one base type" ); |
| 513 | (void)NumBases; |
| 514 | CXXBaseSpecifier Base = *StructDecl->bases_begin(); |
| 515 | CXXRecordDecl *BaseDecl = Base.getType()->castAsCXXRecordDecl(); |
| 516 | if (requiresImplicitBufferLayoutStructure(RD: BaseDecl)) { |
| 517 | BaseDecl = createHostLayoutStruct(S, StructDecl: BaseDecl); |
| 518 | if (BaseDecl) { |
| 519 | TypeSourceInfo *TSI = |
| 520 | AST.getTrivialTypeSourceInfo(T: AST.getCanonicalTagType(TD: BaseDecl)); |
| 521 | Base = CXXBaseSpecifier(SourceRange(), false, StructDecl->isClass(), |
| 522 | AS_none, TSI, SourceLocation()); |
| 523 | } |
| 524 | } |
| 525 | if (BaseDecl) { |
| 526 | const CXXBaseSpecifier *BasesArray[1] = {&Base}; |
| 527 | LS->setBases(Bases: BasesArray, NumBases: 1); |
| 528 | } |
| 529 | } |
| 530 | |
| 531 | // filter struct fields |
| 532 | for (const FieldDecl *FD : StructDecl->fields()) { |
| 533 | const Type *Ty = FD->getType()->getUnqualifiedDesugaredType(); |
| 534 | if (FieldDecl *NewFD = |
| 535 | createFieldForHostLayoutStruct(S, Ty, II: FD->getIdentifier(), LayoutStruct: LS)) |
| 536 | LS->addDecl(D: NewFD); |
| 537 | } |
| 538 | LS->completeDefinition(); |
| 539 | |
| 540 | if (LS->field_empty() && LS->getNumBases() == 0) |
| 541 | return nullptr; |
| 542 | |
| 543 | DC->addDecl(D: LS); |
| 544 | return LS; |
| 545 | } |
| 546 | |
| 547 | // Creates host layout struct for HLSL Buffer. The struct will include only |
| 548 | // fields of types that are allowed in HLSL buffer and it will filter out: |
| 549 | // - static or groupshared variable declarations |
| 550 | // - resource classes |
| 551 | // - empty structs |
| 552 | // - zero-sized arrays |
| 553 | // - non-variable declarations |
| 554 | // The layout struct will be added to the HLSLBufferDecl declarations. |
| 555 | void createHostLayoutStructForBuffer(Sema &S, HLSLBufferDecl *BufDecl) { |
| 556 | ASTContext &AST = S.getASTContext(); |
| 557 | IdentifierInfo *II = getHostLayoutStructName(S, BaseDecl: BufDecl, MustBeUnique: true); |
| 558 | |
| 559 | CXXRecordDecl *LS = |
| 560 | CXXRecordDecl::Create(C: AST, TK: TagDecl::TagKind::Struct, DC: BufDecl, |
| 561 | StartLoc: SourceLocation(), IdLoc: SourceLocation(), Id: II); |
| 562 | LS->addAttr(A: PackedAttr::CreateImplicit(Ctx&: AST)); |
| 563 | LS->setImplicit(true); |
| 564 | LS->startDefinition(); |
| 565 | |
| 566 | for (Decl *D : BufDecl->buffer_decls()) { |
| 567 | VarDecl *VD = dyn_cast<VarDecl>(Val: D); |
| 568 | if (!VD || VD->getStorageClass() == SC_Static || |
| 569 | VD->getType().getAddressSpace() == LangAS::hlsl_groupshared) |
| 570 | continue; |
| 571 | const Type *Ty = VD->getType()->getUnqualifiedDesugaredType(); |
| 572 | if (FieldDecl *FD = |
| 573 | createFieldForHostLayoutStruct(S, Ty, II: VD->getIdentifier(), LayoutStruct: LS)) { |
| 574 | // add the field decl to the layout struct |
| 575 | LS->addDecl(D: FD); |
| 576 | // update address space of the original decl to hlsl_constant |
| 577 | QualType NewTy = |
| 578 | AST.getAddrSpaceQualType(T: VD->getType(), AddressSpace: LangAS::hlsl_constant); |
| 579 | VD->setType(NewTy); |
| 580 | } |
| 581 | } |
| 582 | LS->completeDefinition(); |
| 583 | BufDecl->addLayoutStruct(LS); |
| 584 | } |
| 585 | |
| 586 | static void addImplicitBindingAttrToDecl(Sema &S, Decl *D, RegisterType RT, |
| 587 | uint32_t ImplicitBindingOrderID) { |
| 588 | auto *Attr = |
| 589 | HLSLResourceBindingAttr::CreateImplicit(Ctx&: S.getASTContext(), Slot: "" , Space: "0" , Range: {}); |
| 590 | Attr->setBinding(RT, SlotNum: std::nullopt, SpaceNum: 0); |
| 591 | Attr->setImplicitBindingOrderID(ImplicitBindingOrderID); |
| 592 | D->addAttr(A: Attr); |
| 593 | } |
| 594 | |
| 595 | // Handle end of cbuffer/tbuffer declaration |
| 596 | void SemaHLSL::ActOnFinishBuffer(Decl *Dcl, SourceLocation RBrace) { |
| 597 | auto *BufDecl = cast<HLSLBufferDecl>(Val: Dcl); |
| 598 | BufDecl->setRBraceLoc(RBrace); |
| 599 | |
| 600 | validatePackoffset(S&: SemaRef, BufDecl); |
| 601 | |
| 602 | createHostLayoutStructForBuffer(S&: SemaRef, BufDecl); |
| 603 | |
| 604 | // Handle implicit binding if needed. |
| 605 | ResourceBindingAttrs ResourceAttrs(Dcl); |
| 606 | if (!ResourceAttrs.isExplicit()) { |
| 607 | SemaRef.Diag(Loc: Dcl->getLocation(), DiagID: diag::warn_hlsl_implicit_binding); |
| 608 | // Use HLSLResourceBindingAttr to transfer implicit binding order_ID |
| 609 | // to codegen. If it does not exist, create an implicit attribute. |
| 610 | uint32_t OrderID = getNextImplicitBindingOrderID(); |
| 611 | if (ResourceAttrs.hasBinding()) |
| 612 | ResourceAttrs.setImplicitOrderID(OrderID); |
| 613 | else |
| 614 | addImplicitBindingAttrToDecl(S&: SemaRef, D: BufDecl, |
| 615 | RT: BufDecl->isCBuffer() ? RegisterType::CBuffer |
| 616 | : RegisterType::SRV, |
| 617 | ImplicitBindingOrderID: OrderID); |
| 618 | } |
| 619 | |
| 620 | SemaRef.PopDeclContext(); |
| 621 | } |
| 622 | |
| 623 | HLSLNumThreadsAttr *SemaHLSL::mergeNumThreadsAttr(Decl *D, |
| 624 | const AttributeCommonInfo &AL, |
| 625 | int X, int Y, int Z) { |
| 626 | if (HLSLNumThreadsAttr *NT = D->getAttr<HLSLNumThreadsAttr>()) { |
| 627 | if (NT->getX() != X || NT->getY() != Y || NT->getZ() != Z) { |
| 628 | Diag(Loc: NT->getLocation(), DiagID: diag::err_hlsl_attribute_param_mismatch) << AL; |
| 629 | Diag(Loc: AL.getLoc(), DiagID: diag::note_conflicting_attribute); |
| 630 | } |
| 631 | return nullptr; |
| 632 | } |
| 633 | return ::new (getASTContext()) |
| 634 | HLSLNumThreadsAttr(getASTContext(), AL, X, Y, Z); |
| 635 | } |
| 636 | |
| 637 | HLSLWaveSizeAttr *SemaHLSL::mergeWaveSizeAttr(Decl *D, |
| 638 | const AttributeCommonInfo &AL, |
| 639 | int Min, int Max, int Preferred, |
| 640 | int SpelledArgsCount) { |
| 641 | if (HLSLWaveSizeAttr *WS = D->getAttr<HLSLWaveSizeAttr>()) { |
| 642 | if (WS->getMin() != Min || WS->getMax() != Max || |
| 643 | WS->getPreferred() != Preferred || |
| 644 | WS->getSpelledArgsCount() != SpelledArgsCount) { |
| 645 | Diag(Loc: WS->getLocation(), DiagID: diag::err_hlsl_attribute_param_mismatch) << AL; |
| 646 | Diag(Loc: AL.getLoc(), DiagID: diag::note_conflicting_attribute); |
| 647 | } |
| 648 | return nullptr; |
| 649 | } |
| 650 | HLSLWaveSizeAttr *Result = ::new (getASTContext()) |
| 651 | HLSLWaveSizeAttr(getASTContext(), AL, Min, Max, Preferred); |
| 652 | Result->setSpelledArgsCount(SpelledArgsCount); |
| 653 | return Result; |
| 654 | } |
| 655 | |
| 656 | HLSLVkConstantIdAttr * |
| 657 | SemaHLSL::mergeVkConstantIdAttr(Decl *D, const AttributeCommonInfo &AL, |
| 658 | int Id) { |
| 659 | |
| 660 | auto &TargetInfo = getASTContext().getTargetInfo(); |
| 661 | if (TargetInfo.getTriple().getArch() != llvm::Triple::spirv) { |
| 662 | Diag(Loc: AL.getLoc(), DiagID: diag::warn_attribute_ignored) << AL; |
| 663 | return nullptr; |
| 664 | } |
| 665 | |
| 666 | auto *VD = cast<VarDecl>(Val: D); |
| 667 | |
| 668 | if (getSpecConstBuiltinId(Type: VD->getType()->getUnqualifiedDesugaredType()) == |
| 669 | Builtin::NotBuiltin) { |
| 670 | Diag(Loc: VD->getLocation(), DiagID: diag::err_specialization_const); |
| 671 | return nullptr; |
| 672 | } |
| 673 | |
| 674 | if (!VD->getType().isConstQualified()) { |
| 675 | Diag(Loc: VD->getLocation(), DiagID: diag::err_specialization_const); |
| 676 | return nullptr; |
| 677 | } |
| 678 | |
| 679 | if (HLSLVkConstantIdAttr *CI = D->getAttr<HLSLVkConstantIdAttr>()) { |
| 680 | if (CI->getId() != Id) { |
| 681 | Diag(Loc: CI->getLocation(), DiagID: diag::err_hlsl_attribute_param_mismatch) << AL; |
| 682 | Diag(Loc: AL.getLoc(), DiagID: diag::note_conflicting_attribute); |
| 683 | } |
| 684 | return nullptr; |
| 685 | } |
| 686 | |
| 687 | HLSLVkConstantIdAttr *Result = |
| 688 | ::new (getASTContext()) HLSLVkConstantIdAttr(getASTContext(), AL, Id); |
| 689 | return Result; |
| 690 | } |
| 691 | |
| 692 | HLSLShaderAttr * |
| 693 | SemaHLSL::mergeShaderAttr(Decl *D, const AttributeCommonInfo &AL, |
| 694 | llvm::Triple::EnvironmentType ShaderType) { |
| 695 | if (HLSLShaderAttr *NT = D->getAttr<HLSLShaderAttr>()) { |
| 696 | if (NT->getType() != ShaderType) { |
| 697 | Diag(Loc: NT->getLocation(), DiagID: diag::err_hlsl_attribute_param_mismatch) << AL; |
| 698 | Diag(Loc: AL.getLoc(), DiagID: diag::note_conflicting_attribute); |
| 699 | } |
| 700 | return nullptr; |
| 701 | } |
| 702 | return HLSLShaderAttr::Create(Ctx&: getASTContext(), Type: ShaderType, CommonInfo: AL); |
| 703 | } |
| 704 | |
| 705 | HLSLParamModifierAttr * |
| 706 | SemaHLSL::mergeParamModifierAttr(Decl *D, const AttributeCommonInfo &AL, |
| 707 | HLSLParamModifierAttr::Spelling Spelling) { |
| 708 | // We can only merge an `in` attribute with an `out` attribute. All other |
| 709 | // combinations of duplicated attributes are ill-formed. |
| 710 | if (HLSLParamModifierAttr *PA = D->getAttr<HLSLParamModifierAttr>()) { |
| 711 | if ((PA->isIn() && Spelling == HLSLParamModifierAttr::Keyword_out) || |
| 712 | (PA->isOut() && Spelling == HLSLParamModifierAttr::Keyword_in)) { |
| 713 | D->dropAttr<HLSLParamModifierAttr>(); |
| 714 | SourceRange AdjustedRange = {PA->getLocation(), AL.getRange().getEnd()}; |
| 715 | return HLSLParamModifierAttr::Create( |
| 716 | Ctx&: getASTContext(), /*MergedSpelling=*/true, Range: AdjustedRange, |
| 717 | S: HLSLParamModifierAttr::Keyword_inout); |
| 718 | } |
| 719 | Diag(Loc: AL.getLoc(), DiagID: diag::err_hlsl_duplicate_parameter_modifier) << AL; |
| 720 | Diag(Loc: PA->getLocation(), DiagID: diag::note_conflicting_attribute); |
| 721 | return nullptr; |
| 722 | } |
| 723 | return HLSLParamModifierAttr::Create(Ctx&: getASTContext(), CommonInfo: AL); |
| 724 | } |
| 725 | |
| 726 | void SemaHLSL::ActOnTopLevelFunction(FunctionDecl *FD) { |
| 727 | auto &TargetInfo = getASTContext().getTargetInfo(); |
| 728 | |
| 729 | if (FD->getName() != TargetInfo.getTargetOpts().HLSLEntry) |
| 730 | return; |
| 731 | |
| 732 | // If we have specified a root signature to override the entry function then |
| 733 | // attach it now |
| 734 | HLSLRootSignatureDecl *SignatureDecl = |
| 735 | lookupRootSignatureOverrideDecl(DC: FD->getDeclContext()); |
| 736 | if (SignatureDecl) { |
| 737 | FD->dropAttr<RootSignatureAttr>(); |
| 738 | // We could look up the SourceRange of the macro here as well |
| 739 | AttributeCommonInfo AL(RootSigOverrideIdent, AttributeScopeInfo(), |
| 740 | SourceRange(), ParsedAttr::Form::Microsoft()); |
| 741 | FD->addAttr(A: ::new (getASTContext()) RootSignatureAttr( |
| 742 | getASTContext(), AL, RootSigOverrideIdent, SignatureDecl)); |
| 743 | } |
| 744 | |
| 745 | llvm::Triple::EnvironmentType Env = TargetInfo.getTriple().getEnvironment(); |
| 746 | if (HLSLShaderAttr::isValidShaderType(ShaderType: Env) && Env != llvm::Triple::Library) { |
| 747 | if (const auto *Shader = FD->getAttr<HLSLShaderAttr>()) { |
| 748 | // The entry point is already annotated - check that it matches the |
| 749 | // triple. |
| 750 | if (Shader->getType() != Env) { |
| 751 | Diag(Loc: Shader->getLocation(), DiagID: diag::err_hlsl_entry_shader_attr_mismatch) |
| 752 | << Shader; |
| 753 | FD->setInvalidDecl(); |
| 754 | } |
| 755 | } else { |
| 756 | // Implicitly add the shader attribute if the entry function isn't |
| 757 | // explicitly annotated. |
| 758 | FD->addAttr(A: HLSLShaderAttr::CreateImplicit(Ctx&: getASTContext(), Type: Env, |
| 759 | Range: FD->getBeginLoc())); |
| 760 | } |
| 761 | } else { |
| 762 | switch (Env) { |
| 763 | case llvm::Triple::UnknownEnvironment: |
| 764 | case llvm::Triple::Library: |
| 765 | break; |
| 766 | case llvm::Triple::RootSignature: |
| 767 | llvm_unreachable("rootsig environment has no functions" ); |
| 768 | default: |
| 769 | llvm_unreachable("Unhandled environment in triple" ); |
| 770 | } |
| 771 | } |
| 772 | } |
| 773 | |
| 774 | static bool isVkPipelineBuiltin(const ASTContext &AstContext, FunctionDecl *FD, |
| 775 | HLSLAppliedSemanticAttr *Semantic, |
| 776 | bool IsInput) { |
| 777 | if (AstContext.getTargetInfo().getTriple().getOS() != llvm::Triple::Vulkan) |
| 778 | return false; |
| 779 | |
| 780 | const auto *ShaderAttr = FD->getAttr<HLSLShaderAttr>(); |
| 781 | assert(ShaderAttr && "Entry point has no shader attribute" ); |
| 782 | llvm::Triple::EnvironmentType ST = ShaderAttr->getType(); |
| 783 | auto SemanticName = Semantic->getSemanticName().upper(); |
| 784 | |
| 785 | // The SV_Position semantic is lowered to: |
| 786 | // - Position built-in for vertex output. |
| 787 | // - FragCoord built-in for fragment input. |
| 788 | if (SemanticName == "SV_POSITION" ) { |
| 789 | return (ST == llvm::Triple::Vertex && !IsInput) || |
| 790 | (ST == llvm::Triple::Pixel && IsInput); |
| 791 | } |
| 792 | |
| 793 | return false; |
| 794 | } |
| 795 | |
| 796 | bool SemaHLSL::determineActiveSemanticOnScalar(FunctionDecl *FD, |
| 797 | DeclaratorDecl *OutputDecl, |
| 798 | DeclaratorDecl *D, |
| 799 | SemanticInfo &ActiveSemantic, |
| 800 | SemaHLSL::SemanticContext &SC) { |
| 801 | if (ActiveSemantic.Semantic == nullptr) { |
| 802 | ActiveSemantic.Semantic = D->getAttr<HLSLParsedSemanticAttr>(); |
| 803 | if (ActiveSemantic.Semantic) |
| 804 | ActiveSemantic.Index = ActiveSemantic.Semantic->getSemanticIndex(); |
| 805 | } |
| 806 | |
| 807 | if (!ActiveSemantic.Semantic) { |
| 808 | Diag(Loc: D->getLocation(), DiagID: diag::err_hlsl_missing_semantic_annotation); |
| 809 | return false; |
| 810 | } |
| 811 | |
| 812 | auto *A = ::new (getASTContext()) |
| 813 | HLSLAppliedSemanticAttr(getASTContext(), *ActiveSemantic.Semantic, |
| 814 | ActiveSemantic.Semantic->getAttrName()->getName(), |
| 815 | ActiveSemantic.Index.value_or(u: 0)); |
| 816 | if (!A) |
| 817 | return false; |
| 818 | |
| 819 | checkSemanticAnnotation(EntryPoint: FD, Param: D, SemanticAttr: A, SC); |
| 820 | OutputDecl->addAttr(A); |
| 821 | |
| 822 | unsigned Location = ActiveSemantic.Index.value_or(u: 0); |
| 823 | |
| 824 | if (!isVkPipelineBuiltin(AstContext: getASTContext(), FD, Semantic: A, |
| 825 | IsInput: SC.CurrentIOType & IOType::In)) { |
| 826 | bool HasVkLocation = false; |
| 827 | if (auto *A = D->getAttr<HLSLVkLocationAttr>()) { |
| 828 | HasVkLocation = true; |
| 829 | Location = A->getLocation(); |
| 830 | } |
| 831 | |
| 832 | if (SC.UsesExplicitVkLocations.value_or(u&: HasVkLocation) != HasVkLocation) { |
| 833 | Diag(Loc: D->getLocation(), DiagID: diag::err_hlsl_semantic_partial_explicit_indexing); |
| 834 | return false; |
| 835 | } |
| 836 | SC.UsesExplicitVkLocations = HasVkLocation; |
| 837 | } |
| 838 | |
| 839 | const ConstantArrayType *AT = dyn_cast<ConstantArrayType>(Val: D->getType()); |
| 840 | unsigned ElementCount = AT ? AT->getZExtSize() : 1; |
| 841 | ActiveSemantic.Index = Location + ElementCount; |
| 842 | |
| 843 | Twine BaseName = Twine(ActiveSemantic.Semantic->getAttrName()->getName()); |
| 844 | for (unsigned I = 0; I < ElementCount; ++I) { |
| 845 | Twine VariableName = BaseName.concat(Suffix: Twine(Location + I)); |
| 846 | |
| 847 | auto [_, Inserted] = SC.ActiveSemantics.insert(key: VariableName.str()); |
| 848 | if (!Inserted) { |
| 849 | Diag(Loc: D->getLocation(), DiagID: diag::err_hlsl_semantic_index_overlap) |
| 850 | << VariableName.str(); |
| 851 | return false; |
| 852 | } |
| 853 | } |
| 854 | |
| 855 | return true; |
| 856 | } |
| 857 | |
| 858 | bool SemaHLSL::determineActiveSemantic(FunctionDecl *FD, |
| 859 | DeclaratorDecl *OutputDecl, |
| 860 | DeclaratorDecl *D, |
| 861 | SemanticInfo &ActiveSemantic, |
| 862 | SemaHLSL::SemanticContext &SC) { |
| 863 | if (ActiveSemantic.Semantic == nullptr) { |
| 864 | ActiveSemantic.Semantic = D->getAttr<HLSLParsedSemanticAttr>(); |
| 865 | if (ActiveSemantic.Semantic) |
| 866 | ActiveSemantic.Index = ActiveSemantic.Semantic->getSemanticIndex(); |
| 867 | } |
| 868 | |
| 869 | const Type *T = D == FD ? &*FD->getReturnType() : &*D->getType(); |
| 870 | T = T->getUnqualifiedDesugaredType(); |
| 871 | |
| 872 | const RecordType *RT = dyn_cast<RecordType>(Val: T); |
| 873 | if (!RT) |
| 874 | return determineActiveSemanticOnScalar(FD, OutputDecl, D, ActiveSemantic, |
| 875 | SC); |
| 876 | |
| 877 | const RecordDecl *RD = RT->getDecl(); |
| 878 | for (FieldDecl *Field : RD->fields()) { |
| 879 | SemanticInfo Info = ActiveSemantic; |
| 880 | if (!determineActiveSemantic(FD, OutputDecl, D: Field, ActiveSemantic&: Info, SC)) { |
| 881 | Diag(Loc: Field->getLocation(), DiagID: diag::note_hlsl_semantic_used_here) << Field; |
| 882 | return false; |
| 883 | } |
| 884 | if (ActiveSemantic.Semantic) |
| 885 | ActiveSemantic = Info; |
| 886 | } |
| 887 | |
| 888 | return true; |
| 889 | } |
| 890 | |
| 891 | void SemaHLSL::CheckEntryPoint(FunctionDecl *FD) { |
| 892 | const auto *ShaderAttr = FD->getAttr<HLSLShaderAttr>(); |
| 893 | assert(ShaderAttr && "Entry point has no shader attribute" ); |
| 894 | llvm::Triple::EnvironmentType ST = ShaderAttr->getType(); |
| 895 | auto &TargetInfo = getASTContext().getTargetInfo(); |
| 896 | VersionTuple Ver = TargetInfo.getTriple().getOSVersion(); |
| 897 | switch (ST) { |
| 898 | case llvm::Triple::Pixel: |
| 899 | case llvm::Triple::Vertex: |
| 900 | case llvm::Triple::Geometry: |
| 901 | case llvm::Triple::Hull: |
| 902 | case llvm::Triple::Domain: |
| 903 | case llvm::Triple::RayGeneration: |
| 904 | case llvm::Triple::Intersection: |
| 905 | case llvm::Triple::AnyHit: |
| 906 | case llvm::Triple::ClosestHit: |
| 907 | case llvm::Triple::Miss: |
| 908 | case llvm::Triple::Callable: |
| 909 | if (const auto *NT = FD->getAttr<HLSLNumThreadsAttr>()) { |
| 910 | diagnoseAttrStageMismatch(A: NT, Stage: ST, |
| 911 | AllowedStages: {llvm::Triple::Compute, |
| 912 | llvm::Triple::Amplification, |
| 913 | llvm::Triple::Mesh}); |
| 914 | FD->setInvalidDecl(); |
| 915 | } |
| 916 | if (const auto *WS = FD->getAttr<HLSLWaveSizeAttr>()) { |
| 917 | diagnoseAttrStageMismatch(A: WS, Stage: ST, |
| 918 | AllowedStages: {llvm::Triple::Compute, |
| 919 | llvm::Triple::Amplification, |
| 920 | llvm::Triple::Mesh}); |
| 921 | FD->setInvalidDecl(); |
| 922 | } |
| 923 | break; |
| 924 | |
| 925 | case llvm::Triple::Compute: |
| 926 | case llvm::Triple::Amplification: |
| 927 | case llvm::Triple::Mesh: |
| 928 | if (!FD->hasAttr<HLSLNumThreadsAttr>()) { |
| 929 | Diag(Loc: FD->getLocation(), DiagID: diag::err_hlsl_missing_numthreads) |
| 930 | << llvm::Triple::getEnvironmentTypeName(Kind: ST); |
| 931 | FD->setInvalidDecl(); |
| 932 | } |
| 933 | if (const auto *WS = FD->getAttr<HLSLWaveSizeAttr>()) { |
| 934 | if (Ver < VersionTuple(6, 6)) { |
| 935 | Diag(Loc: WS->getLocation(), DiagID: diag::err_hlsl_attribute_in_wrong_shader_model) |
| 936 | << WS << "6.6" ; |
| 937 | FD->setInvalidDecl(); |
| 938 | } else if (WS->getSpelledArgsCount() > 1 && Ver < VersionTuple(6, 8)) { |
| 939 | Diag( |
| 940 | Loc: WS->getLocation(), |
| 941 | DiagID: diag::err_hlsl_attribute_number_arguments_insufficient_shader_model) |
| 942 | << WS << WS->getSpelledArgsCount() << "6.8" ; |
| 943 | FD->setInvalidDecl(); |
| 944 | } |
| 945 | } |
| 946 | break; |
| 947 | case llvm::Triple::RootSignature: |
| 948 | llvm_unreachable("rootsig environment has no function entry point" ); |
| 949 | default: |
| 950 | llvm_unreachable("Unhandled environment in triple" ); |
| 951 | } |
| 952 | |
| 953 | SemaHLSL::SemanticContext InputSC = {}; |
| 954 | InputSC.CurrentIOType = IOType::In; |
| 955 | |
| 956 | for (ParmVarDecl *Param : FD->parameters()) { |
| 957 | SemanticInfo ActiveSemantic; |
| 958 | ActiveSemantic.Semantic = Param->getAttr<HLSLParsedSemanticAttr>(); |
| 959 | if (ActiveSemantic.Semantic) |
| 960 | ActiveSemantic.Index = ActiveSemantic.Semantic->getSemanticIndex(); |
| 961 | |
| 962 | // FIXME: Verify output semantics in parameters. |
| 963 | if (!determineActiveSemantic(FD, OutputDecl: Param, D: Param, ActiveSemantic, SC&: InputSC)) { |
| 964 | Diag(Loc: Param->getLocation(), DiagID: diag::note_previous_decl) << Param; |
| 965 | FD->setInvalidDecl(); |
| 966 | } |
| 967 | } |
| 968 | |
| 969 | SemanticInfo ActiveSemantic; |
| 970 | SemaHLSL::SemanticContext OutputSC = {}; |
| 971 | OutputSC.CurrentIOType = IOType::Out; |
| 972 | ActiveSemantic.Semantic = FD->getAttr<HLSLParsedSemanticAttr>(); |
| 973 | if (ActiveSemantic.Semantic) |
| 974 | ActiveSemantic.Index = ActiveSemantic.Semantic->getSemanticIndex(); |
| 975 | if (!FD->getReturnType()->isVoidType()) |
| 976 | determineActiveSemantic(FD, OutputDecl: FD, D: FD, ActiveSemantic, SC&: OutputSC); |
| 977 | } |
| 978 | |
| 979 | void SemaHLSL::checkSemanticAnnotation( |
| 980 | FunctionDecl *EntryPoint, const Decl *Param, |
| 981 | const HLSLAppliedSemanticAttr *SemanticAttr, const SemanticContext &SC) { |
| 982 | auto *ShaderAttr = EntryPoint->getAttr<HLSLShaderAttr>(); |
| 983 | assert(ShaderAttr && "Entry point has no shader attribute" ); |
| 984 | llvm::Triple::EnvironmentType ST = ShaderAttr->getType(); |
| 985 | |
| 986 | auto SemanticName = SemanticAttr->getSemanticName().upper(); |
| 987 | if (SemanticName == "SV_DISPATCHTHREADID" || |
| 988 | SemanticName == "SV_GROUPINDEX" || SemanticName == "SV_GROUPTHREADID" || |
| 989 | SemanticName == "SV_GROUPID" ) { |
| 990 | |
| 991 | if (ST != llvm::Triple::Compute) |
| 992 | diagnoseSemanticStageMismatch(A: SemanticAttr, Stage: ST, CurrentIOType: SC.CurrentIOType, |
| 993 | AllowedStages: {{.Stage: llvm::Triple::Compute, .AllowedIOTypesMask: IOType::In}}); |
| 994 | |
| 995 | if (SemanticAttr->getSemanticIndex() != 0) { |
| 996 | std::string PrettyName = |
| 997 | "'" + SemanticAttr->getSemanticName().str() + "'" ; |
| 998 | Diag(Loc: SemanticAttr->getLoc(), |
| 999 | DiagID: diag::err_hlsl_semantic_indexing_not_supported) |
| 1000 | << PrettyName; |
| 1001 | } |
| 1002 | return; |
| 1003 | } |
| 1004 | |
| 1005 | if (SemanticName == "SV_POSITION" ) { |
| 1006 | // SV_Position can be an input or output in vertex shaders, |
| 1007 | // but only an input in pixel shaders. |
| 1008 | diagnoseSemanticStageMismatch(A: SemanticAttr, Stage: ST, CurrentIOType: SC.CurrentIOType, |
| 1009 | AllowedStages: {{.Stage: llvm::Triple::Vertex, .AllowedIOTypesMask: IOType::InOut}, |
| 1010 | {.Stage: llvm::Triple::Pixel, .AllowedIOTypesMask: IOType::In}}); |
| 1011 | return; |
| 1012 | } |
| 1013 | |
| 1014 | if (SemanticName == "SV_TARGET" ) { |
| 1015 | diagnoseSemanticStageMismatch(A: SemanticAttr, Stage: ST, CurrentIOType: SC.CurrentIOType, |
| 1016 | AllowedStages: {{.Stage: llvm::Triple::Pixel, .AllowedIOTypesMask: IOType::Out}}); |
| 1017 | return; |
| 1018 | } |
| 1019 | |
| 1020 | // FIXME: catch-all for non-implemented system semantics reaching this |
| 1021 | // location. |
| 1022 | if (SemanticAttr->getAttrName()->getName().starts_with_insensitive(Prefix: "SV_" )) |
| 1023 | llvm_unreachable("Unknown SemanticAttr" ); |
| 1024 | } |
| 1025 | |
| 1026 | void SemaHLSL::diagnoseAttrStageMismatch( |
| 1027 | const Attr *A, llvm::Triple::EnvironmentType Stage, |
| 1028 | std::initializer_list<llvm::Triple::EnvironmentType> AllowedStages) { |
| 1029 | SmallVector<StringRef, 8> StageStrings; |
| 1030 | llvm::transform(Range&: AllowedStages, d_first: std::back_inserter(x&: StageStrings), |
| 1031 | F: [](llvm::Triple::EnvironmentType ST) { |
| 1032 | return StringRef( |
| 1033 | HLSLShaderAttr::ConvertEnvironmentTypeToStr(Val: ST)); |
| 1034 | }); |
| 1035 | Diag(Loc: A->getLoc(), DiagID: diag::err_hlsl_attr_unsupported_in_stage) |
| 1036 | << A->getAttrName() << llvm::Triple::getEnvironmentTypeName(Kind: Stage) |
| 1037 | << (AllowedStages.size() != 1) << join(R&: StageStrings, Separator: ", " ); |
| 1038 | } |
| 1039 | |
| 1040 | void SemaHLSL::diagnoseSemanticStageMismatch( |
| 1041 | const Attr *A, llvm::Triple::EnvironmentType Stage, IOType CurrentIOType, |
| 1042 | std::initializer_list<SemanticStageInfo> Allowed) { |
| 1043 | |
| 1044 | for (auto &Case : Allowed) { |
| 1045 | if (Case.Stage != Stage) |
| 1046 | continue; |
| 1047 | |
| 1048 | if (CurrentIOType & Case.AllowedIOTypesMask) |
| 1049 | return; |
| 1050 | |
| 1051 | SmallVector<std::string, 8> ValidCases; |
| 1052 | llvm::transform( |
| 1053 | Range&: Allowed, d_first: std::back_inserter(x&: ValidCases), F: [](SemanticStageInfo Case) { |
| 1054 | SmallVector<std::string, 2> ValidType; |
| 1055 | if (Case.AllowedIOTypesMask & IOType::In) |
| 1056 | ValidType.push_back(Elt: "input" ); |
| 1057 | if (Case.AllowedIOTypesMask & IOType::Out) |
| 1058 | ValidType.push_back(Elt: "output" ); |
| 1059 | return std::string( |
| 1060 | HLSLShaderAttr::ConvertEnvironmentTypeToStr(Val: Case.Stage)) + |
| 1061 | " " + join(R&: ValidType, Separator: "/" ); |
| 1062 | }); |
| 1063 | Diag(Loc: A->getLoc(), DiagID: diag::err_hlsl_semantic_unsupported_iotype_for_stage) |
| 1064 | << A->getAttrName() << (CurrentIOType & IOType::In ? "input" : "output" ) |
| 1065 | << llvm::Triple::getEnvironmentTypeName(Kind: Case.Stage) |
| 1066 | << join(R&: ValidCases, Separator: ", " ); |
| 1067 | return; |
| 1068 | } |
| 1069 | |
| 1070 | SmallVector<StringRef, 8> StageStrings; |
| 1071 | llvm::transform( |
| 1072 | Range&: Allowed, d_first: std::back_inserter(x&: StageStrings), F: [](SemanticStageInfo Case) { |
| 1073 | return StringRef( |
| 1074 | HLSLShaderAttr::ConvertEnvironmentTypeToStr(Val: Case.Stage)); |
| 1075 | }); |
| 1076 | |
| 1077 | Diag(Loc: A->getLoc(), DiagID: diag::err_hlsl_attr_unsupported_in_stage) |
| 1078 | << A->getAttrName() << llvm::Triple::getEnvironmentTypeName(Kind: Stage) |
| 1079 | << (Allowed.size() != 1) << join(R&: StageStrings, Separator: ", " ); |
| 1080 | } |
| 1081 | |
| 1082 | template <CastKind Kind> |
| 1083 | static void castVector(Sema &S, ExprResult &E, QualType &Ty, unsigned Sz) { |
| 1084 | if (const auto *VTy = Ty->getAs<VectorType>()) |
| 1085 | Ty = VTy->getElementType(); |
| 1086 | Ty = S.getASTContext().getExtVectorType(VectorType: Ty, NumElts: Sz); |
| 1087 | E = S.ImpCastExprToType(E: E.get(), Type: Ty, CK: Kind); |
| 1088 | } |
| 1089 | |
| 1090 | template <CastKind Kind> |
| 1091 | static QualType castElement(Sema &S, ExprResult &E, QualType Ty) { |
| 1092 | E = S.ImpCastExprToType(E: E.get(), Type: Ty, CK: Kind); |
| 1093 | return Ty; |
| 1094 | } |
| 1095 | |
| 1096 | static QualType handleFloatVectorBinOpConversion( |
| 1097 | Sema &SemaRef, ExprResult &LHS, ExprResult &RHS, QualType LHSType, |
| 1098 | QualType RHSType, QualType LElTy, QualType RElTy, bool IsCompAssign) { |
| 1099 | bool LHSFloat = LElTy->isRealFloatingType(); |
| 1100 | bool RHSFloat = RElTy->isRealFloatingType(); |
| 1101 | |
| 1102 | if (LHSFloat && RHSFloat) { |
| 1103 | if (IsCompAssign || |
| 1104 | SemaRef.getASTContext().getFloatingTypeOrder(LHS: LElTy, RHS: RElTy) > 0) |
| 1105 | return castElement<CK_FloatingCast>(S&: SemaRef, E&: RHS, Ty: LHSType); |
| 1106 | |
| 1107 | return castElement<CK_FloatingCast>(S&: SemaRef, E&: LHS, Ty: RHSType); |
| 1108 | } |
| 1109 | |
| 1110 | if (LHSFloat) |
| 1111 | return castElement<CK_IntegralToFloating>(S&: SemaRef, E&: RHS, Ty: LHSType); |
| 1112 | |
| 1113 | assert(RHSFloat); |
| 1114 | if (IsCompAssign) |
| 1115 | return castElement<clang::CK_FloatingToIntegral>(S&: SemaRef, E&: RHS, Ty: LHSType); |
| 1116 | |
| 1117 | return castElement<CK_IntegralToFloating>(S&: SemaRef, E&: LHS, Ty: RHSType); |
| 1118 | } |
| 1119 | |
| 1120 | static QualType handleIntegerVectorBinOpConversion( |
| 1121 | Sema &SemaRef, ExprResult &LHS, ExprResult &RHS, QualType LHSType, |
| 1122 | QualType RHSType, QualType LElTy, QualType RElTy, bool IsCompAssign) { |
| 1123 | |
| 1124 | int IntOrder = SemaRef.Context.getIntegerTypeOrder(LHS: LElTy, RHS: RElTy); |
| 1125 | bool LHSSigned = LElTy->hasSignedIntegerRepresentation(); |
| 1126 | bool RHSSigned = RElTy->hasSignedIntegerRepresentation(); |
| 1127 | auto &Ctx = SemaRef.getASTContext(); |
| 1128 | |
| 1129 | // If both types have the same signedness, use the higher ranked type. |
| 1130 | if (LHSSigned == RHSSigned) { |
| 1131 | if (IsCompAssign || IntOrder >= 0) |
| 1132 | return castElement<CK_IntegralCast>(S&: SemaRef, E&: RHS, Ty: LHSType); |
| 1133 | |
| 1134 | return castElement<CK_IntegralCast>(S&: SemaRef, E&: LHS, Ty: RHSType); |
| 1135 | } |
| 1136 | |
| 1137 | // If the unsigned type has greater than or equal rank of the signed type, use |
| 1138 | // the unsigned type. |
| 1139 | if (IntOrder != (LHSSigned ? 1 : -1)) { |
| 1140 | if (IsCompAssign || RHSSigned) |
| 1141 | return castElement<CK_IntegralCast>(S&: SemaRef, E&: RHS, Ty: LHSType); |
| 1142 | return castElement<CK_IntegralCast>(S&: SemaRef, E&: LHS, Ty: RHSType); |
| 1143 | } |
| 1144 | |
| 1145 | // At this point the signed type has higher rank than the unsigned type, which |
| 1146 | // means it will be the same size or bigger. If the signed type is bigger, it |
| 1147 | // can represent all the values of the unsigned type, so select it. |
| 1148 | if (Ctx.getIntWidth(T: LElTy) != Ctx.getIntWidth(T: RElTy)) { |
| 1149 | if (IsCompAssign || LHSSigned) |
| 1150 | return castElement<CK_IntegralCast>(S&: SemaRef, E&: RHS, Ty: LHSType); |
| 1151 | return castElement<CK_IntegralCast>(S&: SemaRef, E&: LHS, Ty: RHSType); |
| 1152 | } |
| 1153 | |
| 1154 | // This is a bit of an odd duck case in HLSL. It shouldn't happen, but can due |
| 1155 | // to C/C++ leaking through. The place this happens today is long vs long |
| 1156 | // long. When arguments are vector<unsigned long, N> and vector<long long, N>, |
| 1157 | // the long long has higher rank than long even though they are the same size. |
| 1158 | |
| 1159 | // If this is a compound assignment cast the right hand side to the left hand |
| 1160 | // side's type. |
| 1161 | if (IsCompAssign) |
| 1162 | return castElement<CK_IntegralCast>(S&: SemaRef, E&: RHS, Ty: LHSType); |
| 1163 | |
| 1164 | // If this isn't a compound assignment we convert to unsigned long long. |
| 1165 | QualType ElTy = Ctx.getCorrespondingUnsignedType(T: LHSSigned ? LElTy : RElTy); |
| 1166 | QualType NewTy = Ctx.getExtVectorType( |
| 1167 | VectorType: ElTy, NumElts: RHSType->castAs<VectorType>()->getNumElements()); |
| 1168 | (void)castElement<CK_IntegralCast>(S&: SemaRef, E&: RHS, Ty: NewTy); |
| 1169 | |
| 1170 | return castElement<CK_IntegralCast>(S&: SemaRef, E&: LHS, Ty: NewTy); |
| 1171 | } |
| 1172 | |
| 1173 | static CastKind getScalarCastKind(ASTContext &Ctx, QualType DestTy, |
| 1174 | QualType SrcTy) { |
| 1175 | if (DestTy->isRealFloatingType() && SrcTy->isRealFloatingType()) |
| 1176 | return CK_FloatingCast; |
| 1177 | if (DestTy->isIntegralType(Ctx) && SrcTy->isIntegralType(Ctx)) |
| 1178 | return CK_IntegralCast; |
| 1179 | if (DestTy->isRealFloatingType()) |
| 1180 | return CK_IntegralToFloating; |
| 1181 | assert(SrcTy->isRealFloatingType() && DestTy->isIntegralType(Ctx)); |
| 1182 | return CK_FloatingToIntegral; |
| 1183 | } |
| 1184 | |
| 1185 | QualType SemaHLSL::handleVectorBinOpConversion(ExprResult &LHS, ExprResult &RHS, |
| 1186 | QualType LHSType, |
| 1187 | QualType RHSType, |
| 1188 | bool IsCompAssign) { |
| 1189 | const auto *LVecTy = LHSType->getAs<VectorType>(); |
| 1190 | const auto *RVecTy = RHSType->getAs<VectorType>(); |
| 1191 | auto &Ctx = getASTContext(); |
| 1192 | |
| 1193 | // If the LHS is not a vector and this is a compound assignment, we truncate |
| 1194 | // the argument to a scalar then convert it to the LHS's type. |
| 1195 | if (!LVecTy && IsCompAssign) { |
| 1196 | QualType RElTy = RHSType->castAs<VectorType>()->getElementType(); |
| 1197 | RHS = SemaRef.ImpCastExprToType(E: RHS.get(), Type: RElTy, CK: CK_HLSLVectorTruncation); |
| 1198 | RHSType = RHS.get()->getType(); |
| 1199 | if (Ctx.hasSameUnqualifiedType(T1: LHSType, T2: RHSType)) |
| 1200 | return LHSType; |
| 1201 | RHS = SemaRef.ImpCastExprToType(E: RHS.get(), Type: LHSType, |
| 1202 | CK: getScalarCastKind(Ctx, DestTy: LHSType, SrcTy: RHSType)); |
| 1203 | return LHSType; |
| 1204 | } |
| 1205 | |
| 1206 | unsigned EndSz = std::numeric_limits<unsigned>::max(); |
| 1207 | unsigned LSz = 0; |
| 1208 | if (LVecTy) |
| 1209 | LSz = EndSz = LVecTy->getNumElements(); |
| 1210 | if (RVecTy) |
| 1211 | EndSz = std::min(a: RVecTy->getNumElements(), b: EndSz); |
| 1212 | assert(EndSz != std::numeric_limits<unsigned>::max() && |
| 1213 | "one of the above should have had a value" ); |
| 1214 | |
| 1215 | // In a compound assignment, the left operand does not change type, the right |
| 1216 | // operand is converted to the type of the left operand. |
| 1217 | if (IsCompAssign && LSz != EndSz) { |
| 1218 | Diag(Loc: LHS.get()->getBeginLoc(), |
| 1219 | DiagID: diag::err_hlsl_vector_compound_assignment_truncation) |
| 1220 | << LHSType << RHSType; |
| 1221 | return QualType(); |
| 1222 | } |
| 1223 | |
| 1224 | if (RVecTy && RVecTy->getNumElements() > EndSz) |
| 1225 | castVector<CK_HLSLVectorTruncation>(S&: SemaRef, E&: RHS, Ty&: RHSType, Sz: EndSz); |
| 1226 | if (!IsCompAssign && LVecTy && LVecTy->getNumElements() > EndSz) |
| 1227 | castVector<CK_HLSLVectorTruncation>(S&: SemaRef, E&: LHS, Ty&: LHSType, Sz: EndSz); |
| 1228 | |
| 1229 | if (!RVecTy) |
| 1230 | castVector<CK_VectorSplat>(S&: SemaRef, E&: RHS, Ty&: RHSType, Sz: EndSz); |
| 1231 | if (!IsCompAssign && !LVecTy) |
| 1232 | castVector<CK_VectorSplat>(S&: SemaRef, E&: LHS, Ty&: LHSType, Sz: EndSz); |
| 1233 | |
| 1234 | // If we're at the same type after resizing we can stop here. |
| 1235 | if (Ctx.hasSameUnqualifiedType(T1: LHSType, T2: RHSType)) |
| 1236 | return Ctx.getCommonSugaredType(X: LHSType, Y: RHSType); |
| 1237 | |
| 1238 | QualType LElTy = LHSType->castAs<VectorType>()->getElementType(); |
| 1239 | QualType RElTy = RHSType->castAs<VectorType>()->getElementType(); |
| 1240 | |
| 1241 | // Handle conversion for floating point vectors. |
| 1242 | if (LElTy->isRealFloatingType() || RElTy->isRealFloatingType()) |
| 1243 | return handleFloatVectorBinOpConversion(SemaRef, LHS, RHS, LHSType, RHSType, |
| 1244 | LElTy, RElTy, IsCompAssign); |
| 1245 | |
| 1246 | assert(LElTy->isIntegralType(Ctx) && RElTy->isIntegralType(Ctx) && |
| 1247 | "HLSL Vectors can only contain integer or floating point types" ); |
| 1248 | return handleIntegerVectorBinOpConversion(SemaRef, LHS, RHS, LHSType, RHSType, |
| 1249 | LElTy, RElTy, IsCompAssign); |
| 1250 | } |
| 1251 | |
| 1252 | void SemaHLSL::emitLogicalOperatorFixIt(Expr *LHS, Expr *RHS, |
| 1253 | BinaryOperatorKind Opc) { |
| 1254 | assert((Opc == BO_LOr || Opc == BO_LAnd) && |
| 1255 | "Called with non-logical operator" ); |
| 1256 | llvm::SmallVector<char, 256> Buff; |
| 1257 | llvm::raw_svector_ostream OS(Buff); |
| 1258 | PrintingPolicy PP(SemaRef.getLangOpts()); |
| 1259 | StringRef NewFnName = Opc == BO_LOr ? "or" : "and" ; |
| 1260 | OS << NewFnName << "(" ; |
| 1261 | LHS->printPretty(OS, Helper: nullptr, Policy: PP); |
| 1262 | OS << ", " ; |
| 1263 | RHS->printPretty(OS, Helper: nullptr, Policy: PP); |
| 1264 | OS << ")" ; |
| 1265 | SourceRange FullRange = SourceRange(LHS->getBeginLoc(), RHS->getEndLoc()); |
| 1266 | SemaRef.Diag(Loc: LHS->getBeginLoc(), DiagID: diag::note_function_suggestion) |
| 1267 | << NewFnName << FixItHint::CreateReplacement(RemoveRange: FullRange, Code: OS.str()); |
| 1268 | } |
| 1269 | |
| 1270 | std::pair<IdentifierInfo *, bool> |
| 1271 | SemaHLSL::ActOnStartRootSignatureDecl(StringRef Signature) { |
| 1272 | llvm::hash_code Hash = llvm::hash_value(S: Signature); |
| 1273 | std::string IdStr = "__hlsl_rootsig_decl_" + std::to_string(val: Hash); |
| 1274 | IdentifierInfo *DeclIdent = &(getASTContext().Idents.get(Name: IdStr)); |
| 1275 | |
| 1276 | // Check if we have already found a decl of the same name. |
| 1277 | LookupResult R(SemaRef, DeclIdent, SourceLocation(), |
| 1278 | Sema::LookupOrdinaryName); |
| 1279 | bool Found = SemaRef.LookupQualifiedName(R, LookupCtx: SemaRef.CurContext); |
| 1280 | return {DeclIdent, Found}; |
| 1281 | } |
| 1282 | |
| 1283 | void SemaHLSL::ActOnFinishRootSignatureDecl( |
| 1284 | SourceLocation Loc, IdentifierInfo *DeclIdent, |
| 1285 | ArrayRef<hlsl::RootSignatureElement> RootElements) { |
| 1286 | |
| 1287 | if (handleRootSignatureElements(Elements: RootElements)) |
| 1288 | return; |
| 1289 | |
| 1290 | SmallVector<llvm::hlsl::rootsig::RootElement> Elements; |
| 1291 | for (auto &RootSigElement : RootElements) |
| 1292 | Elements.push_back(Elt: RootSigElement.getElement()); |
| 1293 | |
| 1294 | auto *SignatureDecl = HLSLRootSignatureDecl::Create( |
| 1295 | C&: SemaRef.getASTContext(), /*DeclContext=*/DC: SemaRef.CurContext, Loc, |
| 1296 | ID: DeclIdent, Version: SemaRef.getLangOpts().HLSLRootSigVer, RootElements: Elements); |
| 1297 | |
| 1298 | SignatureDecl->setImplicit(); |
| 1299 | SemaRef.PushOnScopeChains(D: SignatureDecl, S: SemaRef.getCurScope()); |
| 1300 | } |
| 1301 | |
| 1302 | HLSLRootSignatureDecl * |
| 1303 | SemaHLSL::lookupRootSignatureOverrideDecl(DeclContext *DC) const { |
| 1304 | if (RootSigOverrideIdent) { |
| 1305 | LookupResult R(SemaRef, RootSigOverrideIdent, SourceLocation(), |
| 1306 | Sema::LookupOrdinaryName); |
| 1307 | if (SemaRef.LookupQualifiedName(R, LookupCtx: DC)) |
| 1308 | return dyn_cast<HLSLRootSignatureDecl>(Val: R.getFoundDecl()); |
| 1309 | } |
| 1310 | |
| 1311 | return nullptr; |
| 1312 | } |
| 1313 | |
| 1314 | namespace { |
| 1315 | |
| 1316 | struct PerVisibilityBindingChecker { |
| 1317 | SemaHLSL *S; |
| 1318 | // We need one builder per `llvm::dxbc::ShaderVisibility` value. |
| 1319 | std::array<llvm::hlsl::BindingInfoBuilder, 8> Builders; |
| 1320 | |
| 1321 | struct ElemInfo { |
| 1322 | const hlsl::RootSignatureElement *Elem; |
| 1323 | llvm::dxbc::ShaderVisibility Vis; |
| 1324 | bool Diagnosed; |
| 1325 | }; |
| 1326 | llvm::SmallVector<ElemInfo> ElemInfoMap; |
| 1327 | |
| 1328 | PerVisibilityBindingChecker(SemaHLSL *S) : S(S) {} |
| 1329 | |
| 1330 | void trackBinding(llvm::dxbc::ShaderVisibility Visibility, |
| 1331 | llvm::dxil::ResourceClass RC, uint32_t Space, |
| 1332 | uint32_t LowerBound, uint32_t UpperBound, |
| 1333 | const hlsl::RootSignatureElement *Elem) { |
| 1334 | uint32_t BuilderIndex = llvm::to_underlying(E: Visibility); |
| 1335 | assert(BuilderIndex < Builders.size() && |
| 1336 | "Not enough builders for visibility type" ); |
| 1337 | Builders[BuilderIndex].trackBinding(RC, Space, LowerBound, UpperBound, |
| 1338 | Cookie: static_cast<const void *>(Elem)); |
| 1339 | |
| 1340 | static_assert(llvm::to_underlying(E: llvm::dxbc::ShaderVisibility::All) == 0, |
| 1341 | "'All' visibility must come first" ); |
| 1342 | if (Visibility == llvm::dxbc::ShaderVisibility::All) |
| 1343 | for (size_t I = 1, E = Builders.size(); I < E; ++I) |
| 1344 | Builders[I].trackBinding(RC, Space, LowerBound, UpperBound, |
| 1345 | Cookie: static_cast<const void *>(Elem)); |
| 1346 | |
| 1347 | ElemInfoMap.push_back(Elt: {.Elem: Elem, .Vis: Visibility, .Diagnosed: false}); |
| 1348 | } |
| 1349 | |
| 1350 | ElemInfo &getInfo(const hlsl::RootSignatureElement *Elem) { |
| 1351 | auto It = llvm::lower_bound( |
| 1352 | Range&: ElemInfoMap, Value&: Elem, |
| 1353 | C: [](const auto &LHS, const auto &RHS) { return LHS.Elem < RHS; }); |
| 1354 | assert(It->Elem == Elem && "Element not in map" ); |
| 1355 | return *It; |
| 1356 | } |
| 1357 | |
| 1358 | bool checkOverlap() { |
| 1359 | llvm::sort(C&: ElemInfoMap, Comp: [](const auto &LHS, const auto &RHS) { |
| 1360 | return LHS.Elem < RHS.Elem; |
| 1361 | }); |
| 1362 | |
| 1363 | bool HadOverlap = false; |
| 1364 | |
| 1365 | using llvm::hlsl::BindingInfoBuilder; |
| 1366 | auto ReportOverlap = [this, |
| 1367 | &HadOverlap](const BindingInfoBuilder &Builder, |
| 1368 | const llvm::hlsl::Binding &Reported) { |
| 1369 | HadOverlap = true; |
| 1370 | |
| 1371 | const auto *Elem = |
| 1372 | static_cast<const hlsl::RootSignatureElement *>(Reported.Cookie); |
| 1373 | const llvm::hlsl::Binding &Previous = Builder.findOverlapping(ReportedBinding: Reported); |
| 1374 | const auto *PrevElem = |
| 1375 | static_cast<const hlsl::RootSignatureElement *>(Previous.Cookie); |
| 1376 | |
| 1377 | ElemInfo &Info = getInfo(Elem); |
| 1378 | // We will have already diagnosed this binding if there's overlap in the |
| 1379 | // "All" visibility as well as any particular visibility. |
| 1380 | if (Info.Diagnosed) |
| 1381 | return; |
| 1382 | Info.Diagnosed = true; |
| 1383 | |
| 1384 | ElemInfo &PrevInfo = getInfo(Elem: PrevElem); |
| 1385 | llvm::dxbc::ShaderVisibility CommonVis = |
| 1386 | Info.Vis == llvm::dxbc::ShaderVisibility::All ? PrevInfo.Vis |
| 1387 | : Info.Vis; |
| 1388 | |
| 1389 | this->S->Diag(Loc: Elem->getLocation(), DiagID: diag::err_hlsl_resource_range_overlap) |
| 1390 | << llvm::to_underlying(E: Reported.RC) << Reported.LowerBound |
| 1391 | << Reported.isUnbounded() << Reported.UpperBound |
| 1392 | << llvm::to_underlying(E: Previous.RC) << Previous.LowerBound |
| 1393 | << Previous.isUnbounded() << Previous.UpperBound << Reported.Space |
| 1394 | << CommonVis; |
| 1395 | |
| 1396 | this->S->Diag(Loc: PrevElem->getLocation(), |
| 1397 | DiagID: diag::note_hlsl_resource_range_here); |
| 1398 | }; |
| 1399 | |
| 1400 | for (BindingInfoBuilder &Builder : Builders) |
| 1401 | Builder.calculateBindingInfo(ReportOverlap); |
| 1402 | |
| 1403 | return HadOverlap; |
| 1404 | } |
| 1405 | }; |
| 1406 | |
| 1407 | static CXXMethodDecl *lookupMethod(Sema &S, CXXRecordDecl *RecordDecl, |
| 1408 | StringRef Name, SourceLocation Loc) { |
| 1409 | DeclarationName DeclName(&S.getASTContext().Idents.get(Name)); |
| 1410 | LookupResult Result(S, DeclName, Loc, Sema::LookupMemberName); |
| 1411 | if (!S.LookupQualifiedName(R&: Result, LookupCtx: static_cast<DeclContext *>(RecordDecl))) |
| 1412 | return nullptr; |
| 1413 | return cast<CXXMethodDecl>(Val: Result.getFoundDecl()); |
| 1414 | } |
| 1415 | |
| 1416 | } // end anonymous namespace |
| 1417 | |
| 1418 | static bool hasCounterHandle(const CXXRecordDecl *RD) { |
| 1419 | if (RD->field_empty()) |
| 1420 | return false; |
| 1421 | auto It = std::next(x: RD->field_begin()); |
| 1422 | if (It == RD->field_end()) |
| 1423 | return false; |
| 1424 | const FieldDecl *SecondField = *It; |
| 1425 | if (const auto *ResTy = |
| 1426 | SecondField->getType()->getAs<HLSLAttributedResourceType>()) { |
| 1427 | return ResTy->getAttrs().IsCounter; |
| 1428 | } |
| 1429 | return false; |
| 1430 | } |
| 1431 | |
| 1432 | bool SemaHLSL::handleRootSignatureElements( |
| 1433 | ArrayRef<hlsl::RootSignatureElement> Elements) { |
| 1434 | // Define some common error handling functions |
| 1435 | bool HadError = false; |
| 1436 | auto ReportError = [this, &HadError](SourceLocation Loc, uint32_t LowerBound, |
| 1437 | uint32_t UpperBound) { |
| 1438 | HadError = true; |
| 1439 | this->Diag(Loc, DiagID: diag::err_hlsl_invalid_rootsig_value) |
| 1440 | << LowerBound << UpperBound; |
| 1441 | }; |
| 1442 | |
| 1443 | auto ReportFloatError = [this, &HadError](SourceLocation Loc, |
| 1444 | float LowerBound, |
| 1445 | float UpperBound) { |
| 1446 | HadError = true; |
| 1447 | this->Diag(Loc, DiagID: diag::err_hlsl_invalid_rootsig_value) |
| 1448 | << llvm::formatv(Fmt: "{0:f}" , Vals&: LowerBound).sstr<6>() |
| 1449 | << llvm::formatv(Fmt: "{0:f}" , Vals&: UpperBound).sstr<6>(); |
| 1450 | }; |
| 1451 | |
| 1452 | auto VerifyRegister = [ReportError](SourceLocation Loc, uint32_t Register) { |
| 1453 | if (!llvm::hlsl::rootsig::verifyRegisterValue(RegisterValue: Register)) |
| 1454 | ReportError(Loc, 0, 0xfffffffe); |
| 1455 | }; |
| 1456 | |
| 1457 | auto VerifySpace = [ReportError](SourceLocation Loc, uint32_t Space) { |
| 1458 | if (!llvm::hlsl::rootsig::verifyRegisterSpace(RegisterSpace: Space)) |
| 1459 | ReportError(Loc, 0, 0xffffffef); |
| 1460 | }; |
| 1461 | |
| 1462 | const uint32_t Version = |
| 1463 | llvm::to_underlying(E: SemaRef.getLangOpts().HLSLRootSigVer); |
| 1464 | const uint32_t VersionEnum = Version - 1; |
| 1465 | auto ReportFlagError = [this, &HadError, VersionEnum](SourceLocation Loc) { |
| 1466 | HadError = true; |
| 1467 | this->Diag(Loc, DiagID: diag::err_hlsl_invalid_rootsig_flag) |
| 1468 | << /*version minor*/ VersionEnum; |
| 1469 | }; |
| 1470 | |
| 1471 | // Iterate through the elements and do basic validations |
| 1472 | for (const hlsl::RootSignatureElement &RootSigElem : Elements) { |
| 1473 | SourceLocation Loc = RootSigElem.getLocation(); |
| 1474 | const llvm::hlsl::rootsig::RootElement &Elem = RootSigElem.getElement(); |
| 1475 | if (const auto *Descriptor = |
| 1476 | std::get_if<llvm::hlsl::rootsig::RootDescriptor>(ptr: &Elem)) { |
| 1477 | VerifyRegister(Loc, Descriptor->Reg.Number); |
| 1478 | VerifySpace(Loc, Descriptor->Space); |
| 1479 | |
| 1480 | if (!llvm::hlsl::rootsig::verifyRootDescriptorFlag(Version, |
| 1481 | Flags: Descriptor->Flags)) |
| 1482 | ReportFlagError(Loc); |
| 1483 | } else if (const auto *Constants = |
| 1484 | std::get_if<llvm::hlsl::rootsig::RootConstants>(ptr: &Elem)) { |
| 1485 | VerifyRegister(Loc, Constants->Reg.Number); |
| 1486 | VerifySpace(Loc, Constants->Space); |
| 1487 | } else if (const auto *Sampler = |
| 1488 | std::get_if<llvm::hlsl::rootsig::StaticSampler>(ptr: &Elem)) { |
| 1489 | VerifyRegister(Loc, Sampler->Reg.Number); |
| 1490 | VerifySpace(Loc, Sampler->Space); |
| 1491 | |
| 1492 | assert(!std::isnan(Sampler->MaxLOD) && !std::isnan(Sampler->MinLOD) && |
| 1493 | "By construction, parseFloatParam can't produce a NaN from a " |
| 1494 | "float_literal token" ); |
| 1495 | |
| 1496 | if (!llvm::hlsl::rootsig::verifyMaxAnisotropy(MaxAnisotropy: Sampler->MaxAnisotropy)) |
| 1497 | ReportError(Loc, 0, 16); |
| 1498 | if (!llvm::hlsl::rootsig::verifyMipLODBias(MipLODBias: Sampler->MipLODBias)) |
| 1499 | ReportFloatError(Loc, -16.f, 15.99f); |
| 1500 | } else if (const auto *Clause = |
| 1501 | std::get_if<llvm::hlsl::rootsig::DescriptorTableClause>( |
| 1502 | ptr: &Elem)) { |
| 1503 | VerifyRegister(Loc, Clause->Reg.Number); |
| 1504 | VerifySpace(Loc, Clause->Space); |
| 1505 | |
| 1506 | if (!llvm::hlsl::rootsig::verifyNumDescriptors(NumDescriptors: Clause->NumDescriptors)) { |
| 1507 | // NumDescriptor could techincally be ~0u but that is reserved for |
| 1508 | // unbounded, so the diagnostic will not report that as a valid int |
| 1509 | // value |
| 1510 | ReportError(Loc, 1, 0xfffffffe); |
| 1511 | } |
| 1512 | |
| 1513 | if (!llvm::hlsl::rootsig::verifyDescriptorRangeFlag(Version, Type: Clause->Type, |
| 1514 | Flags: Clause->Flags)) |
| 1515 | ReportFlagError(Loc); |
| 1516 | } |
| 1517 | } |
| 1518 | |
| 1519 | PerVisibilityBindingChecker BindingChecker(this); |
| 1520 | SmallVector<std::pair<const llvm::hlsl::rootsig::DescriptorTableClause *, |
| 1521 | const hlsl::RootSignatureElement *>> |
| 1522 | UnboundClauses; |
| 1523 | |
| 1524 | for (const hlsl::RootSignatureElement &RootSigElem : Elements) { |
| 1525 | const llvm::hlsl::rootsig::RootElement &Elem = RootSigElem.getElement(); |
| 1526 | if (const auto *Descriptor = |
| 1527 | std::get_if<llvm::hlsl::rootsig::RootDescriptor>(ptr: &Elem)) { |
| 1528 | uint32_t LowerBound(Descriptor->Reg.Number); |
| 1529 | uint32_t UpperBound(LowerBound); // inclusive range |
| 1530 | |
| 1531 | BindingChecker.trackBinding( |
| 1532 | Visibility: Descriptor->Visibility, |
| 1533 | RC: static_cast<llvm::dxil::ResourceClass>(Descriptor->Type), |
| 1534 | Space: Descriptor->Space, LowerBound, UpperBound, Elem: &RootSigElem); |
| 1535 | } else if (const auto *Constants = |
| 1536 | std::get_if<llvm::hlsl::rootsig::RootConstants>(ptr: &Elem)) { |
| 1537 | uint32_t LowerBound(Constants->Reg.Number); |
| 1538 | uint32_t UpperBound(LowerBound); // inclusive range |
| 1539 | |
| 1540 | BindingChecker.trackBinding( |
| 1541 | Visibility: Constants->Visibility, RC: llvm::dxil::ResourceClass::CBuffer, |
| 1542 | Space: Constants->Space, LowerBound, UpperBound, Elem: &RootSigElem); |
| 1543 | } else if (const auto *Sampler = |
| 1544 | std::get_if<llvm::hlsl::rootsig::StaticSampler>(ptr: &Elem)) { |
| 1545 | uint32_t LowerBound(Sampler->Reg.Number); |
| 1546 | uint32_t UpperBound(LowerBound); // inclusive range |
| 1547 | |
| 1548 | BindingChecker.trackBinding( |
| 1549 | Visibility: Sampler->Visibility, RC: llvm::dxil::ResourceClass::Sampler, |
| 1550 | Space: Sampler->Space, LowerBound, UpperBound, Elem: &RootSigElem); |
| 1551 | } else if (const auto *Clause = |
| 1552 | std::get_if<llvm::hlsl::rootsig::DescriptorTableClause>( |
| 1553 | ptr: &Elem)) { |
| 1554 | // We'll process these once we see the table element. |
| 1555 | UnboundClauses.emplace_back(Args&: Clause, Args: &RootSigElem); |
| 1556 | } else if (const auto *Table = |
| 1557 | std::get_if<llvm::hlsl::rootsig::DescriptorTable>(ptr: &Elem)) { |
| 1558 | assert(UnboundClauses.size() == Table->NumClauses && |
| 1559 | "Number of unbound elements must match the number of clauses" ); |
| 1560 | bool HasAnySampler = false; |
| 1561 | bool HasAnyNonSampler = false; |
| 1562 | uint64_t Offset = 0; |
| 1563 | bool IsPrevUnbound = false; |
| 1564 | for (const auto &[Clause, ClauseElem] : UnboundClauses) { |
| 1565 | SourceLocation Loc = ClauseElem->getLocation(); |
| 1566 | if (Clause->Type == llvm::dxil::ResourceClass::Sampler) |
| 1567 | HasAnySampler = true; |
| 1568 | else |
| 1569 | HasAnyNonSampler = true; |
| 1570 | |
| 1571 | if (HasAnySampler && HasAnyNonSampler) |
| 1572 | Diag(Loc, DiagID: diag::err_hlsl_invalid_mixed_resources); |
| 1573 | |
| 1574 | // Relevant error will have already been reported above and needs to be |
| 1575 | // fixed before we can conduct further analysis, so shortcut error |
| 1576 | // return |
| 1577 | if (Clause->NumDescriptors == 0) |
| 1578 | return true; |
| 1579 | |
| 1580 | bool IsAppending = |
| 1581 | Clause->Offset == llvm::hlsl::rootsig::DescriptorTableOffsetAppend; |
| 1582 | if (!IsAppending) |
| 1583 | Offset = Clause->Offset; |
| 1584 | |
| 1585 | uint64_t RangeBound = llvm::hlsl::rootsig::computeRangeBound( |
| 1586 | Offset, Size: Clause->NumDescriptors); |
| 1587 | |
| 1588 | if (IsPrevUnbound && IsAppending) |
| 1589 | Diag(Loc, DiagID: diag::err_hlsl_appending_onto_unbound); |
| 1590 | else if (!llvm::hlsl::rootsig::verifyNoOverflowedOffset(Offset: RangeBound)) |
| 1591 | Diag(Loc, DiagID: diag::err_hlsl_offset_overflow) << Offset << RangeBound; |
| 1592 | |
| 1593 | // Update offset to be 1 past this range's bound |
| 1594 | Offset = RangeBound + 1; |
| 1595 | IsPrevUnbound = Clause->NumDescriptors == |
| 1596 | llvm::hlsl::rootsig::NumDescriptorsUnbounded; |
| 1597 | |
| 1598 | // Compute the register bounds and track resource binding |
| 1599 | uint32_t LowerBound(Clause->Reg.Number); |
| 1600 | uint32_t UpperBound = llvm::hlsl::rootsig::computeRangeBound( |
| 1601 | Offset: LowerBound, Size: Clause->NumDescriptors); |
| 1602 | |
| 1603 | BindingChecker.trackBinding( |
| 1604 | Visibility: Table->Visibility, |
| 1605 | RC: static_cast<llvm::dxil::ResourceClass>(Clause->Type), Space: Clause->Space, |
| 1606 | LowerBound, UpperBound, Elem: ClauseElem); |
| 1607 | } |
| 1608 | UnboundClauses.clear(); |
| 1609 | } |
| 1610 | } |
| 1611 | |
| 1612 | return BindingChecker.checkOverlap(); |
| 1613 | } |
| 1614 | |
| 1615 | void SemaHLSL::handleRootSignatureAttr(Decl *D, const ParsedAttr &AL) { |
| 1616 | if (AL.getNumArgs() != 1) { |
| 1617 | Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_wrong_number_arguments) << AL << 1; |
| 1618 | return; |
| 1619 | } |
| 1620 | |
| 1621 | IdentifierInfo *Ident = AL.getArgAsIdent(Arg: 0)->getIdentifierInfo(); |
| 1622 | if (auto *RS = D->getAttr<RootSignatureAttr>()) { |
| 1623 | if (RS->getSignatureIdent() != Ident) { |
| 1624 | Diag(Loc: AL.getLoc(), DiagID: diag::err_disallowed_duplicate_attribute) << RS; |
| 1625 | return; |
| 1626 | } |
| 1627 | |
| 1628 | Diag(Loc: AL.getLoc(), DiagID: diag::warn_duplicate_attribute_exact) << RS; |
| 1629 | return; |
| 1630 | } |
| 1631 | |
| 1632 | LookupResult R(SemaRef, Ident, SourceLocation(), Sema::LookupOrdinaryName); |
| 1633 | if (SemaRef.LookupQualifiedName(R, LookupCtx: D->getDeclContext())) |
| 1634 | if (auto *SignatureDecl = |
| 1635 | dyn_cast<HLSLRootSignatureDecl>(Val: R.getFoundDecl())) { |
| 1636 | D->addAttr(A: ::new (getASTContext()) RootSignatureAttr( |
| 1637 | getASTContext(), AL, Ident, SignatureDecl)); |
| 1638 | } |
| 1639 | } |
| 1640 | |
| 1641 | void SemaHLSL::handleNumThreadsAttr(Decl *D, const ParsedAttr &AL) { |
| 1642 | llvm::VersionTuple SMVersion = |
| 1643 | getASTContext().getTargetInfo().getTriple().getOSVersion(); |
| 1644 | bool IsDXIL = getASTContext().getTargetInfo().getTriple().getArch() == |
| 1645 | llvm::Triple::dxil; |
| 1646 | |
| 1647 | uint32_t ZMax = 1024; |
| 1648 | uint32_t ThreadMax = 1024; |
| 1649 | if (IsDXIL && SMVersion.getMajor() <= 4) { |
| 1650 | ZMax = 1; |
| 1651 | ThreadMax = 768; |
| 1652 | } else if (IsDXIL && SMVersion.getMajor() == 5) { |
| 1653 | ZMax = 64; |
| 1654 | ThreadMax = 1024; |
| 1655 | } |
| 1656 | |
| 1657 | uint32_t X; |
| 1658 | if (!SemaRef.checkUInt32Argument(AI: AL, Expr: AL.getArgAsExpr(Arg: 0), Val&: X)) |
| 1659 | return; |
| 1660 | if (X > 1024) { |
| 1661 | Diag(Loc: AL.getArgAsExpr(Arg: 0)->getExprLoc(), |
| 1662 | DiagID: diag::err_hlsl_numthreads_argument_oor) |
| 1663 | << 0 << 1024; |
| 1664 | return; |
| 1665 | } |
| 1666 | uint32_t Y; |
| 1667 | if (!SemaRef.checkUInt32Argument(AI: AL, Expr: AL.getArgAsExpr(Arg: 1), Val&: Y)) |
| 1668 | return; |
| 1669 | if (Y > 1024) { |
| 1670 | Diag(Loc: AL.getArgAsExpr(Arg: 1)->getExprLoc(), |
| 1671 | DiagID: diag::err_hlsl_numthreads_argument_oor) |
| 1672 | << 1 << 1024; |
| 1673 | return; |
| 1674 | } |
| 1675 | uint32_t Z; |
| 1676 | if (!SemaRef.checkUInt32Argument(AI: AL, Expr: AL.getArgAsExpr(Arg: 2), Val&: Z)) |
| 1677 | return; |
| 1678 | if (Z > ZMax) { |
| 1679 | SemaRef.Diag(Loc: AL.getArgAsExpr(Arg: 2)->getExprLoc(), |
| 1680 | DiagID: diag::err_hlsl_numthreads_argument_oor) |
| 1681 | << 2 << ZMax; |
| 1682 | return; |
| 1683 | } |
| 1684 | |
| 1685 | if (X * Y * Z > ThreadMax) { |
| 1686 | Diag(Loc: AL.getLoc(), DiagID: diag::err_hlsl_numthreads_invalid) << ThreadMax; |
| 1687 | return; |
| 1688 | } |
| 1689 | |
| 1690 | HLSLNumThreadsAttr *NewAttr = mergeNumThreadsAttr(D, AL, X, Y, Z); |
| 1691 | if (NewAttr) |
| 1692 | D->addAttr(A: NewAttr); |
| 1693 | } |
| 1694 | |
| 1695 | static bool isValidWaveSizeValue(unsigned Value) { |
| 1696 | return llvm::isPowerOf2_32(Value) && Value >= 4 && Value <= 128; |
| 1697 | } |
| 1698 | |
| 1699 | void SemaHLSL::handleWaveSizeAttr(Decl *D, const ParsedAttr &AL) { |
| 1700 | // validate that the wavesize argument is a power of 2 between 4 and 128 |
| 1701 | // inclusive |
| 1702 | unsigned SpelledArgsCount = AL.getNumArgs(); |
| 1703 | if (SpelledArgsCount == 0 || SpelledArgsCount > 3) |
| 1704 | return; |
| 1705 | |
| 1706 | uint32_t Min; |
| 1707 | if (!SemaRef.checkUInt32Argument(AI: AL, Expr: AL.getArgAsExpr(Arg: 0), Val&: Min)) |
| 1708 | return; |
| 1709 | |
| 1710 | uint32_t Max = 0; |
| 1711 | if (SpelledArgsCount > 1 && |
| 1712 | !SemaRef.checkUInt32Argument(AI: AL, Expr: AL.getArgAsExpr(Arg: 1), Val&: Max)) |
| 1713 | return; |
| 1714 | |
| 1715 | uint32_t Preferred = 0; |
| 1716 | if (SpelledArgsCount > 2 && |
| 1717 | !SemaRef.checkUInt32Argument(AI: AL, Expr: AL.getArgAsExpr(Arg: 2), Val&: Preferred)) |
| 1718 | return; |
| 1719 | |
| 1720 | if (SpelledArgsCount > 2) { |
| 1721 | if (!isValidWaveSizeValue(Value: Preferred)) { |
| 1722 | Diag(Loc: AL.getArgAsExpr(Arg: 2)->getExprLoc(), |
| 1723 | DiagID: diag::err_attribute_power_of_two_in_range) |
| 1724 | << AL << llvm::dxil::MinWaveSize << llvm::dxil::MaxWaveSize |
| 1725 | << Preferred; |
| 1726 | return; |
| 1727 | } |
| 1728 | // Preferred not in range. |
| 1729 | if (Preferred < Min || Preferred > Max) { |
| 1730 | Diag(Loc: AL.getArgAsExpr(Arg: 2)->getExprLoc(), |
| 1731 | DiagID: diag::err_attribute_power_of_two_in_range) |
| 1732 | << AL << Min << Max << Preferred; |
| 1733 | return; |
| 1734 | } |
| 1735 | } else if (SpelledArgsCount > 1) { |
| 1736 | if (!isValidWaveSizeValue(Value: Max)) { |
| 1737 | Diag(Loc: AL.getArgAsExpr(Arg: 1)->getExprLoc(), |
| 1738 | DiagID: diag::err_attribute_power_of_two_in_range) |
| 1739 | << AL << llvm::dxil::MinWaveSize << llvm::dxil::MaxWaveSize << Max; |
| 1740 | return; |
| 1741 | } |
| 1742 | if (Max < Min) { |
| 1743 | Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_argument_invalid) << AL << 1; |
| 1744 | return; |
| 1745 | } else if (Max == Min) { |
| 1746 | Diag(Loc: AL.getLoc(), DiagID: diag::warn_attr_min_eq_max) << AL; |
| 1747 | } |
| 1748 | } else { |
| 1749 | if (!isValidWaveSizeValue(Value: Min)) { |
| 1750 | Diag(Loc: AL.getArgAsExpr(Arg: 0)->getExprLoc(), |
| 1751 | DiagID: diag::err_attribute_power_of_two_in_range) |
| 1752 | << AL << llvm::dxil::MinWaveSize << llvm::dxil::MaxWaveSize << Min; |
| 1753 | return; |
| 1754 | } |
| 1755 | } |
| 1756 | |
| 1757 | HLSLWaveSizeAttr *NewAttr = |
| 1758 | mergeWaveSizeAttr(D, AL, Min, Max, Preferred, SpelledArgsCount); |
| 1759 | if (NewAttr) |
| 1760 | D->addAttr(A: NewAttr); |
| 1761 | } |
| 1762 | |
| 1763 | void SemaHLSL::handleVkExtBuiltinInputAttr(Decl *D, const ParsedAttr &AL) { |
| 1764 | uint32_t ID; |
| 1765 | if (!SemaRef.checkUInt32Argument(AI: AL, Expr: AL.getArgAsExpr(Arg: 0), Val&: ID)) |
| 1766 | return; |
| 1767 | D->addAttr(A: ::new (getASTContext()) |
| 1768 | HLSLVkExtBuiltinInputAttr(getASTContext(), AL, ID)); |
| 1769 | } |
| 1770 | |
| 1771 | void SemaHLSL::handleVkPushConstantAttr(Decl *D, const ParsedAttr &AL) { |
| 1772 | D->addAttr(A: ::new (getASTContext()) |
| 1773 | HLSLVkPushConstantAttr(getASTContext(), AL)); |
| 1774 | } |
| 1775 | |
| 1776 | void SemaHLSL::handleVkConstantIdAttr(Decl *D, const ParsedAttr &AL) { |
| 1777 | uint32_t Id; |
| 1778 | if (!SemaRef.checkUInt32Argument(AI: AL, Expr: AL.getArgAsExpr(Arg: 0), Val&: Id)) |
| 1779 | return; |
| 1780 | HLSLVkConstantIdAttr *NewAttr = mergeVkConstantIdAttr(D, AL, Id); |
| 1781 | if (NewAttr) |
| 1782 | D->addAttr(A: NewAttr); |
| 1783 | } |
| 1784 | |
| 1785 | void SemaHLSL::handleVkBindingAttr(Decl *D, const ParsedAttr &AL) { |
| 1786 | uint32_t Binding = 0; |
| 1787 | if (!SemaRef.checkUInt32Argument(AI: AL, Expr: AL.getArgAsExpr(Arg: 0), Val&: Binding)) |
| 1788 | return; |
| 1789 | uint32_t Set = 0; |
| 1790 | if (AL.getNumArgs() > 1 && |
| 1791 | !SemaRef.checkUInt32Argument(AI: AL, Expr: AL.getArgAsExpr(Arg: 1), Val&: Set)) |
| 1792 | return; |
| 1793 | |
| 1794 | D->addAttr(A: ::new (getASTContext()) |
| 1795 | HLSLVkBindingAttr(getASTContext(), AL, Binding, Set)); |
| 1796 | } |
| 1797 | |
| 1798 | void SemaHLSL::handleVkLocationAttr(Decl *D, const ParsedAttr &AL) { |
| 1799 | uint32_t Location; |
| 1800 | if (!SemaRef.checkUInt32Argument(AI: AL, Expr: AL.getArgAsExpr(Arg: 0), Val&: Location)) |
| 1801 | return; |
| 1802 | |
| 1803 | D->addAttr(A: ::new (getASTContext()) |
| 1804 | HLSLVkLocationAttr(getASTContext(), AL, Location)); |
| 1805 | } |
| 1806 | |
| 1807 | bool SemaHLSL::diagnoseInputIDType(QualType T, const ParsedAttr &AL) { |
| 1808 | const auto *VT = T->getAs<VectorType>(); |
| 1809 | |
| 1810 | if (!T->hasUnsignedIntegerRepresentation() || |
| 1811 | (VT && VT->getNumElements() > 3)) { |
| 1812 | Diag(Loc: AL.getLoc(), DiagID: diag::err_hlsl_attr_invalid_type) |
| 1813 | << AL << "uint/uint2/uint3" ; |
| 1814 | return false; |
| 1815 | } |
| 1816 | |
| 1817 | return true; |
| 1818 | } |
| 1819 | |
| 1820 | bool SemaHLSL::diagnosePositionType(QualType T, const ParsedAttr &AL) { |
| 1821 | const auto *VT = T->getAs<VectorType>(); |
| 1822 | if (!T->hasFloatingRepresentation() || (VT && VT->getNumElements() > 4)) { |
| 1823 | Diag(Loc: AL.getLoc(), DiagID: diag::err_hlsl_attr_invalid_type) |
| 1824 | << AL << "float/float1/float2/float3/float4" ; |
| 1825 | return false; |
| 1826 | } |
| 1827 | |
| 1828 | return true; |
| 1829 | } |
| 1830 | |
| 1831 | void SemaHLSL::diagnoseSystemSemanticAttr(Decl *D, const ParsedAttr &AL, |
| 1832 | std::optional<unsigned> Index) { |
| 1833 | std::string SemanticName = AL.getAttrName()->getName().upper(); |
| 1834 | |
| 1835 | auto *VD = cast<ValueDecl>(Val: D); |
| 1836 | QualType ValueType = VD->getType(); |
| 1837 | if (auto *FD = dyn_cast<FunctionDecl>(Val: D)) |
| 1838 | ValueType = FD->getReturnType(); |
| 1839 | |
| 1840 | bool IsOutput = false; |
| 1841 | if (HLSLParamModifierAttr *MA = D->getAttr<HLSLParamModifierAttr>()) { |
| 1842 | if (MA->isOut()) { |
| 1843 | IsOutput = true; |
| 1844 | ValueType = cast<ReferenceType>(Val&: ValueType)->getPointeeType(); |
| 1845 | } |
| 1846 | } |
| 1847 | |
| 1848 | if (SemanticName == "SV_DISPATCHTHREADID" ) { |
| 1849 | diagnoseInputIDType(T: ValueType, AL); |
| 1850 | if (IsOutput) |
| 1851 | Diag(Loc: AL.getLoc(), DiagID: diag::err_hlsl_semantic_output_not_supported) << AL; |
| 1852 | if (Index.has_value()) |
| 1853 | Diag(Loc: AL.getLoc(), DiagID: diag::err_hlsl_semantic_indexing_not_supported) << AL; |
| 1854 | D->addAttr(A: createSemanticAttr<HLSLParsedSemanticAttr>(ACI: AL, Location: Index)); |
| 1855 | return; |
| 1856 | } |
| 1857 | |
| 1858 | if (SemanticName == "SV_GROUPINDEX" ) { |
| 1859 | if (IsOutput) |
| 1860 | Diag(Loc: AL.getLoc(), DiagID: diag::err_hlsl_semantic_output_not_supported) << AL; |
| 1861 | if (Index.has_value()) |
| 1862 | Diag(Loc: AL.getLoc(), DiagID: diag::err_hlsl_semantic_indexing_not_supported) << AL; |
| 1863 | D->addAttr(A: createSemanticAttr<HLSLParsedSemanticAttr>(ACI: AL, Location: Index)); |
| 1864 | return; |
| 1865 | } |
| 1866 | |
| 1867 | if (SemanticName == "SV_GROUPTHREADID" ) { |
| 1868 | diagnoseInputIDType(T: ValueType, AL); |
| 1869 | if (IsOutput) |
| 1870 | Diag(Loc: AL.getLoc(), DiagID: diag::err_hlsl_semantic_output_not_supported) << AL; |
| 1871 | if (Index.has_value()) |
| 1872 | Diag(Loc: AL.getLoc(), DiagID: diag::err_hlsl_semantic_indexing_not_supported) << AL; |
| 1873 | D->addAttr(A: createSemanticAttr<HLSLParsedSemanticAttr>(ACI: AL, Location: Index)); |
| 1874 | return; |
| 1875 | } |
| 1876 | |
| 1877 | if (SemanticName == "SV_GROUPID" ) { |
| 1878 | diagnoseInputIDType(T: ValueType, AL); |
| 1879 | if (IsOutput) |
| 1880 | Diag(Loc: AL.getLoc(), DiagID: diag::err_hlsl_semantic_output_not_supported) << AL; |
| 1881 | if (Index.has_value()) |
| 1882 | Diag(Loc: AL.getLoc(), DiagID: diag::err_hlsl_semantic_indexing_not_supported) << AL; |
| 1883 | D->addAttr(A: createSemanticAttr<HLSLParsedSemanticAttr>(ACI: AL, Location: Index)); |
| 1884 | return; |
| 1885 | } |
| 1886 | |
| 1887 | if (SemanticName == "SV_POSITION" ) { |
| 1888 | const auto *VT = ValueType->getAs<VectorType>(); |
| 1889 | if (!ValueType->hasFloatingRepresentation() || |
| 1890 | (VT && VT->getNumElements() > 4)) |
| 1891 | Diag(Loc: AL.getLoc(), DiagID: diag::err_hlsl_attr_invalid_type) |
| 1892 | << AL << "float/float1/float2/float3/float4" ; |
| 1893 | D->addAttr(A: createSemanticAttr<HLSLParsedSemanticAttr>(ACI: AL, Location: Index)); |
| 1894 | return; |
| 1895 | } |
| 1896 | |
| 1897 | if (SemanticName == "SV_TARGET" ) { |
| 1898 | const auto *VT = ValueType->getAs<VectorType>(); |
| 1899 | if (!ValueType->hasFloatingRepresentation() || |
| 1900 | (VT && VT->getNumElements() > 4)) |
| 1901 | Diag(Loc: AL.getLoc(), DiagID: diag::err_hlsl_attr_invalid_type) |
| 1902 | << AL << "float/float1/float2/float3/float4" ; |
| 1903 | D->addAttr(A: createSemanticAttr<HLSLParsedSemanticAttr>(ACI: AL, Location: Index)); |
| 1904 | return; |
| 1905 | } |
| 1906 | |
| 1907 | Diag(Loc: AL.getLoc(), DiagID: diag::err_hlsl_unknown_semantic) << AL; |
| 1908 | } |
| 1909 | |
| 1910 | void SemaHLSL::handleSemanticAttr(Decl *D, const ParsedAttr &AL) { |
| 1911 | uint32_t IndexValue(0), ExplicitIndex(0); |
| 1912 | if (!SemaRef.checkUInt32Argument(AI: AL, Expr: AL.getArgAsExpr(Arg: 0), Val&: IndexValue) || |
| 1913 | !SemaRef.checkUInt32Argument(AI: AL, Expr: AL.getArgAsExpr(Arg: 1), Val&: ExplicitIndex)) { |
| 1914 | assert(0 && "HLSLUnparsedSemantic is expected to have 2 int arguments." ); |
| 1915 | } |
| 1916 | assert(IndexValue > 0 ? ExplicitIndex : true); |
| 1917 | std::optional<unsigned> Index = |
| 1918 | ExplicitIndex ? std::optional<unsigned>(IndexValue) : std::nullopt; |
| 1919 | |
| 1920 | if (AL.getAttrName()->getName().starts_with_insensitive(Prefix: "SV_" )) |
| 1921 | diagnoseSystemSemanticAttr(D, AL, Index); |
| 1922 | else |
| 1923 | D->addAttr(A: createSemanticAttr<HLSLParsedSemanticAttr>(ACI: AL, Location: Index)); |
| 1924 | } |
| 1925 | |
| 1926 | void SemaHLSL::handlePackOffsetAttr(Decl *D, const ParsedAttr &AL) { |
| 1927 | if (!isa<VarDecl>(Val: D) || !isa<HLSLBufferDecl>(Val: D->getDeclContext())) { |
| 1928 | Diag(Loc: AL.getLoc(), DiagID: diag::err_hlsl_attr_invalid_ast_node) |
| 1929 | << AL << "shader constant in a constant buffer" ; |
| 1930 | return; |
| 1931 | } |
| 1932 | |
| 1933 | uint32_t SubComponent; |
| 1934 | if (!SemaRef.checkUInt32Argument(AI: AL, Expr: AL.getArgAsExpr(Arg: 0), Val&: SubComponent)) |
| 1935 | return; |
| 1936 | uint32_t Component; |
| 1937 | if (!SemaRef.checkUInt32Argument(AI: AL, Expr: AL.getArgAsExpr(Arg: 1), Val&: Component)) |
| 1938 | return; |
| 1939 | |
| 1940 | QualType T = cast<VarDecl>(Val: D)->getType().getCanonicalType(); |
| 1941 | // Check if T is an array or struct type. |
| 1942 | // TODO: mark matrix type as aggregate type. |
| 1943 | bool IsAggregateTy = (T->isArrayType() || T->isStructureType()); |
| 1944 | |
| 1945 | // Check Component is valid for T. |
| 1946 | if (Component) { |
| 1947 | unsigned Size = getASTContext().getTypeSize(T); |
| 1948 | if (IsAggregateTy) { |
| 1949 | Diag(Loc: AL.getLoc(), DiagID: diag::err_hlsl_invalid_register_or_packoffset); |
| 1950 | return; |
| 1951 | } else { |
| 1952 | // Make sure Component + sizeof(T) <= 4. |
| 1953 | if ((Component * 32 + Size) > 128) { |
| 1954 | Diag(Loc: AL.getLoc(), DiagID: diag::err_hlsl_packoffset_cross_reg_boundary); |
| 1955 | return; |
| 1956 | } |
| 1957 | QualType EltTy = T; |
| 1958 | if (const auto *VT = T->getAs<VectorType>()) |
| 1959 | EltTy = VT->getElementType(); |
| 1960 | unsigned Align = getASTContext().getTypeAlign(T: EltTy); |
| 1961 | if (Align > 32 && Component == 1) { |
| 1962 | // NOTE: Component 3 will hit err_hlsl_packoffset_cross_reg_boundary. |
| 1963 | // So we only need to check Component 1 here. |
| 1964 | Diag(Loc: AL.getLoc(), DiagID: diag::err_hlsl_packoffset_alignment_mismatch) |
| 1965 | << Align << EltTy; |
| 1966 | return; |
| 1967 | } |
| 1968 | } |
| 1969 | } |
| 1970 | |
| 1971 | D->addAttr(A: ::new (getASTContext()) HLSLPackOffsetAttr( |
| 1972 | getASTContext(), AL, SubComponent, Component)); |
| 1973 | } |
| 1974 | |
| 1975 | void SemaHLSL::handleShaderAttr(Decl *D, const ParsedAttr &AL) { |
| 1976 | StringRef Str; |
| 1977 | SourceLocation ArgLoc; |
| 1978 | if (!SemaRef.checkStringLiteralArgumentAttr(Attr: AL, ArgNum: 0, Str, ArgLocation: &ArgLoc)) |
| 1979 | return; |
| 1980 | |
| 1981 | llvm::Triple::EnvironmentType ShaderType; |
| 1982 | if (!HLSLShaderAttr::ConvertStrToEnvironmentType(Val: Str, Out&: ShaderType)) { |
| 1983 | Diag(Loc: AL.getLoc(), DiagID: diag::warn_attribute_type_not_supported) |
| 1984 | << AL << Str << ArgLoc; |
| 1985 | return; |
| 1986 | } |
| 1987 | |
| 1988 | // FIXME: check function match the shader stage. |
| 1989 | |
| 1990 | HLSLShaderAttr *NewAttr = mergeShaderAttr(D, AL, ShaderType); |
| 1991 | if (NewAttr) |
| 1992 | D->addAttr(A: NewAttr); |
| 1993 | } |
| 1994 | |
| 1995 | bool clang::CreateHLSLAttributedResourceType( |
| 1996 | Sema &S, QualType Wrapped, ArrayRef<const Attr *> AttrList, |
| 1997 | QualType &ResType, HLSLAttributedResourceLocInfo *LocInfo) { |
| 1998 | assert(AttrList.size() && "expected list of resource attributes" ); |
| 1999 | |
| 2000 | QualType ContainedTy = QualType(); |
| 2001 | TypeSourceInfo *ContainedTyInfo = nullptr; |
| 2002 | SourceLocation LocBegin = AttrList[0]->getRange().getBegin(); |
| 2003 | SourceLocation LocEnd = AttrList[0]->getRange().getEnd(); |
| 2004 | |
| 2005 | HLSLAttributedResourceType::Attributes ResAttrs; |
| 2006 | |
| 2007 | bool HasResourceClass = false; |
| 2008 | bool HasResourceDimension = false; |
| 2009 | for (const Attr *A : AttrList) { |
| 2010 | if (!A) |
| 2011 | continue; |
| 2012 | LocEnd = A->getRange().getEnd(); |
| 2013 | switch (A->getKind()) { |
| 2014 | case attr::HLSLResourceClass: { |
| 2015 | ResourceClass RC = cast<HLSLResourceClassAttr>(Val: A)->getResourceClass(); |
| 2016 | if (HasResourceClass) { |
| 2017 | S.Diag(Loc: A->getLocation(), DiagID: ResAttrs.ResourceClass == RC |
| 2018 | ? diag::warn_duplicate_attribute_exact |
| 2019 | : diag::warn_duplicate_attribute) |
| 2020 | << A; |
| 2021 | return false; |
| 2022 | } |
| 2023 | ResAttrs.ResourceClass = RC; |
| 2024 | HasResourceClass = true; |
| 2025 | break; |
| 2026 | } |
| 2027 | case attr::HLSLResourceDimension: { |
| 2028 | llvm::dxil::ResourceDimension RD = |
| 2029 | cast<HLSLResourceDimensionAttr>(Val: A)->getDimension(); |
| 2030 | if (HasResourceDimension) { |
| 2031 | S.Diag(Loc: A->getLocation(), DiagID: ResAttrs.ResourceDimension == RD |
| 2032 | ? diag::warn_duplicate_attribute_exact |
| 2033 | : diag::warn_duplicate_attribute) |
| 2034 | << A; |
| 2035 | return false; |
| 2036 | } |
| 2037 | ResAttrs.ResourceDimension = RD; |
| 2038 | HasResourceDimension = true; |
| 2039 | break; |
| 2040 | } |
| 2041 | case attr::HLSLROV: |
| 2042 | if (ResAttrs.IsROV) { |
| 2043 | S.Diag(Loc: A->getLocation(), DiagID: diag::warn_duplicate_attribute_exact) << A; |
| 2044 | return false; |
| 2045 | } |
| 2046 | ResAttrs.IsROV = true; |
| 2047 | break; |
| 2048 | case attr::HLSLRawBuffer: |
| 2049 | if (ResAttrs.RawBuffer) { |
| 2050 | S.Diag(Loc: A->getLocation(), DiagID: diag::warn_duplicate_attribute_exact) << A; |
| 2051 | return false; |
| 2052 | } |
| 2053 | ResAttrs.RawBuffer = true; |
| 2054 | break; |
| 2055 | case attr::HLSLIsCounter: |
| 2056 | if (ResAttrs.IsCounter) { |
| 2057 | S.Diag(Loc: A->getLocation(), DiagID: diag::warn_duplicate_attribute_exact) << A; |
| 2058 | return false; |
| 2059 | } |
| 2060 | ResAttrs.IsCounter = true; |
| 2061 | break; |
| 2062 | case attr::HLSLContainedType: { |
| 2063 | const HLSLContainedTypeAttr *CTAttr = cast<HLSLContainedTypeAttr>(Val: A); |
| 2064 | QualType Ty = CTAttr->getType(); |
| 2065 | if (!ContainedTy.isNull()) { |
| 2066 | S.Diag(Loc: A->getLocation(), DiagID: ContainedTy == Ty |
| 2067 | ? diag::warn_duplicate_attribute_exact |
| 2068 | : diag::warn_duplicate_attribute) |
| 2069 | << A; |
| 2070 | return false; |
| 2071 | } |
| 2072 | ContainedTy = Ty; |
| 2073 | ContainedTyInfo = CTAttr->getTypeLoc(); |
| 2074 | break; |
| 2075 | } |
| 2076 | default: |
| 2077 | llvm_unreachable("unhandled resource attribute type" ); |
| 2078 | } |
| 2079 | } |
| 2080 | |
| 2081 | if (!HasResourceClass) { |
| 2082 | S.Diag(Loc: AttrList.back()->getRange().getEnd(), |
| 2083 | DiagID: diag::err_hlsl_missing_resource_class); |
| 2084 | return false; |
| 2085 | } |
| 2086 | |
| 2087 | ResType = S.getASTContext().getHLSLAttributedResourceType( |
| 2088 | Wrapped, Contained: ContainedTy, Attrs: ResAttrs); |
| 2089 | |
| 2090 | if (LocInfo && ContainedTyInfo) { |
| 2091 | LocInfo->Range = SourceRange(LocBegin, LocEnd); |
| 2092 | LocInfo->ContainedTyInfo = ContainedTyInfo; |
| 2093 | } |
| 2094 | return true; |
| 2095 | } |
| 2096 | |
| 2097 | // Validates and creates an HLSL attribute that is applied as type attribute on |
| 2098 | // HLSL resource. The attributes are collected in HLSLResourcesTypeAttrs and at |
| 2099 | // the end of the declaration they are applied to the declaration type by |
| 2100 | // wrapping it in HLSLAttributedResourceType. |
| 2101 | bool SemaHLSL::handleResourceTypeAttr(QualType T, const ParsedAttr &AL) { |
| 2102 | // only allow resource type attributes on intangible types |
| 2103 | if (!T->isHLSLResourceType()) { |
| 2104 | Diag(Loc: AL.getLoc(), DiagID: diag::err_hlsl_attribute_needs_intangible_type) |
| 2105 | << AL << getASTContext().HLSLResourceTy; |
| 2106 | return false; |
| 2107 | } |
| 2108 | |
| 2109 | // validate number of arguments |
| 2110 | if (!AL.checkExactlyNumArgs(S&: SemaRef, Num: AL.getMinArgs())) |
| 2111 | return false; |
| 2112 | |
| 2113 | Attr *A = nullptr; |
| 2114 | |
| 2115 | AttributeCommonInfo ACI( |
| 2116 | AL.getLoc(), AttributeScopeInfo(AL.getScopeName(), AL.getScopeLoc()), |
| 2117 | AttributeCommonInfo::NoSemaHandlerAttribute, |
| 2118 | { |
| 2119 | AttributeCommonInfo::AS_CXX11, 0, false /*IsAlignas*/, |
| 2120 | false /*IsRegularKeywordAttribute*/ |
| 2121 | }); |
| 2122 | |
| 2123 | switch (AL.getKind()) { |
| 2124 | case ParsedAttr::AT_HLSLResourceClass: { |
| 2125 | if (!AL.isArgIdent(Arg: 0)) { |
| 2126 | Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_argument_type) |
| 2127 | << AL << AANT_ArgumentIdentifier; |
| 2128 | return false; |
| 2129 | } |
| 2130 | |
| 2131 | IdentifierLoc *Loc = AL.getArgAsIdent(Arg: 0); |
| 2132 | StringRef Identifier = Loc->getIdentifierInfo()->getName(); |
| 2133 | SourceLocation ArgLoc = Loc->getLoc(); |
| 2134 | |
| 2135 | // Validate resource class value |
| 2136 | ResourceClass RC; |
| 2137 | if (!HLSLResourceClassAttr::ConvertStrToResourceClass(Val: Identifier, Out&: RC)) { |
| 2138 | Diag(Loc: ArgLoc, DiagID: diag::warn_attribute_type_not_supported) |
| 2139 | << "ResourceClass" << Identifier; |
| 2140 | return false; |
| 2141 | } |
| 2142 | A = HLSLResourceClassAttr::Create(Ctx&: getASTContext(), ResourceClass: RC, CommonInfo: ACI); |
| 2143 | break; |
| 2144 | } |
| 2145 | |
| 2146 | case ParsedAttr::AT_HLSLROV: |
| 2147 | A = HLSLROVAttr::Create(Ctx&: getASTContext(), CommonInfo: ACI); |
| 2148 | break; |
| 2149 | |
| 2150 | case ParsedAttr::AT_HLSLRawBuffer: |
| 2151 | A = HLSLRawBufferAttr::Create(Ctx&: getASTContext(), CommonInfo: ACI); |
| 2152 | break; |
| 2153 | |
| 2154 | case ParsedAttr::AT_HLSLIsCounter: |
| 2155 | A = HLSLIsCounterAttr::Create(Ctx&: getASTContext(), CommonInfo: ACI); |
| 2156 | break; |
| 2157 | |
| 2158 | case ParsedAttr::AT_HLSLContainedType: { |
| 2159 | if (AL.getNumArgs() != 1 && !AL.hasParsedType()) { |
| 2160 | Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_wrong_number_arguments) << AL << 1; |
| 2161 | return false; |
| 2162 | } |
| 2163 | |
| 2164 | TypeSourceInfo *TSI = nullptr; |
| 2165 | QualType QT = SemaRef.GetTypeFromParser(Ty: AL.getTypeArg(), TInfo: &TSI); |
| 2166 | assert(TSI && "no type source info for attribute argument" ); |
| 2167 | if (SemaRef.RequireCompleteType(Loc: TSI->getTypeLoc().getBeginLoc(), T: QT, |
| 2168 | DiagID: diag::err_incomplete_type)) |
| 2169 | return false; |
| 2170 | A = HLSLContainedTypeAttr::Create(Ctx&: getASTContext(), Type: TSI, CommonInfo: ACI); |
| 2171 | break; |
| 2172 | } |
| 2173 | |
| 2174 | default: |
| 2175 | llvm_unreachable("unhandled HLSL attribute" ); |
| 2176 | } |
| 2177 | |
| 2178 | HLSLResourcesTypeAttrs.emplace_back(Args&: A); |
| 2179 | return true; |
| 2180 | } |
| 2181 | |
| 2182 | // Combines all resource type attributes and creates HLSLAttributedResourceType. |
| 2183 | QualType SemaHLSL::ProcessResourceTypeAttributes(QualType CurrentType) { |
| 2184 | if (!HLSLResourcesTypeAttrs.size()) |
| 2185 | return CurrentType; |
| 2186 | |
| 2187 | QualType QT = CurrentType; |
| 2188 | HLSLAttributedResourceLocInfo LocInfo; |
| 2189 | if (CreateHLSLAttributedResourceType(S&: SemaRef, Wrapped: CurrentType, |
| 2190 | AttrList: HLSLResourcesTypeAttrs, ResType&: QT, LocInfo: &LocInfo)) { |
| 2191 | const HLSLAttributedResourceType *RT = |
| 2192 | cast<HLSLAttributedResourceType>(Val: QT.getTypePtr()); |
| 2193 | |
| 2194 | // Temporarily store TypeLoc information for the new type. |
| 2195 | // It will be transferred to HLSLAttributesResourceTypeLoc |
| 2196 | // shortly after the type is created by TypeSpecLocFiller which |
| 2197 | // will call the TakeLocForHLSLAttribute method below. |
| 2198 | LocsForHLSLAttributedResources.insert(KV: std::pair(RT, LocInfo)); |
| 2199 | } |
| 2200 | HLSLResourcesTypeAttrs.clear(); |
| 2201 | return QT; |
| 2202 | } |
| 2203 | |
| 2204 | // Returns source location for the HLSLAttributedResourceType |
| 2205 | HLSLAttributedResourceLocInfo |
| 2206 | SemaHLSL::TakeLocForHLSLAttribute(const HLSLAttributedResourceType *RT) { |
| 2207 | HLSLAttributedResourceLocInfo LocInfo = {}; |
| 2208 | auto I = LocsForHLSLAttributedResources.find(Val: RT); |
| 2209 | if (I != LocsForHLSLAttributedResources.end()) { |
| 2210 | LocInfo = I->second; |
| 2211 | LocsForHLSLAttributedResources.erase(I); |
| 2212 | return LocInfo; |
| 2213 | } |
| 2214 | LocInfo.Range = SourceRange(); |
| 2215 | return LocInfo; |
| 2216 | } |
| 2217 | |
| 2218 | // Walks though the global variable declaration, collects all resource binding |
| 2219 | // requirements and adds them to Bindings |
| 2220 | void SemaHLSL::collectResourceBindingsOnUserRecordDecl(const VarDecl *VD, |
| 2221 | const RecordType *RT) { |
| 2222 | const RecordDecl *RD = RT->getDecl()->getDefinitionOrSelf(); |
| 2223 | for (FieldDecl *FD : RD->fields()) { |
| 2224 | const Type *Ty = FD->getType()->getUnqualifiedDesugaredType(); |
| 2225 | |
| 2226 | // Unwrap arrays |
| 2227 | // FIXME: Calculate array size while unwrapping |
| 2228 | assert(!Ty->isIncompleteArrayType() && |
| 2229 | "incomplete arrays inside user defined types are not supported" ); |
| 2230 | while (Ty->isConstantArrayType()) { |
| 2231 | const ConstantArrayType *CAT = cast<ConstantArrayType>(Val: Ty); |
| 2232 | Ty = CAT->getElementType()->getUnqualifiedDesugaredType(); |
| 2233 | } |
| 2234 | |
| 2235 | if (!Ty->isRecordType()) |
| 2236 | continue; |
| 2237 | |
| 2238 | if (const HLSLAttributedResourceType *AttrResType = |
| 2239 | HLSLAttributedResourceType::findHandleTypeOnResource(RT: Ty)) { |
| 2240 | // Add a new DeclBindingInfo to Bindings if it does not already exist |
| 2241 | ResourceClass RC = AttrResType->getAttrs().ResourceClass; |
| 2242 | DeclBindingInfo *DBI = Bindings.getDeclBindingInfo(VD, ResClass: RC); |
| 2243 | if (!DBI) |
| 2244 | Bindings.addDeclBindingInfo(VD, ResClass: RC); |
| 2245 | } else if (const RecordType *RT = dyn_cast<RecordType>(Val: Ty)) { |
| 2246 | // Recursively scan embedded struct or class; it would be nice to do this |
| 2247 | // without recursion, but tricky to correctly calculate the size of the |
| 2248 | // binding, which is something we are probably going to need to do later |
| 2249 | // on. Hopefully nesting of structs in structs too many levels is |
| 2250 | // unlikely. |
| 2251 | collectResourceBindingsOnUserRecordDecl(VD, RT); |
| 2252 | } |
| 2253 | } |
| 2254 | } |
| 2255 | |
| 2256 | // Diagnose localized register binding errors for a single binding; does not |
| 2257 | // diagnose resource binding on user record types, that will be done later |
| 2258 | // in processResourceBindingOnDecl based on the information collected in |
| 2259 | // collectResourceBindingsOnVarDecl. |
| 2260 | // Returns false if the register binding is not valid. |
| 2261 | static bool DiagnoseLocalRegisterBinding(Sema &S, SourceLocation &ArgLoc, |
| 2262 | Decl *D, RegisterType RegType, |
| 2263 | bool SpecifiedSpace) { |
| 2264 | int RegTypeNum = static_cast<int>(RegType); |
| 2265 | |
| 2266 | // check if the decl type is groupshared |
| 2267 | if (D->hasAttr<HLSLGroupSharedAddressSpaceAttr>()) { |
| 2268 | S.Diag(Loc: ArgLoc, DiagID: diag::err_hlsl_binding_type_mismatch) << RegTypeNum; |
| 2269 | return false; |
| 2270 | } |
| 2271 | |
| 2272 | // Cbuffers and Tbuffers are HLSLBufferDecl types |
| 2273 | if (HLSLBufferDecl *CBufferOrTBuffer = dyn_cast<HLSLBufferDecl>(Val: D)) { |
| 2274 | ResourceClass RC = CBufferOrTBuffer->isCBuffer() ? ResourceClass::CBuffer |
| 2275 | : ResourceClass::SRV; |
| 2276 | if (RegType == getRegisterType(RC)) |
| 2277 | return true; |
| 2278 | |
| 2279 | S.Diag(Loc: D->getLocation(), DiagID: diag::err_hlsl_binding_type_mismatch) |
| 2280 | << RegTypeNum; |
| 2281 | return false; |
| 2282 | } |
| 2283 | |
| 2284 | // Samplers, UAVs, and SRVs are VarDecl types |
| 2285 | assert(isa<VarDecl>(D) && "D is expected to be VarDecl or HLSLBufferDecl" ); |
| 2286 | VarDecl *VD = cast<VarDecl>(Val: D); |
| 2287 | |
| 2288 | // Resource |
| 2289 | if (const HLSLAttributedResourceType *AttrResType = |
| 2290 | HLSLAttributedResourceType::findHandleTypeOnResource( |
| 2291 | RT: VD->getType().getTypePtr())) { |
| 2292 | if (RegType == getRegisterType(ResTy: AttrResType)) |
| 2293 | return true; |
| 2294 | |
| 2295 | S.Diag(Loc: D->getLocation(), DiagID: diag::err_hlsl_binding_type_mismatch) |
| 2296 | << RegTypeNum; |
| 2297 | return false; |
| 2298 | } |
| 2299 | |
| 2300 | const clang::Type *Ty = VD->getType().getTypePtr(); |
| 2301 | while (Ty->isArrayType()) |
| 2302 | Ty = Ty->getArrayElementTypeNoTypeQual(); |
| 2303 | |
| 2304 | // Basic types |
| 2305 | if (Ty->isArithmeticType() || Ty->isVectorType()) { |
| 2306 | bool DeclaredInCOrTBuffer = isa<HLSLBufferDecl>(Val: D->getDeclContext()); |
| 2307 | if (SpecifiedSpace && !DeclaredInCOrTBuffer) |
| 2308 | S.Diag(Loc: ArgLoc, DiagID: diag::err_hlsl_space_on_global_constant); |
| 2309 | |
| 2310 | if (!DeclaredInCOrTBuffer && (Ty->isIntegralType(Ctx: S.getASTContext()) || |
| 2311 | Ty->isFloatingType() || Ty->isVectorType())) { |
| 2312 | // Register annotation on default constant buffer declaration ($Globals) |
| 2313 | if (RegType == RegisterType::CBuffer) |
| 2314 | S.Diag(Loc: ArgLoc, DiagID: diag::warn_hlsl_deprecated_register_type_b); |
| 2315 | else if (RegType != RegisterType::C) |
| 2316 | S.Diag(Loc: ArgLoc, DiagID: diag::err_hlsl_binding_type_mismatch) << RegTypeNum; |
| 2317 | else |
| 2318 | return true; |
| 2319 | } else { |
| 2320 | if (RegType == RegisterType::C) |
| 2321 | S.Diag(Loc: ArgLoc, DiagID: diag::warn_hlsl_register_type_c_packoffset); |
| 2322 | else |
| 2323 | S.Diag(Loc: ArgLoc, DiagID: diag::err_hlsl_binding_type_mismatch) << RegTypeNum; |
| 2324 | } |
| 2325 | return false; |
| 2326 | } |
| 2327 | if (Ty->isRecordType()) |
| 2328 | // RecordTypes will be diagnosed in processResourceBindingOnDecl |
| 2329 | // that is called from ActOnVariableDeclarator |
| 2330 | return true; |
| 2331 | |
| 2332 | // Anything else is an error |
| 2333 | S.Diag(Loc: ArgLoc, DiagID: diag::err_hlsl_binding_type_mismatch) << RegTypeNum; |
| 2334 | return false; |
| 2335 | } |
| 2336 | |
| 2337 | static bool ValidateMultipleRegisterAnnotations(Sema &S, Decl *TheDecl, |
| 2338 | RegisterType regType) { |
| 2339 | // make sure that there are no two register annotations |
| 2340 | // applied to the decl with the same register type |
| 2341 | bool RegisterTypesDetected[5] = {false}; |
| 2342 | RegisterTypesDetected[static_cast<int>(regType)] = true; |
| 2343 | |
| 2344 | for (auto it = TheDecl->attr_begin(); it != TheDecl->attr_end(); ++it) { |
| 2345 | if (HLSLResourceBindingAttr *attr = |
| 2346 | dyn_cast<HLSLResourceBindingAttr>(Val: *it)) { |
| 2347 | |
| 2348 | RegisterType otherRegType = attr->getRegisterType(); |
| 2349 | if (RegisterTypesDetected[static_cast<int>(otherRegType)]) { |
| 2350 | int otherRegTypeNum = static_cast<int>(otherRegType); |
| 2351 | S.Diag(Loc: TheDecl->getLocation(), |
| 2352 | DiagID: diag::err_hlsl_duplicate_register_annotation) |
| 2353 | << otherRegTypeNum; |
| 2354 | return false; |
| 2355 | } |
| 2356 | RegisterTypesDetected[static_cast<int>(otherRegType)] = true; |
| 2357 | } |
| 2358 | } |
| 2359 | return true; |
| 2360 | } |
| 2361 | |
| 2362 | static bool DiagnoseHLSLRegisterAttribute(Sema &S, SourceLocation &ArgLoc, |
| 2363 | Decl *D, RegisterType RegType, |
| 2364 | bool SpecifiedSpace) { |
| 2365 | |
| 2366 | // exactly one of these two types should be set |
| 2367 | assert(((isa<VarDecl>(D) && !isa<HLSLBufferDecl>(D)) || |
| 2368 | (!isa<VarDecl>(D) && isa<HLSLBufferDecl>(D))) && |
| 2369 | "expecting VarDecl or HLSLBufferDecl" ); |
| 2370 | |
| 2371 | // check if the declaration contains resource matching the register type |
| 2372 | if (!DiagnoseLocalRegisterBinding(S, ArgLoc, D, RegType, SpecifiedSpace)) |
| 2373 | return false; |
| 2374 | |
| 2375 | // next, if multiple register annotations exist, check that none conflict. |
| 2376 | return ValidateMultipleRegisterAnnotations(S, TheDecl: D, regType: RegType); |
| 2377 | } |
| 2378 | |
| 2379 | // return false if the slot count exceeds the limit, true otherwise |
| 2380 | static bool AccumulateHLSLResourceSlots(QualType Ty, uint64_t &StartSlot, |
| 2381 | const uint64_t &Limit, |
| 2382 | const ResourceClass ResClass, |
| 2383 | ASTContext &Ctx, |
| 2384 | uint64_t ArrayCount = 1) { |
| 2385 | Ty = Ty.getCanonicalType(); |
| 2386 | const Type *T = Ty.getTypePtr(); |
| 2387 | |
| 2388 | // Early exit if already overflowed |
| 2389 | if (StartSlot > Limit) |
| 2390 | return false; |
| 2391 | |
| 2392 | // Case 1: array type |
| 2393 | if (const auto *AT = dyn_cast<ArrayType>(Val: T)) { |
| 2394 | uint64_t Count = 1; |
| 2395 | |
| 2396 | if (const auto *CAT = dyn_cast<ConstantArrayType>(Val: AT)) |
| 2397 | Count = CAT->getSize().getZExtValue(); |
| 2398 | |
| 2399 | QualType ElemTy = AT->getElementType(); |
| 2400 | return AccumulateHLSLResourceSlots(Ty: ElemTy, StartSlot, Limit, ResClass, Ctx, |
| 2401 | ArrayCount: ArrayCount * Count); |
| 2402 | } |
| 2403 | |
| 2404 | // Case 2: resource leaf |
| 2405 | if (auto ResTy = dyn_cast<HLSLAttributedResourceType>(Val: T)) { |
| 2406 | // First ensure this resource counts towards the corresponding |
| 2407 | // register type limit. |
| 2408 | if (ResTy->getAttrs().ResourceClass != ResClass) |
| 2409 | return true; |
| 2410 | |
| 2411 | // Validate highest slot used |
| 2412 | uint64_t EndSlot = StartSlot + ArrayCount - 1; |
| 2413 | if (EndSlot > Limit) |
| 2414 | return false; |
| 2415 | |
| 2416 | // Advance SlotCount past the consumed range |
| 2417 | StartSlot = EndSlot + 1; |
| 2418 | return true; |
| 2419 | } |
| 2420 | |
| 2421 | // Case 3: struct / record |
| 2422 | if (const auto *RT = dyn_cast<RecordType>(Val: T)) { |
| 2423 | const RecordDecl *RD = RT->getDecl(); |
| 2424 | |
| 2425 | if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(Val: RD)) { |
| 2426 | for (const CXXBaseSpecifier &Base : CXXRD->bases()) { |
| 2427 | if (!AccumulateHLSLResourceSlots(Ty: Base.getType(), StartSlot, Limit, |
| 2428 | ResClass, Ctx, ArrayCount)) |
| 2429 | return false; |
| 2430 | } |
| 2431 | } |
| 2432 | |
| 2433 | for (const FieldDecl *Field : RD->fields()) { |
| 2434 | if (!AccumulateHLSLResourceSlots(Ty: Field->getType(), StartSlot, Limit, |
| 2435 | ResClass, Ctx, ArrayCount)) |
| 2436 | return false; |
| 2437 | } |
| 2438 | |
| 2439 | return true; |
| 2440 | } |
| 2441 | |
| 2442 | // Case 4: everything else |
| 2443 | return true; |
| 2444 | } |
| 2445 | |
| 2446 | // return true if there is something invalid, false otherwise |
| 2447 | static bool ValidateRegisterNumber(uint64_t SlotNum, Decl *TheDecl, |
| 2448 | ASTContext &Ctx, RegisterType RegTy) { |
| 2449 | const uint64_t Limit = UINT32_MAX; |
| 2450 | if (SlotNum > Limit) |
| 2451 | return true; |
| 2452 | |
| 2453 | // after verifying the number doesn't exceed uint32max, we don't need |
| 2454 | // to look further into c or i register types |
| 2455 | if (RegTy == RegisterType::C || RegTy == RegisterType::I) |
| 2456 | return false; |
| 2457 | |
| 2458 | if (VarDecl *VD = dyn_cast<VarDecl>(Val: TheDecl)) { |
| 2459 | uint64_t BaseSlot = SlotNum; |
| 2460 | |
| 2461 | if (!AccumulateHLSLResourceSlots(Ty: VD->getType(), StartSlot&: SlotNum, Limit, |
| 2462 | ResClass: getResourceClass(RT: RegTy), Ctx)) |
| 2463 | return true; |
| 2464 | |
| 2465 | // After AccumulateHLSLResourceSlots runs, SlotNum is now |
| 2466 | // the first free slot; last used was SlotNum - 1 |
| 2467 | return (BaseSlot > Limit); |
| 2468 | } |
| 2469 | // handle the cbuffer/tbuffer case |
| 2470 | if (isa<HLSLBufferDecl>(Val: TheDecl)) |
| 2471 | // resources cannot be put within a cbuffer, so no need |
| 2472 | // to analyze the structure since the register number |
| 2473 | // won't be pushed any higher. |
| 2474 | return (SlotNum > Limit); |
| 2475 | |
| 2476 | // we don't expect any other decl type, so fail |
| 2477 | llvm_unreachable("unexpected decl type" ); |
| 2478 | } |
| 2479 | |
| 2480 | void SemaHLSL::handleResourceBindingAttr(Decl *TheDecl, const ParsedAttr &AL) { |
| 2481 | if (VarDecl *VD = dyn_cast<VarDecl>(Val: TheDecl)) { |
| 2482 | QualType Ty = VD->getType(); |
| 2483 | if (const auto *IAT = dyn_cast<IncompleteArrayType>(Val&: Ty)) |
| 2484 | Ty = IAT->getElementType(); |
| 2485 | if (SemaRef.RequireCompleteType(Loc: TheDecl->getBeginLoc(), T: Ty, |
| 2486 | DiagID: diag::err_incomplete_type)) |
| 2487 | return; |
| 2488 | } |
| 2489 | |
| 2490 | StringRef Slot = "" ; |
| 2491 | StringRef Space = "" ; |
| 2492 | SourceLocation SlotLoc, SpaceLoc; |
| 2493 | |
| 2494 | if (!AL.isArgIdent(Arg: 0)) { |
| 2495 | Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_argument_type) |
| 2496 | << AL << AANT_ArgumentIdentifier; |
| 2497 | return; |
| 2498 | } |
| 2499 | IdentifierLoc *Loc = AL.getArgAsIdent(Arg: 0); |
| 2500 | |
| 2501 | if (AL.getNumArgs() == 2) { |
| 2502 | Slot = Loc->getIdentifierInfo()->getName(); |
| 2503 | SlotLoc = Loc->getLoc(); |
| 2504 | if (!AL.isArgIdent(Arg: 1)) { |
| 2505 | Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_argument_type) |
| 2506 | << AL << AANT_ArgumentIdentifier; |
| 2507 | return; |
| 2508 | } |
| 2509 | Loc = AL.getArgAsIdent(Arg: 1); |
| 2510 | Space = Loc->getIdentifierInfo()->getName(); |
| 2511 | SpaceLoc = Loc->getLoc(); |
| 2512 | } else { |
| 2513 | StringRef Str = Loc->getIdentifierInfo()->getName(); |
| 2514 | if (Str.starts_with(Prefix: "space" )) { |
| 2515 | Space = Str; |
| 2516 | SpaceLoc = Loc->getLoc(); |
| 2517 | } else { |
| 2518 | Slot = Str; |
| 2519 | SlotLoc = Loc->getLoc(); |
| 2520 | Space = "space0" ; |
| 2521 | } |
| 2522 | } |
| 2523 | |
| 2524 | RegisterType RegType = RegisterType::SRV; |
| 2525 | std::optional<unsigned> SlotNum; |
| 2526 | unsigned SpaceNum = 0; |
| 2527 | |
| 2528 | // Validate slot |
| 2529 | if (!Slot.empty()) { |
| 2530 | if (!convertToRegisterType(Slot, RT: &RegType)) { |
| 2531 | Diag(Loc: SlotLoc, DiagID: diag::err_hlsl_binding_type_invalid) << Slot.substr(Start: 0, N: 1); |
| 2532 | return; |
| 2533 | } |
| 2534 | if (RegType == RegisterType::I) { |
| 2535 | Diag(Loc: SlotLoc, DiagID: diag::warn_hlsl_deprecated_register_type_i); |
| 2536 | return; |
| 2537 | } |
| 2538 | const StringRef SlotNumStr = Slot.substr(Start: 1); |
| 2539 | |
| 2540 | uint64_t N; |
| 2541 | |
| 2542 | // validate that the slot number is a non-empty number |
| 2543 | if (SlotNumStr.getAsInteger(Radix: 10, Result&: N)) { |
| 2544 | Diag(Loc: SlotLoc, DiagID: diag::err_hlsl_unsupported_register_number); |
| 2545 | return; |
| 2546 | } |
| 2547 | |
| 2548 | // Validate register number. It should not exceed UINT32_MAX, |
| 2549 | // including if the resource type is an array that starts |
| 2550 | // before UINT32_MAX, but ends afterwards. |
| 2551 | if (ValidateRegisterNumber(SlotNum: N, TheDecl, Ctx&: getASTContext(), RegTy: RegType)) { |
| 2552 | Diag(Loc: SlotLoc, DiagID: diag::err_hlsl_register_number_too_large); |
| 2553 | return; |
| 2554 | } |
| 2555 | |
| 2556 | // the slot number has been validated and does not exceed UINT32_MAX |
| 2557 | SlotNum = (unsigned)N; |
| 2558 | } |
| 2559 | |
| 2560 | // Validate space |
| 2561 | if (!Space.starts_with(Prefix: "space" )) { |
| 2562 | Diag(Loc: SpaceLoc, DiagID: diag::err_hlsl_expected_space) << Space; |
| 2563 | return; |
| 2564 | } |
| 2565 | StringRef SpaceNumStr = Space.substr(Start: 5); |
| 2566 | if (SpaceNumStr.getAsInteger(Radix: 10, Result&: SpaceNum)) { |
| 2567 | Diag(Loc: SpaceLoc, DiagID: diag::err_hlsl_expected_space) << Space; |
| 2568 | return; |
| 2569 | } |
| 2570 | |
| 2571 | // If we have slot, diagnose it is the right register type for the decl |
| 2572 | if (SlotNum.has_value()) |
| 2573 | if (!DiagnoseHLSLRegisterAttribute(S&: SemaRef, ArgLoc&: SlotLoc, D: TheDecl, RegType, |
| 2574 | SpecifiedSpace: !SpaceLoc.isInvalid())) |
| 2575 | return; |
| 2576 | |
| 2577 | HLSLResourceBindingAttr *NewAttr = |
| 2578 | HLSLResourceBindingAttr::Create(Ctx&: getASTContext(), Slot, Space, CommonInfo: AL); |
| 2579 | if (NewAttr) { |
| 2580 | NewAttr->setBinding(RT: RegType, SlotNum, SpaceNum); |
| 2581 | TheDecl->addAttr(A: NewAttr); |
| 2582 | } |
| 2583 | } |
| 2584 | |
| 2585 | void SemaHLSL::handleParamModifierAttr(Decl *D, const ParsedAttr &AL) { |
| 2586 | HLSLParamModifierAttr *NewAttr = mergeParamModifierAttr( |
| 2587 | D, AL, |
| 2588 | Spelling: static_cast<HLSLParamModifierAttr::Spelling>(AL.getSemanticSpelling())); |
| 2589 | if (NewAttr) |
| 2590 | D->addAttr(A: NewAttr); |
| 2591 | } |
| 2592 | |
| 2593 | namespace { |
| 2594 | |
| 2595 | /// This class implements HLSL availability diagnostics for default |
| 2596 | /// and relaxed mode |
| 2597 | /// |
| 2598 | /// The goal of this diagnostic is to emit an error or warning when an |
| 2599 | /// unavailable API is found in code that is reachable from the shader |
| 2600 | /// entry function or from an exported function (when compiling a shader |
| 2601 | /// library). |
| 2602 | /// |
| 2603 | /// This is done by traversing the AST of all shader entry point functions |
| 2604 | /// and of all exported functions, and any functions that are referenced |
| 2605 | /// from this AST. In other words, any functions that are reachable from |
| 2606 | /// the entry points. |
| 2607 | class DiagnoseHLSLAvailability : public DynamicRecursiveASTVisitor { |
| 2608 | Sema &SemaRef; |
| 2609 | |
| 2610 | // Stack of functions to be scaned |
| 2611 | llvm::SmallVector<const FunctionDecl *, 8> DeclsToScan; |
| 2612 | |
| 2613 | // Tracks which environments functions have been scanned in. |
| 2614 | // |
| 2615 | // Maps FunctionDecl to an unsigned number that represents the set of shader |
| 2616 | // environments the function has been scanned for. |
| 2617 | // The llvm::Triple::EnvironmentType enum values for shader stages guaranteed |
| 2618 | // to be numbered from llvm::Triple::Pixel to llvm::Triple::Amplification |
| 2619 | // (verified by static_asserts in Triple.cpp), we can use it to index |
| 2620 | // individual bits in the set, as long as we shift the values to start with 0 |
| 2621 | // by subtracting the value of llvm::Triple::Pixel first. |
| 2622 | // |
| 2623 | // The N'th bit in the set will be set if the function has been scanned |
| 2624 | // in shader environment whose llvm::Triple::EnvironmentType integer value |
| 2625 | // equals (llvm::Triple::Pixel + N). |
| 2626 | // |
| 2627 | // For example, if a function has been scanned in compute and pixel stage |
| 2628 | // environment, the value will be 0x21 (100001 binary) because: |
| 2629 | // |
| 2630 | // (int)(llvm::Triple::Pixel - llvm::Triple::Pixel) == 0 |
| 2631 | // (int)(llvm::Triple::Compute - llvm::Triple::Pixel) == 5 |
| 2632 | // |
| 2633 | // A FunctionDecl is mapped to 0 (or not included in the map) if it has not |
| 2634 | // been scanned in any environment. |
| 2635 | llvm::DenseMap<const FunctionDecl *, unsigned> ScannedDecls; |
| 2636 | |
| 2637 | // Do not access these directly, use the get/set methods below to make |
| 2638 | // sure the values are in sync |
| 2639 | llvm::Triple::EnvironmentType CurrentShaderEnvironment; |
| 2640 | unsigned CurrentShaderStageBit; |
| 2641 | |
| 2642 | // True if scanning a function that was already scanned in a different |
| 2643 | // shader stage context, and therefore we should not report issues that |
| 2644 | // depend only on shader model version because they would be duplicate. |
| 2645 | bool ReportOnlyShaderStageIssues; |
| 2646 | |
| 2647 | // Helper methods for dealing with current stage context / environment |
| 2648 | void SetShaderStageContext(llvm::Triple::EnvironmentType ShaderType) { |
| 2649 | static_assert(sizeof(unsigned) >= 4); |
| 2650 | assert(HLSLShaderAttr::isValidShaderType(ShaderType)); |
| 2651 | assert((unsigned)(ShaderType - llvm::Triple::Pixel) < 31 && |
| 2652 | "ShaderType is too big for this bitmap" ); // 31 is reserved for |
| 2653 | // "unknown" |
| 2654 | |
| 2655 | unsigned bitmapIndex = ShaderType - llvm::Triple::Pixel; |
| 2656 | CurrentShaderEnvironment = ShaderType; |
| 2657 | CurrentShaderStageBit = (1 << bitmapIndex); |
| 2658 | } |
| 2659 | |
| 2660 | void SetUnknownShaderStageContext() { |
| 2661 | CurrentShaderEnvironment = llvm::Triple::UnknownEnvironment; |
| 2662 | CurrentShaderStageBit = (1 << 31); |
| 2663 | } |
| 2664 | |
| 2665 | llvm::Triple::EnvironmentType GetCurrentShaderEnvironment() const { |
| 2666 | return CurrentShaderEnvironment; |
| 2667 | } |
| 2668 | |
| 2669 | bool InUnknownShaderStageContext() const { |
| 2670 | return CurrentShaderEnvironment == llvm::Triple::UnknownEnvironment; |
| 2671 | } |
| 2672 | |
| 2673 | // Helper methods for dealing with shader stage bitmap |
| 2674 | void AddToScannedFunctions(const FunctionDecl *FD) { |
| 2675 | unsigned &ScannedStages = ScannedDecls[FD]; |
| 2676 | ScannedStages |= CurrentShaderStageBit; |
| 2677 | } |
| 2678 | |
| 2679 | unsigned GetScannedStages(const FunctionDecl *FD) { return ScannedDecls[FD]; } |
| 2680 | |
| 2681 | bool WasAlreadyScannedInCurrentStage(const FunctionDecl *FD) { |
| 2682 | return WasAlreadyScannedInCurrentStage(ScannerStages: GetScannedStages(FD)); |
| 2683 | } |
| 2684 | |
| 2685 | bool WasAlreadyScannedInCurrentStage(unsigned ScannerStages) { |
| 2686 | return ScannerStages & CurrentShaderStageBit; |
| 2687 | } |
| 2688 | |
| 2689 | static bool NeverBeenScanned(unsigned ScannedStages) { |
| 2690 | return ScannedStages == 0; |
| 2691 | } |
| 2692 | |
| 2693 | // Scanning methods |
| 2694 | void HandleFunctionOrMethodRef(FunctionDecl *FD, Expr *RefExpr); |
| 2695 | void CheckDeclAvailability(NamedDecl *D, const AvailabilityAttr *AA, |
| 2696 | SourceRange Range); |
| 2697 | const AvailabilityAttr *FindAvailabilityAttr(const Decl *D); |
| 2698 | bool HasMatchingEnvironmentOrNone(const AvailabilityAttr *AA); |
| 2699 | |
| 2700 | public: |
| 2701 | DiagnoseHLSLAvailability(Sema &SemaRef) |
| 2702 | : SemaRef(SemaRef), |
| 2703 | CurrentShaderEnvironment(llvm::Triple::UnknownEnvironment), |
| 2704 | CurrentShaderStageBit(0), ReportOnlyShaderStageIssues(false) {} |
| 2705 | |
| 2706 | // AST traversal methods |
| 2707 | void RunOnTranslationUnit(const TranslationUnitDecl *TU); |
| 2708 | void RunOnFunction(const FunctionDecl *FD); |
| 2709 | |
| 2710 | bool VisitDeclRefExpr(DeclRefExpr *DRE) override { |
| 2711 | FunctionDecl *FD = llvm::dyn_cast<FunctionDecl>(Val: DRE->getDecl()); |
| 2712 | if (FD) |
| 2713 | HandleFunctionOrMethodRef(FD, RefExpr: DRE); |
| 2714 | return true; |
| 2715 | } |
| 2716 | |
| 2717 | bool VisitMemberExpr(MemberExpr *ME) override { |
| 2718 | FunctionDecl *FD = llvm::dyn_cast<FunctionDecl>(Val: ME->getMemberDecl()); |
| 2719 | if (FD) |
| 2720 | HandleFunctionOrMethodRef(FD, RefExpr: ME); |
| 2721 | return true; |
| 2722 | } |
| 2723 | }; |
| 2724 | |
| 2725 | void DiagnoseHLSLAvailability::HandleFunctionOrMethodRef(FunctionDecl *FD, |
| 2726 | Expr *RefExpr) { |
| 2727 | assert((isa<DeclRefExpr>(RefExpr) || isa<MemberExpr>(RefExpr)) && |
| 2728 | "expected DeclRefExpr or MemberExpr" ); |
| 2729 | |
| 2730 | // has a definition -> add to stack to be scanned |
| 2731 | const FunctionDecl *FDWithBody = nullptr; |
| 2732 | if (FD->hasBody(Definition&: FDWithBody)) { |
| 2733 | if (!WasAlreadyScannedInCurrentStage(FD: FDWithBody)) |
| 2734 | DeclsToScan.push_back(Elt: FDWithBody); |
| 2735 | return; |
| 2736 | } |
| 2737 | |
| 2738 | // no body -> diagnose availability |
| 2739 | const AvailabilityAttr *AA = FindAvailabilityAttr(D: FD); |
| 2740 | if (AA) |
| 2741 | CheckDeclAvailability( |
| 2742 | D: FD, AA, Range: SourceRange(RefExpr->getBeginLoc(), RefExpr->getEndLoc())); |
| 2743 | } |
| 2744 | |
| 2745 | void DiagnoseHLSLAvailability::RunOnTranslationUnit( |
| 2746 | const TranslationUnitDecl *TU) { |
| 2747 | |
| 2748 | // Iterate over all shader entry functions and library exports, and for those |
| 2749 | // that have a body (definiton), run diag scan on each, setting appropriate |
| 2750 | // shader environment context based on whether it is a shader entry function |
| 2751 | // or an exported function. Exported functions can be in namespaces and in |
| 2752 | // export declarations so we need to scan those declaration contexts as well. |
| 2753 | llvm::SmallVector<const DeclContext *, 8> DeclContextsToScan; |
| 2754 | DeclContextsToScan.push_back(Elt: TU); |
| 2755 | |
| 2756 | while (!DeclContextsToScan.empty()) { |
| 2757 | const DeclContext *DC = DeclContextsToScan.pop_back_val(); |
| 2758 | for (auto &D : DC->decls()) { |
| 2759 | // do not scan implicit declaration generated by the implementation |
| 2760 | if (D->isImplicit()) |
| 2761 | continue; |
| 2762 | |
| 2763 | // for namespace or export declaration add the context to the list to be |
| 2764 | // scanned later |
| 2765 | if (llvm::dyn_cast<NamespaceDecl>(Val: D) || llvm::dyn_cast<ExportDecl>(Val: D)) { |
| 2766 | DeclContextsToScan.push_back(Elt: llvm::dyn_cast<DeclContext>(Val: D)); |
| 2767 | continue; |
| 2768 | } |
| 2769 | |
| 2770 | // skip over other decls or function decls without body |
| 2771 | const FunctionDecl *FD = llvm::dyn_cast<FunctionDecl>(Val: D); |
| 2772 | if (!FD || !FD->isThisDeclarationADefinition()) |
| 2773 | continue; |
| 2774 | |
| 2775 | // shader entry point |
| 2776 | if (HLSLShaderAttr *ShaderAttr = FD->getAttr<HLSLShaderAttr>()) { |
| 2777 | SetShaderStageContext(ShaderAttr->getType()); |
| 2778 | RunOnFunction(FD); |
| 2779 | continue; |
| 2780 | } |
| 2781 | // exported library function |
| 2782 | // FIXME: replace this loop with external linkage check once issue #92071 |
| 2783 | // is resolved |
| 2784 | bool isExport = FD->isInExportDeclContext(); |
| 2785 | if (!isExport) { |
| 2786 | for (const auto *Redecl : FD->redecls()) { |
| 2787 | if (Redecl->isInExportDeclContext()) { |
| 2788 | isExport = true; |
| 2789 | break; |
| 2790 | } |
| 2791 | } |
| 2792 | } |
| 2793 | if (isExport) { |
| 2794 | SetUnknownShaderStageContext(); |
| 2795 | RunOnFunction(FD); |
| 2796 | continue; |
| 2797 | } |
| 2798 | } |
| 2799 | } |
| 2800 | } |
| 2801 | |
| 2802 | void DiagnoseHLSLAvailability::RunOnFunction(const FunctionDecl *FD) { |
| 2803 | assert(DeclsToScan.empty() && "DeclsToScan should be empty" ); |
| 2804 | DeclsToScan.push_back(Elt: FD); |
| 2805 | |
| 2806 | while (!DeclsToScan.empty()) { |
| 2807 | // Take one decl from the stack and check it by traversing its AST. |
| 2808 | // For any CallExpr found during the traversal add it's callee to the top of |
| 2809 | // the stack to be processed next. Functions already processed are stored in |
| 2810 | // ScannedDecls. |
| 2811 | const FunctionDecl *FD = DeclsToScan.pop_back_val(); |
| 2812 | |
| 2813 | // Decl was already scanned |
| 2814 | const unsigned ScannedStages = GetScannedStages(FD); |
| 2815 | if (WasAlreadyScannedInCurrentStage(ScannerStages: ScannedStages)) |
| 2816 | continue; |
| 2817 | |
| 2818 | ReportOnlyShaderStageIssues = !NeverBeenScanned(ScannedStages); |
| 2819 | |
| 2820 | AddToScannedFunctions(FD); |
| 2821 | TraverseStmt(S: FD->getBody()); |
| 2822 | } |
| 2823 | } |
| 2824 | |
| 2825 | bool DiagnoseHLSLAvailability::HasMatchingEnvironmentOrNone( |
| 2826 | const AvailabilityAttr *AA) { |
| 2827 | const IdentifierInfo *IIEnvironment = AA->getEnvironment(); |
| 2828 | if (!IIEnvironment) |
| 2829 | return true; |
| 2830 | |
| 2831 | llvm::Triple::EnvironmentType CurrentEnv = GetCurrentShaderEnvironment(); |
| 2832 | if (CurrentEnv == llvm::Triple::UnknownEnvironment) |
| 2833 | return false; |
| 2834 | |
| 2835 | llvm::Triple::EnvironmentType AttrEnv = |
| 2836 | AvailabilityAttr::getEnvironmentType(Environment: IIEnvironment->getName()); |
| 2837 | |
| 2838 | return CurrentEnv == AttrEnv; |
| 2839 | } |
| 2840 | |
| 2841 | const AvailabilityAttr * |
| 2842 | DiagnoseHLSLAvailability::FindAvailabilityAttr(const Decl *D) { |
| 2843 | AvailabilityAttr const *PartialMatch = nullptr; |
| 2844 | // Check each AvailabilityAttr to find the one for this platform. |
| 2845 | // For multiple attributes with the same platform try to find one for this |
| 2846 | // environment. |
| 2847 | for (const auto *A : D->attrs()) { |
| 2848 | if (const auto *Avail = dyn_cast<AvailabilityAttr>(Val: A)) { |
| 2849 | StringRef AttrPlatform = Avail->getPlatform()->getName(); |
| 2850 | StringRef TargetPlatform = |
| 2851 | SemaRef.getASTContext().getTargetInfo().getPlatformName(); |
| 2852 | |
| 2853 | // Match the platform name. |
| 2854 | if (AttrPlatform == TargetPlatform) { |
| 2855 | // Find the best matching attribute for this environment |
| 2856 | if (HasMatchingEnvironmentOrNone(AA: Avail)) |
| 2857 | return Avail; |
| 2858 | PartialMatch = Avail; |
| 2859 | } |
| 2860 | } |
| 2861 | } |
| 2862 | return PartialMatch; |
| 2863 | } |
| 2864 | |
| 2865 | // Check availability against target shader model version and current shader |
| 2866 | // stage and emit diagnostic |
| 2867 | void DiagnoseHLSLAvailability::CheckDeclAvailability(NamedDecl *D, |
| 2868 | const AvailabilityAttr *AA, |
| 2869 | SourceRange Range) { |
| 2870 | |
| 2871 | const IdentifierInfo *IIEnv = AA->getEnvironment(); |
| 2872 | |
| 2873 | if (!IIEnv) { |
| 2874 | // The availability attribute does not have environment -> it depends only |
| 2875 | // on shader model version and not on specific the shader stage. |
| 2876 | |
| 2877 | // Skip emitting the diagnostics if the diagnostic mode is set to |
| 2878 | // strict (-fhlsl-strict-availability) because all relevant diagnostics |
| 2879 | // were already emitted in the DiagnoseUnguardedAvailability scan |
| 2880 | // (SemaAvailability.cpp). |
| 2881 | if (SemaRef.getLangOpts().HLSLStrictAvailability) |
| 2882 | return; |
| 2883 | |
| 2884 | // Do not report shader-stage-independent issues if scanning a function |
| 2885 | // that was already scanned in a different shader stage context (they would |
| 2886 | // be duplicate) |
| 2887 | if (ReportOnlyShaderStageIssues) |
| 2888 | return; |
| 2889 | |
| 2890 | } else { |
| 2891 | // The availability attribute has environment -> we need to know |
| 2892 | // the current stage context to property diagnose it. |
| 2893 | if (InUnknownShaderStageContext()) |
| 2894 | return; |
| 2895 | } |
| 2896 | |
| 2897 | // Check introduced version and if environment matches |
| 2898 | bool EnvironmentMatches = HasMatchingEnvironmentOrNone(AA); |
| 2899 | VersionTuple Introduced = AA->getIntroduced(); |
| 2900 | VersionTuple TargetVersion = |
| 2901 | SemaRef.Context.getTargetInfo().getPlatformMinVersion(); |
| 2902 | |
| 2903 | if (TargetVersion >= Introduced && EnvironmentMatches) |
| 2904 | return; |
| 2905 | |
| 2906 | // Emit diagnostic message |
| 2907 | const TargetInfo &TI = SemaRef.getASTContext().getTargetInfo(); |
| 2908 | llvm::StringRef PlatformName( |
| 2909 | AvailabilityAttr::getPrettyPlatformName(Platform: TI.getPlatformName())); |
| 2910 | |
| 2911 | llvm::StringRef CurrentEnvStr = |
| 2912 | llvm::Triple::getEnvironmentTypeName(Kind: GetCurrentShaderEnvironment()); |
| 2913 | |
| 2914 | llvm::StringRef AttrEnvStr = |
| 2915 | AA->getEnvironment() ? AA->getEnvironment()->getName() : "" ; |
| 2916 | bool UseEnvironment = !AttrEnvStr.empty(); |
| 2917 | |
| 2918 | if (EnvironmentMatches) { |
| 2919 | SemaRef.Diag(Loc: Range.getBegin(), DiagID: diag::warn_hlsl_availability) |
| 2920 | << Range << D << PlatformName << Introduced.getAsString() |
| 2921 | << UseEnvironment << CurrentEnvStr; |
| 2922 | } else { |
| 2923 | SemaRef.Diag(Loc: Range.getBegin(), DiagID: diag::warn_hlsl_availability_unavailable) |
| 2924 | << Range << D; |
| 2925 | } |
| 2926 | |
| 2927 | SemaRef.Diag(Loc: D->getLocation(), DiagID: diag::note_partial_availability_specified_here) |
| 2928 | << D << PlatformName << Introduced.getAsString() |
| 2929 | << SemaRef.Context.getTargetInfo().getPlatformMinVersion().getAsString() |
| 2930 | << UseEnvironment << AttrEnvStr << CurrentEnvStr; |
| 2931 | } |
| 2932 | |
| 2933 | } // namespace |
| 2934 | |
| 2935 | void SemaHLSL::ActOnEndOfTranslationUnit(TranslationUnitDecl *TU) { |
| 2936 | // process default CBuffer - create buffer layout struct and invoke codegenCGH |
| 2937 | if (!DefaultCBufferDecls.empty()) { |
| 2938 | HLSLBufferDecl *DefaultCBuffer = HLSLBufferDecl::CreateDefaultCBuffer( |
| 2939 | C&: SemaRef.getASTContext(), LexicalParent: SemaRef.getCurLexicalContext(), |
| 2940 | DefaultCBufferDecls); |
| 2941 | addImplicitBindingAttrToDecl(S&: SemaRef, D: DefaultCBuffer, RT: RegisterType::CBuffer, |
| 2942 | ImplicitBindingOrderID: getNextImplicitBindingOrderID()); |
| 2943 | SemaRef.getCurLexicalContext()->addDecl(D: DefaultCBuffer); |
| 2944 | createHostLayoutStructForBuffer(S&: SemaRef, BufDecl: DefaultCBuffer); |
| 2945 | |
| 2946 | // Set HasValidPackoffset if any of the decls has a register(c#) annotation; |
| 2947 | for (const Decl *VD : DefaultCBufferDecls) { |
| 2948 | const HLSLResourceBindingAttr *RBA = |
| 2949 | VD->getAttr<HLSLResourceBindingAttr>(); |
| 2950 | if (RBA && RBA->hasRegisterSlot() && |
| 2951 | RBA->getRegisterType() == HLSLResourceBindingAttr::RegisterType::C) { |
| 2952 | DefaultCBuffer->setHasValidPackoffset(true); |
| 2953 | break; |
| 2954 | } |
| 2955 | } |
| 2956 | |
| 2957 | DeclGroupRef DG(DefaultCBuffer); |
| 2958 | SemaRef.Consumer.HandleTopLevelDecl(D: DG); |
| 2959 | } |
| 2960 | diagnoseAvailabilityViolations(TU); |
| 2961 | } |
| 2962 | |
| 2963 | void SemaHLSL::diagnoseAvailabilityViolations(TranslationUnitDecl *TU) { |
| 2964 | // Skip running the diagnostics scan if the diagnostic mode is |
| 2965 | // strict (-fhlsl-strict-availability) and the target shader stage is known |
| 2966 | // because all relevant diagnostics were already emitted in the |
| 2967 | // DiagnoseUnguardedAvailability scan (SemaAvailability.cpp). |
| 2968 | const TargetInfo &TI = SemaRef.getASTContext().getTargetInfo(); |
| 2969 | if (SemaRef.getLangOpts().HLSLStrictAvailability && |
| 2970 | TI.getTriple().getEnvironment() != llvm::Triple::EnvironmentType::Library) |
| 2971 | return; |
| 2972 | |
| 2973 | DiagnoseHLSLAvailability(SemaRef).RunOnTranslationUnit(TU); |
| 2974 | } |
| 2975 | |
| 2976 | static bool CheckAllArgsHaveSameType(Sema *S, CallExpr *TheCall) { |
| 2977 | assert(TheCall->getNumArgs() > 1); |
| 2978 | QualType ArgTy0 = TheCall->getArg(Arg: 0)->getType(); |
| 2979 | |
| 2980 | for (unsigned I = 1, N = TheCall->getNumArgs(); I < N; ++I) { |
| 2981 | if (!S->getASTContext().hasSameUnqualifiedType( |
| 2982 | T1: ArgTy0, T2: TheCall->getArg(Arg: I)->getType())) { |
| 2983 | S->Diag(Loc: TheCall->getBeginLoc(), DiagID: diag::err_vec_builtin_incompatible_vector) |
| 2984 | << TheCall->getDirectCallee() << /*useAllTerminology*/ true |
| 2985 | << SourceRange(TheCall->getArg(Arg: 0)->getBeginLoc(), |
| 2986 | TheCall->getArg(Arg: N - 1)->getEndLoc()); |
| 2987 | return true; |
| 2988 | } |
| 2989 | } |
| 2990 | return false; |
| 2991 | } |
| 2992 | |
| 2993 | static bool CheckArgTypeMatches(Sema *S, Expr *Arg, QualType ExpectedType) { |
| 2994 | QualType ArgType = Arg->getType(); |
| 2995 | if (!S->getASTContext().hasSameUnqualifiedType(T1: ArgType, T2: ExpectedType)) { |
| 2996 | S->Diag(Loc: Arg->getBeginLoc(), DiagID: diag::err_typecheck_convert_incompatible) |
| 2997 | << ArgType << ExpectedType << 1 << 0 << 0; |
| 2998 | return true; |
| 2999 | } |
| 3000 | return false; |
| 3001 | } |
| 3002 | |
| 3003 | static bool CheckAllArgTypesAreCorrect( |
| 3004 | Sema *S, CallExpr *TheCall, |
| 3005 | llvm::function_ref<bool(Sema *S, SourceLocation Loc, int ArgOrdinal, |
| 3006 | clang::QualType PassedType)> |
| 3007 | Check) { |
| 3008 | for (unsigned I = 0; I < TheCall->getNumArgs(); ++I) { |
| 3009 | Expr *Arg = TheCall->getArg(Arg: I); |
| 3010 | if (Check(S, Arg->getBeginLoc(), I + 1, Arg->getType())) |
| 3011 | return true; |
| 3012 | } |
| 3013 | return false; |
| 3014 | } |
| 3015 | |
| 3016 | static bool CheckFloatRepresentation(Sema *S, SourceLocation Loc, |
| 3017 | int ArgOrdinal, |
| 3018 | clang::QualType PassedType) { |
| 3019 | clang::QualType BaseType = |
| 3020 | PassedType->isVectorType() |
| 3021 | ? PassedType->castAs<clang::VectorType>()->getElementType() |
| 3022 | : PassedType; |
| 3023 | if (!BaseType->isFloat32Type()) |
| 3024 | return S->Diag(Loc, DiagID: diag::err_builtin_invalid_arg_type) |
| 3025 | << ArgOrdinal << /* scalar or vector of */ 5 << /* no int */ 0 |
| 3026 | << /* float */ 1 << PassedType; |
| 3027 | return false; |
| 3028 | } |
| 3029 | |
| 3030 | static bool CheckFloatOrHalfRepresentation(Sema *S, SourceLocation Loc, |
| 3031 | int ArgOrdinal, |
| 3032 | clang::QualType PassedType) { |
| 3033 | clang::QualType BaseType = |
| 3034 | PassedType->isVectorType() |
| 3035 | ? PassedType->castAs<clang::VectorType>()->getElementType() |
| 3036 | : PassedType; |
| 3037 | if (!BaseType->isHalfType() && !BaseType->isFloat32Type()) |
| 3038 | return S->Diag(Loc, DiagID: diag::err_builtin_invalid_arg_type) |
| 3039 | << ArgOrdinal << /* scalar or vector of */ 5 << /* no int */ 0 |
| 3040 | << /* half or float */ 2 << PassedType; |
| 3041 | return false; |
| 3042 | } |
| 3043 | |
| 3044 | static bool CheckModifiableLValue(Sema *S, CallExpr *TheCall, |
| 3045 | unsigned ArgIndex) { |
| 3046 | auto *Arg = TheCall->getArg(Arg: ArgIndex); |
| 3047 | SourceLocation OrigLoc = Arg->getExprLoc(); |
| 3048 | if (Arg->IgnoreCasts()->isModifiableLvalue(Ctx&: S->Context, Loc: &OrigLoc) == |
| 3049 | Expr::MLV_Valid) |
| 3050 | return false; |
| 3051 | S->Diag(Loc: OrigLoc, DiagID: diag::error_hlsl_inout_lvalue) << Arg << 0; |
| 3052 | return true; |
| 3053 | } |
| 3054 | |
| 3055 | static bool CheckNoDoubleVectors(Sema *S, SourceLocation Loc, int ArgOrdinal, |
| 3056 | clang::QualType PassedType) { |
| 3057 | const auto *VecTy = PassedType->getAs<VectorType>(); |
| 3058 | if (!VecTy) |
| 3059 | return false; |
| 3060 | |
| 3061 | if (VecTy->getElementType()->isDoubleType()) |
| 3062 | return S->Diag(Loc, DiagID: diag::err_builtin_invalid_arg_type) |
| 3063 | << ArgOrdinal << /* scalar */ 1 << /* no int */ 0 << /* fp */ 1 |
| 3064 | << PassedType; |
| 3065 | return false; |
| 3066 | } |
| 3067 | |
| 3068 | static bool CheckFloatingOrIntRepresentation(Sema *S, SourceLocation Loc, |
| 3069 | int ArgOrdinal, |
| 3070 | clang::QualType PassedType) { |
| 3071 | if (!PassedType->hasIntegerRepresentation() && |
| 3072 | !PassedType->hasFloatingRepresentation()) |
| 3073 | return S->Diag(Loc, DiagID: diag::err_builtin_invalid_arg_type) |
| 3074 | << ArgOrdinal << /* scalar or vector of */ 5 << /* integer */ 1 |
| 3075 | << /* fp */ 1 << PassedType; |
| 3076 | return false; |
| 3077 | } |
| 3078 | |
| 3079 | static bool CheckUnsignedIntVecRepresentation(Sema *S, SourceLocation Loc, |
| 3080 | int ArgOrdinal, |
| 3081 | clang::QualType PassedType) { |
| 3082 | if (auto *VecTy = PassedType->getAs<VectorType>()) |
| 3083 | if (VecTy->getElementType()->isUnsignedIntegerType()) |
| 3084 | return false; |
| 3085 | |
| 3086 | return S->Diag(Loc, DiagID: diag::err_builtin_invalid_arg_type) |
| 3087 | << ArgOrdinal << /* vector of */ 4 << /* uint */ 3 << /* no fp */ 0 |
| 3088 | << PassedType; |
| 3089 | } |
| 3090 | |
| 3091 | // checks for unsigned ints of all sizes |
| 3092 | static bool CheckUnsignedIntRepresentation(Sema *S, SourceLocation Loc, |
| 3093 | int ArgOrdinal, |
| 3094 | clang::QualType PassedType) { |
| 3095 | if (!PassedType->hasUnsignedIntegerRepresentation()) |
| 3096 | return S->Diag(Loc, DiagID: diag::err_builtin_invalid_arg_type) |
| 3097 | << ArgOrdinal << /* scalar or vector of */ 5 << /* unsigned int */ 3 |
| 3098 | << /* no fp */ 0 << PassedType; |
| 3099 | return false; |
| 3100 | } |
| 3101 | |
| 3102 | static bool CheckExpectedBitWidth(Sema *S, CallExpr *TheCall, |
| 3103 | unsigned ArgOrdinal, unsigned Width) { |
| 3104 | QualType ArgTy = TheCall->getArg(Arg: 0)->getType(); |
| 3105 | if (auto *VTy = ArgTy->getAs<VectorType>()) |
| 3106 | ArgTy = VTy->getElementType(); |
| 3107 | // ensure arg type has expected bit width |
| 3108 | uint64_t ElementBitCount = |
| 3109 | S->getASTContext().getTypeSizeInChars(T: ArgTy).getQuantity() * 8; |
| 3110 | if (ElementBitCount != Width) { |
| 3111 | S->Diag(Loc: TheCall->getArg(Arg: 0)->getBeginLoc(), |
| 3112 | DiagID: diag::err_integer_incorrect_bit_count) |
| 3113 | << Width << ElementBitCount; |
| 3114 | return true; |
| 3115 | } |
| 3116 | return false; |
| 3117 | } |
| 3118 | |
| 3119 | static void SetElementTypeAsReturnType(Sema *S, CallExpr *TheCall, |
| 3120 | QualType ReturnType) { |
| 3121 | auto *VecTyA = TheCall->getArg(Arg: 0)->getType()->getAs<VectorType>(); |
| 3122 | if (VecTyA) |
| 3123 | ReturnType = |
| 3124 | S->Context.getExtVectorType(VectorType: ReturnType, NumElts: VecTyA->getNumElements()); |
| 3125 | |
| 3126 | TheCall->setType(ReturnType); |
| 3127 | } |
| 3128 | |
| 3129 | static bool CheckScalarOrVector(Sema *S, CallExpr *TheCall, QualType Scalar, |
| 3130 | unsigned ArgIndex) { |
| 3131 | assert(TheCall->getNumArgs() >= ArgIndex); |
| 3132 | QualType ArgType = TheCall->getArg(Arg: ArgIndex)->getType(); |
| 3133 | auto *VTy = ArgType->getAs<VectorType>(); |
| 3134 | // not the scalar or vector<scalar> |
| 3135 | if (!(S->Context.hasSameUnqualifiedType(T1: ArgType, T2: Scalar) || |
| 3136 | (VTy && |
| 3137 | S->Context.hasSameUnqualifiedType(T1: VTy->getElementType(), T2: Scalar)))) { |
| 3138 | S->Diag(Loc: TheCall->getArg(Arg: 0)->getBeginLoc(), |
| 3139 | DiagID: diag::err_typecheck_expect_scalar_or_vector) |
| 3140 | << ArgType << Scalar; |
| 3141 | return true; |
| 3142 | } |
| 3143 | return false; |
| 3144 | } |
| 3145 | |
| 3146 | static bool CheckScalarOrVectorOrMatrix(Sema *S, CallExpr *TheCall, |
| 3147 | QualType Scalar, unsigned ArgIndex) { |
| 3148 | assert(TheCall->getNumArgs() > ArgIndex); |
| 3149 | |
| 3150 | Expr *Arg = TheCall->getArg(Arg: ArgIndex); |
| 3151 | QualType ArgType = Arg->getType(); |
| 3152 | |
| 3153 | // Scalar: T |
| 3154 | if (S->Context.hasSameUnqualifiedType(T1: ArgType, T2: Scalar)) |
| 3155 | return false; |
| 3156 | |
| 3157 | // Vector: vector<T> |
| 3158 | if (const auto *VTy = ArgType->getAs<VectorType>()) { |
| 3159 | if (S->Context.hasSameUnqualifiedType(T1: VTy->getElementType(), T2: Scalar)) |
| 3160 | return false; |
| 3161 | } |
| 3162 | |
| 3163 | // Matrix: ConstantMatrixType with element type T |
| 3164 | if (const auto *MTy = ArgType->getAs<ConstantMatrixType>()) { |
| 3165 | if (S->Context.hasSameUnqualifiedType(T1: MTy->getElementType(), T2: Scalar)) |
| 3166 | return false; |
| 3167 | } |
| 3168 | |
| 3169 | // Not a scalar/vector/matrix-of-scalar |
| 3170 | S->Diag(Loc: Arg->getBeginLoc(), |
| 3171 | DiagID: diag::err_typecheck_expect_scalar_or_vector_or_matrix) |
| 3172 | << ArgType << Scalar; |
| 3173 | return true; |
| 3174 | } |
| 3175 | |
| 3176 | static bool CheckAnyScalarOrVector(Sema *S, CallExpr *TheCall, |
| 3177 | unsigned ArgIndex) { |
| 3178 | assert(TheCall->getNumArgs() >= ArgIndex); |
| 3179 | QualType ArgType = TheCall->getArg(Arg: ArgIndex)->getType(); |
| 3180 | auto *VTy = ArgType->getAs<VectorType>(); |
| 3181 | // not the scalar or vector<scalar> |
| 3182 | if (!(ArgType->isScalarType() || |
| 3183 | (VTy && VTy->getElementType()->isScalarType()))) { |
| 3184 | S->Diag(Loc: TheCall->getArg(Arg: 0)->getBeginLoc(), |
| 3185 | DiagID: diag::err_typecheck_expect_any_scalar_or_vector) |
| 3186 | << ArgType << 1; |
| 3187 | return true; |
| 3188 | } |
| 3189 | return false; |
| 3190 | } |
| 3191 | |
| 3192 | // Check that the argument is not a bool or vector<bool> |
| 3193 | // Returns true on error |
| 3194 | static bool CheckNotBoolScalarOrVector(Sema *S, CallExpr *TheCall, |
| 3195 | unsigned ArgIndex) { |
| 3196 | QualType BoolType = S->getASTContext().BoolTy; |
| 3197 | assert(ArgIndex < TheCall->getNumArgs()); |
| 3198 | QualType ArgType = TheCall->getArg(Arg: ArgIndex)->getType(); |
| 3199 | auto *VTy = ArgType->getAs<VectorType>(); |
| 3200 | // is the bool or vector<bool> |
| 3201 | if (S->Context.hasSameUnqualifiedType(T1: ArgType, T2: BoolType) || |
| 3202 | (VTy && |
| 3203 | S->Context.hasSameUnqualifiedType(T1: VTy->getElementType(), T2: BoolType))) { |
| 3204 | S->Diag(Loc: TheCall->getArg(Arg: 0)->getBeginLoc(), |
| 3205 | DiagID: diag::err_typecheck_expect_any_scalar_or_vector) |
| 3206 | << ArgType << 0; |
| 3207 | return true; |
| 3208 | } |
| 3209 | return false; |
| 3210 | } |
| 3211 | |
| 3212 | static bool CheckWaveActive(Sema *S, CallExpr *TheCall) { |
| 3213 | if (CheckNotBoolScalarOrVector(S, TheCall, ArgIndex: 0)) |
| 3214 | return true; |
| 3215 | return false; |
| 3216 | } |
| 3217 | |
| 3218 | static bool CheckWavePrefix(Sema *S, CallExpr *TheCall) { |
| 3219 | if (CheckNotBoolScalarOrVector(S, TheCall, ArgIndex: 0)) |
| 3220 | return true; |
| 3221 | return false; |
| 3222 | } |
| 3223 | |
| 3224 | static bool CheckBoolSelect(Sema *S, CallExpr *TheCall) { |
| 3225 | assert(TheCall->getNumArgs() == 3); |
| 3226 | Expr *Arg1 = TheCall->getArg(Arg: 1); |
| 3227 | Expr *Arg2 = TheCall->getArg(Arg: 2); |
| 3228 | if (!S->Context.hasSameUnqualifiedType(T1: Arg1->getType(), T2: Arg2->getType())) { |
| 3229 | S->Diag(Loc: TheCall->getBeginLoc(), |
| 3230 | DiagID: diag::err_typecheck_call_different_arg_types) |
| 3231 | << Arg1->getType() << Arg2->getType() << Arg1->getSourceRange() |
| 3232 | << Arg2->getSourceRange(); |
| 3233 | return true; |
| 3234 | } |
| 3235 | |
| 3236 | TheCall->setType(Arg1->getType()); |
| 3237 | return false; |
| 3238 | } |
| 3239 | |
| 3240 | static bool CheckVectorSelect(Sema *S, CallExpr *TheCall) { |
| 3241 | assert(TheCall->getNumArgs() == 3); |
| 3242 | Expr *Arg1 = TheCall->getArg(Arg: 1); |
| 3243 | QualType Arg1Ty = Arg1->getType(); |
| 3244 | Expr *Arg2 = TheCall->getArg(Arg: 2); |
| 3245 | QualType Arg2Ty = Arg2->getType(); |
| 3246 | |
| 3247 | QualType Arg1ScalarTy = Arg1Ty; |
| 3248 | if (auto VTy = Arg1ScalarTy->getAs<VectorType>()) |
| 3249 | Arg1ScalarTy = VTy->getElementType(); |
| 3250 | |
| 3251 | QualType Arg2ScalarTy = Arg2Ty; |
| 3252 | if (auto VTy = Arg2ScalarTy->getAs<VectorType>()) |
| 3253 | Arg2ScalarTy = VTy->getElementType(); |
| 3254 | |
| 3255 | if (!S->Context.hasSameUnqualifiedType(T1: Arg1ScalarTy, T2: Arg2ScalarTy)) |
| 3256 | S->Diag(Loc: Arg1->getBeginLoc(), DiagID: diag::err_hlsl_builtin_scalar_vector_mismatch) |
| 3257 | << /* second and third */ 1 << TheCall->getCallee() << Arg1Ty << Arg2Ty; |
| 3258 | |
| 3259 | QualType Arg0Ty = TheCall->getArg(Arg: 0)->getType(); |
| 3260 | unsigned Arg0Length = Arg0Ty->getAs<VectorType>()->getNumElements(); |
| 3261 | unsigned Arg1Length = Arg1Ty->isVectorType() |
| 3262 | ? Arg1Ty->getAs<VectorType>()->getNumElements() |
| 3263 | : 0; |
| 3264 | unsigned Arg2Length = Arg2Ty->isVectorType() |
| 3265 | ? Arg2Ty->getAs<VectorType>()->getNumElements() |
| 3266 | : 0; |
| 3267 | if (Arg1Length > 0 && Arg0Length != Arg1Length) { |
| 3268 | S->Diag(Loc: TheCall->getBeginLoc(), |
| 3269 | DiagID: diag::err_typecheck_vector_lengths_not_equal) |
| 3270 | << Arg0Ty << Arg1Ty << TheCall->getArg(Arg: 0)->getSourceRange() |
| 3271 | << Arg1->getSourceRange(); |
| 3272 | return true; |
| 3273 | } |
| 3274 | |
| 3275 | if (Arg2Length > 0 && Arg0Length != Arg2Length) { |
| 3276 | S->Diag(Loc: TheCall->getBeginLoc(), |
| 3277 | DiagID: diag::err_typecheck_vector_lengths_not_equal) |
| 3278 | << Arg0Ty << Arg2Ty << TheCall->getArg(Arg: 0)->getSourceRange() |
| 3279 | << Arg2->getSourceRange(); |
| 3280 | return true; |
| 3281 | } |
| 3282 | |
| 3283 | TheCall->setType( |
| 3284 | S->getASTContext().getExtVectorType(VectorType: Arg1ScalarTy, NumElts: Arg0Length)); |
| 3285 | return false; |
| 3286 | } |
| 3287 | |
| 3288 | static bool CheckResourceHandle( |
| 3289 | Sema *S, CallExpr *TheCall, unsigned ArgIndex, |
| 3290 | llvm::function_ref<bool(const HLSLAttributedResourceType *ResType)> Check = |
| 3291 | nullptr) { |
| 3292 | assert(TheCall->getNumArgs() >= ArgIndex); |
| 3293 | QualType ArgType = TheCall->getArg(Arg: ArgIndex)->getType(); |
| 3294 | const HLSLAttributedResourceType *ResTy = |
| 3295 | ArgType.getTypePtr()->getAs<HLSLAttributedResourceType>(); |
| 3296 | if (!ResTy) { |
| 3297 | S->Diag(Loc: TheCall->getArg(Arg: ArgIndex)->getBeginLoc(), |
| 3298 | DiagID: diag::err_typecheck_expect_hlsl_resource) |
| 3299 | << ArgType; |
| 3300 | return true; |
| 3301 | } |
| 3302 | if (Check && Check(ResTy)) { |
| 3303 | S->Diag(Loc: TheCall->getArg(Arg: ArgIndex)->getExprLoc(), |
| 3304 | DiagID: diag::err_invalid_hlsl_resource_type) |
| 3305 | << ArgType; |
| 3306 | return true; |
| 3307 | } |
| 3308 | return false; |
| 3309 | } |
| 3310 | |
| 3311 | static bool CheckVectorElementCount(Sema *S, QualType PassedType, |
| 3312 | QualType BaseType, unsigned ExpectedCount, |
| 3313 | SourceLocation Loc) { |
| 3314 | unsigned PassedCount = 1; |
| 3315 | if (const auto *VecTy = PassedType->getAs<VectorType>()) |
| 3316 | PassedCount = VecTy->getNumElements(); |
| 3317 | |
| 3318 | if (PassedCount != ExpectedCount) { |
| 3319 | QualType ExpectedType = |
| 3320 | S->Context.getExtVectorType(VectorType: BaseType, NumElts: ExpectedCount); |
| 3321 | S->Diag(Loc, DiagID: diag::err_typecheck_convert_incompatible) |
| 3322 | << PassedType << ExpectedType << 1 << 0 << 0; |
| 3323 | return true; |
| 3324 | } |
| 3325 | return false; |
| 3326 | } |
| 3327 | |
| 3328 | // Note: returning true in this case results in CheckBuiltinFunctionCall |
| 3329 | // returning an ExprError |
| 3330 | bool SemaHLSL::CheckBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) { |
| 3331 | switch (BuiltinID) { |
| 3332 | case Builtin::BI__builtin_hlsl_adduint64: { |
| 3333 | if (SemaRef.checkArgCount(Call: TheCall, DesiredArgCount: 2)) |
| 3334 | return true; |
| 3335 | |
| 3336 | if (CheckAllArgTypesAreCorrect(S: &SemaRef, TheCall, |
| 3337 | Check: CheckUnsignedIntVecRepresentation)) |
| 3338 | return true; |
| 3339 | |
| 3340 | // ensure arg integers are 32-bits |
| 3341 | if (CheckExpectedBitWidth(S: &SemaRef, TheCall, ArgOrdinal: 0, Width: 32)) |
| 3342 | return true; |
| 3343 | |
| 3344 | // ensure both args are vectors of total bit size of a multiple of 64 |
| 3345 | auto *VTy = TheCall->getArg(Arg: 0)->getType()->getAs<VectorType>(); |
| 3346 | int NumElementsArg = VTy->getNumElements(); |
| 3347 | if (NumElementsArg != 2 && NumElementsArg != 4) { |
| 3348 | SemaRef.Diag(Loc: TheCall->getBeginLoc(), DiagID: diag::err_vector_incorrect_bit_count) |
| 3349 | << 1 /*a multiple of*/ << 64 << NumElementsArg * 32; |
| 3350 | return true; |
| 3351 | } |
| 3352 | |
| 3353 | // ensure first arg and second arg have the same type |
| 3354 | if (CheckAllArgsHaveSameType(S: &SemaRef, TheCall)) |
| 3355 | return true; |
| 3356 | |
| 3357 | ExprResult A = TheCall->getArg(Arg: 0); |
| 3358 | QualType ArgTyA = A.get()->getType(); |
| 3359 | // return type is the same as the input type |
| 3360 | TheCall->setType(ArgTyA); |
| 3361 | break; |
| 3362 | } |
| 3363 | case Builtin::BI__builtin_hlsl_resource_getpointer: { |
| 3364 | if (SemaRef.checkArgCount(Call: TheCall, DesiredArgCount: 2) || |
| 3365 | CheckResourceHandle(S: &SemaRef, TheCall, ArgIndex: 0) || |
| 3366 | CheckArgTypeMatches(S: &SemaRef, Arg: TheCall->getArg(Arg: 1), |
| 3367 | ExpectedType: SemaRef.getASTContext().UnsignedIntTy)) |
| 3368 | return true; |
| 3369 | |
| 3370 | auto *ResourceTy = |
| 3371 | TheCall->getArg(Arg: 0)->getType()->castAs<HLSLAttributedResourceType>(); |
| 3372 | QualType ContainedTy = ResourceTy->getContainedType(); |
| 3373 | auto ReturnType = |
| 3374 | SemaRef.Context.getAddrSpaceQualType(T: ContainedTy, AddressSpace: LangAS::hlsl_device); |
| 3375 | ReturnType = SemaRef.Context.getPointerType(T: ReturnType); |
| 3376 | TheCall->setType(ReturnType); |
| 3377 | TheCall->setValueKind(VK_LValue); |
| 3378 | |
| 3379 | break; |
| 3380 | } |
| 3381 | case Builtin::BI__builtin_hlsl_resource_load_with_status: { |
| 3382 | if (SemaRef.checkArgCount(Call: TheCall, DesiredArgCount: 3) || |
| 3383 | CheckResourceHandle(S: &SemaRef, TheCall, ArgIndex: 0) || |
| 3384 | CheckArgTypeMatches(S: &SemaRef, Arg: TheCall->getArg(Arg: 1), |
| 3385 | ExpectedType: SemaRef.getASTContext().UnsignedIntTy) || |
| 3386 | CheckArgTypeMatches(S: &SemaRef, Arg: TheCall->getArg(Arg: 2), |
| 3387 | ExpectedType: SemaRef.getASTContext().UnsignedIntTy) || |
| 3388 | CheckModifiableLValue(S: &SemaRef, TheCall, ArgIndex: 2)) |
| 3389 | return true; |
| 3390 | |
| 3391 | auto *ResourceTy = |
| 3392 | TheCall->getArg(Arg: 0)->getType()->castAs<HLSLAttributedResourceType>(); |
| 3393 | QualType ReturnType = ResourceTy->getContainedType(); |
| 3394 | TheCall->setType(ReturnType); |
| 3395 | |
| 3396 | break; |
| 3397 | } |
| 3398 | case Builtin::BI__builtin_hlsl_resource_sample: { |
| 3399 | if (SemaRef.checkArgCountRange(Call: TheCall, MinArgCount: 3, MaxArgCount: 5)) |
| 3400 | return true; |
| 3401 | |
| 3402 | if (CheckResourceHandle(S: &SemaRef, TheCall, ArgIndex: 0, |
| 3403 | Check: [](const HLSLAttributedResourceType *ResType) { |
| 3404 | return ResType->getAttrs().ResourceDimension == |
| 3405 | llvm::dxil::ResourceDimension::Unknown; |
| 3406 | })) |
| 3407 | return true; |
| 3408 | |
| 3409 | if (CheckResourceHandle(S: &SemaRef, TheCall, ArgIndex: 1, |
| 3410 | Check: [](const HLSLAttributedResourceType *ResType) { |
| 3411 | return ResType->getAttrs().ResourceClass != |
| 3412 | llvm::hlsl::ResourceClass::Sampler; |
| 3413 | })) |
| 3414 | return true; |
| 3415 | |
| 3416 | auto *ResourceTy = |
| 3417 | TheCall->getArg(Arg: 0)->getType()->castAs<HLSLAttributedResourceType>(); |
| 3418 | |
| 3419 | unsigned ExpectedDim = |
| 3420 | getResourceDimensions(Dim: ResourceTy->getAttrs().ResourceDimension); |
| 3421 | if (CheckVectorElementCount(S: &SemaRef, PassedType: TheCall->getArg(Arg: 2)->getType(), |
| 3422 | BaseType: SemaRef.Context.FloatTy, ExpectedCount: ExpectedDim, |
| 3423 | Loc: TheCall->getArg(Arg: 2)->getBeginLoc())) |
| 3424 | return true; |
| 3425 | |
| 3426 | if (TheCall->getNumArgs() > 3) { |
| 3427 | if (CheckVectorElementCount(S: &SemaRef, PassedType: TheCall->getArg(Arg: 3)->getType(), |
| 3428 | BaseType: SemaRef.Context.IntTy, ExpectedCount: ExpectedDim, |
| 3429 | Loc: TheCall->getArg(Arg: 3)->getBeginLoc())) |
| 3430 | return true; |
| 3431 | } |
| 3432 | |
| 3433 | if (TheCall->getNumArgs() > 4) { |
| 3434 | QualType ClampTy = TheCall->getArg(Arg: 4)->getType(); |
| 3435 | if (!ClampTy->isFloatingType() || ClampTy->isVectorType()) { |
| 3436 | SemaRef.Diag(Loc: TheCall->getArg(Arg: 4)->getBeginLoc(), |
| 3437 | DiagID: diag::err_typecheck_convert_incompatible) |
| 3438 | << ClampTy << SemaRef.Context.FloatTy << 1 << 0 << 0; |
| 3439 | return true; |
| 3440 | } |
| 3441 | } |
| 3442 | |
| 3443 | assert(ResourceTy->hasContainedType() && |
| 3444 | "Expecting a contained type for resource with a dimension " |
| 3445 | "attribute." ); |
| 3446 | QualType ReturnType = ResourceTy->getContainedType(); |
| 3447 | TheCall->setType(ReturnType); |
| 3448 | |
| 3449 | break; |
| 3450 | } |
| 3451 | case Builtin::BI__builtin_hlsl_resource_uninitializedhandle: { |
| 3452 | assert(TheCall->getNumArgs() == 1 && "expected 1 arg" ); |
| 3453 | // Update return type to be the attributed resource type from arg0. |
| 3454 | QualType ResourceTy = TheCall->getArg(Arg: 0)->getType(); |
| 3455 | TheCall->setType(ResourceTy); |
| 3456 | break; |
| 3457 | } |
| 3458 | case Builtin::BI__builtin_hlsl_resource_handlefrombinding: { |
| 3459 | assert(TheCall->getNumArgs() == 6 && "expected 6 args" ); |
| 3460 | // Update return type to be the attributed resource type from arg0. |
| 3461 | QualType ResourceTy = TheCall->getArg(Arg: 0)->getType(); |
| 3462 | TheCall->setType(ResourceTy); |
| 3463 | break; |
| 3464 | } |
| 3465 | case Builtin::BI__builtin_hlsl_resource_handlefromimplicitbinding: { |
| 3466 | assert(TheCall->getNumArgs() == 6 && "expected 6 args" ); |
| 3467 | // Update return type to be the attributed resource type from arg0. |
| 3468 | QualType ResourceTy = TheCall->getArg(Arg: 0)->getType(); |
| 3469 | TheCall->setType(ResourceTy); |
| 3470 | break; |
| 3471 | } |
| 3472 | case Builtin::BI__builtin_hlsl_resource_counterhandlefromimplicitbinding: { |
| 3473 | assert(TheCall->getNumArgs() == 3 && "expected 3 args" ); |
| 3474 | ASTContext &AST = SemaRef.getASTContext(); |
| 3475 | QualType MainHandleTy = TheCall->getArg(Arg: 0)->getType(); |
| 3476 | auto *MainResType = MainHandleTy->getAs<HLSLAttributedResourceType>(); |
| 3477 | auto MainAttrs = MainResType->getAttrs(); |
| 3478 | assert(!MainAttrs.IsCounter && "cannot create a counter from a counter" ); |
| 3479 | MainAttrs.IsCounter = true; |
| 3480 | QualType CounterHandleTy = AST.getHLSLAttributedResourceType( |
| 3481 | Wrapped: MainResType->getWrappedType(), Contained: MainResType->getContainedType(), |
| 3482 | Attrs: MainAttrs); |
| 3483 | // Update return type to be the attributed resource type from arg0 |
| 3484 | // with added IsCounter flag. |
| 3485 | TheCall->setType(CounterHandleTy); |
| 3486 | break; |
| 3487 | } |
| 3488 | case Builtin::BI__builtin_hlsl_and: |
| 3489 | case Builtin::BI__builtin_hlsl_or: { |
| 3490 | if (SemaRef.checkArgCount(Call: TheCall, DesiredArgCount: 2)) |
| 3491 | return true; |
| 3492 | if (CheckScalarOrVectorOrMatrix(S: &SemaRef, TheCall, Scalar: getASTContext().BoolTy, |
| 3493 | ArgIndex: 0)) |
| 3494 | return true; |
| 3495 | if (CheckAllArgsHaveSameType(S: &SemaRef, TheCall)) |
| 3496 | return true; |
| 3497 | |
| 3498 | ExprResult A = TheCall->getArg(Arg: 0); |
| 3499 | QualType ArgTyA = A.get()->getType(); |
| 3500 | // return type is the same as the input type |
| 3501 | TheCall->setType(ArgTyA); |
| 3502 | break; |
| 3503 | } |
| 3504 | case Builtin::BI__builtin_hlsl_all: |
| 3505 | case Builtin::BI__builtin_hlsl_any: { |
| 3506 | if (SemaRef.checkArgCount(Call: TheCall, DesiredArgCount: 1)) |
| 3507 | return true; |
| 3508 | if (CheckAnyScalarOrVector(S: &SemaRef, TheCall, ArgIndex: 0)) |
| 3509 | return true; |
| 3510 | break; |
| 3511 | } |
| 3512 | case Builtin::BI__builtin_hlsl_asdouble: { |
| 3513 | if (SemaRef.checkArgCount(Call: TheCall, DesiredArgCount: 2)) |
| 3514 | return true; |
| 3515 | if (CheckScalarOrVector( |
| 3516 | S: &SemaRef, TheCall, |
| 3517 | /*only check for uint*/ Scalar: SemaRef.Context.UnsignedIntTy, |
| 3518 | /* arg index */ ArgIndex: 0)) |
| 3519 | return true; |
| 3520 | if (CheckScalarOrVector( |
| 3521 | S: &SemaRef, TheCall, |
| 3522 | /*only check for uint*/ Scalar: SemaRef.Context.UnsignedIntTy, |
| 3523 | /* arg index */ ArgIndex: 1)) |
| 3524 | return true; |
| 3525 | if (CheckAllArgsHaveSameType(S: &SemaRef, TheCall)) |
| 3526 | return true; |
| 3527 | |
| 3528 | SetElementTypeAsReturnType(S: &SemaRef, TheCall, ReturnType: getASTContext().DoubleTy); |
| 3529 | break; |
| 3530 | } |
| 3531 | case Builtin::BI__builtin_hlsl_elementwise_clamp: { |
| 3532 | if (SemaRef.BuiltinElementwiseTernaryMath( |
| 3533 | TheCall, /*ArgTyRestr=*/ |
| 3534 | Sema::EltwiseBuiltinArgTyRestriction::None)) |
| 3535 | return true; |
| 3536 | break; |
| 3537 | } |
| 3538 | case Builtin::BI__builtin_hlsl_dot: { |
| 3539 | // arg count is checked by BuiltinVectorToScalarMath |
| 3540 | if (SemaRef.BuiltinVectorToScalarMath(TheCall)) |
| 3541 | return true; |
| 3542 | if (CheckAllArgTypesAreCorrect(S: &SemaRef, TheCall, Check: CheckNoDoubleVectors)) |
| 3543 | return true; |
| 3544 | break; |
| 3545 | } |
| 3546 | case Builtin::BI__builtin_hlsl_elementwise_firstbithigh: |
| 3547 | case Builtin::BI__builtin_hlsl_elementwise_firstbitlow: { |
| 3548 | if (SemaRef.PrepareBuiltinElementwiseMathOneArgCall(TheCall)) |
| 3549 | return true; |
| 3550 | |
| 3551 | const Expr *Arg = TheCall->getArg(Arg: 0); |
| 3552 | QualType ArgTy = Arg->getType(); |
| 3553 | QualType EltTy = ArgTy; |
| 3554 | |
| 3555 | QualType ResTy = SemaRef.Context.UnsignedIntTy; |
| 3556 | |
| 3557 | if (auto *VecTy = EltTy->getAs<VectorType>()) { |
| 3558 | EltTy = VecTy->getElementType(); |
| 3559 | ResTy = SemaRef.Context.getExtVectorType(VectorType: ResTy, NumElts: VecTy->getNumElements()); |
| 3560 | } |
| 3561 | |
| 3562 | if (!EltTy->isIntegerType()) { |
| 3563 | Diag(Loc: Arg->getBeginLoc(), DiagID: diag::err_builtin_invalid_arg_type) |
| 3564 | << 1 << /* scalar or vector of */ 5 << /* integer ty */ 1 |
| 3565 | << /* no fp */ 0 << ArgTy; |
| 3566 | return true; |
| 3567 | } |
| 3568 | |
| 3569 | TheCall->setType(ResTy); |
| 3570 | break; |
| 3571 | } |
| 3572 | case Builtin::BI__builtin_hlsl_select: { |
| 3573 | if (SemaRef.checkArgCount(Call: TheCall, DesiredArgCount: 3)) |
| 3574 | return true; |
| 3575 | if (CheckScalarOrVector(S: &SemaRef, TheCall, Scalar: getASTContext().BoolTy, ArgIndex: 0)) |
| 3576 | return true; |
| 3577 | QualType ArgTy = TheCall->getArg(Arg: 0)->getType(); |
| 3578 | if (ArgTy->isBooleanType() && CheckBoolSelect(S: &SemaRef, TheCall)) |
| 3579 | return true; |
| 3580 | auto *VTy = ArgTy->getAs<VectorType>(); |
| 3581 | if (VTy && VTy->getElementType()->isBooleanType() && |
| 3582 | CheckVectorSelect(S: &SemaRef, TheCall)) |
| 3583 | return true; |
| 3584 | break; |
| 3585 | } |
| 3586 | case Builtin::BI__builtin_hlsl_elementwise_saturate: |
| 3587 | case Builtin::BI__builtin_hlsl_elementwise_rcp: { |
| 3588 | if (SemaRef.checkArgCount(Call: TheCall, DesiredArgCount: 1)) |
| 3589 | return true; |
| 3590 | if (!TheCall->getArg(Arg: 0) |
| 3591 | ->getType() |
| 3592 | ->hasFloatingRepresentation()) // half or float or double |
| 3593 | return SemaRef.Diag(Loc: TheCall->getArg(Arg: 0)->getBeginLoc(), |
| 3594 | DiagID: diag::err_builtin_invalid_arg_type) |
| 3595 | << /* ordinal */ 1 << /* scalar or vector */ 5 << /* no int */ 0 |
| 3596 | << /* fp */ 1 << TheCall->getArg(Arg: 0)->getType(); |
| 3597 | if (SemaRef.PrepareBuiltinElementwiseMathOneArgCall(TheCall)) |
| 3598 | return true; |
| 3599 | break; |
| 3600 | } |
| 3601 | case Builtin::BI__builtin_hlsl_elementwise_degrees: |
| 3602 | case Builtin::BI__builtin_hlsl_elementwise_radians: |
| 3603 | case Builtin::BI__builtin_hlsl_elementwise_rsqrt: |
| 3604 | case Builtin::BI__builtin_hlsl_elementwise_frac: |
| 3605 | case Builtin::BI__builtin_hlsl_elementwise_ddx_coarse: |
| 3606 | case Builtin::BI__builtin_hlsl_elementwise_ddy_coarse: |
| 3607 | case Builtin::BI__builtin_hlsl_elementwise_ddx_fine: |
| 3608 | case Builtin::BI__builtin_hlsl_elementwise_ddy_fine: { |
| 3609 | if (SemaRef.checkArgCount(Call: TheCall, DesiredArgCount: 1)) |
| 3610 | return true; |
| 3611 | if (CheckAllArgTypesAreCorrect(S: &SemaRef, TheCall, |
| 3612 | Check: CheckFloatOrHalfRepresentation)) |
| 3613 | return true; |
| 3614 | if (SemaRef.PrepareBuiltinElementwiseMathOneArgCall(TheCall)) |
| 3615 | return true; |
| 3616 | break; |
| 3617 | } |
| 3618 | case Builtin::BI__builtin_hlsl_elementwise_isinf: |
| 3619 | case Builtin::BI__builtin_hlsl_elementwise_isnan: { |
| 3620 | if (SemaRef.checkArgCount(Call: TheCall, DesiredArgCount: 1)) |
| 3621 | return true; |
| 3622 | if (CheckAllArgTypesAreCorrect(S: &SemaRef, TheCall, |
| 3623 | Check: CheckFloatOrHalfRepresentation)) |
| 3624 | return true; |
| 3625 | if (SemaRef.PrepareBuiltinElementwiseMathOneArgCall(TheCall)) |
| 3626 | return true; |
| 3627 | SetElementTypeAsReturnType(S: &SemaRef, TheCall, ReturnType: getASTContext().BoolTy); |
| 3628 | break; |
| 3629 | } |
| 3630 | case Builtin::BI__builtin_hlsl_lerp: { |
| 3631 | if (SemaRef.checkArgCount(Call: TheCall, DesiredArgCount: 3)) |
| 3632 | return true; |
| 3633 | if (CheckAllArgTypesAreCorrect(S: &SemaRef, TheCall, |
| 3634 | Check: CheckFloatOrHalfRepresentation)) |
| 3635 | return true; |
| 3636 | if (CheckAllArgsHaveSameType(S: &SemaRef, TheCall)) |
| 3637 | return true; |
| 3638 | if (SemaRef.BuiltinElementwiseTernaryMath(TheCall)) |
| 3639 | return true; |
| 3640 | break; |
| 3641 | } |
| 3642 | case Builtin::BI__builtin_hlsl_mad: { |
| 3643 | if (SemaRef.BuiltinElementwiseTernaryMath( |
| 3644 | TheCall, /*ArgTyRestr=*/ |
| 3645 | Sema::EltwiseBuiltinArgTyRestriction::None)) |
| 3646 | return true; |
| 3647 | break; |
| 3648 | } |
| 3649 | case Builtin::BI__builtin_hlsl_normalize: { |
| 3650 | if (SemaRef.checkArgCount(Call: TheCall, DesiredArgCount: 1)) |
| 3651 | return true; |
| 3652 | if (CheckAllArgTypesAreCorrect(S: &SemaRef, TheCall, |
| 3653 | Check: CheckFloatOrHalfRepresentation)) |
| 3654 | return true; |
| 3655 | ExprResult A = TheCall->getArg(Arg: 0); |
| 3656 | QualType ArgTyA = A.get()->getType(); |
| 3657 | // return type is the same as the input type |
| 3658 | TheCall->setType(ArgTyA); |
| 3659 | break; |
| 3660 | } |
| 3661 | case Builtin::BI__builtin_hlsl_elementwise_sign: { |
| 3662 | if (SemaRef.PrepareBuiltinElementwiseMathOneArgCall(TheCall)) |
| 3663 | return true; |
| 3664 | if (CheckAllArgTypesAreCorrect(S: &SemaRef, TheCall, |
| 3665 | Check: CheckFloatingOrIntRepresentation)) |
| 3666 | return true; |
| 3667 | SetElementTypeAsReturnType(S: &SemaRef, TheCall, ReturnType: getASTContext().IntTy); |
| 3668 | break; |
| 3669 | } |
| 3670 | case Builtin::BI__builtin_hlsl_step: { |
| 3671 | if (SemaRef.checkArgCount(Call: TheCall, DesiredArgCount: 2)) |
| 3672 | return true; |
| 3673 | if (CheckAllArgTypesAreCorrect(S: &SemaRef, TheCall, |
| 3674 | Check: CheckFloatOrHalfRepresentation)) |
| 3675 | return true; |
| 3676 | |
| 3677 | ExprResult A = TheCall->getArg(Arg: 0); |
| 3678 | QualType ArgTyA = A.get()->getType(); |
| 3679 | // return type is the same as the input type |
| 3680 | TheCall->setType(ArgTyA); |
| 3681 | break; |
| 3682 | } |
| 3683 | case Builtin::BI__builtin_hlsl_wave_active_max: |
| 3684 | case Builtin::BI__builtin_hlsl_wave_active_min: |
| 3685 | case Builtin::BI__builtin_hlsl_wave_active_sum: { |
| 3686 | if (SemaRef.checkArgCount(Call: TheCall, DesiredArgCount: 1)) |
| 3687 | return true; |
| 3688 | |
| 3689 | // Ensure input expr type is a scalar/vector and the same as the return type |
| 3690 | if (CheckAnyScalarOrVector(S: &SemaRef, TheCall, ArgIndex: 0)) |
| 3691 | return true; |
| 3692 | if (CheckWaveActive(S: &SemaRef, TheCall)) |
| 3693 | return true; |
| 3694 | ExprResult Expr = TheCall->getArg(Arg: 0); |
| 3695 | QualType ArgTyExpr = Expr.get()->getType(); |
| 3696 | TheCall->setType(ArgTyExpr); |
| 3697 | break; |
| 3698 | } |
| 3699 | // Note these are llvm builtins that we want to catch invalid intrinsic |
| 3700 | // generation. Normal handling of these builtins will occur elsewhere. |
| 3701 | case Builtin::BI__builtin_elementwise_bitreverse: { |
| 3702 | // does not include a check for number of arguments |
| 3703 | // because that is done previously |
| 3704 | if (CheckAllArgTypesAreCorrect(S: &SemaRef, TheCall, |
| 3705 | Check: CheckUnsignedIntRepresentation)) |
| 3706 | return true; |
| 3707 | break; |
| 3708 | } |
| 3709 | case Builtin::BI__builtin_hlsl_wave_prefix_count_bits: { |
| 3710 | if (SemaRef.checkArgCount(Call: TheCall, DesiredArgCount: 1)) |
| 3711 | return true; |
| 3712 | |
| 3713 | QualType ArgType = TheCall->getArg(Arg: 0)->getType(); |
| 3714 | |
| 3715 | if (!(ArgType->isScalarType())) { |
| 3716 | SemaRef.Diag(Loc: TheCall->getArg(Arg: 0)->getBeginLoc(), |
| 3717 | DiagID: diag::err_typecheck_expect_any_scalar_or_vector) |
| 3718 | << ArgType << 0; |
| 3719 | return true; |
| 3720 | } |
| 3721 | |
| 3722 | if (!(ArgType->isBooleanType())) { |
| 3723 | SemaRef.Diag(Loc: TheCall->getArg(Arg: 0)->getBeginLoc(), |
| 3724 | DiagID: diag::err_typecheck_expect_any_scalar_or_vector) |
| 3725 | << ArgType << 0; |
| 3726 | return true; |
| 3727 | } |
| 3728 | |
| 3729 | break; |
| 3730 | } |
| 3731 | case Builtin::BI__builtin_hlsl_wave_read_lane_at: { |
| 3732 | if (SemaRef.checkArgCount(Call: TheCall, DesiredArgCount: 2)) |
| 3733 | return true; |
| 3734 | |
| 3735 | // Ensure index parameter type can be interpreted as a uint |
| 3736 | ExprResult Index = TheCall->getArg(Arg: 1); |
| 3737 | QualType ArgTyIndex = Index.get()->getType(); |
| 3738 | if (!ArgTyIndex->isIntegerType()) { |
| 3739 | SemaRef.Diag(Loc: TheCall->getArg(Arg: 1)->getBeginLoc(), |
| 3740 | DiagID: diag::err_typecheck_convert_incompatible) |
| 3741 | << ArgTyIndex << SemaRef.Context.UnsignedIntTy << 1 << 0 << 0; |
| 3742 | return true; |
| 3743 | } |
| 3744 | |
| 3745 | // Ensure input expr type is a scalar/vector and the same as the return type |
| 3746 | if (CheckAnyScalarOrVector(S: &SemaRef, TheCall, ArgIndex: 0)) |
| 3747 | return true; |
| 3748 | |
| 3749 | ExprResult Expr = TheCall->getArg(Arg: 0); |
| 3750 | QualType ArgTyExpr = Expr.get()->getType(); |
| 3751 | TheCall->setType(ArgTyExpr); |
| 3752 | break; |
| 3753 | } |
| 3754 | case Builtin::BI__builtin_hlsl_wave_get_lane_index: { |
| 3755 | if (SemaRef.checkArgCount(Call: TheCall, DesiredArgCount: 0)) |
| 3756 | return true; |
| 3757 | break; |
| 3758 | } |
| 3759 | case Builtin::BI__builtin_hlsl_wave_prefix_sum: { |
| 3760 | if (SemaRef.checkArgCount(Call: TheCall, DesiredArgCount: 1)) |
| 3761 | return true; |
| 3762 | |
| 3763 | // Ensure input expr type is a scalar/vector and the same as the return type |
| 3764 | if (CheckAnyScalarOrVector(S: &SemaRef, TheCall, ArgIndex: 0)) |
| 3765 | return true; |
| 3766 | if (CheckWavePrefix(S: &SemaRef, TheCall)) |
| 3767 | return true; |
| 3768 | ExprResult Expr = TheCall->getArg(Arg: 0); |
| 3769 | QualType ArgTyExpr = Expr.get()->getType(); |
| 3770 | TheCall->setType(ArgTyExpr); |
| 3771 | break; |
| 3772 | } |
| 3773 | case Builtin::BI__builtin_hlsl_elementwise_splitdouble: { |
| 3774 | if (SemaRef.checkArgCount(Call: TheCall, DesiredArgCount: 3)) |
| 3775 | return true; |
| 3776 | |
| 3777 | if (CheckScalarOrVector(S: &SemaRef, TheCall, Scalar: SemaRef.Context.DoubleTy, ArgIndex: 0) || |
| 3778 | CheckScalarOrVector(S: &SemaRef, TheCall, Scalar: SemaRef.Context.UnsignedIntTy, |
| 3779 | ArgIndex: 1) || |
| 3780 | CheckScalarOrVector(S: &SemaRef, TheCall, Scalar: SemaRef.Context.UnsignedIntTy, |
| 3781 | ArgIndex: 2)) |
| 3782 | return true; |
| 3783 | |
| 3784 | if (CheckModifiableLValue(S: &SemaRef, TheCall, ArgIndex: 1) || |
| 3785 | CheckModifiableLValue(S: &SemaRef, TheCall, ArgIndex: 2)) |
| 3786 | return true; |
| 3787 | break; |
| 3788 | } |
| 3789 | case Builtin::BI__builtin_hlsl_elementwise_clip: { |
| 3790 | if (SemaRef.checkArgCount(Call: TheCall, DesiredArgCount: 1)) |
| 3791 | return true; |
| 3792 | |
| 3793 | if (CheckScalarOrVector(S: &SemaRef, TheCall, Scalar: SemaRef.Context.FloatTy, ArgIndex: 0)) |
| 3794 | return true; |
| 3795 | break; |
| 3796 | } |
| 3797 | case Builtin::BI__builtin_elementwise_acos: |
| 3798 | case Builtin::BI__builtin_elementwise_asin: |
| 3799 | case Builtin::BI__builtin_elementwise_atan: |
| 3800 | case Builtin::BI__builtin_elementwise_atan2: |
| 3801 | case Builtin::BI__builtin_elementwise_ceil: |
| 3802 | case Builtin::BI__builtin_elementwise_cos: |
| 3803 | case Builtin::BI__builtin_elementwise_cosh: |
| 3804 | case Builtin::BI__builtin_elementwise_exp: |
| 3805 | case Builtin::BI__builtin_elementwise_exp2: |
| 3806 | case Builtin::BI__builtin_elementwise_exp10: |
| 3807 | case Builtin::BI__builtin_elementwise_floor: |
| 3808 | case Builtin::BI__builtin_elementwise_fmod: |
| 3809 | case Builtin::BI__builtin_elementwise_log: |
| 3810 | case Builtin::BI__builtin_elementwise_log2: |
| 3811 | case Builtin::BI__builtin_elementwise_log10: |
| 3812 | case Builtin::BI__builtin_elementwise_pow: |
| 3813 | case Builtin::BI__builtin_elementwise_roundeven: |
| 3814 | case Builtin::BI__builtin_elementwise_sin: |
| 3815 | case Builtin::BI__builtin_elementwise_sinh: |
| 3816 | case Builtin::BI__builtin_elementwise_sqrt: |
| 3817 | case Builtin::BI__builtin_elementwise_tan: |
| 3818 | case Builtin::BI__builtin_elementwise_tanh: |
| 3819 | case Builtin::BI__builtin_elementwise_trunc: { |
| 3820 | if (CheckAllArgTypesAreCorrect(S: &SemaRef, TheCall, |
| 3821 | Check: CheckFloatOrHalfRepresentation)) |
| 3822 | return true; |
| 3823 | break; |
| 3824 | } |
| 3825 | case Builtin::BI__builtin_hlsl_buffer_update_counter: { |
| 3826 | assert(TheCall->getNumArgs() == 2 && "expected 2 args" ); |
| 3827 | auto checkResTy = [](const HLSLAttributedResourceType *ResTy) -> bool { |
| 3828 | return !(ResTy->getAttrs().ResourceClass == ResourceClass::UAV && |
| 3829 | ResTy->getAttrs().RawBuffer && ResTy->hasContainedType()); |
| 3830 | }; |
| 3831 | if (CheckResourceHandle(S: &SemaRef, TheCall, ArgIndex: 0, Check: checkResTy)) |
| 3832 | return true; |
| 3833 | Expr *OffsetExpr = TheCall->getArg(Arg: 1); |
| 3834 | std::optional<llvm::APSInt> Offset = |
| 3835 | OffsetExpr->getIntegerConstantExpr(Ctx: SemaRef.getASTContext()); |
| 3836 | if (!Offset.has_value() || std::abs(i: Offset->getExtValue()) != 1) { |
| 3837 | SemaRef.Diag(Loc: TheCall->getArg(Arg: 1)->getBeginLoc(), |
| 3838 | DiagID: diag::err_hlsl_expect_arg_const_int_one_or_neg_one) |
| 3839 | << 1; |
| 3840 | return true; |
| 3841 | } |
| 3842 | break; |
| 3843 | } |
| 3844 | case Builtin::BI__builtin_hlsl_elementwise_f16tof32: { |
| 3845 | if (SemaRef.checkArgCount(Call: TheCall, DesiredArgCount: 1)) |
| 3846 | return true; |
| 3847 | if (CheckAllArgTypesAreCorrect(S: &SemaRef, TheCall, |
| 3848 | Check: CheckUnsignedIntRepresentation)) |
| 3849 | return true; |
| 3850 | // ensure arg integers are 32 bits |
| 3851 | if (CheckExpectedBitWidth(S: &SemaRef, TheCall, ArgOrdinal: 0, Width: 32)) |
| 3852 | return true; |
| 3853 | // check it wasn't a bool type |
| 3854 | QualType ArgTy = TheCall->getArg(Arg: 0)->getType(); |
| 3855 | if (auto *VTy = ArgTy->getAs<VectorType>()) |
| 3856 | ArgTy = VTy->getElementType(); |
| 3857 | if (ArgTy->isBooleanType()) { |
| 3858 | SemaRef.Diag(Loc: TheCall->getArg(Arg: 0)->getBeginLoc(), |
| 3859 | DiagID: diag::err_builtin_invalid_arg_type) |
| 3860 | << 1 << /* scalar or vector of */ 5 << /* unsigned int */ 3 |
| 3861 | << /* no fp */ 0 << TheCall->getArg(Arg: 0)->getType(); |
| 3862 | return true; |
| 3863 | } |
| 3864 | |
| 3865 | SetElementTypeAsReturnType(S: &SemaRef, TheCall, ReturnType: getASTContext().FloatTy); |
| 3866 | break; |
| 3867 | } |
| 3868 | case Builtin::BI__builtin_hlsl_elementwise_f32tof16: { |
| 3869 | if (SemaRef.checkArgCount(Call: TheCall, DesiredArgCount: 1)) |
| 3870 | return true; |
| 3871 | if (CheckAllArgTypesAreCorrect(S: &SemaRef, TheCall, Check: CheckFloatRepresentation)) |
| 3872 | return true; |
| 3873 | SetElementTypeAsReturnType(S: &SemaRef, TheCall, |
| 3874 | ReturnType: getASTContext().UnsignedIntTy); |
| 3875 | break; |
| 3876 | } |
| 3877 | } |
| 3878 | return false; |
| 3879 | } |
| 3880 | |
| 3881 | static void BuildFlattenedTypeList(QualType BaseTy, |
| 3882 | llvm::SmallVectorImpl<QualType> &List) { |
| 3883 | llvm::SmallVector<QualType, 16> WorkList; |
| 3884 | WorkList.push_back(Elt: BaseTy); |
| 3885 | while (!WorkList.empty()) { |
| 3886 | QualType T = WorkList.pop_back_val(); |
| 3887 | T = T.getCanonicalType().getUnqualifiedType(); |
| 3888 | if (const auto *AT = dyn_cast<ConstantArrayType>(Val&: T)) { |
| 3889 | llvm::SmallVector<QualType, 16> ElementFields; |
| 3890 | // Generally I've avoided recursion in this algorithm, but arrays of |
| 3891 | // structs could be time-consuming to flatten and churn through on the |
| 3892 | // work list. Hopefully nesting arrays of structs containing arrays |
| 3893 | // of structs too many levels deep is unlikely. |
| 3894 | BuildFlattenedTypeList(BaseTy: AT->getElementType(), List&: ElementFields); |
| 3895 | // Repeat the element's field list n times. |
| 3896 | for (uint64_t Ct = 0; Ct < AT->getZExtSize(); ++Ct) |
| 3897 | llvm::append_range(C&: List, R&: ElementFields); |
| 3898 | continue; |
| 3899 | } |
| 3900 | // Vectors can only have element types that are builtin types, so this can |
| 3901 | // add directly to the list instead of to the WorkList. |
| 3902 | if (const auto *VT = dyn_cast<VectorType>(Val&: T)) { |
| 3903 | List.insert(I: List.end(), NumToInsert: VT->getNumElements(), Elt: VT->getElementType()); |
| 3904 | continue; |
| 3905 | } |
| 3906 | if (const auto *MT = dyn_cast<ConstantMatrixType>(Val&: T)) { |
| 3907 | List.insert(I: List.end(), NumToInsert: MT->getNumElementsFlattened(), |
| 3908 | Elt: MT->getElementType()); |
| 3909 | continue; |
| 3910 | } |
| 3911 | if (const auto *RD = T->getAsCXXRecordDecl()) { |
| 3912 | if (RD->isStandardLayout()) |
| 3913 | RD = RD->getStandardLayoutBaseWithFields(); |
| 3914 | |
| 3915 | // For types that we shouldn't decompose (unions and non-aggregates), just |
| 3916 | // add the type itself to the list. |
| 3917 | if (RD->isUnion() || !RD->isAggregate()) { |
| 3918 | List.push_back(Elt: T); |
| 3919 | continue; |
| 3920 | } |
| 3921 | |
| 3922 | llvm::SmallVector<QualType, 16> FieldTypes; |
| 3923 | for (const auto *FD : RD->fields()) |
| 3924 | if (!FD->isUnnamedBitField()) |
| 3925 | FieldTypes.push_back(Elt: FD->getType()); |
| 3926 | // Reverse the newly added sub-range. |
| 3927 | std::reverse(first: FieldTypes.begin(), last: FieldTypes.end()); |
| 3928 | llvm::append_range(C&: WorkList, R&: FieldTypes); |
| 3929 | |
| 3930 | // If this wasn't a standard layout type we may also have some base |
| 3931 | // classes to deal with. |
| 3932 | if (!RD->isStandardLayout()) { |
| 3933 | FieldTypes.clear(); |
| 3934 | for (const auto &Base : RD->bases()) |
| 3935 | FieldTypes.push_back(Elt: Base.getType()); |
| 3936 | std::reverse(first: FieldTypes.begin(), last: FieldTypes.end()); |
| 3937 | llvm::append_range(C&: WorkList, R&: FieldTypes); |
| 3938 | } |
| 3939 | continue; |
| 3940 | } |
| 3941 | List.push_back(Elt: T); |
| 3942 | } |
| 3943 | } |
| 3944 | |
| 3945 | bool SemaHLSL::IsTypedResourceElementCompatible(clang::QualType QT) { |
| 3946 | // null and array types are not allowed. |
| 3947 | if (QT.isNull() || QT->isArrayType()) |
| 3948 | return false; |
| 3949 | |
| 3950 | // UDT types are not allowed |
| 3951 | if (QT->isRecordType()) |
| 3952 | return false; |
| 3953 | |
| 3954 | if (QT->isBooleanType() || QT->isEnumeralType()) |
| 3955 | return false; |
| 3956 | |
| 3957 | // the only other valid builtin types are scalars or vectors |
| 3958 | if (QT->isArithmeticType()) { |
| 3959 | if (SemaRef.Context.getTypeSize(T: QT) / 8 > 16) |
| 3960 | return false; |
| 3961 | return true; |
| 3962 | } |
| 3963 | |
| 3964 | if (const VectorType *VT = QT->getAs<VectorType>()) { |
| 3965 | int ArraySize = VT->getNumElements(); |
| 3966 | |
| 3967 | if (ArraySize > 4) |
| 3968 | return false; |
| 3969 | |
| 3970 | QualType ElTy = VT->getElementType(); |
| 3971 | if (ElTy->isBooleanType()) |
| 3972 | return false; |
| 3973 | |
| 3974 | if (SemaRef.Context.getTypeSize(T: QT) / 8 > 16) |
| 3975 | return false; |
| 3976 | return true; |
| 3977 | } |
| 3978 | |
| 3979 | return false; |
| 3980 | } |
| 3981 | |
| 3982 | bool SemaHLSL::IsScalarizedLayoutCompatible(QualType T1, QualType T2) const { |
| 3983 | if (T1.isNull() || T2.isNull()) |
| 3984 | return false; |
| 3985 | |
| 3986 | T1 = T1.getCanonicalType().getUnqualifiedType(); |
| 3987 | T2 = T2.getCanonicalType().getUnqualifiedType(); |
| 3988 | |
| 3989 | // If both types are the same canonical type, they're obviously compatible. |
| 3990 | if (SemaRef.getASTContext().hasSameType(T1, T2)) |
| 3991 | return true; |
| 3992 | |
| 3993 | llvm::SmallVector<QualType, 16> T1Types; |
| 3994 | BuildFlattenedTypeList(BaseTy: T1, List&: T1Types); |
| 3995 | llvm::SmallVector<QualType, 16> T2Types; |
| 3996 | BuildFlattenedTypeList(BaseTy: T2, List&: T2Types); |
| 3997 | |
| 3998 | // Check the flattened type list |
| 3999 | return llvm::equal(LRange&: T1Types, RRange&: T2Types, |
| 4000 | P: [this](QualType LHS, QualType RHS) -> bool { |
| 4001 | return SemaRef.IsLayoutCompatible(T1: LHS, T2: RHS); |
| 4002 | }); |
| 4003 | } |
| 4004 | |
| 4005 | bool SemaHLSL::CheckCompatibleParameterABI(FunctionDecl *New, |
| 4006 | FunctionDecl *Old) { |
| 4007 | if (New->getNumParams() != Old->getNumParams()) |
| 4008 | return true; |
| 4009 | |
| 4010 | bool HadError = false; |
| 4011 | |
| 4012 | for (unsigned i = 0, e = New->getNumParams(); i != e; ++i) { |
| 4013 | ParmVarDecl *NewParam = New->getParamDecl(i); |
| 4014 | ParmVarDecl *OldParam = Old->getParamDecl(i); |
| 4015 | |
| 4016 | // HLSL parameter declarations for inout and out must match between |
| 4017 | // declarations. In HLSL inout and out are ambiguous at the call site, |
| 4018 | // but have different calling behavior, so you cannot overload a |
| 4019 | // method based on a difference between inout and out annotations. |
| 4020 | const auto *NDAttr = NewParam->getAttr<HLSLParamModifierAttr>(); |
| 4021 | unsigned NSpellingIdx = (NDAttr ? NDAttr->getSpellingListIndex() : 0); |
| 4022 | const auto *ODAttr = OldParam->getAttr<HLSLParamModifierAttr>(); |
| 4023 | unsigned OSpellingIdx = (ODAttr ? ODAttr->getSpellingListIndex() : 0); |
| 4024 | |
| 4025 | if (NSpellingIdx != OSpellingIdx) { |
| 4026 | SemaRef.Diag(Loc: NewParam->getLocation(), |
| 4027 | DiagID: diag::err_hlsl_param_qualifier_mismatch) |
| 4028 | << NDAttr << NewParam; |
| 4029 | SemaRef.Diag(Loc: OldParam->getLocation(), DiagID: diag::note_previous_declaration_as) |
| 4030 | << ODAttr; |
| 4031 | HadError = true; |
| 4032 | } |
| 4033 | } |
| 4034 | return HadError; |
| 4035 | } |
| 4036 | |
| 4037 | // Generally follows PerformScalarCast, with cases reordered for |
| 4038 | // clarity of what types are supported |
| 4039 | bool SemaHLSL::CanPerformScalarCast(QualType SrcTy, QualType DestTy) { |
| 4040 | |
| 4041 | if (!SrcTy->isScalarType() || !DestTy->isScalarType()) |
| 4042 | return false; |
| 4043 | |
| 4044 | if (SemaRef.getASTContext().hasSameUnqualifiedType(T1: SrcTy, T2: DestTy)) |
| 4045 | return true; |
| 4046 | |
| 4047 | switch (SrcTy->getScalarTypeKind()) { |
| 4048 | case Type::STK_Bool: // casting from bool is like casting from an integer |
| 4049 | case Type::STK_Integral: |
| 4050 | switch (DestTy->getScalarTypeKind()) { |
| 4051 | case Type::STK_Bool: |
| 4052 | case Type::STK_Integral: |
| 4053 | case Type::STK_Floating: |
| 4054 | return true; |
| 4055 | case Type::STK_CPointer: |
| 4056 | case Type::STK_ObjCObjectPointer: |
| 4057 | case Type::STK_BlockPointer: |
| 4058 | case Type::STK_MemberPointer: |
| 4059 | llvm_unreachable("HLSL doesn't support pointers." ); |
| 4060 | case Type::STK_IntegralComplex: |
| 4061 | case Type::STK_FloatingComplex: |
| 4062 | llvm_unreachable("HLSL doesn't support complex types." ); |
| 4063 | case Type::STK_FixedPoint: |
| 4064 | llvm_unreachable("HLSL doesn't support fixed point types." ); |
| 4065 | } |
| 4066 | llvm_unreachable("Should have returned before this" ); |
| 4067 | |
| 4068 | case Type::STK_Floating: |
| 4069 | switch (DestTy->getScalarTypeKind()) { |
| 4070 | case Type::STK_Floating: |
| 4071 | case Type::STK_Bool: |
| 4072 | case Type::STK_Integral: |
| 4073 | return true; |
| 4074 | case Type::STK_FloatingComplex: |
| 4075 | case Type::STK_IntegralComplex: |
| 4076 | llvm_unreachable("HLSL doesn't support complex types." ); |
| 4077 | case Type::STK_FixedPoint: |
| 4078 | llvm_unreachable("HLSL doesn't support fixed point types." ); |
| 4079 | case Type::STK_CPointer: |
| 4080 | case Type::STK_ObjCObjectPointer: |
| 4081 | case Type::STK_BlockPointer: |
| 4082 | case Type::STK_MemberPointer: |
| 4083 | llvm_unreachable("HLSL doesn't support pointers." ); |
| 4084 | } |
| 4085 | llvm_unreachable("Should have returned before this" ); |
| 4086 | |
| 4087 | case Type::STK_MemberPointer: |
| 4088 | case Type::STK_CPointer: |
| 4089 | case Type::STK_BlockPointer: |
| 4090 | case Type::STK_ObjCObjectPointer: |
| 4091 | llvm_unreachable("HLSL doesn't support pointers." ); |
| 4092 | |
| 4093 | case Type::STK_FixedPoint: |
| 4094 | llvm_unreachable("HLSL doesn't support fixed point types." ); |
| 4095 | |
| 4096 | case Type::STK_FloatingComplex: |
| 4097 | case Type::STK_IntegralComplex: |
| 4098 | llvm_unreachable("HLSL doesn't support complex types." ); |
| 4099 | } |
| 4100 | |
| 4101 | llvm_unreachable("Unhandled scalar cast" ); |
| 4102 | } |
| 4103 | |
| 4104 | // Can perform an HLSL Aggregate splat cast if the Dest is an aggregate and the |
| 4105 | // Src is a scalar or a vector of length 1 |
| 4106 | // Or if Dest is a vector and Src is a vector of length 1 |
| 4107 | bool SemaHLSL::CanPerformAggregateSplatCast(Expr *Src, QualType DestTy) { |
| 4108 | |
| 4109 | QualType SrcTy = Src->getType(); |
| 4110 | // Not a valid HLSL Aggregate Splat cast if Dest is a scalar or if this is |
| 4111 | // going to be a vector splat from a scalar. |
| 4112 | if ((SrcTy->isScalarType() && DestTy->isVectorType()) || |
| 4113 | DestTy->isScalarType()) |
| 4114 | return false; |
| 4115 | |
| 4116 | const VectorType *SrcVecTy = SrcTy->getAs<VectorType>(); |
| 4117 | |
| 4118 | // Src isn't a scalar or a vector of length 1 |
| 4119 | if (!SrcTy->isScalarType() && !(SrcVecTy && SrcVecTy->getNumElements() == 1)) |
| 4120 | return false; |
| 4121 | |
| 4122 | if (SrcVecTy) |
| 4123 | SrcTy = SrcVecTy->getElementType(); |
| 4124 | |
| 4125 | llvm::SmallVector<QualType> DestTypes; |
| 4126 | BuildFlattenedTypeList(BaseTy: DestTy, List&: DestTypes); |
| 4127 | |
| 4128 | for (unsigned I = 0, Size = DestTypes.size(); I < Size; ++I) { |
| 4129 | if (DestTypes[I]->isUnionType()) |
| 4130 | return false; |
| 4131 | if (!CanPerformScalarCast(SrcTy, DestTy: DestTypes[I])) |
| 4132 | return false; |
| 4133 | } |
| 4134 | return true; |
| 4135 | } |
| 4136 | |
| 4137 | // Can we perform an HLSL Elementwise cast? |
| 4138 | bool SemaHLSL::CanPerformElementwiseCast(Expr *Src, QualType DestTy) { |
| 4139 | |
| 4140 | // Don't handle casts where LHS and RHS are any combination of scalar/vector |
| 4141 | // There must be an aggregate somewhere |
| 4142 | QualType SrcTy = Src->getType(); |
| 4143 | if (SrcTy->isScalarType()) // always a splat and this cast doesn't handle that |
| 4144 | return false; |
| 4145 | |
| 4146 | if (SrcTy->isVectorType() && |
| 4147 | (DestTy->isScalarType() || DestTy->isVectorType())) |
| 4148 | return false; |
| 4149 | |
| 4150 | if (SrcTy->isConstantMatrixType() && |
| 4151 | (DestTy->isScalarType() || DestTy->isConstantMatrixType())) |
| 4152 | return false; |
| 4153 | |
| 4154 | llvm::SmallVector<QualType> DestTypes; |
| 4155 | BuildFlattenedTypeList(BaseTy: DestTy, List&: DestTypes); |
| 4156 | llvm::SmallVector<QualType> SrcTypes; |
| 4157 | BuildFlattenedTypeList(BaseTy: SrcTy, List&: SrcTypes); |
| 4158 | |
| 4159 | // Usually the size of SrcTypes must be greater than or equal to the size of |
| 4160 | // DestTypes. |
| 4161 | if (SrcTypes.size() < DestTypes.size()) |
| 4162 | return false; |
| 4163 | |
| 4164 | unsigned SrcSize = SrcTypes.size(); |
| 4165 | unsigned DstSize = DestTypes.size(); |
| 4166 | unsigned I; |
| 4167 | for (I = 0; I < DstSize && I < SrcSize; I++) { |
| 4168 | if (SrcTypes[I]->isUnionType() || DestTypes[I]->isUnionType()) |
| 4169 | return false; |
| 4170 | if (!CanPerformScalarCast(SrcTy: SrcTypes[I], DestTy: DestTypes[I])) { |
| 4171 | return false; |
| 4172 | } |
| 4173 | } |
| 4174 | |
| 4175 | // check the rest of the source type for unions. |
| 4176 | for (; I < SrcSize; I++) { |
| 4177 | if (SrcTypes[I]->isUnionType()) |
| 4178 | return false; |
| 4179 | } |
| 4180 | return true; |
| 4181 | } |
| 4182 | |
| 4183 | ExprResult SemaHLSL::ActOnOutParamExpr(ParmVarDecl *Param, Expr *Arg) { |
| 4184 | assert(Param->hasAttr<HLSLParamModifierAttr>() && |
| 4185 | "We should not get here without a parameter modifier expression" ); |
| 4186 | const auto *Attr = Param->getAttr<HLSLParamModifierAttr>(); |
| 4187 | if (Attr->getABI() == ParameterABI::Ordinary) |
| 4188 | return ExprResult(Arg); |
| 4189 | |
| 4190 | bool IsInOut = Attr->getABI() == ParameterABI::HLSLInOut; |
| 4191 | if (!Arg->isLValue()) { |
| 4192 | SemaRef.Diag(Loc: Arg->getBeginLoc(), DiagID: diag::error_hlsl_inout_lvalue) |
| 4193 | << Arg << (IsInOut ? 1 : 0); |
| 4194 | return ExprError(); |
| 4195 | } |
| 4196 | |
| 4197 | ASTContext &Ctx = SemaRef.getASTContext(); |
| 4198 | |
| 4199 | QualType Ty = Param->getType().getNonLValueExprType(Context: Ctx); |
| 4200 | |
| 4201 | // HLSL allows implicit conversions from scalars to vectors, but not the |
| 4202 | // inverse, so we need to disallow `inout` with scalar->vector or |
| 4203 | // scalar->matrix conversions. |
| 4204 | if (Arg->getType()->isScalarType() != Ty->isScalarType()) { |
| 4205 | SemaRef.Diag(Loc: Arg->getBeginLoc(), DiagID: diag::error_hlsl_inout_scalar_extension) |
| 4206 | << Arg << (IsInOut ? 1 : 0); |
| 4207 | return ExprError(); |
| 4208 | } |
| 4209 | |
| 4210 | auto *ArgOpV = new (Ctx) OpaqueValueExpr(Param->getBeginLoc(), Arg->getType(), |
| 4211 | VK_LValue, OK_Ordinary, Arg); |
| 4212 | |
| 4213 | // Parameters are initialized via copy initialization. This allows for |
| 4214 | // overload resolution of argument constructors. |
| 4215 | InitializedEntity Entity = |
| 4216 | InitializedEntity::InitializeParameter(Context&: Ctx, Type: Ty, Consumed: false); |
| 4217 | ExprResult Res = |
| 4218 | SemaRef.PerformCopyInitialization(Entity, EqualLoc: Param->getBeginLoc(), Init: ArgOpV); |
| 4219 | if (Res.isInvalid()) |
| 4220 | return ExprError(); |
| 4221 | Expr *Base = Res.get(); |
| 4222 | // After the cast, drop the reference type when creating the exprs. |
| 4223 | Ty = Ty.getNonLValueExprType(Context: Ctx); |
| 4224 | auto *OpV = new (Ctx) |
| 4225 | OpaqueValueExpr(Param->getBeginLoc(), Ty, VK_LValue, OK_Ordinary, Base); |
| 4226 | |
| 4227 | // Writebacks are performed with `=` binary operator, which allows for |
| 4228 | // overload resolution on writeback result expressions. |
| 4229 | Res = SemaRef.ActOnBinOp(S: SemaRef.getCurScope(), TokLoc: Param->getBeginLoc(), |
| 4230 | Kind: tok::equal, LHSExpr: ArgOpV, RHSExpr: OpV); |
| 4231 | |
| 4232 | if (Res.isInvalid()) |
| 4233 | return ExprError(); |
| 4234 | Expr *Writeback = Res.get(); |
| 4235 | auto *OutExpr = |
| 4236 | HLSLOutArgExpr::Create(C: Ctx, Ty, Base: ArgOpV, OpV, WB: Writeback, IsInOut); |
| 4237 | |
| 4238 | return ExprResult(OutExpr); |
| 4239 | } |
| 4240 | |
| 4241 | QualType SemaHLSL::getInoutParameterType(QualType Ty) { |
| 4242 | // If HLSL gains support for references, all the cites that use this will need |
| 4243 | // to be updated with semantic checking to produce errors for |
| 4244 | // pointers/references. |
| 4245 | assert(!Ty->isReferenceType() && |
| 4246 | "Pointer and reference types cannot be inout or out parameters" ); |
| 4247 | Ty = SemaRef.getASTContext().getLValueReferenceType(T: Ty); |
| 4248 | Ty.addRestrict(); |
| 4249 | return Ty; |
| 4250 | } |
| 4251 | |
| 4252 | static bool IsDefaultBufferConstantDecl(const ASTContext &Ctx, VarDecl *VD) { |
| 4253 | bool IsVulkan = |
| 4254 | Ctx.getTargetInfo().getTriple().getOS() == llvm::Triple::Vulkan; |
| 4255 | bool IsVKPushConstant = IsVulkan && VD->hasAttr<HLSLVkPushConstantAttr>(); |
| 4256 | QualType QT = VD->getType(); |
| 4257 | return VD->getDeclContext()->isTranslationUnit() && |
| 4258 | QT.getAddressSpace() == LangAS::Default && |
| 4259 | VD->getStorageClass() != SC_Static && |
| 4260 | !VD->hasAttr<HLSLVkConstantIdAttr>() && !IsVKPushConstant && |
| 4261 | !isInvalidConstantBufferLeafElementType(Ty: QT.getTypePtr()); |
| 4262 | } |
| 4263 | |
| 4264 | void SemaHLSL::deduceAddressSpace(VarDecl *Decl) { |
| 4265 | // The variable already has an address space (groupshared for ex). |
| 4266 | if (Decl->getType().hasAddressSpace()) |
| 4267 | return; |
| 4268 | |
| 4269 | if (Decl->getType()->isDependentType()) |
| 4270 | return; |
| 4271 | |
| 4272 | QualType Type = Decl->getType(); |
| 4273 | |
| 4274 | if (Decl->hasAttr<HLSLVkExtBuiltinInputAttr>()) { |
| 4275 | LangAS ImplAS = LangAS::hlsl_input; |
| 4276 | Type = SemaRef.getASTContext().getAddrSpaceQualType(T: Type, AddressSpace: ImplAS); |
| 4277 | Decl->setType(Type); |
| 4278 | return; |
| 4279 | } |
| 4280 | |
| 4281 | bool IsVulkan = getASTContext().getTargetInfo().getTriple().getOS() == |
| 4282 | llvm::Triple::Vulkan; |
| 4283 | if (IsVulkan && Decl->hasAttr<HLSLVkPushConstantAttr>()) { |
| 4284 | if (HasDeclaredAPushConstant) |
| 4285 | SemaRef.Diag(Loc: Decl->getLocation(), DiagID: diag::err_hlsl_push_constant_unique); |
| 4286 | |
| 4287 | LangAS ImplAS = LangAS::hlsl_push_constant; |
| 4288 | Type = SemaRef.getASTContext().getAddrSpaceQualType(T: Type, AddressSpace: ImplAS); |
| 4289 | Decl->setType(Type); |
| 4290 | HasDeclaredAPushConstant = true; |
| 4291 | return; |
| 4292 | } |
| 4293 | |
| 4294 | if (Type->isSamplerT() || Type->isVoidType()) |
| 4295 | return; |
| 4296 | |
| 4297 | // Resource handles. |
| 4298 | if (Type->isHLSLResourceRecord() || Type->isHLSLResourceRecordArray()) |
| 4299 | return; |
| 4300 | |
| 4301 | // Only static globals belong to the Private address space. |
| 4302 | // Non-static globals belongs to the cbuffer. |
| 4303 | if (Decl->getStorageClass() != SC_Static && !Decl->isStaticDataMember()) |
| 4304 | return; |
| 4305 | |
| 4306 | LangAS ImplAS = LangAS::hlsl_private; |
| 4307 | Type = SemaRef.getASTContext().getAddrSpaceQualType(T: Type, AddressSpace: ImplAS); |
| 4308 | Decl->setType(Type); |
| 4309 | } |
| 4310 | |
| 4311 | void SemaHLSL::ActOnVariableDeclarator(VarDecl *VD) { |
| 4312 | if (VD->hasGlobalStorage()) { |
| 4313 | // make sure the declaration has a complete type |
| 4314 | if (SemaRef.RequireCompleteType( |
| 4315 | Loc: VD->getLocation(), |
| 4316 | T: SemaRef.getASTContext().getBaseElementType(QT: VD->getType()), |
| 4317 | DiagID: diag::err_typecheck_decl_incomplete_type)) { |
| 4318 | VD->setInvalidDecl(); |
| 4319 | deduceAddressSpace(Decl: VD); |
| 4320 | return; |
| 4321 | } |
| 4322 | |
| 4323 | // Global variables outside a cbuffer block that are not a resource, static, |
| 4324 | // groupshared, or an empty array or struct belong to the default constant |
| 4325 | // buffer $Globals (to be created at the end of the translation unit). |
| 4326 | if (IsDefaultBufferConstantDecl(Ctx: getASTContext(), VD)) { |
| 4327 | // update address space to hlsl_constant |
| 4328 | QualType NewTy = getASTContext().getAddrSpaceQualType( |
| 4329 | T: VD->getType(), AddressSpace: LangAS::hlsl_constant); |
| 4330 | VD->setType(NewTy); |
| 4331 | DefaultCBufferDecls.push_back(Elt: VD); |
| 4332 | } |
| 4333 | |
| 4334 | // find all resources bindings on decl |
| 4335 | if (VD->getType()->isHLSLIntangibleType()) |
| 4336 | collectResourceBindingsOnVarDecl(D: VD); |
| 4337 | |
| 4338 | if (VD->hasAttr<HLSLVkConstantIdAttr>()) |
| 4339 | VD->setStorageClass(StorageClass::SC_Static); |
| 4340 | |
| 4341 | if (isResourceRecordTypeOrArrayOf(VD) && |
| 4342 | VD->getStorageClass() != SC_Static) { |
| 4343 | // Add internal linkage attribute to non-static resource variables. The |
| 4344 | // global externally visible storage is accessed through the handle, which |
| 4345 | // is a member. The variable itself is not externally visible. |
| 4346 | VD->addAttr(A: InternalLinkageAttr::CreateImplicit(Ctx&: getASTContext())); |
| 4347 | } |
| 4348 | |
| 4349 | // process explicit bindings |
| 4350 | processExplicitBindingsOnDecl(D: VD); |
| 4351 | |
| 4352 | // Add implicit binding attribute to non-static resource arrays. |
| 4353 | if (VD->getType()->isHLSLResourceRecordArray() && |
| 4354 | VD->getStorageClass() != SC_Static) { |
| 4355 | // If the resource array does not have an explicit binding attribute, |
| 4356 | // create an implicit one. It will be used to transfer implicit binding |
| 4357 | // order_ID to codegen. |
| 4358 | ResourceBindingAttrs Binding(VD); |
| 4359 | if (!Binding.isExplicit()) { |
| 4360 | uint32_t OrderID = getNextImplicitBindingOrderID(); |
| 4361 | if (Binding.hasBinding()) |
| 4362 | Binding.setImplicitOrderID(OrderID); |
| 4363 | else { |
| 4364 | addImplicitBindingAttrToDecl( |
| 4365 | S&: SemaRef, D: VD, RT: getRegisterType(ResTy: getResourceArrayHandleType(VD)), |
| 4366 | ImplicitBindingOrderID: OrderID); |
| 4367 | // Re-create the binding object to pick up the new attribute. |
| 4368 | Binding = ResourceBindingAttrs(VD); |
| 4369 | } |
| 4370 | } |
| 4371 | |
| 4372 | // Get to the base type of a potentially multi-dimensional array. |
| 4373 | QualType Ty = getASTContext().getBaseElementType(QT: VD->getType()); |
| 4374 | |
| 4375 | const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); |
| 4376 | if (hasCounterHandle(RD)) { |
| 4377 | if (!Binding.hasCounterImplicitOrderID()) { |
| 4378 | uint32_t OrderID = getNextImplicitBindingOrderID(); |
| 4379 | Binding.setCounterImplicitOrderID(OrderID); |
| 4380 | } |
| 4381 | } |
| 4382 | } |
| 4383 | } |
| 4384 | |
| 4385 | deduceAddressSpace(Decl: VD); |
| 4386 | } |
| 4387 | |
| 4388 | bool SemaHLSL::initGlobalResourceDecl(VarDecl *VD) { |
| 4389 | assert(VD->getType()->isHLSLResourceRecord() && |
| 4390 | "expected resource record type" ); |
| 4391 | |
| 4392 | ASTContext &AST = SemaRef.getASTContext(); |
| 4393 | uint64_t UIntTySize = AST.getTypeSize(T: AST.UnsignedIntTy); |
| 4394 | uint64_t IntTySize = AST.getTypeSize(T: AST.IntTy); |
| 4395 | |
| 4396 | // Gather resource binding attributes. |
| 4397 | ResourceBindingAttrs Binding(VD); |
| 4398 | |
| 4399 | // Find correct initialization method and create its arguments. |
| 4400 | QualType ResourceTy = VD->getType(); |
| 4401 | CXXRecordDecl *ResourceDecl = ResourceTy->getAsCXXRecordDecl(); |
| 4402 | CXXMethodDecl *CreateMethod = nullptr; |
| 4403 | llvm::SmallVector<Expr *> Args; |
| 4404 | |
| 4405 | bool HasCounter = hasCounterHandle(RD: ResourceDecl); |
| 4406 | const char *CreateMethodName; |
| 4407 | if (Binding.isExplicit()) |
| 4408 | CreateMethodName = HasCounter ? "__createFromBindingWithImplicitCounter" |
| 4409 | : "__createFromBinding" ; |
| 4410 | else |
| 4411 | CreateMethodName = HasCounter |
| 4412 | ? "__createFromImplicitBindingWithImplicitCounter" |
| 4413 | : "__createFromImplicitBinding" ; |
| 4414 | |
| 4415 | CreateMethod = |
| 4416 | lookupMethod(S&: SemaRef, RecordDecl: ResourceDecl, Name: CreateMethodName, Loc: VD->getLocation()); |
| 4417 | |
| 4418 | if (!CreateMethod) |
| 4419 | // This can happen if someone creates a struct that looks like an HLSL |
| 4420 | // resource record but does not have the required static create method. |
| 4421 | // No binding will be generated for it. |
| 4422 | return false; |
| 4423 | |
| 4424 | if (Binding.isExplicit()) { |
| 4425 | IntegerLiteral *RegSlot = |
| 4426 | IntegerLiteral::Create(C: AST, V: llvm::APInt(UIntTySize, Binding.getSlot()), |
| 4427 | type: AST.UnsignedIntTy, l: SourceLocation()); |
| 4428 | Args.push_back(Elt: RegSlot); |
| 4429 | } else { |
| 4430 | uint32_t OrderID = (Binding.hasImplicitOrderID()) |
| 4431 | ? Binding.getImplicitOrderID() |
| 4432 | : getNextImplicitBindingOrderID(); |
| 4433 | IntegerLiteral *OrderId = |
| 4434 | IntegerLiteral::Create(C: AST, V: llvm::APInt(UIntTySize, OrderID), |
| 4435 | type: AST.UnsignedIntTy, l: SourceLocation()); |
| 4436 | Args.push_back(Elt: OrderId); |
| 4437 | } |
| 4438 | |
| 4439 | IntegerLiteral *Space = |
| 4440 | IntegerLiteral::Create(C: AST, V: llvm::APInt(UIntTySize, Binding.getSpace()), |
| 4441 | type: AST.UnsignedIntTy, l: SourceLocation()); |
| 4442 | Args.push_back(Elt: Space); |
| 4443 | |
| 4444 | IntegerLiteral *RangeSize = IntegerLiteral::Create( |
| 4445 | C: AST, V: llvm::APInt(IntTySize, 1), type: AST.IntTy, l: SourceLocation()); |
| 4446 | Args.push_back(Elt: RangeSize); |
| 4447 | |
| 4448 | IntegerLiteral *Index = IntegerLiteral::Create( |
| 4449 | C: AST, V: llvm::APInt(UIntTySize, 0), type: AST.UnsignedIntTy, l: SourceLocation()); |
| 4450 | Args.push_back(Elt: Index); |
| 4451 | |
| 4452 | StringRef VarName = VD->getName(); |
| 4453 | StringLiteral *Name = StringLiteral::Create( |
| 4454 | Ctx: AST, Str: VarName, Kind: StringLiteralKind::Ordinary, Pascal: false, |
| 4455 | Ty: AST.getStringLiteralArrayType(EltTy: AST.CharTy.withConst(), Length: VarName.size()), |
| 4456 | Locs: SourceLocation()); |
| 4457 | ImplicitCastExpr *NameCast = ImplicitCastExpr::Create( |
| 4458 | Context: AST, T: AST.getPointerType(T: AST.CharTy.withConst()), Kind: CK_ArrayToPointerDecay, |
| 4459 | Operand: Name, BasePath: nullptr, Cat: VK_PRValue, FPO: FPOptionsOverride()); |
| 4460 | Args.push_back(Elt: NameCast); |
| 4461 | |
| 4462 | if (HasCounter) { |
| 4463 | // Will this be in the correct order? |
| 4464 | uint32_t CounterOrderID = getNextImplicitBindingOrderID(); |
| 4465 | IntegerLiteral *CounterId = |
| 4466 | IntegerLiteral::Create(C: AST, V: llvm::APInt(UIntTySize, CounterOrderID), |
| 4467 | type: AST.UnsignedIntTy, l: SourceLocation()); |
| 4468 | Args.push_back(Elt: CounterId); |
| 4469 | } |
| 4470 | |
| 4471 | // Make sure the create method template is instantiated and emitted. |
| 4472 | if (!CreateMethod->isDefined() && CreateMethod->isTemplateInstantiation()) |
| 4473 | SemaRef.InstantiateFunctionDefinition(PointOfInstantiation: VD->getLocation(), Function: CreateMethod, |
| 4474 | Recursive: true); |
| 4475 | |
| 4476 | // Create CallExpr with a call to the static method and set it as the decl |
| 4477 | // initialization. |
| 4478 | DeclRefExpr *DRE = DeclRefExpr::Create( |
| 4479 | Context: AST, QualifierLoc: NestedNameSpecifierLoc(), TemplateKWLoc: SourceLocation(), D: CreateMethod, RefersToEnclosingVariableOrCapture: false, |
| 4480 | NameInfo: CreateMethod->getNameInfo(), T: CreateMethod->getType(), VK: VK_PRValue); |
| 4481 | |
| 4482 | auto *ImpCast = ImplicitCastExpr::Create( |
| 4483 | Context: AST, T: AST.getPointerType(T: CreateMethod->getType()), |
| 4484 | Kind: CK_FunctionToPointerDecay, Operand: DRE, BasePath: nullptr, Cat: VK_PRValue, FPO: FPOptionsOverride()); |
| 4485 | |
| 4486 | CallExpr *InitExpr = |
| 4487 | CallExpr::Create(Ctx: AST, Fn: ImpCast, Args, Ty: ResourceTy, VK: VK_PRValue, |
| 4488 | RParenLoc: SourceLocation(), FPFeatures: FPOptionsOverride()); |
| 4489 | VD->setInit(InitExpr); |
| 4490 | VD->setInitStyle(VarDecl::CallInit); |
| 4491 | SemaRef.CheckCompleteVariableDeclaration(VD); |
| 4492 | return true; |
| 4493 | } |
| 4494 | |
| 4495 | bool SemaHLSL::initGlobalResourceArrayDecl(VarDecl *VD) { |
| 4496 | assert(VD->getType()->isHLSLResourceRecordArray() && |
| 4497 | "expected array of resource records" ); |
| 4498 | |
| 4499 | // Individual resources in a resource array are not initialized here. They |
| 4500 | // are initialized later on during codegen when the individual resources are |
| 4501 | // accessed. Codegen will emit a call to the resource initialization method |
| 4502 | // with the specified array index. We need to make sure though that the method |
| 4503 | // for the specific resource type is instantiated, so codegen can emit a call |
| 4504 | // to it when the array element is accessed. |
| 4505 | |
| 4506 | // Find correct initialization method based on the resource binding |
| 4507 | // information. |
| 4508 | ASTContext &AST = SemaRef.getASTContext(); |
| 4509 | QualType ResElementTy = AST.getBaseElementType(QT: VD->getType()); |
| 4510 | CXXRecordDecl *ResourceDecl = ResElementTy->getAsCXXRecordDecl(); |
| 4511 | CXXMethodDecl *CreateMethod = nullptr; |
| 4512 | |
| 4513 | bool HasCounter = hasCounterHandle(RD: ResourceDecl); |
| 4514 | ResourceBindingAttrs ResourceAttrs(VD); |
| 4515 | if (ResourceAttrs.isExplicit()) |
| 4516 | // Resource has explicit binding. |
| 4517 | CreateMethod = |
| 4518 | lookupMethod(S&: SemaRef, RecordDecl: ResourceDecl, |
| 4519 | Name: HasCounter ? "__createFromBindingWithImplicitCounter" |
| 4520 | : "__createFromBinding" , |
| 4521 | Loc: VD->getLocation()); |
| 4522 | else |
| 4523 | // Resource has implicit binding. |
| 4524 | CreateMethod = lookupMethod( |
| 4525 | S&: SemaRef, RecordDecl: ResourceDecl, |
| 4526 | Name: HasCounter ? "__createFromImplicitBindingWithImplicitCounter" |
| 4527 | : "__createFromImplicitBinding" , |
| 4528 | Loc: VD->getLocation()); |
| 4529 | |
| 4530 | if (!CreateMethod) |
| 4531 | return false; |
| 4532 | |
| 4533 | // Make sure the create method template is instantiated and emitted. |
| 4534 | if (!CreateMethod->isDefined() && CreateMethod->isTemplateInstantiation()) |
| 4535 | SemaRef.InstantiateFunctionDefinition(PointOfInstantiation: VD->getLocation(), Function: CreateMethod, |
| 4536 | Recursive: true); |
| 4537 | return true; |
| 4538 | } |
| 4539 | |
| 4540 | // Returns true if the initialization has been handled. |
| 4541 | // Returns false to use default initialization. |
| 4542 | bool SemaHLSL::ActOnUninitializedVarDecl(VarDecl *VD) { |
| 4543 | // Objects in the hlsl_constant address space are initialized |
| 4544 | // externally, so don't synthesize an implicit initializer. |
| 4545 | if (VD->getType().getAddressSpace() == LangAS::hlsl_constant) |
| 4546 | return true; |
| 4547 | |
| 4548 | // Initialize non-static resources at the global scope. |
| 4549 | if (VD->hasGlobalStorage() && VD->getStorageClass() != SC_Static) { |
| 4550 | const Type *Ty = VD->getType().getTypePtr(); |
| 4551 | if (Ty->isHLSLResourceRecord()) |
| 4552 | return initGlobalResourceDecl(VD); |
| 4553 | if (Ty->isHLSLResourceRecordArray()) |
| 4554 | return initGlobalResourceArrayDecl(VD); |
| 4555 | } |
| 4556 | return false; |
| 4557 | } |
| 4558 | |
| 4559 | // Return true if everything is ok; returns false if there was an error. |
| 4560 | bool SemaHLSL::CheckResourceBinOp(BinaryOperatorKind Opc, Expr *LHSExpr, |
| 4561 | Expr *RHSExpr, SourceLocation Loc) { |
| 4562 | assert((LHSExpr->getType()->isHLSLResourceRecord() || |
| 4563 | LHSExpr->getType()->isHLSLResourceRecordArray()) && |
| 4564 | "expected LHS to be a resource record or array of resource records" ); |
| 4565 | if (Opc != BO_Assign) |
| 4566 | return true; |
| 4567 | |
| 4568 | // If LHS is an array subscript, get the underlying declaration. |
| 4569 | Expr *E = LHSExpr; |
| 4570 | while (auto *ASE = dyn_cast<ArraySubscriptExpr>(Val: E)) |
| 4571 | E = ASE->getBase()->IgnoreParenImpCasts(); |
| 4572 | |
| 4573 | // Report error if LHS is a non-static resource declared at a global scope. |
| 4574 | if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Val: E->IgnoreParens())) { |
| 4575 | if (VarDecl *VD = dyn_cast<VarDecl>(Val: DRE->getDecl())) { |
| 4576 | if (VD->hasGlobalStorage() && VD->getStorageClass() != SC_Static) { |
| 4577 | // assignment to global resource is not allowed |
| 4578 | SemaRef.Diag(Loc, DiagID: diag::err_hlsl_assign_to_global_resource) << VD; |
| 4579 | SemaRef.Diag(Loc: VD->getLocation(), DiagID: diag::note_var_declared_here) << VD; |
| 4580 | return false; |
| 4581 | } |
| 4582 | } |
| 4583 | } |
| 4584 | return true; |
| 4585 | } |
| 4586 | |
| 4587 | // Walks though the global variable declaration, collects all resource binding |
| 4588 | // requirements and adds them to Bindings |
| 4589 | void SemaHLSL::collectResourceBindingsOnVarDecl(VarDecl *VD) { |
| 4590 | assert(VD->hasGlobalStorage() && VD->getType()->isHLSLIntangibleType() && |
| 4591 | "expected global variable that contains HLSL resource" ); |
| 4592 | |
| 4593 | // Cbuffers and Tbuffers are HLSLBufferDecl types |
| 4594 | if (const HLSLBufferDecl *CBufferOrTBuffer = dyn_cast<HLSLBufferDecl>(Val: VD)) { |
| 4595 | Bindings.addDeclBindingInfo(VD, ResClass: CBufferOrTBuffer->isCBuffer() |
| 4596 | ? ResourceClass::CBuffer |
| 4597 | : ResourceClass::SRV); |
| 4598 | return; |
| 4599 | } |
| 4600 | |
| 4601 | // Unwrap arrays |
| 4602 | // FIXME: Calculate array size while unwrapping |
| 4603 | const Type *Ty = VD->getType()->getUnqualifiedDesugaredType(); |
| 4604 | while (Ty->isArrayType()) { |
| 4605 | const ArrayType *AT = cast<ArrayType>(Val: Ty); |
| 4606 | Ty = AT->getElementType()->getUnqualifiedDesugaredType(); |
| 4607 | } |
| 4608 | |
| 4609 | // Resource (or array of resources) |
| 4610 | if (const HLSLAttributedResourceType *AttrResType = |
| 4611 | HLSLAttributedResourceType::findHandleTypeOnResource(RT: Ty)) { |
| 4612 | Bindings.addDeclBindingInfo(VD, ResClass: AttrResType->getAttrs().ResourceClass); |
| 4613 | return; |
| 4614 | } |
| 4615 | |
| 4616 | // User defined record type |
| 4617 | if (const RecordType *RT = dyn_cast<RecordType>(Val: Ty)) |
| 4618 | collectResourceBindingsOnUserRecordDecl(VD, RT); |
| 4619 | } |
| 4620 | |
| 4621 | // Walks though the explicit resource binding attributes on the declaration, |
| 4622 | // and makes sure there is a resource that matched the binding and updates |
| 4623 | // DeclBindingInfoLists |
| 4624 | void SemaHLSL::processExplicitBindingsOnDecl(VarDecl *VD) { |
| 4625 | assert(VD->hasGlobalStorage() && "expected global variable" ); |
| 4626 | |
| 4627 | bool HasBinding = false; |
| 4628 | for (Attr *A : VD->attrs()) { |
| 4629 | if (isa<HLSLVkBindingAttr>(Val: A)) { |
| 4630 | HasBinding = true; |
| 4631 | if (auto PA = VD->getAttr<HLSLVkPushConstantAttr>()) |
| 4632 | Diag(Loc: PA->getLoc(), DiagID: diag::err_hlsl_attr_incompatible) << A << PA; |
| 4633 | } |
| 4634 | |
| 4635 | HLSLResourceBindingAttr *RBA = dyn_cast<HLSLResourceBindingAttr>(Val: A); |
| 4636 | if (!RBA || !RBA->hasRegisterSlot()) |
| 4637 | continue; |
| 4638 | HasBinding = true; |
| 4639 | |
| 4640 | RegisterType RT = RBA->getRegisterType(); |
| 4641 | assert(RT != RegisterType::I && "invalid or obsolete register type should " |
| 4642 | "never have an attribute created" ); |
| 4643 | |
| 4644 | if (RT == RegisterType::C) { |
| 4645 | if (Bindings.hasBindingInfoForDecl(VD)) |
| 4646 | SemaRef.Diag(Loc: VD->getLocation(), |
| 4647 | DiagID: diag::warn_hlsl_user_defined_type_missing_member) |
| 4648 | << static_cast<int>(RT); |
| 4649 | continue; |
| 4650 | } |
| 4651 | |
| 4652 | // Find DeclBindingInfo for this binding and update it, or report error |
| 4653 | // if it does not exist (user type does to contain resources with the |
| 4654 | // expected resource class). |
| 4655 | ResourceClass RC = getResourceClass(RT); |
| 4656 | if (DeclBindingInfo *BI = Bindings.getDeclBindingInfo(VD, ResClass: RC)) { |
| 4657 | // update binding info |
| 4658 | BI->setBindingAttribute(A: RBA, BT: BindingType::Explicit); |
| 4659 | } else { |
| 4660 | SemaRef.Diag(Loc: VD->getLocation(), |
| 4661 | DiagID: diag::warn_hlsl_user_defined_type_missing_member) |
| 4662 | << static_cast<int>(RT); |
| 4663 | } |
| 4664 | } |
| 4665 | |
| 4666 | if (!HasBinding && isResourceRecordTypeOrArrayOf(VD)) |
| 4667 | SemaRef.Diag(Loc: VD->getLocation(), DiagID: diag::warn_hlsl_implicit_binding); |
| 4668 | } |
| 4669 | namespace { |
| 4670 | class InitListTransformer { |
| 4671 | Sema &S; |
| 4672 | ASTContext &Ctx; |
| 4673 | QualType InitTy; |
| 4674 | QualType *DstIt = nullptr; |
| 4675 | Expr **ArgIt = nullptr; |
| 4676 | // Is wrapping the destination type iterator required? This is only used for |
| 4677 | // incomplete array types where we loop over the destination type since we |
| 4678 | // don't know the full number of elements from the declaration. |
| 4679 | bool Wrap; |
| 4680 | |
| 4681 | bool castInitializer(Expr *E) { |
| 4682 | assert(DstIt && "This should always be something!" ); |
| 4683 | if (DstIt == DestTypes.end()) { |
| 4684 | if (!Wrap) { |
| 4685 | ArgExprs.push_back(Elt: E); |
| 4686 | // This is odd, but it isn't technically a failure due to conversion, we |
| 4687 | // handle mismatched counts of arguments differently. |
| 4688 | return true; |
| 4689 | } |
| 4690 | DstIt = DestTypes.begin(); |
| 4691 | } |
| 4692 | InitializedEntity Entity = InitializedEntity::InitializeParameter( |
| 4693 | Context&: Ctx, Type: *DstIt, /* Consumed (ObjC) */ Consumed: false); |
| 4694 | ExprResult Res = S.PerformCopyInitialization(Entity, EqualLoc: E->getBeginLoc(), Init: E); |
| 4695 | if (Res.isInvalid()) |
| 4696 | return false; |
| 4697 | Expr *Init = Res.get(); |
| 4698 | ArgExprs.push_back(Elt: Init); |
| 4699 | DstIt++; |
| 4700 | return true; |
| 4701 | } |
| 4702 | |
| 4703 | bool buildInitializerListImpl(Expr *E) { |
| 4704 | // If this is an initialization list, traverse the sub initializers. |
| 4705 | if (auto *Init = dyn_cast<InitListExpr>(Val: E)) { |
| 4706 | for (auto *SubInit : Init->inits()) |
| 4707 | if (!buildInitializerListImpl(E: SubInit)) |
| 4708 | return false; |
| 4709 | return true; |
| 4710 | } |
| 4711 | |
| 4712 | // If this is a scalar type, just enqueue the expression. |
| 4713 | QualType Ty = E->getType(); |
| 4714 | |
| 4715 | if (Ty->isScalarType() || (Ty->isRecordType() && !Ty->isAggregateType())) |
| 4716 | return castInitializer(E); |
| 4717 | |
| 4718 | if (auto *VecTy = Ty->getAs<VectorType>()) { |
| 4719 | uint64_t Size = VecTy->getNumElements(); |
| 4720 | |
| 4721 | QualType SizeTy = Ctx.getSizeType(); |
| 4722 | uint64_t SizeTySize = Ctx.getTypeSize(T: SizeTy); |
| 4723 | for (uint64_t I = 0; I < Size; ++I) { |
| 4724 | auto *Idx = IntegerLiteral::Create(C: Ctx, V: llvm::APInt(SizeTySize, I), |
| 4725 | type: SizeTy, l: SourceLocation()); |
| 4726 | |
| 4727 | ExprResult ElExpr = S.CreateBuiltinArraySubscriptExpr( |
| 4728 | Base: E, LLoc: E->getBeginLoc(), Idx, RLoc: E->getEndLoc()); |
| 4729 | if (ElExpr.isInvalid()) |
| 4730 | return false; |
| 4731 | if (!castInitializer(E: ElExpr.get())) |
| 4732 | return false; |
| 4733 | } |
| 4734 | return true; |
| 4735 | } |
| 4736 | if (auto *MTy = Ty->getAs<ConstantMatrixType>()) { |
| 4737 | unsigned Rows = MTy->getNumRows(); |
| 4738 | unsigned Cols = MTy->getNumColumns(); |
| 4739 | QualType ElemTy = MTy->getElementType(); |
| 4740 | |
| 4741 | for (unsigned R = 0; R < Rows; ++R) { |
| 4742 | for (unsigned C = 0; C < Cols; ++C) { |
| 4743 | // row index literal |
| 4744 | Expr *RowIdx = IntegerLiteral::Create( |
| 4745 | C: Ctx, V: llvm::APInt(Ctx.getIntWidth(T: Ctx.IntTy), R), type: Ctx.IntTy, |
| 4746 | l: E->getBeginLoc()); |
| 4747 | // column index literal |
| 4748 | Expr *ColIdx = IntegerLiteral::Create( |
| 4749 | C: Ctx, V: llvm::APInt(Ctx.getIntWidth(T: Ctx.IntTy), C), type: Ctx.IntTy, |
| 4750 | l: E->getBeginLoc()); |
| 4751 | ExprResult ElExpr = S.CreateBuiltinMatrixSubscriptExpr( |
| 4752 | Base: E, RowIdx, ColumnIdx: ColIdx, RBLoc: E->getEndLoc()); |
| 4753 | if (ElExpr.isInvalid()) |
| 4754 | return false; |
| 4755 | if (!castInitializer(E: ElExpr.get())) |
| 4756 | return false; |
| 4757 | ElExpr.get()->setType(ElemTy); |
| 4758 | } |
| 4759 | } |
| 4760 | return true; |
| 4761 | } |
| 4762 | |
| 4763 | if (auto *ArrTy = dyn_cast<ConstantArrayType>(Val: Ty.getTypePtr())) { |
| 4764 | uint64_t Size = ArrTy->getZExtSize(); |
| 4765 | QualType SizeTy = Ctx.getSizeType(); |
| 4766 | uint64_t SizeTySize = Ctx.getTypeSize(T: SizeTy); |
| 4767 | for (uint64_t I = 0; I < Size; ++I) { |
| 4768 | auto *Idx = IntegerLiteral::Create(C: Ctx, V: llvm::APInt(SizeTySize, I), |
| 4769 | type: SizeTy, l: SourceLocation()); |
| 4770 | ExprResult ElExpr = S.CreateBuiltinArraySubscriptExpr( |
| 4771 | Base: E, LLoc: E->getBeginLoc(), Idx, RLoc: E->getEndLoc()); |
| 4772 | if (ElExpr.isInvalid()) |
| 4773 | return false; |
| 4774 | if (!buildInitializerListImpl(E: ElExpr.get())) |
| 4775 | return false; |
| 4776 | } |
| 4777 | return true; |
| 4778 | } |
| 4779 | |
| 4780 | if (auto *RD = Ty->getAsCXXRecordDecl()) { |
| 4781 | llvm::SmallVector<CXXRecordDecl *> RecordDecls; |
| 4782 | RecordDecls.push_back(Elt: RD); |
| 4783 | while (RecordDecls.back()->getNumBases()) { |
| 4784 | CXXRecordDecl *D = RecordDecls.back(); |
| 4785 | assert(D->getNumBases() == 1 && |
| 4786 | "HLSL doesn't support multiple inheritance" ); |
| 4787 | RecordDecls.push_back( |
| 4788 | Elt: D->bases_begin()->getType()->castAsCXXRecordDecl()); |
| 4789 | } |
| 4790 | while (!RecordDecls.empty()) { |
| 4791 | CXXRecordDecl *RD = RecordDecls.pop_back_val(); |
| 4792 | for (auto *FD : RD->fields()) { |
| 4793 | if (FD->isUnnamedBitField()) |
| 4794 | continue; |
| 4795 | DeclAccessPair Found = DeclAccessPair::make(D: FD, AS: FD->getAccess()); |
| 4796 | DeclarationNameInfo NameInfo(FD->getDeclName(), E->getBeginLoc()); |
| 4797 | ExprResult Res = S.BuildFieldReferenceExpr( |
| 4798 | BaseExpr: E, IsArrow: false, OpLoc: E->getBeginLoc(), SS: CXXScopeSpec(), Field: FD, FoundDecl: Found, MemberNameInfo: NameInfo); |
| 4799 | if (Res.isInvalid()) |
| 4800 | return false; |
| 4801 | if (!buildInitializerListImpl(E: Res.get())) |
| 4802 | return false; |
| 4803 | } |
| 4804 | } |
| 4805 | } |
| 4806 | return true; |
| 4807 | } |
| 4808 | |
| 4809 | Expr *generateInitListsImpl(QualType Ty) { |
| 4810 | assert(ArgIt != ArgExprs.end() && "Something is off in iteration!" ); |
| 4811 | if (Ty->isScalarType() || (Ty->isRecordType() && !Ty->isAggregateType())) |
| 4812 | return *(ArgIt++); |
| 4813 | |
| 4814 | llvm::SmallVector<Expr *> Inits; |
| 4815 | Ty = Ty.getDesugaredType(Context: Ctx); |
| 4816 | if (Ty->isVectorType() || Ty->isConstantArrayType() || |
| 4817 | Ty->isConstantMatrixType()) { |
| 4818 | QualType ElTy; |
| 4819 | uint64_t Size = 0; |
| 4820 | if (auto *ATy = Ty->getAs<VectorType>()) { |
| 4821 | ElTy = ATy->getElementType(); |
| 4822 | Size = ATy->getNumElements(); |
| 4823 | } else if (auto *CMTy = Ty->getAs<ConstantMatrixType>()) { |
| 4824 | ElTy = CMTy->getElementType(); |
| 4825 | Size = CMTy->getNumElementsFlattened(); |
| 4826 | } else { |
| 4827 | auto *VTy = cast<ConstantArrayType>(Val: Ty.getTypePtr()); |
| 4828 | ElTy = VTy->getElementType(); |
| 4829 | Size = VTy->getZExtSize(); |
| 4830 | } |
| 4831 | for (uint64_t I = 0; I < Size; ++I) |
| 4832 | Inits.push_back(Elt: generateInitListsImpl(Ty: ElTy)); |
| 4833 | } |
| 4834 | if (auto *RD = Ty->getAsCXXRecordDecl()) { |
| 4835 | llvm::SmallVector<CXXRecordDecl *> RecordDecls; |
| 4836 | RecordDecls.push_back(Elt: RD); |
| 4837 | while (RecordDecls.back()->getNumBases()) { |
| 4838 | CXXRecordDecl *D = RecordDecls.back(); |
| 4839 | assert(D->getNumBases() == 1 && |
| 4840 | "HLSL doesn't support multiple inheritance" ); |
| 4841 | RecordDecls.push_back( |
| 4842 | Elt: D->bases_begin()->getType()->castAsCXXRecordDecl()); |
| 4843 | } |
| 4844 | while (!RecordDecls.empty()) { |
| 4845 | CXXRecordDecl *RD = RecordDecls.pop_back_val(); |
| 4846 | for (auto *FD : RD->fields()) |
| 4847 | if (!FD->isUnnamedBitField()) |
| 4848 | Inits.push_back(Elt: generateInitListsImpl(Ty: FD->getType())); |
| 4849 | } |
| 4850 | } |
| 4851 | auto *NewInit = new (Ctx) InitListExpr(Ctx, Inits.front()->getBeginLoc(), |
| 4852 | Inits, Inits.back()->getEndLoc()); |
| 4853 | NewInit->setType(Ty); |
| 4854 | return NewInit; |
| 4855 | } |
| 4856 | |
| 4857 | public: |
| 4858 | llvm::SmallVector<QualType, 16> DestTypes; |
| 4859 | llvm::SmallVector<Expr *, 16> ArgExprs; |
| 4860 | InitListTransformer(Sema &SemaRef, const InitializedEntity &Entity) |
| 4861 | : S(SemaRef), Ctx(SemaRef.getASTContext()), |
| 4862 | Wrap(Entity.getType()->isIncompleteArrayType()) { |
| 4863 | InitTy = Entity.getType().getNonReferenceType(); |
| 4864 | // When we're generating initializer lists for incomplete array types we |
| 4865 | // need to wrap around both when building the initializers and when |
| 4866 | // generating the final initializer lists. |
| 4867 | if (Wrap) { |
| 4868 | assert(InitTy->isIncompleteArrayType()); |
| 4869 | const IncompleteArrayType *IAT = Ctx.getAsIncompleteArrayType(T: InitTy); |
| 4870 | InitTy = IAT->getElementType(); |
| 4871 | } |
| 4872 | BuildFlattenedTypeList(BaseTy: InitTy, List&: DestTypes); |
| 4873 | DstIt = DestTypes.begin(); |
| 4874 | } |
| 4875 | |
| 4876 | bool buildInitializerList(Expr *E) { return buildInitializerListImpl(E); } |
| 4877 | |
| 4878 | Expr *generateInitLists() { |
| 4879 | assert(!ArgExprs.empty() && |
| 4880 | "Call buildInitializerList to generate argument expressions." ); |
| 4881 | ArgIt = ArgExprs.begin(); |
| 4882 | if (!Wrap) |
| 4883 | return generateInitListsImpl(Ty: InitTy); |
| 4884 | llvm::SmallVector<Expr *> Inits; |
| 4885 | while (ArgIt != ArgExprs.end()) |
| 4886 | Inits.push_back(Elt: generateInitListsImpl(Ty: InitTy)); |
| 4887 | |
| 4888 | auto *NewInit = new (Ctx) InitListExpr(Ctx, Inits.front()->getBeginLoc(), |
| 4889 | Inits, Inits.back()->getEndLoc()); |
| 4890 | llvm::APInt ArySize(64, Inits.size()); |
| 4891 | NewInit->setType(Ctx.getConstantArrayType(EltTy: InitTy, ArySize, SizeExpr: nullptr, |
| 4892 | ASM: ArraySizeModifier::Normal, IndexTypeQuals: 0)); |
| 4893 | return NewInit; |
| 4894 | } |
| 4895 | }; |
| 4896 | } // namespace |
| 4897 | |
| 4898 | // Recursively detect any incomplete array anywhere in the type graph, |
| 4899 | // including arrays, struct fields, and base classes. |
| 4900 | static bool containsIncompleteArrayType(QualType Ty) { |
| 4901 | Ty = Ty.getCanonicalType(); |
| 4902 | |
| 4903 | // Array types |
| 4904 | if (const ArrayType *AT = dyn_cast<ArrayType>(Val&: Ty)) { |
| 4905 | if (isa<IncompleteArrayType>(Val: AT)) |
| 4906 | return true; |
| 4907 | return containsIncompleteArrayType(Ty: AT->getElementType()); |
| 4908 | } |
| 4909 | |
| 4910 | // Record (struct/class) types |
| 4911 | if (const auto *RT = Ty->getAs<RecordType>()) { |
| 4912 | const RecordDecl *RD = RT->getDecl(); |
| 4913 | |
| 4914 | // Walk base classes (for C++ / HLSL structs with inheritance) |
| 4915 | if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(Val: RD)) { |
| 4916 | for (const CXXBaseSpecifier &Base : CXXRD->bases()) { |
| 4917 | if (containsIncompleteArrayType(Ty: Base.getType())) |
| 4918 | return true; |
| 4919 | } |
| 4920 | } |
| 4921 | |
| 4922 | // Walk fields |
| 4923 | for (const FieldDecl *F : RD->fields()) { |
| 4924 | if (containsIncompleteArrayType(Ty: F->getType())) |
| 4925 | return true; |
| 4926 | } |
| 4927 | } |
| 4928 | |
| 4929 | return false; |
| 4930 | } |
| 4931 | |
| 4932 | bool SemaHLSL::transformInitList(const InitializedEntity &Entity, |
| 4933 | InitListExpr *Init) { |
| 4934 | // If the initializer is a scalar, just return it. |
| 4935 | if (Init->getType()->isScalarType()) |
| 4936 | return true; |
| 4937 | ASTContext &Ctx = SemaRef.getASTContext(); |
| 4938 | InitListTransformer ILT(SemaRef, Entity); |
| 4939 | |
| 4940 | for (unsigned I = 0; I < Init->getNumInits(); ++I) { |
| 4941 | Expr *E = Init->getInit(Init: I); |
| 4942 | if (E->HasSideEffects(Ctx)) { |
| 4943 | QualType Ty = E->getType(); |
| 4944 | if (Ty->isRecordType()) |
| 4945 | E = new (Ctx) MaterializeTemporaryExpr(Ty, E, E->isLValue()); |
| 4946 | E = new (Ctx) OpaqueValueExpr(E->getBeginLoc(), Ty, E->getValueKind(), |
| 4947 | E->getObjectKind(), E); |
| 4948 | Init->setInit(Init: I, expr: E); |
| 4949 | } |
| 4950 | if (!ILT.buildInitializerList(E)) |
| 4951 | return false; |
| 4952 | } |
| 4953 | size_t ExpectedSize = ILT.DestTypes.size(); |
| 4954 | size_t ActualSize = ILT.ArgExprs.size(); |
| 4955 | if (ExpectedSize == 0 && ActualSize == 0) |
| 4956 | return true; |
| 4957 | |
| 4958 | // Reject empty initializer if *any* incomplete array exists structurally |
| 4959 | if (ActualSize == 0 && containsIncompleteArrayType(Ty: Entity.getType())) { |
| 4960 | QualType InitTy = Entity.getType().getNonReferenceType(); |
| 4961 | if (InitTy.hasAddressSpace()) |
| 4962 | InitTy = SemaRef.getASTContext().removeAddrSpaceQualType(T: InitTy); |
| 4963 | |
| 4964 | SemaRef.Diag(Loc: Init->getBeginLoc(), DiagID: diag::err_hlsl_incorrect_num_initializers) |
| 4965 | << /*TooManyOrFew=*/(int)(ExpectedSize < ActualSize) << InitTy |
| 4966 | << /*ExpectedSize=*/ExpectedSize << /*ActualSize=*/ActualSize; |
| 4967 | return false; |
| 4968 | } |
| 4969 | |
| 4970 | // We infer size after validating legality. |
| 4971 | // For incomplete arrays it is completely arbitrary to choose whether we think |
| 4972 | // the user intended fewer or more elements. This implementation assumes that |
| 4973 | // the user intended more, and errors that there are too few initializers to |
| 4974 | // complete the final element. |
| 4975 | if (Entity.getType()->isIncompleteArrayType()) { |
| 4976 | assert(ExpectedSize > 0 && |
| 4977 | "The expected size of an incomplete array type must be at least 1." ); |
| 4978 | ExpectedSize = |
| 4979 | ((ActualSize + ExpectedSize - 1) / ExpectedSize) * ExpectedSize; |
| 4980 | } |
| 4981 | |
| 4982 | // An initializer list might be attempting to initialize a reference or |
| 4983 | // rvalue-reference. When checking the initializer we should look through |
| 4984 | // the reference. |
| 4985 | QualType InitTy = Entity.getType().getNonReferenceType(); |
| 4986 | if (InitTy.hasAddressSpace()) |
| 4987 | InitTy = SemaRef.getASTContext().removeAddrSpaceQualType(T: InitTy); |
| 4988 | if (ExpectedSize != ActualSize) { |
| 4989 | int TooManyOrFew = ActualSize > ExpectedSize ? 1 : 0; |
| 4990 | SemaRef.Diag(Loc: Init->getBeginLoc(), DiagID: diag::err_hlsl_incorrect_num_initializers) |
| 4991 | << TooManyOrFew << InitTy << ExpectedSize << ActualSize; |
| 4992 | return false; |
| 4993 | } |
| 4994 | |
| 4995 | // generateInitListsImpl will always return an InitListExpr here, because the |
| 4996 | // scalar case is handled above. |
| 4997 | auto *NewInit = cast<InitListExpr>(Val: ILT.generateInitLists()); |
| 4998 | Init->resizeInits(Context: Ctx, NumInits: NewInit->getNumInits()); |
| 4999 | for (unsigned I = 0; I < NewInit->getNumInits(); ++I) |
| 5000 | Init->updateInit(C: Ctx, Init: I, expr: NewInit->getInit(Init: I)); |
| 5001 | return true; |
| 5002 | } |
| 5003 | |
| 5004 | bool SemaHLSL::handleInitialization(VarDecl *VDecl, Expr *&Init) { |
| 5005 | const HLSLVkConstantIdAttr *ConstIdAttr = |
| 5006 | VDecl->getAttr<HLSLVkConstantIdAttr>(); |
| 5007 | if (!ConstIdAttr) |
| 5008 | return true; |
| 5009 | |
| 5010 | ASTContext &Context = SemaRef.getASTContext(); |
| 5011 | |
| 5012 | APValue InitValue; |
| 5013 | if (!Init->isCXX11ConstantExpr(Ctx: Context, Result: &InitValue)) { |
| 5014 | Diag(Loc: VDecl->getLocation(), DiagID: diag::err_specialization_const); |
| 5015 | VDecl->setInvalidDecl(); |
| 5016 | return false; |
| 5017 | } |
| 5018 | |
| 5019 | Builtin::ID BID = |
| 5020 | getSpecConstBuiltinId(Type: VDecl->getType()->getUnqualifiedDesugaredType()); |
| 5021 | |
| 5022 | // Argument 1: The ID from the attribute |
| 5023 | int ConstantID = ConstIdAttr->getId(); |
| 5024 | llvm::APInt IDVal(Context.getIntWidth(T: Context.IntTy), ConstantID); |
| 5025 | Expr *IdExpr = IntegerLiteral::Create(C: Context, V: IDVal, type: Context.IntTy, |
| 5026 | l: ConstIdAttr->getLocation()); |
| 5027 | |
| 5028 | SmallVector<Expr *, 2> Args = {IdExpr, Init}; |
| 5029 | Expr *C = SemaRef.BuildBuiltinCallExpr(Loc: Init->getExprLoc(), Id: BID, CallArgs: Args); |
| 5030 | if (C->getType()->getCanonicalTypeUnqualified() != |
| 5031 | VDecl->getType()->getCanonicalTypeUnqualified()) { |
| 5032 | C = SemaRef |
| 5033 | .BuildCStyleCastExpr(LParenLoc: SourceLocation(), |
| 5034 | Ty: Context.getTrivialTypeSourceInfo( |
| 5035 | T: Init->getType(), Loc: Init->getExprLoc()), |
| 5036 | RParenLoc: SourceLocation(), Op: C) |
| 5037 | .get(); |
| 5038 | } |
| 5039 | Init = C; |
| 5040 | return true; |
| 5041 | } |
| 5042 | |