| 1 | //=== MallocChecker.cpp - A malloc/free checker -------------------*- C++ -*--// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file defines checkers that report memory management errors such as |
| 10 | // leak, double free, and use-after-free. |
| 11 | // |
| 12 | // The logic for modeling memory allocations is implemented in the checker |
| 13 | // family which is called 'MallocChecker' for historical reasons. (This name is |
| 14 | // inaccurate, something like 'DynamicMemory' would be more precise.) |
| 15 | // |
| 16 | // The reports produced by this backend are exposed through several frontends: |
| 17 | // * MallocChecker: reports all misuse of dynamic memory allocated by |
| 18 | // malloc, related functions (like calloc, realloc etc.) and the functions |
| 19 | // annotated by ownership_returns. (Here the name "MallocChecker" is |
| 20 | // reasonably accurate; don't confuse this checker frontend with the whole |
| 21 | // misnamed family.) |
| 22 | // * NewDeleteChecker: reports most misuse (anything but memory leaks) of |
| 23 | // memory managed by the C++ operators new and new[]. |
| 24 | // * NewDeleteLeaksChecker: reports leaks of dynamic memory allocated by |
| 25 | // the C++ operators new and new[]. |
| 26 | // * MismatchedDeallocatorChecker: reports situations where the allocation |
| 27 | // and deallocation is mismatched, e.g. memory allocated via malloc is |
| 28 | // passed to operator delete. |
| 29 | // * InnerPointerChecker: reports use of pointers to the internal buffer of |
| 30 | // a std::string instance after operations that invalidate them. |
| 31 | // * TaintedAllocChecker: reports situations where the size argument of a |
| 32 | // memory allocation function or array new operator is tainted (i.e. comes |
| 33 | // from an untrusted source and can be controlled by an attacker). |
| 34 | // |
| 35 | // In addition to these frontends this file also defines the registration |
| 36 | // functions for "unix.DynamicMemoryModeling". This registers the callbacks of |
| 37 | // the checker family MallocChecker without enabling any of the frontends and |
| 38 | // and handle two checker options which are attached to this "modeling |
| 39 | // checker" because they affect multiple checker frontends. |
| 40 | // |
| 41 | // Note that what the users see as the checker "cplusplus.InnerPointer" is a |
| 42 | // combination of the frontend InnerPointerChecker (within this family) which |
| 43 | // emits the bug reports and a separate checker class (also named |
| 44 | // InnerPointerChecker) which is defined in InnerPointerChecker.cpp and does a |
| 45 | // significant part of the modeling. This cooperation is enabled by several |
| 46 | // non-static helper functions that are defined within this translation unit |
| 47 | // and used in InnerPointerChecker.cpp. |
| 48 | // |
| 49 | //===----------------------------------------------------------------------===// |
| 50 | |
| 51 | #include "AllocationState.h" |
| 52 | #include "InterCheckerAPI.h" |
| 53 | #include "NoOwnershipChangeVisitor.h" |
| 54 | #include "clang/AST/Attr.h" |
| 55 | #include "clang/AST/DeclCXX.h" |
| 56 | #include "clang/AST/DeclTemplate.h" |
| 57 | #include "clang/AST/Expr.h" |
| 58 | #include "clang/AST/ExprCXX.h" |
| 59 | #include "clang/AST/ParentMap.h" |
| 60 | #include "clang/ASTMatchers/ASTMatchFinder.h" |
| 61 | #include "clang/ASTMatchers/ASTMatchers.h" |
| 62 | #include "clang/Analysis/ProgramPoint.h" |
| 63 | #include "clang/Basic/LLVM.h" |
| 64 | #include "clang/Basic/SourceManager.h" |
| 65 | #include "clang/Basic/TargetInfo.h" |
| 66 | #include "clang/Lex/Lexer.h" |
| 67 | #include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h" |
| 68 | #include "clang/StaticAnalyzer/Checkers/Taint.h" |
| 69 | #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h" |
| 70 | #include "clang/StaticAnalyzer/Core/BugReporter/CommonBugCategories.h" |
| 71 | #include "clang/StaticAnalyzer/Core/Checker.h" |
| 72 | #include "clang/StaticAnalyzer/Core/CheckerManager.h" |
| 73 | #include "clang/StaticAnalyzer/Core/PathSensitive/CallDescription.h" |
| 74 | #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" |
| 75 | #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h" |
| 76 | #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerHelpers.h" |
| 77 | #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicExtent.h" |
| 78 | #include "clang/StaticAnalyzer/Core/PathSensitive/ExplodedGraph.h" |
| 79 | #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" |
| 80 | #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h" |
| 81 | #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h" |
| 82 | #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h" |
| 83 | #include "clang/StaticAnalyzer/Core/PathSensitive/SymbolManager.h" |
| 84 | #include "llvm/ADT/STLExtras.h" |
| 85 | #include "llvm/ADT/SmallVector.h" |
| 86 | #include "llvm/ADT/StringExtras.h" |
| 87 | #include "llvm/Support/Casting.h" |
| 88 | #include "llvm/Support/Compiler.h" |
| 89 | #include "llvm/Support/ErrorHandling.h" |
| 90 | #include "llvm/Support/raw_ostream.h" |
| 91 | #include <functional> |
| 92 | #include <optional> |
| 93 | #include <utility> |
| 94 | |
| 95 | using namespace clang; |
| 96 | using namespace ento; |
| 97 | using namespace std::placeholders; |
| 98 | |
| 99 | //===----------------------------------------------------------------------===// |
| 100 | // The types of allocation we're modeling. This is used to check whether a |
| 101 | // dynamically allocated object is deallocated with the correct function, like |
| 102 | // not using operator delete on an object created by malloc(), or alloca regions |
| 103 | // aren't ever deallocated manually. |
| 104 | //===----------------------------------------------------------------------===// |
| 105 | |
| 106 | namespace { |
| 107 | |
| 108 | // Used to check correspondence between allocators and deallocators. |
| 109 | enum AllocationFamilyKind { |
| 110 | AF_None, |
| 111 | AF_Malloc, |
| 112 | AF_CXXNew, |
| 113 | AF_CXXNewArray, |
| 114 | AF_IfNameIndex, |
| 115 | AF_Alloca, |
| 116 | AF_InnerBuffer, |
| 117 | AF_Custom, |
| 118 | }; |
| 119 | |
| 120 | struct AllocationFamily { |
| 121 | AllocationFamilyKind Kind; |
| 122 | std::optional<StringRef> CustomName; |
| 123 | |
| 124 | explicit AllocationFamily(AllocationFamilyKind AKind, |
| 125 | std::optional<StringRef> Name = std::nullopt) |
| 126 | : Kind(AKind), CustomName(Name) { |
| 127 | assert((Kind != AF_Custom || CustomName.has_value()) && |
| 128 | "Custom family must specify also the name" ); |
| 129 | |
| 130 | // Preseve previous behavior when "malloc" class means AF_Malloc |
| 131 | if (Kind == AF_Custom && CustomName.value() == "malloc" ) { |
| 132 | Kind = AF_Malloc; |
| 133 | CustomName = std::nullopt; |
| 134 | } |
| 135 | } |
| 136 | |
| 137 | bool operator==(const AllocationFamily &Other) const { |
| 138 | return std::tie(args: Kind, args: CustomName) == std::tie(args: Other.Kind, args: Other.CustomName); |
| 139 | } |
| 140 | |
| 141 | bool operator!=(const AllocationFamily &Other) const { |
| 142 | return !(*this == Other); |
| 143 | } |
| 144 | |
| 145 | void Profile(llvm::FoldingSetNodeID &ID) const { |
| 146 | ID.AddInteger(I: Kind); |
| 147 | |
| 148 | if (Kind == AF_Custom) |
| 149 | ID.AddString(String: CustomName.value()); |
| 150 | } |
| 151 | }; |
| 152 | |
| 153 | } // end of anonymous namespace |
| 154 | |
| 155 | /// Print names of allocators and deallocators. |
| 156 | /// |
| 157 | /// \returns true on success. |
| 158 | static bool printMemFnName(raw_ostream &os, CheckerContext &C, const Expr *E); |
| 159 | |
| 160 | /// Print expected name of an allocator based on the deallocator's family |
| 161 | /// derived from the DeallocExpr. |
| 162 | static void printExpectedAllocName(raw_ostream &os, AllocationFamily Family); |
| 163 | |
| 164 | /// Print expected name of a deallocator based on the allocator's |
| 165 | /// family. |
| 166 | static void printExpectedDeallocName(raw_ostream &os, AllocationFamily Family); |
| 167 | |
| 168 | //===----------------------------------------------------------------------===// |
| 169 | // The state of a symbol, in terms of memory management. |
| 170 | //===----------------------------------------------------------------------===// |
| 171 | |
| 172 | namespace { |
| 173 | |
| 174 | class RefState { |
| 175 | enum Kind { |
| 176 | // Reference to allocated memory. |
| 177 | Allocated, |
| 178 | // Reference to zero-allocated memory. |
| 179 | AllocatedOfSizeZero, |
| 180 | // Reference to released/freed memory. |
| 181 | Released, |
| 182 | // The responsibility for freeing resources has transferred from |
| 183 | // this reference. A relinquished symbol should not be freed. |
| 184 | Relinquished, |
| 185 | // We are no longer guaranteed to have observed all manipulations |
| 186 | // of this pointer/memory. For example, it could have been |
| 187 | // passed as a parameter to an opaque function. |
| 188 | Escaped |
| 189 | }; |
| 190 | |
| 191 | const Stmt *S; |
| 192 | |
| 193 | Kind K; |
| 194 | AllocationFamily Family; |
| 195 | |
| 196 | RefState(Kind k, const Stmt *s, AllocationFamily family) |
| 197 | : S(s), K(k), Family(family) { |
| 198 | assert(family.Kind != AF_None); |
| 199 | } |
| 200 | |
| 201 | public: |
| 202 | bool isAllocated() const { return K == Allocated; } |
| 203 | bool isAllocatedOfSizeZero() const { return K == AllocatedOfSizeZero; } |
| 204 | bool isReleased() const { return K == Released; } |
| 205 | bool isRelinquished() const { return K == Relinquished; } |
| 206 | bool isEscaped() const { return K == Escaped; } |
| 207 | AllocationFamily getAllocationFamily() const { return Family; } |
| 208 | const Stmt *getStmt() const { return S; } |
| 209 | |
| 210 | bool operator==(const RefState &X) const { |
| 211 | return K == X.K && S == X.S && Family == X.Family; |
| 212 | } |
| 213 | |
| 214 | static RefState getAllocated(AllocationFamily family, const Stmt *s) { |
| 215 | return RefState(Allocated, s, family); |
| 216 | } |
| 217 | static RefState getAllocatedOfSizeZero(const RefState *RS) { |
| 218 | return RefState(AllocatedOfSizeZero, RS->getStmt(), |
| 219 | RS->getAllocationFamily()); |
| 220 | } |
| 221 | static RefState getReleased(AllocationFamily family, const Stmt *s) { |
| 222 | return RefState(Released, s, family); |
| 223 | } |
| 224 | static RefState getRelinquished(AllocationFamily family, const Stmt *s) { |
| 225 | return RefState(Relinquished, s, family); |
| 226 | } |
| 227 | static RefState getEscaped(const RefState *RS) { |
| 228 | return RefState(Escaped, RS->getStmt(), RS->getAllocationFamily()); |
| 229 | } |
| 230 | |
| 231 | void Profile(llvm::FoldingSetNodeID &ID) const { |
| 232 | ID.AddInteger(I: K); |
| 233 | ID.AddPointer(Ptr: S); |
| 234 | Family.Profile(ID); |
| 235 | } |
| 236 | |
| 237 | LLVM_DUMP_METHOD void dump(raw_ostream &OS) const { |
| 238 | switch (K) { |
| 239 | #define CASE(ID) case ID: OS << #ID; break; |
| 240 | CASE(Allocated) |
| 241 | CASE(AllocatedOfSizeZero) |
| 242 | CASE(Released) |
| 243 | CASE(Relinquished) |
| 244 | CASE(Escaped) |
| 245 | } |
| 246 | } |
| 247 | |
| 248 | LLVM_DUMP_METHOD void dump() const { dump(OS&: llvm::errs()); } |
| 249 | }; |
| 250 | |
| 251 | } // end of anonymous namespace |
| 252 | |
| 253 | REGISTER_MAP_WITH_PROGRAMSTATE(RegionState, SymbolRef, RefState) |
| 254 | |
| 255 | /// Check if the memory associated with this symbol was released. |
| 256 | static bool isReleased(SymbolRef Sym, CheckerContext &C); |
| 257 | |
| 258 | /// Update the RefState to reflect the new memory allocation. |
| 259 | /// The optional \p RetVal parameter specifies the newly allocated pointer |
| 260 | /// value; if unspecified, the value of expression \p E is used. |
| 261 | static ProgramStateRef |
| 262 | MallocUpdateRefState(CheckerContext &C, const Expr *E, ProgramStateRef State, |
| 263 | AllocationFamily Family, |
| 264 | std::optional<SVal> RetVal = std::nullopt); |
| 265 | |
| 266 | //===----------------------------------------------------------------------===// |
| 267 | // The modeling of memory reallocation. |
| 268 | // |
| 269 | // The terminology 'toPtr' and 'fromPtr' will be used: |
| 270 | // toPtr = realloc(fromPtr, 20); |
| 271 | //===----------------------------------------------------------------------===// |
| 272 | |
| 273 | REGISTER_SET_WITH_PROGRAMSTATE(ReallocSizeZeroSymbols, SymbolRef) |
| 274 | |
| 275 | namespace { |
| 276 | |
| 277 | /// The state of 'fromPtr' after reallocation is known to have failed. |
| 278 | enum OwnershipAfterReallocKind { |
| 279 | // The symbol needs to be freed (e.g.: realloc) |
| 280 | OAR_ToBeFreedAfterFailure, |
| 281 | // The symbol has been freed (e.g.: reallocf) |
| 282 | OAR_FreeOnFailure, |
| 283 | // The symbol doesn't have to freed (e.g.: we aren't sure if, how and where |
| 284 | // 'fromPtr' was allocated: |
| 285 | // void Haha(int *ptr) { |
| 286 | // ptr = realloc(ptr, 67); |
| 287 | // // ... |
| 288 | // } |
| 289 | // ). |
| 290 | OAR_DoNotTrackAfterFailure |
| 291 | }; |
| 292 | |
| 293 | /// Stores information about the 'fromPtr' symbol after reallocation. |
| 294 | /// |
| 295 | /// This is important because realloc may fail, and that needs special modeling. |
| 296 | /// Whether reallocation failed or not will not be known until later, so we'll |
| 297 | /// store whether upon failure 'fromPtr' will be freed, or needs to be freed |
| 298 | /// later, etc. |
| 299 | struct ReallocPair { |
| 300 | |
| 301 | // The 'fromPtr'. |
| 302 | SymbolRef ReallocatedSym; |
| 303 | OwnershipAfterReallocKind Kind; |
| 304 | |
| 305 | ReallocPair(SymbolRef S, OwnershipAfterReallocKind K) |
| 306 | : ReallocatedSym(S), Kind(K) {} |
| 307 | void Profile(llvm::FoldingSetNodeID &ID) const { |
| 308 | ID.AddInteger(I: Kind); |
| 309 | ID.AddPointer(Ptr: ReallocatedSym); |
| 310 | } |
| 311 | bool operator==(const ReallocPair &X) const { |
| 312 | return ReallocatedSym == X.ReallocatedSym && |
| 313 | Kind == X.Kind; |
| 314 | } |
| 315 | }; |
| 316 | |
| 317 | } // end of anonymous namespace |
| 318 | |
| 319 | REGISTER_MAP_WITH_PROGRAMSTATE(ReallocPairs, SymbolRef, ReallocPair) |
| 320 | |
| 321 | static bool isStandardNew(const FunctionDecl *FD); |
| 322 | static bool isStandardNew(const CallEvent &Call) { |
| 323 | if (!Call.getDecl() || !isa<FunctionDecl>(Val: Call.getDecl())) |
| 324 | return false; |
| 325 | return isStandardNew(FD: cast<FunctionDecl>(Val: Call.getDecl())); |
| 326 | } |
| 327 | |
| 328 | static bool isStandardDelete(const FunctionDecl *FD); |
| 329 | static bool isStandardDelete(const CallEvent &Call) { |
| 330 | if (!Call.getDecl() || !isa<FunctionDecl>(Val: Call.getDecl())) |
| 331 | return false; |
| 332 | return isStandardDelete(FD: cast<FunctionDecl>(Val: Call.getDecl())); |
| 333 | } |
| 334 | |
| 335 | /// Tells if the callee is one of the builtin new/delete operators, including |
| 336 | /// placement operators and other standard overloads. |
| 337 | template <typename T> static bool isStandardNewDelete(const T &FD) { |
| 338 | return isStandardDelete(FD) || isStandardNew(FD); |
| 339 | } |
| 340 | |
| 341 | namespace { |
| 342 | |
| 343 | //===----------------------------------------------------------------------===// |
| 344 | // Utility classes that provide access to the bug types and can model that some |
| 345 | // of the bug types are shared by multiple checker frontends. |
| 346 | //===----------------------------------------------------------------------===// |
| 347 | |
| 348 | #define BUGTYPE_PROVIDER(NAME, DEF) \ |
| 349 | struct NAME : virtual public CheckerFrontend { \ |
| 350 | BugType NAME##Bug{this, DEF, categories::MemoryError}; \ |
| 351 | }; |
| 352 | |
| 353 | BUGTYPE_PROVIDER(DoubleFree, "Double free" ) |
| 354 | |
| 355 | struct Leak : virtual public CheckerFrontend { |
| 356 | // Leaks should not be reported if they are post-dominated by a sink: |
| 357 | // (1) Sinks are higher importance bugs. |
| 358 | // (2) NoReturnFunctionChecker uses sink nodes to represent paths ending |
| 359 | // with __noreturn functions such as assert() or exit(). We choose not |
| 360 | // to report leaks on such paths. |
| 361 | BugType LeakBug{this, "Memory leak" , categories::MemoryError, |
| 362 | /*SuppressOnSink=*/true}; |
| 363 | }; |
| 364 | |
| 365 | BUGTYPE_PROVIDER(UseFree, "Use-after-free" ) |
| 366 | BUGTYPE_PROVIDER(BadFree, "Bad free" ) |
| 367 | BUGTYPE_PROVIDER(FreeAlloca, "Free 'alloca()'" ) |
| 368 | BUGTYPE_PROVIDER(MismatchedDealloc, "Bad deallocator" ) |
| 369 | BUGTYPE_PROVIDER(OffsetFree, "Offset free" ) |
| 370 | BUGTYPE_PROVIDER(UseZeroAllocated, "Use of zero allocated" ) |
| 371 | |
| 372 | #undef BUGTYPE_PROVIDER |
| 373 | |
| 374 | template <typename... BT_PROVIDERS> |
| 375 | struct DynMemFrontend : virtual public CheckerFrontend, public BT_PROVIDERS... { |
| 376 | template <typename T> const T *getAs() const { |
| 377 | if constexpr (std::is_same_v<T, CheckerFrontend> || |
| 378 | (std::is_same_v<T, BT_PROVIDERS> || ...)) |
| 379 | return static_cast<const T *>(this); |
| 380 | return nullptr; |
| 381 | } |
| 382 | }; |
| 383 | |
| 384 | //===----------------------------------------------------------------------===// |
| 385 | // Definition of the MallocChecker class. |
| 386 | //===----------------------------------------------------------------------===// |
| 387 | |
| 388 | class MallocChecker |
| 389 | : public CheckerFamily< |
| 390 | check::DeadSymbols, check::PointerEscape, check::ConstPointerEscape, |
| 391 | check::PreStmt<ReturnStmt>, check::EndFunction, check::PreCall, |
| 392 | check::PostCall, eval::Call, check::NewAllocator, |
| 393 | check::PostStmt<BlockExpr>, check::PostObjCMessage, check::Location, |
| 394 | eval::Assume> { |
| 395 | public: |
| 396 | /// In pessimistic mode, the checker assumes that it does not know which |
| 397 | /// functions might free the memory. |
| 398 | /// In optimistic mode, the checker assumes that all user-defined functions |
| 399 | /// which might free a pointer are annotated. |
| 400 | bool ShouldIncludeOwnershipAnnotatedFunctions = false; |
| 401 | |
| 402 | bool ShouldRegisterNoOwnershipChangeVisitor = false; |
| 403 | |
| 404 | // This checker family implements many bug types and frontends, and several |
| 405 | // bug types are shared between multiple frontends, so most of the frontends |
| 406 | // are declared with the helper class DynMemFrontend. |
| 407 | // FIXME: There is no clear reason for separating NewDelete vs NewDeleteLeaks |
| 408 | // while e.g. MallocChecker covers both non-leak and leak bugs together. It |
| 409 | // would be nice to redraw the boundaries between the frontends in a more |
| 410 | // logical way. |
| 411 | DynMemFrontend<DoubleFree, Leak, UseFree, BadFree, FreeAlloca, OffsetFree, |
| 412 | UseZeroAllocated> |
| 413 | MallocChecker; |
| 414 | DynMemFrontend<DoubleFree, UseFree, BadFree, OffsetFree, UseZeroAllocated> |
| 415 | NewDeleteChecker; |
| 416 | DynMemFrontend<Leak> NewDeleteLeaksChecker; |
| 417 | DynMemFrontend<FreeAlloca, MismatchedDealloc> MismatchedDeallocatorChecker; |
| 418 | DynMemFrontend<UseFree> InnerPointerChecker; |
| 419 | // This last frontend is associated with a single bug type which is not used |
| 420 | // elsewhere and has a different bug category, so it's declared separately. |
| 421 | CheckerFrontendWithBugType TaintedAllocChecker{"Tainted Memory Allocation" , |
| 422 | categories::TaintedData}; |
| 423 | |
| 424 | using LeakInfo = std::pair<const ExplodedNode *, const MemRegion *>; |
| 425 | |
| 426 | void checkPreCall(const CallEvent &Call, CheckerContext &C) const; |
| 427 | void checkPostCall(const CallEvent &Call, CheckerContext &C) const; |
| 428 | bool evalCall(const CallEvent &Call, CheckerContext &C) const; |
| 429 | |
| 430 | ProgramStateRef |
| 431 | handleSmartPointerConstructorArguments(const CallEvent &Call, |
| 432 | ProgramStateRef State) const; |
| 433 | ProgramStateRef handleSmartPointerRelatedCalls(const CallEvent &Call, |
| 434 | CheckerContext &C, |
| 435 | ProgramStateRef State) const; |
| 436 | void checkNewAllocator(const CXXAllocatorCall &Call, CheckerContext &C) const; |
| 437 | void checkPostObjCMessage(const ObjCMethodCall &Call, CheckerContext &C) const; |
| 438 | void checkPostStmt(const BlockExpr *BE, CheckerContext &C) const; |
| 439 | void checkDeadSymbols(SymbolReaper &SymReaper, CheckerContext &C) const; |
| 440 | void checkPreStmt(const ReturnStmt *S, CheckerContext &C) const; |
| 441 | void checkEndFunction(const ReturnStmt *S, CheckerContext &C) const; |
| 442 | ProgramStateRef evalAssume(ProgramStateRef state, SVal Cond, |
| 443 | bool Assumption) const; |
| 444 | void checkLocation(SVal l, bool isLoad, const Stmt *S, |
| 445 | CheckerContext &C) const; |
| 446 | |
| 447 | ProgramStateRef checkPointerEscape(ProgramStateRef State, |
| 448 | const InvalidatedSymbols &Escaped, |
| 449 | const CallEvent *Call, |
| 450 | PointerEscapeKind Kind) const; |
| 451 | ProgramStateRef checkConstPointerEscape(ProgramStateRef State, |
| 452 | const InvalidatedSymbols &Escaped, |
| 453 | const CallEvent *Call, |
| 454 | PointerEscapeKind Kind) const; |
| 455 | |
| 456 | void printState(raw_ostream &Out, ProgramStateRef State, |
| 457 | const char *NL, const char *Sep) const override; |
| 458 | |
| 459 | StringRef getDebugTag() const override { return "MallocChecker" ; } |
| 460 | |
| 461 | private: |
| 462 | #define CHECK_FN(NAME) \ |
| 463 | void NAME(ProgramStateRef State, const CallEvent &Call, CheckerContext &C) \ |
| 464 | const; |
| 465 | |
| 466 | CHECK_FN(checkFree) |
| 467 | CHECK_FN(checkIfNameIndex) |
| 468 | CHECK_FN(checkBasicAlloc) |
| 469 | CHECK_FN(checkKernelMalloc) |
| 470 | CHECK_FN(checkCalloc) |
| 471 | CHECK_FN(checkAlloca) |
| 472 | CHECK_FN(checkStrdup) |
| 473 | CHECK_FN(checkIfFreeNameIndex) |
| 474 | CHECK_FN(checkCXXNewOrCXXDelete) |
| 475 | CHECK_FN(checkGMalloc0) |
| 476 | CHECK_FN(checkGMemdup) |
| 477 | CHECK_FN(checkGMallocN) |
| 478 | CHECK_FN(checkGMallocN0) |
| 479 | CHECK_FN(preGetDelimOrGetLine) |
| 480 | CHECK_FN(checkGetDelimOrGetLine) |
| 481 | CHECK_FN(checkReallocN) |
| 482 | CHECK_FN(checkOwnershipAttr) |
| 483 | |
| 484 | void checkRealloc(ProgramStateRef State, const CallEvent &Call, |
| 485 | CheckerContext &C, bool ShouldFreeOnFail) const; |
| 486 | |
| 487 | using CheckFn = |
| 488 | std::function<void(const class MallocChecker *, ProgramStateRef State, |
| 489 | const CallEvent &Call, CheckerContext &C)>; |
| 490 | |
| 491 | const CallDescriptionMap<CheckFn> PreFnMap{ |
| 492 | // NOTE: the following CallDescription also matches the C++ standard |
| 493 | // library function std::getline(); the callback will filter it out. |
| 494 | {{CDM::CLibrary, {"getline" }, 3}, &MallocChecker::preGetDelimOrGetLine}, |
| 495 | {{CDM::CLibrary, {"getdelim" }, 4}, &MallocChecker::preGetDelimOrGetLine}, |
| 496 | }; |
| 497 | |
| 498 | const CallDescriptionMap<CheckFn> PostFnMap{ |
| 499 | // NOTE: the following CallDescription also matches the C++ standard |
| 500 | // library function std::getline(); the callback will filter it out. |
| 501 | {{CDM::CLibrary, {"getline" }, 3}, &MallocChecker::checkGetDelimOrGetLine}, |
| 502 | {{CDM::CLibrary, {"getdelim" }, 4}, |
| 503 | &MallocChecker::checkGetDelimOrGetLine}, |
| 504 | }; |
| 505 | |
| 506 | const CallDescriptionMap<CheckFn> FreeingMemFnMap{ |
| 507 | {{CDM::CLibrary, {"free" }, 1}, &MallocChecker::checkFree}, |
| 508 | {{CDM::CLibrary, {"if_freenameindex" }, 1}, |
| 509 | &MallocChecker::checkIfFreeNameIndex}, |
| 510 | {{CDM::CLibrary, {"kfree" }, 1}, &MallocChecker::checkFree}, |
| 511 | {{CDM::CLibrary, {"g_free" }, 1}, &MallocChecker::checkFree}, |
| 512 | }; |
| 513 | |
| 514 | bool isFreeingCall(const CallEvent &Call) const; |
| 515 | static bool isFreeingOwnershipAttrCall(const FunctionDecl *Func); |
| 516 | static bool isFreeingOwnershipAttrCall(const CallEvent &Call); |
| 517 | static bool isAllocatingOwnershipAttrCall(const FunctionDecl *Func); |
| 518 | static bool isAllocatingOwnershipAttrCall(const CallEvent &Call); |
| 519 | |
| 520 | friend class NoMemOwnershipChangeVisitor; |
| 521 | |
| 522 | CallDescriptionMap<CheckFn> AllocaMemFnMap{ |
| 523 | {{CDM::CLibrary, {"alloca" }, 1}, &MallocChecker::checkAlloca}, |
| 524 | {{CDM::CLibrary, {"_alloca" }, 1}, &MallocChecker::checkAlloca}, |
| 525 | // The line for "alloca" also covers "__builtin_alloca", but the |
| 526 | // _with_align variant must be listed separately because it takes an |
| 527 | // extra argument: |
| 528 | {{CDM::CLibrary, {"__builtin_alloca_with_align" }, 2}, |
| 529 | &MallocChecker::checkAlloca}, |
| 530 | }; |
| 531 | |
| 532 | CallDescriptionMap<CheckFn> AllocatingMemFnMap{ |
| 533 | {{CDM::CLibrary, {"malloc" }, 1}, &MallocChecker::checkBasicAlloc}, |
| 534 | {{CDM::CLibrary, {"malloc" }, 3}, &MallocChecker::checkKernelMalloc}, |
| 535 | {{CDM::CLibrary, {"calloc" }, 2}, &MallocChecker::checkCalloc}, |
| 536 | {{CDM::CLibrary, {"valloc" }, 1}, &MallocChecker::checkBasicAlloc}, |
| 537 | {{CDM::CLibrary, {"strndup" }, 2}, &MallocChecker::checkStrdup}, |
| 538 | {{CDM::CLibrary, {"strdup" }, 1}, &MallocChecker::checkStrdup}, |
| 539 | {{CDM::CLibrary, {"_strdup" }, 1}, &MallocChecker::checkStrdup}, |
| 540 | {{CDM::CLibrary, {"kmalloc" }, 2}, &MallocChecker::checkKernelMalloc}, |
| 541 | {{CDM::CLibrary, {"if_nameindex" }, 1}, &MallocChecker::checkIfNameIndex}, |
| 542 | {{CDM::CLibrary, {"wcsdup" }, 1}, &MallocChecker::checkStrdup}, |
| 543 | {{CDM::CLibrary, {"_wcsdup" }, 1}, &MallocChecker::checkStrdup}, |
| 544 | {{CDM::CLibrary, {"g_malloc" }, 1}, &MallocChecker::checkBasicAlloc}, |
| 545 | {{CDM::CLibrary, {"g_malloc0" }, 1}, &MallocChecker::checkGMalloc0}, |
| 546 | {{CDM::CLibrary, {"g_try_malloc" }, 1}, &MallocChecker::checkBasicAlloc}, |
| 547 | {{CDM::CLibrary, {"g_try_malloc0" }, 1}, &MallocChecker::checkGMalloc0}, |
| 548 | {{CDM::CLibrary, {"g_memdup" }, 2}, &MallocChecker::checkGMemdup}, |
| 549 | {{CDM::CLibrary, {"g_malloc_n" }, 2}, &MallocChecker::checkGMallocN}, |
| 550 | {{CDM::CLibrary, {"g_malloc0_n" }, 2}, &MallocChecker::checkGMallocN0}, |
| 551 | {{CDM::CLibrary, {"g_try_malloc_n" }, 2}, &MallocChecker::checkGMallocN}, |
| 552 | {{CDM::CLibrary, {"g_try_malloc0_n" }, 2}, &MallocChecker::checkGMallocN0}, |
| 553 | }; |
| 554 | |
| 555 | CallDescriptionMap<CheckFn> ReallocatingMemFnMap{ |
| 556 | {{CDM::CLibrary, {"realloc" }, 2}, |
| 557 | std::bind(f: &MallocChecker::checkRealloc, args: _1, args: _2, args: _3, args: _4, args: false)}, |
| 558 | {{CDM::CLibrary, {"reallocf" }, 2}, |
| 559 | std::bind(f: &MallocChecker::checkRealloc, args: _1, args: _2, args: _3, args: _4, args: true)}, |
| 560 | {{CDM::CLibrary, {"g_realloc" }, 2}, |
| 561 | std::bind(f: &MallocChecker::checkRealloc, args: _1, args: _2, args: _3, args: _4, args: false)}, |
| 562 | {{CDM::CLibrary, {"g_try_realloc" }, 2}, |
| 563 | std::bind(f: &MallocChecker::checkRealloc, args: _1, args: _2, args: _3, args: _4, args: false)}, |
| 564 | {{CDM::CLibrary, {"g_realloc_n" }, 3}, &MallocChecker::checkReallocN}, |
| 565 | {{CDM::CLibrary, {"g_try_realloc_n" }, 3}, &MallocChecker::checkReallocN}, |
| 566 | }; |
| 567 | |
| 568 | bool isMemCall(const CallEvent &Call) const; |
| 569 | bool hasOwnershipReturns(const CallEvent &Call) const; |
| 570 | bool hasOwnershipTakesHolds(const CallEvent &Call) const; |
| 571 | void reportTaintBug(StringRef Msg, ProgramStateRef State, CheckerContext &C, |
| 572 | llvm::ArrayRef<SymbolRef> TaintedSyms, |
| 573 | AllocationFamily Family) const; |
| 574 | |
| 575 | void checkTaintedness(CheckerContext &C, const CallEvent &Call, |
| 576 | const SVal SizeSVal, ProgramStateRef State, |
| 577 | AllocationFamily Family) const; |
| 578 | |
| 579 | // TODO: Remove mutable by moving the initializtaion to the registry function. |
| 580 | mutable std::optional<uint64_t> KernelZeroFlagVal; |
| 581 | |
| 582 | using KernelZeroSizePtrValueTy = std::optional<int>; |
| 583 | /// Store the value of macro called `ZERO_SIZE_PTR`. |
| 584 | /// The value is initialized at first use, before first use the outer |
| 585 | /// Optional is empty, afterwards it contains another Optional that indicates |
| 586 | /// if the macro value could be determined, and if yes the value itself. |
| 587 | mutable std::optional<KernelZeroSizePtrValueTy> KernelZeroSizePtrValue; |
| 588 | |
| 589 | /// Process C++ operator new()'s allocation, which is the part of C++ |
| 590 | /// new-expression that goes before the constructor. |
| 591 | [[nodiscard]] ProgramStateRef |
| 592 | processNewAllocation(const CXXAllocatorCall &Call, CheckerContext &C, |
| 593 | AllocationFamily Family) const; |
| 594 | |
| 595 | /// Perform a zero-allocation check. |
| 596 | /// |
| 597 | /// \param [in] Call The expression that allocates memory. |
| 598 | /// \param [in] IndexOfSizeArg Index of the argument that specifies the size |
| 599 | /// of the memory that needs to be allocated. E.g. for malloc, this would be |
| 600 | /// 0. |
| 601 | /// \param [in] RetVal Specifies the newly allocated pointer value; |
| 602 | /// if unspecified, the value of expression \p E is used. |
| 603 | [[nodiscard]] static ProgramStateRef |
| 604 | ProcessZeroAllocCheck(CheckerContext &C, const CallEvent &Call, |
| 605 | const unsigned IndexOfSizeArg, ProgramStateRef State, |
| 606 | std::optional<SVal> RetVal = std::nullopt); |
| 607 | |
| 608 | /// Model functions with the ownership_returns attribute. |
| 609 | /// |
| 610 | /// User-defined function may have the ownership_returns attribute, which |
| 611 | /// annotates that the function returns with an object that was allocated on |
| 612 | /// the heap, and passes the ownertship to the callee. |
| 613 | /// |
| 614 | /// void __attribute((ownership_returns(malloc, 1))) *my_malloc(size_t); |
| 615 | /// |
| 616 | /// It has two parameters: |
| 617 | /// - first: name of the resource (e.g. 'malloc') |
| 618 | /// - (OPTIONAL) second: size of the allocated region |
| 619 | /// |
| 620 | /// \param [in] Call The expression that allocates memory. |
| 621 | /// \param [in] Att The ownership_returns attribute. |
| 622 | /// \param [in] State The \c ProgramState right before allocation. |
| 623 | /// \returns The ProgramState right after allocation. |
| 624 | [[nodiscard]] ProgramStateRef |
| 625 | MallocMemReturnsAttr(CheckerContext &C, const CallEvent &Call, |
| 626 | const OwnershipAttr *Att, ProgramStateRef State) const; |
| 627 | /// Models memory allocation. |
| 628 | /// |
| 629 | /// \param [in] C Checker context. |
| 630 | /// \param [in] Call The expression that allocates memory. |
| 631 | /// \param [in] State The \c ProgramState right before allocation. |
| 632 | /// \param [in] isAlloca Is the allocation function alloca-like |
| 633 | /// \returns The ProgramState with returnValue bound |
| 634 | [[nodiscard]] ProgramStateRef MallocBindRetVal(CheckerContext &C, |
| 635 | const CallEvent &Call, |
| 636 | ProgramStateRef State, |
| 637 | bool isAlloca) const; |
| 638 | |
| 639 | /// Models memory allocation. |
| 640 | /// |
| 641 | /// \param [in] Call The expression that allocates memory. |
| 642 | /// \param [in] SizeEx Size of the memory that needs to be allocated. |
| 643 | /// \param [in] Init The value the allocated memory needs to be initialized. |
| 644 | /// with. For example, \c calloc initializes the allocated memory to 0, |
| 645 | /// malloc leaves it undefined. |
| 646 | /// \param [in] State The \c ProgramState right before allocation. |
| 647 | /// \returns The ProgramState right after allocation. |
| 648 | [[nodiscard]] ProgramStateRef |
| 649 | MallocMemAux(CheckerContext &C, const CallEvent &Call, const Expr *SizeEx, |
| 650 | SVal Init, ProgramStateRef State, AllocationFamily Family) const; |
| 651 | |
| 652 | /// Models memory allocation. |
| 653 | /// |
| 654 | /// \param [in] Call The expression that allocates memory. |
| 655 | /// \param [in] Size Size of the memory that needs to be allocated. |
| 656 | /// \param [in] Init The value the allocated memory needs to be initialized. |
| 657 | /// with. For example, \c calloc initializes the allocated memory to 0, |
| 658 | /// malloc leaves it undefined. |
| 659 | /// \param [in] State The \c ProgramState right before allocation. |
| 660 | /// \returns The ProgramState right after allocation. |
| 661 | [[nodiscard]] ProgramStateRef MallocMemAux(CheckerContext &C, |
| 662 | const CallEvent &Call, SVal Size, |
| 663 | SVal Init, ProgramStateRef State, |
| 664 | AllocationFamily Family) const; |
| 665 | |
| 666 | // Check if this malloc() for special flags. At present that means M_ZERO or |
| 667 | // __GFP_ZERO (in which case, treat it like calloc). |
| 668 | [[nodiscard]] std::optional<ProgramStateRef> |
| 669 | performKernelMalloc(const CallEvent &Call, CheckerContext &C, |
| 670 | const ProgramStateRef &State) const; |
| 671 | |
| 672 | /// Model functions with the ownership_takes and ownership_holds attributes. |
| 673 | /// |
| 674 | /// User-defined function may have the ownership_takes and/or ownership_holds |
| 675 | /// attributes, which annotates that the function frees the memory passed as a |
| 676 | /// parameter. |
| 677 | /// |
| 678 | /// void __attribute((ownership_takes(malloc, 1))) my_free(void *); |
| 679 | /// void __attribute((ownership_holds(malloc, 1))) my_hold(void *); |
| 680 | /// |
| 681 | /// They have two parameters: |
| 682 | /// - first: name of the resource (e.g. 'malloc') |
| 683 | /// - second: index of the parameter the attribute applies to |
| 684 | /// |
| 685 | /// \param [in] Call The expression that frees memory. |
| 686 | /// \param [in] Att The ownership_takes or ownership_holds attribute. |
| 687 | /// \param [in] State The \c ProgramState right before allocation. |
| 688 | /// \returns The ProgramState right after deallocation. |
| 689 | [[nodiscard]] ProgramStateRef FreeMemAttr(CheckerContext &C, |
| 690 | const CallEvent &Call, |
| 691 | const OwnershipAttr *Att, |
| 692 | ProgramStateRef State) const; |
| 693 | |
| 694 | /// Models memory deallocation. |
| 695 | /// |
| 696 | /// \param [in] Call The expression that frees memory. |
| 697 | /// \param [in] State The \c ProgramState right before allocation. |
| 698 | /// \param [in] Num Index of the argument that needs to be freed. This is |
| 699 | /// normally 0, but for custom free functions it may be different. |
| 700 | /// \param [in] Hold Whether the parameter at \p Index has the ownership_holds |
| 701 | /// attribute. |
| 702 | /// \param [out] IsKnownToBeAllocated Whether the memory to be freed is known |
| 703 | /// to have been allocated, or in other words, the symbol to be freed was |
| 704 | /// registered as allocated by this checker. In the following case, \c ptr |
| 705 | /// isn't known to be allocated. |
| 706 | /// void Haha(int *ptr) { |
| 707 | /// ptr = realloc(ptr, 67); |
| 708 | /// // ... |
| 709 | /// } |
| 710 | /// \param [in] ReturnsNullOnFailure Whether the memory deallocation function |
| 711 | /// we're modeling returns with Null on failure. |
| 712 | /// \returns The ProgramState right after deallocation. |
| 713 | [[nodiscard]] ProgramStateRef |
| 714 | FreeMemAux(CheckerContext &C, const CallEvent &Call, ProgramStateRef State, |
| 715 | unsigned Num, bool Hold, bool &IsKnownToBeAllocated, |
| 716 | AllocationFamily Family, bool ReturnsNullOnFailure = false) const; |
| 717 | |
| 718 | /// Models memory deallocation. |
| 719 | /// |
| 720 | /// \param [in] ArgExpr The variable who's pointee needs to be freed. |
| 721 | /// \param [in] Call The expression that frees the memory. |
| 722 | /// \param [in] State The \c ProgramState right before allocation. |
| 723 | /// normally 0, but for custom free functions it may be different. |
| 724 | /// \param [in] Hold Whether the parameter at \p Index has the ownership_holds |
| 725 | /// attribute. |
| 726 | /// \param [out] IsKnownToBeAllocated Whether the memory to be freed is known |
| 727 | /// to have been allocated, or in other words, the symbol to be freed was |
| 728 | /// registered as allocated by this checker. In the following case, \c ptr |
| 729 | /// isn't known to be allocated. |
| 730 | /// void Haha(int *ptr) { |
| 731 | /// ptr = realloc(ptr, 67); |
| 732 | /// // ... |
| 733 | /// } |
| 734 | /// \param [in] ReturnsNullOnFailure Whether the memory deallocation function |
| 735 | /// we're modeling returns with Null on failure. |
| 736 | /// \param [in] ArgValOpt Optional value to use for the argument instead of |
| 737 | /// the one obtained from ArgExpr. |
| 738 | /// \returns The ProgramState right after deallocation. |
| 739 | [[nodiscard]] ProgramStateRef |
| 740 | FreeMemAux(CheckerContext &C, const Expr *ArgExpr, const CallEvent &Call, |
| 741 | ProgramStateRef State, bool Hold, bool &IsKnownToBeAllocated, |
| 742 | AllocationFamily Family, bool ReturnsNullOnFailure = false, |
| 743 | std::optional<SVal> ArgValOpt = {}) const; |
| 744 | |
| 745 | // TODO: Needs some refactoring, as all other deallocation modeling |
| 746 | // functions are suffering from out parameters and messy code due to how |
| 747 | // realloc is handled. |
| 748 | // |
| 749 | /// Models memory reallocation. |
| 750 | /// |
| 751 | /// \param [in] Call The expression that reallocated memory |
| 752 | /// \param [in] ShouldFreeOnFail Whether if reallocation fails, the supplied |
| 753 | /// memory should be freed. |
| 754 | /// \param [in] State The \c ProgramState right before reallocation. |
| 755 | /// \param [in] SuffixWithN Whether the reallocation function we're modeling |
| 756 | /// has an '_n' suffix, such as g_realloc_n. |
| 757 | /// \returns The ProgramState right after reallocation. |
| 758 | [[nodiscard]] ProgramStateRef |
| 759 | ReallocMemAux(CheckerContext &C, const CallEvent &Call, bool ShouldFreeOnFail, |
| 760 | ProgramStateRef State, AllocationFamily Family, |
| 761 | bool SuffixWithN = false) const; |
| 762 | |
| 763 | /// Evaluates the buffer size that needs to be allocated. |
| 764 | /// |
| 765 | /// \param [in] Blocks The amount of blocks that needs to be allocated. |
| 766 | /// \param [in] BlockBytes The size of a block. |
| 767 | /// \returns The symbolic value of \p Blocks * \p BlockBytes. |
| 768 | [[nodiscard]] static SVal evalMulForBufferSize(CheckerContext &C, |
| 769 | const Expr *Blocks, |
| 770 | const Expr *BlockBytes); |
| 771 | |
| 772 | /// Models zero initialized array allocation. |
| 773 | /// |
| 774 | /// \param [in] Call The expression that reallocated memory |
| 775 | /// \param [in] State The \c ProgramState right before reallocation. |
| 776 | /// \returns The ProgramState right after allocation. |
| 777 | [[nodiscard]] ProgramStateRef CallocMem(CheckerContext &C, |
| 778 | const CallEvent &Call, |
| 779 | ProgramStateRef State) const; |
| 780 | |
| 781 | /// See if deallocation happens in a suspicious context. If so, escape the |
| 782 | /// pointers that otherwise would have been deallocated and return true. |
| 783 | bool suppressDeallocationsInSuspiciousContexts(const CallEvent &Call, |
| 784 | CheckerContext &C) const; |
| 785 | |
| 786 | /// If in \p S \p Sym is used, check whether \p Sym was already freed. |
| 787 | bool checkUseAfterFree(SymbolRef Sym, CheckerContext &C, const Stmt *S) const; |
| 788 | |
| 789 | /// If in \p S \p Sym is used, check whether \p Sym was allocated as a zero |
| 790 | /// sized memory region. |
| 791 | void checkUseZeroAllocated(SymbolRef Sym, CheckerContext &C, |
| 792 | const Stmt *S) const; |
| 793 | |
| 794 | /// Check if the function is known to free memory, or if it is |
| 795 | /// "interesting" and should be modeled explicitly. |
| 796 | /// |
| 797 | /// \param [out] EscapingSymbol A function might not free memory in general, |
| 798 | /// but could be known to free a particular symbol. In this case, false is |
| 799 | /// returned and the single escaping symbol is returned through the out |
| 800 | /// parameter. |
| 801 | /// |
| 802 | /// We assume that pointers do not escape through calls to system functions |
| 803 | /// not handled by this checker. |
| 804 | bool mayFreeAnyEscapedMemoryOrIsModeledExplicitly(const CallEvent *Call, |
| 805 | ProgramStateRef State, |
| 806 | SymbolRef &EscapingSymbol) const; |
| 807 | |
| 808 | /// Implementation of the checkPointerEscape callbacks. |
| 809 | [[nodiscard]] ProgramStateRef |
| 810 | checkPointerEscapeAux(ProgramStateRef State, |
| 811 | const InvalidatedSymbols &Escaped, |
| 812 | const CallEvent *Call, PointerEscapeKind Kind, |
| 813 | bool IsConstPointerEscape) const; |
| 814 | |
| 815 | // Implementation of the checkPreStmt and checkEndFunction callbacks. |
| 816 | void checkEscapeOnReturn(const ReturnStmt *S, CheckerContext &C) const; |
| 817 | |
| 818 | ///@{ |
| 819 | /// Returns a pointer to the checker frontend corresponding to the given |
| 820 | /// family or symbol. The template argument T may be either CheckerFamily or |
| 821 | /// a BUGTYPE_PROVIDER class; in the latter case the query is restricted to |
| 822 | /// frontends that descend from that PROVIDER class (i.e. can emit that bug |
| 823 | /// type). Note that this may return a frontend which is disabled. |
| 824 | template <class T> |
| 825 | const T *getRelevantFrontendAs(AllocationFamily Family) const; |
| 826 | |
| 827 | template <class T> |
| 828 | const T *getRelevantFrontendAs(CheckerContext &C, SymbolRef Sym) const; |
| 829 | ///@} |
| 830 | static bool SummarizeValue(raw_ostream &os, SVal V); |
| 831 | static bool SummarizeRegion(ProgramStateRef State, raw_ostream &os, |
| 832 | const MemRegion *MR); |
| 833 | |
| 834 | void HandleNonHeapDealloc(CheckerContext &C, SVal ArgVal, SourceRange Range, |
| 835 | const Expr *DeallocExpr, |
| 836 | AllocationFamily Family) const; |
| 837 | |
| 838 | void HandleFreeAlloca(CheckerContext &C, SVal ArgVal, |
| 839 | SourceRange Range) const; |
| 840 | |
| 841 | void HandleMismatchedDealloc(CheckerContext &C, SourceRange Range, |
| 842 | const Expr *DeallocExpr, const RefState *RS, |
| 843 | SymbolRef Sym, bool OwnershipTransferred) const; |
| 844 | |
| 845 | void HandleOffsetFree(CheckerContext &C, SVal ArgVal, SourceRange Range, |
| 846 | const Expr *DeallocExpr, AllocationFamily Family, |
| 847 | const Expr *AllocExpr = nullptr) const; |
| 848 | |
| 849 | void HandleUseAfterFree(CheckerContext &C, SourceRange Range, |
| 850 | SymbolRef Sym) const; |
| 851 | |
| 852 | void HandleDoubleFree(CheckerContext &C, SourceRange Range, bool Released, |
| 853 | SymbolRef Sym, SymbolRef PrevSym) const; |
| 854 | |
| 855 | void HandleUseZeroAlloc(CheckerContext &C, SourceRange Range, |
| 856 | SymbolRef Sym) const; |
| 857 | |
| 858 | void HandleFunctionPtrFree(CheckerContext &C, SVal ArgVal, SourceRange Range, |
| 859 | const Expr *FreeExpr, |
| 860 | AllocationFamily Family) const; |
| 861 | |
| 862 | /// Find the location of the allocation for Sym on the path leading to the |
| 863 | /// exploded node N. |
| 864 | static LeakInfo getAllocationSite(const ExplodedNode *N, SymbolRef Sym, |
| 865 | CheckerContext &C); |
| 866 | |
| 867 | void HandleLeak(SymbolRef Sym, ExplodedNode *N, CheckerContext &C) const; |
| 868 | |
| 869 | /// Test if value in ArgVal equals to value in macro `ZERO_SIZE_PTR`. |
| 870 | bool isArgZERO_SIZE_PTR(ProgramStateRef State, CheckerContext &C, |
| 871 | SVal ArgVal) const; |
| 872 | }; |
| 873 | } // end anonymous namespace |
| 874 | |
| 875 | //===----------------------------------------------------------------------===// |
| 876 | // Definition of NoOwnershipChangeVisitor. |
| 877 | //===----------------------------------------------------------------------===// |
| 878 | |
| 879 | namespace { |
| 880 | class NoMemOwnershipChangeVisitor final : public NoOwnershipChangeVisitor { |
| 881 | protected: |
| 882 | /// Syntactically checks whether the callee is a deallocating function. Since |
| 883 | /// we have no path-sensitive information on this call (we would need a |
| 884 | /// CallEvent instead of a CallExpr for that), its possible that a |
| 885 | /// deallocation function was called indirectly through a function pointer, |
| 886 | /// but we are not able to tell, so this is a best effort analysis. |
| 887 | /// See namespace `memory_passed_to_fn_call_free_through_fn_ptr` in |
| 888 | /// clang/test/Analysis/NewDeleteLeaks.cpp. |
| 889 | bool isFreeingCallAsWritten(const CallExpr &Call) const { |
| 890 | const auto *MallocChk = static_cast<const MallocChecker *>(&Checker); |
| 891 | if (MallocChk->FreeingMemFnMap.lookupAsWritten(Call) || |
| 892 | MallocChk->ReallocatingMemFnMap.lookupAsWritten(Call)) |
| 893 | return true; |
| 894 | |
| 895 | if (const auto *Func = |
| 896 | llvm::dyn_cast_or_null<FunctionDecl>(Val: Call.getCalleeDecl())) |
| 897 | return MallocChecker::isFreeingOwnershipAttrCall(Func); |
| 898 | |
| 899 | return false; |
| 900 | } |
| 901 | |
| 902 | bool hasResourceStateChanged(ProgramStateRef CallEnterState, |
| 903 | ProgramStateRef CallExitEndState) final { |
| 904 | return CallEnterState->get<RegionState>(key: Sym) != |
| 905 | CallExitEndState->get<RegionState>(key: Sym); |
| 906 | } |
| 907 | |
| 908 | /// Heuristically guess whether the callee intended to free memory. This is |
| 909 | /// done syntactically, because we are trying to argue about alternative |
| 910 | /// paths of execution, and as a consequence we don't have path-sensitive |
| 911 | /// information. |
| 912 | bool doesFnIntendToHandleOwnership(const Decl *Callee, |
| 913 | ASTContext &ACtx) final { |
| 914 | const FunctionDecl *FD = dyn_cast<FunctionDecl>(Val: Callee); |
| 915 | |
| 916 | // Given that the stack frame was entered, the body should always be |
| 917 | // theoretically obtainable. In case of body farms, the synthesized body |
| 918 | // is not attached to declaration, thus triggering the '!FD->hasBody()' |
| 919 | // branch. That said, would a synthesized body ever intend to handle |
| 920 | // ownership? As of today they don't. And if they did, how would we |
| 921 | // put notes inside it, given that it doesn't match any source locations? |
| 922 | if (!FD || !FD->hasBody()) |
| 923 | return false; |
| 924 | using namespace clang::ast_matchers; |
| 925 | |
| 926 | auto Matches = match(Matcher: findAll(Matcher: stmt(anyOf(cxxDeleteExpr().bind(ID: "delete" ), |
| 927 | callExpr().bind(ID: "call" )))), |
| 928 | Node: *FD->getBody(), Context&: ACtx); |
| 929 | for (BoundNodes Match : Matches) { |
| 930 | if (Match.getNodeAs<CXXDeleteExpr>(ID: "delete" )) |
| 931 | return true; |
| 932 | |
| 933 | if (const auto *Call = Match.getNodeAs<CallExpr>(ID: "call" )) |
| 934 | if (isFreeingCallAsWritten(Call: *Call)) |
| 935 | return true; |
| 936 | } |
| 937 | // TODO: Ownership might change with an attempt to store the allocated |
| 938 | // memory, not only through deallocation. Check for attempted stores as |
| 939 | // well. |
| 940 | return false; |
| 941 | } |
| 942 | |
| 943 | PathDiagnosticPieceRef emitNote(const ExplodedNode *N) final { |
| 944 | PathDiagnosticLocation L = PathDiagnosticLocation::create( |
| 945 | P: N->getLocation(), |
| 946 | SMng: N->getState()->getStateManager().getContext().getSourceManager()); |
| 947 | return std::make_shared<PathDiagnosticEventPiece>( |
| 948 | args&: L, args: "Returning without deallocating memory or storing the pointer for " |
| 949 | "later deallocation" ); |
| 950 | } |
| 951 | |
| 952 | public: |
| 953 | NoMemOwnershipChangeVisitor(SymbolRef Sym, const MallocChecker *Checker) |
| 954 | : NoOwnershipChangeVisitor(Sym, Checker) {} |
| 955 | |
| 956 | void Profile(llvm::FoldingSetNodeID &ID) const override { |
| 957 | static int Tag = 0; |
| 958 | ID.AddPointer(Ptr: &Tag); |
| 959 | ID.AddPointer(Ptr: Sym); |
| 960 | } |
| 961 | }; |
| 962 | |
| 963 | } // end anonymous namespace |
| 964 | |
| 965 | //===----------------------------------------------------------------------===// |
| 966 | // Definition of MallocBugVisitor. |
| 967 | //===----------------------------------------------------------------------===// |
| 968 | |
| 969 | namespace { |
| 970 | /// The bug visitor which allows us to print extra diagnostics along the |
| 971 | /// BugReport path. For example, showing the allocation site of the leaked |
| 972 | /// region. |
| 973 | class MallocBugVisitor final : public BugReporterVisitor { |
| 974 | protected: |
| 975 | enum NotificationMode { Normal, ReallocationFailed }; |
| 976 | |
| 977 | // The allocated region symbol tracked by the main analysis. |
| 978 | SymbolRef Sym; |
| 979 | |
| 980 | // The mode we are in, i.e. what kind of diagnostics will be emitted. |
| 981 | NotificationMode Mode; |
| 982 | |
| 983 | // A symbol from when the primary region should have been reallocated. |
| 984 | SymbolRef FailedReallocSymbol; |
| 985 | |
| 986 | // A release function stack frame in which memory was released. Used for |
| 987 | // miscellaneous false positive suppression. |
| 988 | const StackFrameContext *ReleaseFunctionLC; |
| 989 | |
| 990 | bool IsLeak; |
| 991 | |
| 992 | public: |
| 993 | MallocBugVisitor(SymbolRef S, bool isLeak = false) |
| 994 | : Sym(S), Mode(Normal), FailedReallocSymbol(nullptr), |
| 995 | ReleaseFunctionLC(nullptr), IsLeak(isLeak) {} |
| 996 | |
| 997 | static void *getTag() { |
| 998 | static int Tag = 0; |
| 999 | return &Tag; |
| 1000 | } |
| 1001 | |
| 1002 | void Profile(llvm::FoldingSetNodeID &ID) const override { |
| 1003 | ID.AddPointer(Ptr: getTag()); |
| 1004 | ID.AddPointer(Ptr: Sym); |
| 1005 | } |
| 1006 | |
| 1007 | /// Did not track -> allocated. Other state (released) -> allocated. |
| 1008 | static inline bool isAllocated(const RefState *RSCurr, const RefState *RSPrev, |
| 1009 | const Stmt *Stmt) { |
| 1010 | return (isa_and_nonnull<CallExpr, CXXNewExpr>(Val: Stmt) && |
| 1011 | (RSCurr && |
| 1012 | (RSCurr->isAllocated() || RSCurr->isAllocatedOfSizeZero())) && |
| 1013 | (!RSPrev || |
| 1014 | !(RSPrev->isAllocated() || RSPrev->isAllocatedOfSizeZero()))); |
| 1015 | } |
| 1016 | |
| 1017 | /// Did not track -> released. Other state (allocated) -> released. |
| 1018 | /// The statement associated with the release might be missing. |
| 1019 | static inline bool isReleased(const RefState *RSCurr, const RefState *RSPrev, |
| 1020 | const Stmt *Stmt) { |
| 1021 | bool IsReleased = |
| 1022 | (RSCurr && RSCurr->isReleased()) && (!RSPrev || !RSPrev->isReleased()); |
| 1023 | assert(!IsReleased || (isa_and_nonnull<CallExpr, CXXDeleteExpr>(Stmt)) || |
| 1024 | (!Stmt && RSCurr->getAllocationFamily().Kind == AF_InnerBuffer)); |
| 1025 | return IsReleased; |
| 1026 | } |
| 1027 | |
| 1028 | /// Did not track -> relinquished. Other state (allocated) -> relinquished. |
| 1029 | static inline bool isRelinquished(const RefState *RSCurr, |
| 1030 | const RefState *RSPrev, const Stmt *Stmt) { |
| 1031 | return ( |
| 1032 | isa_and_nonnull<CallExpr, ObjCMessageExpr, ObjCPropertyRefExpr>(Val: Stmt) && |
| 1033 | (RSCurr && RSCurr->isRelinquished()) && |
| 1034 | (!RSPrev || !RSPrev->isRelinquished())); |
| 1035 | } |
| 1036 | |
| 1037 | /// If the expression is not a call, and the state change is |
| 1038 | /// released -> allocated, it must be the realloc return value |
| 1039 | /// check. If we have to handle more cases here, it might be cleaner just |
| 1040 | /// to track this extra bit in the state itself. |
| 1041 | static inline bool hasReallocFailed(const RefState *RSCurr, |
| 1042 | const RefState *RSPrev, |
| 1043 | const Stmt *Stmt) { |
| 1044 | return ((!isa_and_nonnull<CallExpr>(Val: Stmt)) && |
| 1045 | (RSCurr && |
| 1046 | (RSCurr->isAllocated() || RSCurr->isAllocatedOfSizeZero())) && |
| 1047 | (RSPrev && |
| 1048 | !(RSPrev->isAllocated() || RSPrev->isAllocatedOfSizeZero()))); |
| 1049 | } |
| 1050 | |
| 1051 | PathDiagnosticPieceRef VisitNode(const ExplodedNode *N, |
| 1052 | BugReporterContext &BRC, |
| 1053 | PathSensitiveBugReport &BR) override; |
| 1054 | |
| 1055 | PathDiagnosticPieceRef getEndPath(BugReporterContext &BRC, |
| 1056 | const ExplodedNode *EndPathNode, |
| 1057 | PathSensitiveBugReport &BR) override { |
| 1058 | if (!IsLeak) |
| 1059 | return nullptr; |
| 1060 | |
| 1061 | PathDiagnosticLocation L = BR.getLocation(); |
| 1062 | // Do not add the statement itself as a range in case of leak. |
| 1063 | return std::make_shared<PathDiagnosticEventPiece>(args&: L, args: BR.getDescription(), |
| 1064 | args: false); |
| 1065 | } |
| 1066 | |
| 1067 | private: |
| 1068 | class StackHintGeneratorForReallocationFailed |
| 1069 | : public StackHintGeneratorForSymbol { |
| 1070 | public: |
| 1071 | StackHintGeneratorForReallocationFailed(SymbolRef S, StringRef M) |
| 1072 | : StackHintGeneratorForSymbol(S, M) {} |
| 1073 | |
| 1074 | std::string getMessageForArg(const Expr *ArgE, unsigned ArgIndex) override { |
| 1075 | // Printed parameters start at 1, not 0. |
| 1076 | ++ArgIndex; |
| 1077 | |
| 1078 | SmallString<200> buf; |
| 1079 | llvm::raw_svector_ostream os(buf); |
| 1080 | |
| 1081 | os << "Reallocation of " << ArgIndex << llvm::getOrdinalSuffix(Val: ArgIndex) |
| 1082 | << " parameter failed" ; |
| 1083 | |
| 1084 | return std::string(os.str()); |
| 1085 | } |
| 1086 | |
| 1087 | std::string getMessageForReturn(const CallExpr *CallExpr) override { |
| 1088 | return "Reallocation of returned value failed" ; |
| 1089 | } |
| 1090 | }; |
| 1091 | }; |
| 1092 | } // end anonymous namespace |
| 1093 | |
| 1094 | // A map from the freed symbol to the symbol representing the return value of |
| 1095 | // the free function. |
| 1096 | REGISTER_MAP_WITH_PROGRAMSTATE(FreeReturnValue, SymbolRef, SymbolRef) |
| 1097 | |
| 1098 | namespace { |
| 1099 | class StopTrackingCallback final : public SymbolVisitor { |
| 1100 | ProgramStateRef state; |
| 1101 | |
| 1102 | public: |
| 1103 | StopTrackingCallback(ProgramStateRef st) : state(std::move(st)) {} |
| 1104 | ProgramStateRef getState() const { return state; } |
| 1105 | |
| 1106 | bool VisitSymbol(SymbolRef sym) override { |
| 1107 | state = state->remove<RegionState>(K: sym); |
| 1108 | return true; |
| 1109 | } |
| 1110 | }; |
| 1111 | |
| 1112 | /// EscapeTrackedCallback - A SymbolVisitor that marks allocated symbols as |
| 1113 | /// escaped. |
| 1114 | /// |
| 1115 | /// This visitor is used to suppress false positive leak reports when smart |
| 1116 | /// pointers are nested in temporary objects passed by value to functions. When |
| 1117 | /// the analyzer can't see the destructor calls for temporary objects, it may |
| 1118 | /// incorrectly report leaks for memory that will be properly freed by the smart |
| 1119 | /// pointer destructors. |
| 1120 | /// |
| 1121 | /// The visitor traverses reachable symbols from a given set of memory regions |
| 1122 | /// (typically smart pointer field regions) and marks any allocated symbols as |
| 1123 | /// escaped. Escaped symbols are not reported as leaks by checkDeadSymbols. |
| 1124 | class EscapeTrackedCallback final : public SymbolVisitor { |
| 1125 | ProgramStateRef State; |
| 1126 | |
| 1127 | explicit EscapeTrackedCallback(ProgramStateRef S) : State(std::move(S)) {} |
| 1128 | |
| 1129 | public: |
| 1130 | bool VisitSymbol(SymbolRef Sym) override { |
| 1131 | if (const RefState *RS = State->get<RegionState>(key: Sym)) { |
| 1132 | if (RS->isAllocated() || RS->isAllocatedOfSizeZero()) { |
| 1133 | State = State->set<RegionState>(K: Sym, E: RefState::getEscaped(RS)); |
| 1134 | } |
| 1135 | } |
| 1136 | return true; |
| 1137 | } |
| 1138 | |
| 1139 | /// Escape tracked regions reachable from the given roots. |
| 1140 | static ProgramStateRef |
| 1141 | EscapeTrackedRegionsReachableFrom(ArrayRef<const MemRegion *> Roots, |
| 1142 | ProgramStateRef State) { |
| 1143 | if (Roots.empty()) |
| 1144 | return State; |
| 1145 | |
| 1146 | // scanReachableSymbols is expensive, so we use a single visitor for all |
| 1147 | // roots |
| 1148 | SmallVector<const MemRegion *, 10> Regions; |
| 1149 | EscapeTrackedCallback Visitor(State); |
| 1150 | for (const MemRegion *R : Roots) { |
| 1151 | Regions.push_back(Elt: R); |
| 1152 | } |
| 1153 | State->scanReachableSymbols(Reachable: Regions, visitor&: Visitor); |
| 1154 | return Visitor.State; |
| 1155 | } |
| 1156 | |
| 1157 | friend class SymbolVisitor; |
| 1158 | }; |
| 1159 | } // end anonymous namespace |
| 1160 | |
| 1161 | static bool isStandardNew(const FunctionDecl *FD) { |
| 1162 | if (!FD) |
| 1163 | return false; |
| 1164 | |
| 1165 | OverloadedOperatorKind Kind = FD->getOverloadedOperator(); |
| 1166 | if (Kind != OO_New && Kind != OO_Array_New) |
| 1167 | return false; |
| 1168 | |
| 1169 | // This is standard if and only if it's not defined in a user file. |
| 1170 | SourceLocation L = FD->getLocation(); |
| 1171 | // If the header for operator delete is not included, it's still defined |
| 1172 | // in an invalid source location. Check to make sure we don't crash. |
| 1173 | return !L.isValid() || |
| 1174 | FD->getASTContext().getSourceManager().isInSystemHeader(Loc: L); |
| 1175 | } |
| 1176 | |
| 1177 | static bool isStandardDelete(const FunctionDecl *FD) { |
| 1178 | if (!FD) |
| 1179 | return false; |
| 1180 | |
| 1181 | OverloadedOperatorKind Kind = FD->getOverloadedOperator(); |
| 1182 | if (Kind != OO_Delete && Kind != OO_Array_Delete) |
| 1183 | return false; |
| 1184 | |
| 1185 | bool HasBody = FD->hasBody(); // Prefer using the definition. |
| 1186 | |
| 1187 | // This is standard if and only if it's not defined in a user file. |
| 1188 | SourceLocation L = FD->getLocation(); |
| 1189 | |
| 1190 | // If the header for operator delete is not included, it's still defined |
| 1191 | // in an invalid source location. Check to make sure we don't crash. |
| 1192 | const auto &SM = FD->getASTContext().getSourceManager(); |
| 1193 | return L.isInvalid() || (!HasBody && SM.isInSystemHeader(Loc: L)); |
| 1194 | } |
| 1195 | |
| 1196 | //===----------------------------------------------------------------------===// |
| 1197 | // Methods of MallocChecker and MallocBugVisitor. |
| 1198 | //===----------------------------------------------------------------------===// |
| 1199 | |
| 1200 | bool MallocChecker::isFreeingOwnershipAttrCall(const CallEvent &Call) { |
| 1201 | const auto *Func = dyn_cast_or_null<FunctionDecl>(Val: Call.getDecl()); |
| 1202 | |
| 1203 | return Func && isFreeingOwnershipAttrCall(Func); |
| 1204 | } |
| 1205 | |
| 1206 | bool MallocChecker::isFreeingOwnershipAttrCall(const FunctionDecl *Func) { |
| 1207 | if (Func->hasAttrs()) { |
| 1208 | for (const auto *I : Func->specific_attrs<OwnershipAttr>()) { |
| 1209 | OwnershipAttr::OwnershipKind OwnKind = I->getOwnKind(); |
| 1210 | if (OwnKind == OwnershipAttr::Takes || OwnKind == OwnershipAttr::Holds) |
| 1211 | return true; |
| 1212 | } |
| 1213 | } |
| 1214 | return false; |
| 1215 | } |
| 1216 | |
| 1217 | bool MallocChecker::isFreeingCall(const CallEvent &Call) const { |
| 1218 | if (FreeingMemFnMap.lookup(Call) || ReallocatingMemFnMap.lookup(Call)) |
| 1219 | return true; |
| 1220 | |
| 1221 | return isFreeingOwnershipAttrCall(Call); |
| 1222 | } |
| 1223 | |
| 1224 | bool MallocChecker::isAllocatingOwnershipAttrCall(const CallEvent &Call) { |
| 1225 | const auto *Func = dyn_cast_or_null<FunctionDecl>(Val: Call.getDecl()); |
| 1226 | |
| 1227 | return Func && isAllocatingOwnershipAttrCall(Func); |
| 1228 | } |
| 1229 | |
| 1230 | bool MallocChecker::isAllocatingOwnershipAttrCall(const FunctionDecl *Func) { |
| 1231 | for (const auto *I : Func->specific_attrs<OwnershipAttr>()) { |
| 1232 | if (I->getOwnKind() == OwnershipAttr::Returns) |
| 1233 | return true; |
| 1234 | } |
| 1235 | |
| 1236 | return false; |
| 1237 | } |
| 1238 | |
| 1239 | bool MallocChecker::isMemCall(const CallEvent &Call) const { |
| 1240 | if (FreeingMemFnMap.lookup(Call) || AllocatingMemFnMap.lookup(Call) || |
| 1241 | AllocaMemFnMap.lookup(Call) || ReallocatingMemFnMap.lookup(Call)) |
| 1242 | return true; |
| 1243 | |
| 1244 | if (!ShouldIncludeOwnershipAnnotatedFunctions) |
| 1245 | return false; |
| 1246 | |
| 1247 | const auto *Func = dyn_cast<FunctionDecl>(Val: Call.getDecl()); |
| 1248 | return Func && Func->hasAttr<OwnershipAttr>(); |
| 1249 | } |
| 1250 | |
| 1251 | std::optional<ProgramStateRef> |
| 1252 | MallocChecker::performKernelMalloc(const CallEvent &Call, CheckerContext &C, |
| 1253 | const ProgramStateRef &State) const { |
| 1254 | // 3-argument malloc(), as commonly used in {Free,Net,Open}BSD Kernels: |
| 1255 | // |
| 1256 | // void *malloc(unsigned long size, struct malloc_type *mtp, int flags); |
| 1257 | // |
| 1258 | // One of the possible flags is M_ZERO, which means 'give me back an |
| 1259 | // allocation which is already zeroed', like calloc. |
| 1260 | |
| 1261 | // 2-argument kmalloc(), as used in the Linux kernel: |
| 1262 | // |
| 1263 | // void *kmalloc(size_t size, gfp_t flags); |
| 1264 | // |
| 1265 | // Has the similar flag value __GFP_ZERO. |
| 1266 | |
| 1267 | // This logic is largely cloned from O_CREAT in UnixAPIChecker, maybe some |
| 1268 | // code could be shared. |
| 1269 | |
| 1270 | ASTContext &Ctx = C.getASTContext(); |
| 1271 | llvm::Triple::OSType OS = Ctx.getTargetInfo().getTriple().getOS(); |
| 1272 | |
| 1273 | if (!KernelZeroFlagVal) { |
| 1274 | switch (OS) { |
| 1275 | case llvm::Triple::FreeBSD: |
| 1276 | KernelZeroFlagVal = 0x0100; |
| 1277 | break; |
| 1278 | case llvm::Triple::NetBSD: |
| 1279 | KernelZeroFlagVal = 0x0002; |
| 1280 | break; |
| 1281 | case llvm::Triple::OpenBSD: |
| 1282 | KernelZeroFlagVal = 0x0008; |
| 1283 | break; |
| 1284 | case llvm::Triple::Linux: |
| 1285 | // __GFP_ZERO |
| 1286 | KernelZeroFlagVal = 0x8000; |
| 1287 | break; |
| 1288 | default: |
| 1289 | // FIXME: We need a more general way of getting the M_ZERO value. |
| 1290 | // See also: O_CREAT in UnixAPIChecker.cpp. |
| 1291 | |
| 1292 | // Fall back to normal malloc behavior on platforms where we don't |
| 1293 | // know M_ZERO. |
| 1294 | return std::nullopt; |
| 1295 | } |
| 1296 | } |
| 1297 | |
| 1298 | // We treat the last argument as the flags argument, and callers fall-back to |
| 1299 | // normal malloc on a None return. This works for the FreeBSD kernel malloc |
| 1300 | // as well as Linux kmalloc. |
| 1301 | if (Call.getNumArgs() < 2) |
| 1302 | return std::nullopt; |
| 1303 | |
| 1304 | const Expr *FlagsEx = Call.getArgExpr(Index: Call.getNumArgs() - 1); |
| 1305 | const SVal V = C.getSVal(S: FlagsEx); |
| 1306 | if (!isa<NonLoc>(Val: V)) { |
| 1307 | // The case where 'V' can be a location can only be due to a bad header, |
| 1308 | // so in this case bail out. |
| 1309 | return std::nullopt; |
| 1310 | } |
| 1311 | |
| 1312 | NonLoc Flags = V.castAs<NonLoc>(); |
| 1313 | NonLoc ZeroFlag = C.getSValBuilder() |
| 1314 | .makeIntVal(integer: *KernelZeroFlagVal, type: FlagsEx->getType()) |
| 1315 | .castAs<NonLoc>(); |
| 1316 | SVal MaskedFlagsUC = C.getSValBuilder().evalBinOpNN(state: State, op: BO_And, |
| 1317 | lhs: Flags, rhs: ZeroFlag, |
| 1318 | resultTy: FlagsEx->getType()); |
| 1319 | if (MaskedFlagsUC.isUnknownOrUndef()) |
| 1320 | return std::nullopt; |
| 1321 | DefinedSVal MaskedFlags = MaskedFlagsUC.castAs<DefinedSVal>(); |
| 1322 | |
| 1323 | // Check if maskedFlags is non-zero. |
| 1324 | ProgramStateRef TrueState, FalseState; |
| 1325 | std::tie(args&: TrueState, args&: FalseState) = State->assume(Cond: MaskedFlags); |
| 1326 | |
| 1327 | // If M_ZERO is set, treat this like calloc (initialized). |
| 1328 | if (TrueState && !FalseState) { |
| 1329 | SVal ZeroVal = C.getSValBuilder().makeZeroVal(type: Ctx.CharTy); |
| 1330 | return MallocMemAux(C, Call, SizeEx: Call.getArgExpr(Index: 0), Init: ZeroVal, State: TrueState, |
| 1331 | Family: AllocationFamily(AF_Malloc)); |
| 1332 | } |
| 1333 | |
| 1334 | return std::nullopt; |
| 1335 | } |
| 1336 | |
| 1337 | SVal MallocChecker::evalMulForBufferSize(CheckerContext &C, const Expr *Blocks, |
| 1338 | const Expr *BlockBytes) { |
| 1339 | SValBuilder &SB = C.getSValBuilder(); |
| 1340 | SVal BlocksVal = C.getSVal(S: Blocks); |
| 1341 | SVal BlockBytesVal = C.getSVal(S: BlockBytes); |
| 1342 | ProgramStateRef State = C.getState(); |
| 1343 | SVal TotalSize = SB.evalBinOp(state: State, op: BO_Mul, lhs: BlocksVal, rhs: BlockBytesVal, |
| 1344 | type: SB.getContext().getCanonicalSizeType()); |
| 1345 | return TotalSize; |
| 1346 | } |
| 1347 | |
| 1348 | void MallocChecker::checkBasicAlloc(ProgramStateRef State, |
| 1349 | const CallEvent &Call, |
| 1350 | CheckerContext &C) const { |
| 1351 | State = MallocMemAux(C, Call, SizeEx: Call.getArgExpr(Index: 0), Init: UndefinedVal(), State, |
| 1352 | Family: AllocationFamily(AF_Malloc)); |
| 1353 | State = ProcessZeroAllocCheck(C, Call, IndexOfSizeArg: 0, State); |
| 1354 | C.addTransition(State); |
| 1355 | } |
| 1356 | |
| 1357 | void MallocChecker::checkKernelMalloc(ProgramStateRef State, |
| 1358 | const CallEvent &Call, |
| 1359 | CheckerContext &C) const { |
| 1360 | std::optional<ProgramStateRef> MaybeState = |
| 1361 | performKernelMalloc(Call, C, State); |
| 1362 | if (MaybeState) |
| 1363 | State = *MaybeState; |
| 1364 | else |
| 1365 | State = MallocMemAux(C, Call, SizeEx: Call.getArgExpr(Index: 0), Init: UndefinedVal(), State, |
| 1366 | Family: AllocationFamily(AF_Malloc)); |
| 1367 | C.addTransition(State); |
| 1368 | } |
| 1369 | |
| 1370 | static bool isStandardRealloc(const CallEvent &Call) { |
| 1371 | const FunctionDecl *FD = dyn_cast<FunctionDecl>(Val: Call.getDecl()); |
| 1372 | assert(FD); |
| 1373 | ASTContext &AC = FD->getASTContext(); |
| 1374 | return AC.hasSameType(T1: FD->getDeclaredReturnType(), T2: AC.VoidPtrTy) && |
| 1375 | AC.hasSameType(T1: FD->getParamDecl(i: 0)->getType(), T2: AC.VoidPtrTy) && |
| 1376 | AC.hasSameType(T1: FD->getParamDecl(i: 1)->getType(), T2: AC.getSizeType()); |
| 1377 | } |
| 1378 | |
| 1379 | static bool isGRealloc(const CallEvent &Call) { |
| 1380 | const FunctionDecl *FD = dyn_cast<FunctionDecl>(Val: Call.getDecl()); |
| 1381 | assert(FD); |
| 1382 | ASTContext &AC = FD->getASTContext(); |
| 1383 | |
| 1384 | return AC.hasSameType(T1: FD->getDeclaredReturnType(), T2: AC.VoidPtrTy) && |
| 1385 | AC.hasSameType(T1: FD->getParamDecl(i: 0)->getType(), T2: AC.VoidPtrTy) && |
| 1386 | AC.hasSameType(T1: FD->getParamDecl(i: 1)->getType(), T2: AC.UnsignedLongTy); |
| 1387 | } |
| 1388 | |
| 1389 | void MallocChecker::checkRealloc(ProgramStateRef State, const CallEvent &Call, |
| 1390 | CheckerContext &C, |
| 1391 | bool ShouldFreeOnFail) const { |
| 1392 | // Ignore calls to functions whose type does not match the expected type of |
| 1393 | // either the standard realloc or g_realloc from GLib. |
| 1394 | // FIXME: Should we perform this kind of checking consistently for each |
| 1395 | // function? If yes, then perhaps extend the `CallDescription` interface to |
| 1396 | // handle this. |
| 1397 | if (!isStandardRealloc(Call) && !isGRealloc(Call)) |
| 1398 | return; |
| 1399 | |
| 1400 | State = ReallocMemAux(C, Call, ShouldFreeOnFail, State, |
| 1401 | Family: AllocationFamily(AF_Malloc)); |
| 1402 | State = ProcessZeroAllocCheck(C, Call, IndexOfSizeArg: 1, State); |
| 1403 | C.addTransition(State); |
| 1404 | } |
| 1405 | |
| 1406 | void MallocChecker::checkCalloc(ProgramStateRef State, const CallEvent &Call, |
| 1407 | CheckerContext &C) const { |
| 1408 | State = CallocMem(C, Call, State); |
| 1409 | State = ProcessZeroAllocCheck(C, Call, IndexOfSizeArg: 0, State); |
| 1410 | State = ProcessZeroAllocCheck(C, Call, IndexOfSizeArg: 1, State); |
| 1411 | C.addTransition(State); |
| 1412 | } |
| 1413 | |
| 1414 | void MallocChecker::checkFree(ProgramStateRef State, const CallEvent &Call, |
| 1415 | CheckerContext &C) const { |
| 1416 | bool IsKnownToBeAllocatedMemory = false; |
| 1417 | if (suppressDeallocationsInSuspiciousContexts(Call, C)) |
| 1418 | return; |
| 1419 | State = FreeMemAux(C, Call, State, Num: 0, Hold: false, IsKnownToBeAllocated&: IsKnownToBeAllocatedMemory, |
| 1420 | Family: AllocationFamily(AF_Malloc)); |
| 1421 | C.addTransition(State); |
| 1422 | } |
| 1423 | |
| 1424 | void MallocChecker::checkAlloca(ProgramStateRef State, const CallEvent &Call, |
| 1425 | CheckerContext &C) const { |
| 1426 | State = MallocMemAux(C, Call, SizeEx: Call.getArgExpr(Index: 0), Init: UndefinedVal(), State, |
| 1427 | Family: AllocationFamily(AF_Alloca)); |
| 1428 | State = ProcessZeroAllocCheck(C, Call, IndexOfSizeArg: 0, State); |
| 1429 | C.addTransition(State); |
| 1430 | } |
| 1431 | |
| 1432 | void MallocChecker::checkStrdup(ProgramStateRef State, const CallEvent &Call, |
| 1433 | CheckerContext &C) const { |
| 1434 | const auto *CE = dyn_cast_or_null<CallExpr>(Val: Call.getOriginExpr()); |
| 1435 | if (!CE) |
| 1436 | return; |
| 1437 | State = MallocMemAux(C, Call, Size: UnknownVal(), Init: UnknownVal(), State, |
| 1438 | Family: AllocationFamily(AF_Malloc)); |
| 1439 | |
| 1440 | C.addTransition(State); |
| 1441 | } |
| 1442 | |
| 1443 | void MallocChecker::checkIfNameIndex(ProgramStateRef State, |
| 1444 | const CallEvent &Call, |
| 1445 | CheckerContext &C) const { |
| 1446 | // Should we model this differently? We can allocate a fixed number of |
| 1447 | // elements with zeros in the last one. |
| 1448 | State = MallocMemAux(C, Call, Size: UnknownVal(), Init: UnknownVal(), State, |
| 1449 | Family: AllocationFamily(AF_IfNameIndex)); |
| 1450 | |
| 1451 | C.addTransition(State); |
| 1452 | } |
| 1453 | |
| 1454 | void MallocChecker::checkIfFreeNameIndex(ProgramStateRef State, |
| 1455 | const CallEvent &Call, |
| 1456 | CheckerContext &C) const { |
| 1457 | bool IsKnownToBeAllocatedMemory = false; |
| 1458 | State = FreeMemAux(C, Call, State, Num: 0, Hold: false, IsKnownToBeAllocated&: IsKnownToBeAllocatedMemory, |
| 1459 | Family: AllocationFamily(AF_IfNameIndex)); |
| 1460 | C.addTransition(State); |
| 1461 | } |
| 1462 | |
| 1463 | static const Expr *getPlacementNewBufferArg(const CallExpr *CE, |
| 1464 | const FunctionDecl *FD) { |
| 1465 | // Checking for signature: |
| 1466 | // void* operator new ( std::size_t count, void* ptr ); |
| 1467 | // void* operator new[]( std::size_t count, void* ptr ); |
| 1468 | if (CE->getNumArgs() != 2 || (FD->getOverloadedOperator() != OO_New && |
| 1469 | FD->getOverloadedOperator() != OO_Array_New)) |
| 1470 | return nullptr; |
| 1471 | auto BuffType = FD->getParamDecl(i: 1)->getType(); |
| 1472 | if (BuffType.isNull() || !BuffType->isVoidPointerType()) |
| 1473 | return nullptr; |
| 1474 | return CE->getArg(Arg: 1); |
| 1475 | } |
| 1476 | |
| 1477 | void MallocChecker::checkCXXNewOrCXXDelete(ProgramStateRef State, |
| 1478 | const CallEvent &Call, |
| 1479 | CheckerContext &C) const { |
| 1480 | bool IsKnownToBeAllocatedMemory = false; |
| 1481 | const auto *CE = dyn_cast_or_null<CallExpr>(Val: Call.getOriginExpr()); |
| 1482 | if (!CE) |
| 1483 | return; |
| 1484 | |
| 1485 | assert(isStandardNewDelete(Call)); |
| 1486 | |
| 1487 | // Process direct calls to operator new/new[]/delete/delete[] functions |
| 1488 | // as distinct from new/new[]/delete/delete[] expressions that are |
| 1489 | // processed by the checkPostStmt callbacks for CXXNewExpr and |
| 1490 | // CXXDeleteExpr. |
| 1491 | const FunctionDecl *FD = C.getCalleeDecl(CE); |
| 1492 | if (const auto *BufArg = getPlacementNewBufferArg(CE, FD)) { |
| 1493 | // Placement new does not allocate memory |
| 1494 | auto RetVal = State->getSVal(Ex: BufArg, LCtx: Call.getLocationContext()); |
| 1495 | State = State->BindExpr(S: CE, LCtx: C.getLocationContext(), V: RetVal); |
| 1496 | C.addTransition(State); |
| 1497 | return; |
| 1498 | } |
| 1499 | |
| 1500 | switch (FD->getOverloadedOperator()) { |
| 1501 | case OO_New: |
| 1502 | State = MallocMemAux(C, Call, SizeEx: CE->getArg(Arg: 0), Init: UndefinedVal(), State, |
| 1503 | Family: AllocationFamily(AF_CXXNew)); |
| 1504 | State = ProcessZeroAllocCheck(C, Call, IndexOfSizeArg: 0, State); |
| 1505 | break; |
| 1506 | case OO_Array_New: |
| 1507 | State = MallocMemAux(C, Call, SizeEx: CE->getArg(Arg: 0), Init: UndefinedVal(), State, |
| 1508 | Family: AllocationFamily(AF_CXXNewArray)); |
| 1509 | State = ProcessZeroAllocCheck(C, Call, IndexOfSizeArg: 0, State); |
| 1510 | break; |
| 1511 | case OO_Delete: |
| 1512 | State = FreeMemAux(C, Call, State, Num: 0, Hold: false, IsKnownToBeAllocated&: IsKnownToBeAllocatedMemory, |
| 1513 | Family: AllocationFamily(AF_CXXNew)); |
| 1514 | break; |
| 1515 | case OO_Array_Delete: |
| 1516 | State = FreeMemAux(C, Call, State, Num: 0, Hold: false, IsKnownToBeAllocated&: IsKnownToBeAllocatedMemory, |
| 1517 | Family: AllocationFamily(AF_CXXNewArray)); |
| 1518 | break; |
| 1519 | default: |
| 1520 | assert(false && "not a new/delete operator" ); |
| 1521 | return; |
| 1522 | } |
| 1523 | |
| 1524 | C.addTransition(State); |
| 1525 | } |
| 1526 | |
| 1527 | void MallocChecker::checkGMalloc0(ProgramStateRef State, const CallEvent &Call, |
| 1528 | CheckerContext &C) const { |
| 1529 | SValBuilder &svalBuilder = C.getSValBuilder(); |
| 1530 | SVal zeroVal = svalBuilder.makeZeroVal(type: svalBuilder.getContext().CharTy); |
| 1531 | State = MallocMemAux(C, Call, SizeEx: Call.getArgExpr(Index: 0), Init: zeroVal, State, |
| 1532 | Family: AllocationFamily(AF_Malloc)); |
| 1533 | State = ProcessZeroAllocCheck(C, Call, IndexOfSizeArg: 0, State); |
| 1534 | C.addTransition(State); |
| 1535 | } |
| 1536 | |
| 1537 | void MallocChecker::checkGMemdup(ProgramStateRef State, const CallEvent &Call, |
| 1538 | CheckerContext &C) const { |
| 1539 | State = MallocMemAux(C, Call, SizeEx: Call.getArgExpr(Index: 1), Init: UnknownVal(), State, |
| 1540 | Family: AllocationFamily(AF_Malloc)); |
| 1541 | State = ProcessZeroAllocCheck(C, Call, IndexOfSizeArg: 1, State); |
| 1542 | C.addTransition(State); |
| 1543 | } |
| 1544 | |
| 1545 | void MallocChecker::checkGMallocN(ProgramStateRef State, const CallEvent &Call, |
| 1546 | CheckerContext &C) const { |
| 1547 | SVal Init = UndefinedVal(); |
| 1548 | SVal TotalSize = evalMulForBufferSize(C, Blocks: Call.getArgExpr(Index: 0), BlockBytes: Call.getArgExpr(Index: 1)); |
| 1549 | State = MallocMemAux(C, Call, Size: TotalSize, Init, State, |
| 1550 | Family: AllocationFamily(AF_Malloc)); |
| 1551 | State = ProcessZeroAllocCheck(C, Call, IndexOfSizeArg: 0, State); |
| 1552 | State = ProcessZeroAllocCheck(C, Call, IndexOfSizeArg: 1, State); |
| 1553 | C.addTransition(State); |
| 1554 | } |
| 1555 | |
| 1556 | void MallocChecker::checkGMallocN0(ProgramStateRef State, const CallEvent &Call, |
| 1557 | CheckerContext &C) const { |
| 1558 | SValBuilder &SB = C.getSValBuilder(); |
| 1559 | SVal Init = SB.makeZeroVal(type: SB.getContext().CharTy); |
| 1560 | SVal TotalSize = evalMulForBufferSize(C, Blocks: Call.getArgExpr(Index: 0), BlockBytes: Call.getArgExpr(Index: 1)); |
| 1561 | State = MallocMemAux(C, Call, Size: TotalSize, Init, State, |
| 1562 | Family: AllocationFamily(AF_Malloc)); |
| 1563 | State = ProcessZeroAllocCheck(C, Call, IndexOfSizeArg: 0, State); |
| 1564 | State = ProcessZeroAllocCheck(C, Call, IndexOfSizeArg: 1, State); |
| 1565 | C.addTransition(State); |
| 1566 | } |
| 1567 | |
| 1568 | static bool isFromStdNamespace(const CallEvent &Call) { |
| 1569 | const Decl *FD = Call.getDecl(); |
| 1570 | assert(FD && "a CallDescription cannot match a call without a Decl" ); |
| 1571 | return FD->isInStdNamespace(); |
| 1572 | } |
| 1573 | |
| 1574 | void MallocChecker::preGetDelimOrGetLine(ProgramStateRef State, |
| 1575 | const CallEvent &Call, |
| 1576 | CheckerContext &C) const { |
| 1577 | // Discard calls to the C++ standard library function std::getline(), which |
| 1578 | // is completely unrelated to the POSIX getline() that we're checking. |
| 1579 | if (isFromStdNamespace(Call)) |
| 1580 | return; |
| 1581 | |
| 1582 | const auto LinePtr = getPointeeVal(PtrSVal: Call.getArgSVal(Index: 0), State); |
| 1583 | if (!LinePtr) |
| 1584 | return; |
| 1585 | |
| 1586 | // FreeMemAux takes IsKnownToBeAllocated as an output parameter, and it will |
| 1587 | // be true after the call if the symbol was registered by this checker. |
| 1588 | // We do not need this value here, as FreeMemAux will take care |
| 1589 | // of reporting any violation of the preconditions. |
| 1590 | bool IsKnownToBeAllocated = false; |
| 1591 | State = FreeMemAux(C, ArgExpr: Call.getArgExpr(Index: 0), Call, State, Hold: false, |
| 1592 | IsKnownToBeAllocated, Family: AllocationFamily(AF_Malloc), ReturnsNullOnFailure: false, |
| 1593 | ArgValOpt: LinePtr); |
| 1594 | if (State) |
| 1595 | C.addTransition(State); |
| 1596 | } |
| 1597 | |
| 1598 | void MallocChecker::checkGetDelimOrGetLine(ProgramStateRef State, |
| 1599 | const CallEvent &Call, |
| 1600 | CheckerContext &C) const { |
| 1601 | // Discard calls to the C++ standard library function std::getline(), which |
| 1602 | // is completely unrelated to the POSIX getline() that we're checking. |
| 1603 | if (isFromStdNamespace(Call)) |
| 1604 | return; |
| 1605 | |
| 1606 | // Handle the post-conditions of getline and getdelim: |
| 1607 | // Register the new conjured value as an allocated buffer. |
| 1608 | const CallExpr *CE = dyn_cast_or_null<CallExpr>(Val: Call.getOriginExpr()); |
| 1609 | if (!CE) |
| 1610 | return; |
| 1611 | |
| 1612 | const auto LinePtrOpt = getPointeeVal(PtrSVal: Call.getArgSVal(Index: 0), State); |
| 1613 | const auto SizeOpt = getPointeeVal(PtrSVal: Call.getArgSVal(Index: 1), State); |
| 1614 | if (!LinePtrOpt || !SizeOpt || LinePtrOpt->isUnknownOrUndef() || |
| 1615 | SizeOpt->isUnknownOrUndef()) |
| 1616 | return; |
| 1617 | |
| 1618 | const auto LinePtr = LinePtrOpt->getAs<DefinedSVal>(); |
| 1619 | const auto Size = SizeOpt->getAs<DefinedSVal>(); |
| 1620 | const MemRegion *LinePtrReg = LinePtr->getAsRegion(); |
| 1621 | if (!LinePtrReg) |
| 1622 | return; |
| 1623 | |
| 1624 | State = setDynamicExtent(State, MR: LinePtrReg, Extent: *Size); |
| 1625 | C.addTransition(State: MallocUpdateRefState(C, E: CE, State, |
| 1626 | Family: AllocationFamily(AF_Malloc), RetVal: *LinePtr)); |
| 1627 | } |
| 1628 | |
| 1629 | void MallocChecker::checkReallocN(ProgramStateRef State, const CallEvent &Call, |
| 1630 | CheckerContext &C) const { |
| 1631 | State = ReallocMemAux(C, Call, /*ShouldFreeOnFail=*/false, State, |
| 1632 | Family: AllocationFamily(AF_Malloc), |
| 1633 | /*SuffixWithN=*/true); |
| 1634 | State = ProcessZeroAllocCheck(C, Call, IndexOfSizeArg: 1, State); |
| 1635 | State = ProcessZeroAllocCheck(C, Call, IndexOfSizeArg: 2, State); |
| 1636 | C.addTransition(State); |
| 1637 | } |
| 1638 | |
| 1639 | void MallocChecker::checkOwnershipAttr(ProgramStateRef State, |
| 1640 | const CallEvent &Call, |
| 1641 | CheckerContext &C) const { |
| 1642 | const auto *CE = dyn_cast_or_null<CallExpr>(Val: Call.getOriginExpr()); |
| 1643 | if (!CE) |
| 1644 | return; |
| 1645 | const FunctionDecl *FD = C.getCalleeDecl(CE); |
| 1646 | if (!FD) |
| 1647 | return; |
| 1648 | if (ShouldIncludeOwnershipAnnotatedFunctions || |
| 1649 | MismatchedDeallocatorChecker.isEnabled()) { |
| 1650 | // Check all the attributes, if there are any. |
| 1651 | // There can be multiple of these attributes. |
| 1652 | if (FD->hasAttrs()) |
| 1653 | for (const auto *I : FD->specific_attrs<OwnershipAttr>()) { |
| 1654 | switch (I->getOwnKind()) { |
| 1655 | case OwnershipAttr::Returns: |
| 1656 | State = MallocMemReturnsAttr(C, Call, Att: I, State); |
| 1657 | break; |
| 1658 | case OwnershipAttr::Takes: |
| 1659 | case OwnershipAttr::Holds: |
| 1660 | State = FreeMemAttr(C, Call, Att: I, State); |
| 1661 | break; |
| 1662 | } |
| 1663 | } |
| 1664 | } |
| 1665 | C.addTransition(State); |
| 1666 | } |
| 1667 | |
| 1668 | bool MallocChecker::evalCall(const CallEvent &Call, CheckerContext &C) const { |
| 1669 | if (!Call.getOriginExpr()) |
| 1670 | return false; |
| 1671 | |
| 1672 | ProgramStateRef State = C.getState(); |
| 1673 | |
| 1674 | if (const CheckFn *Callback = FreeingMemFnMap.lookup(Call)) { |
| 1675 | (*Callback)(this, State, Call, C); |
| 1676 | return true; |
| 1677 | } |
| 1678 | |
| 1679 | if (const CheckFn *Callback = AllocatingMemFnMap.lookup(Call)) { |
| 1680 | State = MallocBindRetVal(C, Call, State, isAlloca: false); |
| 1681 | (*Callback)(this, State, Call, C); |
| 1682 | return true; |
| 1683 | } |
| 1684 | |
| 1685 | if (const CheckFn *Callback = ReallocatingMemFnMap.lookup(Call)) { |
| 1686 | State = MallocBindRetVal(C, Call, State, isAlloca: false); |
| 1687 | (*Callback)(this, State, Call, C); |
| 1688 | return true; |
| 1689 | } |
| 1690 | |
| 1691 | if (isStandardNew(Call)) { |
| 1692 | State = MallocBindRetVal(C, Call, State, isAlloca: false); |
| 1693 | checkCXXNewOrCXXDelete(State, Call, C); |
| 1694 | return true; |
| 1695 | } |
| 1696 | |
| 1697 | if (isStandardDelete(Call)) { |
| 1698 | checkCXXNewOrCXXDelete(State, Call, C); |
| 1699 | return true; |
| 1700 | } |
| 1701 | |
| 1702 | if (const CheckFn *Callback = AllocaMemFnMap.lookup(Call)) { |
| 1703 | State = MallocBindRetVal(C, Call, State, isAlloca: true); |
| 1704 | (*Callback)(this, State, Call, C); |
| 1705 | return true; |
| 1706 | } |
| 1707 | |
| 1708 | if (isFreeingOwnershipAttrCall(Call)) { |
| 1709 | checkOwnershipAttr(State, Call, C); |
| 1710 | return true; |
| 1711 | } |
| 1712 | |
| 1713 | if (isAllocatingOwnershipAttrCall(Call)) { |
| 1714 | State = MallocBindRetVal(C, Call, State, isAlloca: false); |
| 1715 | checkOwnershipAttr(State, Call, C); |
| 1716 | return true; |
| 1717 | } |
| 1718 | |
| 1719 | return false; |
| 1720 | } |
| 1721 | |
| 1722 | // Performs a 0-sized allocations check. |
| 1723 | ProgramStateRef MallocChecker::ProcessZeroAllocCheck( |
| 1724 | CheckerContext &C, const CallEvent &Call, const unsigned IndexOfSizeArg, |
| 1725 | ProgramStateRef State, std::optional<SVal> RetVal) { |
| 1726 | if (!State) |
| 1727 | return nullptr; |
| 1728 | |
| 1729 | const Expr *Arg = nullptr; |
| 1730 | |
| 1731 | if (const CallExpr *CE = dyn_cast<CallExpr>(Val: Call.getOriginExpr())) { |
| 1732 | Arg = CE->getArg(Arg: IndexOfSizeArg); |
| 1733 | } else if (const CXXNewExpr *NE = |
| 1734 | dyn_cast<CXXNewExpr>(Val: Call.getOriginExpr())) { |
| 1735 | if (NE->isArray()) { |
| 1736 | Arg = *NE->getArraySize(); |
| 1737 | } else { |
| 1738 | return State; |
| 1739 | } |
| 1740 | } else { |
| 1741 | assert(false && "not a CallExpr or CXXNewExpr" ); |
| 1742 | return nullptr; |
| 1743 | } |
| 1744 | |
| 1745 | if (!RetVal) |
| 1746 | RetVal = State->getSVal(Ex: Call.getOriginExpr(), LCtx: C.getLocationContext()); |
| 1747 | |
| 1748 | assert(Arg); |
| 1749 | |
| 1750 | auto DefArgVal = |
| 1751 | State->getSVal(Ex: Arg, LCtx: Call.getLocationContext()).getAs<DefinedSVal>(); |
| 1752 | |
| 1753 | if (!DefArgVal) |
| 1754 | return State; |
| 1755 | |
| 1756 | // Check if the allocation size is 0. |
| 1757 | ProgramStateRef TrueState, FalseState; |
| 1758 | SValBuilder &SvalBuilder = State->getStateManager().getSValBuilder(); |
| 1759 | DefinedSVal Zero = |
| 1760 | SvalBuilder.makeZeroVal(type: Arg->getType()).castAs<DefinedSVal>(); |
| 1761 | |
| 1762 | std::tie(args&: TrueState, args&: FalseState) = |
| 1763 | State->assume(Cond: SvalBuilder.evalEQ(state: State, lhs: *DefArgVal, rhs: Zero)); |
| 1764 | |
| 1765 | if (TrueState && !FalseState) { |
| 1766 | SymbolRef Sym = RetVal->getAsLocSymbol(); |
| 1767 | if (!Sym) |
| 1768 | return State; |
| 1769 | |
| 1770 | const RefState *RS = State->get<RegionState>(key: Sym); |
| 1771 | if (RS) { |
| 1772 | if (RS->isAllocated()) |
| 1773 | return TrueState->set<RegionState>( |
| 1774 | K: Sym, E: RefState::getAllocatedOfSizeZero(RS)); |
| 1775 | return State; |
| 1776 | } |
| 1777 | // Case of zero-size realloc. Historically 'realloc(ptr, 0)' is treated as |
| 1778 | // 'free(ptr)' and the returned value from 'realloc(ptr, 0)' is not |
| 1779 | // tracked. Add zero-reallocated Sym to the state to catch references |
| 1780 | // to zero-allocated memory. |
| 1781 | return TrueState->add<ReallocSizeZeroSymbols>(K: Sym); |
| 1782 | } |
| 1783 | |
| 1784 | // Assume the value is non-zero going forward. |
| 1785 | assert(FalseState); |
| 1786 | return FalseState; |
| 1787 | } |
| 1788 | |
| 1789 | static QualType getDeepPointeeType(QualType T) { |
| 1790 | QualType Result = T, PointeeType = T->getPointeeType(); |
| 1791 | while (!PointeeType.isNull()) { |
| 1792 | Result = PointeeType; |
| 1793 | PointeeType = PointeeType->getPointeeType(); |
| 1794 | } |
| 1795 | return Result; |
| 1796 | } |
| 1797 | |
| 1798 | /// \returns true if the constructor invoked by \p NE has an argument of a |
| 1799 | /// pointer/reference to a record type. |
| 1800 | static bool hasNonTrivialConstructorCall(const CXXNewExpr *NE) { |
| 1801 | |
| 1802 | const CXXConstructExpr *ConstructE = NE->getConstructExpr(); |
| 1803 | if (!ConstructE) |
| 1804 | return false; |
| 1805 | |
| 1806 | if (!NE->getAllocatedType()->getAsCXXRecordDecl()) |
| 1807 | return false; |
| 1808 | |
| 1809 | const CXXConstructorDecl *CtorD = ConstructE->getConstructor(); |
| 1810 | |
| 1811 | // Iterate over the constructor parameters. |
| 1812 | for (const auto *CtorParam : CtorD->parameters()) { |
| 1813 | |
| 1814 | QualType CtorParamPointeeT = CtorParam->getType()->getPointeeType(); |
| 1815 | if (CtorParamPointeeT.isNull()) |
| 1816 | continue; |
| 1817 | |
| 1818 | CtorParamPointeeT = getDeepPointeeType(T: CtorParamPointeeT); |
| 1819 | |
| 1820 | if (CtorParamPointeeT->getAsCXXRecordDecl()) |
| 1821 | return true; |
| 1822 | } |
| 1823 | |
| 1824 | return false; |
| 1825 | } |
| 1826 | |
| 1827 | ProgramStateRef |
| 1828 | MallocChecker::processNewAllocation(const CXXAllocatorCall &Call, |
| 1829 | CheckerContext &C, |
| 1830 | AllocationFamily Family) const { |
| 1831 | if (!isStandardNewDelete(FD: Call)) |
| 1832 | return nullptr; |
| 1833 | |
| 1834 | const CXXNewExpr *NE = Call.getOriginExpr(); |
| 1835 | const ParentMap &PM = C.getLocationContext()->getParentMap(); |
| 1836 | ProgramStateRef State = C.getState(); |
| 1837 | |
| 1838 | // Non-trivial constructors have a chance to escape 'this', but marking all |
| 1839 | // invocations of trivial constructors as escaped would cause too great of |
| 1840 | // reduction of true positives, so let's just do that for constructors that |
| 1841 | // have an argument of a pointer-to-record type. |
| 1842 | if (!PM.isConsumedExpr(E: NE) && hasNonTrivialConstructorCall(NE)) |
| 1843 | return State; |
| 1844 | |
| 1845 | // The return value from operator new is bound to a specified initialization |
| 1846 | // value (if any) and we don't want to loose this value. So we call |
| 1847 | // MallocUpdateRefState() instead of MallocMemAux() which breaks the |
| 1848 | // existing binding. |
| 1849 | SVal Target = Call.getObjectUnderConstruction(); |
| 1850 | if (Call.getOriginExpr()->isArray()) { |
| 1851 | if (auto SizeEx = NE->getArraySize()) |
| 1852 | checkTaintedness(C, Call, SizeSVal: C.getSVal(S: *SizeEx), State, |
| 1853 | Family: AllocationFamily(AF_CXXNewArray)); |
| 1854 | } |
| 1855 | |
| 1856 | State = MallocUpdateRefState(C, E: NE, State, Family, RetVal: Target); |
| 1857 | State = ProcessZeroAllocCheck(C, Call, IndexOfSizeArg: 0, State, RetVal: Target); |
| 1858 | return State; |
| 1859 | } |
| 1860 | |
| 1861 | void MallocChecker::checkNewAllocator(const CXXAllocatorCall &Call, |
| 1862 | CheckerContext &C) const { |
| 1863 | if (!C.wasInlined) { |
| 1864 | ProgramStateRef State = processNewAllocation( |
| 1865 | Call, C, |
| 1866 | Family: AllocationFamily(Call.getOriginExpr()->isArray() ? AF_CXXNewArray |
| 1867 | : AF_CXXNew)); |
| 1868 | C.addTransition(State); |
| 1869 | } |
| 1870 | } |
| 1871 | |
| 1872 | static bool isKnownDeallocObjCMethodName(const ObjCMethodCall &Call) { |
| 1873 | // If the first selector piece is one of the names below, assume that the |
| 1874 | // object takes ownership of the memory, promising to eventually deallocate it |
| 1875 | // with free(). |
| 1876 | // Ex: [NSData dataWithBytesNoCopy:bytes length:10]; |
| 1877 | // (...unless a 'freeWhenDone' parameter is false, but that's checked later.) |
| 1878 | StringRef FirstSlot = Call.getSelector().getNameForSlot(argIndex: 0); |
| 1879 | return FirstSlot == "dataWithBytesNoCopy" || |
| 1880 | FirstSlot == "initWithBytesNoCopy" || |
| 1881 | FirstSlot == "initWithCharactersNoCopy" ; |
| 1882 | } |
| 1883 | |
| 1884 | static std::optional<bool> getFreeWhenDoneArg(const ObjCMethodCall &Call) { |
| 1885 | Selector S = Call.getSelector(); |
| 1886 | |
| 1887 | // FIXME: We should not rely on fully-constrained symbols being folded. |
| 1888 | for (unsigned i = 1; i < S.getNumArgs(); ++i) |
| 1889 | if (S.getNameForSlot(argIndex: i) == "freeWhenDone" ) |
| 1890 | return !Call.getArgSVal(Index: i).isZeroConstant(); |
| 1891 | |
| 1892 | return std::nullopt; |
| 1893 | } |
| 1894 | |
| 1895 | void MallocChecker::checkPostObjCMessage(const ObjCMethodCall &Call, |
| 1896 | CheckerContext &C) const { |
| 1897 | if (C.wasInlined) |
| 1898 | return; |
| 1899 | |
| 1900 | if (!isKnownDeallocObjCMethodName(Call)) |
| 1901 | return; |
| 1902 | |
| 1903 | if (std::optional<bool> FreeWhenDone = getFreeWhenDoneArg(Call)) |
| 1904 | if (!*FreeWhenDone) |
| 1905 | return; |
| 1906 | |
| 1907 | if (Call.hasNonZeroCallbackArg()) |
| 1908 | return; |
| 1909 | |
| 1910 | bool IsKnownToBeAllocatedMemory; |
| 1911 | ProgramStateRef State = FreeMemAux(C, ArgExpr: Call.getArgExpr(Index: 0), Call, State: C.getState(), |
| 1912 | /*Hold=*/true, IsKnownToBeAllocated&: IsKnownToBeAllocatedMemory, |
| 1913 | Family: AllocationFamily(AF_Malloc), |
| 1914 | /*ReturnsNullOnFailure=*/true); |
| 1915 | |
| 1916 | C.addTransition(State); |
| 1917 | } |
| 1918 | |
| 1919 | ProgramStateRef |
| 1920 | MallocChecker::MallocMemReturnsAttr(CheckerContext &C, const CallEvent &Call, |
| 1921 | const OwnershipAttr *Att, |
| 1922 | ProgramStateRef State) const { |
| 1923 | if (!State) |
| 1924 | return nullptr; |
| 1925 | |
| 1926 | auto attrClassName = Att->getModule()->getName(); |
| 1927 | auto Family = AllocationFamily(AF_Custom, attrClassName); |
| 1928 | |
| 1929 | if (!Att->args().empty()) { |
| 1930 | return MallocMemAux(C, Call, |
| 1931 | SizeEx: Call.getArgExpr(Index: Att->args_begin()->getASTIndex()), |
| 1932 | Init: UnknownVal(), State, Family); |
| 1933 | } |
| 1934 | return MallocMemAux(C, Call, Size: UnknownVal(), Init: UnknownVal(), State, Family); |
| 1935 | } |
| 1936 | |
| 1937 | ProgramStateRef MallocChecker::MallocBindRetVal(CheckerContext &C, |
| 1938 | const CallEvent &Call, |
| 1939 | ProgramStateRef State, |
| 1940 | bool isAlloca) const { |
| 1941 | const Expr *CE = Call.getOriginExpr(); |
| 1942 | |
| 1943 | // We expect the allocation functions to return a pointer. |
| 1944 | if (!Loc::isLocType(T: CE->getType())) |
| 1945 | return nullptr; |
| 1946 | |
| 1947 | unsigned Count = C.blockCount(); |
| 1948 | SValBuilder &SVB = C.getSValBuilder(); |
| 1949 | const LocationContext *LCtx = C.getPredecessor()->getLocationContext(); |
| 1950 | DefinedSVal RetVal = |
| 1951 | isAlloca ? SVB.getAllocaRegionVal(E: CE, LCtx, Count) |
| 1952 | : SVB.getConjuredHeapSymbolVal(elem: Call.getCFGElementRef(), LCtx, |
| 1953 | type: CE->getType(), Count); |
| 1954 | return State->BindExpr(S: CE, LCtx: C.getLocationContext(), V: RetVal); |
| 1955 | } |
| 1956 | |
| 1957 | ProgramStateRef MallocChecker::MallocMemAux(CheckerContext &C, |
| 1958 | const CallEvent &Call, |
| 1959 | const Expr *SizeEx, SVal Init, |
| 1960 | ProgramStateRef State, |
| 1961 | AllocationFamily Family) const { |
| 1962 | if (!State) |
| 1963 | return nullptr; |
| 1964 | |
| 1965 | assert(SizeEx); |
| 1966 | return MallocMemAux(C, Call, Size: C.getSVal(S: SizeEx), Init, State, Family); |
| 1967 | } |
| 1968 | |
| 1969 | void MallocChecker::reportTaintBug(StringRef Msg, ProgramStateRef State, |
| 1970 | CheckerContext &C, |
| 1971 | llvm::ArrayRef<SymbolRef> TaintedSyms, |
| 1972 | AllocationFamily Family) const { |
| 1973 | if (ExplodedNode *N = C.generateNonFatalErrorNode(State, Tag: this)) { |
| 1974 | auto R = |
| 1975 | std::make_unique<PathSensitiveBugReport>(args: TaintedAllocChecker, args&: Msg, args&: N); |
| 1976 | for (const auto *TaintedSym : TaintedSyms) { |
| 1977 | R->markInteresting(sym: TaintedSym); |
| 1978 | } |
| 1979 | C.emitReport(R: std::move(R)); |
| 1980 | } |
| 1981 | } |
| 1982 | |
| 1983 | void MallocChecker::checkTaintedness(CheckerContext &C, const CallEvent &Call, |
| 1984 | const SVal SizeSVal, ProgramStateRef State, |
| 1985 | AllocationFamily Family) const { |
| 1986 | if (!TaintedAllocChecker.isEnabled()) |
| 1987 | return; |
| 1988 | std::vector<SymbolRef> TaintedSyms = |
| 1989 | taint::getTaintedSymbols(State, V: SizeSVal); |
| 1990 | if (TaintedSyms.empty()) |
| 1991 | return; |
| 1992 | |
| 1993 | SValBuilder &SVB = C.getSValBuilder(); |
| 1994 | QualType SizeTy = SVB.getContext().getSizeType(); |
| 1995 | QualType CmpTy = SVB.getConditionType(); |
| 1996 | // In case the symbol is tainted, we give a warning if the |
| 1997 | // size is larger than SIZE_MAX/4 |
| 1998 | BasicValueFactory &BVF = SVB.getBasicValueFactory(); |
| 1999 | const llvm::APSInt MaxValInt = BVF.getMaxValue(T: SizeTy); |
| 2000 | NonLoc MaxLength = |
| 2001 | SVB.makeIntVal(integer: MaxValInt / APSIntType(MaxValInt).getValue(RawValue: 4)); |
| 2002 | std::optional<NonLoc> SizeNL = SizeSVal.getAs<NonLoc>(); |
| 2003 | auto Cmp = SVB.evalBinOpNN(state: State, op: BO_GE, lhs: *SizeNL, rhs: MaxLength, resultTy: CmpTy) |
| 2004 | .getAs<DefinedOrUnknownSVal>(); |
| 2005 | if (!Cmp) |
| 2006 | return; |
| 2007 | auto [StateTooLarge, StateNotTooLarge] = State->assume(Cond: *Cmp); |
| 2008 | if (!StateTooLarge && StateNotTooLarge) { |
| 2009 | // We can prove that size is not too large so there is no issue. |
| 2010 | return; |
| 2011 | } |
| 2012 | |
| 2013 | std::string Callee = "Memory allocation function" ; |
| 2014 | if (Call.getCalleeIdentifier()) |
| 2015 | Callee = Call.getCalleeIdentifier()->getName().str(); |
| 2016 | reportTaintBug( |
| 2017 | Msg: Callee + " is called with a tainted (potentially attacker controlled) " |
| 2018 | "value. Make sure the value is bound checked." , |
| 2019 | State, C, TaintedSyms, Family); |
| 2020 | } |
| 2021 | |
| 2022 | ProgramStateRef MallocChecker::MallocMemAux(CheckerContext &C, |
| 2023 | const CallEvent &Call, SVal Size, |
| 2024 | SVal Init, ProgramStateRef State, |
| 2025 | AllocationFamily Family) const { |
| 2026 | if (!State) |
| 2027 | return nullptr; |
| 2028 | |
| 2029 | const Expr *CE = Call.getOriginExpr(); |
| 2030 | |
| 2031 | // We expect the malloc functions to return a pointer. |
| 2032 | // Should have been already checked. |
| 2033 | assert(Loc::isLocType(CE->getType()) && |
| 2034 | "Allocation functions must return a pointer" ); |
| 2035 | |
| 2036 | const LocationContext *LCtx = C.getPredecessor()->getLocationContext(); |
| 2037 | SVal RetVal = State->getSVal(Ex: CE, LCtx: C.getLocationContext()); |
| 2038 | |
| 2039 | // Fill the region with the initialization value. |
| 2040 | State = State->bindDefaultInitial(loc: RetVal, V: Init, LCtx); |
| 2041 | |
| 2042 | // If Size is somehow undefined at this point, this line prevents a crash. |
| 2043 | if (Size.isUndef()) |
| 2044 | Size = UnknownVal(); |
| 2045 | |
| 2046 | checkTaintedness(C, Call, SizeSVal: Size, State, Family: AllocationFamily(AF_Malloc)); |
| 2047 | |
| 2048 | // Set the region's extent. |
| 2049 | State = setDynamicExtent(State, MR: RetVal.getAsRegion(), |
| 2050 | Extent: Size.castAs<DefinedOrUnknownSVal>()); |
| 2051 | |
| 2052 | return MallocUpdateRefState(C, E: CE, State, Family); |
| 2053 | } |
| 2054 | |
| 2055 | static ProgramStateRef MallocUpdateRefState(CheckerContext &C, const Expr *E, |
| 2056 | ProgramStateRef State, |
| 2057 | AllocationFamily Family, |
| 2058 | std::optional<SVal> RetVal) { |
| 2059 | if (!State) |
| 2060 | return nullptr; |
| 2061 | |
| 2062 | // Get the return value. |
| 2063 | if (!RetVal) |
| 2064 | RetVal = State->getSVal(Ex: E, LCtx: C.getLocationContext()); |
| 2065 | |
| 2066 | // We expect the malloc functions to return a pointer. |
| 2067 | if (!RetVal->getAs<Loc>()) |
| 2068 | return nullptr; |
| 2069 | |
| 2070 | SymbolRef Sym = RetVal->getAsLocSymbol(); |
| 2071 | |
| 2072 | // NOTE: If this was an `alloca()` call, then `RetVal` holds an |
| 2073 | // `AllocaRegion`, so `Sym` will be a nullpointer because `AllocaRegion`s do |
| 2074 | // not have an associated symbol. However, this distinct region type means |
| 2075 | // that we don't need to store anything about them in `RegionState`. |
| 2076 | |
| 2077 | if (Sym) |
| 2078 | return State->set<RegionState>(K: Sym, E: RefState::getAllocated(family: Family, s: E)); |
| 2079 | |
| 2080 | return State; |
| 2081 | } |
| 2082 | |
| 2083 | ProgramStateRef MallocChecker::FreeMemAttr(CheckerContext &C, |
| 2084 | const CallEvent &Call, |
| 2085 | const OwnershipAttr *Att, |
| 2086 | ProgramStateRef State) const { |
| 2087 | if (!State) |
| 2088 | return nullptr; |
| 2089 | |
| 2090 | auto attrClassName = Att->getModule()->getName(); |
| 2091 | auto Family = AllocationFamily(AF_Custom, attrClassName); |
| 2092 | |
| 2093 | bool IsKnownToBeAllocated = false; |
| 2094 | |
| 2095 | for (const auto &Arg : Att->args()) { |
| 2096 | ProgramStateRef StateI = |
| 2097 | FreeMemAux(C, Call, State, Num: Arg.getASTIndex(), |
| 2098 | Hold: Att->getOwnKind() == OwnershipAttr::Holds, |
| 2099 | IsKnownToBeAllocated, Family); |
| 2100 | if (StateI) |
| 2101 | State = StateI; |
| 2102 | } |
| 2103 | return State; |
| 2104 | } |
| 2105 | |
| 2106 | ProgramStateRef MallocChecker::FreeMemAux(CheckerContext &C, |
| 2107 | const CallEvent &Call, |
| 2108 | ProgramStateRef State, unsigned Num, |
| 2109 | bool Hold, bool &IsKnownToBeAllocated, |
| 2110 | AllocationFamily Family, |
| 2111 | bool ReturnsNullOnFailure) const { |
| 2112 | if (!State) |
| 2113 | return nullptr; |
| 2114 | |
| 2115 | if (Call.getNumArgs() < (Num + 1)) |
| 2116 | return nullptr; |
| 2117 | |
| 2118 | return FreeMemAux(C, ArgExpr: Call.getArgExpr(Index: Num), Call, State, Hold, |
| 2119 | IsKnownToBeAllocated, Family, ReturnsNullOnFailure); |
| 2120 | } |
| 2121 | |
| 2122 | /// Checks if the previous call to free on the given symbol failed - if free |
| 2123 | /// failed, returns true. Also, returns the corresponding return value symbol. |
| 2124 | static bool didPreviousFreeFail(ProgramStateRef State, |
| 2125 | SymbolRef Sym, SymbolRef &RetStatusSymbol) { |
| 2126 | const SymbolRef *Ret = State->get<FreeReturnValue>(key: Sym); |
| 2127 | if (Ret) { |
| 2128 | assert(*Ret && "We should not store the null return symbol" ); |
| 2129 | ConstraintManager &CMgr = State->getConstraintManager(); |
| 2130 | ConditionTruthVal FreeFailed = CMgr.isNull(State, Sym: *Ret); |
| 2131 | RetStatusSymbol = *Ret; |
| 2132 | return FreeFailed.isConstrainedTrue(); |
| 2133 | } |
| 2134 | return false; |
| 2135 | } |
| 2136 | |
| 2137 | static void printOwnershipTakesList(raw_ostream &os, CheckerContext &C, |
| 2138 | const Expr *E) { |
| 2139 | const CallExpr *CE = dyn_cast<CallExpr>(Val: E); |
| 2140 | |
| 2141 | if (!CE) |
| 2142 | return; |
| 2143 | |
| 2144 | const FunctionDecl *FD = CE->getDirectCallee(); |
| 2145 | if (!FD) |
| 2146 | return; |
| 2147 | |
| 2148 | // Only one ownership_takes attribute is allowed. |
| 2149 | for (const auto *I : FD->specific_attrs<OwnershipAttr>()) { |
| 2150 | if (I->getOwnKind() != OwnershipAttr::Takes) |
| 2151 | continue; |
| 2152 | |
| 2153 | os << ", which takes ownership of '" << I->getModule()->getName() << '\''; |
| 2154 | break; |
| 2155 | } |
| 2156 | } |
| 2157 | |
| 2158 | static bool printMemFnName(raw_ostream &os, CheckerContext &C, const Expr *E) { |
| 2159 | if (const CallExpr *CE = dyn_cast<CallExpr>(Val: E)) { |
| 2160 | // FIXME: This doesn't handle indirect calls. |
| 2161 | const FunctionDecl *FD = CE->getDirectCallee(); |
| 2162 | if (!FD) |
| 2163 | return false; |
| 2164 | |
| 2165 | os << '\'' << *FD; |
| 2166 | |
| 2167 | if (!FD->isOverloadedOperator()) |
| 2168 | os << "()" ; |
| 2169 | |
| 2170 | os << '\''; |
| 2171 | return true; |
| 2172 | } |
| 2173 | |
| 2174 | if (const ObjCMessageExpr *Msg = dyn_cast<ObjCMessageExpr>(Val: E)) { |
| 2175 | if (Msg->isInstanceMessage()) |
| 2176 | os << "-" ; |
| 2177 | else |
| 2178 | os << "+" ; |
| 2179 | Msg->getSelector().print(OS&: os); |
| 2180 | return true; |
| 2181 | } |
| 2182 | |
| 2183 | if (const CXXNewExpr *NE = dyn_cast<CXXNewExpr>(Val: E)) { |
| 2184 | os << "'" |
| 2185 | << getOperatorSpelling(Operator: NE->getOperatorNew()->getOverloadedOperator()) |
| 2186 | << "'" ; |
| 2187 | return true; |
| 2188 | } |
| 2189 | |
| 2190 | if (const CXXDeleteExpr *DE = dyn_cast<CXXDeleteExpr>(Val: E)) { |
| 2191 | os << "'" |
| 2192 | << getOperatorSpelling(Operator: DE->getOperatorDelete()->getOverloadedOperator()) |
| 2193 | << "'" ; |
| 2194 | return true; |
| 2195 | } |
| 2196 | |
| 2197 | return false; |
| 2198 | } |
| 2199 | |
| 2200 | static void printExpectedAllocName(raw_ostream &os, AllocationFamily Family) { |
| 2201 | |
| 2202 | switch (Family.Kind) { |
| 2203 | case AF_Malloc: |
| 2204 | os << "'malloc()'" ; |
| 2205 | return; |
| 2206 | case AF_CXXNew: |
| 2207 | os << "'new'" ; |
| 2208 | return; |
| 2209 | case AF_CXXNewArray: |
| 2210 | os << "'new[]'" ; |
| 2211 | return; |
| 2212 | case AF_IfNameIndex: |
| 2213 | os << "'if_nameindex()'" ; |
| 2214 | return; |
| 2215 | case AF_InnerBuffer: |
| 2216 | os << "container-specific allocator" ; |
| 2217 | return; |
| 2218 | case AF_Custom: |
| 2219 | os << Family.CustomName.value(); |
| 2220 | return; |
| 2221 | case AF_Alloca: |
| 2222 | case AF_None: |
| 2223 | assert(false && "not a deallocation expression" ); |
| 2224 | } |
| 2225 | } |
| 2226 | |
| 2227 | static void printExpectedDeallocName(raw_ostream &os, AllocationFamily Family) { |
| 2228 | switch (Family.Kind) { |
| 2229 | case AF_Malloc: |
| 2230 | os << "'free()'" ; |
| 2231 | return; |
| 2232 | case AF_CXXNew: |
| 2233 | os << "'delete'" ; |
| 2234 | return; |
| 2235 | case AF_CXXNewArray: |
| 2236 | os << "'delete[]'" ; |
| 2237 | return; |
| 2238 | case AF_IfNameIndex: |
| 2239 | os << "'if_freenameindex()'" ; |
| 2240 | return; |
| 2241 | case AF_InnerBuffer: |
| 2242 | os << "container-specific deallocator" ; |
| 2243 | return; |
| 2244 | case AF_Custom: |
| 2245 | os << "function that takes ownership of '" << Family.CustomName.value() |
| 2246 | << "\'" ; |
| 2247 | return; |
| 2248 | case AF_Alloca: |
| 2249 | case AF_None: |
| 2250 | assert(false && "not a deallocation expression" ); |
| 2251 | } |
| 2252 | } |
| 2253 | |
| 2254 | ProgramStateRef |
| 2255 | MallocChecker::FreeMemAux(CheckerContext &C, const Expr *ArgExpr, |
| 2256 | const CallEvent &Call, ProgramStateRef State, |
| 2257 | bool Hold, bool &IsKnownToBeAllocated, |
| 2258 | AllocationFamily Family, bool ReturnsNullOnFailure, |
| 2259 | std::optional<SVal> ArgValOpt) const { |
| 2260 | |
| 2261 | if (!State) |
| 2262 | return nullptr; |
| 2263 | |
| 2264 | SVal ArgVal = ArgValOpt.value_or(u: C.getSVal(S: ArgExpr)); |
| 2265 | if (!isa<DefinedOrUnknownSVal>(Val: ArgVal)) |
| 2266 | return nullptr; |
| 2267 | DefinedOrUnknownSVal location = ArgVal.castAs<DefinedOrUnknownSVal>(); |
| 2268 | |
| 2269 | // Check for null dereferences. |
| 2270 | if (!isa<Loc>(Val: location)) |
| 2271 | return nullptr; |
| 2272 | |
| 2273 | // The explicit NULL case, no operation is performed. |
| 2274 | ProgramStateRef notNullState, nullState; |
| 2275 | std::tie(args&: notNullState, args&: nullState) = State->assume(Cond: location); |
| 2276 | if (nullState && !notNullState) |
| 2277 | return nullptr; |
| 2278 | |
| 2279 | // Unknown values could easily be okay |
| 2280 | // Undefined values are handled elsewhere |
| 2281 | if (ArgVal.isUnknownOrUndef()) |
| 2282 | return nullptr; |
| 2283 | |
| 2284 | const MemRegion *R = ArgVal.getAsRegion(); |
| 2285 | const Expr *ParentExpr = Call.getOriginExpr(); |
| 2286 | |
| 2287 | // NOTE: We detected a bug, but the checker under whose name we would emit the |
| 2288 | // error could be disabled. Generally speaking, the MallocChecker family is an |
| 2289 | // integral part of the Static Analyzer, and disabling any part of it should |
| 2290 | // only be done under exceptional circumstances, such as frequent false |
| 2291 | // positives. If this is the case, we can reasonably believe that there are |
| 2292 | // serious faults in our understanding of the source code, and even if we |
| 2293 | // don't emit an warning, we should terminate further analysis with a sink |
| 2294 | // node. |
| 2295 | |
| 2296 | // Nonlocs can't be freed, of course. |
| 2297 | // Non-region locations (labels and fixed addresses) also shouldn't be freed. |
| 2298 | if (!R) { |
| 2299 | // Exception: |
| 2300 | // If the macro ZERO_SIZE_PTR is defined, this could be a kernel source |
| 2301 | // code. In that case, the ZERO_SIZE_PTR defines a special value used for a |
| 2302 | // zero-sized memory block which is allowed to be freed, despite not being a |
| 2303 | // null pointer. |
| 2304 | if (Family.Kind != AF_Malloc || !isArgZERO_SIZE_PTR(State, C, ArgVal)) |
| 2305 | HandleNonHeapDealloc(C, ArgVal, Range: ArgExpr->getSourceRange(), DeallocExpr: ParentExpr, |
| 2306 | Family); |
| 2307 | return nullptr; |
| 2308 | } |
| 2309 | |
| 2310 | R = R->StripCasts(); |
| 2311 | |
| 2312 | // Blocks might show up as heap data, but should not be free()d |
| 2313 | if (isa<BlockDataRegion>(Val: R)) { |
| 2314 | HandleNonHeapDealloc(C, ArgVal, Range: ArgExpr->getSourceRange(), DeallocExpr: ParentExpr, |
| 2315 | Family); |
| 2316 | return nullptr; |
| 2317 | } |
| 2318 | |
| 2319 | // Parameters, locals, statics, globals, and memory returned by |
| 2320 | // __builtin_alloca() shouldn't be freed. |
| 2321 | if (!R->hasMemorySpace<UnknownSpaceRegion, HeapSpaceRegion>(State)) { |
| 2322 | // Regions returned by malloc() are represented by SymbolicRegion objects |
| 2323 | // within HeapSpaceRegion. Of course, free() can work on memory allocated |
| 2324 | // outside the current function, so UnknownSpaceRegion is also a |
| 2325 | // possibility here. |
| 2326 | |
| 2327 | if (isa<AllocaRegion>(Val: R)) |
| 2328 | HandleFreeAlloca(C, ArgVal, Range: ArgExpr->getSourceRange()); |
| 2329 | else |
| 2330 | HandleNonHeapDealloc(C, ArgVal, Range: ArgExpr->getSourceRange(), DeallocExpr: ParentExpr, |
| 2331 | Family); |
| 2332 | |
| 2333 | return nullptr; |
| 2334 | } |
| 2335 | |
| 2336 | const SymbolicRegion *SrBase = dyn_cast<SymbolicRegion>(Val: R->getBaseRegion()); |
| 2337 | // Various cases could lead to non-symbol values here. |
| 2338 | // For now, ignore them. |
| 2339 | if (!SrBase) |
| 2340 | return nullptr; |
| 2341 | |
| 2342 | SymbolRef SymBase = SrBase->getSymbol(); |
| 2343 | const RefState *RsBase = State->get<RegionState>(key: SymBase); |
| 2344 | SymbolRef PreviousRetStatusSymbol = nullptr; |
| 2345 | |
| 2346 | IsKnownToBeAllocated = |
| 2347 | RsBase && (RsBase->isAllocated() || RsBase->isAllocatedOfSizeZero()); |
| 2348 | |
| 2349 | if (RsBase) { |
| 2350 | |
| 2351 | // Memory returned by alloca() shouldn't be freed. |
| 2352 | if (RsBase->getAllocationFamily().Kind == AF_Alloca) { |
| 2353 | HandleFreeAlloca(C, ArgVal, Range: ArgExpr->getSourceRange()); |
| 2354 | return nullptr; |
| 2355 | } |
| 2356 | |
| 2357 | // Check for double free first. |
| 2358 | if ((RsBase->isReleased() || RsBase->isRelinquished()) && |
| 2359 | !didPreviousFreeFail(State, Sym: SymBase, RetStatusSymbol&: PreviousRetStatusSymbol)) { |
| 2360 | HandleDoubleFree(C, Range: ParentExpr->getSourceRange(), Released: RsBase->isReleased(), |
| 2361 | Sym: SymBase, PrevSym: PreviousRetStatusSymbol); |
| 2362 | return nullptr; |
| 2363 | } |
| 2364 | |
| 2365 | // If the pointer is allocated or escaped, but we are now trying to free it, |
| 2366 | // check that the call to free is proper. |
| 2367 | if (RsBase->isAllocated() || RsBase->isAllocatedOfSizeZero() || |
| 2368 | RsBase->isEscaped()) { |
| 2369 | |
| 2370 | // Check if an expected deallocation function matches the real one. |
| 2371 | bool DeallocMatchesAlloc = RsBase->getAllocationFamily() == Family; |
| 2372 | if (!DeallocMatchesAlloc) { |
| 2373 | HandleMismatchedDealloc(C, Range: ArgExpr->getSourceRange(), DeallocExpr: ParentExpr, |
| 2374 | RS: RsBase, Sym: SymBase, OwnershipTransferred: Hold); |
| 2375 | return nullptr; |
| 2376 | } |
| 2377 | |
| 2378 | // Check if the memory location being freed is the actual location |
| 2379 | // allocated, or an offset. |
| 2380 | RegionOffset Offset = R->getAsOffset(); |
| 2381 | if (Offset.isValid() && |
| 2382 | !Offset.hasSymbolicOffset() && |
| 2383 | Offset.getOffset() != 0) { |
| 2384 | const Expr *AllocExpr = cast<Expr>(Val: RsBase->getStmt()); |
| 2385 | HandleOffsetFree(C, ArgVal, Range: ArgExpr->getSourceRange(), DeallocExpr: ParentExpr, |
| 2386 | Family, AllocExpr); |
| 2387 | return nullptr; |
| 2388 | } |
| 2389 | } |
| 2390 | } |
| 2391 | |
| 2392 | if (SymBase->getType()->isFunctionPointerType()) { |
| 2393 | HandleFunctionPtrFree(C, ArgVal, Range: ArgExpr->getSourceRange(), FreeExpr: ParentExpr, |
| 2394 | Family); |
| 2395 | return nullptr; |
| 2396 | } |
| 2397 | |
| 2398 | // Clean out the info on previous call to free return info. |
| 2399 | State = State->remove<FreeReturnValue>(K: SymBase); |
| 2400 | |
| 2401 | // Keep track of the return value. If it is NULL, we will know that free |
| 2402 | // failed. |
| 2403 | if (ReturnsNullOnFailure) { |
| 2404 | SVal RetVal = C.getSVal(S: ParentExpr); |
| 2405 | SymbolRef RetStatusSymbol = RetVal.getAsSymbol(); |
| 2406 | if (RetStatusSymbol) { |
| 2407 | C.getSymbolManager().addSymbolDependency(Primary: SymBase, Dependent: RetStatusSymbol); |
| 2408 | State = State->set<FreeReturnValue>(K: SymBase, E: RetStatusSymbol); |
| 2409 | } |
| 2410 | } |
| 2411 | |
| 2412 | // If we don't know anything about this symbol, a free on it may be totally |
| 2413 | // valid. If this is the case, lets assume that the allocation family of the |
| 2414 | // freeing function is the same as the symbols allocation family, and go with |
| 2415 | // that. |
| 2416 | assert(!RsBase || (RsBase && RsBase->getAllocationFamily() == Family)); |
| 2417 | |
| 2418 | // Assume that after memory is freed, it contains unknown values. This |
| 2419 | // conforts languages standards, since reading from freed memory is considered |
| 2420 | // UB and may result in arbitrary value. |
| 2421 | State = State->invalidateRegions(Values: {location}, Elem: Call.getCFGElementRef(), |
| 2422 | BlockCount: C.blockCount(), LCtx: C.getLocationContext(), |
| 2423 | /*CausesPointerEscape=*/false, |
| 2424 | /*InvalidatedSymbols=*/IS: nullptr); |
| 2425 | |
| 2426 | // Normal free. |
| 2427 | if (Hold) |
| 2428 | return State->set<RegionState>(K: SymBase, |
| 2429 | E: RefState::getRelinquished(family: Family, |
| 2430 | s: ParentExpr)); |
| 2431 | |
| 2432 | return State->set<RegionState>(K: SymBase, |
| 2433 | E: RefState::getReleased(family: Family, s: ParentExpr)); |
| 2434 | } |
| 2435 | |
| 2436 | template <class T> |
| 2437 | const T *MallocChecker::getRelevantFrontendAs(AllocationFamily Family) const { |
| 2438 | switch (Family.Kind) { |
| 2439 | case AF_Malloc: |
| 2440 | case AF_Alloca: |
| 2441 | case AF_Custom: |
| 2442 | case AF_IfNameIndex: |
| 2443 | return MallocChecker.getAs<T>(); |
| 2444 | case AF_CXXNew: |
| 2445 | case AF_CXXNewArray: { |
| 2446 | const T *ND = NewDeleteChecker.getAs<T>(); |
| 2447 | const T *NDL = NewDeleteLeaksChecker.getAs<T>(); |
| 2448 | // Bugs corresponding to C++ new/delete allocations are split between these |
| 2449 | // two frontends. |
| 2450 | if constexpr (std::is_same_v<T, CheckerFrontend>) { |
| 2451 | assert(ND && NDL && "Casting to CheckerFrontend always succeeds" ); |
| 2452 | // Prefer NewDelete unless it's disabled and NewDeleteLeaks is enabled. |
| 2453 | return (!ND->isEnabled() && NDL->isEnabled()) ? NDL : ND; |
| 2454 | } |
| 2455 | assert(!(ND && NDL) && |
| 2456 | "NewDelete and NewDeleteLeaks must not share a bug type" ); |
| 2457 | return ND ? ND : NDL; |
| 2458 | } |
| 2459 | case AF_InnerBuffer: |
| 2460 | return InnerPointerChecker.getAs<T>(); |
| 2461 | case AF_None: |
| 2462 | assert(false && "no family" ); |
| 2463 | return nullptr; |
| 2464 | } |
| 2465 | assert(false && "unhandled family" ); |
| 2466 | return nullptr; |
| 2467 | } |
| 2468 | template <class T> |
| 2469 | const T *MallocChecker::getRelevantFrontendAs(CheckerContext &C, |
| 2470 | SymbolRef Sym) const { |
| 2471 | if (C.getState()->contains<ReallocSizeZeroSymbols>(key: Sym)) |
| 2472 | return MallocChecker.getAs<T>(); |
| 2473 | |
| 2474 | const RefState *RS = C.getState()->get<RegionState>(key: Sym); |
| 2475 | assert(RS); |
| 2476 | return getRelevantFrontendAs<T>(RS->getAllocationFamily()); |
| 2477 | } |
| 2478 | |
| 2479 | bool MallocChecker::SummarizeValue(raw_ostream &os, SVal V) { |
| 2480 | if (std::optional<nonloc::ConcreteInt> IntVal = |
| 2481 | V.getAs<nonloc::ConcreteInt>()) |
| 2482 | os << "an integer (" << IntVal->getValue() << ")" ; |
| 2483 | else if (std::optional<loc::ConcreteInt> ConstAddr = |
| 2484 | V.getAs<loc::ConcreteInt>()) |
| 2485 | os << "a constant address (" << ConstAddr->getValue() << ")" ; |
| 2486 | else if (std::optional<loc::GotoLabel> Label = V.getAs<loc::GotoLabel>()) |
| 2487 | os << "the address of the label '" << Label->getLabel()->getName() << "'" ; |
| 2488 | else |
| 2489 | return false; |
| 2490 | |
| 2491 | return true; |
| 2492 | } |
| 2493 | |
| 2494 | bool MallocChecker::SummarizeRegion(ProgramStateRef State, raw_ostream &os, |
| 2495 | const MemRegion *MR) { |
| 2496 | switch (MR->getKind()) { |
| 2497 | case MemRegion::FunctionCodeRegionKind: { |
| 2498 | const NamedDecl *FD = cast<FunctionCodeRegion>(Val: MR)->getDecl(); |
| 2499 | if (FD) |
| 2500 | os << "the address of the function '" << *FD << '\''; |
| 2501 | else |
| 2502 | os << "the address of a function" ; |
| 2503 | return true; |
| 2504 | } |
| 2505 | case MemRegion::BlockCodeRegionKind: |
| 2506 | os << "block text" ; |
| 2507 | return true; |
| 2508 | case MemRegion::BlockDataRegionKind: |
| 2509 | // FIXME: where the block came from? |
| 2510 | os << "a block" ; |
| 2511 | return true; |
| 2512 | default: { |
| 2513 | const MemSpaceRegion *MS = MR->getMemorySpace(State); |
| 2514 | |
| 2515 | if (isa<StackLocalsSpaceRegion>(Val: MS)) { |
| 2516 | const VarRegion *VR = dyn_cast<VarRegion>(Val: MR); |
| 2517 | const VarDecl *VD; |
| 2518 | if (VR) |
| 2519 | VD = VR->getDecl(); |
| 2520 | else |
| 2521 | VD = nullptr; |
| 2522 | |
| 2523 | if (VD) |
| 2524 | os << "the address of the local variable '" << VD->getName() << "'" ; |
| 2525 | else |
| 2526 | os << "the address of a local stack variable" ; |
| 2527 | return true; |
| 2528 | } |
| 2529 | |
| 2530 | if (isa<StackArgumentsSpaceRegion>(Val: MS)) { |
| 2531 | const VarRegion *VR = dyn_cast<VarRegion>(Val: MR); |
| 2532 | const VarDecl *VD; |
| 2533 | if (VR) |
| 2534 | VD = VR->getDecl(); |
| 2535 | else |
| 2536 | VD = nullptr; |
| 2537 | |
| 2538 | if (VD) |
| 2539 | os << "the address of the parameter '" << VD->getName() << "'" ; |
| 2540 | else |
| 2541 | os << "the address of a parameter" ; |
| 2542 | return true; |
| 2543 | } |
| 2544 | |
| 2545 | if (isa<GlobalsSpaceRegion>(Val: MS)) { |
| 2546 | const VarRegion *VR = dyn_cast<VarRegion>(Val: MR); |
| 2547 | const VarDecl *VD; |
| 2548 | if (VR) |
| 2549 | VD = VR->getDecl(); |
| 2550 | else |
| 2551 | VD = nullptr; |
| 2552 | |
| 2553 | if (VD) { |
| 2554 | if (VD->isStaticLocal()) |
| 2555 | os << "the address of the static variable '" << VD->getName() << "'" ; |
| 2556 | else |
| 2557 | os << "the address of the global variable '" << VD->getName() << "'" ; |
| 2558 | } else |
| 2559 | os << "the address of a global variable" ; |
| 2560 | return true; |
| 2561 | } |
| 2562 | |
| 2563 | return false; |
| 2564 | } |
| 2565 | } |
| 2566 | } |
| 2567 | |
| 2568 | void MallocChecker::HandleNonHeapDealloc(CheckerContext &C, SVal ArgVal, |
| 2569 | SourceRange Range, |
| 2570 | const Expr *DeallocExpr, |
| 2571 | AllocationFamily Family) const { |
| 2572 | const BadFree *Frontend = getRelevantFrontendAs<BadFree>(Family); |
| 2573 | if (!Frontend) |
| 2574 | return; |
| 2575 | if (!Frontend->isEnabled()) { |
| 2576 | C.addSink(); |
| 2577 | return; |
| 2578 | } |
| 2579 | |
| 2580 | if (ExplodedNode *N = C.generateErrorNode()) { |
| 2581 | SmallString<100> buf; |
| 2582 | llvm::raw_svector_ostream os(buf); |
| 2583 | |
| 2584 | const MemRegion *MR = ArgVal.getAsRegion(); |
| 2585 | while (const ElementRegion *ER = dyn_cast_or_null<ElementRegion>(Val: MR)) |
| 2586 | MR = ER->getSuperRegion(); |
| 2587 | |
| 2588 | os << "Argument to " ; |
| 2589 | if (!printMemFnName(os, C, E: DeallocExpr)) |
| 2590 | os << "deallocator" ; |
| 2591 | |
| 2592 | os << " is " ; |
| 2593 | bool Summarized = |
| 2594 | MR ? SummarizeRegion(State: C.getState(), os, MR) : SummarizeValue(os, V: ArgVal); |
| 2595 | if (Summarized) |
| 2596 | os << ", which is not memory allocated by " ; |
| 2597 | else |
| 2598 | os << "not memory allocated by " ; |
| 2599 | |
| 2600 | printExpectedAllocName(os, Family); |
| 2601 | |
| 2602 | auto R = std::make_unique<PathSensitiveBugReport>(args: Frontend->BadFreeBug, |
| 2603 | args: os.str(), args&: N); |
| 2604 | R->markInteresting(R: MR); |
| 2605 | R->addRange(R: Range); |
| 2606 | C.emitReport(R: std::move(R)); |
| 2607 | } |
| 2608 | } |
| 2609 | |
| 2610 | void MallocChecker::HandleFreeAlloca(CheckerContext &C, SVal ArgVal, |
| 2611 | SourceRange Range) const { |
| 2612 | const FreeAlloca *Frontend; |
| 2613 | |
| 2614 | if (MallocChecker.isEnabled()) |
| 2615 | Frontend = &MallocChecker; |
| 2616 | else if (MismatchedDeallocatorChecker.isEnabled()) |
| 2617 | Frontend = &MismatchedDeallocatorChecker; |
| 2618 | else { |
| 2619 | C.addSink(); |
| 2620 | return; |
| 2621 | } |
| 2622 | |
| 2623 | if (ExplodedNode *N = C.generateErrorNode()) { |
| 2624 | auto R = std::make_unique<PathSensitiveBugReport>( |
| 2625 | args: Frontend->FreeAllocaBug, |
| 2626 | args: "Memory allocated by 'alloca()' should not be deallocated" , args&: N); |
| 2627 | R->markInteresting(R: ArgVal.getAsRegion()); |
| 2628 | R->addRange(R: Range); |
| 2629 | C.emitReport(R: std::move(R)); |
| 2630 | } |
| 2631 | } |
| 2632 | |
| 2633 | void MallocChecker::HandleMismatchedDealloc(CheckerContext &C, |
| 2634 | SourceRange Range, |
| 2635 | const Expr *DeallocExpr, |
| 2636 | const RefState *RS, SymbolRef Sym, |
| 2637 | bool OwnershipTransferred) const { |
| 2638 | if (!MismatchedDeallocatorChecker.isEnabled()) { |
| 2639 | C.addSink(); |
| 2640 | return; |
| 2641 | } |
| 2642 | |
| 2643 | if (ExplodedNode *N = C.generateErrorNode()) { |
| 2644 | SmallString<100> buf; |
| 2645 | llvm::raw_svector_ostream os(buf); |
| 2646 | |
| 2647 | const Expr *AllocExpr = cast<Expr>(Val: RS->getStmt()); |
| 2648 | SmallString<20> AllocBuf; |
| 2649 | llvm::raw_svector_ostream AllocOs(AllocBuf); |
| 2650 | SmallString<20> DeallocBuf; |
| 2651 | llvm::raw_svector_ostream DeallocOs(DeallocBuf); |
| 2652 | |
| 2653 | if (OwnershipTransferred) { |
| 2654 | if (printMemFnName(os&: DeallocOs, C, E: DeallocExpr)) |
| 2655 | os << DeallocOs.str() << " cannot" ; |
| 2656 | else |
| 2657 | os << "Cannot" ; |
| 2658 | |
| 2659 | os << " take ownership of memory" ; |
| 2660 | |
| 2661 | if (printMemFnName(os&: AllocOs, C, E: AllocExpr)) |
| 2662 | os << " allocated by " << AllocOs.str(); |
| 2663 | } else { |
| 2664 | os << "Memory" ; |
| 2665 | if (printMemFnName(os&: AllocOs, C, E: AllocExpr)) |
| 2666 | os << " allocated by " << AllocOs.str(); |
| 2667 | |
| 2668 | os << " should be deallocated by " ; |
| 2669 | printExpectedDeallocName(os, Family: RS->getAllocationFamily()); |
| 2670 | |
| 2671 | if (printMemFnName(os&: DeallocOs, C, E: DeallocExpr)) |
| 2672 | os << ", not " << DeallocOs.str(); |
| 2673 | |
| 2674 | printOwnershipTakesList(os, C, E: DeallocExpr); |
| 2675 | } |
| 2676 | |
| 2677 | auto R = std::make_unique<PathSensitiveBugReport>( |
| 2678 | args: MismatchedDeallocatorChecker.MismatchedDeallocBug, args: os.str(), args&: N); |
| 2679 | R->markInteresting(sym: Sym); |
| 2680 | R->addRange(R: Range); |
| 2681 | R->addVisitor<MallocBugVisitor>(ConstructorArgs&: Sym); |
| 2682 | C.emitReport(R: std::move(R)); |
| 2683 | } |
| 2684 | } |
| 2685 | |
| 2686 | void MallocChecker::HandleOffsetFree(CheckerContext &C, SVal ArgVal, |
| 2687 | SourceRange Range, const Expr *DeallocExpr, |
| 2688 | AllocationFamily Family, |
| 2689 | const Expr *AllocExpr) const { |
| 2690 | const OffsetFree *Frontend = getRelevantFrontendAs<OffsetFree>(Family); |
| 2691 | if (!Frontend) |
| 2692 | return; |
| 2693 | if (!Frontend->isEnabled()) { |
| 2694 | C.addSink(); |
| 2695 | return; |
| 2696 | } |
| 2697 | |
| 2698 | ExplodedNode *N = C.generateErrorNode(); |
| 2699 | if (!N) |
| 2700 | return; |
| 2701 | |
| 2702 | SmallString<100> buf; |
| 2703 | llvm::raw_svector_ostream os(buf); |
| 2704 | SmallString<20> AllocNameBuf; |
| 2705 | llvm::raw_svector_ostream AllocNameOs(AllocNameBuf); |
| 2706 | |
| 2707 | const MemRegion *MR = ArgVal.getAsRegion(); |
| 2708 | assert(MR && "Only MemRegion based symbols can have offset free errors" ); |
| 2709 | |
| 2710 | RegionOffset Offset = MR->getAsOffset(); |
| 2711 | assert((Offset.isValid() && |
| 2712 | !Offset.hasSymbolicOffset() && |
| 2713 | Offset.getOffset() != 0) && |
| 2714 | "Only symbols with a valid offset can have offset free errors" ); |
| 2715 | |
| 2716 | int offsetBytes = Offset.getOffset() / C.getASTContext().getCharWidth(); |
| 2717 | |
| 2718 | os << "Argument to " ; |
| 2719 | if (!printMemFnName(os, C, E: DeallocExpr)) |
| 2720 | os << "deallocator" ; |
| 2721 | os << " is offset by " |
| 2722 | << offsetBytes |
| 2723 | << " " |
| 2724 | << ((abs(x: offsetBytes) > 1) ? "bytes" : "byte" ) |
| 2725 | << " from the start of " ; |
| 2726 | if (AllocExpr && printMemFnName(os&: AllocNameOs, C, E: AllocExpr)) |
| 2727 | os << "memory allocated by " << AllocNameOs.str(); |
| 2728 | else |
| 2729 | os << "allocated memory" ; |
| 2730 | |
| 2731 | auto R = std::make_unique<PathSensitiveBugReport>(args: Frontend->OffsetFreeBug, |
| 2732 | args: os.str(), args&: N); |
| 2733 | R->markInteresting(R: MR->getBaseRegion()); |
| 2734 | R->addRange(R: Range); |
| 2735 | C.emitReport(R: std::move(R)); |
| 2736 | } |
| 2737 | |
| 2738 | void MallocChecker::HandleUseAfterFree(CheckerContext &C, SourceRange Range, |
| 2739 | SymbolRef Sym) const { |
| 2740 | const UseFree *Frontend = getRelevantFrontendAs<UseFree>(C, Sym); |
| 2741 | if (!Frontend) |
| 2742 | return; |
| 2743 | if (!Frontend->isEnabled()) { |
| 2744 | C.addSink(); |
| 2745 | return; |
| 2746 | } |
| 2747 | |
| 2748 | if (ExplodedNode *N = C.generateErrorNode()) { |
| 2749 | AllocationFamily AF = |
| 2750 | C.getState()->get<RegionState>(key: Sym)->getAllocationFamily(); |
| 2751 | |
| 2752 | auto R = std::make_unique<PathSensitiveBugReport>( |
| 2753 | args: Frontend->UseFreeBug, |
| 2754 | args: AF.Kind == AF_InnerBuffer |
| 2755 | ? "Inner pointer of container used after re/deallocation" |
| 2756 | : "Use of memory after it is released" , |
| 2757 | args&: N); |
| 2758 | |
| 2759 | R->markInteresting(sym: Sym); |
| 2760 | R->addRange(R: Range); |
| 2761 | R->addVisitor<MallocBugVisitor>(ConstructorArgs&: Sym); |
| 2762 | |
| 2763 | if (AF.Kind == AF_InnerBuffer) |
| 2764 | R->addVisitor(visitor: allocation_state::getInnerPointerBRVisitor(Sym)); |
| 2765 | |
| 2766 | C.emitReport(R: std::move(R)); |
| 2767 | } |
| 2768 | } |
| 2769 | |
| 2770 | void MallocChecker::HandleDoubleFree(CheckerContext &C, SourceRange Range, |
| 2771 | bool Released, SymbolRef Sym, |
| 2772 | SymbolRef PrevSym) const { |
| 2773 | const DoubleFree *Frontend = getRelevantFrontendAs<DoubleFree>(C, Sym); |
| 2774 | if (!Frontend) |
| 2775 | return; |
| 2776 | if (!Frontend->isEnabled()) { |
| 2777 | C.addSink(); |
| 2778 | return; |
| 2779 | } |
| 2780 | |
| 2781 | if (ExplodedNode *N = C.generateErrorNode()) { |
| 2782 | auto R = std::make_unique<PathSensitiveBugReport>( |
| 2783 | args: Frontend->DoubleFreeBug, |
| 2784 | args: (Released ? "Attempt to release already released memory" |
| 2785 | : "Attempt to release non-owned memory" ), |
| 2786 | args&: N); |
| 2787 | if (Range.isValid()) |
| 2788 | R->addRange(R: Range); |
| 2789 | R->markInteresting(sym: Sym); |
| 2790 | if (PrevSym) |
| 2791 | R->markInteresting(sym: PrevSym); |
| 2792 | R->addVisitor<MallocBugVisitor>(ConstructorArgs&: Sym); |
| 2793 | C.emitReport(R: std::move(R)); |
| 2794 | } |
| 2795 | } |
| 2796 | |
| 2797 | void MallocChecker::HandleUseZeroAlloc(CheckerContext &C, SourceRange Range, |
| 2798 | SymbolRef Sym) const { |
| 2799 | const UseZeroAllocated *Frontend = |
| 2800 | getRelevantFrontendAs<UseZeroAllocated>(C, Sym); |
| 2801 | if (!Frontend) |
| 2802 | return; |
| 2803 | if (!Frontend->isEnabled()) { |
| 2804 | C.addSink(); |
| 2805 | return; |
| 2806 | } |
| 2807 | |
| 2808 | if (ExplodedNode *N = C.generateErrorNode()) { |
| 2809 | auto R = std::make_unique<PathSensitiveBugReport>( |
| 2810 | args: Frontend->UseZeroAllocatedBug, args: "Use of memory allocated with size zero" , |
| 2811 | args&: N); |
| 2812 | |
| 2813 | R->addRange(R: Range); |
| 2814 | if (Sym) { |
| 2815 | R->markInteresting(sym: Sym); |
| 2816 | R->addVisitor<MallocBugVisitor>(ConstructorArgs&: Sym); |
| 2817 | } |
| 2818 | C.emitReport(R: std::move(R)); |
| 2819 | } |
| 2820 | } |
| 2821 | |
| 2822 | void MallocChecker::HandleFunctionPtrFree(CheckerContext &C, SVal ArgVal, |
| 2823 | SourceRange Range, |
| 2824 | const Expr *FreeExpr, |
| 2825 | AllocationFamily Family) const { |
| 2826 | const BadFree *Frontend = getRelevantFrontendAs<BadFree>(Family); |
| 2827 | if (!Frontend) |
| 2828 | return; |
| 2829 | if (!Frontend->isEnabled()) { |
| 2830 | C.addSink(); |
| 2831 | return; |
| 2832 | } |
| 2833 | |
| 2834 | if (ExplodedNode *N = C.generateErrorNode()) { |
| 2835 | SmallString<100> Buf; |
| 2836 | llvm::raw_svector_ostream Os(Buf); |
| 2837 | |
| 2838 | const MemRegion *MR = ArgVal.getAsRegion(); |
| 2839 | while (const ElementRegion *ER = dyn_cast_or_null<ElementRegion>(Val: MR)) |
| 2840 | MR = ER->getSuperRegion(); |
| 2841 | |
| 2842 | Os << "Argument to " ; |
| 2843 | if (!printMemFnName(os&: Os, C, E: FreeExpr)) |
| 2844 | Os << "deallocator" ; |
| 2845 | |
| 2846 | Os << " is a function pointer" ; |
| 2847 | |
| 2848 | auto R = std::make_unique<PathSensitiveBugReport>(args: Frontend->BadFreeBug, |
| 2849 | args: Os.str(), args&: N); |
| 2850 | R->markInteresting(R: MR); |
| 2851 | R->addRange(R: Range); |
| 2852 | C.emitReport(R: std::move(R)); |
| 2853 | } |
| 2854 | } |
| 2855 | |
| 2856 | ProgramStateRef |
| 2857 | MallocChecker::ReallocMemAux(CheckerContext &C, const CallEvent &Call, |
| 2858 | bool ShouldFreeOnFail, ProgramStateRef State, |
| 2859 | AllocationFamily Family, bool SuffixWithN) const { |
| 2860 | if (!State) |
| 2861 | return nullptr; |
| 2862 | |
| 2863 | const CallExpr *CE = cast<CallExpr>(Val: Call.getOriginExpr()); |
| 2864 | |
| 2865 | if ((SuffixWithN && CE->getNumArgs() < 3) || CE->getNumArgs() < 2) |
| 2866 | return nullptr; |
| 2867 | |
| 2868 | const Expr *arg0Expr = CE->getArg(Arg: 0); |
| 2869 | SVal Arg0Val = C.getSVal(S: arg0Expr); |
| 2870 | if (!isa<DefinedOrUnknownSVal>(Val: Arg0Val)) |
| 2871 | return nullptr; |
| 2872 | DefinedOrUnknownSVal arg0Val = Arg0Val.castAs<DefinedOrUnknownSVal>(); |
| 2873 | |
| 2874 | SValBuilder &svalBuilder = C.getSValBuilder(); |
| 2875 | |
| 2876 | DefinedOrUnknownSVal PtrEQ = svalBuilder.evalEQ( |
| 2877 | state: State, lhs: arg0Val, rhs: svalBuilder.makeNullWithType(type: arg0Expr->getType())); |
| 2878 | |
| 2879 | // Get the size argument. |
| 2880 | const Expr *Arg1 = CE->getArg(Arg: 1); |
| 2881 | |
| 2882 | // Get the value of the size argument. |
| 2883 | SVal TotalSize = C.getSVal(S: Arg1); |
| 2884 | if (SuffixWithN) |
| 2885 | TotalSize = evalMulForBufferSize(C, Blocks: Arg1, BlockBytes: CE->getArg(Arg: 2)); |
| 2886 | if (!isa<DefinedOrUnknownSVal>(Val: TotalSize)) |
| 2887 | return nullptr; |
| 2888 | |
| 2889 | // Compare the size argument to 0. |
| 2890 | DefinedOrUnknownSVal SizeZero = svalBuilder.evalEQ( |
| 2891 | state: State, lhs: TotalSize.castAs<DefinedOrUnknownSVal>(), |
| 2892 | rhs: svalBuilder.makeIntValWithWidth( |
| 2893 | ptrType: svalBuilder.getContext().getCanonicalSizeType(), integer: 0)); |
| 2894 | |
| 2895 | ProgramStateRef StatePtrIsNull, StatePtrNotNull; |
| 2896 | std::tie(args&: StatePtrIsNull, args&: StatePtrNotNull) = State->assume(Cond: PtrEQ); |
| 2897 | ProgramStateRef StateSizeIsZero, StateSizeNotZero; |
| 2898 | std::tie(args&: StateSizeIsZero, args&: StateSizeNotZero) = State->assume(Cond: SizeZero); |
| 2899 | // We only assume exceptional states if they are definitely true; if the |
| 2900 | // state is under-constrained, assume regular realloc behavior. |
| 2901 | bool PrtIsNull = StatePtrIsNull && !StatePtrNotNull; |
| 2902 | bool SizeIsZero = StateSizeIsZero && !StateSizeNotZero; |
| 2903 | |
| 2904 | // If the ptr is NULL and the size is not 0, the call is equivalent to |
| 2905 | // malloc(size). |
| 2906 | if (PrtIsNull && !SizeIsZero) { |
| 2907 | ProgramStateRef stateMalloc = MallocMemAux( |
| 2908 | C, Call, Size: TotalSize, Init: UndefinedVal(), State: StatePtrIsNull, Family); |
| 2909 | return stateMalloc; |
| 2910 | } |
| 2911 | |
| 2912 | // Proccess as allocation of 0 bytes. |
| 2913 | if (PrtIsNull && SizeIsZero) |
| 2914 | return State; |
| 2915 | |
| 2916 | assert(!PrtIsNull); |
| 2917 | |
| 2918 | bool IsKnownToBeAllocated = false; |
| 2919 | |
| 2920 | // If the size is 0, free the memory. |
| 2921 | if (SizeIsZero) |
| 2922 | // The semantics of the return value are: |
| 2923 | // If size was equal to 0, either NULL or a pointer suitable to be passed |
| 2924 | // to free() is returned. We just free the input pointer and do not add |
| 2925 | // any constrains on the output pointer. |
| 2926 | if (ProgramStateRef stateFree = FreeMemAux( |
| 2927 | C, Call, State: StateSizeIsZero, Num: 0, Hold: false, IsKnownToBeAllocated, Family)) |
| 2928 | return stateFree; |
| 2929 | |
| 2930 | // Default behavior. |
| 2931 | if (ProgramStateRef stateFree = |
| 2932 | FreeMemAux(C, Call, State, Num: 0, Hold: false, IsKnownToBeAllocated, Family)) { |
| 2933 | |
| 2934 | ProgramStateRef stateRealloc = |
| 2935 | MallocMemAux(C, Call, Size: TotalSize, Init: UnknownVal(), State: stateFree, Family); |
| 2936 | if (!stateRealloc) |
| 2937 | return nullptr; |
| 2938 | |
| 2939 | OwnershipAfterReallocKind Kind = OAR_ToBeFreedAfterFailure; |
| 2940 | if (ShouldFreeOnFail) |
| 2941 | Kind = OAR_FreeOnFailure; |
| 2942 | else if (!IsKnownToBeAllocated) |
| 2943 | Kind = OAR_DoNotTrackAfterFailure; |
| 2944 | |
| 2945 | // Get the from and to pointer symbols as in toPtr = realloc(fromPtr, size). |
| 2946 | SymbolRef FromPtr = arg0Val.getLocSymbolInBase(); |
| 2947 | SVal RetVal = stateRealloc->getSVal(Ex: CE, LCtx: C.getLocationContext()); |
| 2948 | SymbolRef ToPtr = RetVal.getAsSymbol(); |
| 2949 | assert(FromPtr && ToPtr && |
| 2950 | "By this point, FreeMemAux and MallocMemAux should have checked " |
| 2951 | "whether the argument or the return value is symbolic!" ); |
| 2952 | |
| 2953 | // Record the info about the reallocated symbol so that we could properly |
| 2954 | // process failed reallocation. |
| 2955 | stateRealloc = stateRealloc->set<ReallocPairs>(K: ToPtr, |
| 2956 | E: ReallocPair(FromPtr, Kind)); |
| 2957 | // The reallocated symbol should stay alive for as long as the new symbol. |
| 2958 | C.getSymbolManager().addSymbolDependency(Primary: ToPtr, Dependent: FromPtr); |
| 2959 | return stateRealloc; |
| 2960 | } |
| 2961 | return nullptr; |
| 2962 | } |
| 2963 | |
| 2964 | ProgramStateRef MallocChecker::CallocMem(CheckerContext &C, |
| 2965 | const CallEvent &Call, |
| 2966 | ProgramStateRef State) const { |
| 2967 | if (!State) |
| 2968 | return nullptr; |
| 2969 | |
| 2970 | if (Call.getNumArgs() < 2) |
| 2971 | return nullptr; |
| 2972 | |
| 2973 | SValBuilder &svalBuilder = C.getSValBuilder(); |
| 2974 | SVal zeroVal = svalBuilder.makeZeroVal(type: svalBuilder.getContext().CharTy); |
| 2975 | SVal TotalSize = |
| 2976 | evalMulForBufferSize(C, Blocks: Call.getArgExpr(Index: 0), BlockBytes: Call.getArgExpr(Index: 1)); |
| 2977 | |
| 2978 | return MallocMemAux(C, Call, Size: TotalSize, Init: zeroVal, State, |
| 2979 | Family: AllocationFamily(AF_Malloc)); |
| 2980 | } |
| 2981 | |
| 2982 | MallocChecker::LeakInfo MallocChecker::getAllocationSite(const ExplodedNode *N, |
| 2983 | SymbolRef Sym, |
| 2984 | CheckerContext &C) { |
| 2985 | const LocationContext *LeakContext = N->getLocationContext(); |
| 2986 | // Walk the ExplodedGraph backwards and find the first node that referred to |
| 2987 | // the tracked symbol. |
| 2988 | const ExplodedNode *AllocNode = N; |
| 2989 | const MemRegion *ReferenceRegion = nullptr; |
| 2990 | |
| 2991 | while (N) { |
| 2992 | ProgramStateRef State = N->getState(); |
| 2993 | if (!State->get<RegionState>(key: Sym)) |
| 2994 | break; |
| 2995 | |
| 2996 | // Find the most recent expression bound to the symbol in the current |
| 2997 | // context. |
| 2998 | if (!ReferenceRegion) { |
| 2999 | if (const MemRegion *MR = C.getLocationRegionIfPostStore(N)) { |
| 3000 | SVal Val = State->getSVal(R: MR); |
| 3001 | if (Val.getAsLocSymbol() == Sym) { |
| 3002 | const VarRegion *VR = MR->getBaseRegion()->getAs<VarRegion>(); |
| 3003 | // Do not show local variables belonging to a function other than |
| 3004 | // where the error is reported. |
| 3005 | if (!VR || (VR->getStackFrame() == LeakContext->getStackFrame())) |
| 3006 | ReferenceRegion = MR; |
| 3007 | } |
| 3008 | } |
| 3009 | } |
| 3010 | |
| 3011 | // Allocation node, is the last node in the current or parent context in |
| 3012 | // which the symbol was tracked. |
| 3013 | const LocationContext *NContext = N->getLocationContext(); |
| 3014 | if (NContext == LeakContext || |
| 3015 | NContext->isParentOf(LC: LeakContext)) |
| 3016 | AllocNode = N; |
| 3017 | N = N->pred_empty() ? nullptr : *(N->pred_begin()); |
| 3018 | } |
| 3019 | |
| 3020 | return LeakInfo(AllocNode, ReferenceRegion); |
| 3021 | } |
| 3022 | |
| 3023 | void MallocChecker::HandleLeak(SymbolRef Sym, ExplodedNode *N, |
| 3024 | CheckerContext &C) const { |
| 3025 | assert(N && "HandleLeak is only called with a non-null node" ); |
| 3026 | |
| 3027 | const RefState *RS = C.getState()->get<RegionState>(key: Sym); |
| 3028 | assert(RS && "cannot leak an untracked symbol" ); |
| 3029 | AllocationFamily Family = RS->getAllocationFamily(); |
| 3030 | |
| 3031 | if (Family.Kind == AF_Alloca) |
| 3032 | return; |
| 3033 | |
| 3034 | const Leak *Frontend = getRelevantFrontendAs<Leak>(Family); |
| 3035 | // Note that for leaks we don't add a sink when the relevant frontend is |
| 3036 | // disabled because the leak is reported with a non-fatal error node, while |
| 3037 | // the sink would be the "silent" alternative of a (fatal) error node. |
| 3038 | if (!Frontend || !Frontend->isEnabled()) |
| 3039 | return; |
| 3040 | |
| 3041 | // Most bug reports are cached at the location where they occurred. |
| 3042 | // With leaks, we want to unique them by the location where they were |
| 3043 | // allocated, and only report a single path. |
| 3044 | PathDiagnosticLocation LocUsedForUniqueing; |
| 3045 | const ExplodedNode *AllocNode = nullptr; |
| 3046 | const MemRegion *Region = nullptr; |
| 3047 | std::tie(args&: AllocNode, args&: Region) = getAllocationSite(N, Sym, C); |
| 3048 | |
| 3049 | const Stmt *AllocationStmt = AllocNode->getStmtForDiagnostics(); |
| 3050 | if (AllocationStmt) |
| 3051 | LocUsedForUniqueing = PathDiagnosticLocation::createBegin(S: AllocationStmt, |
| 3052 | SM: C.getSourceManager(), |
| 3053 | LAC: AllocNode->getLocationContext()); |
| 3054 | |
| 3055 | SmallString<200> buf; |
| 3056 | llvm::raw_svector_ostream os(buf); |
| 3057 | if (Region && Region->canPrintPretty()) { |
| 3058 | os << "Potential leak of memory pointed to by " ; |
| 3059 | Region->printPretty(os); |
| 3060 | } else { |
| 3061 | os << "Potential memory leak" ; |
| 3062 | } |
| 3063 | |
| 3064 | auto R = std::make_unique<PathSensitiveBugReport>( |
| 3065 | args: Frontend->LeakBug, args: os.str(), args&: N, args&: LocUsedForUniqueing, |
| 3066 | args: AllocNode->getLocationContext()->getDecl()); |
| 3067 | R->markInteresting(sym: Sym); |
| 3068 | R->addVisitor<MallocBugVisitor>(ConstructorArgs&: Sym, ConstructorArgs: true); |
| 3069 | if (ShouldRegisterNoOwnershipChangeVisitor) |
| 3070 | R->addVisitor<NoMemOwnershipChangeVisitor>(ConstructorArgs&: Sym, ConstructorArgs: this); |
| 3071 | C.emitReport(R: std::move(R)); |
| 3072 | } |
| 3073 | |
| 3074 | void MallocChecker::checkDeadSymbols(SymbolReaper &SymReaper, |
| 3075 | CheckerContext &C) const |
| 3076 | { |
| 3077 | ProgramStateRef state = C.getState(); |
| 3078 | RegionStateTy OldRS = state->get<RegionState>(); |
| 3079 | RegionStateTy::Factory &F = state->get_context<RegionState>(); |
| 3080 | |
| 3081 | RegionStateTy RS = OldRS; |
| 3082 | SmallVector<SymbolRef, 2> Errors; |
| 3083 | for (auto [Sym, State] : RS) { |
| 3084 | if (SymReaper.isDead(sym: Sym)) { |
| 3085 | if (State.isAllocated() || State.isAllocatedOfSizeZero()) |
| 3086 | Errors.push_back(Elt: Sym); |
| 3087 | // Remove the dead symbol from the map. |
| 3088 | RS = F.remove(Old: RS, K: Sym); |
| 3089 | } |
| 3090 | } |
| 3091 | |
| 3092 | if (RS == OldRS) { |
| 3093 | // We shouldn't have touched other maps yet. |
| 3094 | assert(state->get<ReallocPairs>() == |
| 3095 | C.getState()->get<ReallocPairs>()); |
| 3096 | assert(state->get<FreeReturnValue>() == |
| 3097 | C.getState()->get<FreeReturnValue>()); |
| 3098 | return; |
| 3099 | } |
| 3100 | |
| 3101 | // Cleanup the Realloc Pairs Map. |
| 3102 | ReallocPairsTy RP = state->get<ReallocPairs>(); |
| 3103 | for (auto [Sym, ReallocPair] : RP) { |
| 3104 | if (SymReaper.isDead(sym: Sym) || SymReaper.isDead(sym: ReallocPair.ReallocatedSym)) { |
| 3105 | state = state->remove<ReallocPairs>(K: Sym); |
| 3106 | } |
| 3107 | } |
| 3108 | |
| 3109 | // Cleanup the FreeReturnValue Map. |
| 3110 | FreeReturnValueTy FR = state->get<FreeReturnValue>(); |
| 3111 | for (auto [Sym, RetSym] : FR) { |
| 3112 | if (SymReaper.isDead(sym: Sym) || SymReaper.isDead(sym: RetSym)) { |
| 3113 | state = state->remove<FreeReturnValue>(K: Sym); |
| 3114 | } |
| 3115 | } |
| 3116 | |
| 3117 | // Generate leak node. |
| 3118 | ExplodedNode *N = C.getPredecessor(); |
| 3119 | if (!Errors.empty()) { |
| 3120 | N = C.generateNonFatalErrorNode(State: C.getState()); |
| 3121 | if (N) { |
| 3122 | for (SymbolRef Sym : Errors) { |
| 3123 | HandleLeak(Sym, N, C); |
| 3124 | } |
| 3125 | } |
| 3126 | } |
| 3127 | |
| 3128 | C.addTransition(State: state->set<RegionState>(RS), Pred: N); |
| 3129 | } |
| 3130 | |
| 3131 | // Allowlist of owning smart pointers we want to recognize. |
| 3132 | // Start with unique_ptr and shared_ptr; weak_ptr is excluded intentionally |
| 3133 | // because it does not own the pointee. |
| 3134 | static bool isSmartPtrName(StringRef Name) { |
| 3135 | return Name == "unique_ptr" || Name == "shared_ptr" ; |
| 3136 | } |
| 3137 | |
| 3138 | // Check if a type is a smart owning pointer type. |
| 3139 | static bool isSmartPtrType(QualType QT) { |
| 3140 | QT = QT->getCanonicalTypeUnqualified(); |
| 3141 | |
| 3142 | if (const auto *TST = QT->getAs<TemplateSpecializationType>()) { |
| 3143 | const TemplateDecl *TD = TST->getTemplateName().getAsTemplateDecl(); |
| 3144 | if (!TD) |
| 3145 | return false; |
| 3146 | |
| 3147 | const auto *ND = dyn_cast_or_null<NamedDecl>(Val: TD->getTemplatedDecl()); |
| 3148 | if (!ND) |
| 3149 | return false; |
| 3150 | |
| 3151 | // For broader coverage we recognize all template classes with names that |
| 3152 | // match the allowlist even if they are not declared in namespace 'std'. |
| 3153 | return isSmartPtrName(Name: ND->getName()); |
| 3154 | } |
| 3155 | |
| 3156 | return false; |
| 3157 | } |
| 3158 | |
| 3159 | /// Helper struct for collecting smart owning pointer field regions. |
| 3160 | /// This allows both hasSmartPtrField and |
| 3161 | /// collectSmartPtrFieldRegions to share the same traversal logic, |
| 3162 | /// ensuring consistency. |
| 3163 | struct FieldConsumer { |
| 3164 | const MemRegion *Reg; |
| 3165 | CheckerContext *C; |
| 3166 | llvm::SmallPtrSetImpl<const MemRegion *> *Out; |
| 3167 | |
| 3168 | FieldConsumer(const MemRegion *Reg, CheckerContext &C, |
| 3169 | llvm::SmallPtrSetImpl<const MemRegion *> &Out) |
| 3170 | : Reg(Reg), C(&C), Out(&Out) {} |
| 3171 | |
| 3172 | void consume(const FieldDecl *FD) { |
| 3173 | SVal L = C->getState()->getLValue(decl: FD, Base: loc::MemRegionVal(Reg)); |
| 3174 | if (const MemRegion *FR = L.getAsRegion()) |
| 3175 | Out->insert(Ptr: FR); |
| 3176 | } |
| 3177 | |
| 3178 | std::optional<FieldConsumer> switchToBase(const CXXRecordDecl *BaseDecl, |
| 3179 | bool IsVirtual) { |
| 3180 | // Get the base class region |
| 3181 | SVal BaseL = |
| 3182 | C->getState()->getLValue(BaseClass: BaseDecl, Super: Reg->getAs<SubRegion>(), IsVirtual); |
| 3183 | if (const MemRegion *BaseObjRegion = BaseL.getAsRegion()) { |
| 3184 | // Return a consumer for the base class |
| 3185 | return FieldConsumer{BaseObjRegion, *C, *Out}; |
| 3186 | } |
| 3187 | return std::nullopt; |
| 3188 | } |
| 3189 | }; |
| 3190 | |
| 3191 | /// Check if a record type has smart owning pointer fields (directly or in base |
| 3192 | /// classes). When FC is provided, also collect the field regions. |
| 3193 | /// |
| 3194 | /// This function has dual behavior: |
| 3195 | /// - When FC is nullopt: Returns true if smart pointer fields are found |
| 3196 | /// - When FC is provided: Always returns false, but collects field regions |
| 3197 | /// as a side effect through the FieldConsumer |
| 3198 | /// |
| 3199 | /// Note: When FC is provided, the return value should be ignored since the |
| 3200 | /// function performs full traversal for collection and always returns false |
| 3201 | /// to avoid early termination. |
| 3202 | static bool hasSmartPtrField(const CXXRecordDecl *CRD, |
| 3203 | std::optional<FieldConsumer> FC = std::nullopt) { |
| 3204 | // Check direct fields |
| 3205 | for (const FieldDecl *FD : CRD->fields()) { |
| 3206 | if (isSmartPtrType(QT: FD->getType())) { |
| 3207 | if (!FC) |
| 3208 | return true; |
| 3209 | FC->consume(FD); |
| 3210 | } |
| 3211 | } |
| 3212 | |
| 3213 | // Check fields from base classes |
| 3214 | for (const CXXBaseSpecifier &BaseSpec : CRD->bases()) { |
| 3215 | if (const CXXRecordDecl *BaseDecl = |
| 3216 | BaseSpec.getType()->getAsCXXRecordDecl()) { |
| 3217 | std::optional<FieldConsumer> NewFC; |
| 3218 | if (FC) { |
| 3219 | NewFC = FC->switchToBase(BaseDecl, IsVirtual: BaseSpec.isVirtual()); |
| 3220 | if (!NewFC) |
| 3221 | continue; |
| 3222 | } |
| 3223 | bool Found = hasSmartPtrField(CRD: BaseDecl, FC: NewFC); |
| 3224 | if (Found && !FC) |
| 3225 | return true; |
| 3226 | } |
| 3227 | } |
| 3228 | return false; |
| 3229 | } |
| 3230 | |
| 3231 | /// Check if an expression is an rvalue record type passed by value. |
| 3232 | static bool isRvalueByValueRecord(const Expr *AE) { |
| 3233 | if (AE->isGLValue()) |
| 3234 | return false; |
| 3235 | |
| 3236 | QualType T = AE->getType(); |
| 3237 | if (!T->isRecordType() || T->isReferenceType()) |
| 3238 | return false; |
| 3239 | |
| 3240 | // Accept common temp/construct forms but don't overfit. |
| 3241 | return isa<CXXTemporaryObjectExpr, MaterializeTemporaryExpr, CXXConstructExpr, |
| 3242 | InitListExpr, ImplicitCastExpr, CXXBindTemporaryExpr>(Val: AE); |
| 3243 | } |
| 3244 | |
| 3245 | /// Check if an expression is an rvalue record with smart owning pointer fields |
| 3246 | /// passed by value. |
| 3247 | static bool isRvalueByValueRecordWithSmartPtr(const Expr *AE) { |
| 3248 | if (!isRvalueByValueRecord(AE)) |
| 3249 | return false; |
| 3250 | |
| 3251 | const auto *CRD = AE->getType()->getAsCXXRecordDecl(); |
| 3252 | return CRD && hasSmartPtrField(CRD); |
| 3253 | } |
| 3254 | |
| 3255 | /// Check if a CXXRecordDecl has a name matching recognized smart pointer names. |
| 3256 | static bool isSmartPtrRecord(const CXXRecordDecl *RD) { |
| 3257 | if (!RD) |
| 3258 | return false; |
| 3259 | |
| 3260 | // Check the record name directly and accept both std and custom smart pointer |
| 3261 | // implementations for broader coverage |
| 3262 | return isSmartPtrName(Name: RD->getName()); |
| 3263 | } |
| 3264 | |
| 3265 | /// Check if a call is a constructor of a smart owning pointer class that |
| 3266 | /// accepts pointer parameters. |
| 3267 | static bool isSmartPtrCall(const CallEvent &Call) { |
| 3268 | // Only check for smart pointer constructor calls |
| 3269 | const auto *CD = dyn_cast_or_null<CXXConstructorDecl>(Val: Call.getDecl()); |
| 3270 | if (!CD) |
| 3271 | return false; |
| 3272 | |
| 3273 | const auto *RD = CD->getParent(); |
| 3274 | if (!isSmartPtrRecord(RD)) |
| 3275 | return false; |
| 3276 | |
| 3277 | // Check if constructor takes a pointer parameter |
| 3278 | for (const auto *Param : CD->parameters()) { |
| 3279 | QualType ParamType = Param->getType(); |
| 3280 | if (ParamType->isPointerType() && !ParamType->isFunctionPointerType() && |
| 3281 | !ParamType->isVoidPointerType()) { |
| 3282 | return true; |
| 3283 | } |
| 3284 | } |
| 3285 | |
| 3286 | return false; |
| 3287 | } |
| 3288 | |
| 3289 | /// Collect memory regions of smart owning pointer fields from a record type |
| 3290 | /// (including fields from base classes). |
| 3291 | static void |
| 3292 | collectSmartPtrFieldRegions(const MemRegion *Reg, QualType RecQT, |
| 3293 | CheckerContext &C, |
| 3294 | llvm::SmallPtrSetImpl<const MemRegion *> &Out) { |
| 3295 | if (!Reg) |
| 3296 | return; |
| 3297 | |
| 3298 | const auto *CRD = RecQT->getAsCXXRecordDecl(); |
| 3299 | if (!CRD) |
| 3300 | return; |
| 3301 | |
| 3302 | FieldConsumer FC{Reg, C, Out}; |
| 3303 | hasSmartPtrField(CRD, FC); |
| 3304 | } |
| 3305 | |
| 3306 | /// Handle smart pointer constructor calls by escaping allocated symbols |
| 3307 | /// that are passed as pointer arguments to the constructor. |
| 3308 | ProgramStateRef MallocChecker::handleSmartPointerConstructorArguments( |
| 3309 | const CallEvent &Call, ProgramStateRef State) const { |
| 3310 | const auto *CD = cast<CXXConstructorDecl>(Val: Call.getDecl()); |
| 3311 | for (unsigned I = 0, E = std::min(a: Call.getNumArgs(), b: CD->getNumParams()); |
| 3312 | I != E; ++I) { |
| 3313 | const Expr *ArgExpr = Call.getArgExpr(Index: I); |
| 3314 | if (!ArgExpr) |
| 3315 | continue; |
| 3316 | |
| 3317 | QualType ParamType = CD->getParamDecl(i: I)->getType(); |
| 3318 | if (ParamType->isPointerType() && !ParamType->isFunctionPointerType() && |
| 3319 | !ParamType->isVoidPointerType()) { |
| 3320 | // This argument is a pointer being passed to smart pointer constructor |
| 3321 | SVal ArgVal = Call.getArgSVal(Index: I); |
| 3322 | SymbolRef Sym = ArgVal.getAsSymbol(); |
| 3323 | if (Sym && State->contains<RegionState>(key: Sym)) { |
| 3324 | const RefState *RS = State->get<RegionState>(key: Sym); |
| 3325 | if (RS && (RS->isAllocated() || RS->isAllocatedOfSizeZero())) { |
| 3326 | State = State->set<RegionState>(K: Sym, E: RefState::getEscaped(RS)); |
| 3327 | } |
| 3328 | } |
| 3329 | } |
| 3330 | } |
| 3331 | return State; |
| 3332 | } |
| 3333 | |
| 3334 | /// Handle all smart pointer related processing in function calls. |
| 3335 | /// This includes both direct smart pointer constructor calls and by-value |
| 3336 | /// arguments containing smart pointer fields. |
| 3337 | ProgramStateRef MallocChecker::handleSmartPointerRelatedCalls( |
| 3338 | const CallEvent &Call, CheckerContext &C, ProgramStateRef State) const { |
| 3339 | |
| 3340 | // Handle direct smart pointer constructor calls first |
| 3341 | if (isSmartPtrCall(Call)) { |
| 3342 | return handleSmartPointerConstructorArguments(Call, State); |
| 3343 | } |
| 3344 | |
| 3345 | // Handle smart pointer fields in by-value record arguments |
| 3346 | llvm::SmallPtrSet<const MemRegion *, 8> SmartPtrFieldRoots; |
| 3347 | for (unsigned I = 0, E = Call.getNumArgs(); I != E; ++I) { |
| 3348 | const Expr *AE = Call.getArgExpr(Index: I); |
| 3349 | if (!AE) |
| 3350 | continue; |
| 3351 | AE = AE->IgnoreParenImpCasts(); |
| 3352 | |
| 3353 | if (!isRvalueByValueRecordWithSmartPtr(AE)) |
| 3354 | continue; |
| 3355 | |
| 3356 | // Find a region for the argument. |
| 3357 | SVal ArgVal = Call.getArgSVal(Index: I); |
| 3358 | const MemRegion *ArgRegion = ArgVal.getAsRegion(); |
| 3359 | // Collect direct smart owning pointer field regions |
| 3360 | collectSmartPtrFieldRegions(Reg: ArgRegion, RecQT: AE->getType(), C, |
| 3361 | Out&: SmartPtrFieldRoots); |
| 3362 | } |
| 3363 | |
| 3364 | // Escape symbols reachable from smart pointer fields |
| 3365 | if (!SmartPtrFieldRoots.empty()) { |
| 3366 | SmallVector<const MemRegion *, 8> SmartPtrFieldRootsVec( |
| 3367 | SmartPtrFieldRoots.begin(), SmartPtrFieldRoots.end()); |
| 3368 | State = EscapeTrackedCallback::EscapeTrackedRegionsReachableFrom( |
| 3369 | Roots: SmartPtrFieldRootsVec, State); |
| 3370 | } |
| 3371 | |
| 3372 | return State; |
| 3373 | } |
| 3374 | |
| 3375 | void MallocChecker::checkPostCall(const CallEvent &Call, |
| 3376 | CheckerContext &C) const { |
| 3377 | // Handle existing post-call handlers first |
| 3378 | if (const auto *PostFN = PostFnMap.lookup(Call)) { |
| 3379 | (*PostFN)(this, C.getState(), Call, C); |
| 3380 | return; // Post-handler already called addTransition, we're done |
| 3381 | } |
| 3382 | |
| 3383 | // Handle smart pointer related processing only if no post-handler was called |
| 3384 | C.addTransition(State: handleSmartPointerRelatedCalls(Call, C, State: C.getState())); |
| 3385 | } |
| 3386 | |
| 3387 | void MallocChecker::checkPreCall(const CallEvent &Call, |
| 3388 | CheckerContext &C) const { |
| 3389 | |
| 3390 | if (const auto *DC = dyn_cast<CXXDeallocatorCall>(Val: &Call)) { |
| 3391 | const CXXDeleteExpr *DE = DC->getOriginExpr(); |
| 3392 | |
| 3393 | // FIXME: I don't see a good reason for restricting the check against |
| 3394 | // use-after-free violations to the case when NewDeleteChecker is disabled. |
| 3395 | // (However, if NewDeleteChecker is enabled, perhaps it would be better to |
| 3396 | // do this check a bit later?) |
| 3397 | if (!NewDeleteChecker.isEnabled()) |
| 3398 | if (SymbolRef Sym = C.getSVal(S: DE->getArgument()).getAsSymbol()) |
| 3399 | checkUseAfterFree(Sym, C, S: DE->getArgument()); |
| 3400 | |
| 3401 | if (!isStandardNewDelete(FD: DC->getDecl())) |
| 3402 | return; |
| 3403 | |
| 3404 | ProgramStateRef State = C.getState(); |
| 3405 | bool IsKnownToBeAllocated; |
| 3406 | State = FreeMemAux( |
| 3407 | C, ArgExpr: DE->getArgument(), Call, State, |
| 3408 | /*Hold*/ false, IsKnownToBeAllocated, |
| 3409 | Family: AllocationFamily(DE->isArrayForm() ? AF_CXXNewArray : AF_CXXNew)); |
| 3410 | |
| 3411 | C.addTransition(State); |
| 3412 | return; |
| 3413 | } |
| 3414 | |
| 3415 | // If we see a `CXXDestructorCall` (that is, an _implicit_ destructor call) |
| 3416 | // to a region that's symbolic and known to be already freed, then it must be |
| 3417 | // implicitly triggered by a `delete` expression. In this situation we should |
| 3418 | // emit a `DoubleFree` report _now_ (before entering the call to the |
| 3419 | // destructor) because otherwise the destructor call can trigger a |
| 3420 | // use-after-free bug (by accessing any member variable) and that would be |
| 3421 | // (technically valid, but) less user-friendly report than the `DoubleFree`. |
| 3422 | if (const auto *DC = dyn_cast<CXXDestructorCall>(Val: &Call)) { |
| 3423 | SymbolRef Sym = DC->getCXXThisVal().getAsSymbol(); |
| 3424 | if (!Sym) |
| 3425 | return; |
| 3426 | if (isReleased(Sym, C)) { |
| 3427 | HandleDoubleFree(C, Range: SourceRange(), /*Released=*/true, Sym, |
| 3428 | /*PrevSym=*/nullptr); |
| 3429 | return; |
| 3430 | } |
| 3431 | } |
| 3432 | |
| 3433 | // We need to handle getline pre-conditions here before the pointed region |
| 3434 | // gets invalidated by StreamChecker |
| 3435 | if (const auto *PreFN = PreFnMap.lookup(Call)) { |
| 3436 | (*PreFN)(this, C.getState(), Call, C); |
| 3437 | return; |
| 3438 | } |
| 3439 | |
| 3440 | // We will check for double free in the `evalCall` callback. |
| 3441 | // FIXME: It would be more logical to emit double free and use-after-free |
| 3442 | // reports via the same pathway (because double free is essentially a specia |
| 3443 | // case of use-after-free). |
| 3444 | if (const AnyFunctionCall *FC = dyn_cast<AnyFunctionCall>(Val: &Call)) { |
| 3445 | const FunctionDecl *FD = FC->getDecl(); |
| 3446 | if (!FD) |
| 3447 | return; |
| 3448 | |
| 3449 | // FIXME: I suspect we should remove `MallocChecker.isEnabled() &&` because |
| 3450 | // it's fishy that the enabled/disabled state of one frontend may influence |
| 3451 | // reports produced by other frontends. |
| 3452 | if (MallocChecker.isEnabled() && isFreeingCall(Call)) |
| 3453 | return; |
| 3454 | } |
| 3455 | |
| 3456 | // Check if the callee of a method is deleted. |
| 3457 | if (const CXXInstanceCall *CC = dyn_cast<CXXInstanceCall>(Val: &Call)) { |
| 3458 | SymbolRef Sym = CC->getCXXThisVal().getAsSymbol(); |
| 3459 | if (!Sym || checkUseAfterFree(Sym, C, S: CC->getCXXThisExpr())) |
| 3460 | return; |
| 3461 | } |
| 3462 | |
| 3463 | // Check arguments for being used after free. |
| 3464 | for (unsigned I = 0, E = Call.getNumArgs(); I != E; ++I) { |
| 3465 | SVal ArgSVal = Call.getArgSVal(Index: I); |
| 3466 | if (isa<Loc>(Val: ArgSVal)) { |
| 3467 | SymbolRef Sym = ArgSVal.getAsSymbol(/*IncludeBaseRegions=*/true); |
| 3468 | if (!Sym) |
| 3469 | continue; |
| 3470 | if (checkUseAfterFree(Sym, C, S: Call.getArgExpr(Index: I))) |
| 3471 | return; |
| 3472 | } |
| 3473 | } |
| 3474 | } |
| 3475 | |
| 3476 | void MallocChecker::checkPreStmt(const ReturnStmt *S, |
| 3477 | CheckerContext &C) const { |
| 3478 | checkEscapeOnReturn(S, C); |
| 3479 | } |
| 3480 | |
| 3481 | // In the CFG, automatic destructors come after the return statement. |
| 3482 | // This callback checks for returning memory that is freed by automatic |
| 3483 | // destructors, as those cannot be reached in checkPreStmt(). |
| 3484 | void MallocChecker::checkEndFunction(const ReturnStmt *S, |
| 3485 | CheckerContext &C) const { |
| 3486 | checkEscapeOnReturn(S, C); |
| 3487 | } |
| 3488 | |
| 3489 | void MallocChecker::checkEscapeOnReturn(const ReturnStmt *S, |
| 3490 | CheckerContext &C) const { |
| 3491 | if (!S) |
| 3492 | return; |
| 3493 | |
| 3494 | const Expr *E = S->getRetValue(); |
| 3495 | if (!E) |
| 3496 | return; |
| 3497 | |
| 3498 | // Check if we are returning a symbol. |
| 3499 | ProgramStateRef State = C.getState(); |
| 3500 | SVal RetVal = C.getSVal(S: E); |
| 3501 | SymbolRef Sym = RetVal.getAsSymbol(); |
| 3502 | if (!Sym) |
| 3503 | // If we are returning a field of the allocated struct or an array element, |
| 3504 | // the callee could still free the memory. |
| 3505 | if (const MemRegion *MR = RetVal.getAsRegion()) |
| 3506 | if (isa<FieldRegion, ElementRegion>(Val: MR)) |
| 3507 | if (const SymbolicRegion *BMR = |
| 3508 | dyn_cast<SymbolicRegion>(Val: MR->getBaseRegion())) |
| 3509 | Sym = BMR->getSymbol(); |
| 3510 | |
| 3511 | // Check if we are returning freed memory. |
| 3512 | if (Sym) |
| 3513 | checkUseAfterFree(Sym, C, S: E); |
| 3514 | } |
| 3515 | |
| 3516 | // TODO: Blocks should be either inlined or should call invalidate regions |
| 3517 | // upon invocation. After that's in place, special casing here will not be |
| 3518 | // needed. |
| 3519 | void MallocChecker::checkPostStmt(const BlockExpr *BE, |
| 3520 | CheckerContext &C) const { |
| 3521 | |
| 3522 | // Scan the BlockDecRefExprs for any object the retain count checker |
| 3523 | // may be tracking. |
| 3524 | if (!BE->getBlockDecl()->hasCaptures()) |
| 3525 | return; |
| 3526 | |
| 3527 | ProgramStateRef state = C.getState(); |
| 3528 | const BlockDataRegion *R = |
| 3529 | cast<BlockDataRegion>(Val: C.getSVal(S: BE).getAsRegion()); |
| 3530 | |
| 3531 | auto ReferencedVars = R->referenced_vars(); |
| 3532 | if (ReferencedVars.empty()) |
| 3533 | return; |
| 3534 | |
| 3535 | SmallVector<const MemRegion*, 10> Regions; |
| 3536 | const LocationContext *LC = C.getLocationContext(); |
| 3537 | MemRegionManager &MemMgr = C.getSValBuilder().getRegionManager(); |
| 3538 | |
| 3539 | for (const auto &Var : ReferencedVars) { |
| 3540 | const VarRegion *VR = Var.getCapturedRegion(); |
| 3541 | if (VR->getSuperRegion() == R) { |
| 3542 | VR = MemMgr.getVarRegion(VD: VR->getDecl(), LC); |
| 3543 | } |
| 3544 | Regions.push_back(Elt: VR); |
| 3545 | } |
| 3546 | |
| 3547 | state = |
| 3548 | state->scanReachableSymbols<StopTrackingCallback>(Reachable: Regions).getState(); |
| 3549 | C.addTransition(State: state); |
| 3550 | } |
| 3551 | |
| 3552 | static bool isReleased(SymbolRef Sym, CheckerContext &C) { |
| 3553 | assert(Sym); |
| 3554 | const RefState *RS = C.getState()->get<RegionState>(key: Sym); |
| 3555 | return (RS && RS->isReleased()); |
| 3556 | } |
| 3557 | |
| 3558 | bool MallocChecker::suppressDeallocationsInSuspiciousContexts( |
| 3559 | const CallEvent &Call, CheckerContext &C) const { |
| 3560 | if (Call.getNumArgs() == 0) |
| 3561 | return false; |
| 3562 | |
| 3563 | StringRef FunctionStr = "" ; |
| 3564 | if (const auto *FD = dyn_cast<FunctionDecl>(Val: C.getStackFrame()->getDecl())) |
| 3565 | if (const Stmt *Body = FD->getBody()) |
| 3566 | if (Body->getBeginLoc().isValid()) |
| 3567 | FunctionStr = |
| 3568 | Lexer::getSourceText(Range: CharSourceRange::getTokenRange( |
| 3569 | R: {FD->getBeginLoc(), Body->getBeginLoc()}), |
| 3570 | SM: C.getSourceManager(), LangOpts: C.getLangOpts()); |
| 3571 | |
| 3572 | // We do not model the Integer Set Library's retain-count based allocation. |
| 3573 | if (!FunctionStr.contains(Other: "__isl_" )) |
| 3574 | return false; |
| 3575 | |
| 3576 | ProgramStateRef State = C.getState(); |
| 3577 | |
| 3578 | for (const Expr *Arg : cast<CallExpr>(Val: Call.getOriginExpr())->arguments()) |
| 3579 | if (SymbolRef Sym = C.getSVal(S: Arg).getAsSymbol()) |
| 3580 | if (const RefState *RS = State->get<RegionState>(key: Sym)) |
| 3581 | State = State->set<RegionState>(K: Sym, E: RefState::getEscaped(RS)); |
| 3582 | |
| 3583 | C.addTransition(State); |
| 3584 | return true; |
| 3585 | } |
| 3586 | |
| 3587 | bool MallocChecker::checkUseAfterFree(SymbolRef Sym, CheckerContext &C, |
| 3588 | const Stmt *S) const { |
| 3589 | |
| 3590 | if (isReleased(Sym, C)) { |
| 3591 | HandleUseAfterFree(C, Range: S->getSourceRange(), Sym); |
| 3592 | return true; |
| 3593 | } |
| 3594 | |
| 3595 | return false; |
| 3596 | } |
| 3597 | |
| 3598 | void MallocChecker::checkUseZeroAllocated(SymbolRef Sym, CheckerContext &C, |
| 3599 | const Stmt *S) const { |
| 3600 | assert(Sym); |
| 3601 | |
| 3602 | if (const RefState *RS = C.getState()->get<RegionState>(key: Sym)) { |
| 3603 | if (RS->isAllocatedOfSizeZero()) |
| 3604 | HandleUseZeroAlloc(C, Range: RS->getStmt()->getSourceRange(), Sym); |
| 3605 | } |
| 3606 | else if (C.getState()->contains<ReallocSizeZeroSymbols>(key: Sym)) { |
| 3607 | HandleUseZeroAlloc(C, Range: S->getSourceRange(), Sym); |
| 3608 | } |
| 3609 | } |
| 3610 | |
| 3611 | // Check if the location is a freed symbolic region. |
| 3612 | void MallocChecker::checkLocation(SVal l, bool isLoad, const Stmt *S, |
| 3613 | CheckerContext &C) const { |
| 3614 | SymbolRef Sym = l.getLocSymbolInBase(); |
| 3615 | if (Sym) { |
| 3616 | checkUseAfterFree(Sym, C, S); |
| 3617 | checkUseZeroAllocated(Sym, C, S); |
| 3618 | } |
| 3619 | } |
| 3620 | |
| 3621 | // If a symbolic region is assumed to NULL (or another constant), stop tracking |
| 3622 | // it - assuming that allocation failed on this path. |
| 3623 | ProgramStateRef MallocChecker::evalAssume(ProgramStateRef state, |
| 3624 | SVal Cond, |
| 3625 | bool Assumption) const { |
| 3626 | RegionStateTy RS = state->get<RegionState>(); |
| 3627 | for (SymbolRef Sym : llvm::make_first_range(c&: RS)) { |
| 3628 | // If the symbol is assumed to be NULL, remove it from consideration. |
| 3629 | ConstraintManager &CMgr = state->getConstraintManager(); |
| 3630 | ConditionTruthVal AllocFailed = CMgr.isNull(State: state, Sym); |
| 3631 | if (AllocFailed.isConstrainedTrue()) |
| 3632 | state = state->remove<RegionState>(K: Sym); |
| 3633 | } |
| 3634 | |
| 3635 | // Realloc returns 0 when reallocation fails, which means that we should |
| 3636 | // restore the state of the pointer being reallocated. |
| 3637 | ReallocPairsTy RP = state->get<ReallocPairs>(); |
| 3638 | for (auto [Sym, ReallocPair] : RP) { |
| 3639 | // If the symbol is assumed to be NULL, remove it from consideration. |
| 3640 | ConstraintManager &CMgr = state->getConstraintManager(); |
| 3641 | ConditionTruthVal AllocFailed = CMgr.isNull(State: state, Sym); |
| 3642 | if (!AllocFailed.isConstrainedTrue()) |
| 3643 | continue; |
| 3644 | |
| 3645 | SymbolRef ReallocSym = ReallocPair.ReallocatedSym; |
| 3646 | if (const RefState *RS = state->get<RegionState>(key: ReallocSym)) { |
| 3647 | if (RS->isReleased()) { |
| 3648 | switch (ReallocPair.Kind) { |
| 3649 | case OAR_ToBeFreedAfterFailure: |
| 3650 | state = state->set<RegionState>(K: ReallocSym, |
| 3651 | E: RefState::getAllocated(family: RS->getAllocationFamily(), s: RS->getStmt())); |
| 3652 | break; |
| 3653 | case OAR_DoNotTrackAfterFailure: |
| 3654 | state = state->remove<RegionState>(K: ReallocSym); |
| 3655 | break; |
| 3656 | default: |
| 3657 | assert(ReallocPair.Kind == OAR_FreeOnFailure); |
| 3658 | } |
| 3659 | } |
| 3660 | } |
| 3661 | state = state->remove<ReallocPairs>(K: Sym); |
| 3662 | } |
| 3663 | |
| 3664 | return state; |
| 3665 | } |
| 3666 | |
| 3667 | bool MallocChecker::mayFreeAnyEscapedMemoryOrIsModeledExplicitly( |
| 3668 | const CallEvent *Call, |
| 3669 | ProgramStateRef State, |
| 3670 | SymbolRef &EscapingSymbol) const { |
| 3671 | assert(Call); |
| 3672 | EscapingSymbol = nullptr; |
| 3673 | |
| 3674 | // For now, assume that any C++ or block call can free memory. |
| 3675 | // TODO: If we want to be more optimistic here, we'll need to make sure that |
| 3676 | // regions escape to C++ containers. They seem to do that even now, but for |
| 3677 | // mysterious reasons. |
| 3678 | if (!isa<SimpleFunctionCall, ObjCMethodCall>(Val: Call)) |
| 3679 | return true; |
| 3680 | |
| 3681 | // Check Objective-C messages by selector name. |
| 3682 | if (const ObjCMethodCall *Msg = dyn_cast<ObjCMethodCall>(Val: Call)) { |
| 3683 | // If it's not a framework call, or if it takes a callback, assume it |
| 3684 | // can free memory. |
| 3685 | if (!Call->isInSystemHeader() || Call->argumentsMayEscape()) |
| 3686 | return true; |
| 3687 | |
| 3688 | // If it's a method we know about, handle it explicitly post-call. |
| 3689 | // This should happen before the "freeWhenDone" check below. |
| 3690 | if (isKnownDeallocObjCMethodName(Call: *Msg)) |
| 3691 | return false; |
| 3692 | |
| 3693 | // If there's a "freeWhenDone" parameter, but the method isn't one we know |
| 3694 | // about, we can't be sure that the object will use free() to deallocate the |
| 3695 | // memory, so we can't model it explicitly. The best we can do is use it to |
| 3696 | // decide whether the pointer escapes. |
| 3697 | if (std::optional<bool> FreeWhenDone = getFreeWhenDoneArg(Call: *Msg)) |
| 3698 | return *FreeWhenDone; |
| 3699 | |
| 3700 | // If the first selector piece ends with "NoCopy", and there is no |
| 3701 | // "freeWhenDone" parameter set to zero, we know ownership is being |
| 3702 | // transferred. Again, though, we can't be sure that the object will use |
| 3703 | // free() to deallocate the memory, so we can't model it explicitly. |
| 3704 | StringRef FirstSlot = Msg->getSelector().getNameForSlot(argIndex: 0); |
| 3705 | if (FirstSlot.ends_with(Suffix: "NoCopy" )) |
| 3706 | return true; |
| 3707 | |
| 3708 | // If the first selector starts with addPointer, insertPointer, |
| 3709 | // or replacePointer, assume we are dealing with NSPointerArray or similar. |
| 3710 | // This is similar to C++ containers (vector); we still might want to check |
| 3711 | // that the pointers get freed by following the container itself. |
| 3712 | if (FirstSlot.starts_with(Prefix: "addPointer" ) || |
| 3713 | FirstSlot.starts_with(Prefix: "insertPointer" ) || |
| 3714 | FirstSlot.starts_with(Prefix: "replacePointer" ) || |
| 3715 | FirstSlot == "valueWithPointer" ) { |
| 3716 | return true; |
| 3717 | } |
| 3718 | |
| 3719 | // We should escape receiver on call to 'init'. This is especially relevant |
| 3720 | // to the receiver, as the corresponding symbol is usually not referenced |
| 3721 | // after the call. |
| 3722 | if (Msg->getMethodFamily() == OMF_init) { |
| 3723 | EscapingSymbol = Msg->getReceiverSVal().getAsSymbol(); |
| 3724 | return true; |
| 3725 | } |
| 3726 | |
| 3727 | // Otherwise, assume that the method does not free memory. |
| 3728 | // Most framework methods do not free memory. |
| 3729 | return false; |
| 3730 | } |
| 3731 | |
| 3732 | // At this point the only thing left to handle is straight function calls. |
| 3733 | const FunctionDecl *FD = cast<SimpleFunctionCall>(Val: Call)->getDecl(); |
| 3734 | if (!FD) |
| 3735 | return true; |
| 3736 | |
| 3737 | // If it's one of the allocation functions we can reason about, we model |
| 3738 | // its behavior explicitly. |
| 3739 | if (isMemCall(Call: *Call)) |
| 3740 | return false; |
| 3741 | |
| 3742 | // If it's not a system call, assume it frees memory. |
| 3743 | if (!Call->isInSystemHeader()) |
| 3744 | return true; |
| 3745 | |
| 3746 | // White list the system functions whose arguments escape. |
| 3747 | const IdentifierInfo *II = FD->getIdentifier(); |
| 3748 | if (!II) |
| 3749 | return true; |
| 3750 | StringRef FName = II->getName(); |
| 3751 | |
| 3752 | // White list the 'XXXNoCopy' CoreFoundation functions. |
| 3753 | // We specifically check these before |
| 3754 | if (FName.ends_with(Suffix: "NoCopy" )) { |
| 3755 | // Look for the deallocator argument. We know that the memory ownership |
| 3756 | // is not transferred only if the deallocator argument is |
| 3757 | // 'kCFAllocatorNull'. |
| 3758 | for (unsigned i = 1; i < Call->getNumArgs(); ++i) { |
| 3759 | const Expr *ArgE = Call->getArgExpr(Index: i)->IgnoreParenCasts(); |
| 3760 | if (const DeclRefExpr *DE = dyn_cast<DeclRefExpr>(Val: ArgE)) { |
| 3761 | StringRef DeallocatorName = DE->getFoundDecl()->getName(); |
| 3762 | if (DeallocatorName == "kCFAllocatorNull" ) |
| 3763 | return false; |
| 3764 | } |
| 3765 | } |
| 3766 | return true; |
| 3767 | } |
| 3768 | |
| 3769 | // Associating streams with malloced buffers. The pointer can escape if |
| 3770 | // 'closefn' is specified (and if that function does free memory), |
| 3771 | // but it will not if closefn is not specified. |
| 3772 | // Currently, we do not inspect the 'closefn' function (PR12101). |
| 3773 | if (FName == "funopen" ) |
| 3774 | if (Call->getNumArgs() >= 4 && Call->getArgSVal(Index: 4).isConstant(I: 0)) |
| 3775 | return false; |
| 3776 | |
| 3777 | // Do not warn on pointers passed to 'setbuf' when used with std streams, |
| 3778 | // these leaks might be intentional when setting the buffer for stdio. |
| 3779 | // http://stackoverflow.com/questions/2671151/who-frees-setvbuf-buffer |
| 3780 | if (FName == "setbuf" || FName =="setbuffer" || |
| 3781 | FName == "setlinebuf" || FName == "setvbuf" ) { |
| 3782 | if (Call->getNumArgs() >= 1) { |
| 3783 | const Expr *ArgE = Call->getArgExpr(Index: 0)->IgnoreParenCasts(); |
| 3784 | if (const DeclRefExpr *ArgDRE = dyn_cast<DeclRefExpr>(Val: ArgE)) |
| 3785 | if (const VarDecl *D = dyn_cast<VarDecl>(Val: ArgDRE->getDecl())) |
| 3786 | if (D->getCanonicalDecl()->getName().contains(Other: "std" )) |
| 3787 | return true; |
| 3788 | } |
| 3789 | } |
| 3790 | |
| 3791 | // A bunch of other functions which either take ownership of a pointer or |
| 3792 | // wrap the result up in a struct or object, meaning it can be freed later. |
| 3793 | // (See RetainCountChecker.) Not all the parameters here are invalidated, |
| 3794 | // but the Malloc checker cannot differentiate between them. The right way |
| 3795 | // of doing this would be to implement a pointer escapes callback. |
| 3796 | if (FName == "CGBitmapContextCreate" || |
| 3797 | FName == "CGBitmapContextCreateWithData" || |
| 3798 | FName == "CVPixelBufferCreateWithBytes" || |
| 3799 | FName == "CVPixelBufferCreateWithPlanarBytes" || |
| 3800 | FName == "OSAtomicEnqueue" ) { |
| 3801 | return true; |
| 3802 | } |
| 3803 | |
| 3804 | if (FName == "postEvent" && |
| 3805 | FD->getQualifiedNameAsString() == "QCoreApplication::postEvent" ) { |
| 3806 | return true; |
| 3807 | } |
| 3808 | |
| 3809 | if (FName == "connectImpl" && |
| 3810 | FD->getQualifiedNameAsString() == "QObject::connectImpl" ) { |
| 3811 | return true; |
| 3812 | } |
| 3813 | |
| 3814 | if (FName == "singleShotImpl" && |
| 3815 | FD->getQualifiedNameAsString() == "QTimer::singleShotImpl" ) { |
| 3816 | return true; |
| 3817 | } |
| 3818 | |
| 3819 | // Protobuf function declared in `generated_message_util.h` that takes |
| 3820 | // ownership of the second argument. As the first and third arguments are |
| 3821 | // allocation arenas and won't be tracked by this checker, there is no reason |
| 3822 | // to set `EscapingSymbol`. (Also, this is an implementation detail of |
| 3823 | // Protobuf, so it's better to be a bit more permissive.) |
| 3824 | if (FName == "GetOwnedMessageInternal" ) { |
| 3825 | return true; |
| 3826 | } |
| 3827 | |
| 3828 | // Handle cases where we know a buffer's /address/ can escape. |
| 3829 | // Note that the above checks handle some special cases where we know that |
| 3830 | // even though the address escapes, it's still our responsibility to free the |
| 3831 | // buffer. |
| 3832 | if (Call->argumentsMayEscape()) |
| 3833 | return true; |
| 3834 | |
| 3835 | // Otherwise, assume that the function does not free memory. |
| 3836 | // Most system calls do not free the memory. |
| 3837 | return false; |
| 3838 | } |
| 3839 | |
| 3840 | ProgramStateRef MallocChecker::checkPointerEscape(ProgramStateRef State, |
| 3841 | const InvalidatedSymbols &Escaped, |
| 3842 | const CallEvent *Call, |
| 3843 | PointerEscapeKind Kind) const { |
| 3844 | return checkPointerEscapeAux(State, Escaped, Call, Kind, |
| 3845 | /*IsConstPointerEscape*/ false); |
| 3846 | } |
| 3847 | |
| 3848 | ProgramStateRef MallocChecker::checkConstPointerEscape(ProgramStateRef State, |
| 3849 | const InvalidatedSymbols &Escaped, |
| 3850 | const CallEvent *Call, |
| 3851 | PointerEscapeKind Kind) const { |
| 3852 | // If a const pointer escapes, it may not be freed(), but it could be deleted. |
| 3853 | return checkPointerEscapeAux(State, Escaped, Call, Kind, |
| 3854 | /*IsConstPointerEscape*/ true); |
| 3855 | } |
| 3856 | |
| 3857 | static bool checkIfNewOrNewArrayFamily(const RefState *RS) { |
| 3858 | return (RS->getAllocationFamily().Kind == AF_CXXNewArray || |
| 3859 | RS->getAllocationFamily().Kind == AF_CXXNew); |
| 3860 | } |
| 3861 | |
| 3862 | ProgramStateRef MallocChecker::checkPointerEscapeAux( |
| 3863 | ProgramStateRef State, const InvalidatedSymbols &Escaped, |
| 3864 | const CallEvent *Call, PointerEscapeKind Kind, |
| 3865 | bool IsConstPointerEscape) const { |
| 3866 | // If we know that the call does not free memory, or we want to process the |
| 3867 | // call later, keep tracking the top level arguments. |
| 3868 | SymbolRef EscapingSymbol = nullptr; |
| 3869 | if (Kind == PSK_DirectEscapeOnCall && |
| 3870 | !mayFreeAnyEscapedMemoryOrIsModeledExplicitly(Call, State, |
| 3871 | EscapingSymbol) && |
| 3872 | !EscapingSymbol) { |
| 3873 | return State; |
| 3874 | } |
| 3875 | |
| 3876 | for (SymbolRef sym : Escaped) { |
| 3877 | if (EscapingSymbol && EscapingSymbol != sym) |
| 3878 | continue; |
| 3879 | |
| 3880 | if (const RefState *RS = State->get<RegionState>(key: sym)) |
| 3881 | if (RS->isAllocated() || RS->isAllocatedOfSizeZero()) |
| 3882 | if (!IsConstPointerEscape || checkIfNewOrNewArrayFamily(RS)) |
| 3883 | State = State->set<RegionState>(K: sym, E: RefState::getEscaped(RS)); |
| 3884 | } |
| 3885 | return State; |
| 3886 | } |
| 3887 | |
| 3888 | bool MallocChecker::isArgZERO_SIZE_PTR(ProgramStateRef State, CheckerContext &C, |
| 3889 | SVal ArgVal) const { |
| 3890 | if (!KernelZeroSizePtrValue) |
| 3891 | KernelZeroSizePtrValue = |
| 3892 | tryExpandAsInteger(Macro: "ZERO_SIZE_PTR" , PP: C.getPreprocessor()); |
| 3893 | |
| 3894 | const llvm::APSInt *ArgValKnown = |
| 3895 | C.getSValBuilder().getKnownValue(state: State, val: ArgVal); |
| 3896 | return ArgValKnown && *KernelZeroSizePtrValue && |
| 3897 | ArgValKnown->getSExtValue() == **KernelZeroSizePtrValue; |
| 3898 | } |
| 3899 | |
| 3900 | static SymbolRef findFailedReallocSymbol(ProgramStateRef currState, |
| 3901 | ProgramStateRef prevState) { |
| 3902 | ReallocPairsTy currMap = currState->get<ReallocPairs>(); |
| 3903 | ReallocPairsTy prevMap = prevState->get<ReallocPairs>(); |
| 3904 | |
| 3905 | for (const ReallocPairsTy::value_type &Pair : prevMap) { |
| 3906 | SymbolRef sym = Pair.first; |
| 3907 | if (!currMap.lookup(K: sym)) |
| 3908 | return sym; |
| 3909 | } |
| 3910 | |
| 3911 | return nullptr; |
| 3912 | } |
| 3913 | |
| 3914 | static bool isReferenceCountingPointerDestructor(const CXXDestructorDecl *DD) { |
| 3915 | if (const IdentifierInfo *II = DD->getParent()->getIdentifier()) { |
| 3916 | StringRef N = II->getName(); |
| 3917 | if (N.contains_insensitive(Other: "ptr" ) || N.contains_insensitive(Other: "pointer" )) { |
| 3918 | if (N.contains_insensitive(Other: "ref" ) || N.contains_insensitive(Other: "cnt" ) || |
| 3919 | N.contains_insensitive(Other: "intrusive" ) || |
| 3920 | N.contains_insensitive(Other: "shared" ) || N.ends_with_insensitive(Suffix: "rc" )) { |
| 3921 | return true; |
| 3922 | } |
| 3923 | } |
| 3924 | } |
| 3925 | return false; |
| 3926 | } |
| 3927 | |
| 3928 | PathDiagnosticPieceRef MallocBugVisitor::VisitNode(const ExplodedNode *N, |
| 3929 | BugReporterContext &BRC, |
| 3930 | PathSensitiveBugReport &BR) { |
| 3931 | ProgramStateRef state = N->getState(); |
| 3932 | ProgramStateRef statePrev = N->getFirstPred()->getState(); |
| 3933 | |
| 3934 | const RefState *RSCurr = state->get<RegionState>(key: Sym); |
| 3935 | const RefState *RSPrev = statePrev->get<RegionState>(key: Sym); |
| 3936 | |
| 3937 | const Stmt *S = N->getStmtForDiagnostics(); |
| 3938 | // When dealing with containers, we sometimes want to give a note |
| 3939 | // even if the statement is missing. |
| 3940 | if (!S && (!RSCurr || RSCurr->getAllocationFamily().Kind != AF_InnerBuffer)) |
| 3941 | return nullptr; |
| 3942 | |
| 3943 | const LocationContext *CurrentLC = N->getLocationContext(); |
| 3944 | |
| 3945 | // If we find an atomic fetch_add or fetch_sub within the function in which |
| 3946 | // the pointer was released (before the release), this is likely a release |
| 3947 | // point of reference-counted object (like shared pointer). |
| 3948 | // |
| 3949 | // Because we don't model atomics, and also because we don't know that the |
| 3950 | // original reference count is positive, we should not report use-after-frees |
| 3951 | // on objects deleted in such functions. This can probably be improved |
| 3952 | // through better shared pointer modeling. |
| 3953 | if (ReleaseFunctionLC && (ReleaseFunctionLC == CurrentLC || |
| 3954 | ReleaseFunctionLC->isParentOf(LC: CurrentLC))) { |
| 3955 | if (const auto *AE = dyn_cast<AtomicExpr>(Val: S)) { |
| 3956 | // Check for manual use of atomic builtins. |
| 3957 | AtomicExpr::AtomicOp Op = AE->getOp(); |
| 3958 | if (Op == AtomicExpr::AO__c11_atomic_fetch_add || |
| 3959 | Op == AtomicExpr::AO__c11_atomic_fetch_sub) { |
| 3960 | BR.markInvalid(Tag: getTag(), Data: S); |
| 3961 | // After report is considered invalid there is no need to proceed |
| 3962 | // futher. |
| 3963 | return nullptr; |
| 3964 | } |
| 3965 | } else if (const auto *CE = dyn_cast<CallExpr>(Val: S)) { |
| 3966 | // Check for `std::atomic` and such. This covers both regular method calls |
| 3967 | // and operator calls. |
| 3968 | if (const auto *MD = |
| 3969 | dyn_cast_or_null<CXXMethodDecl>(Val: CE->getDirectCallee())) { |
| 3970 | const CXXRecordDecl *RD = MD->getParent(); |
| 3971 | // A bit wobbly with ".contains()" because it may be like |
| 3972 | // "__atomic_base" or something. |
| 3973 | if (StringRef(RD->getNameAsString()).contains(Other: "atomic" )) { |
| 3974 | BR.markInvalid(Tag: getTag(), Data: S); |
| 3975 | // After report is considered invalid there is no need to proceed |
| 3976 | // futher. |
| 3977 | return nullptr; |
| 3978 | } |
| 3979 | } |
| 3980 | } |
| 3981 | } |
| 3982 | |
| 3983 | // FIXME: We will eventually need to handle non-statement-based events |
| 3984 | // (__attribute__((cleanup))). |
| 3985 | |
| 3986 | // Find out if this is an interesting point and what is the kind. |
| 3987 | StringRef Msg; |
| 3988 | std::unique_ptr<StackHintGeneratorForSymbol> StackHint = nullptr; |
| 3989 | SmallString<256> Buf; |
| 3990 | llvm::raw_svector_ostream OS(Buf); |
| 3991 | |
| 3992 | if (Mode == Normal) { |
| 3993 | if (isAllocated(RSCurr, RSPrev, Stmt: S)) { |
| 3994 | Msg = "Memory is allocated" ; |
| 3995 | StackHint = std::make_unique<StackHintGeneratorForSymbol>( |
| 3996 | args&: Sym, args: "Returned allocated memory" ); |
| 3997 | } else if (isReleased(RSCurr, RSPrev, Stmt: S)) { |
| 3998 | const auto Family = RSCurr->getAllocationFamily(); |
| 3999 | switch (Family.Kind) { |
| 4000 | case AF_Alloca: |
| 4001 | case AF_Malloc: |
| 4002 | case AF_Custom: |
| 4003 | case AF_CXXNew: |
| 4004 | case AF_CXXNewArray: |
| 4005 | case AF_IfNameIndex: |
| 4006 | Msg = "Memory is released" ; |
| 4007 | StackHint = std::make_unique<StackHintGeneratorForSymbol>( |
| 4008 | args&: Sym, args: "Returning; memory was released" ); |
| 4009 | break; |
| 4010 | case AF_InnerBuffer: { |
| 4011 | const MemRegion *ObjRegion = |
| 4012 | allocation_state::getContainerObjRegion(State: statePrev, Sym); |
| 4013 | const auto *TypedRegion = cast<TypedValueRegion>(Val: ObjRegion); |
| 4014 | QualType ObjTy = TypedRegion->getValueType(); |
| 4015 | OS << "Inner buffer of '" << ObjTy << "' " ; |
| 4016 | |
| 4017 | if (N->getLocation().getKind() == ProgramPoint::PostImplicitCallKind) { |
| 4018 | OS << "deallocated by call to destructor" ; |
| 4019 | StackHint = std::make_unique<StackHintGeneratorForSymbol>( |
| 4020 | args&: Sym, args: "Returning; inner buffer was deallocated" ); |
| 4021 | } else { |
| 4022 | OS << "reallocated by call to '" ; |
| 4023 | const Stmt *S = RSCurr->getStmt(); |
| 4024 | if (const auto *MemCallE = dyn_cast<CXXMemberCallExpr>(Val: S)) { |
| 4025 | OS << MemCallE->getMethodDecl()->getDeclName(); |
| 4026 | } else if (const auto *OpCallE = dyn_cast<CXXOperatorCallExpr>(Val: S)) { |
| 4027 | OS << OpCallE->getDirectCallee()->getDeclName(); |
| 4028 | } else if (const auto *CallE = dyn_cast<CallExpr>(Val: S)) { |
| 4029 | auto &CEMgr = BRC.getStateManager().getCallEventManager(); |
| 4030 | CallEventRef<> Call = |
| 4031 | CEMgr.getSimpleCall(E: CallE, State: state, LCtx: CurrentLC, ElemRef: {nullptr, 0}); |
| 4032 | if (const auto *D = dyn_cast_or_null<NamedDecl>(Val: Call->getDecl())) |
| 4033 | OS << D->getDeclName(); |
| 4034 | else |
| 4035 | OS << "unknown" ; |
| 4036 | } |
| 4037 | OS << "'" ; |
| 4038 | StackHint = std::make_unique<StackHintGeneratorForSymbol>( |
| 4039 | args&: Sym, args: "Returning; inner buffer was reallocated" ); |
| 4040 | } |
| 4041 | Msg = OS.str(); |
| 4042 | break; |
| 4043 | } |
| 4044 | case AF_None: |
| 4045 | assert(false && "Unhandled allocation family!" ); |
| 4046 | return nullptr; |
| 4047 | } |
| 4048 | |
| 4049 | // Record the stack frame that is _responsible_ for this memory release |
| 4050 | // event. This will be used by the false positive suppression heuristics |
| 4051 | // that recognize the release points of reference-counted objects. |
| 4052 | // |
| 4053 | // Usually (e.g. in C) we say that the _responsible_ stack frame is the |
| 4054 | // current innermost stack frame: |
| 4055 | ReleaseFunctionLC = CurrentLC->getStackFrame(); |
| 4056 | // ...but if the stack contains a destructor call, then we say that the |
| 4057 | // outermost destructor stack frame is the _responsible_ one: |
| 4058 | for (const LocationContext *LC = CurrentLC; LC; LC = LC->getParent()) { |
| 4059 | if (const auto *DD = dyn_cast<CXXDestructorDecl>(Val: LC->getDecl())) { |
| 4060 | if (isReferenceCountingPointerDestructor(DD)) { |
| 4061 | // This immediately looks like a reference-counting destructor. |
| 4062 | // We're bad at guessing the original reference count of the |
| 4063 | // object, so suppress the report for now. |
| 4064 | BR.markInvalid(Tag: getTag(), Data: DD); |
| 4065 | |
| 4066 | // After report is considered invalid there is no need to proceed |
| 4067 | // futher. |
| 4068 | return nullptr; |
| 4069 | } |
| 4070 | |
| 4071 | // Switch suspection to outer destructor to catch patterns like: |
| 4072 | // (note that class name is distorted to bypass |
| 4073 | // isReferenceCountingPointerDestructor() logic) |
| 4074 | // |
| 4075 | // SmartPointr::~SmartPointr() { |
| 4076 | // if (refcount.fetch_sub(1) == 1) |
| 4077 | // release_resources(); |
| 4078 | // } |
| 4079 | // void SmartPointr::release_resources() { |
| 4080 | // free(buffer); |
| 4081 | // } |
| 4082 | // |
| 4083 | // This way ReleaseFunctionLC will point to outermost destructor and |
| 4084 | // it would be possible to catch wider range of FP. |
| 4085 | // |
| 4086 | // NOTE: it would be great to support smth like that in C, since |
| 4087 | // currently patterns like following won't be supressed: |
| 4088 | // |
| 4089 | // void doFree(struct Data *data) { free(data); } |
| 4090 | // void putData(struct Data *data) |
| 4091 | // { |
| 4092 | // if (refPut(data)) |
| 4093 | // doFree(data); |
| 4094 | // } |
| 4095 | ReleaseFunctionLC = LC->getStackFrame(); |
| 4096 | } |
| 4097 | } |
| 4098 | |
| 4099 | } else if (isRelinquished(RSCurr, RSPrev, Stmt: S)) { |
| 4100 | Msg = "Memory ownership is transferred" ; |
| 4101 | StackHint = std::make_unique<StackHintGeneratorForSymbol>(args&: Sym, args: "" ); |
| 4102 | } else if (hasReallocFailed(RSCurr, RSPrev, Stmt: S)) { |
| 4103 | Mode = ReallocationFailed; |
| 4104 | Msg = "Reallocation failed" ; |
| 4105 | StackHint = std::make_unique<StackHintGeneratorForReallocationFailed>( |
| 4106 | args&: Sym, args: "Reallocation failed" ); |
| 4107 | |
| 4108 | if (SymbolRef sym = findFailedReallocSymbol(currState: state, prevState: statePrev)) { |
| 4109 | // Is it possible to fail two reallocs WITHOUT testing in between? |
| 4110 | assert((!FailedReallocSymbol || FailedReallocSymbol == sym) && |
| 4111 | "We only support one failed realloc at a time." ); |
| 4112 | BR.markInteresting(sym); |
| 4113 | FailedReallocSymbol = sym; |
| 4114 | } |
| 4115 | } |
| 4116 | |
| 4117 | // We are in a special mode if a reallocation failed later in the path. |
| 4118 | } else if (Mode == ReallocationFailed) { |
| 4119 | assert(FailedReallocSymbol && "No symbol to look for." ); |
| 4120 | |
| 4121 | // Is this is the first appearance of the reallocated symbol? |
| 4122 | if (!statePrev->get<RegionState>(key: FailedReallocSymbol)) { |
| 4123 | // We're at the reallocation point. |
| 4124 | Msg = "Attempt to reallocate memory" ; |
| 4125 | StackHint = std::make_unique<StackHintGeneratorForSymbol>( |
| 4126 | args&: Sym, args: "Returned reallocated memory" ); |
| 4127 | FailedReallocSymbol = nullptr; |
| 4128 | Mode = Normal; |
| 4129 | } |
| 4130 | } |
| 4131 | |
| 4132 | if (Msg.empty()) { |
| 4133 | assert(!StackHint); |
| 4134 | return nullptr; |
| 4135 | } |
| 4136 | |
| 4137 | assert(StackHint); |
| 4138 | |
| 4139 | // Generate the extra diagnostic. |
| 4140 | PathDiagnosticLocation Pos; |
| 4141 | if (!S) { |
| 4142 | assert(RSCurr->getAllocationFamily().Kind == AF_InnerBuffer); |
| 4143 | auto PostImplCall = N->getLocation().getAs<PostImplicitCall>(); |
| 4144 | if (!PostImplCall) |
| 4145 | return nullptr; |
| 4146 | Pos = PathDiagnosticLocation(PostImplCall->getLocation(), |
| 4147 | BRC.getSourceManager()); |
| 4148 | } else { |
| 4149 | Pos = PathDiagnosticLocation(S, BRC.getSourceManager(), |
| 4150 | N->getLocationContext()); |
| 4151 | } |
| 4152 | |
| 4153 | auto P = std::make_shared<PathDiagnosticEventPiece>(args&: Pos, args&: Msg, args: true); |
| 4154 | BR.addCallStackHint(Piece: P, StackHint: std::move(StackHint)); |
| 4155 | return P; |
| 4156 | } |
| 4157 | |
| 4158 | void MallocChecker::printState(raw_ostream &Out, ProgramStateRef State, |
| 4159 | const char *NL, const char *Sep) const { |
| 4160 | |
| 4161 | RegionStateTy RS = State->get<RegionState>(); |
| 4162 | |
| 4163 | if (!RS.isEmpty()) { |
| 4164 | Out << Sep << "MallocChecker :" << NL; |
| 4165 | for (auto [Sym, Data] : RS) { |
| 4166 | const RefState *RefS = State->get<RegionState>(key: Sym); |
| 4167 | AllocationFamily Family = RefS->getAllocationFamily(); |
| 4168 | |
| 4169 | const CheckerFrontend *Frontend = |
| 4170 | getRelevantFrontendAs<CheckerFrontend>(Family); |
| 4171 | |
| 4172 | Sym->dumpToStream(os&: Out); |
| 4173 | Out << " : " ; |
| 4174 | Data.dump(OS&: Out); |
| 4175 | if (Frontend && Frontend->isEnabled()) |
| 4176 | Out << " (" << Frontend->getName() << ")" ; |
| 4177 | Out << NL; |
| 4178 | } |
| 4179 | } |
| 4180 | } |
| 4181 | |
| 4182 | namespace clang { |
| 4183 | namespace ento { |
| 4184 | namespace allocation_state { |
| 4185 | |
| 4186 | ProgramStateRef |
| 4187 | markReleased(ProgramStateRef State, SymbolRef Sym, const Expr *Origin) { |
| 4188 | AllocationFamily Family(AF_InnerBuffer); |
| 4189 | return State->set<RegionState>(K: Sym, E: RefState::getReleased(family: Family, s: Origin)); |
| 4190 | } |
| 4191 | |
| 4192 | } // end namespace allocation_state |
| 4193 | } // end namespace ento |
| 4194 | } // end namespace clang |
| 4195 | |
| 4196 | // Intended to be used in InnerPointerChecker to register the part of |
| 4197 | // MallocChecker connected to it. |
| 4198 | void ento::registerInnerPointerCheckerAux(CheckerManager &Mgr) { |
| 4199 | Mgr.getChecker<MallocChecker>()->InnerPointerChecker.enable(Mgr); |
| 4200 | } |
| 4201 | |
| 4202 | void ento::registerDynamicMemoryModeling(CheckerManager &Mgr) { |
| 4203 | auto *Chk = Mgr.getChecker<MallocChecker>(); |
| 4204 | // FIXME: This is a "hidden" undocumented frontend but there are public |
| 4205 | // checker options which are attached to it. |
| 4206 | CheckerNameRef DMMName = Mgr.getCurrentCheckerName(); |
| 4207 | Chk->ShouldIncludeOwnershipAnnotatedFunctions = |
| 4208 | Mgr.getAnalyzerOptions().getCheckerBooleanOption(CheckerName: DMMName, OptionName: "Optimistic" ); |
| 4209 | Chk->ShouldRegisterNoOwnershipChangeVisitor = |
| 4210 | Mgr.getAnalyzerOptions().getCheckerBooleanOption( |
| 4211 | CheckerName: DMMName, OptionName: "AddNoOwnershipChangeNotes" ); |
| 4212 | } |
| 4213 | |
| 4214 | bool ento::shouldRegisterDynamicMemoryModeling(const CheckerManager &mgr) { |
| 4215 | return true; |
| 4216 | } |
| 4217 | |
| 4218 | #define REGISTER_CHECKER(NAME) \ |
| 4219 | void ento::register##NAME(CheckerManager &Mgr) { \ |
| 4220 | Mgr.getChecker<MallocChecker>()->NAME.enable(Mgr); \ |
| 4221 | } \ |
| 4222 | \ |
| 4223 | bool ento::shouldRegister##NAME(const CheckerManager &) { return true; } |
| 4224 | |
| 4225 | // TODO: NewDelete and NewDeleteLeaks shouldn't be registered when not in C++. |
| 4226 | REGISTER_CHECKER(MallocChecker) |
| 4227 | REGISTER_CHECKER(NewDeleteChecker) |
| 4228 | REGISTER_CHECKER(NewDeleteLeaksChecker) |
| 4229 | REGISTER_CHECKER(MismatchedDeallocatorChecker) |
| 4230 | REGISTER_CHECKER(TaintedAllocChecker) |
| 4231 | |