| 1 | //===--- SemaOpenACC.cpp - Semantic Analysis for OpenACC constructs -------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | /// \file |
| 9 | /// This file implements semantic analysis for OpenACC constructs, and things |
| 10 | /// that are not clause specific. |
| 11 | /// |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #include "clang/Sema/SemaOpenACC.h" |
| 15 | #include "clang/AST/ASTConsumer.h" |
| 16 | #include "clang/AST/DeclOpenACC.h" |
| 17 | #include "clang/AST/StmtOpenACC.h" |
| 18 | #include "clang/Basic/DiagnosticSema.h" |
| 19 | #include "clang/Basic/OpenACCKinds.h" |
| 20 | #include "clang/Basic/SourceManager.h" |
| 21 | #include "clang/Sema/Initialization.h" |
| 22 | #include "clang/Sema/Scope.h" |
| 23 | #include "clang/Sema/Sema.h" |
| 24 | #include "llvm/ADT/StringExtras.h" |
| 25 | #include "llvm/Support/Casting.h" |
| 26 | |
| 27 | using namespace clang; |
| 28 | |
| 29 | namespace { |
| 30 | bool diagnoseConstructAppertainment(SemaOpenACC &S, OpenACCDirectiveKind K, |
| 31 | SourceLocation StartLoc, bool IsStmt) { |
| 32 | switch (K) { |
| 33 | default: |
| 34 | case OpenACCDirectiveKind::Invalid: |
| 35 | // Nothing to do here, both invalid and unimplemented don't really need to |
| 36 | // do anything. |
| 37 | break; |
| 38 | case OpenACCDirectiveKind::Parallel: |
| 39 | case OpenACCDirectiveKind::ParallelLoop: |
| 40 | case OpenACCDirectiveKind::Serial: |
| 41 | case OpenACCDirectiveKind::SerialLoop: |
| 42 | case OpenACCDirectiveKind::Kernels: |
| 43 | case OpenACCDirectiveKind::KernelsLoop: |
| 44 | case OpenACCDirectiveKind::Loop: |
| 45 | case OpenACCDirectiveKind::Data: |
| 46 | case OpenACCDirectiveKind::EnterData: |
| 47 | case OpenACCDirectiveKind::ExitData: |
| 48 | case OpenACCDirectiveKind::HostData: |
| 49 | case OpenACCDirectiveKind::Wait: |
| 50 | case OpenACCDirectiveKind::Update: |
| 51 | case OpenACCDirectiveKind::Init: |
| 52 | case OpenACCDirectiveKind::Shutdown: |
| 53 | case OpenACCDirectiveKind::Cache: |
| 54 | case OpenACCDirectiveKind::Atomic: |
| 55 | if (!IsStmt) |
| 56 | return S.Diag(Loc: StartLoc, DiagID: diag::err_acc_construct_appertainment) << K; |
| 57 | break; |
| 58 | } |
| 59 | return false; |
| 60 | } |
| 61 | |
| 62 | void CollectActiveReductionClauses( |
| 63 | llvm::SmallVector<OpenACCReductionClause *> &ActiveClauses, |
| 64 | ArrayRef<OpenACCClause *> CurClauses) { |
| 65 | for (auto *CurClause : CurClauses) { |
| 66 | if (auto *RedClause = dyn_cast<OpenACCReductionClause>(Val: CurClause); |
| 67 | RedClause && !RedClause->getVarList().empty()) |
| 68 | ActiveClauses.push_back(Elt: RedClause); |
| 69 | } |
| 70 | } |
| 71 | |
| 72 | // Depth needs to be preserved for all associated statements that aren't |
| 73 | // supposed to modify the compute/combined/loop construct information. |
| 74 | bool PreserveLoopRAIIDepthInAssociatedStmtRAII(OpenACCDirectiveKind DK) { |
| 75 | switch (DK) { |
| 76 | case OpenACCDirectiveKind::Parallel: |
| 77 | case OpenACCDirectiveKind::ParallelLoop: |
| 78 | case OpenACCDirectiveKind::Serial: |
| 79 | case OpenACCDirectiveKind::SerialLoop: |
| 80 | case OpenACCDirectiveKind::Kernels: |
| 81 | case OpenACCDirectiveKind::KernelsLoop: |
| 82 | case OpenACCDirectiveKind::Loop: |
| 83 | return false; |
| 84 | case OpenACCDirectiveKind::Data: |
| 85 | case OpenACCDirectiveKind::HostData: |
| 86 | case OpenACCDirectiveKind::Atomic: |
| 87 | return true; |
| 88 | case OpenACCDirectiveKind::Cache: |
| 89 | case OpenACCDirectiveKind::Routine: |
| 90 | case OpenACCDirectiveKind::Declare: |
| 91 | case OpenACCDirectiveKind::EnterData: |
| 92 | case OpenACCDirectiveKind::ExitData: |
| 93 | case OpenACCDirectiveKind::Wait: |
| 94 | case OpenACCDirectiveKind::Init: |
| 95 | case OpenACCDirectiveKind::Shutdown: |
| 96 | case OpenACCDirectiveKind::Set: |
| 97 | case OpenACCDirectiveKind::Update: |
| 98 | llvm_unreachable("Doesn't have an associated stmt" ); |
| 99 | case OpenACCDirectiveKind::Invalid: |
| 100 | llvm_unreachable("Unhandled directive kind?" ); |
| 101 | } |
| 102 | llvm_unreachable("Unhandled directive kind?" ); |
| 103 | } |
| 104 | |
| 105 | } // namespace |
| 106 | |
| 107 | SemaOpenACC::SemaOpenACC(Sema &S) : SemaBase(S) {} |
| 108 | |
| 109 | SemaOpenACC::AssociatedStmtRAII::AssociatedStmtRAII( |
| 110 | SemaOpenACC &S, OpenACCDirectiveKind DK, SourceLocation DirLoc, |
| 111 | ArrayRef<const OpenACCClause *> UnInstClauses, |
| 112 | ArrayRef<OpenACCClause *> Clauses) |
| 113 | : SemaRef(S), OldActiveComputeConstructInfo(S.ActiveComputeConstructInfo), |
| 114 | DirKind(DK), OldLoopGangClauseOnKernel(S.LoopGangClauseOnKernel), |
| 115 | OldLoopWorkerClauseLoc(S.LoopWorkerClauseLoc), |
| 116 | OldLoopVectorClauseLoc(S.LoopVectorClauseLoc), |
| 117 | OldLoopWithoutSeqInfo(S.LoopWithoutSeqInfo), |
| 118 | ActiveReductionClauses(S.ActiveReductionClauses), |
| 119 | LoopRAII(SemaRef, PreserveLoopRAIIDepthInAssociatedStmtRAII(DK: DirKind)) { |
| 120 | |
| 121 | // Compute constructs end up taking their 'loop'. |
| 122 | if (DirKind == OpenACCDirectiveKind::Parallel || |
| 123 | DirKind == OpenACCDirectiveKind::Serial || |
| 124 | DirKind == OpenACCDirectiveKind::Kernels) { |
| 125 | CollectActiveReductionClauses(ActiveClauses&: S.ActiveReductionClauses, CurClauses: Clauses); |
| 126 | SemaRef.ActiveComputeConstructInfo.Kind = DirKind; |
| 127 | SemaRef.ActiveComputeConstructInfo.Clauses = Clauses; |
| 128 | |
| 129 | // OpenACC 3.3 2.9.2: When the parent compute construct is a kernels |
| 130 | // construct, the gang clause behaves as follows. ... The region of a loop |
| 131 | // with a gang clause may not contain another loop with a gang clause unless |
| 132 | // within a nested compute region. |
| 133 | // |
| 134 | // Implement the 'unless within a nested compute region' part. |
| 135 | SemaRef.LoopGangClauseOnKernel = {}; |
| 136 | SemaRef.LoopWorkerClauseLoc = {}; |
| 137 | SemaRef.LoopVectorClauseLoc = {}; |
| 138 | SemaRef.LoopWithoutSeqInfo = {}; |
| 139 | } else if (DirKind == OpenACCDirectiveKind::ParallelLoop || |
| 140 | DirKind == OpenACCDirectiveKind::SerialLoop || |
| 141 | DirKind == OpenACCDirectiveKind::KernelsLoop) { |
| 142 | SemaRef.ActiveComputeConstructInfo.Kind = DirKind; |
| 143 | SemaRef.ActiveComputeConstructInfo.Clauses = Clauses; |
| 144 | |
| 145 | CollectActiveReductionClauses(ActiveClauses&: S.ActiveReductionClauses, CurClauses: Clauses); |
| 146 | SetCollapseInfoBeforeAssociatedStmt(UnInstClauses, Clauses); |
| 147 | SetTileInfoBeforeAssociatedStmt(UnInstClauses, Clauses); |
| 148 | |
| 149 | SemaRef.LoopGangClauseOnKernel = {}; |
| 150 | SemaRef.LoopWorkerClauseLoc = {}; |
| 151 | SemaRef.LoopVectorClauseLoc = {}; |
| 152 | |
| 153 | // Set the active 'loop' location if there isn't a 'seq' on it, so we can |
| 154 | // diagnose the for loops. |
| 155 | SemaRef.LoopWithoutSeqInfo = {}; |
| 156 | if (Clauses.end() == |
| 157 | llvm::find_if(Range&: Clauses, P: llvm::IsaPred<OpenACCSeqClause>)) |
| 158 | SemaRef.LoopWithoutSeqInfo = {.Kind: DirKind, .Loc: DirLoc}; |
| 159 | |
| 160 | // OpenACC 3.3 2.9.2: When the parent compute construct is a kernels |
| 161 | // construct, the gang clause behaves as follows. ... The region of a loop |
| 162 | // with a gang clause may not contain another loop with a gang clause unless |
| 163 | // within a nested compute region. |
| 164 | // |
| 165 | // We don't bother doing this when this is a template instantiation, as |
| 166 | // there is no reason to do these checks: the existance of a |
| 167 | // gang/kernels/etc cannot be dependent. |
| 168 | if (DirKind == OpenACCDirectiveKind::KernelsLoop && UnInstClauses.empty()) { |
| 169 | // This handles the 'outer loop' part of this. |
| 170 | auto *Itr = llvm::find_if(Range&: Clauses, P: llvm::IsaPred<OpenACCGangClause>); |
| 171 | if (Itr != Clauses.end()) |
| 172 | SemaRef.LoopGangClauseOnKernel = {.Loc: (*Itr)->getBeginLoc(), .DirKind: DirKind}; |
| 173 | } |
| 174 | |
| 175 | if (UnInstClauses.empty()) { |
| 176 | auto *Itr = llvm::find_if(Range&: Clauses, P: llvm::IsaPred<OpenACCWorkerClause>); |
| 177 | if (Itr != Clauses.end()) |
| 178 | SemaRef.LoopWorkerClauseLoc = (*Itr)->getBeginLoc(); |
| 179 | |
| 180 | auto *Itr2 = llvm::find_if(Range&: Clauses, P: llvm::IsaPred<OpenACCVectorClause>); |
| 181 | if (Itr2 != Clauses.end()) |
| 182 | SemaRef.LoopVectorClauseLoc = (*Itr2)->getBeginLoc(); |
| 183 | } |
| 184 | } else if (DirKind == OpenACCDirectiveKind::Loop) { |
| 185 | CollectActiveReductionClauses(ActiveClauses&: S.ActiveReductionClauses, CurClauses: Clauses); |
| 186 | SetCollapseInfoBeforeAssociatedStmt(UnInstClauses, Clauses); |
| 187 | SetTileInfoBeforeAssociatedStmt(UnInstClauses, Clauses); |
| 188 | |
| 189 | // Set the active 'loop' location if there isn't a 'seq' on it, so we can |
| 190 | // diagnose the for loops. |
| 191 | SemaRef.LoopWithoutSeqInfo = {}; |
| 192 | if (Clauses.end() == |
| 193 | llvm::find_if(Range&: Clauses, P: llvm::IsaPred<OpenACCSeqClause>)) |
| 194 | SemaRef.LoopWithoutSeqInfo = {.Kind: DirKind, .Loc: DirLoc}; |
| 195 | |
| 196 | // OpenACC 3.3 2.9.2: When the parent compute construct is a kernels |
| 197 | // construct, the gang clause behaves as follows. ... The region of a loop |
| 198 | // with a gang clause may not contain another loop with a gang clause unless |
| 199 | // within a nested compute region. |
| 200 | // |
| 201 | // We don't bother doing this when this is a template instantiation, as |
| 202 | // there is no reason to do these checks: the existance of a |
| 203 | // gang/kernels/etc cannot be dependent. |
| 204 | if (SemaRef.getActiveComputeConstructInfo().Kind == |
| 205 | OpenACCDirectiveKind::Kernels && |
| 206 | UnInstClauses.empty()) { |
| 207 | // This handles the 'outer loop' part of this. |
| 208 | auto *Itr = llvm::find_if(Range&: Clauses, P: llvm::IsaPred<OpenACCGangClause>); |
| 209 | if (Itr != Clauses.end()) |
| 210 | SemaRef.LoopGangClauseOnKernel = {.Loc: (*Itr)->getBeginLoc(), |
| 211 | .DirKind: OpenACCDirectiveKind::Kernels}; |
| 212 | } |
| 213 | |
| 214 | if (UnInstClauses.empty()) { |
| 215 | auto *Itr = llvm::find_if(Range&: Clauses, P: llvm::IsaPred<OpenACCWorkerClause>); |
| 216 | if (Itr != Clauses.end()) |
| 217 | SemaRef.LoopWorkerClauseLoc = (*Itr)->getBeginLoc(); |
| 218 | |
| 219 | auto *Itr2 = llvm::find_if(Range&: Clauses, P: llvm::IsaPred<OpenACCVectorClause>); |
| 220 | if (Itr2 != Clauses.end()) |
| 221 | SemaRef.LoopVectorClauseLoc = (*Itr2)->getBeginLoc(); |
| 222 | } |
| 223 | } |
| 224 | } |
| 225 | |
| 226 | namespace { |
| 227 | // Given two collapse clauses, and the uninstanted version of the new one, |
| 228 | // return the 'best' one for the purposes of setting the collapse checking |
| 229 | // values. |
| 230 | const OpenACCCollapseClause * |
| 231 | getBestCollapseCandidate(const OpenACCCollapseClause *Old, |
| 232 | const OpenACCCollapseClause *New, |
| 233 | const OpenACCCollapseClause *UnInstNew) { |
| 234 | // If the loop count is nullptr, it is because instantiation failed, so this |
| 235 | // can't be the best one. |
| 236 | if (!New->getLoopCount()) |
| 237 | return Old; |
| 238 | |
| 239 | // If the loop-count had an error, than 'new' isn't a candidate. |
| 240 | if (!New->getLoopCount()) |
| 241 | return Old; |
| 242 | |
| 243 | // Don't consider uninstantiated ones, since we can't really check these. |
| 244 | if (New->getLoopCount()->isInstantiationDependent()) |
| 245 | return Old; |
| 246 | |
| 247 | // If this is an instantiation, and the old version wasn't instantation |
| 248 | // dependent, than nothing has changed and we've already done a diagnostic |
| 249 | // based on this one, so don't consider it. |
| 250 | if (UnInstNew && !UnInstNew->getLoopCount()->isInstantiationDependent()) |
| 251 | return Old; |
| 252 | |
| 253 | // New is now a valid candidate, so if there isn't an old one at this point, |
| 254 | // New is the only valid one. |
| 255 | if (!Old) |
| 256 | return New; |
| 257 | |
| 258 | // If the 'New' expression has a larger value than 'Old', then it is the new |
| 259 | // best candidate. |
| 260 | if (cast<ConstantExpr>(Val: Old->getLoopCount())->getResultAsAPSInt() < |
| 261 | cast<ConstantExpr>(Val: New->getLoopCount())->getResultAsAPSInt()) |
| 262 | return New; |
| 263 | |
| 264 | return Old; |
| 265 | } |
| 266 | } // namespace |
| 267 | |
| 268 | void SemaOpenACC::AssociatedStmtRAII::SetCollapseInfoBeforeAssociatedStmt( |
| 269 | ArrayRef<const OpenACCClause *> UnInstClauses, |
| 270 | ArrayRef<OpenACCClause *> Clauses) { |
| 271 | |
| 272 | // Reset this checking for loops that aren't covered in a RAII object. |
| 273 | SemaRef.LoopInfo.CurLevelHasLoopAlready = false; |
| 274 | SemaRef.CollapseInfo.CollapseDepthSatisfied = true; |
| 275 | SemaRef.CollapseInfo.CurCollapseCount = 0; |
| 276 | SemaRef.TileInfo.TileDepthSatisfied = true; |
| 277 | |
| 278 | // We make sure to take an optional list of uninstantiated clauses, so that |
| 279 | // we can check to make sure we don't 'double diagnose' in the event that |
| 280 | // the value of 'N' was not dependent in a template. Since we cannot count on |
| 281 | // there only being a single collapse clause, we count on the order to make |
| 282 | // sure get the matching ones, and we count on TreeTransform not removing |
| 283 | // these, even if loop-count instantiation failed. We can check the |
| 284 | // non-dependent ones right away, and realize that subsequent instantiation |
| 285 | // can only make it more specific. |
| 286 | |
| 287 | auto *UnInstClauseItr = |
| 288 | llvm::find_if(Range&: UnInstClauses, P: llvm::IsaPred<OpenACCCollapseClause>); |
| 289 | auto *ClauseItr = |
| 290 | llvm::find_if(Range&: Clauses, P: llvm::IsaPred<OpenACCCollapseClause>); |
| 291 | const OpenACCCollapseClause *FoundClause = nullptr; |
| 292 | |
| 293 | // Loop through the list of Collapse clauses and find the one that: |
| 294 | // 1- Has a non-dependent, non-null loop count (null means error, likely |
| 295 | // during instantiation). |
| 296 | // 2- If UnInstClauses isn't empty, its corresponding |
| 297 | // loop count was dependent. |
| 298 | // 3- Has the largest 'loop count' of all. |
| 299 | while (ClauseItr != Clauses.end()) { |
| 300 | const OpenACCCollapseClause *CurClause = |
| 301 | cast<OpenACCCollapseClause>(Val: *ClauseItr); |
| 302 | const OpenACCCollapseClause *UnInstCurClause = |
| 303 | UnInstClauseItr == UnInstClauses.end() |
| 304 | ? nullptr |
| 305 | : cast<OpenACCCollapseClause>(Val: *UnInstClauseItr); |
| 306 | |
| 307 | FoundClause = |
| 308 | getBestCollapseCandidate(Old: FoundClause, New: CurClause, UnInstNew: UnInstCurClause); |
| 309 | |
| 310 | UnInstClauseItr = |
| 311 | UnInstClauseItr == UnInstClauses.end() |
| 312 | ? UnInstClauseItr |
| 313 | : std::find_if(first: std::next(x: UnInstClauseItr), last: UnInstClauses.end(), |
| 314 | pred: llvm::IsaPred<OpenACCCollapseClause>); |
| 315 | ClauseItr = std::find_if(first: std::next(x: ClauseItr), last: Clauses.end(), |
| 316 | pred: llvm::IsaPred<OpenACCCollapseClause>); |
| 317 | } |
| 318 | |
| 319 | if (!FoundClause) |
| 320 | return; |
| 321 | |
| 322 | SemaRef.CollapseInfo.ActiveCollapse = FoundClause; |
| 323 | SemaRef.CollapseInfo.CollapseDepthSatisfied = false; |
| 324 | SemaRef.CollapseInfo.CurCollapseCount = |
| 325 | cast<ConstantExpr>(Val: FoundClause->getLoopCount())->getResultAsAPSInt(); |
| 326 | SemaRef.CollapseInfo.DirectiveKind = DirKind; |
| 327 | } |
| 328 | |
| 329 | void SemaOpenACC::AssociatedStmtRAII::SetTileInfoBeforeAssociatedStmt( |
| 330 | ArrayRef<const OpenACCClause *> UnInstClauses, |
| 331 | ArrayRef<OpenACCClause *> Clauses) { |
| 332 | // We don't diagnose if this is during instantiation, since the only thing we |
| 333 | // care about is the number of arguments, which we can figure out without |
| 334 | // instantiation, so we don't want to double-diagnose. |
| 335 | if (UnInstClauses.size() > 0) |
| 336 | return; |
| 337 | auto *TileClauseItr = |
| 338 | llvm::find_if(Range&: Clauses, P: llvm::IsaPred<OpenACCTileClause>); |
| 339 | |
| 340 | if (Clauses.end() == TileClauseItr) |
| 341 | return; |
| 342 | |
| 343 | OpenACCTileClause *TileClause = cast<OpenACCTileClause>(Val: *TileClauseItr); |
| 344 | |
| 345 | // Multiple tile clauses are allowed, so ensure that we use the one with the |
| 346 | // largest 'tile count'. |
| 347 | while (Clauses.end() != |
| 348 | (TileClauseItr = std::find_if(first: std::next(x: TileClauseItr), last: Clauses.end(), |
| 349 | pred: llvm::IsaPred<OpenACCTileClause>))) { |
| 350 | OpenACCTileClause *NewClause = cast<OpenACCTileClause>(Val: *TileClauseItr); |
| 351 | if (NewClause->getSizeExprs().size() > TileClause->getSizeExprs().size()) |
| 352 | TileClause = NewClause; |
| 353 | } |
| 354 | |
| 355 | SemaRef.TileInfo.ActiveTile = TileClause; |
| 356 | SemaRef.TileInfo.TileDepthSatisfied = false; |
| 357 | SemaRef.TileInfo.CurTileCount = |
| 358 | static_cast<unsigned>(TileClause->getSizeExprs().size()); |
| 359 | SemaRef.TileInfo.DirectiveKind = DirKind; |
| 360 | } |
| 361 | |
| 362 | SemaOpenACC::AssociatedStmtRAII::~AssociatedStmtRAII() { |
| 363 | if (DirKind == OpenACCDirectiveKind::Parallel || |
| 364 | DirKind == OpenACCDirectiveKind::Serial || |
| 365 | DirKind == OpenACCDirectiveKind::Kernels || |
| 366 | DirKind == OpenACCDirectiveKind::Loop || |
| 367 | DirKind == OpenACCDirectiveKind::ParallelLoop || |
| 368 | DirKind == OpenACCDirectiveKind::SerialLoop || |
| 369 | DirKind == OpenACCDirectiveKind::KernelsLoop) { |
| 370 | SemaRef.ActiveComputeConstructInfo = OldActiveComputeConstructInfo; |
| 371 | SemaRef.LoopGangClauseOnKernel = OldLoopGangClauseOnKernel; |
| 372 | SemaRef.LoopWorkerClauseLoc = OldLoopWorkerClauseLoc; |
| 373 | SemaRef.LoopVectorClauseLoc = OldLoopVectorClauseLoc; |
| 374 | SemaRef.LoopWithoutSeqInfo = OldLoopWithoutSeqInfo; |
| 375 | SemaRef.ActiveReductionClauses.swap(RHS&: ActiveReductionClauses); |
| 376 | } else if (DirKind == OpenACCDirectiveKind::Data || |
| 377 | DirKind == OpenACCDirectiveKind::HostData) { |
| 378 | // Intentionally doesn't reset the Loop, Compute Construct, or reduction |
| 379 | // effects. |
| 380 | } |
| 381 | } |
| 382 | |
| 383 | void SemaOpenACC::ActOnConstruct(OpenACCDirectiveKind K, |
| 384 | SourceLocation DirLoc) { |
| 385 | // Start an evaluation context to parse the clause arguments on. |
| 386 | SemaRef.PushExpressionEvaluationContext( |
| 387 | NewContext: Sema::ExpressionEvaluationContext::PotentiallyEvaluated); |
| 388 | |
| 389 | // There is nothing do do here as all we have at this point is the name of the |
| 390 | // construct itself. |
| 391 | } |
| 392 | |
| 393 | ExprResult SemaOpenACC::ActOnIntExpr(OpenACCDirectiveKind DK, |
| 394 | OpenACCClauseKind CK, SourceLocation Loc, |
| 395 | Expr *IntExpr) { |
| 396 | |
| 397 | assert(((DK != OpenACCDirectiveKind::Invalid && |
| 398 | CK == OpenACCClauseKind::Invalid) || |
| 399 | (DK == OpenACCDirectiveKind::Invalid && |
| 400 | CK != OpenACCClauseKind::Invalid) || |
| 401 | (DK == OpenACCDirectiveKind::Invalid && |
| 402 | CK == OpenACCClauseKind::Invalid)) && |
| 403 | "Only one of directive or clause kind should be provided" ); |
| 404 | |
| 405 | class IntExprConverter : public Sema::ICEConvertDiagnoser { |
| 406 | OpenACCDirectiveKind DirectiveKind; |
| 407 | OpenACCClauseKind ClauseKind; |
| 408 | Expr *IntExpr; |
| 409 | |
| 410 | // gets the index into the diagnostics so we can use this for clauses, |
| 411 | // directives, and sub array.s |
| 412 | unsigned getDiagKind() const { |
| 413 | if (ClauseKind != OpenACCClauseKind::Invalid) |
| 414 | return 0; |
| 415 | if (DirectiveKind != OpenACCDirectiveKind::Invalid) |
| 416 | return 1; |
| 417 | return 2; |
| 418 | } |
| 419 | |
| 420 | public: |
| 421 | IntExprConverter(OpenACCDirectiveKind DK, OpenACCClauseKind CK, |
| 422 | Expr *IntExpr) |
| 423 | : ICEConvertDiagnoser(/*AllowScopedEnumerations=*/false, |
| 424 | /*Suppress=*/false, |
| 425 | /*SuppressConversion=*/true), |
| 426 | DirectiveKind(DK), ClauseKind(CK), IntExpr(IntExpr) {} |
| 427 | |
| 428 | bool match(QualType T) override { |
| 429 | // OpenACC spec just calls this 'integer expression' as having an |
| 430 | // 'integer type', so fall back on C99's 'integer type'. |
| 431 | return T->isIntegerType(); |
| 432 | } |
| 433 | SemaBase::SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc, |
| 434 | QualType T) override { |
| 435 | return S.Diag(Loc, DiagID: diag::err_acc_int_expr_requires_integer) |
| 436 | << getDiagKind() << ClauseKind << DirectiveKind << T; |
| 437 | } |
| 438 | |
| 439 | SemaBase::SemaDiagnosticBuilder |
| 440 | diagnoseIncomplete(Sema &S, SourceLocation Loc, QualType T) override { |
| 441 | return S.Diag(Loc, DiagID: diag::err_acc_int_expr_incomplete_class_type) |
| 442 | << T << IntExpr->getSourceRange(); |
| 443 | } |
| 444 | |
| 445 | SemaBase::SemaDiagnosticBuilder |
| 446 | diagnoseExplicitConv(Sema &S, SourceLocation Loc, QualType T, |
| 447 | QualType ConvTy) override { |
| 448 | return S.Diag(Loc, DiagID: diag::err_acc_int_expr_explicit_conversion) |
| 449 | << T << ConvTy; |
| 450 | } |
| 451 | |
| 452 | SemaBase::SemaDiagnosticBuilder noteExplicitConv(Sema &S, |
| 453 | CXXConversionDecl *Conv, |
| 454 | QualType ConvTy) override { |
| 455 | return S.Diag(Loc: Conv->getLocation(), DiagID: diag::note_acc_int_expr_conversion) |
| 456 | << ConvTy->isEnumeralType() << ConvTy; |
| 457 | } |
| 458 | |
| 459 | SemaBase::SemaDiagnosticBuilder |
| 460 | diagnoseAmbiguous(Sema &S, SourceLocation Loc, QualType T) override { |
| 461 | return S.Diag(Loc, DiagID: diag::err_acc_int_expr_multiple_conversions) << T; |
| 462 | } |
| 463 | |
| 464 | SemaBase::SemaDiagnosticBuilder |
| 465 | noteAmbiguous(Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override { |
| 466 | return S.Diag(Loc: Conv->getLocation(), DiagID: diag::note_acc_int_expr_conversion) |
| 467 | << ConvTy->isEnumeralType() << ConvTy; |
| 468 | } |
| 469 | |
| 470 | SemaBase::SemaDiagnosticBuilder |
| 471 | diagnoseConversion(Sema &S, SourceLocation Loc, QualType T, |
| 472 | QualType ConvTy) override { |
| 473 | llvm_unreachable("conversion functions are permitted" ); |
| 474 | } |
| 475 | } IntExprDiagnoser(DK, CK, IntExpr); |
| 476 | |
| 477 | if (!IntExpr) |
| 478 | return ExprError(); |
| 479 | |
| 480 | ExprResult IntExprResult = SemaRef.PerformContextualImplicitConversion( |
| 481 | Loc, FromE: IntExpr, Converter&: IntExprDiagnoser); |
| 482 | if (IntExprResult.isInvalid()) |
| 483 | return ExprError(); |
| 484 | |
| 485 | IntExpr = IntExprResult.get(); |
| 486 | if (!IntExpr->isTypeDependent() && !IntExpr->getType()->isIntegerType()) |
| 487 | return ExprError(); |
| 488 | |
| 489 | // TODO OpenACC: Do we want to perform usual unary conversions here? When |
| 490 | // doing codegen we might find that is necessary, but skip it for now. |
| 491 | return IntExpr; |
| 492 | } |
| 493 | |
| 494 | bool SemaOpenACC::CheckVarIsPointerType(OpenACCClauseKind ClauseKind, |
| 495 | Expr *VarExpr) { |
| 496 | // We already know that VarExpr is a proper reference to a variable, so we |
| 497 | // should be able to just take the type of the expression to get the type of |
| 498 | // the referenced variable. |
| 499 | |
| 500 | // We've already seen an error, don't diagnose anything else. |
| 501 | if (!VarExpr || VarExpr->containsErrors()) |
| 502 | return false; |
| 503 | |
| 504 | if (isa<ArraySectionExpr>(Val: VarExpr->IgnoreParenImpCasts()) || |
| 505 | VarExpr->hasPlaceholderType(K: BuiltinType::ArraySection)) { |
| 506 | Diag(Loc: VarExpr->getExprLoc(), DiagID: diag::err_array_section_use) << /*OpenACC=*/0; |
| 507 | Diag(Loc: VarExpr->getExprLoc(), DiagID: diag::note_acc_expected_pointer_var); |
| 508 | return true; |
| 509 | } |
| 510 | |
| 511 | QualType Ty = VarExpr->getType(); |
| 512 | Ty = Ty.getNonReferenceType().getUnqualifiedType(); |
| 513 | |
| 514 | // Nothing we can do if this is a dependent type. |
| 515 | if (Ty->isDependentType()) |
| 516 | return false; |
| 517 | |
| 518 | if (!Ty->isPointerType()) |
| 519 | return Diag(Loc: VarExpr->getExprLoc(), DiagID: diag::err_acc_var_not_pointer_type) |
| 520 | << ClauseKind << Ty; |
| 521 | return false; |
| 522 | } |
| 523 | |
| 524 | void SemaOpenACC::ActOnStartParseVar(OpenACCDirectiveKind DK, |
| 525 | OpenACCClauseKind CK) { |
| 526 | if (DK == OpenACCDirectiveKind::Cache) { |
| 527 | CacheInfo.ParsingCacheVarList = true; |
| 528 | CacheInfo.IsInvalidCacheRef = false; |
| 529 | } |
| 530 | } |
| 531 | |
| 532 | void SemaOpenACC::ActOnInvalidParseVar() { |
| 533 | CacheInfo.ParsingCacheVarList = false; |
| 534 | CacheInfo.IsInvalidCacheRef = false; |
| 535 | } |
| 536 | |
| 537 | ExprResult SemaOpenACC::ActOnCacheVar(Expr *VarExpr) { |
| 538 | Expr *CurVarExpr = VarExpr->IgnoreParenImpCasts(); |
| 539 | // Clear this here, so we can do the returns based on the invalid cache ref |
| 540 | // here. Note all return statements in this function must return ExprError if |
| 541 | // IsInvalidCacheRef. However, instead of doing an 'early return' in that |
| 542 | // case, we can let the rest of the diagnostics happen, as the invalid decl |
| 543 | // ref is a warning. |
| 544 | bool WasParsingInvalidCacheRef = |
| 545 | CacheInfo.ParsingCacheVarList && CacheInfo.IsInvalidCacheRef; |
| 546 | CacheInfo.ParsingCacheVarList = false; |
| 547 | CacheInfo.IsInvalidCacheRef = false; |
| 548 | |
| 549 | if (!isa<ArraySectionExpr, ArraySubscriptExpr>(Val: CurVarExpr)) { |
| 550 | Diag(Loc: VarExpr->getExprLoc(), DiagID: diag::err_acc_not_a_var_ref_cache); |
| 551 | return ExprError(); |
| 552 | } |
| 553 | |
| 554 | // It isn't clear what 'simple array element or simple subarray' means, so we |
| 555 | // will just allow arbitrary depth. |
| 556 | while (isa<ArraySectionExpr, ArraySubscriptExpr>(Val: CurVarExpr)) { |
| 557 | if (auto *SubScrpt = dyn_cast<ArraySubscriptExpr>(Val: CurVarExpr)) |
| 558 | CurVarExpr = SubScrpt->getBase()->IgnoreParenImpCasts(); |
| 559 | else |
| 560 | CurVarExpr = |
| 561 | cast<ArraySectionExpr>(Val: CurVarExpr)->getBase()->IgnoreParenImpCasts(); |
| 562 | } |
| 563 | |
| 564 | // References to a VarDecl are fine. |
| 565 | if (const auto *DRE = dyn_cast<DeclRefExpr>(Val: CurVarExpr)) { |
| 566 | if (isa<VarDecl, NonTypeTemplateParmDecl>( |
| 567 | Val: DRE->getFoundDecl()->getCanonicalDecl())) |
| 568 | return WasParsingInvalidCacheRef ? ExprEmpty() : VarExpr; |
| 569 | } |
| 570 | |
| 571 | if (const auto *ME = dyn_cast<MemberExpr>(Val: CurVarExpr)) { |
| 572 | if (isa<FieldDecl>(Val: ME->getMemberDecl()->getCanonicalDecl())) { |
| 573 | return WasParsingInvalidCacheRef ? ExprEmpty() : VarExpr; |
| 574 | } |
| 575 | } |
| 576 | |
| 577 | // Nothing really we can do here, as these are dependent. So just return they |
| 578 | // are valid. |
| 579 | if (isa<DependentScopeDeclRefExpr, CXXDependentScopeMemberExpr>(Val: CurVarExpr)) |
| 580 | return WasParsingInvalidCacheRef ? ExprEmpty() : VarExpr; |
| 581 | |
| 582 | // There isn't really anything we can do in the case of a recovery expr, so |
| 583 | // skip the diagnostic rather than produce a confusing diagnostic. |
| 584 | if (isa<RecoveryExpr>(Val: CurVarExpr)) |
| 585 | return ExprError(); |
| 586 | |
| 587 | Diag(Loc: VarExpr->getExprLoc(), DiagID: diag::err_acc_not_a_var_ref_cache); |
| 588 | return ExprError(); |
| 589 | } |
| 590 | |
| 591 | void SemaOpenACC::CheckDeclReference(SourceLocation Loc, Expr *E, Decl *D) { |
| 592 | if (!getLangOpts().OpenACC || !CacheInfo.ParsingCacheVarList || !D || |
| 593 | D->isInvalidDecl()) |
| 594 | return; |
| 595 | // A 'cache' variable reference MUST be declared before the 'acc.loop' we |
| 596 | // generate in codegen, so we have to mark it invalid here in some way. We do |
| 597 | // so in a bit of a convoluted way as there is no good way to put this into |
| 598 | // the AST, so we store it in SemaOpenACC State. We can check the Scope |
| 599 | // during parsing to make sure there is a 'loop' before the decl is |
| 600 | // declared(and skip during instantiation). |
| 601 | // We only diagnose this as a warning, as this isn't required by the standard |
| 602 | // (unless you take a VERY awkward reading of some awkward prose). |
| 603 | |
| 604 | Scope *CurScope = SemaRef.getCurScope(); |
| 605 | |
| 606 | // if we are at TU level, we are either doing some EXTRA wacky, or are in a |
| 607 | // template instantiation, so just give up. |
| 608 | if (CurScope->getDepth() == 0) |
| 609 | return; |
| 610 | |
| 611 | while (CurScope) { |
| 612 | // If we run into a loop construct scope, than this is 'correct' in that the |
| 613 | // declaration is outside of the loop. |
| 614 | if (CurScope->isOpenACCLoopConstructScope()) |
| 615 | return; |
| 616 | |
| 617 | if (CurScope->isDeclScope(D)) { |
| 618 | Diag(Loc, DiagID: diag::warn_acc_cache_var_not_outside_loop); |
| 619 | |
| 620 | CacheInfo.IsInvalidCacheRef = true; |
| 621 | } |
| 622 | |
| 623 | CurScope = CurScope->getParent(); |
| 624 | } |
| 625 | // If we don't find the decl at all, we assume that it must be outside of the |
| 626 | // loop (or we aren't in a loop!) so skip the diagnostic. |
| 627 | } |
| 628 | |
| 629 | namespace { |
| 630 | // Check whether the type of the thing we are referencing is OK for things like |
| 631 | // private, firstprivate, and reduction, which require certain operators to be |
| 632 | // available. |
| 633 | ExprResult CheckVarType(SemaOpenACC &S, OpenACCClauseKind CK, Expr *VarExpr, |
| 634 | SourceLocation InnerLoc, QualType InnerTy) { |
| 635 | // There is nothing to do here, only these three have these sorts of |
| 636 | // restrictions. |
| 637 | if (CK != OpenACCClauseKind::Private && |
| 638 | CK != OpenACCClauseKind::FirstPrivate && |
| 639 | CK != OpenACCClauseKind::Reduction) |
| 640 | return VarExpr; |
| 641 | |
| 642 | // We can't test this if it isn't here, or if the type isn't clear yet. |
| 643 | if (InnerTy.isNull() || InnerTy->isDependentType()) |
| 644 | return VarExpr; |
| 645 | |
| 646 | InnerTy = InnerTy.getUnqualifiedType(); |
| 647 | if (auto *RefTy = InnerTy->getAs<ReferenceType>()) |
| 648 | InnerTy = RefTy->getPointeeType(); |
| 649 | |
| 650 | if (auto *ArrTy = InnerTy->getAsArrayTypeUnsafe()) { |
| 651 | // Non constant arrays decay to 'pointer', so warn and return that we're |
| 652 | // successful. |
| 653 | if (!ArrTy->isConstantArrayType()) { |
| 654 | S.Diag(Loc: InnerLoc, DiagID: clang::diag::warn_acc_var_referenced_non_const_array) |
| 655 | << InnerTy << CK; |
| 656 | return VarExpr; |
| 657 | } |
| 658 | |
| 659 | return CheckVarType(S, CK, VarExpr, InnerLoc, InnerTy: ArrTy->getElementType()); |
| 660 | } |
| 661 | |
| 662 | auto *RD = InnerTy->getAsCXXRecordDecl(); |
| 663 | |
| 664 | // if this isn't a C++ record decl, we can create/copy/destroy this thing at |
| 665 | // will without problem, so this is a success. |
| 666 | if (!RD) |
| 667 | return VarExpr; |
| 668 | |
| 669 | if (CK == OpenACCClauseKind::Private) { |
| 670 | bool HasNonDeletedDefaultCtor = |
| 671 | llvm::find_if(Range: RD->ctors(), P: [](const CXXConstructorDecl *CD) { |
| 672 | return CD->isDefaultConstructor() && !CD->isDeleted(); |
| 673 | }) != RD->ctors().end(); |
| 674 | if (!HasNonDeletedDefaultCtor && !RD->needsImplicitDefaultConstructor()) { |
| 675 | S.Diag(Loc: InnerLoc, DiagID: clang::diag::warn_acc_var_referenced_lacks_op) |
| 676 | << InnerTy << CK << clang::diag::AccVarReferencedReason::DefCtor; |
| 677 | return ExprError(); |
| 678 | } |
| 679 | } else if (CK == OpenACCClauseKind::FirstPrivate) { |
| 680 | if (!RD->hasSimpleCopyConstructor()) { |
| 681 | Sema::SpecialMemberOverloadResult SMOR = S.SemaRef.LookupSpecialMember( |
| 682 | D: RD, SM: CXXSpecialMemberKind::CopyConstructor, /*ConstArg=*/true, |
| 683 | /*VolatileArg=*/false, /*RValueThis=*/false, /*ConstThis=*/false, |
| 684 | /*VolatileThis=*/false); |
| 685 | |
| 686 | if (SMOR.getKind() != Sema::SpecialMemberOverloadResult::Success || |
| 687 | SMOR.getMethod()->isDeleted()) { |
| 688 | S.Diag(Loc: InnerLoc, DiagID: clang::diag::warn_acc_var_referenced_lacks_op) |
| 689 | << InnerTy << CK << clang::diag::AccVarReferencedReason::CopyCtor; |
| 690 | return ExprError(); |
| 691 | } |
| 692 | } |
| 693 | } else if (CK == OpenACCClauseKind::Reduction) { |
| 694 | // TODO: Reduction needs to be an aggregate, which gets checked later, so |
| 695 | // construction here isn't a problem. However, we need to make sure that we |
| 696 | // can compare it correctly still. |
| 697 | } |
| 698 | |
| 699 | // All 3 things need to make sure they have a dtor. |
| 700 | bool DestructorDeleted = |
| 701 | RD->getDestructor() && RD->getDestructor()->isDeleted(); |
| 702 | if (DestructorDeleted && !RD->needsImplicitDestructor()) { |
| 703 | S.Diag(Loc: InnerLoc, DiagID: clang::diag::warn_acc_var_referenced_lacks_op) |
| 704 | << InnerTy << CK << clang::diag::AccVarReferencedReason::Dtor; |
| 705 | return ExprError(); |
| 706 | } |
| 707 | return VarExpr; |
| 708 | } |
| 709 | |
| 710 | ExprResult CheckVarType(SemaOpenACC &S, OpenACCClauseKind CK, Expr *VarExpr, |
| 711 | Expr *InnerExpr) { |
| 712 | if (!InnerExpr) |
| 713 | return VarExpr; |
| 714 | return CheckVarType(S, CK, VarExpr, InnerLoc: InnerExpr->getBeginLoc(), |
| 715 | InnerTy: InnerExpr->getType()); |
| 716 | } |
| 717 | } // namespace |
| 718 | |
| 719 | ExprResult SemaOpenACC::ActOnVar(OpenACCDirectiveKind DK, OpenACCClauseKind CK, |
| 720 | Expr *VarExpr) { |
| 721 | // This has unique enough restrictions that we should split it to a separate |
| 722 | // function. |
| 723 | if (DK == OpenACCDirectiveKind::Cache) |
| 724 | return ActOnCacheVar(VarExpr); |
| 725 | |
| 726 | Expr *CurVarExpr = VarExpr->IgnoreParenImpCasts(); |
| 727 | |
| 728 | // 'use_device' doesn't allow array subscript or array sections. |
| 729 | // OpenACC3.3 2.8: |
| 730 | // A 'var' in a 'use_device' clause must be the name of a variable or array. |
| 731 | // OpenACC3.3 2.13: |
| 732 | // A 'var' in a 'declare' directive must be a variable or array name. |
| 733 | if ((CK == OpenACCClauseKind::UseDevice || |
| 734 | DK == OpenACCDirectiveKind::Declare)) { |
| 735 | if (isa<ArraySubscriptExpr>(Val: CurVarExpr)) { |
| 736 | Diag(Loc: VarExpr->getExprLoc(), |
| 737 | DiagID: diag::err_acc_not_a_var_ref_use_device_declare) |
| 738 | << (DK == OpenACCDirectiveKind::Declare); |
| 739 | return ExprError(); |
| 740 | } |
| 741 | // As an extension, we allow 'array sections'/'sub-arrays' here, as that is |
| 742 | // effectively defining an array, and are in common use. |
| 743 | if (isa<ArraySectionExpr>(Val: CurVarExpr)) |
| 744 | Diag(Loc: VarExpr->getExprLoc(), |
| 745 | DiagID: diag::ext_acc_array_section_use_device_declare) |
| 746 | << (DK == OpenACCDirectiveKind::Declare); |
| 747 | } |
| 748 | |
| 749 | // Sub-arrays/subscript-exprs are fine as long as the base is a |
| 750 | // VarExpr/MemberExpr. So strip all of those off. |
| 751 | while (isa<ArraySectionExpr, ArraySubscriptExpr>(Val: CurVarExpr)) { |
| 752 | if (auto *SubScrpt = dyn_cast<ArraySubscriptExpr>(Val: CurVarExpr)) |
| 753 | CurVarExpr = SubScrpt->getBase()->IgnoreParenImpCasts(); |
| 754 | else |
| 755 | CurVarExpr = |
| 756 | cast<ArraySectionExpr>(Val: CurVarExpr)->getBase()->IgnoreParenImpCasts(); |
| 757 | } |
| 758 | |
| 759 | // References to a VarDecl are fine. |
| 760 | if (const auto *DRE = dyn_cast<DeclRefExpr>(Val: CurVarExpr)) { |
| 761 | if (isa<VarDecl, NonTypeTemplateParmDecl>( |
| 762 | Val: DRE->getFoundDecl()->getCanonicalDecl())) |
| 763 | return CheckVarType(S&: *this, CK, VarExpr, InnerExpr: CurVarExpr); |
| 764 | } |
| 765 | |
| 766 | // If CK is a Reduction, this special cases for OpenACC3.3 2.5.15: "A var in a |
| 767 | // reduction clause must be a scalar variable name, an aggregate variable |
| 768 | // name, an array element, or a subarray. |
| 769 | // If CK is a 'use_device', this also isn't valid, as it isn't the name of a |
| 770 | // variable or array, if not done as a member expr. |
| 771 | // A MemberExpr that references a Field is valid for other clauses. |
| 772 | if (const auto *ME = dyn_cast<MemberExpr>(Val: CurVarExpr)) { |
| 773 | if (isa<FieldDecl>(Val: ME->getMemberDecl()->getCanonicalDecl())) { |
| 774 | if (DK == OpenACCDirectiveKind::Declare || |
| 775 | CK == OpenACCClauseKind::Reduction || |
| 776 | CK == OpenACCClauseKind::UseDevice) { |
| 777 | |
| 778 | // We can allow 'member expr' if the 'this' is implicit in the case of |
| 779 | // declare, reduction, and use_device. |
| 780 | const auto *This = dyn_cast<CXXThisExpr>(Val: ME->getBase()); |
| 781 | if (This && This->isImplicit()) |
| 782 | return CheckVarType(S&: *this, CK, VarExpr, InnerExpr: CurVarExpr); |
| 783 | } else { |
| 784 | return CheckVarType(S&: *this, CK, VarExpr, InnerExpr: CurVarExpr); |
| 785 | } |
| 786 | } |
| 787 | } |
| 788 | |
| 789 | // Referring to 'this' is ok for the most part, but for 'use_device'/'declare' |
| 790 | // doesn't fall into 'variable or array name' |
| 791 | if (CK != OpenACCClauseKind::UseDevice && |
| 792 | DK != OpenACCDirectiveKind::Declare && isa<CXXThisExpr>(Val: CurVarExpr)) |
| 793 | return CheckVarType(S&: *this, CK, VarExpr, InnerExpr: CurVarExpr); |
| 794 | |
| 795 | // Nothing really we can do here, as these are dependent. So just return they |
| 796 | // are valid. |
| 797 | if (isa<DependentScopeDeclRefExpr>(Val: CurVarExpr) || |
| 798 | (CK != OpenACCClauseKind::Reduction && |
| 799 | isa<CXXDependentScopeMemberExpr>(Val: CurVarExpr))) |
| 800 | return CheckVarType(S&: *this, CK, VarExpr, InnerExpr: CurVarExpr); |
| 801 | |
| 802 | // There isn't really anything we can do in the case of a recovery expr, so |
| 803 | // skip the diagnostic rather than produce a confusing diagnostic. |
| 804 | if (isa<RecoveryExpr>(Val: CurVarExpr)) |
| 805 | return ExprError(); |
| 806 | |
| 807 | if (DK == OpenACCDirectiveKind::Declare) |
| 808 | Diag(Loc: VarExpr->getExprLoc(), DiagID: diag::err_acc_not_a_var_ref_use_device_declare) |
| 809 | << /*declare*/ 1; |
| 810 | else if (CK == OpenACCClauseKind::UseDevice) |
| 811 | Diag(Loc: VarExpr->getExprLoc(), DiagID: diag::err_acc_not_a_var_ref_use_device_declare) |
| 812 | << /*use_device*/ 0; |
| 813 | else |
| 814 | Diag(Loc: VarExpr->getExprLoc(), DiagID: diag::err_acc_not_a_var_ref) |
| 815 | << (CK != OpenACCClauseKind::Reduction); |
| 816 | return ExprError(); |
| 817 | } |
| 818 | |
| 819 | ExprResult SemaOpenACC::ActOnArraySectionExpr(Expr *Base, SourceLocation LBLoc, |
| 820 | Expr *LowerBound, |
| 821 | SourceLocation ColonLoc, |
| 822 | Expr *Length, |
| 823 | SourceLocation RBLoc) { |
| 824 | ASTContext &Context = getASTContext(); |
| 825 | |
| 826 | // Handle placeholders. |
| 827 | if (Base->hasPlaceholderType() && |
| 828 | !Base->hasPlaceholderType(K: BuiltinType::ArraySection)) { |
| 829 | ExprResult Result = SemaRef.CheckPlaceholderExpr(E: Base); |
| 830 | if (Result.isInvalid()) |
| 831 | return ExprError(); |
| 832 | Base = Result.get(); |
| 833 | } |
| 834 | if (LowerBound && LowerBound->getType()->isNonOverloadPlaceholderType()) { |
| 835 | ExprResult Result = SemaRef.CheckPlaceholderExpr(E: LowerBound); |
| 836 | if (Result.isInvalid()) |
| 837 | return ExprError(); |
| 838 | Result = SemaRef.DefaultLvalueConversion(E: Result.get()); |
| 839 | if (Result.isInvalid()) |
| 840 | return ExprError(); |
| 841 | LowerBound = Result.get(); |
| 842 | } |
| 843 | if (Length && Length->getType()->isNonOverloadPlaceholderType()) { |
| 844 | ExprResult Result = SemaRef.CheckPlaceholderExpr(E: Length); |
| 845 | if (Result.isInvalid()) |
| 846 | return ExprError(); |
| 847 | Result = SemaRef.DefaultLvalueConversion(E: Result.get()); |
| 848 | if (Result.isInvalid()) |
| 849 | return ExprError(); |
| 850 | Length = Result.get(); |
| 851 | } |
| 852 | |
| 853 | // Check the 'base' value, it must be an array or pointer type, and not to/of |
| 854 | // a function type. |
| 855 | QualType OriginalBaseTy = ArraySectionExpr::getBaseOriginalType(Base); |
| 856 | QualType ResultTy; |
| 857 | if (!Base->isTypeDependent()) { |
| 858 | if (OriginalBaseTy->isAnyPointerType()) { |
| 859 | ResultTy = OriginalBaseTy->getPointeeType(); |
| 860 | } else if (OriginalBaseTy->isArrayType()) { |
| 861 | ResultTy = OriginalBaseTy->getAsArrayTypeUnsafe()->getElementType(); |
| 862 | } else { |
| 863 | return ExprError( |
| 864 | Diag(Loc: Base->getExprLoc(), DiagID: diag::err_acc_typecheck_subarray_value) |
| 865 | << Base->getSourceRange()); |
| 866 | } |
| 867 | |
| 868 | if (ResultTy->isFunctionType()) { |
| 869 | Diag(Loc: Base->getExprLoc(), DiagID: diag::err_acc_subarray_function_type) |
| 870 | << ResultTy << Base->getSourceRange(); |
| 871 | return ExprError(); |
| 872 | } |
| 873 | |
| 874 | if (SemaRef.RequireCompleteType(Loc: Base->getExprLoc(), T: ResultTy, |
| 875 | DiagID: diag::err_acc_subarray_incomplete_type, |
| 876 | Args: Base)) |
| 877 | return ExprError(); |
| 878 | |
| 879 | if (!Base->hasPlaceholderType(K: BuiltinType::ArraySection)) { |
| 880 | ExprResult Result = SemaRef.DefaultFunctionArrayLvalueConversion(E: Base); |
| 881 | if (Result.isInvalid()) |
| 882 | return ExprError(); |
| 883 | Base = Result.get(); |
| 884 | } |
| 885 | } |
| 886 | |
| 887 | auto GetRecovery = [&](Expr *E, QualType Ty) { |
| 888 | ExprResult Recovery = |
| 889 | SemaRef.CreateRecoveryExpr(Begin: E->getBeginLoc(), End: E->getEndLoc(), SubExprs: E, T: Ty); |
| 890 | return Recovery.isUsable() ? Recovery.get() : nullptr; |
| 891 | }; |
| 892 | |
| 893 | // Ensure both of the expressions are int-exprs. |
| 894 | if (LowerBound && !LowerBound->isTypeDependent()) { |
| 895 | ExprResult LBRes = |
| 896 | ActOnIntExpr(DK: OpenACCDirectiveKind::Invalid, CK: OpenACCClauseKind::Invalid, |
| 897 | Loc: LowerBound->getExprLoc(), IntExpr: LowerBound); |
| 898 | |
| 899 | if (LBRes.isUsable()) |
| 900 | LBRes = SemaRef.DefaultLvalueConversion(E: LBRes.get()); |
| 901 | LowerBound = |
| 902 | LBRes.isUsable() ? LBRes.get() : GetRecovery(LowerBound, Context.IntTy); |
| 903 | } |
| 904 | |
| 905 | if (Length && !Length->isTypeDependent()) { |
| 906 | ExprResult LenRes = |
| 907 | ActOnIntExpr(DK: OpenACCDirectiveKind::Invalid, CK: OpenACCClauseKind::Invalid, |
| 908 | Loc: Length->getExprLoc(), IntExpr: Length); |
| 909 | |
| 910 | if (LenRes.isUsable()) |
| 911 | LenRes = SemaRef.DefaultLvalueConversion(E: LenRes.get()); |
| 912 | Length = |
| 913 | LenRes.isUsable() ? LenRes.get() : GetRecovery(Length, Context.IntTy); |
| 914 | } |
| 915 | |
| 916 | // Length is required if the base type is not an array of known bounds. |
| 917 | if (!Length && (OriginalBaseTy.isNull() || |
| 918 | (!OriginalBaseTy->isDependentType() && |
| 919 | !OriginalBaseTy->isConstantArrayType() && |
| 920 | !OriginalBaseTy->isDependentSizedArrayType()))) { |
| 921 | bool IsArray = !OriginalBaseTy.isNull() && OriginalBaseTy->isArrayType(); |
| 922 | SourceLocation DiagLoc = ColonLoc.isInvalid() ? LBLoc : ColonLoc; |
| 923 | Diag(Loc: DiagLoc, DiagID: diag::err_acc_subarray_no_length) << IsArray; |
| 924 | // Fill in a dummy 'length' so that when we instantiate this we don't |
| 925 | // double-diagnose here. |
| 926 | ExprResult Recovery = SemaRef.CreateRecoveryExpr( |
| 927 | Begin: DiagLoc, End: SourceLocation(), SubExprs: ArrayRef<Expr *>(), T: Context.IntTy); |
| 928 | Length = Recovery.isUsable() ? Recovery.get() : nullptr; |
| 929 | } |
| 930 | |
| 931 | // Check the values of each of the arguments, they cannot be negative(we |
| 932 | // assume), and if the array bound is known, must be within range. As we do |
| 933 | // so, do our best to continue with evaluation, we can set the |
| 934 | // value/expression to nullptr/nullopt if they are invalid, and treat them as |
| 935 | // not present for the rest of evaluation. |
| 936 | |
| 937 | // We don't have to check for dependence, because the dependent size is |
| 938 | // represented as a different AST node. |
| 939 | std::optional<llvm::APSInt> BaseSize; |
| 940 | if (!OriginalBaseTy.isNull() && OriginalBaseTy->isConstantArrayType()) { |
| 941 | const auto *ArrayTy = Context.getAsConstantArrayType(T: OriginalBaseTy); |
| 942 | BaseSize = ArrayTy->getSize(); |
| 943 | } |
| 944 | |
| 945 | auto GetBoundValue = [&](Expr *E) -> std::optional<llvm::APSInt> { |
| 946 | if (!E || E->isInstantiationDependent()) |
| 947 | return std::nullopt; |
| 948 | |
| 949 | Expr::EvalResult Res; |
| 950 | if (!E->EvaluateAsInt(Result&: Res, Ctx: Context)) |
| 951 | return std::nullopt; |
| 952 | return Res.Val.getInt(); |
| 953 | }; |
| 954 | |
| 955 | std::optional<llvm::APSInt> LowerBoundValue = GetBoundValue(LowerBound); |
| 956 | std::optional<llvm::APSInt> LengthValue = GetBoundValue(Length); |
| 957 | |
| 958 | // Check lower bound for negative or out of range. |
| 959 | if (LowerBoundValue.has_value()) { |
| 960 | if (LowerBoundValue->isNegative()) { |
| 961 | Diag(Loc: LowerBound->getExprLoc(), DiagID: diag::err_acc_subarray_negative) |
| 962 | << /*LowerBound=*/0 << toString(I: *LowerBoundValue, /*Radix=*/10); |
| 963 | LowerBoundValue.reset(); |
| 964 | LowerBound = GetRecovery(LowerBound, LowerBound->getType()); |
| 965 | } else if (BaseSize.has_value() && |
| 966 | llvm::APSInt::compareValues(I1: *LowerBoundValue, I2: *BaseSize) >= 0) { |
| 967 | // Lower bound (start index) must be less than the size of the array. |
| 968 | Diag(Loc: LowerBound->getExprLoc(), DiagID: diag::err_acc_subarray_out_of_range) |
| 969 | << /*LowerBound=*/0 << toString(I: *LowerBoundValue, /*Radix=*/10) |
| 970 | << toString(I: *BaseSize, /*Radix=*/10); |
| 971 | LowerBoundValue.reset(); |
| 972 | LowerBound = GetRecovery(LowerBound, LowerBound->getType()); |
| 973 | } |
| 974 | } |
| 975 | |
| 976 | // Check length for negative or out of range. |
| 977 | if (LengthValue.has_value()) { |
| 978 | if (LengthValue->isNegative()) { |
| 979 | Diag(Loc: Length->getExprLoc(), DiagID: diag::err_acc_subarray_negative) |
| 980 | << /*Length=*/1 << toString(I: *LengthValue, /*Radix=*/10); |
| 981 | LengthValue.reset(); |
| 982 | Length = GetRecovery(Length, Length->getType()); |
| 983 | } else if (BaseSize.has_value() && |
| 984 | llvm::APSInt::compareValues(I1: *LengthValue, I2: *BaseSize) > 0) { |
| 985 | // Length must be lessthan or EQUAL to the size of the array. |
| 986 | Diag(Loc: Length->getExprLoc(), DiagID: diag::err_acc_subarray_out_of_range) |
| 987 | << /*Length=*/1 << toString(I: *LengthValue, /*Radix=*/10) |
| 988 | << toString(I: *BaseSize, /*Radix=*/10); |
| 989 | LengthValue.reset(); |
| 990 | Length = GetRecovery(Length, Length->getType()); |
| 991 | } |
| 992 | } |
| 993 | |
| 994 | // Adding two APSInts requires matching sign, so extract that here. |
| 995 | auto AddAPSInt = [](llvm::APSInt LHS, llvm::APSInt RHS) -> llvm::APSInt { |
| 996 | if (LHS.isSigned() == RHS.isSigned()) |
| 997 | return LHS + RHS; |
| 998 | |
| 999 | unsigned Width = std::max(a: LHS.getBitWidth(), b: RHS.getBitWidth()) + 1; |
| 1000 | return llvm::APSInt(LHS.sext(width: Width) + RHS.sext(width: Width), /*Signed=*/true); |
| 1001 | }; |
| 1002 | |
| 1003 | // If we know all 3 values, we can diagnose that the total value would be out |
| 1004 | // of range. |
| 1005 | if (BaseSize.has_value() && LowerBoundValue.has_value() && |
| 1006 | LengthValue.has_value() && |
| 1007 | llvm::APSInt::compareValues(I1: AddAPSInt(*LowerBoundValue, *LengthValue), |
| 1008 | I2: *BaseSize) > 0) { |
| 1009 | Diag(Loc: Base->getExprLoc(), |
| 1010 | DiagID: diag::err_acc_subarray_base_plus_length_out_of_range) |
| 1011 | << toString(I: *LowerBoundValue, /*Radix=*/10) |
| 1012 | << toString(I: *LengthValue, /*Radix=*/10) |
| 1013 | << toString(I: *BaseSize, /*Radix=*/10); |
| 1014 | |
| 1015 | LowerBoundValue.reset(); |
| 1016 | LowerBound = GetRecovery(LowerBound, LowerBound->getType()); |
| 1017 | LengthValue.reset(); |
| 1018 | Length = GetRecovery(Length, Length->getType()); |
| 1019 | } |
| 1020 | |
| 1021 | // If any part of the expression is dependent, return a dependent sub-array. |
| 1022 | QualType ArrayExprTy = Context.ArraySectionTy; |
| 1023 | if (Base->isTypeDependent() || |
| 1024 | (LowerBound && LowerBound->isTypeDependent()) || |
| 1025 | (Length && Length->isTypeDependent())) |
| 1026 | ArrayExprTy = Context.DependentTy; |
| 1027 | |
| 1028 | return new (Context) |
| 1029 | ArraySectionExpr(Base, LowerBound, Length, ArrayExprTy, VK_LValue, |
| 1030 | OK_Ordinary, ColonLoc, RBLoc); |
| 1031 | } |
| 1032 | |
| 1033 | void SemaOpenACC::ActOnWhileStmt(SourceLocation WhileLoc) { |
| 1034 | if (!getLangOpts().OpenACC) |
| 1035 | return; |
| 1036 | |
| 1037 | if (!LoopInfo.TopLevelLoopSeen) |
| 1038 | return; |
| 1039 | |
| 1040 | if (CollapseInfo.CurCollapseCount && *CollapseInfo.CurCollapseCount > 0) { |
| 1041 | Diag(Loc: WhileLoc, DiagID: diag::err_acc_invalid_in_loop) |
| 1042 | << /*while loop*/ 1 << CollapseInfo.DirectiveKind |
| 1043 | << OpenACCClauseKind::Collapse; |
| 1044 | assert(CollapseInfo.ActiveCollapse && "Collapse count without object?" ); |
| 1045 | Diag(Loc: CollapseInfo.ActiveCollapse->getBeginLoc(), |
| 1046 | DiagID: diag::note_acc_active_clause_here) |
| 1047 | << OpenACCClauseKind::Collapse; |
| 1048 | |
| 1049 | // Remove the value so that we don't get cascading errors in the body. The |
| 1050 | // caller RAII object will restore this. |
| 1051 | CollapseInfo.CurCollapseCount = std::nullopt; |
| 1052 | } |
| 1053 | |
| 1054 | if (TileInfo.CurTileCount && *TileInfo.CurTileCount > 0) { |
| 1055 | Diag(Loc: WhileLoc, DiagID: diag::err_acc_invalid_in_loop) |
| 1056 | << /*while loop*/ 1 << TileInfo.DirectiveKind |
| 1057 | << OpenACCClauseKind::Tile; |
| 1058 | assert(TileInfo.ActiveTile && "tile count without object?" ); |
| 1059 | Diag(Loc: TileInfo.ActiveTile->getBeginLoc(), DiagID: diag::note_acc_active_clause_here) |
| 1060 | << OpenACCClauseKind::Tile; |
| 1061 | |
| 1062 | // Remove the value so that we don't get cascading errors in the body. The |
| 1063 | // caller RAII object will restore this. |
| 1064 | TileInfo.CurTileCount = std::nullopt; |
| 1065 | } |
| 1066 | } |
| 1067 | |
| 1068 | void SemaOpenACC::ActOnDoStmt(SourceLocation DoLoc) { |
| 1069 | if (!getLangOpts().OpenACC) |
| 1070 | return; |
| 1071 | |
| 1072 | if (!LoopInfo.TopLevelLoopSeen) |
| 1073 | return; |
| 1074 | |
| 1075 | if (CollapseInfo.CurCollapseCount && *CollapseInfo.CurCollapseCount > 0) { |
| 1076 | Diag(Loc: DoLoc, DiagID: diag::err_acc_invalid_in_loop) |
| 1077 | << /*do loop*/ 2 << CollapseInfo.DirectiveKind |
| 1078 | << OpenACCClauseKind::Collapse; |
| 1079 | assert(CollapseInfo.ActiveCollapse && "Collapse count without object?" ); |
| 1080 | Diag(Loc: CollapseInfo.ActiveCollapse->getBeginLoc(), |
| 1081 | DiagID: diag::note_acc_active_clause_here) |
| 1082 | << OpenACCClauseKind::Collapse; |
| 1083 | |
| 1084 | // Remove the value so that we don't get cascading errors in the body. The |
| 1085 | // caller RAII object will restore this. |
| 1086 | CollapseInfo.CurCollapseCount = std::nullopt; |
| 1087 | } |
| 1088 | |
| 1089 | if (TileInfo.CurTileCount && *TileInfo.CurTileCount > 0) { |
| 1090 | Diag(Loc: DoLoc, DiagID: diag::err_acc_invalid_in_loop) |
| 1091 | << /*do loop*/ 2 << TileInfo.DirectiveKind << OpenACCClauseKind::Tile; |
| 1092 | assert(TileInfo.ActiveTile && "tile count without object?" ); |
| 1093 | Diag(Loc: TileInfo.ActiveTile->getBeginLoc(), DiagID: diag::note_acc_active_clause_here) |
| 1094 | << OpenACCClauseKind::Tile; |
| 1095 | |
| 1096 | // Remove the value so that we don't get cascading errors in the body. The |
| 1097 | // caller RAII object will restore this. |
| 1098 | TileInfo.CurTileCount = std::nullopt; |
| 1099 | } |
| 1100 | } |
| 1101 | |
| 1102 | void SemaOpenACC::ForStmtBeginHelper(SourceLocation ForLoc, |
| 1103 | ForStmtBeginChecker &C) { |
| 1104 | assert(getLangOpts().OpenACC && "Check enabled when not OpenACC?" ); |
| 1105 | |
| 1106 | // Enable the while/do-while checking. |
| 1107 | LoopInfo.TopLevelLoopSeen = true; |
| 1108 | |
| 1109 | if (CollapseInfo.CurCollapseCount && *CollapseInfo.CurCollapseCount > 0) { |
| 1110 | // Check the format of this loop if it is affected by the collapse. |
| 1111 | C.check(); |
| 1112 | |
| 1113 | // OpenACC 3.3 2.9.1: |
| 1114 | // Each associated loop, except the innermost, must contain exactly one loop |
| 1115 | // or loop nest. |
| 1116 | // This checks for more than 1 loop at the current level, the |
| 1117 | // 'depth'-satisifed checking manages the 'not zero' case. |
| 1118 | if (LoopInfo.CurLevelHasLoopAlready) { |
| 1119 | Diag(Loc: ForLoc, DiagID: diag::err_acc_clause_multiple_loops) |
| 1120 | << CollapseInfo.DirectiveKind << OpenACCClauseKind::Collapse; |
| 1121 | assert(CollapseInfo.ActiveCollapse && "No collapse object?" ); |
| 1122 | Diag(Loc: CollapseInfo.ActiveCollapse->getBeginLoc(), |
| 1123 | DiagID: diag::note_acc_active_clause_here) |
| 1124 | << OpenACCClauseKind::Collapse; |
| 1125 | } else { |
| 1126 | --(*CollapseInfo.CurCollapseCount); |
| 1127 | |
| 1128 | // Once we've hit zero here, we know we have deep enough 'for' loops to |
| 1129 | // get to the bottom. |
| 1130 | if (*CollapseInfo.CurCollapseCount == 0) |
| 1131 | CollapseInfo.CollapseDepthSatisfied = true; |
| 1132 | } |
| 1133 | } |
| 1134 | |
| 1135 | if (TileInfo.CurTileCount && *TileInfo.CurTileCount > 0) { |
| 1136 | // Check the format of this loop if it is affected by the tile. |
| 1137 | C.check(); |
| 1138 | |
| 1139 | if (LoopInfo.CurLevelHasLoopAlready) { |
| 1140 | Diag(Loc: ForLoc, DiagID: diag::err_acc_clause_multiple_loops) |
| 1141 | << TileInfo.DirectiveKind << OpenACCClauseKind::Tile; |
| 1142 | assert(TileInfo.ActiveTile && "No tile object?" ); |
| 1143 | Diag(Loc: TileInfo.ActiveTile->getBeginLoc(), |
| 1144 | DiagID: diag::note_acc_active_clause_here) |
| 1145 | << OpenACCClauseKind::Tile; |
| 1146 | } else { |
| 1147 | TileInfo.CurTileCount = *TileInfo.CurTileCount - 1; |
| 1148 | // Once we've hit zero here, we know we have deep enough 'for' loops to |
| 1149 | // get to the bottom. |
| 1150 | if (*TileInfo.CurTileCount == 0) |
| 1151 | TileInfo.TileDepthSatisfied = true; |
| 1152 | } |
| 1153 | } |
| 1154 | |
| 1155 | // Set this to 'false' for the body of this loop, so that the next level |
| 1156 | // checks independently. |
| 1157 | LoopInfo.CurLevelHasLoopAlready = false; |
| 1158 | } |
| 1159 | |
| 1160 | namespace { |
| 1161 | bool isValidLoopVariableType(QualType LoopVarTy) { |
| 1162 | // Just skip if it is dependent, it could be any of the below. |
| 1163 | if (LoopVarTy->isDependentType()) |
| 1164 | return true; |
| 1165 | |
| 1166 | // The loop variable must be of integer, |
| 1167 | if (LoopVarTy->isIntegerType()) |
| 1168 | return true; |
| 1169 | |
| 1170 | // C/C++ pointer, |
| 1171 | if (LoopVarTy->isPointerType()) |
| 1172 | return true; |
| 1173 | |
| 1174 | // or C++ random-access iterator type. |
| 1175 | if (const auto *RD = LoopVarTy->getAsCXXRecordDecl()) { |
| 1176 | // Note: Only do CXXRecordDecl because RecordDecl can't be a random access |
| 1177 | // iterator type! |
| 1178 | |
| 1179 | // We could either do a lot of work to see if this matches |
| 1180 | // random-access-iterator, but it seems that just checking that the |
| 1181 | // 'iterator_category' typedef is more than sufficient. If programmers are |
| 1182 | // willing to lie about this, we can let them. |
| 1183 | |
| 1184 | for (const auto *TD : |
| 1185 | llvm::make_filter_range(Range: RD->decls(), Pred: llvm::IsaPred<TypedefNameDecl>)) { |
| 1186 | const auto *TDND = cast<TypedefNameDecl>(Val: TD)->getCanonicalDecl(); |
| 1187 | |
| 1188 | if (TDND->getName() != "iterator_category" ) |
| 1189 | continue; |
| 1190 | |
| 1191 | // If there is no type for this decl, return false. |
| 1192 | if (TDND->getUnderlyingType().isNull()) |
| 1193 | return false; |
| 1194 | |
| 1195 | const CXXRecordDecl *ItrCategoryDecl = |
| 1196 | TDND->getUnderlyingType()->getAsCXXRecordDecl(); |
| 1197 | |
| 1198 | // If the category isn't a record decl, it isn't the tag type. |
| 1199 | if (!ItrCategoryDecl) |
| 1200 | return false; |
| 1201 | |
| 1202 | auto IsRandomAccessIteratorTag = [](const CXXRecordDecl *RD) { |
| 1203 | if (RD->getName() != "random_access_iterator_tag" ) |
| 1204 | return false; |
| 1205 | // Checks just for std::random_access_iterator_tag. |
| 1206 | return RD->getEnclosingNamespaceContext()->isStdNamespace(); |
| 1207 | }; |
| 1208 | |
| 1209 | if (IsRandomAccessIteratorTag(ItrCategoryDecl)) |
| 1210 | return true; |
| 1211 | |
| 1212 | // We can also support tag-types inherited from the |
| 1213 | // random_access_iterator_tag. |
| 1214 | for (CXXBaseSpecifier BS : ItrCategoryDecl->bases()) |
| 1215 | if (IsRandomAccessIteratorTag(BS.getType()->getAsCXXRecordDecl())) |
| 1216 | return true; |
| 1217 | |
| 1218 | return false; |
| 1219 | } |
| 1220 | } |
| 1221 | |
| 1222 | return false; |
| 1223 | } |
| 1224 | const ValueDecl *getDeclFromExpr(const Expr *E) { |
| 1225 | E = E->IgnoreParenImpCasts(); |
| 1226 | if (const auto *FE = dyn_cast<FullExpr>(Val: E)) |
| 1227 | E = FE->getSubExpr(); |
| 1228 | |
| 1229 | E = E->IgnoreParenImpCasts(); |
| 1230 | |
| 1231 | if (!E) |
| 1232 | return nullptr; |
| 1233 | if (const auto *DRE = dyn_cast<DeclRefExpr>(Val: E)) |
| 1234 | return dyn_cast<ValueDecl>(Val: DRE->getDecl()); |
| 1235 | |
| 1236 | if (const auto *ME = dyn_cast<MemberExpr>(Val: E)) |
| 1237 | if (isa<CXXThisExpr>(Val: ME->getBase()->IgnoreParenImpCasts())) |
| 1238 | return ME->getMemberDecl(); |
| 1239 | |
| 1240 | return nullptr; |
| 1241 | } |
| 1242 | } // namespace |
| 1243 | |
| 1244 | void SemaOpenACC::ForStmtBeginChecker::checkRangeFor() { |
| 1245 | const RangeForInfo &RFI = std::get<RangeForInfo>(v&: Info); |
| 1246 | // If this hasn't changed since last instantiated we're done. |
| 1247 | if (RFI.Uninstantiated == RFI.CurrentVersion) |
| 1248 | return; |
| 1249 | |
| 1250 | const DeclStmt *UninstRangeStmt = |
| 1251 | IsInstantiation ? RFI.Uninstantiated->getBeginStmt() : nullptr; |
| 1252 | const DeclStmt *RangeStmt = RFI.CurrentVersion->getBeginStmt(); |
| 1253 | |
| 1254 | // If this isn't the first time we've checked this loop, suppress any cases |
| 1255 | // where we previously diagnosed. |
| 1256 | if (UninstRangeStmt) { |
| 1257 | const ValueDecl *InitVar = |
| 1258 | cast<ValueDecl>(Val: UninstRangeStmt->getSingleDecl()); |
| 1259 | QualType VarType = InitVar->getType().getNonReferenceType(); |
| 1260 | |
| 1261 | if (!isValidLoopVariableType(LoopVarTy: VarType)) |
| 1262 | return; |
| 1263 | } |
| 1264 | |
| 1265 | // In some dependent contexts, the autogenerated range statement doesn't get |
| 1266 | // included until instantiation, so skip for now. |
| 1267 | if (RangeStmt) { |
| 1268 | const ValueDecl *InitVar = cast<ValueDecl>(Val: RangeStmt->getSingleDecl()); |
| 1269 | QualType VarType = InitVar->getType().getNonReferenceType(); |
| 1270 | |
| 1271 | if (!isValidLoopVariableType(LoopVarTy: VarType)) { |
| 1272 | SemaRef.Diag(Loc: InitVar->getBeginLoc(), DiagID: diag::err_acc_loop_variable_type) |
| 1273 | << SemaRef.LoopWithoutSeqInfo.Kind << VarType; |
| 1274 | SemaRef.Diag(Loc: SemaRef.LoopWithoutSeqInfo.Loc, |
| 1275 | DiagID: diag::note_acc_construct_here) |
| 1276 | << SemaRef.LoopWithoutSeqInfo.Kind; |
| 1277 | return; |
| 1278 | } |
| 1279 | } |
| 1280 | } |
| 1281 | bool SemaOpenACC::ForStmtBeginChecker::checkForInit(const Stmt *InitStmt, |
| 1282 | const ValueDecl *&InitVar, |
| 1283 | bool Diag) { |
| 1284 | // Init statement is required. |
| 1285 | if (!InitStmt) { |
| 1286 | if (Diag) { |
| 1287 | SemaRef.Diag(Loc: ForLoc, DiagID: diag::err_acc_loop_variable) |
| 1288 | << SemaRef.LoopWithoutSeqInfo.Kind; |
| 1289 | SemaRef.Diag(Loc: SemaRef.LoopWithoutSeqInfo.Loc, |
| 1290 | DiagID: diag::note_acc_construct_here) |
| 1291 | << SemaRef.LoopWithoutSeqInfo.Kind; |
| 1292 | } |
| 1293 | return true; |
| 1294 | } |
| 1295 | auto DiagLoopVar = [this, Diag, InitStmt]() { |
| 1296 | if (Diag) { |
| 1297 | SemaRef.Diag(Loc: InitStmt->getBeginLoc(), DiagID: diag::err_acc_loop_variable) |
| 1298 | << SemaRef.LoopWithoutSeqInfo.Kind; |
| 1299 | SemaRef.Diag(Loc: SemaRef.LoopWithoutSeqInfo.Loc, |
| 1300 | DiagID: diag::note_acc_construct_here) |
| 1301 | << SemaRef.LoopWithoutSeqInfo.Kind; |
| 1302 | } |
| 1303 | return true; |
| 1304 | }; |
| 1305 | |
| 1306 | if (const auto *ExprTemp = dyn_cast<ExprWithCleanups>(Val: InitStmt)) |
| 1307 | InitStmt = ExprTemp->getSubExpr(); |
| 1308 | if (const auto *E = dyn_cast<Expr>(Val: InitStmt)) |
| 1309 | InitStmt = E->IgnoreParenImpCasts(); |
| 1310 | |
| 1311 | InitVar = nullptr; |
| 1312 | if (const auto *BO = dyn_cast<BinaryOperator>(Val: InitStmt)) { |
| 1313 | // Allow assignment operator here. |
| 1314 | |
| 1315 | if (!BO->isAssignmentOp()) |
| 1316 | return DiagLoopVar(); |
| 1317 | |
| 1318 | const Expr *LHS = BO->getLHS()->IgnoreParenImpCasts(); |
| 1319 | if (const auto *DRE = dyn_cast<DeclRefExpr>(Val: LHS)) |
| 1320 | InitVar = DRE->getDecl(); |
| 1321 | } else if (const auto *DS = dyn_cast<DeclStmt>(Val: InitStmt)) { |
| 1322 | // Allow T t = <whatever> |
| 1323 | if (!DS->isSingleDecl()) |
| 1324 | return DiagLoopVar(); |
| 1325 | InitVar = dyn_cast<ValueDecl>(Val: DS->getSingleDecl()); |
| 1326 | |
| 1327 | // Ensure we have an initializer, unless this is a record/dependent type. |
| 1328 | if (InitVar) { |
| 1329 | if (!isa<VarDecl>(Val: InitVar)) |
| 1330 | return DiagLoopVar(); |
| 1331 | |
| 1332 | if (!InitVar->getType()->isRecordType() && |
| 1333 | !InitVar->getType()->isDependentType() && |
| 1334 | !cast<VarDecl>(Val: InitVar)->hasInit()) |
| 1335 | return DiagLoopVar(); |
| 1336 | } |
| 1337 | } else if (auto *CE = dyn_cast<CXXOperatorCallExpr>(Val: InitStmt)) { |
| 1338 | // Allow assignment operator call. |
| 1339 | if (CE->getOperator() != OO_Equal) |
| 1340 | return DiagLoopVar(); |
| 1341 | |
| 1342 | const Expr *LHS = CE->getArg(Arg: 0)->IgnoreParenImpCasts(); |
| 1343 | if (auto *DRE = dyn_cast<DeclRefExpr>(Val: LHS)) { |
| 1344 | InitVar = DRE->getDecl(); |
| 1345 | } else if (auto *ME = dyn_cast<MemberExpr>(Val: LHS)) { |
| 1346 | if (isa<CXXThisExpr>(Val: ME->getBase()->IgnoreParenImpCasts())) |
| 1347 | InitVar = ME->getMemberDecl(); |
| 1348 | } |
| 1349 | } |
| 1350 | |
| 1351 | // If after all of that, we haven't found a variable, give up. |
| 1352 | if (!InitVar) |
| 1353 | return DiagLoopVar(); |
| 1354 | |
| 1355 | InitVar = cast<ValueDecl>(Val: InitVar->getCanonicalDecl()); |
| 1356 | QualType VarType = InitVar->getType().getNonReferenceType(); |
| 1357 | |
| 1358 | // Since we have one, all we need to do is ensure it is the right type. |
| 1359 | if (!isValidLoopVariableType(LoopVarTy: VarType)) { |
| 1360 | if (Diag) { |
| 1361 | SemaRef.Diag(Loc: InitVar->getBeginLoc(), DiagID: diag::err_acc_loop_variable_type) |
| 1362 | << SemaRef.LoopWithoutSeqInfo.Kind << VarType; |
| 1363 | SemaRef.Diag(Loc: SemaRef.LoopWithoutSeqInfo.Loc, |
| 1364 | DiagID: diag::note_acc_construct_here) |
| 1365 | << SemaRef.LoopWithoutSeqInfo.Kind; |
| 1366 | } |
| 1367 | return true; |
| 1368 | } |
| 1369 | |
| 1370 | return false; |
| 1371 | } |
| 1372 | |
| 1373 | bool SemaOpenACC::ForStmtBeginChecker::checkForCond(const Stmt *CondStmt, |
| 1374 | const ValueDecl *InitVar, |
| 1375 | bool Diag) { |
| 1376 | // A condition statement is required. |
| 1377 | if (!CondStmt) { |
| 1378 | if (Diag) { |
| 1379 | SemaRef.Diag(Loc: ForLoc, DiagID: diag::err_acc_loop_terminating_condition) |
| 1380 | << SemaRef.LoopWithoutSeqInfo.Kind; |
| 1381 | SemaRef.Diag(Loc: SemaRef.LoopWithoutSeqInfo.Loc, |
| 1382 | DiagID: diag::note_acc_construct_here) |
| 1383 | << SemaRef.LoopWithoutSeqInfo.Kind; |
| 1384 | } |
| 1385 | |
| 1386 | return true; |
| 1387 | } |
| 1388 | auto DiagCondVar = [this, Diag, CondStmt] { |
| 1389 | if (Diag) { |
| 1390 | SemaRef.Diag(Loc: CondStmt->getBeginLoc(), |
| 1391 | DiagID: diag::err_acc_loop_terminating_condition) |
| 1392 | << SemaRef.LoopWithoutSeqInfo.Kind; |
| 1393 | SemaRef.Diag(Loc: SemaRef.LoopWithoutSeqInfo.Loc, |
| 1394 | DiagID: diag::note_acc_construct_here) |
| 1395 | << SemaRef.LoopWithoutSeqInfo.Kind; |
| 1396 | } |
| 1397 | return true; |
| 1398 | }; |
| 1399 | |
| 1400 | if (const auto *ExprTemp = dyn_cast<ExprWithCleanups>(Val: CondStmt)) |
| 1401 | CondStmt = ExprTemp->getSubExpr(); |
| 1402 | if (const auto *E = dyn_cast<Expr>(Val: CondStmt)) |
| 1403 | CondStmt = E->IgnoreParenImpCasts(); |
| 1404 | |
| 1405 | const ValueDecl *CondVar = nullptr; |
| 1406 | if (const auto *BO = dyn_cast<BinaryOperator>(Val: CondStmt)) { |
| 1407 | switch (BO->getOpcode()) { |
| 1408 | default: |
| 1409 | return DiagCondVar(); |
| 1410 | case BO_EQ: |
| 1411 | case BO_LT: |
| 1412 | case BO_GT: |
| 1413 | case BO_NE: |
| 1414 | case BO_LE: |
| 1415 | case BO_GE: |
| 1416 | break; |
| 1417 | } |
| 1418 | |
| 1419 | // Assign the condition-var to the LHS. If it either comes back null, or |
| 1420 | // the LHS doesn't match the InitVar, assign it to the RHS so that 5 < N is |
| 1421 | // allowed. |
| 1422 | CondVar = getDeclFromExpr(E: BO->getLHS()); |
| 1423 | if (!CondVar || |
| 1424 | (InitVar && CondVar->getCanonicalDecl() != InitVar->getCanonicalDecl())) |
| 1425 | CondVar = getDeclFromExpr(E: BO->getRHS()); |
| 1426 | |
| 1427 | } else if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(Val: CondStmt)) { |
| 1428 | // Any of the comparison ops should be ok here, but we don't know how to |
| 1429 | // handle spaceship, so disallow for now. |
| 1430 | if (!CE->isComparisonOp() || CE->getOperator() == OO_Spaceship) |
| 1431 | return DiagCondVar(); |
| 1432 | |
| 1433 | // Same logic here: Assign it to the LHS, unless the LHS comes back null or |
| 1434 | // not equal to the init var. |
| 1435 | CondVar = getDeclFromExpr(E: CE->getArg(Arg: 0)); |
| 1436 | if (!CondVar || |
| 1437 | (InitVar && |
| 1438 | CondVar->getCanonicalDecl() != InitVar->getCanonicalDecl() && |
| 1439 | CE->getNumArgs() > 1)) |
| 1440 | CondVar = getDeclFromExpr(E: CE->getArg(Arg: 1)); |
| 1441 | } else { |
| 1442 | return DiagCondVar(); |
| 1443 | } |
| 1444 | |
| 1445 | if (!CondVar) |
| 1446 | return DiagCondVar(); |
| 1447 | |
| 1448 | // Don't consider this an error unless the init variable was properly set, |
| 1449 | // else check to make sure they are the same variable. |
| 1450 | if (InitVar && CondVar->getCanonicalDecl() != InitVar->getCanonicalDecl()) |
| 1451 | return DiagCondVar(); |
| 1452 | |
| 1453 | return false; |
| 1454 | } |
| 1455 | |
| 1456 | namespace { |
| 1457 | // Helper to check the RHS of an assignment during for's step. We can allow |
| 1458 | // InitVar = InitVar + N, InitVar = N + InitVar, and Initvar = Initvar - N, |
| 1459 | // where N is an integer. |
| 1460 | bool isValidForIncRHSAssign(const ValueDecl *InitVar, const Expr *RHS) { |
| 1461 | |
| 1462 | auto isValid = [](const ValueDecl *InitVar, const Expr *InnerLHS, |
| 1463 | const Expr *InnerRHS, bool IsAddition) { |
| 1464 | // ONE of the sides has to be an integer type. |
| 1465 | if (!InnerLHS->getType()->isIntegerType() && |
| 1466 | !InnerRHS->getType()->isIntegerType()) |
| 1467 | return false; |
| 1468 | |
| 1469 | // If the init var is already an error, don't bother trying to check for |
| 1470 | // it. |
| 1471 | if (!InitVar) |
| 1472 | return true; |
| 1473 | |
| 1474 | const ValueDecl *LHSDecl = getDeclFromExpr(E: InnerLHS); |
| 1475 | const ValueDecl *RHSDecl = getDeclFromExpr(E: InnerRHS); |
| 1476 | // If we can't get a declaration, this is probably an error, so give up. |
| 1477 | if (!LHSDecl || !RHSDecl) |
| 1478 | return true; |
| 1479 | |
| 1480 | // If the LHS is the InitVar, the other must be int, so this is valid. |
| 1481 | if (LHSDecl->getCanonicalDecl() == |
| 1482 | InitVar->getCanonicalDecl()) |
| 1483 | return true; |
| 1484 | |
| 1485 | // Subtraction doesn't allow the RHS to be init var, so this is invalid. |
| 1486 | if (!IsAddition) |
| 1487 | return false; |
| 1488 | |
| 1489 | return RHSDecl->getCanonicalDecl() == |
| 1490 | InitVar->getCanonicalDecl(); |
| 1491 | }; |
| 1492 | |
| 1493 | if (const auto *BO = dyn_cast<BinaryOperator>(Val: RHS)) { |
| 1494 | BinaryOperatorKind OpC = BO->getOpcode(); |
| 1495 | if (OpC != BO_Add && OpC != BO_Sub) |
| 1496 | return false; |
| 1497 | return isValid(InitVar, BO->getLHS(), BO->getRHS(), OpC == BO_Add); |
| 1498 | } else if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(Val: RHS)) { |
| 1499 | OverloadedOperatorKind Op = CE->getOperator(); |
| 1500 | if (Op != OO_Plus && Op != OO_Minus) |
| 1501 | return false; |
| 1502 | return isValid(InitVar, CE->getArg(Arg: 0), CE->getArg(Arg: 1), Op == OO_Plus); |
| 1503 | } |
| 1504 | |
| 1505 | return false; |
| 1506 | } |
| 1507 | } // namespace |
| 1508 | |
| 1509 | bool SemaOpenACC::ForStmtBeginChecker::checkForInc(const Stmt *IncStmt, |
| 1510 | const ValueDecl *InitVar, |
| 1511 | bool Diag) { |
| 1512 | if (!IncStmt) { |
| 1513 | if (Diag) { |
| 1514 | SemaRef.Diag(Loc: ForLoc, DiagID: diag::err_acc_loop_not_monotonic) |
| 1515 | << SemaRef.LoopWithoutSeqInfo.Kind; |
| 1516 | SemaRef.Diag(Loc: SemaRef.LoopWithoutSeqInfo.Loc, |
| 1517 | DiagID: diag::note_acc_construct_here) |
| 1518 | << SemaRef.LoopWithoutSeqInfo.Kind; |
| 1519 | } |
| 1520 | return true; |
| 1521 | } |
| 1522 | auto DiagIncVar = [this, Diag, IncStmt] { |
| 1523 | if (Diag) { |
| 1524 | SemaRef.Diag(Loc: IncStmt->getBeginLoc(), DiagID: diag::err_acc_loop_not_monotonic) |
| 1525 | << SemaRef.LoopWithoutSeqInfo.Kind; |
| 1526 | SemaRef.Diag(Loc: SemaRef.LoopWithoutSeqInfo.Loc, |
| 1527 | DiagID: diag::note_acc_construct_here) |
| 1528 | << SemaRef.LoopWithoutSeqInfo.Kind; |
| 1529 | } |
| 1530 | return true; |
| 1531 | }; |
| 1532 | |
| 1533 | if (const auto *ExprTemp = dyn_cast<ExprWithCleanups>(Val: IncStmt)) |
| 1534 | IncStmt = ExprTemp->getSubExpr(); |
| 1535 | if (const auto *E = dyn_cast<Expr>(Val: IncStmt)) |
| 1536 | IncStmt = E->IgnoreParenImpCasts(); |
| 1537 | |
| 1538 | const ValueDecl *IncVar = nullptr; |
| 1539 | // Here we enforce the monotonically increase/decrease: |
| 1540 | if (const auto *UO = dyn_cast<UnaryOperator>(Val: IncStmt)) { |
| 1541 | // Allow increment/decrement ops. |
| 1542 | if (!UO->isIncrementDecrementOp()) |
| 1543 | return DiagIncVar(); |
| 1544 | IncVar = getDeclFromExpr(E: UO->getSubExpr()); |
| 1545 | } else if (const auto *BO = dyn_cast<BinaryOperator>(Val: IncStmt)) { |
| 1546 | switch (BO->getOpcode()) { |
| 1547 | default: |
| 1548 | return DiagIncVar(); |
| 1549 | case BO_AddAssign: |
| 1550 | case BO_SubAssign: |
| 1551 | break; |
| 1552 | case BO_Assign: |
| 1553 | // For assignment we also allow InitVar = InitVar + N, InitVar = N + |
| 1554 | // InitVar, and InitVar = InitVar - N; BUT only if 'N' is integral. |
| 1555 | if (!isValidForIncRHSAssign(InitVar, RHS: BO->getRHS())) |
| 1556 | return DiagIncVar(); |
| 1557 | break; |
| 1558 | } |
| 1559 | IncVar = getDeclFromExpr(E: BO->getLHS()); |
| 1560 | } else if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(Val: IncStmt)) { |
| 1561 | switch (CE->getOperator()) { |
| 1562 | default: |
| 1563 | return DiagIncVar(); |
| 1564 | case OO_PlusPlus: |
| 1565 | case OO_MinusMinus: |
| 1566 | case OO_PlusEqual: |
| 1567 | case OO_MinusEqual: |
| 1568 | break; |
| 1569 | case OO_Equal: |
| 1570 | // For assignment we also allow InitVar = InitVar + N, InitVar = N + |
| 1571 | // InitVar, and InitVar = InitVar - N; BUT only if 'N' is integral. |
| 1572 | if (!isValidForIncRHSAssign(InitVar, RHS: CE->getArg(Arg: 1))) |
| 1573 | return DiagIncVar(); |
| 1574 | break; |
| 1575 | } |
| 1576 | |
| 1577 | IncVar = getDeclFromExpr(E: CE->getArg(Arg: 0)); |
| 1578 | } else { |
| 1579 | return DiagIncVar(); |
| 1580 | } |
| 1581 | |
| 1582 | if (!IncVar) |
| 1583 | return DiagIncVar(); |
| 1584 | |
| 1585 | // InitVar shouldn't be null unless there was an error, so don't diagnose if |
| 1586 | // that is the case. Else we should ensure that it refers to the loop |
| 1587 | // value. |
| 1588 | if (InitVar && IncVar->getCanonicalDecl() != InitVar->getCanonicalDecl()) |
| 1589 | return DiagIncVar(); |
| 1590 | |
| 1591 | return false; |
| 1592 | } |
| 1593 | |
| 1594 | void SemaOpenACC::ForStmtBeginChecker::checkFor() { |
| 1595 | const CheckForInfo &CFI = std::get<CheckForInfo>(v&: Info); |
| 1596 | |
| 1597 | if (!IsInstantiation) { |
| 1598 | // If this isn't an instantiation, we can just check all of these and |
| 1599 | // diagnose. |
| 1600 | const ValueDecl *CurInitVar = nullptr; |
| 1601 | checkForInit(InitStmt: CFI.Current.Init, InitVar&: CurInitVar, /*Diag=*/true); |
| 1602 | checkForCond(CondStmt: CFI.Current.Condition, InitVar: CurInitVar, /*Diag=*/true); |
| 1603 | checkForInc(IncStmt: CFI.Current.Increment, InitVar: CurInitVar, /*DIag=*/Diag: true); |
| 1604 | } else { |
| 1605 | const ValueDecl *UninstInitVar = nullptr; |
| 1606 | // Checking the 'init' section first. We have to always run both versions, |
| 1607 | // at minimum with the 'diag' off, so that we can ensure we get the correct |
| 1608 | // instantiation var for checking by later ones. |
| 1609 | bool UninstInitFailed = |
| 1610 | checkForInit(InitStmt: CFI.Uninst.Init, InitVar&: UninstInitVar, /*Diag=*/false); |
| 1611 | |
| 1612 | // VarDecls are always rebuild because they are dependent, so we can do a |
| 1613 | // little work to suppress some of the double checking based on whether the |
| 1614 | // type is instantiation dependent. This is imperfect, but will get us most |
| 1615 | // cases suppressed. Currently this only handles the 'T t =' case. |
| 1616 | auto InitChanged = [=]() { |
| 1617 | if (CFI.Uninst.Init == CFI.Current.Init) |
| 1618 | return false; |
| 1619 | |
| 1620 | QualType OldVDTy; |
| 1621 | QualType NewVDTy; |
| 1622 | |
| 1623 | if (const auto *DS = dyn_cast<DeclStmt>(Val: CFI.Uninst.Init)) |
| 1624 | if (const VarDecl *VD = dyn_cast_if_present<VarDecl>( |
| 1625 | Val: DS->isSingleDecl() ? DS->getSingleDecl() : nullptr)) |
| 1626 | OldVDTy = VD->getType(); |
| 1627 | if (const auto *DS = dyn_cast<DeclStmt>(Val: CFI.Current.Init)) |
| 1628 | if (const VarDecl *VD = dyn_cast_if_present<VarDecl>( |
| 1629 | Val: DS->isSingleDecl() ? DS->getSingleDecl() : nullptr)) |
| 1630 | NewVDTy = VD->getType(); |
| 1631 | |
| 1632 | if (OldVDTy.isNull() || NewVDTy.isNull()) |
| 1633 | return true; |
| 1634 | |
| 1635 | return OldVDTy->isInstantiationDependentType() != |
| 1636 | NewVDTy->isInstantiationDependentType(); |
| 1637 | }; |
| 1638 | |
| 1639 | // Only diagnose the new 'init' if the previous version didn't fail, AND the |
| 1640 | // current init changed meaningfully. |
| 1641 | bool ShouldDiagNewInit = !UninstInitFailed && InitChanged(); |
| 1642 | const ValueDecl *CurInitVar = nullptr; |
| 1643 | checkForInit(InitStmt: CFI.Current.Init, InitVar&: CurInitVar, /*Diag=*/ShouldDiagNewInit); |
| 1644 | |
| 1645 | // Check the condition and increment only if the previous version passed, |
| 1646 | // and this changed. |
| 1647 | if (CFI.Uninst.Condition != CFI.Current.Condition && |
| 1648 | !checkForCond(CondStmt: CFI.Uninst.Condition, InitVar: UninstInitVar, /*Diag=*/false)) |
| 1649 | checkForCond(CondStmt: CFI.Current.Condition, InitVar: CurInitVar, /*Diag=*/true); |
| 1650 | if (CFI.Uninst.Increment != CFI.Current.Increment && |
| 1651 | !checkForInc(IncStmt: CFI.Uninst.Increment, InitVar: UninstInitVar, /*Diag=*/false)) |
| 1652 | checkForInc(IncStmt: CFI.Current.Increment, InitVar: CurInitVar, /*Diag=*/true); |
| 1653 | } |
| 1654 | } |
| 1655 | |
| 1656 | void SemaOpenACC::ForStmtBeginChecker::check() { |
| 1657 | // If this isn't an active loop without a seq, immediately return, nothing to |
| 1658 | // check. |
| 1659 | if (SemaRef.LoopWithoutSeqInfo.Kind == OpenACCDirectiveKind::Invalid) |
| 1660 | return; |
| 1661 | |
| 1662 | // If we've already checked, because this is a 'top level' one (and asking |
| 1663 | // again because 'tile' and 'collapse' might apply), just return, nothing to |
| 1664 | // do here. |
| 1665 | if (AlreadyChecked) |
| 1666 | return; |
| 1667 | AlreadyChecked = true; |
| 1668 | |
| 1669 | // OpenACC3.3 2.1: |
| 1670 | // A loop associated with a loop construct that does not have a seq clause |
| 1671 | // must be written to meet all the following conditions: |
| 1672 | // - The loop variable must be of integer, C/C++ pointer, or C++ random-access |
| 1673 | // iterator type. |
| 1674 | // - The loop variable must monotonically increase or decrease in the |
| 1675 | // direction of its termination condition. |
| 1676 | // - The loop trip count must be computable in constant time when entering the |
| 1677 | // loop construct. |
| 1678 | // |
| 1679 | // For a C++ range-based for loop, the loop variable |
| 1680 | // identified by the above conditions is the internal iterator, such as a |
| 1681 | // pointer, that the compiler generates to iterate the range. it is not the |
| 1682 | // variable declared by the for loop. |
| 1683 | |
| 1684 | if (std::holds_alternative<RangeForInfo>(v: Info)) |
| 1685 | return checkRangeFor(); |
| 1686 | |
| 1687 | return checkFor(); |
| 1688 | } |
| 1689 | |
| 1690 | void SemaOpenACC::ActOnForStmtBegin(SourceLocation ForLoc, const Stmt *OldFirst, |
| 1691 | const Stmt *First, const Stmt *OldSecond, |
| 1692 | const Stmt *Second, const Stmt *OldThird, |
| 1693 | const Stmt *Third) { |
| 1694 | if (!getLangOpts().OpenACC) |
| 1695 | return; |
| 1696 | |
| 1697 | ForStmtBeginChecker FSBC{*this, ForLoc, OldFirst, OldSecond, |
| 1698 | OldThird, First, Second, Third}; |
| 1699 | // Check if this is the top-level 'for' for a 'loop'. Else it will be checked |
| 1700 | // as a part of the helper if a tile/collapse applies. |
| 1701 | if (!LoopInfo.TopLevelLoopSeen) { |
| 1702 | FSBC.check(); |
| 1703 | } |
| 1704 | |
| 1705 | ForStmtBeginHelper(ForLoc, C&: FSBC); |
| 1706 | } |
| 1707 | |
| 1708 | void SemaOpenACC::ActOnForStmtBegin(SourceLocation ForLoc, const Stmt *First, |
| 1709 | const Stmt *Second, const Stmt *Third) { |
| 1710 | if (!getLangOpts().OpenACC) |
| 1711 | return; |
| 1712 | |
| 1713 | ForStmtBeginChecker FSBC{*this, ForLoc, First, Second, Third}; |
| 1714 | |
| 1715 | // Check if this is the top-level 'for' for a 'loop'. Else it will be checked |
| 1716 | // as a part of the helper if a tile/collapse applies. |
| 1717 | if (!LoopInfo.TopLevelLoopSeen) |
| 1718 | FSBC.check(); |
| 1719 | |
| 1720 | ForStmtBeginHelper(ForLoc, C&: FSBC); |
| 1721 | } |
| 1722 | |
| 1723 | void SemaOpenACC::ActOnRangeForStmtBegin(SourceLocation ForLoc, |
| 1724 | const Stmt *OldRangeFor, |
| 1725 | const Stmt *RangeFor) { |
| 1726 | if (!getLangOpts().OpenACC || OldRangeFor == nullptr || RangeFor == nullptr) |
| 1727 | return; |
| 1728 | |
| 1729 | ForStmtBeginChecker FSBC{*this, ForLoc, |
| 1730 | cast_if_present<CXXForRangeStmt>(Val: OldRangeFor), |
| 1731 | cast_if_present<CXXForRangeStmt>(Val: RangeFor)}; |
| 1732 | // Check if this is the top-level 'for' for a 'loop'. Else it will be checked |
| 1733 | // as a part of the helper if a tile/collapse applies. |
| 1734 | if (!LoopInfo.TopLevelLoopSeen) { |
| 1735 | FSBC.check(); |
| 1736 | } |
| 1737 | ForStmtBeginHelper(ForLoc, C&: FSBC); |
| 1738 | } |
| 1739 | |
| 1740 | void SemaOpenACC::ActOnRangeForStmtBegin(SourceLocation ForLoc, |
| 1741 | const Stmt *RangeFor) { |
| 1742 | if (!getLangOpts().OpenACC || RangeFor == nullptr) |
| 1743 | return; |
| 1744 | |
| 1745 | ForStmtBeginChecker FSBC = {*this, ForLoc, |
| 1746 | cast_if_present<CXXForRangeStmt>(Val: RangeFor)}; |
| 1747 | |
| 1748 | // Check if this is the top-level 'for' for a 'loop'. Else it will be checked |
| 1749 | // as a part of the helper if a tile/collapse applies. |
| 1750 | if (!LoopInfo.TopLevelLoopSeen) |
| 1751 | FSBC.check(); |
| 1752 | |
| 1753 | ForStmtBeginHelper(ForLoc, C&: FSBC); |
| 1754 | } |
| 1755 | |
| 1756 | namespace { |
| 1757 | SourceLocation FindInterveningCodeInLoop(const Stmt *CurStmt) { |
| 1758 | // We should diagnose on anything except `CompoundStmt`, `NullStmt`, |
| 1759 | // `ForStmt`, `CXXForRangeStmt`, since those are legal, and `WhileStmt` and |
| 1760 | // `DoStmt`, as those are caught as a violation elsewhere. |
| 1761 | // For `CompoundStmt` we need to search inside of it. |
| 1762 | if (!CurStmt || |
| 1763 | isa<ForStmt, NullStmt, ForStmt, CXXForRangeStmt, WhileStmt, DoStmt>( |
| 1764 | Val: CurStmt)) |
| 1765 | return SourceLocation{}; |
| 1766 | |
| 1767 | // Any other construct is an error anyway, so it has already been diagnosed. |
| 1768 | if (isa<OpenACCConstructStmt>(Val: CurStmt)) |
| 1769 | return SourceLocation{}; |
| 1770 | |
| 1771 | // Search inside the compound statement, this allows for arbitrary nesting |
| 1772 | // of compound statements, as long as there isn't any code inside. |
| 1773 | if (const auto *CS = dyn_cast<CompoundStmt>(Val: CurStmt)) { |
| 1774 | for (const auto *ChildStmt : CS->children()) { |
| 1775 | SourceLocation ChildStmtLoc = FindInterveningCodeInLoop(CurStmt: ChildStmt); |
| 1776 | if (ChildStmtLoc.isValid()) |
| 1777 | return ChildStmtLoc; |
| 1778 | } |
| 1779 | // Empty/not invalid compound statements are legal. |
| 1780 | return SourceLocation{}; |
| 1781 | } |
| 1782 | return CurStmt->getBeginLoc(); |
| 1783 | } |
| 1784 | } // namespace |
| 1785 | |
| 1786 | void SemaOpenACC::ActOnForStmtEnd(SourceLocation ForLoc, StmtResult Body) { |
| 1787 | if (!getLangOpts().OpenACC) |
| 1788 | return; |
| 1789 | |
| 1790 | // Set this to 'true' so if we find another one at this level we can diagnose. |
| 1791 | LoopInfo.CurLevelHasLoopAlready = true; |
| 1792 | |
| 1793 | if (!Body.isUsable()) |
| 1794 | return; |
| 1795 | |
| 1796 | bool IsActiveCollapse = CollapseInfo.CurCollapseCount && |
| 1797 | *CollapseInfo.CurCollapseCount > 0 && |
| 1798 | !CollapseInfo.ActiveCollapse->hasForce(); |
| 1799 | bool IsActiveTile = TileInfo.CurTileCount && *TileInfo.CurTileCount > 0; |
| 1800 | |
| 1801 | if (IsActiveCollapse || IsActiveTile) { |
| 1802 | SourceLocation OtherStmtLoc = FindInterveningCodeInLoop(CurStmt: Body.get()); |
| 1803 | |
| 1804 | if (OtherStmtLoc.isValid() && IsActiveCollapse) { |
| 1805 | Diag(Loc: OtherStmtLoc, DiagID: diag::err_acc_intervening_code) |
| 1806 | << OpenACCClauseKind::Collapse << CollapseInfo.DirectiveKind; |
| 1807 | Diag(Loc: CollapseInfo.ActiveCollapse->getBeginLoc(), |
| 1808 | DiagID: diag::note_acc_active_clause_here) |
| 1809 | << OpenACCClauseKind::Collapse; |
| 1810 | } |
| 1811 | |
| 1812 | if (OtherStmtLoc.isValid() && IsActiveTile) { |
| 1813 | Diag(Loc: OtherStmtLoc, DiagID: diag::err_acc_intervening_code) |
| 1814 | << OpenACCClauseKind::Tile << TileInfo.DirectiveKind; |
| 1815 | Diag(Loc: TileInfo.ActiveTile->getBeginLoc(), |
| 1816 | DiagID: diag::note_acc_active_clause_here) |
| 1817 | << OpenACCClauseKind::Tile; |
| 1818 | } |
| 1819 | } |
| 1820 | } |
| 1821 | |
| 1822 | namespace { |
| 1823 | // Helper that should mirror ActOnRoutineName to get the FunctionDecl out for |
| 1824 | // magic-static checking. |
| 1825 | FunctionDecl *getFunctionFromRoutineName(Expr *RoutineName) { |
| 1826 | if (!RoutineName) |
| 1827 | return nullptr; |
| 1828 | RoutineName = RoutineName->IgnoreParenImpCasts(); |
| 1829 | if (isa<RecoveryExpr>(Val: RoutineName)) { |
| 1830 | // There is nothing we can do here, this isn't a function we can count on. |
| 1831 | return nullptr; |
| 1832 | } else if (isa<DependentScopeDeclRefExpr, CXXDependentScopeMemberExpr>( |
| 1833 | Val: RoutineName)) { |
| 1834 | // The lookup is dependent, so we'll have to figure this out later. |
| 1835 | return nullptr; |
| 1836 | } else if (auto *DRE = dyn_cast<DeclRefExpr>(Val: RoutineName)) { |
| 1837 | ValueDecl *VD = DRE->getDecl(); |
| 1838 | |
| 1839 | if (auto *FD = dyn_cast<FunctionDecl>(Val: VD)) |
| 1840 | return FD; |
| 1841 | |
| 1842 | // Allow lambdas. |
| 1843 | if (auto *VarD = dyn_cast<VarDecl>(Val: VD)) { |
| 1844 | QualType VarDTy = VarD->getType(); |
| 1845 | if (!VarDTy.isNull()) { |
| 1846 | if (auto *RD = VarDTy->getAsCXXRecordDecl()) { |
| 1847 | if (RD->isGenericLambda()) |
| 1848 | return nullptr; |
| 1849 | if (RD->isLambda()) |
| 1850 | return RD->getLambdaCallOperator(); |
| 1851 | } else if (VarDTy->isDependentType()) { |
| 1852 | // We don't really know what this is going to be. |
| 1853 | return nullptr; |
| 1854 | } |
| 1855 | } |
| 1856 | return nullptr; |
| 1857 | } else if (isa<OverloadExpr>(Val: RoutineName)) { |
| 1858 | return nullptr; |
| 1859 | } |
| 1860 | } |
| 1861 | return nullptr; |
| 1862 | } |
| 1863 | } // namespace |
| 1864 | |
| 1865 | ExprResult SemaOpenACC::ActOnRoutineName(Expr *RoutineName) { |
| 1866 | assert(RoutineName && "Routine name cannot be null here" ); |
| 1867 | RoutineName = RoutineName->IgnoreParenImpCasts(); |
| 1868 | |
| 1869 | if (isa<RecoveryExpr>(Val: RoutineName)) { |
| 1870 | // This has already been diagnosed, so we can skip it. |
| 1871 | return ExprError(); |
| 1872 | } else if (isa<DependentScopeDeclRefExpr, CXXDependentScopeMemberExpr>( |
| 1873 | Val: RoutineName)) { |
| 1874 | // These are dependent and we can't really check them, so delay until |
| 1875 | // instantiation. |
| 1876 | return RoutineName; |
| 1877 | } else if (const auto *DRE = dyn_cast<DeclRefExpr>(Val: RoutineName)) { |
| 1878 | const ValueDecl *VD = DRE->getDecl(); |
| 1879 | |
| 1880 | if (isa<FunctionDecl>(Val: VD)) |
| 1881 | return RoutineName; |
| 1882 | |
| 1883 | // Allow lambdas. |
| 1884 | if (const auto *VarD = dyn_cast<VarDecl>(Val: VD)) { |
| 1885 | QualType VarDTy = VarD->getType(); |
| 1886 | if (!VarDTy.isNull()) { |
| 1887 | if (const auto *RD = VarDTy->getAsCXXRecordDecl()) { |
| 1888 | if (RD->isGenericLambda()) { |
| 1889 | Diag(Loc: RoutineName->getBeginLoc(), DiagID: diag::err_acc_routine_overload_set) |
| 1890 | << RoutineName; |
| 1891 | return ExprError(); |
| 1892 | } |
| 1893 | if (RD->isLambda()) |
| 1894 | return RoutineName; |
| 1895 | } else if (VarDTy->isDependentType()) { |
| 1896 | // If this is a dependent variable, it might be a lambda. So we just |
| 1897 | // accept this and catch it next time. |
| 1898 | return RoutineName; |
| 1899 | } |
| 1900 | } |
| 1901 | } |
| 1902 | |
| 1903 | Diag(Loc: RoutineName->getBeginLoc(), DiagID: diag::err_acc_routine_not_func) |
| 1904 | << RoutineName; |
| 1905 | return ExprError(); |
| 1906 | } else if (isa<OverloadExpr>(Val: RoutineName)) { |
| 1907 | // This happens in function templates, even when the template arguments are |
| 1908 | // fully specified. We could possibly do some sort of matching to make sure |
| 1909 | // that this is looked up/deduced, but GCC does not do this, so there |
| 1910 | // doesn't seem to be a good reason for us to do it either. |
| 1911 | Diag(Loc: RoutineName->getBeginLoc(), DiagID: diag::err_acc_routine_overload_set) |
| 1912 | << RoutineName; |
| 1913 | return ExprError(); |
| 1914 | } |
| 1915 | |
| 1916 | Diag(Loc: RoutineName->getBeginLoc(), DiagID: diag::err_acc_routine_not_func) |
| 1917 | << RoutineName; |
| 1918 | return ExprError(); |
| 1919 | } |
| 1920 | void SemaOpenACC::ActOnVariableDeclarator(VarDecl *VD) { |
| 1921 | if (!getLangOpts().OpenACC || VD->isInvalidDecl() || !VD->isStaticLocal()) |
| 1922 | return; |
| 1923 | |
| 1924 | // This cast should be safe, since a static-local can only happen in a |
| 1925 | // function declaration. However, in error cases (or perhaps ObjC/C++?), this |
| 1926 | // could possibly be something like a 'block' decl, so if this is NOT a |
| 1927 | // function decl, just give up. |
| 1928 | auto *ContextDecl = dyn_cast<FunctionDecl>(Val: getCurContext()); |
| 1929 | |
| 1930 | if (!ContextDecl) |
| 1931 | return; |
| 1932 | |
| 1933 | // OpenACC 3.3 2.15: |
| 1934 | // In C and C++, function static variables are not supported in functions to |
| 1935 | // which a routine directive applies. |
| 1936 | for (const auto *A : ContextDecl->attrs()) { |
| 1937 | if (isa<OpenACCRoutineDeclAttr, OpenACCRoutineAnnotAttr>(Val: A)) { |
| 1938 | Diag(Loc: VD->getBeginLoc(), DiagID: diag::err_acc_magic_static_in_routine); |
| 1939 | Diag(Loc: A->getLocation(), DiagID: diag::note_acc_construct_here) |
| 1940 | << OpenACCDirectiveKind::Routine; |
| 1941 | return; |
| 1942 | } |
| 1943 | } |
| 1944 | |
| 1945 | MagicStaticLocs.insert(KV: {ContextDecl->getCanonicalDecl(), VD->getBeginLoc()}); |
| 1946 | } |
| 1947 | void SemaOpenACC::CheckLastRoutineDeclNameConflict(const NamedDecl *ND) { |
| 1948 | // OpenACC 3.3 A.3.4 |
| 1949 | // When a procedure with that name is in scope and it is not the same |
| 1950 | // procedure as the immediately following procedure declaration or |
| 1951 | // definition, the resolution of the name can be confusing. Implementations |
| 1952 | // should then issue a compile-time warning diagnostic even though the |
| 1953 | // application is conforming. |
| 1954 | |
| 1955 | // If we haven't created one, also can't diagnose. |
| 1956 | if (!LastRoutineDecl) |
| 1957 | return; |
| 1958 | |
| 1959 | // If the currently created function doesn't have a name, we can't diagnose on |
| 1960 | // a match. |
| 1961 | if (!ND->getDeclName().isIdentifier()) |
| 1962 | return; |
| 1963 | |
| 1964 | // If the two are in different decl contexts, it doesn't make sense to |
| 1965 | // diagnose. |
| 1966 | if (LastRoutineDecl->getDeclContext() != ND->getLexicalDeclContext()) |
| 1967 | return; |
| 1968 | |
| 1969 | // If we don't have a referenced thing yet, we can't diagnose. |
| 1970 | FunctionDecl *RoutineTarget = |
| 1971 | getFunctionFromRoutineName(RoutineName: LastRoutineDecl->getFunctionReference()); |
| 1972 | if (!RoutineTarget) |
| 1973 | return; |
| 1974 | |
| 1975 | // If the Routine target doesn't have a name, we can't diagnose. |
| 1976 | if (!RoutineTarget->getDeclName().isIdentifier()) |
| 1977 | return; |
| 1978 | |
| 1979 | // Of course don't diagnose if the names don't match. |
| 1980 | if (ND->getName() != RoutineTarget->getName()) |
| 1981 | return; |
| 1982 | |
| 1983 | long NDLine = SemaRef.SourceMgr.getSpellingLineNumber(Loc: ND->getBeginLoc()); |
| 1984 | long LastLine = |
| 1985 | SemaRef.SourceMgr.getSpellingLineNumber(Loc: LastRoutineDecl->getBeginLoc()); |
| 1986 | |
| 1987 | // Do some line-number math to make sure they are within a line of eachother. |
| 1988 | // Comments or newlines can be inserted to clarify intent. |
| 1989 | if (NDLine - LastLine > 1) |
| 1990 | return; |
| 1991 | |
| 1992 | // Don't warn if it actually DOES apply to this function via redecls. |
| 1993 | if (ND->getCanonicalDecl() == RoutineTarget->getCanonicalDecl()) |
| 1994 | return; |
| 1995 | |
| 1996 | Diag(Loc: LastRoutineDecl->getFunctionReference()->getBeginLoc(), |
| 1997 | DiagID: diag::warn_acc_confusing_routine_name); |
| 1998 | Diag(Loc: RoutineTarget->getBeginLoc(), DiagID: diag::note_previous_decl) << ND; |
| 1999 | } |
| 2000 | |
| 2001 | void SemaOpenACC::ActOnVariableInit(VarDecl *VD, QualType InitType) { |
| 2002 | if (!VD || !getLangOpts().OpenACC || InitType.isNull()) |
| 2003 | return; |
| 2004 | |
| 2005 | // To avoid double-diagnostic, just diagnose this during instantiation. We'll |
| 2006 | // get 1 warning per instantiation, but this permits us to be more sensible |
| 2007 | // for cases where the lookup is confusing. |
| 2008 | if (VD->getLexicalDeclContext()->isDependentContext()) |
| 2009 | return; |
| 2010 | |
| 2011 | const auto *RD = InitType->getAsCXXRecordDecl(); |
| 2012 | // If this isn't a lambda, no sense in diagnosing. |
| 2013 | if (!RD || !RD->isLambda()) |
| 2014 | return; |
| 2015 | |
| 2016 | CheckLastRoutineDeclNameConflict(ND: VD); |
| 2017 | } |
| 2018 | |
| 2019 | void SemaOpenACC::ActOnFunctionDeclarator(FunctionDecl *FD) { |
| 2020 | if (!FD || !getLangOpts().OpenACC) |
| 2021 | return; |
| 2022 | CheckLastRoutineDeclNameConflict(ND: FD); |
| 2023 | } |
| 2024 | |
| 2025 | bool SemaOpenACC::ActOnStartStmtDirective( |
| 2026 | OpenACCDirectiveKind K, SourceLocation StartLoc, |
| 2027 | ArrayRef<const OpenACCClause *> Clauses) { |
| 2028 | |
| 2029 | // Declaration directives an appear in a statement location, so call into that |
| 2030 | // function here. |
| 2031 | if (K == OpenACCDirectiveKind::Declare || K == OpenACCDirectiveKind::Routine) |
| 2032 | return ActOnStartDeclDirective(K, StartLoc, Clauses); |
| 2033 | |
| 2034 | SemaRef.DiscardCleanupsInEvaluationContext(); |
| 2035 | SemaRef.PopExpressionEvaluationContext(); |
| 2036 | |
| 2037 | // OpenACC 3.3 2.9.1: |
| 2038 | // Intervening code must not contain other OpenACC directives or calls to API |
| 2039 | // routines. |
| 2040 | // |
| 2041 | // ALL constructs are ill-formed if there is an active 'collapse' |
| 2042 | if (CollapseInfo.CurCollapseCount && *CollapseInfo.CurCollapseCount > 0) { |
| 2043 | Diag(Loc: StartLoc, DiagID: diag::err_acc_invalid_in_loop) |
| 2044 | << /*OpenACC Construct*/ 0 << CollapseInfo.DirectiveKind |
| 2045 | << OpenACCClauseKind::Collapse << K; |
| 2046 | assert(CollapseInfo.ActiveCollapse && "Collapse count without object?" ); |
| 2047 | Diag(Loc: CollapseInfo.ActiveCollapse->getBeginLoc(), |
| 2048 | DiagID: diag::note_acc_active_clause_here) |
| 2049 | << OpenACCClauseKind::Collapse; |
| 2050 | } |
| 2051 | if (TileInfo.CurTileCount && *TileInfo.CurTileCount > 0) { |
| 2052 | Diag(Loc: StartLoc, DiagID: diag::err_acc_invalid_in_loop) |
| 2053 | << /*OpenACC Construct*/ 0 << TileInfo.DirectiveKind |
| 2054 | << OpenACCClauseKind::Tile << K; |
| 2055 | assert(TileInfo.ActiveTile && "Tile count without object?" ); |
| 2056 | Diag(Loc: TileInfo.ActiveTile->getBeginLoc(), DiagID: diag::note_acc_active_clause_here) |
| 2057 | << OpenACCClauseKind::Tile; |
| 2058 | } |
| 2059 | |
| 2060 | if (DiagnoseRequiredClauses(DK: K, DirLoc: StartLoc, Clauses)) |
| 2061 | return true; |
| 2062 | return diagnoseConstructAppertainment(S&: *this, K, StartLoc, /*IsStmt=*/true); |
| 2063 | } |
| 2064 | |
| 2065 | StmtResult SemaOpenACC::ActOnEndStmtDirective( |
| 2066 | OpenACCDirectiveKind K, SourceLocation StartLoc, SourceLocation DirLoc, |
| 2067 | SourceLocation LParenLoc, SourceLocation MiscLoc, ArrayRef<Expr *> Exprs, |
| 2068 | OpenACCAtomicKind AtomicKind, SourceLocation RParenLoc, |
| 2069 | SourceLocation EndLoc, ArrayRef<OpenACCClause *> Clauses, |
| 2070 | StmtResult AssocStmt) { |
| 2071 | switch (K) { |
| 2072 | case OpenACCDirectiveKind::Invalid: |
| 2073 | return StmtError(); |
| 2074 | case OpenACCDirectiveKind::Parallel: |
| 2075 | case OpenACCDirectiveKind::Serial: |
| 2076 | case OpenACCDirectiveKind::Kernels: { |
| 2077 | return OpenACCComputeConstruct::Create( |
| 2078 | C: getASTContext(), K, BeginLoc: StartLoc, DirectiveLoc: DirLoc, EndLoc, Clauses, |
| 2079 | StructuredBlock: AssocStmt.isUsable() ? AssocStmt.get() : nullptr); |
| 2080 | } |
| 2081 | case OpenACCDirectiveKind::ParallelLoop: |
| 2082 | case OpenACCDirectiveKind::SerialLoop: |
| 2083 | case OpenACCDirectiveKind::KernelsLoop: { |
| 2084 | return OpenACCCombinedConstruct::Create( |
| 2085 | C: getASTContext(), K, Start: StartLoc, DirectiveLoc: DirLoc, End: EndLoc, Clauses, |
| 2086 | StructuredBlock: AssocStmt.isUsable() ? AssocStmt.get() : nullptr); |
| 2087 | } |
| 2088 | case OpenACCDirectiveKind::Loop: { |
| 2089 | return OpenACCLoopConstruct::Create( |
| 2090 | C: getASTContext(), ParentKind: ActiveComputeConstructInfo.Kind, BeginLoc: StartLoc, DirLoc, |
| 2091 | EndLoc, Clauses, Loop: AssocStmt.isUsable() ? AssocStmt.get() : nullptr); |
| 2092 | } |
| 2093 | case OpenACCDirectiveKind::Data: { |
| 2094 | return OpenACCDataConstruct::Create( |
| 2095 | C: getASTContext(), Start: StartLoc, DirectiveLoc: DirLoc, End: EndLoc, Clauses, |
| 2096 | StructuredBlock: AssocStmt.isUsable() ? AssocStmt.get() : nullptr); |
| 2097 | } |
| 2098 | case OpenACCDirectiveKind::EnterData: { |
| 2099 | return OpenACCEnterDataConstruct::Create(C: getASTContext(), Start: StartLoc, DirectiveLoc: DirLoc, |
| 2100 | End: EndLoc, Clauses); |
| 2101 | } |
| 2102 | case OpenACCDirectiveKind::ExitData: { |
| 2103 | return OpenACCExitDataConstruct::Create(C: getASTContext(), Start: StartLoc, DirectiveLoc: DirLoc, |
| 2104 | End: EndLoc, Clauses); |
| 2105 | } |
| 2106 | case OpenACCDirectiveKind::HostData: { |
| 2107 | return OpenACCHostDataConstruct::Create( |
| 2108 | C: getASTContext(), Start: StartLoc, DirectiveLoc: DirLoc, End: EndLoc, Clauses, |
| 2109 | StructuredBlock: AssocStmt.isUsable() ? AssocStmt.get() : nullptr); |
| 2110 | } |
| 2111 | case OpenACCDirectiveKind::Wait: { |
| 2112 | return OpenACCWaitConstruct::Create( |
| 2113 | C: getASTContext(), Start: StartLoc, DirectiveLoc: DirLoc, LParenLoc, DevNumExpr: Exprs.front(), QueuesLoc: MiscLoc, |
| 2114 | QueueIdExprs: Exprs.drop_front(), RParenLoc, End: EndLoc, Clauses); |
| 2115 | } |
| 2116 | case OpenACCDirectiveKind::Init: { |
| 2117 | return OpenACCInitConstruct::Create(C: getASTContext(), Start: StartLoc, DirectiveLoc: DirLoc, |
| 2118 | End: EndLoc, Clauses); |
| 2119 | } |
| 2120 | case OpenACCDirectiveKind::Shutdown: { |
| 2121 | return OpenACCShutdownConstruct::Create(C: getASTContext(), Start: StartLoc, DirectiveLoc: DirLoc, |
| 2122 | End: EndLoc, Clauses); |
| 2123 | } |
| 2124 | case OpenACCDirectiveKind::Set: { |
| 2125 | return OpenACCSetConstruct::Create(C: getASTContext(), Start: StartLoc, DirectiveLoc: DirLoc, |
| 2126 | End: EndLoc, Clauses); |
| 2127 | } |
| 2128 | case OpenACCDirectiveKind::Update: { |
| 2129 | return OpenACCUpdateConstruct::Create(C: getASTContext(), Start: StartLoc, DirectiveLoc: DirLoc, |
| 2130 | End: EndLoc, Clauses); |
| 2131 | } |
| 2132 | case OpenACCDirectiveKind::Atomic: { |
| 2133 | return OpenACCAtomicConstruct::Create( |
| 2134 | C: getASTContext(), Start: StartLoc, DirectiveLoc: DirLoc, AtKind: AtomicKind, End: EndLoc, Clauses, |
| 2135 | AssociatedStmt: AssocStmt.isUsable() ? AssocStmt.get() : nullptr); |
| 2136 | } |
| 2137 | case OpenACCDirectiveKind::Cache: { |
| 2138 | assert(Clauses.empty() && "Cache doesn't allow clauses" ); |
| 2139 | return OpenACCCacheConstruct::Create(C: getASTContext(), Start: StartLoc, DirectiveLoc: DirLoc, |
| 2140 | LParenLoc, ReadOnlyLoc: MiscLoc, VarList: Exprs, RParenLoc, |
| 2141 | End: EndLoc); |
| 2142 | } |
| 2143 | case OpenACCDirectiveKind::Routine: |
| 2144 | llvm_unreachable("routine shouldn't handled here" ); |
| 2145 | case OpenACCDirectiveKind::Declare: { |
| 2146 | // Declare and routine arei declaration directives, but can be used here as |
| 2147 | // long as we wrap it in a DeclStmt. So make sure we do that here. |
| 2148 | DeclGroupRef DR = ActOnEndDeclDirective(K, StartLoc, DirLoc, LParenLoc, |
| 2149 | RParenLoc, EndLoc, Clauses); |
| 2150 | |
| 2151 | return SemaRef.ActOnDeclStmt(Decl: DeclGroupPtrTy::make(P: DR), StartLoc, EndLoc); |
| 2152 | } |
| 2153 | } |
| 2154 | llvm_unreachable("Unhandled case in directive handling?" ); |
| 2155 | } |
| 2156 | |
| 2157 | StmtResult SemaOpenACC::ActOnAssociatedStmt( |
| 2158 | SourceLocation DirectiveLoc, OpenACCDirectiveKind K, |
| 2159 | OpenACCAtomicKind AtKind, ArrayRef<const OpenACCClause *> Clauses, |
| 2160 | StmtResult AssocStmt) { |
| 2161 | switch (K) { |
| 2162 | default: |
| 2163 | llvm_unreachable("Unimplemented associated statement application" ); |
| 2164 | case OpenACCDirectiveKind::EnterData: |
| 2165 | case OpenACCDirectiveKind::ExitData: |
| 2166 | case OpenACCDirectiveKind::Wait: |
| 2167 | case OpenACCDirectiveKind::Init: |
| 2168 | case OpenACCDirectiveKind::Shutdown: |
| 2169 | case OpenACCDirectiveKind::Set: |
| 2170 | case OpenACCDirectiveKind::Cache: |
| 2171 | llvm_unreachable( |
| 2172 | "these don't have associated statements, so shouldn't get here" ); |
| 2173 | case OpenACCDirectiveKind::Atomic: |
| 2174 | return CheckAtomicAssociatedStmt(AtomicDirLoc: DirectiveLoc, AtKind, AssocStmt); |
| 2175 | case OpenACCDirectiveKind::Parallel: |
| 2176 | case OpenACCDirectiveKind::Serial: |
| 2177 | case OpenACCDirectiveKind::Kernels: |
| 2178 | case OpenACCDirectiveKind::Data: |
| 2179 | case OpenACCDirectiveKind::HostData: |
| 2180 | // There really isn't any checking here that could happen. As long as we |
| 2181 | // have a statement to associate, this should be fine. |
| 2182 | // OpenACC 3.3 Section 6: |
| 2183 | // Structured Block: in C or C++, an executable statement, possibly |
| 2184 | // compound, with a single entry at the top and a single exit at the |
| 2185 | // bottom. |
| 2186 | // FIXME: Should we reject DeclStmt's here? The standard isn't clear, and |
| 2187 | // an interpretation of it is to allow this and treat the initializer as |
| 2188 | // the 'structured block'. |
| 2189 | return AssocStmt; |
| 2190 | case OpenACCDirectiveKind::Loop: |
| 2191 | case OpenACCDirectiveKind::ParallelLoop: |
| 2192 | case OpenACCDirectiveKind::SerialLoop: |
| 2193 | case OpenACCDirectiveKind::KernelsLoop: |
| 2194 | if (!AssocStmt.isUsable()) |
| 2195 | return StmtError(); |
| 2196 | |
| 2197 | if (!isa<CXXForRangeStmt, ForStmt>(Val: AssocStmt.get())) { |
| 2198 | Diag(Loc: AssocStmt.get()->getBeginLoc(), DiagID: diag::err_acc_loop_not_for_loop) |
| 2199 | << K; |
| 2200 | Diag(Loc: DirectiveLoc, DiagID: diag::note_acc_construct_here) << K; |
| 2201 | return StmtError(); |
| 2202 | } |
| 2203 | |
| 2204 | if (!CollapseInfo.CollapseDepthSatisfied || !TileInfo.TileDepthSatisfied) { |
| 2205 | if (!CollapseInfo.CollapseDepthSatisfied) { |
| 2206 | Diag(Loc: DirectiveLoc, DiagID: diag::err_acc_insufficient_loops) |
| 2207 | << OpenACCClauseKind::Collapse; |
| 2208 | assert(CollapseInfo.ActiveCollapse && "Collapse count without object?" ); |
| 2209 | Diag(Loc: CollapseInfo.ActiveCollapse->getBeginLoc(), |
| 2210 | DiagID: diag::note_acc_active_clause_here) |
| 2211 | << OpenACCClauseKind::Collapse; |
| 2212 | } |
| 2213 | |
| 2214 | if (!TileInfo.TileDepthSatisfied) { |
| 2215 | Diag(Loc: DirectiveLoc, DiagID: diag::err_acc_insufficient_loops) |
| 2216 | << OpenACCClauseKind::Tile; |
| 2217 | assert(TileInfo.ActiveTile && "Collapse count without object?" ); |
| 2218 | Diag(Loc: TileInfo.ActiveTile->getBeginLoc(), |
| 2219 | DiagID: diag::note_acc_active_clause_here) |
| 2220 | << OpenACCClauseKind::Tile; |
| 2221 | } |
| 2222 | return StmtError(); |
| 2223 | } |
| 2224 | |
| 2225 | return AssocStmt.get(); |
| 2226 | } |
| 2227 | llvm_unreachable("Invalid associated statement application" ); |
| 2228 | } |
| 2229 | |
| 2230 | namespace { |
| 2231 | |
| 2232 | // Routine has some pretty complicated set of rules for how device_type |
| 2233 | // interacts with 'gang', 'worker', 'vector', and 'seq'. Enforce part of it |
| 2234 | // here. |
| 2235 | bool CheckValidRoutineGangWorkerVectorSeqClauses( |
| 2236 | SemaOpenACC &SemaRef, SourceLocation DirectiveLoc, |
| 2237 | ArrayRef<const OpenACCClause *> Clauses) { |
| 2238 | auto RequiredPred = llvm::IsaPred<OpenACCGangClause, OpenACCWorkerClause, |
| 2239 | OpenACCVectorClause, OpenACCSeqClause>; |
| 2240 | // The clause handling has assured us that there is no duplicates. That is, |
| 2241 | // if there is 1 before a device_type, there are none after a device_type. |
| 2242 | // If not, there is at most 1 applying to each device_type. |
| 2243 | |
| 2244 | // What is left to legalize is that either: |
| 2245 | // 1- there is 1 before the first device_type. |
| 2246 | // 2- there is 1 AFTER each device_type. |
| 2247 | auto *FirstDeviceType = |
| 2248 | llvm::find_if(Range&: Clauses, P: llvm::IsaPred<OpenACCDeviceTypeClause>); |
| 2249 | |
| 2250 | // If there is 1 before the first device_type (or at all if no device_type), |
| 2251 | // we are legal. |
| 2252 | auto *ClauseItr = |
| 2253 | std::find_if(first: Clauses.begin(), last: FirstDeviceType, pred: RequiredPred); |
| 2254 | |
| 2255 | if (ClauseItr != FirstDeviceType) |
| 2256 | return false; |
| 2257 | |
| 2258 | // If there IS no device_type, and no clause, diagnose. |
| 2259 | if (FirstDeviceType == Clauses.end()) |
| 2260 | return SemaRef.Diag(Loc: DirectiveLoc, DiagID: diag::err_acc_construct_one_clause_of) |
| 2261 | << OpenACCDirectiveKind::Routine |
| 2262 | << "'gang', 'seq', 'vector', or 'worker'" ; |
| 2263 | |
| 2264 | // Else, we have to check EACH device_type group. PrevDeviceType is the |
| 2265 | // device-type before the current group. |
| 2266 | auto *PrevDeviceType = FirstDeviceType; |
| 2267 | |
| 2268 | while (PrevDeviceType != Clauses.end()) { |
| 2269 | auto *NextDeviceType = |
| 2270 | std::find_if(first: std::next(x: PrevDeviceType), last: Clauses.end(), |
| 2271 | pred: llvm::IsaPred<OpenACCDeviceTypeClause>); |
| 2272 | |
| 2273 | ClauseItr = std::find_if(first: PrevDeviceType, last: NextDeviceType, pred: RequiredPred); |
| 2274 | |
| 2275 | if (ClauseItr == NextDeviceType) |
| 2276 | return SemaRef.Diag(Loc: (*PrevDeviceType)->getBeginLoc(), |
| 2277 | DiagID: diag::err_acc_clause_routine_one_of_in_region); |
| 2278 | |
| 2279 | PrevDeviceType = NextDeviceType; |
| 2280 | } |
| 2281 | |
| 2282 | return false; |
| 2283 | } |
| 2284 | } // namespace |
| 2285 | |
| 2286 | bool SemaOpenACC::ActOnStartDeclDirective( |
| 2287 | OpenACCDirectiveKind K, SourceLocation StartLoc, |
| 2288 | ArrayRef<const OpenACCClause *> Clauses) { |
| 2289 | // OpenCC3.3 2.1 (line 889) |
| 2290 | // A program must not depend on the order of evaluation of expressions in |
| 2291 | // clause arguments or on any side effects of the evaluations. |
| 2292 | SemaRef.DiscardCleanupsInEvaluationContext(); |
| 2293 | SemaRef.PopExpressionEvaluationContext(); |
| 2294 | |
| 2295 | if (DiagnoseRequiredClauses(DK: K, DirLoc: StartLoc, Clauses)) |
| 2296 | return true; |
| 2297 | if (K == OpenACCDirectiveKind::Routine && |
| 2298 | CheckValidRoutineGangWorkerVectorSeqClauses(SemaRef&: *this, DirectiveLoc: StartLoc, Clauses)) |
| 2299 | return true; |
| 2300 | |
| 2301 | return diagnoseConstructAppertainment(S&: *this, K, StartLoc, /*IsStmt=*/false); |
| 2302 | } |
| 2303 | |
| 2304 | DeclGroupRef SemaOpenACC::ActOnEndDeclDirective( |
| 2305 | OpenACCDirectiveKind K, SourceLocation StartLoc, SourceLocation DirLoc, |
| 2306 | SourceLocation LParenLoc, SourceLocation RParenLoc, SourceLocation EndLoc, |
| 2307 | ArrayRef<OpenACCClause *> Clauses) { |
| 2308 | switch (K) { |
| 2309 | default: |
| 2310 | case OpenACCDirectiveKind::Invalid: |
| 2311 | return DeclGroupRef{}; |
| 2312 | case OpenACCDirectiveKind::Declare: { |
| 2313 | // OpenACC3.3 2.13: At least one clause must appear on a declare directive. |
| 2314 | if (Clauses.empty()) { |
| 2315 | Diag(Loc: EndLoc, DiagID: diag::err_acc_declare_required_clauses); |
| 2316 | // No reason to add this to the AST, as we would just end up trying to |
| 2317 | // instantiate this, which would double-diagnose here, which we wouldn't |
| 2318 | // want to do. |
| 2319 | return DeclGroupRef{}; |
| 2320 | } |
| 2321 | |
| 2322 | auto *DeclareDecl = OpenACCDeclareDecl::Create( |
| 2323 | Ctx&: getASTContext(), DC: getCurContext(), StartLoc, DirLoc, EndLoc, Clauses); |
| 2324 | DeclareDecl->setAccess(AS_public); |
| 2325 | getCurContext()->addDecl(D: DeclareDecl); |
| 2326 | return DeclGroupRef{DeclareDecl}; |
| 2327 | } |
| 2328 | case OpenACCDirectiveKind::Routine: |
| 2329 | llvm_unreachable("routine shouldn't be handled here" ); |
| 2330 | } |
| 2331 | llvm_unreachable("unhandled case in directive handling?" ); |
| 2332 | } |
| 2333 | |
| 2334 | namespace { |
| 2335 | // Given the decl on the next line, figure out if it is one that is acceptable |
| 2336 | // to `routine`, or looks like the sort of decl we should be diagnosing against. |
| 2337 | FunctionDecl *LegalizeNextParsedDecl(Decl *D) { |
| 2338 | if (!D) |
| 2339 | return nullptr; |
| 2340 | |
| 2341 | // Functions are per-fact acceptable as-is. |
| 2342 | if (auto *FD = dyn_cast<FunctionDecl>(Val: D)) |
| 2343 | return FD; |
| 2344 | |
| 2345 | // Function templates are functions, so attach to the templated decl. |
| 2346 | if (auto *FTD = dyn_cast<FunctionTemplateDecl>(Val: D)) |
| 2347 | return FTD->getTemplatedDecl(); |
| 2348 | |
| 2349 | if (auto *FD = dyn_cast<FieldDecl>(Val: D)) { |
| 2350 | auto *RD = |
| 2351 | FD->getType().isNull() ? nullptr : FD->getType()->getAsCXXRecordDecl(); |
| 2352 | |
| 2353 | if (RD && RD->isGenericLambda()) |
| 2354 | return RD->getDependentLambdaCallOperator()->getTemplatedDecl(); |
| 2355 | if (RD && RD->isLambda()) |
| 2356 | return RD->getLambdaCallOperator(); |
| 2357 | } |
| 2358 | // VarDecl we can look at the init instead of the type of the variable, this |
| 2359 | // makes us more tolerant of the 'auto' deduced type. |
| 2360 | if (auto *VD = dyn_cast<VarDecl>(Val: D)) { |
| 2361 | Expr *Init = VD->getInit(); |
| 2362 | if (!Init || Init->getType().isNull()) |
| 2363 | return nullptr; |
| 2364 | |
| 2365 | const auto *RD = Init->getType()->getAsCXXRecordDecl(); |
| 2366 | if (RD && RD->isGenericLambda()) |
| 2367 | return RD->getDependentLambdaCallOperator()->getTemplatedDecl(); |
| 2368 | if (RD && RD->isLambda()) |
| 2369 | return RD->getLambdaCallOperator(); |
| 2370 | |
| 2371 | // FIXME: We could try harder in the case where this is a dependent thing |
| 2372 | // that ends up being a lambda (that is, the init is an unresolved lookup |
| 2373 | // expr), but we can't attach to the call/lookup expr. If we instead try to |
| 2374 | // attach to the VarDecl, when we go to instantiate it, attributes are |
| 2375 | // instantiated before the init, so we can't actually see the type at any |
| 2376 | // point where it would be relevant/able to be checked. We could perhaps do |
| 2377 | // some sort of 'after-init' instantiation/checking here, but that doesn't |
| 2378 | // seem valuable for a situation that other compilers don't handle. |
| 2379 | } |
| 2380 | return nullptr; |
| 2381 | } |
| 2382 | |
| 2383 | void CreateRoutineDeclAttr(SemaOpenACC &SemaRef, SourceLocation DirLoc, |
| 2384 | ArrayRef<const OpenACCClause *> Clauses, |
| 2385 | ValueDecl *AddTo) { |
| 2386 | OpenACCRoutineDeclAttr *A = |
| 2387 | OpenACCRoutineDeclAttr::Create(Ctx&: SemaRef.getASTContext(), Range: DirLoc); |
| 2388 | A->Clauses.assign(in_start: Clauses.begin(), in_end: Clauses.end()); |
| 2389 | AddTo->addAttr(A); |
| 2390 | } |
| 2391 | } // namespace |
| 2392 | |
| 2393 | // Variant that adds attributes, because this is the unnamed case. |
| 2394 | void SemaOpenACC::CheckRoutineDecl(SourceLocation DirLoc, |
| 2395 | ArrayRef<const OpenACCClause *> Clauses, |
| 2396 | Decl *NextParsedDecl) { |
| 2397 | |
| 2398 | FunctionDecl *NextParsedFDecl = LegalizeNextParsedDecl(D: NextParsedDecl); |
| 2399 | |
| 2400 | if (!NextParsedFDecl) { |
| 2401 | // If we don't have a valid 'next thing', just diagnose. |
| 2402 | SemaRef.Diag(Loc: DirLoc, DiagID: diag::err_acc_decl_for_routine); |
| 2403 | return; |
| 2404 | } |
| 2405 | |
| 2406 | // OpenACC 3.3 2.15: |
| 2407 | // In C and C++, function static variables are not supported in functions to |
| 2408 | // which a routine directive applies. |
| 2409 | if (auto Itr = MagicStaticLocs.find(Val: NextParsedFDecl->getCanonicalDecl()); |
| 2410 | Itr != MagicStaticLocs.end()) { |
| 2411 | Diag(Loc: Itr->second, DiagID: diag::err_acc_magic_static_in_routine); |
| 2412 | Diag(Loc: DirLoc, DiagID: diag::note_acc_construct_here) |
| 2413 | << OpenACCDirectiveKind::Routine; |
| 2414 | |
| 2415 | return; |
| 2416 | } |
| 2417 | |
| 2418 | auto BindItr = llvm::find_if(Range&: Clauses, P: llvm::IsaPred<OpenACCBindClause>); |
| 2419 | for (auto *A : NextParsedFDecl->attrs()) { |
| 2420 | // OpenACC 3.3 2.15: |
| 2421 | // If a procedure has a bind clause on both the declaration and definition |
| 2422 | // than they both must bind to the same name. |
| 2423 | if (auto *RA = dyn_cast<OpenACCRoutineDeclAttr>(Val: A)) { |
| 2424 | auto OtherBindItr = |
| 2425 | llvm::find_if(Range&: RA->Clauses, P: llvm::IsaPred<OpenACCBindClause>); |
| 2426 | if (OtherBindItr != RA->Clauses.end() && |
| 2427 | (*cast<OpenACCBindClause>(Val: *BindItr)) != |
| 2428 | (*cast<OpenACCBindClause>(Val: *OtherBindItr))) { |
| 2429 | Diag(Loc: (*BindItr)->getBeginLoc(), DiagID: diag::err_acc_duplicate_unnamed_bind); |
| 2430 | Diag(Loc: (*OtherBindItr)->getEndLoc(), DiagID: diag::note_acc_previous_clause_here) |
| 2431 | << (*BindItr)->getClauseKind(); |
| 2432 | return; |
| 2433 | } |
| 2434 | } |
| 2435 | |
| 2436 | // OpenACC 3.3 2.15: |
| 2437 | // A bind clause may not bind to a routine name that has a visible bind |
| 2438 | // clause. |
| 2439 | // We take the combo of these two 2.15 restrictions to mean that the |
| 2440 | // 'declaration'/'definition' quote is an exception to this. So we're going |
| 2441 | // to disallow mixing of the two types entirely. |
| 2442 | if (auto *RA = dyn_cast<OpenACCRoutineAnnotAttr>(Val: A); |
| 2443 | RA && RA->getRange().getEnd().isValid()) { |
| 2444 | Diag(Loc: (*BindItr)->getBeginLoc(), DiagID: diag::err_acc_duplicate_bind); |
| 2445 | Diag(Loc: RA->getRange().getEnd(), DiagID: diag::note_acc_previous_clause_here) |
| 2446 | << "bind" ; |
| 2447 | return; |
| 2448 | } |
| 2449 | } |
| 2450 | |
| 2451 | CreateRoutineDeclAttr(SemaRef&: *this, DirLoc, Clauses, AddTo: NextParsedFDecl); |
| 2452 | } |
| 2453 | |
| 2454 | // Variant that adds a decl, because this is the named case. |
| 2455 | OpenACCRoutineDecl *SemaOpenACC::CheckRoutineDecl( |
| 2456 | SourceLocation StartLoc, SourceLocation DirLoc, SourceLocation LParenLoc, |
| 2457 | Expr *FuncRef, SourceLocation RParenLoc, |
| 2458 | ArrayRef<const OpenACCClause *> Clauses, SourceLocation EndLoc) { |
| 2459 | assert(LParenLoc.isValid()); |
| 2460 | |
| 2461 | FunctionDecl *FD = nullptr; |
| 2462 | if ((FD = getFunctionFromRoutineName(RoutineName: FuncRef))) { |
| 2463 | // OpenACC 3.3 2.15: |
| 2464 | // In C and C++, function static variables are not supported in functions to |
| 2465 | // which a routine directive applies. |
| 2466 | if (auto Itr = MagicStaticLocs.find(Val: FD->getCanonicalDecl()); |
| 2467 | Itr != MagicStaticLocs.end()) { |
| 2468 | Diag(Loc: Itr->second, DiagID: diag::err_acc_magic_static_in_routine); |
| 2469 | Diag(Loc: DirLoc, DiagID: diag::note_acc_construct_here) |
| 2470 | << OpenACCDirectiveKind::Routine; |
| 2471 | |
| 2472 | return nullptr; |
| 2473 | } |
| 2474 | |
| 2475 | // OpenACC 3.3 2.15: |
| 2476 | // A bind clause may not bind to a routine name that has a visible bind |
| 2477 | // clause. |
| 2478 | auto BindItr = llvm::find_if(Range&: Clauses, P: llvm::IsaPred<OpenACCBindClause>); |
| 2479 | SourceLocation BindLoc; |
| 2480 | if (BindItr != Clauses.end()) { |
| 2481 | BindLoc = (*BindItr)->getBeginLoc(); |
| 2482 | // Since this is adding a 'named' routine, we aren't allowed to combine |
| 2483 | // with ANY other visible bind clause. Error if we see either. |
| 2484 | |
| 2485 | for (auto *A : FD->attrs()) { |
| 2486 | if (auto *RA = dyn_cast<OpenACCRoutineDeclAttr>(Val: A)) { |
| 2487 | auto OtherBindItr = |
| 2488 | llvm::find_if(Range&: RA->Clauses, P: llvm::IsaPred<OpenACCBindClause>); |
| 2489 | if (OtherBindItr != RA->Clauses.end()) { |
| 2490 | Diag(Loc: (*BindItr)->getBeginLoc(), DiagID: diag::err_acc_duplicate_bind); |
| 2491 | Diag(Loc: (*OtherBindItr)->getEndLoc(), |
| 2492 | DiagID: diag::note_acc_previous_clause_here) |
| 2493 | << (*BindItr)->getClauseKind(); |
| 2494 | return nullptr; |
| 2495 | } |
| 2496 | } |
| 2497 | |
| 2498 | if (auto *RA = dyn_cast<OpenACCRoutineAnnotAttr>(Val: A); |
| 2499 | RA && RA->getRange().getEnd().isValid()) { |
| 2500 | Diag(Loc: (*BindItr)->getBeginLoc(), DiagID: diag::err_acc_duplicate_bind); |
| 2501 | Diag(Loc: RA->getRange().getEnd(), DiagID: diag::note_acc_previous_clause_here) |
| 2502 | << (*BindItr)->getClauseKind(); |
| 2503 | return nullptr; |
| 2504 | } |
| 2505 | } |
| 2506 | } |
| 2507 | |
| 2508 | // Set the end-range to the 'bind' clause here, so we can look it up |
| 2509 | // later. |
| 2510 | auto *RAA = OpenACCRoutineAnnotAttr::CreateImplicit(Ctx&: getASTContext(), |
| 2511 | Range: {DirLoc, BindLoc}); |
| 2512 | FD->addAttr(A: RAA); |
| 2513 | // In case we are referencing not the 'latest' version, make sure we add |
| 2514 | // the attribute to all declarations after the 'found' one. |
| 2515 | for (auto *CurFD : FD->redecls()) |
| 2516 | CurFD->addAttr(A: RAA->clone(C&: getASTContext())); |
| 2517 | } |
| 2518 | |
| 2519 | LastRoutineDecl = OpenACCRoutineDecl::Create( |
| 2520 | Ctx&: getASTContext(), DC: getCurContext(), StartLoc, DirLoc, LParenLoc, FuncRef, |
| 2521 | RParenLoc, EndLoc, Clauses); |
| 2522 | LastRoutineDecl->setAccess(AS_public); |
| 2523 | getCurContext()->addDecl(D: LastRoutineDecl); |
| 2524 | |
| 2525 | if (FD) { |
| 2526 | // Add this attribute to the list of annotations so that codegen can visit |
| 2527 | // it later. FD doesn't necessarily exist, but that case should be |
| 2528 | // diagnosed. |
| 2529 | RoutineRefList.emplace_back(Args&: FD, Args&: LastRoutineDecl); |
| 2530 | } |
| 2531 | return LastRoutineDecl; |
| 2532 | } |
| 2533 | |
| 2534 | void SemaOpenACC::ActOnEndOfTranslationUnit(TranslationUnitDecl *TU) { |
| 2535 | for (auto [FD, RoutineDecl] : RoutineRefList) |
| 2536 | SemaRef.Consumer.HandleOpenACCRoutineReference(FD, RD: RoutineDecl); |
| 2537 | } |
| 2538 | |
| 2539 | DeclGroupRef SemaOpenACC::ActOnEndRoutineDeclDirective( |
| 2540 | SourceLocation StartLoc, SourceLocation DirLoc, SourceLocation LParenLoc, |
| 2541 | Expr *ReferencedFunc, SourceLocation RParenLoc, |
| 2542 | ArrayRef<const OpenACCClause *> Clauses, SourceLocation EndLoc, |
| 2543 | DeclGroupPtrTy NextDecl) { |
| 2544 | assert((!ReferencedFunc || !NextDecl) && |
| 2545 | "Only one of these should be filled" ); |
| 2546 | |
| 2547 | if (LParenLoc.isInvalid()) { |
| 2548 | Decl *NextLineDecl = nullptr; |
| 2549 | if (NextDecl && NextDecl.get().isSingleDecl()) |
| 2550 | NextLineDecl = NextDecl.get().getSingleDecl(); |
| 2551 | |
| 2552 | CheckRoutineDecl(DirLoc, Clauses, NextParsedDecl: NextLineDecl); |
| 2553 | |
| 2554 | return NextDecl.get(); |
| 2555 | } |
| 2556 | |
| 2557 | return DeclGroupRef{CheckRoutineDecl( |
| 2558 | StartLoc, DirLoc, LParenLoc, FuncRef: ReferencedFunc, RParenLoc, Clauses, EndLoc)}; |
| 2559 | } |
| 2560 | |
| 2561 | StmtResult SemaOpenACC::ActOnEndRoutineStmtDirective( |
| 2562 | SourceLocation StartLoc, SourceLocation DirLoc, SourceLocation LParenLoc, |
| 2563 | Expr *ReferencedFunc, SourceLocation RParenLoc, |
| 2564 | ArrayRef<const OpenACCClause *> Clauses, SourceLocation EndLoc, |
| 2565 | Stmt *NextStmt) { |
| 2566 | assert((!ReferencedFunc || !NextStmt) && |
| 2567 | "Only one of these should be filled" ); |
| 2568 | |
| 2569 | if (LParenLoc.isInvalid()) { |
| 2570 | Decl *NextLineDecl = nullptr; |
| 2571 | if (NextStmt) |
| 2572 | if (DeclStmt *DS = dyn_cast<DeclStmt>(Val: NextStmt); DS && DS->isSingleDecl()) |
| 2573 | NextLineDecl = DS->getSingleDecl(); |
| 2574 | |
| 2575 | CheckRoutineDecl(DirLoc, Clauses, NextParsedDecl: NextLineDecl); |
| 2576 | return NextStmt; |
| 2577 | } |
| 2578 | |
| 2579 | DeclGroupRef DR{CheckRoutineDecl(StartLoc, DirLoc, LParenLoc, FuncRef: ReferencedFunc, |
| 2580 | RParenLoc, Clauses, EndLoc)}; |
| 2581 | return SemaRef.ActOnDeclStmt(Decl: DeclGroupPtrTy::make(P: DR), StartLoc, EndLoc); |
| 2582 | } |
| 2583 | |
| 2584 | OpenACCRoutineDeclAttr * |
| 2585 | SemaOpenACC::mergeRoutineDeclAttr(const OpenACCRoutineDeclAttr &Old) { |
| 2586 | OpenACCRoutineDeclAttr *New = |
| 2587 | OpenACCRoutineDeclAttr::Create(Ctx&: getASTContext(), Range: Old.getLocation()); |
| 2588 | // We should jsut be able to copy these, there isn't really any |
| 2589 | // merging/inheriting we have to do, so no worry about doing a deep copy. |
| 2590 | New->Clauses = Old.Clauses; |
| 2591 | return New; |
| 2592 | } |
| 2593 | ExprResult |
| 2594 | SemaOpenACC::BuildOpenACCAsteriskSizeExpr(SourceLocation AsteriskLoc) { |
| 2595 | return OpenACCAsteriskSizeExpr::Create(C: getASTContext(), Loc: AsteriskLoc); |
| 2596 | } |
| 2597 | |
| 2598 | ExprResult |
| 2599 | SemaOpenACC::ActOnOpenACCAsteriskSizeExpr(SourceLocation AsteriskLoc) { |
| 2600 | return BuildOpenACCAsteriskSizeExpr(AsteriskLoc); |
| 2601 | } |
| 2602 | |
| 2603 | namespace { |
| 2604 | enum class InitKind { Invalid, Zero, One, AllOnes, Least, Largest }; |
| 2605 | llvm::APFloat getInitFloatValue(ASTContext &Context, InitKind IK, QualType Ty) { |
| 2606 | switch (IK) { |
| 2607 | case InitKind::Invalid: |
| 2608 | llvm_unreachable("invalid init kind" ); |
| 2609 | case InitKind::Zero: |
| 2610 | return llvm::APFloat::getZero(Sem: Context.getFloatTypeSemantics(T: Ty)); |
| 2611 | case InitKind::One: |
| 2612 | return llvm::APFloat::getOne(Sem: Context.getFloatTypeSemantics(T: Ty)); |
| 2613 | case InitKind::AllOnes: |
| 2614 | return llvm::APFloat::getAllOnesValue(Semantics: Context.getFloatTypeSemantics(T: Ty)); |
| 2615 | case InitKind::Least: |
| 2616 | return llvm::APFloat::getLargest(Sem: Context.getFloatTypeSemantics(T: Ty), |
| 2617 | /*Negative=*/true); |
| 2618 | case InitKind::Largest: |
| 2619 | return llvm::APFloat::getLargest(Sem: Context.getFloatTypeSemantics(T: Ty)); |
| 2620 | } |
| 2621 | llvm_unreachable("unknown init kind" ); |
| 2622 | } |
| 2623 | |
| 2624 | llvm::APInt getInitIntValue(ASTContext &Context, InitKind IK, QualType Ty) { |
| 2625 | switch (IK) { |
| 2626 | case InitKind::Invalid: |
| 2627 | llvm_unreachable("invalid init kind" ); |
| 2628 | case InitKind::Zero: |
| 2629 | return llvm::APInt(Context.getIntWidth(T: Ty), 0); |
| 2630 | case InitKind::One: |
| 2631 | return llvm::APInt(Context.getIntWidth(T: Ty), 1); |
| 2632 | case InitKind::AllOnes: |
| 2633 | return llvm::APInt::getAllOnes(numBits: Context.getIntWidth(T: Ty)); |
| 2634 | case InitKind::Least: |
| 2635 | if (Ty->isSignedIntegerOrEnumerationType()) |
| 2636 | return llvm::APInt::getSignedMinValue(numBits: Context.getIntWidth(T: Ty)); |
| 2637 | return llvm::APInt::getMinValue(numBits: Context.getIntWidth(T: Ty)); |
| 2638 | case InitKind::Largest: |
| 2639 | if (Ty->isSignedIntegerOrEnumerationType()) |
| 2640 | return llvm::APInt::getSignedMaxValue(numBits: Context.getIntWidth(T: Ty)); |
| 2641 | return llvm::APInt::getMaxValue(numBits: Context.getIntWidth(T: Ty)); |
| 2642 | } |
| 2643 | llvm_unreachable("unknown init kind" ); |
| 2644 | } |
| 2645 | |
| 2646 | /// Loops through a type and generates an appropriate InitListExpr to |
| 2647 | /// generate type initialization. |
| 2648 | Expr *GenerateReductionInitRecipeExpr(ASTContext &Context, |
| 2649 | SourceRange ExprRange, QualType Ty, |
| 2650 | InitKind IK) { |
| 2651 | if (IK == InitKind::Invalid) |
| 2652 | return nullptr; |
| 2653 | |
| 2654 | if (IK == InitKind::Zero) { |
| 2655 | Expr *InitExpr = new (Context) |
| 2656 | InitListExpr(Context, ExprRange.getBegin(), {}, ExprRange.getEnd()); |
| 2657 | InitExpr->setType(Context.VoidTy); |
| 2658 | return InitExpr; |
| 2659 | } |
| 2660 | |
| 2661 | Ty = Ty.getCanonicalType(); |
| 2662 | llvm::SmallVector<Expr *> Exprs; |
| 2663 | |
| 2664 | if (const RecordDecl *RD = Ty->getAsRecordDecl()) { |
| 2665 | for (auto *F : RD->fields()) { |
| 2666 | if (Expr *NewExpr = GenerateReductionInitRecipeExpr(Context, ExprRange, |
| 2667 | Ty: F->getType(), IK)) |
| 2668 | Exprs.push_back(Elt: NewExpr); |
| 2669 | else |
| 2670 | return nullptr; |
| 2671 | } |
| 2672 | } else if (const ConstantArrayType *AT = Context.getAsConstantArrayType(T: Ty)) { |
| 2673 | for (uint64_t Idx = 0; Idx < AT->getZExtSize(); ++Idx) { |
| 2674 | if (Expr *NewExpr = GenerateReductionInitRecipeExpr( |
| 2675 | Context, ExprRange, Ty: AT->getElementType(), IK)) |
| 2676 | Exprs.push_back(Elt: NewExpr); |
| 2677 | else |
| 2678 | return nullptr; |
| 2679 | } |
| 2680 | |
| 2681 | } else if (Ty->isPointerType()) { |
| 2682 | // For now, we are going to punt/not initialize pointer types, as |
| 2683 | // discussions/designs are ongoing on how to express this behavior, |
| 2684 | // particularly since they probably need the 'bounds' passed to them |
| 2685 | // correctly. A future patch/patch set will go through all of the pointer |
| 2686 | // values for all of the recipes to make sure we have a sane behavior. |
| 2687 | |
| 2688 | // For now, this will result in a NYI during code generation for |
| 2689 | // no-initializer. |
| 2690 | return nullptr; |
| 2691 | } else { |
| 2692 | assert(Ty->isScalarType()); |
| 2693 | |
| 2694 | if (const auto *Cplx = Ty->getAs<ComplexType>()) { |
| 2695 | // we can get here in error cases, so make sure we generate something that |
| 2696 | // will work if we find ourselves wanting to enable this, so emit '0,0' |
| 2697 | // for both ints and floats. |
| 2698 | |
| 2699 | QualType EltTy = Cplx->getElementType(); |
| 2700 | if (EltTy->isFloatingType()) { |
| 2701 | Exprs.push_back(Elt: FloatingLiteral::Create( |
| 2702 | C: Context, V: getInitFloatValue(Context, IK: InitKind::Zero, Ty: EltTy), |
| 2703 | /*isExact=*/isexact: true, Type: EltTy, L: ExprRange.getBegin())); |
| 2704 | Exprs.push_back(Elt: FloatingLiteral::Create( |
| 2705 | C: Context, V: getInitFloatValue(Context, IK: InitKind::Zero, Ty: EltTy), |
| 2706 | /*isExact=*/isexact: true, Type: EltTy, L: ExprRange.getBegin())); |
| 2707 | } else { |
| 2708 | Exprs.push_back(Elt: IntegerLiteral::Create( |
| 2709 | C: Context, V: getInitIntValue(Context, IK: InitKind::Zero, Ty: EltTy), type: EltTy, |
| 2710 | l: ExprRange.getBegin())); |
| 2711 | Exprs.push_back(Elt: IntegerLiteral::Create( |
| 2712 | C: Context, V: getInitIntValue(Context, IK: InitKind::Zero, Ty: EltTy), type: EltTy, |
| 2713 | l: ExprRange.getBegin())); |
| 2714 | } |
| 2715 | |
| 2716 | } else if (Ty->isFloatingType()) { |
| 2717 | Exprs.push_back( |
| 2718 | Elt: FloatingLiteral::Create(C: Context, V: getInitFloatValue(Context, IK, Ty), |
| 2719 | /*isExact=*/isexact: true, Type: Ty, L: ExprRange.getBegin())); |
| 2720 | } else if (Ty->isBooleanType()) { |
| 2721 | Exprs.push_back(Elt: CXXBoolLiteralExpr::Create(C: Context, |
| 2722 | Val: (IK == InitKind::One || |
| 2723 | IK == InitKind::AllOnes || |
| 2724 | IK == InitKind::Largest), |
| 2725 | Ty, Loc: ExprRange.getBegin())); |
| 2726 | } else { |
| 2727 | Exprs.push_back(Elt: IntegerLiteral::Create( |
| 2728 | C: Context, V: getInitIntValue(Context, IK, Ty), type: Ty, l: ExprRange.getBegin())); |
| 2729 | } |
| 2730 | } |
| 2731 | |
| 2732 | Expr *InitExpr = new (Context) |
| 2733 | InitListExpr(Context, ExprRange.getBegin(), Exprs, ExprRange.getEnd()); |
| 2734 | InitExpr->setType(Ty); |
| 2735 | return InitExpr; |
| 2736 | } |
| 2737 | |
| 2738 | VarDecl *CreateAllocaDecl(ASTContext &Ctx, DeclContext *DC, |
| 2739 | SourceLocation BeginLoc, IdentifierInfo *VarName, |
| 2740 | QualType VarTy) { |
| 2741 | return VarDecl::Create(C&: Ctx, DC, StartLoc: BeginLoc, IdLoc: BeginLoc, Id: VarName, T: VarTy, |
| 2742 | TInfo: Ctx.getTrivialTypeSourceInfo(T: VarTy), S: SC_Auto); |
| 2743 | } |
| 2744 | |
| 2745 | ExprResult FinishValueInit(Sema &S, InitializedEntity &Entity, |
| 2746 | SourceLocation Loc, QualType VarTy, Expr *InitExpr) { |
| 2747 | if (!InitExpr) |
| 2748 | return ExprEmpty(); |
| 2749 | |
| 2750 | InitializationKind Kind = |
| 2751 | InitializationKind::CreateForInit(Loc, /*DirectInit=*/true, Init: InitExpr); |
| 2752 | InitializationSequence InitSeq(S, Entity, Kind, InitExpr, |
| 2753 | /*TopLevelOfInitList=*/false, |
| 2754 | /*TreatUnavailableAsInvalid=*/false); |
| 2755 | |
| 2756 | return InitSeq.Perform(S, Entity, Kind, Args: InitExpr, ResultType: &VarTy); |
| 2757 | } |
| 2758 | |
| 2759 | } // namespace |
| 2760 | |
| 2761 | OpenACCPrivateRecipe SemaOpenACC::CreatePrivateInitRecipe(const Expr *VarExpr) { |
| 2762 | // We don't strip bounds here, so that we are doing our recipe init at the |
| 2763 | // 'lowest' possible level. Codegen is going to have to do its own 'looping'. |
| 2764 | if (!VarExpr || VarExpr->getType()->isDependentType()) |
| 2765 | return OpenACCPrivateRecipe::Empty(); |
| 2766 | |
| 2767 | QualType VarTy = |
| 2768 | VarExpr->getType().getNonReferenceType().getUnqualifiedType(); |
| 2769 | |
| 2770 | // Array sections are special, and we have to treat them that way. |
| 2771 | if (const auto *ASE = |
| 2772 | dyn_cast<ArraySectionExpr>(Val: VarExpr->IgnoreParenImpCasts())) |
| 2773 | VarTy = ASE->getElementType(); |
| 2774 | |
| 2775 | VarDecl *AllocaDecl = CreateAllocaDecl( |
| 2776 | Ctx&: getASTContext(), DC: SemaRef.getCurContext(), BeginLoc: VarExpr->getBeginLoc(), |
| 2777 | VarName: &getASTContext().Idents.get(Name: "openacc.private.init" ), VarTy); |
| 2778 | |
| 2779 | Sema::TentativeAnalysisScope Trap{SemaRef}; |
| 2780 | InitializedEntity Entity = InitializedEntity::InitializeVariable(Var: AllocaDecl); |
| 2781 | InitializationKind Kind = |
| 2782 | InitializationKind::CreateDefault(InitLoc: AllocaDecl->getLocation()); |
| 2783 | InitializationSequence InitSeq(SemaRef.SemaRef, Entity, Kind, {}); |
| 2784 | ExprResult Init = InitSeq.Perform(S&: SemaRef.SemaRef, Entity, Kind, Args: {}); |
| 2785 | |
| 2786 | // For 'no bounds' version, we can use this as a shortcut, so set the init |
| 2787 | // anyway. |
| 2788 | if (Init.isUsable()) { |
| 2789 | AllocaDecl->setInit(Init.get()); |
| 2790 | AllocaDecl->setInitStyle(VarDecl::CallInit); |
| 2791 | } |
| 2792 | |
| 2793 | return OpenACCPrivateRecipe(AllocaDecl); |
| 2794 | } |
| 2795 | |
| 2796 | OpenACCFirstPrivateRecipe |
| 2797 | SemaOpenACC::CreateFirstPrivateInitRecipe(const Expr *VarExpr) { |
| 2798 | // We don't strip bounds here, so that we are doing our recipe init at the |
| 2799 | // 'lowest' possible level. Codegen is going to have to do its own 'looping'. |
| 2800 | if (!VarExpr || VarExpr->getType()->isDependentType()) |
| 2801 | return OpenACCFirstPrivateRecipe::Empty(); |
| 2802 | |
| 2803 | QualType VarTy = |
| 2804 | VarExpr->getType().getNonReferenceType().getUnqualifiedType(); |
| 2805 | |
| 2806 | // Array sections are special, and we have to treat them that way. |
| 2807 | if (const auto *ASE = |
| 2808 | dyn_cast<ArraySectionExpr>(Val: VarExpr->IgnoreParenImpCasts())) |
| 2809 | VarTy = ASE->getElementType(); |
| 2810 | |
| 2811 | VarDecl *AllocaDecl = CreateAllocaDecl( |
| 2812 | Ctx&: getASTContext(), DC: SemaRef.getCurContext(), BeginLoc: VarExpr->getBeginLoc(), |
| 2813 | VarName: &getASTContext().Idents.get(Name: "openacc.firstprivate.init" ), VarTy); |
| 2814 | |
| 2815 | VarDecl *Temporary = CreateAllocaDecl( |
| 2816 | Ctx&: getASTContext(), DC: SemaRef.getCurContext(), BeginLoc: VarExpr->getBeginLoc(), |
| 2817 | VarName: &getASTContext().Idents.get(Name: "openacc.temp" ), VarTy); |
| 2818 | |
| 2819 | auto *TemporaryDRE = DeclRefExpr::Create( |
| 2820 | Context: getASTContext(), QualifierLoc: NestedNameSpecifierLoc{}, TemplateKWLoc: SourceLocation{}, D: Temporary, |
| 2821 | /*ReferstoEnclosingVariableOrCapture=*/RefersToEnclosingVariableOrCapture: false, |
| 2822 | NameInfo: DeclarationNameInfo{DeclarationName{Temporary->getDeclName()}, |
| 2823 | VarExpr->getBeginLoc()}, |
| 2824 | T: VarTy, VK: clang::VK_LValue, FoundD: Temporary, TemplateArgs: nullptr, NOUR: NOUR_None); |
| 2825 | |
| 2826 | Sema::TentativeAnalysisScope Trap{SemaRef}; |
| 2827 | InitializedEntity Entity = InitializedEntity::InitializeVariable(Var: AllocaDecl); |
| 2828 | |
| 2829 | const auto *ArrTy = getASTContext().getAsConstantArrayType(T: VarTy); |
| 2830 | if (!ArrTy) { |
| 2831 | ExprResult Init = FinishValueInit( |
| 2832 | S&: SemaRef.SemaRef, Entity, Loc: VarExpr->getBeginLoc(), VarTy, InitExpr: TemporaryDRE); |
| 2833 | |
| 2834 | // For 'no bounds' version, we can use this as a shortcut, so set the init |
| 2835 | // anyway. |
| 2836 | if (Init.isUsable()) { |
| 2837 | AllocaDecl->setInit(Init.get()); |
| 2838 | AllocaDecl->setInitStyle(VarDecl::CallInit); |
| 2839 | } |
| 2840 | return OpenACCFirstPrivateRecipe(AllocaDecl, Temporary); |
| 2841 | } |
| 2842 | |
| 2843 | // Arrays need to have each individual element initialized as there |
| 2844 | // isn't a normal 'equals' feature in C/C++. This section sets these up |
| 2845 | // as an init list after 'initializing' each individual element. |
| 2846 | llvm::SmallVector<Expr *> Args; |
| 2847 | // Decay to pointer for the array subscript expression. |
| 2848 | auto *CastToPtr = ImplicitCastExpr::Create( |
| 2849 | Context: getASTContext(), T: getASTContext().getPointerType(T: ArrTy->getElementType()), |
| 2850 | Kind: CK_ArrayToPointerDecay, Operand: TemporaryDRE, /*BasePath=*/nullptr, |
| 2851 | Cat: clang::VK_LValue, FPO: FPOptionsOverride{}); |
| 2852 | |
| 2853 | for (std::size_t I = 0; I < ArrTy->getLimitedSize(); ++I) { |
| 2854 | // Each element needs to be some sort of copy initialization from an |
| 2855 | // array-index of the original temporary (referenced via a |
| 2856 | // DeclRefExpr). |
| 2857 | auto *Idx = IntegerLiteral::Create( |
| 2858 | C: getASTContext(), |
| 2859 | V: llvm::APInt(getASTContext().getTypeSize(T: getASTContext().getSizeType()), |
| 2860 | I), |
| 2861 | type: getASTContext().getSizeType(), l: VarExpr->getBeginLoc()); |
| 2862 | |
| 2863 | Expr *Subscript = new (getASTContext()) ArraySubscriptExpr( |
| 2864 | CastToPtr, Idx, ArrTy->getElementType(), clang::VK_LValue, OK_Ordinary, |
| 2865 | VarExpr->getBeginLoc()); |
| 2866 | // Generate a simple copy from the result of the subscript. This will |
| 2867 | // do a bitwise copy or a copy-constructor, as necessary. |
| 2868 | InitializedEntity CopyEntity = |
| 2869 | InitializedEntity::InitializeElement(Context&: getASTContext(), Index: I, Parent: Entity); |
| 2870 | InitializationKind CopyKind = |
| 2871 | InitializationKind::CreateCopy(InitLoc: VarExpr->getBeginLoc(), EqualLoc: {}); |
| 2872 | InitializationSequence CopySeq(SemaRef.SemaRef, CopyEntity, CopyKind, |
| 2873 | Subscript, |
| 2874 | /*TopLevelOfInitList=*/true); |
| 2875 | ExprResult ElemRes = |
| 2876 | CopySeq.Perform(S&: SemaRef.SemaRef, Entity: CopyEntity, Kind: CopyKind, Args: Subscript); |
| 2877 | Args.push_back(Elt: ElemRes.get()); |
| 2878 | } |
| 2879 | |
| 2880 | Expr *InitExpr = new (getASTContext()) InitListExpr( |
| 2881 | getASTContext(), VarExpr->getBeginLoc(), Args, VarExpr->getEndLoc()); |
| 2882 | InitExpr->setType(VarTy); |
| 2883 | |
| 2884 | ExprResult Init = FinishValueInit(S&: SemaRef.SemaRef, Entity, |
| 2885 | Loc: VarExpr->getBeginLoc(), VarTy, InitExpr); |
| 2886 | |
| 2887 | // For 'no bounds' version, we can use this as a shortcut, so set the init |
| 2888 | // anyway. |
| 2889 | if (Init.isUsable()) { |
| 2890 | AllocaDecl->setInit(Init.get()); |
| 2891 | AllocaDecl->setInitStyle(VarDecl::CallInit); |
| 2892 | } |
| 2893 | |
| 2894 | return OpenACCFirstPrivateRecipe(AllocaDecl, Temporary); |
| 2895 | } |
| 2896 | |
| 2897 | OpenACCReductionRecipeWithStorage SemaOpenACC::CreateReductionInitRecipe( |
| 2898 | OpenACCReductionOperator ReductionOperator, const Expr *VarExpr) { |
| 2899 | // We don't strip bounds here, so that we are doing our recipe init at the |
| 2900 | // 'lowest' possible level. Codegen is going to have to do its own 'looping'. |
| 2901 | if (!VarExpr || VarExpr->getType()->isDependentType()) |
| 2902 | return OpenACCReductionRecipeWithStorage::Empty(); |
| 2903 | |
| 2904 | QualType VarTy = |
| 2905 | VarExpr->getType().getNonReferenceType().getUnqualifiedType(); |
| 2906 | |
| 2907 | // Array sections are special, and we have to treat them that way. |
| 2908 | if (const auto *ASE = |
| 2909 | dyn_cast<ArraySectionExpr>(Val: VarExpr->IgnoreParenImpCasts())) |
| 2910 | VarTy = ASE->getElementType(); |
| 2911 | |
| 2912 | llvm::SmallVector<OpenACCReductionRecipe::CombinerRecipe, 1> CombinerRecipes; |
| 2913 | |
| 2914 | // We use the 'set-ness' of the alloca-decl to determine whether the combiner |
| 2915 | // is 'set' or not, so we can skip any attempts at it if we're going to fail |
| 2916 | // at any of the combiners. |
| 2917 | if (CreateReductionCombinerRecipe(loc: VarExpr->getBeginLoc(), ReductionOperator, |
| 2918 | VarTy, CombinerRecipes)) |
| 2919 | return OpenACCReductionRecipeWithStorage::Empty(); |
| 2920 | |
| 2921 | VarDecl *AllocaDecl = CreateAllocaDecl( |
| 2922 | Ctx&: getASTContext(), DC: SemaRef.getCurContext(), BeginLoc: VarExpr->getBeginLoc(), |
| 2923 | VarName: &getASTContext().Idents.get(Name: "openacc.reduction.init" ), VarTy); |
| 2924 | |
| 2925 | Sema::TentativeAnalysisScope Trap{SemaRef}; |
| 2926 | InitializedEntity Entity = InitializedEntity::InitializeVariable(Var: AllocaDecl); |
| 2927 | |
| 2928 | InitKind IK = InitKind::Invalid; |
| 2929 | switch (ReductionOperator) { |
| 2930 | case OpenACCReductionOperator::Invalid: |
| 2931 | // This can only happen when there is an error, and since these inits |
| 2932 | // are used for code generation, we can just ignore/not bother doing any |
| 2933 | // initialization here. |
| 2934 | IK = InitKind::Invalid; |
| 2935 | break; |
| 2936 | case OpenACCReductionOperator::Max: |
| 2937 | IK = InitKind::Least; |
| 2938 | break; |
| 2939 | case OpenACCReductionOperator::Min: |
| 2940 | IK = InitKind::Largest; |
| 2941 | break; |
| 2942 | case OpenACCReductionOperator::BitwiseAnd: |
| 2943 | IK = InitKind::AllOnes; |
| 2944 | break; |
| 2945 | case OpenACCReductionOperator::Multiplication: |
| 2946 | case OpenACCReductionOperator::And: |
| 2947 | IK = InitKind::One; |
| 2948 | break; |
| 2949 | case OpenACCReductionOperator::Addition: |
| 2950 | case OpenACCReductionOperator::BitwiseOr: |
| 2951 | case OpenACCReductionOperator::BitwiseXOr: |
| 2952 | case OpenACCReductionOperator::Or: |
| 2953 | IK = InitKind::Zero; |
| 2954 | break; |
| 2955 | } |
| 2956 | |
| 2957 | Expr *InitExpr = GenerateReductionInitRecipeExpr( |
| 2958 | Context&: getASTContext(), ExprRange: VarExpr->getSourceRange(), Ty: VarTy, IK); |
| 2959 | |
| 2960 | ExprResult Init = FinishValueInit(S&: SemaRef.SemaRef, Entity, |
| 2961 | Loc: VarExpr->getBeginLoc(), VarTy, InitExpr); |
| 2962 | |
| 2963 | // For 'no bounds' version, we can use this as a shortcut, so set the init |
| 2964 | // anyway. |
| 2965 | if (Init.isUsable()) { |
| 2966 | AllocaDecl->setInit(Init.get()); |
| 2967 | AllocaDecl->setInitStyle(VarDecl::CallInit); |
| 2968 | } |
| 2969 | |
| 2970 | return OpenACCReductionRecipeWithStorage(AllocaDecl, CombinerRecipes); |
| 2971 | } |
| 2972 | |
| 2973 | bool SemaOpenACC::CreateReductionCombinerRecipe( |
| 2974 | SourceLocation Loc, OpenACCReductionOperator ReductionOperator, |
| 2975 | QualType VarTy, |
| 2976 | llvm::SmallVectorImpl<OpenACCReductionRecipe::CombinerRecipe> |
| 2977 | &CombinerRecipes) { |
| 2978 | // Now we can try to generate the 'combiner' recipe. This is a little |
| 2979 | // complicated in that if the 'VarTy' is an array type, we want to take its |
| 2980 | // element type so we can generate that. Additionally, if this is a struct, |
| 2981 | // we have two options: If there is overloaded operators, we want to take |
| 2982 | // THOSE, else we want to do the individual elements. |
| 2983 | |
| 2984 | BinaryOperatorKind BinOp; |
| 2985 | switch (ReductionOperator) { |
| 2986 | case OpenACCReductionOperator::Invalid: |
| 2987 | // This can only happen when there is an error, and since these inits |
| 2988 | // are used for code generation, we can just ignore/not bother doing any |
| 2989 | // initialization here. |
| 2990 | CombinerRecipes.push_back(Elt: {.LHS: nullptr, .RHS: nullptr, .Op: nullptr}); |
| 2991 | return false; |
| 2992 | case OpenACCReductionOperator::Addition: |
| 2993 | BinOp = BinaryOperatorKind::BO_AddAssign; |
| 2994 | break; |
| 2995 | case OpenACCReductionOperator::Multiplication: |
| 2996 | BinOp = BinaryOperatorKind::BO_MulAssign; |
| 2997 | break; |
| 2998 | case OpenACCReductionOperator::BitwiseAnd: |
| 2999 | BinOp = BinaryOperatorKind::BO_AndAssign; |
| 3000 | break; |
| 3001 | case OpenACCReductionOperator::BitwiseOr: |
| 3002 | BinOp = BinaryOperatorKind::BO_OrAssign; |
| 3003 | break; |
| 3004 | case OpenACCReductionOperator::BitwiseXOr: |
| 3005 | BinOp = BinaryOperatorKind::BO_XorAssign; |
| 3006 | break; |
| 3007 | |
| 3008 | case OpenACCReductionOperator::Max: |
| 3009 | case OpenACCReductionOperator::Min: |
| 3010 | BinOp = BinaryOperatorKind::BO_LT; |
| 3011 | break; |
| 3012 | case OpenACCReductionOperator::And: |
| 3013 | BinOp = BinaryOperatorKind::BO_LAnd; |
| 3014 | break; |
| 3015 | case OpenACCReductionOperator::Or: |
| 3016 | BinOp = BinaryOperatorKind::BO_LOr; |
| 3017 | break; |
| 3018 | } |
| 3019 | |
| 3020 | // If VarTy is an array type, at the top level only, we want to do our |
| 3021 | // compares/decomp/etc at the element level. |
| 3022 | if (auto *AT = getASTContext().getAsArrayType(T: VarTy)) |
| 3023 | VarTy = AT->getElementType(); |
| 3024 | |
| 3025 | assert(!VarTy->isArrayType() && "Only 1 level of array allowed" ); |
| 3026 | |
| 3027 | enum class CombinerFailureKind { |
| 3028 | None = 0, |
| 3029 | BinOp = 1, |
| 3030 | Conditional = 2, |
| 3031 | Assignment = 3, |
| 3032 | }; |
| 3033 | |
| 3034 | auto genCombiner = [&, this](DeclRefExpr *LHSDRE, DeclRefExpr *RHSDRE) |
| 3035 | -> std::pair<ExprResult, CombinerFailureKind> { |
| 3036 | ExprResult BinOpRes = |
| 3037 | SemaRef.BuildBinOp(S: SemaRef.getCurScope(), OpLoc: Loc, Opc: BinOp, LHSExpr: LHSDRE, RHSExpr: RHSDRE, |
| 3038 | /*ForFoldExpr=*/ForFoldExpression: false); |
| 3039 | switch (ReductionOperator) { |
| 3040 | case OpenACCReductionOperator::Addition: |
| 3041 | case OpenACCReductionOperator::Multiplication: |
| 3042 | case OpenACCReductionOperator::BitwiseAnd: |
| 3043 | case OpenACCReductionOperator::BitwiseOr: |
| 3044 | case OpenACCReductionOperator::BitwiseXOr: |
| 3045 | // These 5 are simple and are being done as compound operators, so we can |
| 3046 | // immediately quit here. |
| 3047 | return {BinOpRes, BinOpRes.isUsable() ? CombinerFailureKind::None |
| 3048 | : CombinerFailureKind::BinOp}; |
| 3049 | case OpenACCReductionOperator::Max: |
| 3050 | case OpenACCReductionOperator::Min: { |
| 3051 | // These are done as: |
| 3052 | // LHS = (LHS < RHS) ? LHS : RHS; and LHS = (LHS < RHS) ? RHS : LHS; |
| 3053 | // |
| 3054 | // The BinOpRes should have been created with the less-than, so we just |
| 3055 | // have to build the conditional and assignment. |
| 3056 | if (!BinOpRes.isUsable()) |
| 3057 | return {BinOpRes, CombinerFailureKind::BinOp}; |
| 3058 | |
| 3059 | // Create the correct conditional operator, swapping the results |
| 3060 | // (true/false value) depending on min/max. |
| 3061 | ExprResult CondRes; |
| 3062 | if (ReductionOperator == OpenACCReductionOperator::Min) |
| 3063 | CondRes = SemaRef.ActOnConditionalOp(QuestionLoc: Loc, ColonLoc: Loc, CondExpr: BinOpRes.get(), LHSExpr: LHSDRE, |
| 3064 | RHSExpr: RHSDRE); |
| 3065 | else |
| 3066 | CondRes = SemaRef.ActOnConditionalOp(QuestionLoc: Loc, ColonLoc: Loc, CondExpr: BinOpRes.get(), LHSExpr: RHSDRE, |
| 3067 | RHSExpr: LHSDRE); |
| 3068 | |
| 3069 | if (!CondRes.isUsable()) |
| 3070 | return {CondRes, CombinerFailureKind::Conditional}; |
| 3071 | |
| 3072 | // Build assignment. |
| 3073 | ExprResult Assignment = SemaRef.BuildBinOp(S: SemaRef.getCurScope(), OpLoc: Loc, |
| 3074 | Opc: BinaryOperatorKind::BO_Assign, |
| 3075 | LHSExpr: LHSDRE, RHSExpr: CondRes.get(), |
| 3076 | /*ForFoldExpr=*/ForFoldExpression: false); |
| 3077 | return {Assignment, Assignment.isUsable() |
| 3078 | ? CombinerFailureKind::None |
| 3079 | : CombinerFailureKind::Assignment}; |
| 3080 | } |
| 3081 | case OpenACCReductionOperator::And: |
| 3082 | case OpenACCReductionOperator::Or: { |
| 3083 | // These are done as LHS = LHS && RHS (or LHS = LHS || RHS). So after the |
| 3084 | // binop, all we have to do is the assignment. |
| 3085 | if (!BinOpRes.isUsable()) |
| 3086 | return {BinOpRes, CombinerFailureKind::BinOp}; |
| 3087 | |
| 3088 | // Build assignment. |
| 3089 | ExprResult Assignment = SemaRef.BuildBinOp(S: SemaRef.getCurScope(), OpLoc: Loc, |
| 3090 | Opc: BinaryOperatorKind::BO_Assign, |
| 3091 | LHSExpr: LHSDRE, RHSExpr: BinOpRes.get(), |
| 3092 | /*ForFoldExpr=*/ForFoldExpression: false); |
| 3093 | return {Assignment, Assignment.isUsable() |
| 3094 | ? CombinerFailureKind::None |
| 3095 | : CombinerFailureKind::Assignment}; |
| 3096 | } |
| 3097 | case OpenACCReductionOperator::Invalid: |
| 3098 | llvm_unreachable("Invalid should have been caught above" ); |
| 3099 | } |
| 3100 | llvm_unreachable("Unhandled case" ); |
| 3101 | }; |
| 3102 | |
| 3103 | auto tryCombiner = [&, this](DeclRefExpr *LHSDRE, DeclRefExpr *RHSDRE, |
| 3104 | bool IncludeTrap) { |
| 3105 | if (IncludeTrap) { |
| 3106 | // Trap all of the errors here, we'll emit our own at the end. |
| 3107 | Sema::TentativeAnalysisScope Trap{SemaRef}; |
| 3108 | return genCombiner(LHSDRE, RHSDRE); |
| 3109 | } |
| 3110 | return genCombiner(LHSDRE, RHSDRE); |
| 3111 | }; |
| 3112 | |
| 3113 | struct CombinerAttemptTy { |
| 3114 | CombinerFailureKind FailKind; |
| 3115 | VarDecl *LHS; |
| 3116 | DeclRefExpr *LHSDRE; |
| 3117 | VarDecl *RHS; |
| 3118 | DeclRefExpr *RHSDRE; |
| 3119 | Expr *Op; |
| 3120 | }; |
| 3121 | |
| 3122 | auto formCombiner = [&, this](QualType Ty) -> CombinerAttemptTy { |
| 3123 | VarDecl *LHSDecl = CreateAllocaDecl( |
| 3124 | Ctx&: getASTContext(), DC: SemaRef.getCurContext(), BeginLoc: Loc, |
| 3125 | VarName: &getASTContext().Idents.get(Name: "openacc.reduction.combiner.lhs" ), VarTy: Ty); |
| 3126 | auto *LHSDRE = DeclRefExpr::Create( |
| 3127 | Context: getASTContext(), QualifierLoc: NestedNameSpecifierLoc{}, TemplateKWLoc: SourceLocation{}, D: LHSDecl, |
| 3128 | /*ReferstoEnclosingVariableOrCapture=*/RefersToEnclosingVariableOrCapture: false, |
| 3129 | NameInfo: DeclarationNameInfo{DeclarationName{LHSDecl->getDeclName()}, |
| 3130 | LHSDecl->getBeginLoc()}, |
| 3131 | T: Ty, VK: clang::VK_LValue, FoundD: LHSDecl, TemplateArgs: nullptr, NOUR: NOUR_None); |
| 3132 | VarDecl *RHSDecl = CreateAllocaDecl( |
| 3133 | Ctx&: getASTContext(), DC: SemaRef.getCurContext(), BeginLoc: Loc, |
| 3134 | VarName: &getASTContext().Idents.get(Name: "openacc.reduction.combiner.lhs" ), VarTy: Ty); |
| 3135 | auto *RHSDRE = DeclRefExpr::Create( |
| 3136 | Context: getASTContext(), QualifierLoc: NestedNameSpecifierLoc{}, TemplateKWLoc: SourceLocation{}, D: RHSDecl, |
| 3137 | /*ReferstoEnclosingVariableOrCapture=*/RefersToEnclosingVariableOrCapture: false, |
| 3138 | NameInfo: DeclarationNameInfo{DeclarationName{RHSDecl->getDeclName()}, |
| 3139 | RHSDecl->getBeginLoc()}, |
| 3140 | T: Ty, VK: clang::VK_LValue, FoundD: RHSDecl, TemplateArgs: nullptr, NOUR: NOUR_None); |
| 3141 | |
| 3142 | std::pair<ExprResult, CombinerFailureKind> BinOpResult = |
| 3143 | tryCombiner(LHSDRE, RHSDRE, /*IncludeTrap=*/true); |
| 3144 | |
| 3145 | return {.FailKind: BinOpResult.second, .LHS: LHSDecl, .LHSDRE: LHSDRE, .RHS: RHSDecl, .RHSDRE: RHSDRE, |
| 3146 | .Op: BinOpResult.first.get()}; |
| 3147 | }; |
| 3148 | |
| 3149 | CombinerAttemptTy TopLevelCombinerInfo = formCombiner(VarTy); |
| 3150 | |
| 3151 | if (TopLevelCombinerInfo.Op) { |
| 3152 | if (!TopLevelCombinerInfo.Op->containsErrors() && |
| 3153 | TopLevelCombinerInfo.Op->isInstantiationDependent()) { |
| 3154 | // If this is instantiation dependent, we're just going to 'give up' here |
| 3155 | // and count on us to get it right during instantaition. |
| 3156 | CombinerRecipes.push_back(Elt: {.LHS: nullptr, .RHS: nullptr, .Op: nullptr}); |
| 3157 | return false; |
| 3158 | } else if (!TopLevelCombinerInfo.Op->containsErrors()) { |
| 3159 | // Else, we succeeded, we can just return this combiner. |
| 3160 | CombinerRecipes.push_back(Elt: {.LHS: TopLevelCombinerInfo.LHS, |
| 3161 | .RHS: TopLevelCombinerInfo.RHS, |
| 3162 | .Op: TopLevelCombinerInfo.Op}); |
| 3163 | return false; |
| 3164 | } |
| 3165 | } |
| 3166 | |
| 3167 | auto EmitFailureNote = [&](CombinerFailureKind CFK) { |
| 3168 | if (CFK == CombinerFailureKind::BinOp) |
| 3169 | return Diag(Loc, DiagID: diag::note_acc_reduction_combiner_forming) |
| 3170 | << CFK << BinaryOperator::getOpcodeStr(Op: BinOp); |
| 3171 | return Diag(Loc, DiagID: diag::note_acc_reduction_combiner_forming) << CFK; |
| 3172 | }; |
| 3173 | |
| 3174 | // Since the 'root' level didn't fail, the only thing that could be successful |
| 3175 | // is a struct that we decompose on its individual fields. |
| 3176 | |
| 3177 | RecordDecl *RD = VarTy->getAsRecordDecl(); |
| 3178 | if (!RD) { |
| 3179 | Diag(Loc, DiagID: diag::err_acc_reduction_recipe_no_op) << VarTy; |
| 3180 | EmitFailureNote(TopLevelCombinerInfo.FailKind); |
| 3181 | tryCombiner(TopLevelCombinerInfo.LHSDRE, TopLevelCombinerInfo.RHSDRE, |
| 3182 | /*IncludeTrap=*/false); |
| 3183 | return true; |
| 3184 | } |
| 3185 | |
| 3186 | for (const FieldDecl *FD : RD->fields()) { |
| 3187 | CombinerAttemptTy FieldCombinerInfo = formCombiner(FD->getType()); |
| 3188 | |
| 3189 | if (!FieldCombinerInfo.Op || FieldCombinerInfo.Op->containsErrors()) { |
| 3190 | Diag(Loc, DiagID: diag::err_acc_reduction_recipe_no_op) << FD->getType(); |
| 3191 | Diag(Loc: FD->getBeginLoc(), DiagID: diag::note_acc_reduction_recipe_noop_field) << RD; |
| 3192 | EmitFailureNote(FieldCombinerInfo.FailKind); |
| 3193 | tryCombiner(FieldCombinerInfo.LHSDRE, FieldCombinerInfo.RHSDRE, |
| 3194 | /*IncludeTrap=*/false); |
| 3195 | return true; |
| 3196 | } |
| 3197 | |
| 3198 | if (FieldCombinerInfo.Op->isInstantiationDependent()) { |
| 3199 | // If this is instantiation dependent, we're just going to 'give up' here |
| 3200 | // and count on us to get it right during instantaition. |
| 3201 | CombinerRecipes.push_back(Elt: {.LHS: nullptr, .RHS: nullptr, .Op: nullptr}); |
| 3202 | } else { |
| 3203 | CombinerRecipes.push_back( |
| 3204 | Elt: {.LHS: FieldCombinerInfo.LHS, .RHS: FieldCombinerInfo.RHS, .Op: FieldCombinerInfo.Op}); |
| 3205 | } |
| 3206 | } |
| 3207 | |
| 3208 | return false; |
| 3209 | } |
| 3210 | |