| 1 | //===- BuildTree.cpp ------------------------------------------*- C++ -*-=====// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | #include "clang/Tooling/Syntax/BuildTree.h" |
| 9 | #include "clang/AST/ASTFwd.h" |
| 10 | #include "clang/AST/Decl.h" |
| 11 | #include "clang/AST/DeclBase.h" |
| 12 | #include "clang/AST/DeclCXX.h" |
| 13 | #include "clang/AST/DeclarationName.h" |
| 14 | #include "clang/AST/Expr.h" |
| 15 | #include "clang/AST/ExprCXX.h" |
| 16 | #include "clang/AST/IgnoreExpr.h" |
| 17 | #include "clang/AST/OperationKinds.h" |
| 18 | #include "clang/AST/RecursiveASTVisitor.h" |
| 19 | #include "clang/AST/Stmt.h" |
| 20 | #include "clang/AST/TypeLoc.h" |
| 21 | #include "clang/AST/TypeLocVisitor.h" |
| 22 | #include "clang/Basic/LLVM.h" |
| 23 | #include "clang/Basic/SourceLocation.h" |
| 24 | #include "clang/Basic/SourceManager.h" |
| 25 | #include "clang/Basic/TokenKinds.h" |
| 26 | #include "clang/Lex/Lexer.h" |
| 27 | #include "clang/Lex/LiteralSupport.h" |
| 28 | #include "clang/Tooling/Syntax/Nodes.h" |
| 29 | #include "clang/Tooling/Syntax/TokenBufferTokenManager.h" |
| 30 | #include "clang/Tooling/Syntax/Tokens.h" |
| 31 | #include "clang/Tooling/Syntax/Tree.h" |
| 32 | #include "llvm/ADT/ArrayRef.h" |
| 33 | #include "llvm/ADT/DenseMap.h" |
| 34 | #include "llvm/ADT/PointerUnion.h" |
| 35 | #include "llvm/ADT/STLExtras.h" |
| 36 | #include "llvm/ADT/SmallVector.h" |
| 37 | #include "llvm/Support/Allocator.h" |
| 38 | #include "llvm/Support/Compiler.h" |
| 39 | #include "llvm/Support/FormatVariadic.h" |
| 40 | #include <map> |
| 41 | |
| 42 | using namespace clang; |
| 43 | |
| 44 | // Ignores the implicit `CXXConstructExpr` for copy/move constructor calls |
| 45 | // generated by the compiler, as well as in implicit conversions like the one |
| 46 | // wrapping `1` in `X x = 1;`. |
| 47 | static Expr *IgnoreImplicitConstructorSingleStep(Expr *E) { |
| 48 | if (auto *C = dyn_cast<CXXConstructExpr>(Val: E)) { |
| 49 | auto NumArgs = C->getNumArgs(); |
| 50 | if (NumArgs == 1 || (NumArgs > 1 && isa<CXXDefaultArgExpr>(Val: C->getArg(Arg: 1)))) { |
| 51 | Expr *A = C->getArg(Arg: 0); |
| 52 | if (C->getParenOrBraceRange().isInvalid()) |
| 53 | return A; |
| 54 | } |
| 55 | } |
| 56 | return E; |
| 57 | } |
| 58 | |
| 59 | // In: |
| 60 | // struct X { |
| 61 | // X(int) |
| 62 | // }; |
| 63 | // X x = X(1); |
| 64 | // Ignores the implicit `CXXFunctionalCastExpr` that wraps |
| 65 | // `CXXConstructExpr X(1)`. |
| 66 | static Expr *IgnoreCXXFunctionalCastExprWrappingConstructor(Expr *E) { |
| 67 | if (auto *F = dyn_cast<CXXFunctionalCastExpr>(Val: E)) { |
| 68 | if (F->getCastKind() == CK_ConstructorConversion) |
| 69 | return F->getSubExpr(); |
| 70 | } |
| 71 | return E; |
| 72 | } |
| 73 | |
| 74 | static Expr *IgnoreImplicit(Expr *E) { |
| 75 | return IgnoreExprNodes(E, Fns&: IgnoreImplicitSingleStep, |
| 76 | Fns&: IgnoreImplicitConstructorSingleStep, |
| 77 | Fns&: IgnoreCXXFunctionalCastExprWrappingConstructor); |
| 78 | } |
| 79 | |
| 80 | [[maybe_unused]] |
| 81 | static bool isImplicitExpr(Expr *E) { |
| 82 | return IgnoreImplicit(E) != E; |
| 83 | } |
| 84 | |
| 85 | namespace { |
| 86 | /// Get start location of the Declarator from the TypeLoc. |
| 87 | /// E.g.: |
| 88 | /// loc of `(` in `int (a)` |
| 89 | /// loc of `*` in `int *(a)` |
| 90 | /// loc of the first `(` in `int (*a)(int)` |
| 91 | /// loc of the `*` in `int *(a)(int)` |
| 92 | /// loc of the first `*` in `const int *const *volatile a;` |
| 93 | /// |
| 94 | /// It is non-trivial to get the start location because TypeLocs are stored |
| 95 | /// inside out. In the example above `*volatile` is the TypeLoc returned |
| 96 | /// by `Decl.getTypeSourceInfo()`, and `*const` is what `.getPointeeLoc()` |
| 97 | /// returns. |
| 98 | struct GetStartLoc : TypeLocVisitor<GetStartLoc, SourceLocation> { |
| 99 | SourceLocation VisitParenTypeLoc(ParenTypeLoc T) { |
| 100 | auto L = Visit(TyLoc: T.getInnerLoc()); |
| 101 | if (L.isValid()) |
| 102 | return L; |
| 103 | return T.getLParenLoc(); |
| 104 | } |
| 105 | |
| 106 | // Types spelled in the prefix part of the declarator. |
| 107 | SourceLocation VisitPointerTypeLoc(PointerTypeLoc T) { |
| 108 | return HandlePointer(T); |
| 109 | } |
| 110 | |
| 111 | SourceLocation VisitMemberPointerTypeLoc(MemberPointerTypeLoc T) { |
| 112 | return HandlePointer(T); |
| 113 | } |
| 114 | |
| 115 | SourceLocation VisitBlockPointerTypeLoc(BlockPointerTypeLoc T) { |
| 116 | return HandlePointer(T); |
| 117 | } |
| 118 | |
| 119 | SourceLocation VisitReferenceTypeLoc(ReferenceTypeLoc T) { |
| 120 | return HandlePointer(T); |
| 121 | } |
| 122 | |
| 123 | SourceLocation VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc T) { |
| 124 | return HandlePointer(T); |
| 125 | } |
| 126 | |
| 127 | // All other cases are not important, as they are either part of declaration |
| 128 | // specifiers (e.g. inheritors of TypeSpecTypeLoc) or introduce modifiers on |
| 129 | // existing declarators (e.g. QualifiedTypeLoc). They cannot start the |
| 130 | // declarator themselves, but their underlying type can. |
| 131 | SourceLocation VisitTypeLoc(TypeLoc T) { |
| 132 | auto N = T.getNextTypeLoc(); |
| 133 | if (!N) |
| 134 | return SourceLocation(); |
| 135 | return Visit(TyLoc: N); |
| 136 | } |
| 137 | |
| 138 | SourceLocation VisitFunctionProtoTypeLoc(FunctionProtoTypeLoc T) { |
| 139 | if (T.getTypePtr()->hasTrailingReturn()) |
| 140 | return SourceLocation(); // avoid recursing into the suffix of declarator. |
| 141 | return VisitTypeLoc(T); |
| 142 | } |
| 143 | |
| 144 | private: |
| 145 | template <class PtrLoc> SourceLocation HandlePointer(PtrLoc T) { |
| 146 | auto L = Visit(T.getPointeeLoc()); |
| 147 | if (L.isValid()) |
| 148 | return L; |
| 149 | return T.getLocalSourceRange().getBegin(); |
| 150 | } |
| 151 | }; |
| 152 | } // namespace |
| 153 | |
| 154 | static CallExpr::arg_range dropDefaultArgs(CallExpr::arg_range Args) { |
| 155 | auto FirstDefaultArg = |
| 156 | llvm::find_if(Range&: Args, P: [](auto It) { return isa<CXXDefaultArgExpr>(It); }); |
| 157 | return llvm::make_range(x: Args.begin(), y: FirstDefaultArg); |
| 158 | } |
| 159 | |
| 160 | static syntax::NodeKind getOperatorNodeKind(const CXXOperatorCallExpr &E) { |
| 161 | switch (E.getOperator()) { |
| 162 | // Comparison |
| 163 | case OO_EqualEqual: |
| 164 | case OO_ExclaimEqual: |
| 165 | case OO_Greater: |
| 166 | case OO_GreaterEqual: |
| 167 | case OO_Less: |
| 168 | case OO_LessEqual: |
| 169 | case OO_Spaceship: |
| 170 | // Assignment |
| 171 | case OO_Equal: |
| 172 | case OO_SlashEqual: |
| 173 | case OO_PercentEqual: |
| 174 | case OO_CaretEqual: |
| 175 | case OO_PipeEqual: |
| 176 | case OO_LessLessEqual: |
| 177 | case OO_GreaterGreaterEqual: |
| 178 | case OO_PlusEqual: |
| 179 | case OO_MinusEqual: |
| 180 | case OO_StarEqual: |
| 181 | case OO_AmpEqual: |
| 182 | // Binary computation |
| 183 | case OO_Slash: |
| 184 | case OO_Percent: |
| 185 | case OO_Caret: |
| 186 | case OO_Pipe: |
| 187 | case OO_LessLess: |
| 188 | case OO_GreaterGreater: |
| 189 | case OO_AmpAmp: |
| 190 | case OO_PipePipe: |
| 191 | case OO_ArrowStar: |
| 192 | case OO_Comma: |
| 193 | return syntax::NodeKind::BinaryOperatorExpression; |
| 194 | case OO_Tilde: |
| 195 | case OO_Exclaim: |
| 196 | return syntax::NodeKind::PrefixUnaryOperatorExpression; |
| 197 | // Prefix/Postfix increment/decrement |
| 198 | case OO_PlusPlus: |
| 199 | case OO_MinusMinus: |
| 200 | switch (E.getNumArgs()) { |
| 201 | case 1: |
| 202 | return syntax::NodeKind::PrefixUnaryOperatorExpression; |
| 203 | case 2: |
| 204 | return syntax::NodeKind::PostfixUnaryOperatorExpression; |
| 205 | default: |
| 206 | llvm_unreachable("Invalid number of arguments for operator" ); |
| 207 | } |
| 208 | // Operators that can be unary or binary |
| 209 | case OO_Plus: |
| 210 | case OO_Minus: |
| 211 | case OO_Star: |
| 212 | case OO_Amp: |
| 213 | switch (E.getNumArgs()) { |
| 214 | case 1: |
| 215 | return syntax::NodeKind::PrefixUnaryOperatorExpression; |
| 216 | case 2: |
| 217 | return syntax::NodeKind::BinaryOperatorExpression; |
| 218 | default: |
| 219 | llvm_unreachable("Invalid number of arguments for operator" ); |
| 220 | } |
| 221 | return syntax::NodeKind::BinaryOperatorExpression; |
| 222 | // Not yet supported by SyntaxTree |
| 223 | case OO_New: |
| 224 | case OO_Delete: |
| 225 | case OO_Array_New: |
| 226 | case OO_Array_Delete: |
| 227 | case OO_Coawait: |
| 228 | case OO_Subscript: |
| 229 | case OO_Arrow: |
| 230 | return syntax::NodeKind::UnknownExpression; |
| 231 | case OO_Call: |
| 232 | return syntax::NodeKind::CallExpression; |
| 233 | case OO_Conditional: // not overloadable |
| 234 | case NUM_OVERLOADED_OPERATORS: |
| 235 | case OO_None: |
| 236 | llvm_unreachable("Not an overloadable operator" ); |
| 237 | } |
| 238 | llvm_unreachable("Unknown OverloadedOperatorKind enum" ); |
| 239 | } |
| 240 | |
| 241 | /// Get the start of the qualified name. In the examples below it gives the |
| 242 | /// location of the `^`: |
| 243 | /// `int ^a;` |
| 244 | /// `int *^a;` |
| 245 | /// `int ^a::S::f(){}` |
| 246 | static SourceLocation getQualifiedNameStart(NamedDecl *D) { |
| 247 | assert((isa<DeclaratorDecl, TypedefNameDecl>(D)) && |
| 248 | "only DeclaratorDecl and TypedefNameDecl are supported." ); |
| 249 | |
| 250 | auto DN = D->getDeclName(); |
| 251 | bool IsAnonymous = DN.isIdentifier() && !DN.getAsIdentifierInfo(); |
| 252 | if (IsAnonymous) |
| 253 | return SourceLocation(); |
| 254 | |
| 255 | if (const auto *DD = dyn_cast<DeclaratorDecl>(Val: D)) { |
| 256 | if (DD->getQualifierLoc()) { |
| 257 | return DD->getQualifierLoc().getBeginLoc(); |
| 258 | } |
| 259 | } |
| 260 | |
| 261 | return D->getLocation(); |
| 262 | } |
| 263 | |
| 264 | /// Gets the range of the initializer inside an init-declarator C++ [dcl.decl]. |
| 265 | /// `int a;` -> range of ``, |
| 266 | /// `int *a = nullptr` -> range of `= nullptr`. |
| 267 | /// `int a{}` -> range of `{}`. |
| 268 | /// `int a()` -> range of `()`. |
| 269 | static SourceRange getInitializerRange(Decl *D) { |
| 270 | if (auto *V = dyn_cast<VarDecl>(Val: D)) { |
| 271 | auto *I = V->getInit(); |
| 272 | // Initializers in range-based-for are not part of the declarator |
| 273 | if (I && !V->isCXXForRangeDecl()) |
| 274 | return I->getSourceRange(); |
| 275 | } |
| 276 | |
| 277 | return SourceRange(); |
| 278 | } |
| 279 | |
| 280 | /// Gets the range of declarator as defined by the C++ grammar. E.g. |
| 281 | /// `int a;` -> range of `a`, |
| 282 | /// `int *a;` -> range of `*a`, |
| 283 | /// `int a[10];` -> range of `a[10]`, |
| 284 | /// `int a[1][2][3];` -> range of `a[1][2][3]`, |
| 285 | /// `int *a = nullptr` -> range of `*a = nullptr`. |
| 286 | /// `int S::f(){}` -> range of `S::f()`. |
| 287 | /// FIXME: \p Name must be a source range. |
| 288 | static SourceRange getDeclaratorRange(const SourceManager &SM, TypeLoc T, |
| 289 | SourceLocation Name, |
| 290 | SourceRange Initializer) { |
| 291 | SourceLocation Start = GetStartLoc().Visit(TyLoc: T); |
| 292 | SourceLocation End = T.getEndLoc(); |
| 293 | if (Name.isValid()) { |
| 294 | if (Start.isInvalid()) |
| 295 | Start = Name; |
| 296 | // End of TypeLoc could be invalid if the type is invalid, fallback to the |
| 297 | // NameLoc. |
| 298 | if (End.isInvalid() || SM.isBeforeInTranslationUnit(LHS: End, RHS: Name)) |
| 299 | End = Name; |
| 300 | } |
| 301 | if (Initializer.isValid()) { |
| 302 | auto InitializerEnd = Initializer.getEnd(); |
| 303 | assert(SM.isBeforeInTranslationUnit(End, InitializerEnd) || |
| 304 | End == InitializerEnd); |
| 305 | End = InitializerEnd; |
| 306 | } |
| 307 | return SourceRange(Start, End); |
| 308 | } |
| 309 | |
| 310 | namespace { |
| 311 | /// All AST hierarchy roots that can be represented as pointers. |
| 312 | using ASTPtr = llvm::PointerUnion<Stmt *, Decl *>; |
| 313 | /// Maintains a mapping from AST to syntax tree nodes. This class will get more |
| 314 | /// complicated as we support more kinds of AST nodes, e.g. TypeLocs. |
| 315 | /// FIXME: expose this as public API. |
| 316 | class ASTToSyntaxMapping { |
| 317 | public: |
| 318 | void add(ASTPtr From, syntax::Tree *To) { |
| 319 | assert(To != nullptr); |
| 320 | assert(!From.isNull()); |
| 321 | |
| 322 | bool Added = Nodes.insert(KV: {From, To}).second; |
| 323 | (void)Added; |
| 324 | assert(Added && "mapping added twice" ); |
| 325 | } |
| 326 | |
| 327 | void add(NestedNameSpecifierLoc From, syntax::Tree *To) { |
| 328 | assert(To != nullptr); |
| 329 | assert(From.hasQualifier()); |
| 330 | |
| 331 | bool Added = NNSNodes.insert(KV: {From, To}).second; |
| 332 | (void)Added; |
| 333 | assert(Added && "mapping added twice" ); |
| 334 | } |
| 335 | |
| 336 | syntax::Tree *find(ASTPtr P) const { return Nodes.lookup(Val: P); } |
| 337 | |
| 338 | syntax::Tree *find(NestedNameSpecifierLoc P) const { |
| 339 | return NNSNodes.lookup(Val: P); |
| 340 | } |
| 341 | |
| 342 | private: |
| 343 | llvm::DenseMap<ASTPtr, syntax::Tree *> Nodes; |
| 344 | llvm::DenseMap<NestedNameSpecifierLoc, syntax::Tree *> NNSNodes; |
| 345 | }; |
| 346 | } // namespace |
| 347 | |
| 348 | /// A helper class for constructing the syntax tree while traversing a clang |
| 349 | /// AST. |
| 350 | /// |
| 351 | /// At each point of the traversal we maintain a list of pending nodes. |
| 352 | /// Initially all tokens are added as pending nodes. When processing a clang AST |
| 353 | /// node, the clients need to: |
| 354 | /// - create a corresponding syntax node, |
| 355 | /// - assign roles to all pending child nodes with 'markChild' and |
| 356 | /// 'markChildToken', |
| 357 | /// - replace the child nodes with the new syntax node in the pending list |
| 358 | /// with 'foldNode'. |
| 359 | /// |
| 360 | /// Note that all children are expected to be processed when building a node. |
| 361 | /// |
| 362 | /// Call finalize() to finish building the tree and consume the root node. |
| 363 | class syntax::TreeBuilder { |
| 364 | public: |
| 365 | TreeBuilder(syntax::Arena &Arena, TokenBufferTokenManager& TBTM) |
| 366 | : Arena(Arena), |
| 367 | TBTM(TBTM), |
| 368 | Pending(Arena, TBTM.tokenBuffer()) { |
| 369 | for (const auto &T : TBTM.tokenBuffer().expandedTokens()) |
| 370 | LocationToToken.insert(KV: {T.location(), &T}); |
| 371 | } |
| 372 | |
| 373 | llvm::BumpPtrAllocator &allocator() { return Arena.getAllocator(); } |
| 374 | const SourceManager &sourceManager() const { |
| 375 | return TBTM.sourceManager(); |
| 376 | } |
| 377 | |
| 378 | /// Populate children for \p New node, assuming it covers tokens from \p |
| 379 | /// Range. |
| 380 | void foldNode(ArrayRef<syntax::Token> Range, syntax::Tree *New, ASTPtr From) { |
| 381 | assert(New); |
| 382 | Pending.foldChildren(TB: TBTM.tokenBuffer(), Tokens: Range, Node: New); |
| 383 | if (From) |
| 384 | Mapping.add(From, To: New); |
| 385 | } |
| 386 | |
| 387 | void foldNode(ArrayRef<syntax::Token> Range, syntax::Tree *New, TypeLoc L) { |
| 388 | // FIXME: add mapping for TypeLocs |
| 389 | foldNode(Range, New, From: nullptr); |
| 390 | } |
| 391 | |
| 392 | void foldNode(llvm::ArrayRef<syntax::Token> Range, syntax::Tree *New, |
| 393 | NestedNameSpecifierLoc From) { |
| 394 | assert(New); |
| 395 | Pending.foldChildren(TB: TBTM.tokenBuffer(), Tokens: Range, Node: New); |
| 396 | if (From) |
| 397 | Mapping.add(From, To: New); |
| 398 | } |
| 399 | |
| 400 | /// Populate children for \p New list, assuming it covers tokens from a |
| 401 | /// subrange of \p SuperRange. |
| 402 | void foldList(ArrayRef<syntax::Token> SuperRange, syntax::List *New, |
| 403 | ASTPtr From) { |
| 404 | assert(New); |
| 405 | auto ListRange = Pending.shrinkToFitList(Range: SuperRange); |
| 406 | Pending.foldChildren(TB: TBTM.tokenBuffer(), Tokens: ListRange, Node: New); |
| 407 | if (From) |
| 408 | Mapping.add(From, To: New); |
| 409 | } |
| 410 | |
| 411 | /// Notifies that we should not consume trailing semicolon when computing |
| 412 | /// token range of \p D. |
| 413 | void noticeDeclWithoutSemicolon(Decl *D); |
| 414 | |
| 415 | /// Mark the \p Child node with a corresponding \p Role. All marked children |
| 416 | /// should be consumed by foldNode. |
| 417 | /// When called on expressions (clang::Expr is derived from clang::Stmt), |
| 418 | /// wraps expressions into expression statement. |
| 419 | void markStmtChild(Stmt *Child, NodeRole Role); |
| 420 | /// Should be called for expressions in non-statement position to avoid |
| 421 | /// wrapping into expression statement. |
| 422 | void markExprChild(Expr *Child, NodeRole Role); |
| 423 | /// Set role for a token starting at \p Loc. |
| 424 | void markChildToken(SourceLocation Loc, NodeRole R); |
| 425 | /// Set role for \p T. |
| 426 | void markChildToken(const syntax::Token *T, NodeRole R); |
| 427 | |
| 428 | /// Set role for \p N. |
| 429 | void markChild(syntax::Node *N, NodeRole R); |
| 430 | /// Set role for the syntax node matching \p N. |
| 431 | void markChild(ASTPtr N, NodeRole R); |
| 432 | /// Set role for the syntax node matching \p N. |
| 433 | void markChild(NestedNameSpecifierLoc N, NodeRole R); |
| 434 | |
| 435 | /// Finish building the tree and consume the root node. |
| 436 | syntax::TranslationUnit *finalize() && { |
| 437 | auto Tokens = TBTM.tokenBuffer().expandedTokens(); |
| 438 | assert(!Tokens.empty()); |
| 439 | assert(Tokens.back().kind() == tok::eof); |
| 440 | |
| 441 | // Build the root of the tree, consuming all the children. |
| 442 | Pending.foldChildren(TB: TBTM.tokenBuffer(), Tokens: Tokens.drop_back(), |
| 443 | Node: new (Arena.getAllocator()) syntax::TranslationUnit); |
| 444 | |
| 445 | auto *TU = cast<syntax::TranslationUnit>(Val: std::move(Pending).finalize()); |
| 446 | TU->assertInvariantsRecursive(); |
| 447 | return TU; |
| 448 | } |
| 449 | |
| 450 | /// Finds a token starting at \p L. The token must exist if \p L is valid. |
| 451 | const syntax::Token *findToken(SourceLocation L) const; |
| 452 | |
| 453 | /// Finds the syntax tokens corresponding to the \p SourceRange. |
| 454 | ArrayRef<syntax::Token> getRange(SourceRange Range) const { |
| 455 | assert(Range.isValid()); |
| 456 | return getRange(First: Range.getBegin(), Last: Range.getEnd()); |
| 457 | } |
| 458 | |
| 459 | /// Finds the syntax tokens corresponding to the passed source locations. |
| 460 | /// \p First is the start position of the first token and \p Last is the start |
| 461 | /// position of the last token. |
| 462 | ArrayRef<syntax::Token> getRange(SourceLocation First, |
| 463 | SourceLocation Last) const { |
| 464 | assert(First.isValid()); |
| 465 | assert(Last.isValid()); |
| 466 | assert(First == Last || |
| 467 | TBTM.sourceManager().isBeforeInTranslationUnit(First, Last)); |
| 468 | return llvm::ArrayRef(findToken(L: First), std::next(x: findToken(L: Last))); |
| 469 | } |
| 470 | |
| 471 | ArrayRef<syntax::Token> |
| 472 | getTemplateRange(const ClassTemplateSpecializationDecl *D) const { |
| 473 | auto Tokens = getRange(Range: D->getSourceRange()); |
| 474 | return maybeAppendSemicolon(Tokens, D); |
| 475 | } |
| 476 | |
| 477 | /// Returns true if \p D is the last declarator in a chain and is thus |
| 478 | /// reponsible for creating SimpleDeclaration for the whole chain. |
| 479 | bool isResponsibleForCreatingDeclaration(const Decl *D) const { |
| 480 | assert((isa<DeclaratorDecl, TypedefNameDecl>(D)) && |
| 481 | "only DeclaratorDecl and TypedefNameDecl are supported." ); |
| 482 | |
| 483 | const Decl *Next = D->getNextDeclInContext(); |
| 484 | |
| 485 | // There's no next sibling, this one is responsible. |
| 486 | if (Next == nullptr) { |
| 487 | return true; |
| 488 | } |
| 489 | |
| 490 | // Next sibling is not the same type, this one is responsible. |
| 491 | if (D->getKind() != Next->getKind()) { |
| 492 | return true; |
| 493 | } |
| 494 | // Next sibling doesn't begin at the same loc, it must be a different |
| 495 | // declaration, so this declarator is responsible. |
| 496 | if (Next->getBeginLoc() != D->getBeginLoc()) { |
| 497 | return true; |
| 498 | } |
| 499 | |
| 500 | // NextT is a member of the same declaration, and we need the last member to |
| 501 | // create declaration. This one is not responsible. |
| 502 | return false; |
| 503 | } |
| 504 | |
| 505 | ArrayRef<syntax::Token> getDeclarationRange(Decl *D) { |
| 506 | ArrayRef<syntax::Token> Tokens; |
| 507 | // We want to drop the template parameters for specializations. |
| 508 | if (const auto *S = dyn_cast<TagDecl>(Val: D)) |
| 509 | Tokens = getRange(First: S->TypeDecl::getBeginLoc(), Last: S->getEndLoc()); |
| 510 | else |
| 511 | Tokens = getRange(Range: D->getSourceRange()); |
| 512 | return maybeAppendSemicolon(Tokens, D); |
| 513 | } |
| 514 | |
| 515 | ArrayRef<syntax::Token> getExprRange(const Expr *E) const { |
| 516 | return getRange(Range: E->getSourceRange()); |
| 517 | } |
| 518 | |
| 519 | /// Find the adjusted range for the statement, consuming the trailing |
| 520 | /// semicolon when needed. |
| 521 | ArrayRef<syntax::Token> getStmtRange(const Stmt *S) const { |
| 522 | auto Tokens = getRange(Range: S->getSourceRange()); |
| 523 | if (isa<CompoundStmt>(Val: S)) |
| 524 | return Tokens; |
| 525 | |
| 526 | // Some statements miss a trailing semicolon, e.g. 'return', 'continue' and |
| 527 | // all statements that end with those. Consume this semicolon here. |
| 528 | if (Tokens.back().kind() == tok::semi) |
| 529 | return Tokens; |
| 530 | return withTrailingSemicolon(Tokens); |
| 531 | } |
| 532 | |
| 533 | private: |
| 534 | ArrayRef<syntax::Token> maybeAppendSemicolon(ArrayRef<syntax::Token> Tokens, |
| 535 | const Decl *D) const { |
| 536 | if (isa<NamespaceDecl>(Val: D)) |
| 537 | return Tokens; |
| 538 | if (DeclsWithoutSemicolons.count(V: D)) |
| 539 | return Tokens; |
| 540 | // FIXME: do not consume trailing semicolon on function definitions. |
| 541 | // Most declarations own a semicolon in syntax trees, but not in clang AST. |
| 542 | return withTrailingSemicolon(Tokens); |
| 543 | } |
| 544 | |
| 545 | ArrayRef<syntax::Token> |
| 546 | withTrailingSemicolon(ArrayRef<syntax::Token> Tokens) const { |
| 547 | assert(!Tokens.empty()); |
| 548 | assert(Tokens.back().kind() != tok::eof); |
| 549 | // We never consume 'eof', so looking at the next token is ok. |
| 550 | if (Tokens.back().kind() != tok::semi && Tokens.end()->kind() == tok::semi) |
| 551 | return llvm::ArrayRef(Tokens.begin(), Tokens.end() + 1); |
| 552 | return Tokens; |
| 553 | } |
| 554 | |
| 555 | void setRole(syntax::Node *N, NodeRole R) { |
| 556 | assert(N->getRole() == NodeRole::Detached); |
| 557 | N->setRole(R); |
| 558 | } |
| 559 | |
| 560 | /// A collection of trees covering the input tokens. |
| 561 | /// When created, each tree corresponds to a single token in the file. |
| 562 | /// Clients call 'foldChildren' to attach one or more subtrees to a parent |
| 563 | /// node and update the list of trees accordingly. |
| 564 | /// |
| 565 | /// Ensures that added nodes properly nest and cover the whole token stream. |
| 566 | struct Forest { |
| 567 | Forest(syntax::Arena &A, const syntax::TokenBuffer &TB) { |
| 568 | assert(!TB.expandedTokens().empty()); |
| 569 | assert(TB.expandedTokens().back().kind() == tok::eof); |
| 570 | // Create all leaf nodes. |
| 571 | // Note that we do not have 'eof' in the tree. |
| 572 | for (const auto &T : TB.expandedTokens().drop_back()) { |
| 573 | auto *L = new (A.getAllocator()) |
| 574 | syntax::Leaf(reinterpret_cast<TokenManager::Key>(&T)); |
| 575 | L->Original = true; |
| 576 | L->CanModify = TB.spelledForExpanded(Expanded: T).has_value(); |
| 577 | Trees.insert(position: Trees.end(), x: {&T, L}); |
| 578 | } |
| 579 | } |
| 580 | |
| 581 | void assignRole(ArrayRef<syntax::Token> Range, syntax::NodeRole Role) { |
| 582 | assert(!Range.empty()); |
| 583 | auto It = Trees.lower_bound(x: Range.begin()); |
| 584 | assert(It != Trees.end() && "no node found" ); |
| 585 | assert(It->first == Range.begin() && "no child with the specified range" ); |
| 586 | assert((std::next(It) == Trees.end() || |
| 587 | std::next(It)->first == Range.end()) && |
| 588 | "no child with the specified range" ); |
| 589 | assert(It->second->getRole() == NodeRole::Detached && |
| 590 | "re-assigning role for a child" ); |
| 591 | It->second->setRole(Role); |
| 592 | } |
| 593 | |
| 594 | /// Shrink \p Range to a subrange that only contains tokens of a list. |
| 595 | /// List elements and delimiters should already have correct roles. |
| 596 | ArrayRef<syntax::Token> shrinkToFitList(ArrayRef<syntax::Token> Range) { |
| 597 | auto BeginChildren = Trees.lower_bound(x: Range.begin()); |
| 598 | assert((BeginChildren == Trees.end() || |
| 599 | BeginChildren->first == Range.begin()) && |
| 600 | "Range crosses boundaries of existing subtrees" ); |
| 601 | |
| 602 | auto EndChildren = Trees.lower_bound(x: Range.end()); |
| 603 | assert( |
| 604 | (EndChildren == Trees.end() || EndChildren->first == Range.end()) && |
| 605 | "Range crosses boundaries of existing subtrees" ); |
| 606 | |
| 607 | auto BelongsToList = [](decltype(Trees)::value_type KV) { |
| 608 | auto Role = KV.second->getRole(); |
| 609 | return Role == syntax::NodeRole::ListElement || |
| 610 | Role == syntax::NodeRole::ListDelimiter; |
| 611 | }; |
| 612 | |
| 613 | auto BeginListChildren = |
| 614 | std::find_if(first: BeginChildren, last: EndChildren, pred: BelongsToList); |
| 615 | |
| 616 | auto EndListChildren = |
| 617 | std::find_if_not(first: BeginListChildren, last: EndChildren, pred: BelongsToList); |
| 618 | |
| 619 | return ArrayRef<syntax::Token>(BeginListChildren->first, |
| 620 | EndListChildren->first); |
| 621 | } |
| 622 | |
| 623 | /// Add \p Node to the forest and attach child nodes based on \p Tokens. |
| 624 | void foldChildren(const syntax::TokenBuffer &TB, |
| 625 | ArrayRef<syntax::Token> Tokens, syntax::Tree *Node) { |
| 626 | // Attach children to `Node`. |
| 627 | assert(Node->getFirstChild() == nullptr && "node already has children" ); |
| 628 | |
| 629 | auto *FirstToken = Tokens.begin(); |
| 630 | auto BeginChildren = Trees.lower_bound(x: FirstToken); |
| 631 | |
| 632 | assert((BeginChildren == Trees.end() || |
| 633 | BeginChildren->first == FirstToken) && |
| 634 | "fold crosses boundaries of existing subtrees" ); |
| 635 | auto EndChildren = Trees.lower_bound(x: Tokens.end()); |
| 636 | assert( |
| 637 | (EndChildren == Trees.end() || EndChildren->first == Tokens.end()) && |
| 638 | "fold crosses boundaries of existing subtrees" ); |
| 639 | |
| 640 | for (auto It = BeginChildren; It != EndChildren; ++It) { |
| 641 | auto *C = It->second; |
| 642 | if (C->getRole() == NodeRole::Detached) |
| 643 | C->setRole(NodeRole::Unknown); |
| 644 | Node->appendChildLowLevel(Child: C); |
| 645 | } |
| 646 | |
| 647 | // Mark that this node came from the AST and is backed by the source code. |
| 648 | Node->Original = true; |
| 649 | Node->CanModify = |
| 650 | TB.spelledForExpanded(Expanded: Tokens).has_value(); |
| 651 | |
| 652 | Trees.erase(first: BeginChildren, last: EndChildren); |
| 653 | Trees.insert(x: {FirstToken, Node}); |
| 654 | } |
| 655 | |
| 656 | // EXPECTS: all tokens were consumed and are owned by a single root node. |
| 657 | syntax::Node *finalize() && { |
| 658 | assert(Trees.size() == 1); |
| 659 | auto *Root = Trees.begin()->second; |
| 660 | Trees = {}; |
| 661 | return Root; |
| 662 | } |
| 663 | |
| 664 | std::string str(const syntax::TokenBufferTokenManager &STM) const { |
| 665 | std::string R; |
| 666 | for (auto It = Trees.begin(); It != Trees.end(); ++It) { |
| 667 | unsigned CoveredTokens = |
| 668 | It != Trees.end() |
| 669 | ? (std::next(x: It)->first - It->first) |
| 670 | : STM.tokenBuffer().expandedTokens().end() - It->first; |
| 671 | |
| 672 | R += std::string( |
| 673 | formatv(Fmt: "- '{0}' covers '{1}'+{2} tokens\n" , Vals: It->second->getKind(), |
| 674 | Vals: It->first->text(SM: STM.sourceManager()), Vals&: CoveredTokens)); |
| 675 | R += It->second->dump(SM: STM); |
| 676 | } |
| 677 | return R; |
| 678 | } |
| 679 | |
| 680 | private: |
| 681 | /// Maps from the start token to a subtree starting at that token. |
| 682 | /// Keys in the map are pointers into the array of expanded tokens, so |
| 683 | /// pointer order corresponds to the order of preprocessor tokens. |
| 684 | std::map<const syntax::Token *, syntax::Node *> Trees; |
| 685 | }; |
| 686 | |
| 687 | /// For debugging purposes. |
| 688 | std::string str() { return Pending.str(STM: TBTM); } |
| 689 | |
| 690 | syntax::Arena &Arena; |
| 691 | TokenBufferTokenManager& TBTM; |
| 692 | /// To quickly find tokens by their start location. |
| 693 | llvm::DenseMap<SourceLocation, const syntax::Token *> LocationToToken; |
| 694 | Forest Pending; |
| 695 | llvm::DenseSet<Decl *> DeclsWithoutSemicolons; |
| 696 | ASTToSyntaxMapping Mapping; |
| 697 | }; |
| 698 | |
| 699 | namespace { |
| 700 | class BuildTreeVisitor : public RecursiveASTVisitor<BuildTreeVisitor> { |
| 701 | public: |
| 702 | explicit BuildTreeVisitor(ASTContext &Context, syntax::TreeBuilder &Builder) |
| 703 | : Builder(Builder), Context(Context) {} |
| 704 | |
| 705 | bool shouldTraversePostOrder() const { return true; } |
| 706 | |
| 707 | bool WalkUpFromDeclaratorDecl(DeclaratorDecl *DD) { |
| 708 | return processDeclaratorAndDeclaration(D: DD); |
| 709 | } |
| 710 | |
| 711 | bool WalkUpFromTypedefNameDecl(TypedefNameDecl *TD) { |
| 712 | return processDeclaratorAndDeclaration(D: TD); |
| 713 | } |
| 714 | |
| 715 | bool VisitDecl(Decl *D) { |
| 716 | assert(!D->isImplicit()); |
| 717 | Builder.foldNode(Range: Builder.getDeclarationRange(D), |
| 718 | New: new (allocator()) syntax::UnknownDeclaration(), From: D); |
| 719 | return true; |
| 720 | } |
| 721 | |
| 722 | // RAV does not call WalkUpFrom* on explicit instantiations, so we have to |
| 723 | // override Traverse. |
| 724 | // FIXME: make RAV call WalkUpFrom* instead. |
| 725 | bool |
| 726 | TraverseClassTemplateSpecializationDecl(ClassTemplateSpecializationDecl *C) { |
| 727 | if (!RecursiveASTVisitor::TraverseClassTemplateSpecializationDecl(D: C)) |
| 728 | return false; |
| 729 | if (C->isExplicitSpecialization()) |
| 730 | return true; // we are only interested in explicit instantiations. |
| 731 | auto *Declaration = |
| 732 | cast<syntax::SimpleDeclaration>(Val: handleFreeStandingTagDecl(C)); |
| 733 | foldExplicitTemplateInstantiation( |
| 734 | Range: Builder.getTemplateRange(D: C), |
| 735 | ExternKW: Builder.findToken(L: C->getExternKeywordLoc()), |
| 736 | TemplateKW: Builder.findToken(L: C->getTemplateKeywordLoc()), InnerDeclaration: Declaration, From: C); |
| 737 | return true; |
| 738 | } |
| 739 | |
| 740 | bool WalkUpFromTemplateDecl(TemplateDecl *S) { |
| 741 | foldTemplateDeclaration( |
| 742 | Range: Builder.getDeclarationRange(D: S), |
| 743 | TemplateKW: Builder.findToken(L: S->getTemplateParameters()->getTemplateLoc()), |
| 744 | TemplatedDeclaration: Builder.getDeclarationRange(D: S->getTemplatedDecl()), From: S); |
| 745 | return true; |
| 746 | } |
| 747 | |
| 748 | bool WalkUpFromTagDecl(TagDecl *C) { |
| 749 | // FIXME: build the ClassSpecifier node. |
| 750 | if (!C->isFreeStanding()) { |
| 751 | assert(C->getNumTemplateParameterLists() == 0); |
| 752 | return true; |
| 753 | } |
| 754 | handleFreeStandingTagDecl(C); |
| 755 | return true; |
| 756 | } |
| 757 | |
| 758 | syntax::Declaration *handleFreeStandingTagDecl(TagDecl *C) { |
| 759 | assert(C->isFreeStanding()); |
| 760 | // Class is a declaration specifier and needs a spanning declaration node. |
| 761 | auto DeclarationRange = Builder.getDeclarationRange(D: C); |
| 762 | syntax::Declaration *Result = new (allocator()) syntax::SimpleDeclaration; |
| 763 | Builder.foldNode(Range: DeclarationRange, New: Result, From: nullptr); |
| 764 | |
| 765 | // Build TemplateDeclaration nodes if we had template parameters. |
| 766 | auto ConsumeTemplateParameters = [&](const TemplateParameterList &L) { |
| 767 | const auto *TemplateKW = Builder.findToken(L: L.getTemplateLoc()); |
| 768 | auto R = llvm::ArrayRef(TemplateKW, DeclarationRange.end()); |
| 769 | Result = |
| 770 | foldTemplateDeclaration(Range: R, TemplateKW, TemplatedDeclaration: DeclarationRange, From: nullptr); |
| 771 | DeclarationRange = R; |
| 772 | }; |
| 773 | if (auto *S = dyn_cast<ClassTemplatePartialSpecializationDecl>(Val: C)) |
| 774 | ConsumeTemplateParameters(*S->getTemplateParameters()); |
| 775 | for (unsigned I = C->getNumTemplateParameterLists(); 0 < I; --I) |
| 776 | ConsumeTemplateParameters(*C->getTemplateParameterList(i: I - 1)); |
| 777 | return Result; |
| 778 | } |
| 779 | |
| 780 | bool WalkUpFromTranslationUnitDecl(TranslationUnitDecl *TU) { |
| 781 | // We do not want to call VisitDecl(), the declaration for translation |
| 782 | // unit is built by finalize(). |
| 783 | return true; |
| 784 | } |
| 785 | |
| 786 | bool WalkUpFromCompoundStmt(CompoundStmt *S) { |
| 787 | using NodeRole = syntax::NodeRole; |
| 788 | |
| 789 | Builder.markChildToken(Loc: S->getLBracLoc(), R: NodeRole::OpenParen); |
| 790 | for (auto *Child : S->body()) |
| 791 | Builder.markStmtChild(Child, Role: NodeRole::Statement); |
| 792 | Builder.markChildToken(Loc: S->getRBracLoc(), R: NodeRole::CloseParen); |
| 793 | |
| 794 | Builder.foldNode(Range: Builder.getStmtRange(S), |
| 795 | New: new (allocator()) syntax::CompoundStatement, From: S); |
| 796 | return true; |
| 797 | } |
| 798 | |
| 799 | // Some statements are not yet handled by syntax trees. |
| 800 | bool WalkUpFromStmt(Stmt *S) { |
| 801 | Builder.foldNode(Range: Builder.getStmtRange(S), |
| 802 | New: new (allocator()) syntax::UnknownStatement, From: S); |
| 803 | return true; |
| 804 | } |
| 805 | |
| 806 | bool TraverseIfStmt(IfStmt *S) { |
| 807 | bool Result = [&, this]() { |
| 808 | if (S->getInit() && !TraverseStmt(S: S->getInit())) { |
| 809 | return false; |
| 810 | } |
| 811 | // In cases where the condition is an initialized declaration in a |
| 812 | // statement, we want to preserve the declaration and ignore the |
| 813 | // implicit condition expression in the syntax tree. |
| 814 | if (S->hasVarStorage()) { |
| 815 | if (!TraverseStmt(S: S->getConditionVariableDeclStmt())) |
| 816 | return false; |
| 817 | } else if (S->getCond() && !TraverseStmt(S: S->getCond())) |
| 818 | return false; |
| 819 | |
| 820 | if (S->getThen() && !TraverseStmt(S: S->getThen())) |
| 821 | return false; |
| 822 | if (S->getElse() && !TraverseStmt(S: S->getElse())) |
| 823 | return false; |
| 824 | return true; |
| 825 | }(); |
| 826 | WalkUpFromIfStmt(S); |
| 827 | return Result; |
| 828 | } |
| 829 | |
| 830 | bool TraverseCXXForRangeStmt(CXXForRangeStmt *S) { |
| 831 | // We override to traverse range initializer as VarDecl. |
| 832 | // RAV traverses it as a statement, we produce invalid node kinds in that |
| 833 | // case. |
| 834 | // FIXME: should do this in RAV instead? |
| 835 | bool Result = [&, this]() { |
| 836 | if (S->getInit() && !TraverseStmt(S: S->getInit())) |
| 837 | return false; |
| 838 | if (S->getLoopVariable() && !TraverseDecl(D: S->getLoopVariable())) |
| 839 | return false; |
| 840 | if (S->getRangeInit() && !TraverseStmt(S: S->getRangeInit())) |
| 841 | return false; |
| 842 | if (S->getBody() && !TraverseStmt(S: S->getBody())) |
| 843 | return false; |
| 844 | return true; |
| 845 | }(); |
| 846 | WalkUpFromCXXForRangeStmt(S); |
| 847 | return Result; |
| 848 | } |
| 849 | |
| 850 | bool TraverseStmt(Stmt *S) { |
| 851 | if (auto *DS = dyn_cast_or_null<DeclStmt>(Val: S)) { |
| 852 | // We want to consume the semicolon, make sure SimpleDeclaration does not. |
| 853 | for (auto *D : DS->decls()) |
| 854 | Builder.noticeDeclWithoutSemicolon(D); |
| 855 | } else if (auto *E = dyn_cast_or_null<Expr>(Val: S)) { |
| 856 | return RecursiveASTVisitor::TraverseStmt(S: IgnoreImplicit(E)); |
| 857 | } |
| 858 | return RecursiveASTVisitor::TraverseStmt(S); |
| 859 | } |
| 860 | |
| 861 | bool TraverseOpaqueValueExpr(OpaqueValueExpr *VE) { |
| 862 | // OpaqueValue doesn't correspond to concrete syntax, ignore it. |
| 863 | return true; |
| 864 | } |
| 865 | |
| 866 | // Some expressions are not yet handled by syntax trees. |
| 867 | bool WalkUpFromExpr(Expr *E) { |
| 868 | assert(!isImplicitExpr(E) && "should be handled by TraverseStmt" ); |
| 869 | Builder.foldNode(Range: Builder.getExprRange(E), |
| 870 | New: new (allocator()) syntax::UnknownExpression, From: E); |
| 871 | return true; |
| 872 | } |
| 873 | |
| 874 | bool TraverseUserDefinedLiteral(UserDefinedLiteral *S) { |
| 875 | // The semantic AST node `UserDefinedLiteral` (UDL) may have one child node |
| 876 | // referencing the location of the UDL suffix (`_w` in `1.2_w`). The |
| 877 | // UDL suffix location does not point to the beginning of a token, so we |
| 878 | // can't represent the UDL suffix as a separate syntax tree node. |
| 879 | |
| 880 | return WalkUpFromUserDefinedLiteral(S); |
| 881 | } |
| 882 | |
| 883 | syntax::UserDefinedLiteralExpression * |
| 884 | buildUserDefinedLiteral(UserDefinedLiteral *S) { |
| 885 | switch (S->getLiteralOperatorKind()) { |
| 886 | case UserDefinedLiteral::LOK_Integer: |
| 887 | return new (allocator()) syntax::IntegerUserDefinedLiteralExpression; |
| 888 | case UserDefinedLiteral::LOK_Floating: |
| 889 | return new (allocator()) syntax::FloatUserDefinedLiteralExpression; |
| 890 | case UserDefinedLiteral::LOK_Character: |
| 891 | return new (allocator()) syntax::CharUserDefinedLiteralExpression; |
| 892 | case UserDefinedLiteral::LOK_String: |
| 893 | return new (allocator()) syntax::StringUserDefinedLiteralExpression; |
| 894 | case UserDefinedLiteral::LOK_Raw: |
| 895 | case UserDefinedLiteral::LOK_Template: |
| 896 | // For raw literal operator and numeric literal operator template we |
| 897 | // cannot get the type of the operand in the semantic AST. We get this |
| 898 | // information from the token. As integer and floating point have the same |
| 899 | // token kind, we run `NumericLiteralParser` again to distinguish them. |
| 900 | auto TokLoc = S->getBeginLoc(); |
| 901 | auto TokSpelling = |
| 902 | Builder.findToken(L: TokLoc)->text(SM: Context.getSourceManager()); |
| 903 | auto Literal = |
| 904 | NumericLiteralParser(TokSpelling, TokLoc, Context.getSourceManager(), |
| 905 | Context.getLangOpts(), Context.getTargetInfo(), |
| 906 | Context.getDiagnostics()); |
| 907 | if (Literal.isIntegerLiteral()) |
| 908 | return new (allocator()) syntax::IntegerUserDefinedLiteralExpression; |
| 909 | else { |
| 910 | assert(Literal.isFloatingLiteral()); |
| 911 | return new (allocator()) syntax::FloatUserDefinedLiteralExpression; |
| 912 | } |
| 913 | } |
| 914 | llvm_unreachable("Unknown literal operator kind." ); |
| 915 | } |
| 916 | |
| 917 | bool WalkUpFromUserDefinedLiteral(UserDefinedLiteral *S) { |
| 918 | Builder.markChildToken(Loc: S->getBeginLoc(), R: syntax::NodeRole::LiteralToken); |
| 919 | Builder.foldNode(Range: Builder.getExprRange(E: S), New: buildUserDefinedLiteral(S), From: S); |
| 920 | return true; |
| 921 | } |
| 922 | |
| 923 | syntax::NameSpecifier *buildIdentifier(SourceRange SR, |
| 924 | bool DropBack = false) { |
| 925 | auto NameSpecifierTokens = Builder.getRange(Range: SR).drop_back(N: DropBack); |
| 926 | assert(NameSpecifierTokens.size() == 1); |
| 927 | Builder.markChildToken(T: NameSpecifierTokens.begin(), |
| 928 | R: syntax::NodeRole::Unknown); |
| 929 | auto *NS = new (allocator()) syntax::IdentifierNameSpecifier; |
| 930 | Builder.foldNode(Range: NameSpecifierTokens, New: NS, From: nullptr); |
| 931 | return NS; |
| 932 | } |
| 933 | |
| 934 | syntax::NameSpecifier *buildSimpleTemplateName(SourceRange SR) { |
| 935 | auto NameSpecifierTokens = Builder.getRange(Range: SR); |
| 936 | // TODO: Build `SimpleTemplateNameSpecifier` children and implement |
| 937 | // accessors to them. |
| 938 | // Be aware, we cannot do that simply by calling `TraverseTypeLoc`, |
| 939 | // some `TypeLoc`s have inside them the previous name specifier and |
| 940 | // we want to treat them independently. |
| 941 | auto *NS = new (allocator()) syntax::SimpleTemplateNameSpecifier; |
| 942 | Builder.foldNode(Range: NameSpecifierTokens, New: NS, From: nullptr); |
| 943 | return NS; |
| 944 | } |
| 945 | |
| 946 | syntax::NameSpecifier * |
| 947 | buildNameSpecifier(const NestedNameSpecifierLoc &NNSLoc) { |
| 948 | assert(NNSLoc.hasQualifier()); |
| 949 | switch (NNSLoc.getNestedNameSpecifier().getKind()) { |
| 950 | case NestedNameSpecifier::Kind::Global: |
| 951 | return new (allocator()) syntax::GlobalNameSpecifier; |
| 952 | |
| 953 | case NestedNameSpecifier::Kind::Namespace: |
| 954 | return buildIdentifier(SR: NNSLoc.getLocalSourceRange(), /*DropBack=*/true); |
| 955 | |
| 956 | case NestedNameSpecifier::Kind::Type: { |
| 957 | TypeLoc TL = NNSLoc.castAsTypeLoc(); |
| 958 | switch (TL.getTypeLocClass()) { |
| 959 | case TypeLoc::Record: |
| 960 | case TypeLoc::InjectedClassName: |
| 961 | case TypeLoc::Enum: |
| 962 | return buildIdentifier(SR: TL.castAs<TagTypeLoc>().getNameLoc()); |
| 963 | case TypeLoc::Typedef: |
| 964 | return buildIdentifier(SR: TL.castAs<TypedefTypeLoc>().getNameLoc()); |
| 965 | case TypeLoc::UnresolvedUsing: |
| 966 | return buildIdentifier( |
| 967 | SR: TL.castAs<UnresolvedUsingTypeLoc>().getNameLoc()); |
| 968 | case TypeLoc::Using: |
| 969 | return buildIdentifier(SR: TL.castAs<UsingTypeLoc>().getNameLoc()); |
| 970 | case TypeLoc::DependentName: |
| 971 | return buildIdentifier(SR: TL.castAs<DependentNameTypeLoc>().getNameLoc()); |
| 972 | case TypeLoc::TemplateSpecialization: { |
| 973 | auto TST = TL.castAs<TemplateSpecializationTypeLoc>(); |
| 974 | SourceLocation BeginLoc = TST.getTemplateKeywordLoc(); |
| 975 | if (BeginLoc.isInvalid()) |
| 976 | BeginLoc = TST.getTemplateNameLoc(); |
| 977 | return buildSimpleTemplateName(SR: {BeginLoc, TST.getEndLoc()}); |
| 978 | } |
| 979 | case TypeLoc::Decltype: { |
| 980 | const auto DTL = TL.castAs<DecltypeTypeLoc>(); |
| 981 | if (!RecursiveASTVisitor::TraverseDecltypeTypeLoc( |
| 982 | TL: DTL, /*TraverseQualifier=*/true)) |
| 983 | return nullptr; |
| 984 | auto *NS = new (allocator()) syntax::DecltypeNameSpecifier; |
| 985 | // TODO: Implement accessor to `DecltypeNameSpecifier` inner |
| 986 | // `DecltypeTypeLoc`. |
| 987 | // For that add mapping from `TypeLoc` to `syntax::Node*` then: |
| 988 | // Builder.markChild(TypeLoc, syntax::NodeRole); |
| 989 | Builder.foldNode(Range: Builder.getRange(Range: DTL.getLocalSourceRange()), New: NS, |
| 990 | From: nullptr); |
| 991 | return NS; |
| 992 | } |
| 993 | default: |
| 994 | return buildIdentifier(SR: TL.getLocalSourceRange()); |
| 995 | } |
| 996 | } |
| 997 | default: |
| 998 | // FIXME: Support Microsoft's __super |
| 999 | llvm::report_fatal_error(reason: "We don't yet support the __super specifier" , |
| 1000 | gen_crash_diag: true); |
| 1001 | } |
| 1002 | } |
| 1003 | |
| 1004 | // To build syntax tree nodes for NestedNameSpecifierLoc we override |
| 1005 | // Traverse instead of WalkUpFrom because we want to traverse the children |
| 1006 | // ourselves and build a list instead of a nested tree of name specifier |
| 1007 | // prefixes. |
| 1008 | bool TraverseNestedNameSpecifierLoc(NestedNameSpecifierLoc QualifierLoc) { |
| 1009 | if (!QualifierLoc) |
| 1010 | return true; |
| 1011 | for (auto It = QualifierLoc; It; /**/) { |
| 1012 | auto *NS = buildNameSpecifier(NNSLoc: It); |
| 1013 | if (!NS) |
| 1014 | return false; |
| 1015 | Builder.markChild(N: NS, R: syntax::NodeRole::ListElement); |
| 1016 | Builder.markChildToken(Loc: It.getEndLoc(), R: syntax::NodeRole::ListDelimiter); |
| 1017 | if (TypeLoc TL = It.getAsTypeLoc()) |
| 1018 | It = TL.getPrefix(); |
| 1019 | else |
| 1020 | It = It.getAsNamespaceAndPrefix().Prefix; |
| 1021 | } |
| 1022 | Builder.foldNode(Range: Builder.getRange(Range: QualifierLoc.getSourceRange()), |
| 1023 | New: new (allocator()) syntax::NestedNameSpecifier, |
| 1024 | From: QualifierLoc); |
| 1025 | return true; |
| 1026 | } |
| 1027 | |
| 1028 | syntax::IdExpression *buildIdExpression(NestedNameSpecifierLoc QualifierLoc, |
| 1029 | SourceLocation TemplateKeywordLoc, |
| 1030 | SourceRange UnqualifiedIdLoc, |
| 1031 | ASTPtr From) { |
| 1032 | if (QualifierLoc) { |
| 1033 | Builder.markChild(N: QualifierLoc, R: syntax::NodeRole::Qualifier); |
| 1034 | if (TemplateKeywordLoc.isValid()) |
| 1035 | Builder.markChildToken(Loc: TemplateKeywordLoc, |
| 1036 | R: syntax::NodeRole::TemplateKeyword); |
| 1037 | } |
| 1038 | |
| 1039 | auto *TheUnqualifiedId = new (allocator()) syntax::UnqualifiedId; |
| 1040 | Builder.foldNode(Range: Builder.getRange(Range: UnqualifiedIdLoc), New: TheUnqualifiedId, |
| 1041 | From: nullptr); |
| 1042 | Builder.markChild(N: TheUnqualifiedId, R: syntax::NodeRole::UnqualifiedId); |
| 1043 | |
| 1044 | auto IdExpressionBeginLoc = |
| 1045 | QualifierLoc ? QualifierLoc.getBeginLoc() : UnqualifiedIdLoc.getBegin(); |
| 1046 | |
| 1047 | auto *TheIdExpression = new (allocator()) syntax::IdExpression; |
| 1048 | Builder.foldNode( |
| 1049 | Range: Builder.getRange(First: IdExpressionBeginLoc, Last: UnqualifiedIdLoc.getEnd()), |
| 1050 | New: TheIdExpression, From); |
| 1051 | |
| 1052 | return TheIdExpression; |
| 1053 | } |
| 1054 | |
| 1055 | bool WalkUpFromMemberExpr(MemberExpr *S) { |
| 1056 | // For `MemberExpr` with implicit `this->` we generate a simple |
| 1057 | // `id-expression` syntax node, beacuse an implicit `member-expression` is |
| 1058 | // syntactically undistinguishable from an `id-expression` |
| 1059 | if (S->isImplicitAccess()) { |
| 1060 | buildIdExpression(QualifierLoc: S->getQualifierLoc(), TemplateKeywordLoc: S->getTemplateKeywordLoc(), |
| 1061 | UnqualifiedIdLoc: SourceRange(S->getMemberLoc(), S->getEndLoc()), From: S); |
| 1062 | return true; |
| 1063 | } |
| 1064 | |
| 1065 | auto *TheIdExpression = buildIdExpression( |
| 1066 | QualifierLoc: S->getQualifierLoc(), TemplateKeywordLoc: S->getTemplateKeywordLoc(), |
| 1067 | UnqualifiedIdLoc: SourceRange(S->getMemberLoc(), S->getEndLoc()), From: nullptr); |
| 1068 | |
| 1069 | Builder.markChild(N: TheIdExpression, R: syntax::NodeRole::Member); |
| 1070 | |
| 1071 | Builder.markExprChild(Child: S->getBase(), Role: syntax::NodeRole::Object); |
| 1072 | Builder.markChildToken(Loc: S->getOperatorLoc(), R: syntax::NodeRole::AccessToken); |
| 1073 | |
| 1074 | Builder.foldNode(Range: Builder.getExprRange(E: S), |
| 1075 | New: new (allocator()) syntax::MemberExpression, From: S); |
| 1076 | return true; |
| 1077 | } |
| 1078 | |
| 1079 | bool WalkUpFromDeclRefExpr(DeclRefExpr *S) { |
| 1080 | buildIdExpression(QualifierLoc: S->getQualifierLoc(), TemplateKeywordLoc: S->getTemplateKeywordLoc(), |
| 1081 | UnqualifiedIdLoc: SourceRange(S->getLocation(), S->getEndLoc()), From: S); |
| 1082 | |
| 1083 | return true; |
| 1084 | } |
| 1085 | |
| 1086 | // Same logic as DeclRefExpr. |
| 1087 | bool WalkUpFromDependentScopeDeclRefExpr(DependentScopeDeclRefExpr *S) { |
| 1088 | buildIdExpression(QualifierLoc: S->getQualifierLoc(), TemplateKeywordLoc: S->getTemplateKeywordLoc(), |
| 1089 | UnqualifiedIdLoc: SourceRange(S->getLocation(), S->getEndLoc()), From: S); |
| 1090 | |
| 1091 | return true; |
| 1092 | } |
| 1093 | |
| 1094 | bool WalkUpFromCXXThisExpr(CXXThisExpr *S) { |
| 1095 | if (!S->isImplicit()) { |
| 1096 | Builder.markChildToken(Loc: S->getLocation(), |
| 1097 | R: syntax::NodeRole::IntroducerKeyword); |
| 1098 | Builder.foldNode(Range: Builder.getExprRange(E: S), |
| 1099 | New: new (allocator()) syntax::ThisExpression, From: S); |
| 1100 | } |
| 1101 | return true; |
| 1102 | } |
| 1103 | |
| 1104 | bool WalkUpFromParenExpr(ParenExpr *S) { |
| 1105 | Builder.markChildToken(Loc: S->getLParen(), R: syntax::NodeRole::OpenParen); |
| 1106 | Builder.markExprChild(Child: S->getSubExpr(), Role: syntax::NodeRole::SubExpression); |
| 1107 | Builder.markChildToken(Loc: S->getRParen(), R: syntax::NodeRole::CloseParen); |
| 1108 | Builder.foldNode(Range: Builder.getExprRange(E: S), |
| 1109 | New: new (allocator()) syntax::ParenExpression, From: S); |
| 1110 | return true; |
| 1111 | } |
| 1112 | |
| 1113 | bool WalkUpFromIntegerLiteral(IntegerLiteral *S) { |
| 1114 | Builder.markChildToken(Loc: S->getLocation(), R: syntax::NodeRole::LiteralToken); |
| 1115 | Builder.foldNode(Range: Builder.getExprRange(E: S), |
| 1116 | New: new (allocator()) syntax::IntegerLiteralExpression, From: S); |
| 1117 | return true; |
| 1118 | } |
| 1119 | |
| 1120 | bool WalkUpFromCharacterLiteral(CharacterLiteral *S) { |
| 1121 | Builder.markChildToken(Loc: S->getLocation(), R: syntax::NodeRole::LiteralToken); |
| 1122 | Builder.foldNode(Range: Builder.getExprRange(E: S), |
| 1123 | New: new (allocator()) syntax::CharacterLiteralExpression, From: S); |
| 1124 | return true; |
| 1125 | } |
| 1126 | |
| 1127 | bool WalkUpFromFloatingLiteral(FloatingLiteral *S) { |
| 1128 | Builder.markChildToken(Loc: S->getLocation(), R: syntax::NodeRole::LiteralToken); |
| 1129 | Builder.foldNode(Range: Builder.getExprRange(E: S), |
| 1130 | New: new (allocator()) syntax::FloatingLiteralExpression, From: S); |
| 1131 | return true; |
| 1132 | } |
| 1133 | |
| 1134 | bool WalkUpFromStringLiteral(StringLiteral *S) { |
| 1135 | Builder.markChildToken(Loc: S->getBeginLoc(), R: syntax::NodeRole::LiteralToken); |
| 1136 | Builder.foldNode(Range: Builder.getExprRange(E: S), |
| 1137 | New: new (allocator()) syntax::StringLiteralExpression, From: S); |
| 1138 | return true; |
| 1139 | } |
| 1140 | |
| 1141 | bool WalkUpFromCXXBoolLiteralExpr(CXXBoolLiteralExpr *S) { |
| 1142 | Builder.markChildToken(Loc: S->getLocation(), R: syntax::NodeRole::LiteralToken); |
| 1143 | Builder.foldNode(Range: Builder.getExprRange(E: S), |
| 1144 | New: new (allocator()) syntax::BoolLiteralExpression, From: S); |
| 1145 | return true; |
| 1146 | } |
| 1147 | |
| 1148 | bool WalkUpFromCXXNullPtrLiteralExpr(CXXNullPtrLiteralExpr *S) { |
| 1149 | Builder.markChildToken(Loc: S->getLocation(), R: syntax::NodeRole::LiteralToken); |
| 1150 | Builder.foldNode(Range: Builder.getExprRange(E: S), |
| 1151 | New: new (allocator()) syntax::CxxNullPtrExpression, From: S); |
| 1152 | return true; |
| 1153 | } |
| 1154 | |
| 1155 | bool WalkUpFromUnaryOperator(UnaryOperator *S) { |
| 1156 | Builder.markChildToken(Loc: S->getOperatorLoc(), |
| 1157 | R: syntax::NodeRole::OperatorToken); |
| 1158 | Builder.markExprChild(Child: S->getSubExpr(), Role: syntax::NodeRole::Operand); |
| 1159 | |
| 1160 | if (S->isPostfix()) |
| 1161 | Builder.foldNode(Range: Builder.getExprRange(E: S), |
| 1162 | New: new (allocator()) syntax::PostfixUnaryOperatorExpression, |
| 1163 | From: S); |
| 1164 | else |
| 1165 | Builder.foldNode(Range: Builder.getExprRange(E: S), |
| 1166 | New: new (allocator()) syntax::PrefixUnaryOperatorExpression, |
| 1167 | From: S); |
| 1168 | |
| 1169 | return true; |
| 1170 | } |
| 1171 | |
| 1172 | bool WalkUpFromBinaryOperator(BinaryOperator *S) { |
| 1173 | Builder.markExprChild(Child: S->getLHS(), Role: syntax::NodeRole::LeftHandSide); |
| 1174 | Builder.markChildToken(Loc: S->getOperatorLoc(), |
| 1175 | R: syntax::NodeRole::OperatorToken); |
| 1176 | Builder.markExprChild(Child: S->getRHS(), Role: syntax::NodeRole::RightHandSide); |
| 1177 | Builder.foldNode(Range: Builder.getExprRange(E: S), |
| 1178 | New: new (allocator()) syntax::BinaryOperatorExpression, From: S); |
| 1179 | return true; |
| 1180 | } |
| 1181 | |
| 1182 | /// Builds `CallArguments` syntax node from arguments that appear in source |
| 1183 | /// code, i.e. not default arguments. |
| 1184 | syntax::CallArguments * |
| 1185 | buildCallArguments(CallExpr::arg_range ArgsAndDefaultArgs) { |
| 1186 | auto Args = dropDefaultArgs(Args: ArgsAndDefaultArgs); |
| 1187 | for (auto *Arg : Args) { |
| 1188 | Builder.markExprChild(Child: Arg, Role: syntax::NodeRole::ListElement); |
| 1189 | const auto *DelimiterToken = |
| 1190 | std::next(x: Builder.findToken(L: Arg->getEndLoc())); |
| 1191 | if (DelimiterToken->kind() == clang::tok::TokenKind::comma) |
| 1192 | Builder.markChildToken(T: DelimiterToken, R: syntax::NodeRole::ListDelimiter); |
| 1193 | } |
| 1194 | |
| 1195 | auto *Arguments = new (allocator()) syntax::CallArguments; |
| 1196 | if (!Args.empty()) |
| 1197 | Builder.foldNode(Range: Builder.getRange(First: (*Args.begin())->getBeginLoc(), |
| 1198 | Last: (*(Args.end() - 1))->getEndLoc()), |
| 1199 | New: Arguments, From: nullptr); |
| 1200 | |
| 1201 | return Arguments; |
| 1202 | } |
| 1203 | |
| 1204 | bool WalkUpFromCallExpr(CallExpr *S) { |
| 1205 | Builder.markExprChild(Child: S->getCallee(), Role: syntax::NodeRole::Callee); |
| 1206 | |
| 1207 | const auto *LParenToken = |
| 1208 | std::next(x: Builder.findToken(L: S->getCallee()->getEndLoc())); |
| 1209 | // FIXME: Assert that `LParenToken` is indeed a `l_paren` once we have fixed |
| 1210 | // the test on decltype desctructors. |
| 1211 | if (LParenToken->kind() == clang::tok::l_paren) |
| 1212 | Builder.markChildToken(T: LParenToken, R: syntax::NodeRole::OpenParen); |
| 1213 | |
| 1214 | Builder.markChild(N: buildCallArguments(ArgsAndDefaultArgs: S->arguments()), |
| 1215 | R: syntax::NodeRole::Arguments); |
| 1216 | |
| 1217 | Builder.markChildToken(Loc: S->getRParenLoc(), R: syntax::NodeRole::CloseParen); |
| 1218 | |
| 1219 | Builder.foldNode(Range: Builder.getRange(Range: S->getSourceRange()), |
| 1220 | New: new (allocator()) syntax::CallExpression, From: S); |
| 1221 | return true; |
| 1222 | } |
| 1223 | |
| 1224 | bool WalkUpFromCXXConstructExpr(CXXConstructExpr *S) { |
| 1225 | // Ignore the implicit calls to default constructors. |
| 1226 | if ((S->getNumArgs() == 0 || isa<CXXDefaultArgExpr>(Val: S->getArg(Arg: 0))) && |
| 1227 | S->getParenOrBraceRange().isInvalid()) |
| 1228 | return true; |
| 1229 | return RecursiveASTVisitor::WalkUpFromCXXConstructExpr(S); |
| 1230 | } |
| 1231 | |
| 1232 | bool TraverseCXXOperatorCallExpr(CXXOperatorCallExpr *S) { |
| 1233 | // To construct a syntax tree of the same shape for calls to built-in and |
| 1234 | // user-defined operators, ignore the `DeclRefExpr` that refers to the |
| 1235 | // operator and treat it as a simple token. Do that by traversing |
| 1236 | // arguments instead of children. |
| 1237 | for (auto *child : S->arguments()) { |
| 1238 | // A postfix unary operator is declared as taking two operands. The |
| 1239 | // second operand is used to distinguish from its prefix counterpart. In |
| 1240 | // the semantic AST this "phantom" operand is represented as a |
| 1241 | // `IntegerLiteral` with invalid `SourceLocation`. We skip visiting this |
| 1242 | // operand because it does not correspond to anything written in source |
| 1243 | // code. |
| 1244 | if (child->getSourceRange().isInvalid()) { |
| 1245 | assert(getOperatorNodeKind(*S) == |
| 1246 | syntax::NodeKind::PostfixUnaryOperatorExpression); |
| 1247 | continue; |
| 1248 | } |
| 1249 | if (!TraverseStmt(S: child)) |
| 1250 | return false; |
| 1251 | } |
| 1252 | return WalkUpFromCXXOperatorCallExpr(S); |
| 1253 | } |
| 1254 | |
| 1255 | bool WalkUpFromCXXOperatorCallExpr(CXXOperatorCallExpr *S) { |
| 1256 | switch (getOperatorNodeKind(E: *S)) { |
| 1257 | case syntax::NodeKind::BinaryOperatorExpression: |
| 1258 | Builder.markExprChild(Child: S->getArg(Arg: 0), Role: syntax::NodeRole::LeftHandSide); |
| 1259 | Builder.markChildToken(Loc: S->getOperatorLoc(), |
| 1260 | R: syntax::NodeRole::OperatorToken); |
| 1261 | Builder.markExprChild(Child: S->getArg(Arg: 1), Role: syntax::NodeRole::RightHandSide); |
| 1262 | Builder.foldNode(Range: Builder.getExprRange(E: S), |
| 1263 | New: new (allocator()) syntax::BinaryOperatorExpression, From: S); |
| 1264 | return true; |
| 1265 | case syntax::NodeKind::PrefixUnaryOperatorExpression: |
| 1266 | Builder.markChildToken(Loc: S->getOperatorLoc(), |
| 1267 | R: syntax::NodeRole::OperatorToken); |
| 1268 | Builder.markExprChild(Child: S->getArg(Arg: 0), Role: syntax::NodeRole::Operand); |
| 1269 | Builder.foldNode(Range: Builder.getExprRange(E: S), |
| 1270 | New: new (allocator()) syntax::PrefixUnaryOperatorExpression, |
| 1271 | From: S); |
| 1272 | return true; |
| 1273 | case syntax::NodeKind::PostfixUnaryOperatorExpression: |
| 1274 | Builder.markChildToken(Loc: S->getOperatorLoc(), |
| 1275 | R: syntax::NodeRole::OperatorToken); |
| 1276 | Builder.markExprChild(Child: S->getArg(Arg: 0), Role: syntax::NodeRole::Operand); |
| 1277 | Builder.foldNode(Range: Builder.getExprRange(E: S), |
| 1278 | New: new (allocator()) syntax::PostfixUnaryOperatorExpression, |
| 1279 | From: S); |
| 1280 | return true; |
| 1281 | case syntax::NodeKind::CallExpression: { |
| 1282 | Builder.markExprChild(Child: S->getArg(Arg: 0), Role: syntax::NodeRole::Callee); |
| 1283 | |
| 1284 | const auto *LParenToken = |
| 1285 | std::next(x: Builder.findToken(L: S->getArg(Arg: 0)->getEndLoc())); |
| 1286 | // FIXME: Assert that `LParenToken` is indeed a `l_paren` once we have |
| 1287 | // fixed the test on decltype desctructors. |
| 1288 | if (LParenToken->kind() == clang::tok::l_paren) |
| 1289 | Builder.markChildToken(T: LParenToken, R: syntax::NodeRole::OpenParen); |
| 1290 | |
| 1291 | Builder.markChild(N: buildCallArguments(ArgsAndDefaultArgs: CallExpr::arg_range( |
| 1292 | S->arg_begin() + 1, S->arg_end())), |
| 1293 | R: syntax::NodeRole::Arguments); |
| 1294 | |
| 1295 | Builder.markChildToken(Loc: S->getRParenLoc(), R: syntax::NodeRole::CloseParen); |
| 1296 | |
| 1297 | Builder.foldNode(Range: Builder.getRange(Range: S->getSourceRange()), |
| 1298 | New: new (allocator()) syntax::CallExpression, From: S); |
| 1299 | return true; |
| 1300 | } |
| 1301 | case syntax::NodeKind::UnknownExpression: |
| 1302 | return WalkUpFromExpr(E: S); |
| 1303 | default: |
| 1304 | llvm_unreachable("getOperatorNodeKind() does not return this value" ); |
| 1305 | } |
| 1306 | } |
| 1307 | |
| 1308 | bool WalkUpFromCXXDefaultArgExpr(CXXDefaultArgExpr *S) { return true; } |
| 1309 | |
| 1310 | bool WalkUpFromNamespaceDecl(NamespaceDecl *S) { |
| 1311 | auto Tokens = Builder.getDeclarationRange(D: S); |
| 1312 | if (Tokens.front().kind() == tok::coloncolon) { |
| 1313 | // Handle nested namespace definitions. Those start at '::' token, e.g. |
| 1314 | // namespace a^::b {} |
| 1315 | // FIXME: build corresponding nodes for the name of this namespace. |
| 1316 | return true; |
| 1317 | } |
| 1318 | Builder.foldNode(Range: Tokens, New: new (allocator()) syntax::NamespaceDefinition, From: S); |
| 1319 | return true; |
| 1320 | } |
| 1321 | |
| 1322 | // FIXME: Deleting the `TraverseParenTypeLoc` override doesn't change test |
| 1323 | // results. Find test coverage or remove it. |
| 1324 | bool TraverseParenTypeLoc(ParenTypeLoc L, bool TraverseQualifier) { |
| 1325 | // We reverse order of traversal to get the proper syntax structure. |
| 1326 | if (!WalkUpFromParenTypeLoc(L)) |
| 1327 | return false; |
| 1328 | return TraverseTypeLoc(TL: L.getInnerLoc()); |
| 1329 | } |
| 1330 | |
| 1331 | bool WalkUpFromParenTypeLoc(ParenTypeLoc L) { |
| 1332 | Builder.markChildToken(Loc: L.getLParenLoc(), R: syntax::NodeRole::OpenParen); |
| 1333 | Builder.markChildToken(Loc: L.getRParenLoc(), R: syntax::NodeRole::CloseParen); |
| 1334 | Builder.foldNode(Range: Builder.getRange(First: L.getLParenLoc(), Last: L.getRParenLoc()), |
| 1335 | New: new (allocator()) syntax::ParenDeclarator, L); |
| 1336 | return true; |
| 1337 | } |
| 1338 | |
| 1339 | // Declarator chunks, they are produced by type locs and some clang::Decls. |
| 1340 | bool WalkUpFromArrayTypeLoc(ArrayTypeLoc L) { |
| 1341 | Builder.markChildToken(Loc: L.getLBracketLoc(), R: syntax::NodeRole::OpenParen); |
| 1342 | Builder.markExprChild(Child: L.getSizeExpr(), Role: syntax::NodeRole::Size); |
| 1343 | Builder.markChildToken(Loc: L.getRBracketLoc(), R: syntax::NodeRole::CloseParen); |
| 1344 | Builder.foldNode(Range: Builder.getRange(First: L.getLBracketLoc(), Last: L.getRBracketLoc()), |
| 1345 | New: new (allocator()) syntax::ArraySubscript, L); |
| 1346 | return true; |
| 1347 | } |
| 1348 | |
| 1349 | syntax::ParameterDeclarationList * |
| 1350 | buildParameterDeclarationList(ArrayRef<ParmVarDecl *> Params) { |
| 1351 | for (auto *P : Params) { |
| 1352 | Builder.markChild(N: P, R: syntax::NodeRole::ListElement); |
| 1353 | const auto *DelimiterToken = std::next(x: Builder.findToken(L: P->getEndLoc())); |
| 1354 | if (DelimiterToken->kind() == clang::tok::TokenKind::comma) |
| 1355 | Builder.markChildToken(T: DelimiterToken, R: syntax::NodeRole::ListDelimiter); |
| 1356 | } |
| 1357 | auto *Parameters = new (allocator()) syntax::ParameterDeclarationList; |
| 1358 | if (!Params.empty()) |
| 1359 | Builder.foldNode(Range: Builder.getRange(First: Params.front()->getBeginLoc(), |
| 1360 | Last: Params.back()->getEndLoc()), |
| 1361 | New: Parameters, From: nullptr); |
| 1362 | return Parameters; |
| 1363 | } |
| 1364 | |
| 1365 | bool WalkUpFromFunctionTypeLoc(FunctionTypeLoc L) { |
| 1366 | Builder.markChildToken(Loc: L.getLParenLoc(), R: syntax::NodeRole::OpenParen); |
| 1367 | |
| 1368 | Builder.markChild(N: buildParameterDeclarationList(Params: L.getParams()), |
| 1369 | R: syntax::NodeRole::Parameters); |
| 1370 | |
| 1371 | Builder.markChildToken(Loc: L.getRParenLoc(), R: syntax::NodeRole::CloseParen); |
| 1372 | Builder.foldNode(Range: Builder.getRange(First: L.getLParenLoc(), Last: L.getEndLoc()), |
| 1373 | New: new (allocator()) syntax::ParametersAndQualifiers, L); |
| 1374 | return true; |
| 1375 | } |
| 1376 | |
| 1377 | bool WalkUpFromFunctionProtoTypeLoc(FunctionProtoTypeLoc L) { |
| 1378 | if (!L.getTypePtr()->hasTrailingReturn()) |
| 1379 | return WalkUpFromFunctionTypeLoc(L); |
| 1380 | |
| 1381 | auto *TrailingReturnTokens = buildTrailingReturn(L); |
| 1382 | // Finish building the node for parameters. |
| 1383 | Builder.markChild(N: TrailingReturnTokens, R: syntax::NodeRole::TrailingReturn); |
| 1384 | return WalkUpFromFunctionTypeLoc(L); |
| 1385 | } |
| 1386 | |
| 1387 | bool TraverseMemberPointerTypeLoc(MemberPointerTypeLoc L, |
| 1388 | bool TraverseQualifier) { |
| 1389 | // In the source code "void (Y::*mp)()" `MemberPointerTypeLoc` corresponds |
| 1390 | // to "Y::*" but it points to a `ParenTypeLoc` that corresponds to |
| 1391 | // "(Y::*mp)" We thus reverse the order of traversal to get the proper |
| 1392 | // syntax structure. |
| 1393 | if (!WalkUpFromMemberPointerTypeLoc(L)) |
| 1394 | return false; |
| 1395 | return TraverseTypeLoc(TL: L.getPointeeLoc()); |
| 1396 | } |
| 1397 | |
| 1398 | bool WalkUpFromMemberPointerTypeLoc(MemberPointerTypeLoc L) { |
| 1399 | auto SR = L.getLocalSourceRange(); |
| 1400 | Builder.foldNode(Range: Builder.getRange(Range: SR), |
| 1401 | New: new (allocator()) syntax::MemberPointer, L); |
| 1402 | return true; |
| 1403 | } |
| 1404 | |
| 1405 | // The code below is very regular, it could even be generated with some |
| 1406 | // preprocessor magic. We merely assign roles to the corresponding children |
| 1407 | // and fold resulting nodes. |
| 1408 | bool WalkUpFromDeclStmt(DeclStmt *S) { |
| 1409 | Builder.foldNode(Range: Builder.getStmtRange(S), |
| 1410 | New: new (allocator()) syntax::DeclarationStatement, From: S); |
| 1411 | return true; |
| 1412 | } |
| 1413 | |
| 1414 | bool WalkUpFromNullStmt(NullStmt *S) { |
| 1415 | Builder.foldNode(Range: Builder.getStmtRange(S), |
| 1416 | New: new (allocator()) syntax::EmptyStatement, From: S); |
| 1417 | return true; |
| 1418 | } |
| 1419 | |
| 1420 | bool WalkUpFromSwitchStmt(SwitchStmt *S) { |
| 1421 | Builder.markChildToken(Loc: S->getSwitchLoc(), |
| 1422 | R: syntax::NodeRole::IntroducerKeyword); |
| 1423 | Builder.markStmtChild(Child: S->getBody(), Role: syntax::NodeRole::BodyStatement); |
| 1424 | Builder.foldNode(Range: Builder.getStmtRange(S), |
| 1425 | New: new (allocator()) syntax::SwitchStatement, From: S); |
| 1426 | return true; |
| 1427 | } |
| 1428 | |
| 1429 | bool WalkUpFromCaseStmt(CaseStmt *S) { |
| 1430 | Builder.markChildToken(Loc: S->getKeywordLoc(), |
| 1431 | R: syntax::NodeRole::IntroducerKeyword); |
| 1432 | Builder.markExprChild(Child: S->getLHS(), Role: syntax::NodeRole::CaseValue); |
| 1433 | Builder.markStmtChild(Child: S->getSubStmt(), Role: syntax::NodeRole::BodyStatement); |
| 1434 | Builder.foldNode(Range: Builder.getStmtRange(S), |
| 1435 | New: new (allocator()) syntax::CaseStatement, From: S); |
| 1436 | return true; |
| 1437 | } |
| 1438 | |
| 1439 | bool WalkUpFromDefaultStmt(DefaultStmt *S) { |
| 1440 | Builder.markChildToken(Loc: S->getKeywordLoc(), |
| 1441 | R: syntax::NodeRole::IntroducerKeyword); |
| 1442 | Builder.markStmtChild(Child: S->getSubStmt(), Role: syntax::NodeRole::BodyStatement); |
| 1443 | Builder.foldNode(Range: Builder.getStmtRange(S), |
| 1444 | New: new (allocator()) syntax::DefaultStatement, From: S); |
| 1445 | return true; |
| 1446 | } |
| 1447 | |
| 1448 | bool WalkUpFromIfStmt(IfStmt *S) { |
| 1449 | Builder.markChildToken(Loc: S->getIfLoc(), R: syntax::NodeRole::IntroducerKeyword); |
| 1450 | Stmt *ConditionStatement = S->getCond(); |
| 1451 | if (S->hasVarStorage()) |
| 1452 | ConditionStatement = S->getConditionVariableDeclStmt(); |
| 1453 | Builder.markStmtChild(Child: ConditionStatement, Role: syntax::NodeRole::Condition); |
| 1454 | Builder.markStmtChild(Child: S->getThen(), Role: syntax::NodeRole::ThenStatement); |
| 1455 | Builder.markChildToken(Loc: S->getElseLoc(), R: syntax::NodeRole::ElseKeyword); |
| 1456 | Builder.markStmtChild(Child: S->getElse(), Role: syntax::NodeRole::ElseStatement); |
| 1457 | Builder.foldNode(Range: Builder.getStmtRange(S), |
| 1458 | New: new (allocator()) syntax::IfStatement, From: S); |
| 1459 | return true; |
| 1460 | } |
| 1461 | |
| 1462 | bool WalkUpFromForStmt(ForStmt *S) { |
| 1463 | Builder.markChildToken(Loc: S->getForLoc(), R: syntax::NodeRole::IntroducerKeyword); |
| 1464 | Builder.markStmtChild(Child: S->getBody(), Role: syntax::NodeRole::BodyStatement); |
| 1465 | Builder.foldNode(Range: Builder.getStmtRange(S), |
| 1466 | New: new (allocator()) syntax::ForStatement, From: S); |
| 1467 | return true; |
| 1468 | } |
| 1469 | |
| 1470 | bool WalkUpFromWhileStmt(WhileStmt *S) { |
| 1471 | Builder.markChildToken(Loc: S->getWhileLoc(), |
| 1472 | R: syntax::NodeRole::IntroducerKeyword); |
| 1473 | Builder.markStmtChild(Child: S->getBody(), Role: syntax::NodeRole::BodyStatement); |
| 1474 | Builder.foldNode(Range: Builder.getStmtRange(S), |
| 1475 | New: new (allocator()) syntax::WhileStatement, From: S); |
| 1476 | return true; |
| 1477 | } |
| 1478 | |
| 1479 | bool WalkUpFromContinueStmt(ContinueStmt *S) { |
| 1480 | Builder.markChildToken(Loc: S->getKwLoc(), R: syntax::NodeRole::IntroducerKeyword); |
| 1481 | Builder.foldNode(Range: Builder.getStmtRange(S), |
| 1482 | New: new (allocator()) syntax::ContinueStatement, From: S); |
| 1483 | return true; |
| 1484 | } |
| 1485 | |
| 1486 | bool WalkUpFromBreakStmt(BreakStmt *S) { |
| 1487 | Builder.markChildToken(Loc: S->getKwLoc(), R: syntax::NodeRole::IntroducerKeyword); |
| 1488 | Builder.foldNode(Range: Builder.getStmtRange(S), |
| 1489 | New: new (allocator()) syntax::BreakStatement, From: S); |
| 1490 | return true; |
| 1491 | } |
| 1492 | |
| 1493 | bool WalkUpFromReturnStmt(ReturnStmt *S) { |
| 1494 | Builder.markChildToken(Loc: S->getReturnLoc(), |
| 1495 | R: syntax::NodeRole::IntroducerKeyword); |
| 1496 | Builder.markExprChild(Child: S->getRetValue(), Role: syntax::NodeRole::ReturnValue); |
| 1497 | Builder.foldNode(Range: Builder.getStmtRange(S), |
| 1498 | New: new (allocator()) syntax::ReturnStatement, From: S); |
| 1499 | return true; |
| 1500 | } |
| 1501 | |
| 1502 | bool WalkUpFromCXXForRangeStmt(CXXForRangeStmt *S) { |
| 1503 | Builder.markChildToken(Loc: S->getForLoc(), R: syntax::NodeRole::IntroducerKeyword); |
| 1504 | Builder.markStmtChild(Child: S->getBody(), Role: syntax::NodeRole::BodyStatement); |
| 1505 | Builder.foldNode(Range: Builder.getStmtRange(S), |
| 1506 | New: new (allocator()) syntax::RangeBasedForStatement, From: S); |
| 1507 | return true; |
| 1508 | } |
| 1509 | |
| 1510 | bool WalkUpFromEmptyDecl(EmptyDecl *S) { |
| 1511 | Builder.foldNode(Range: Builder.getDeclarationRange(D: S), |
| 1512 | New: new (allocator()) syntax::EmptyDeclaration, From: S); |
| 1513 | return true; |
| 1514 | } |
| 1515 | |
| 1516 | bool WalkUpFromStaticAssertDecl(StaticAssertDecl *S) { |
| 1517 | Builder.markExprChild(Child: S->getAssertExpr(), Role: syntax::NodeRole::Condition); |
| 1518 | Builder.markExprChild(Child: S->getMessage(), Role: syntax::NodeRole::Message); |
| 1519 | Builder.foldNode(Range: Builder.getDeclarationRange(D: S), |
| 1520 | New: new (allocator()) syntax::StaticAssertDeclaration, From: S); |
| 1521 | return true; |
| 1522 | } |
| 1523 | |
| 1524 | bool WalkUpFromLinkageSpecDecl(LinkageSpecDecl *S) { |
| 1525 | Builder.foldNode(Range: Builder.getDeclarationRange(D: S), |
| 1526 | New: new (allocator()) syntax::LinkageSpecificationDeclaration, |
| 1527 | From: S); |
| 1528 | return true; |
| 1529 | } |
| 1530 | |
| 1531 | bool WalkUpFromNamespaceAliasDecl(NamespaceAliasDecl *S) { |
| 1532 | Builder.foldNode(Range: Builder.getDeclarationRange(D: S), |
| 1533 | New: new (allocator()) syntax::NamespaceAliasDefinition, From: S); |
| 1534 | return true; |
| 1535 | } |
| 1536 | |
| 1537 | bool WalkUpFromUsingDirectiveDecl(UsingDirectiveDecl *S) { |
| 1538 | Builder.foldNode(Range: Builder.getDeclarationRange(D: S), |
| 1539 | New: new (allocator()) syntax::UsingNamespaceDirective, From: S); |
| 1540 | return true; |
| 1541 | } |
| 1542 | |
| 1543 | bool WalkUpFromUsingDecl(UsingDecl *S) { |
| 1544 | Builder.foldNode(Range: Builder.getDeclarationRange(D: S), |
| 1545 | New: new (allocator()) syntax::UsingDeclaration, From: S); |
| 1546 | return true; |
| 1547 | } |
| 1548 | |
| 1549 | bool WalkUpFromUnresolvedUsingValueDecl(UnresolvedUsingValueDecl *S) { |
| 1550 | Builder.foldNode(Range: Builder.getDeclarationRange(D: S), |
| 1551 | New: new (allocator()) syntax::UsingDeclaration, From: S); |
| 1552 | return true; |
| 1553 | } |
| 1554 | |
| 1555 | bool WalkUpFromUnresolvedUsingTypenameDecl(UnresolvedUsingTypenameDecl *S) { |
| 1556 | Builder.foldNode(Range: Builder.getDeclarationRange(D: S), |
| 1557 | New: new (allocator()) syntax::UsingDeclaration, From: S); |
| 1558 | return true; |
| 1559 | } |
| 1560 | |
| 1561 | bool WalkUpFromTypeAliasDecl(TypeAliasDecl *S) { |
| 1562 | Builder.foldNode(Range: Builder.getDeclarationRange(D: S), |
| 1563 | New: new (allocator()) syntax::TypeAliasDeclaration, From: S); |
| 1564 | return true; |
| 1565 | } |
| 1566 | |
| 1567 | private: |
| 1568 | /// Folds SimpleDeclarator node (if present) and in case this is the last |
| 1569 | /// declarator in the chain it also folds SimpleDeclaration node. |
| 1570 | template <class T> bool processDeclaratorAndDeclaration(T *D) { |
| 1571 | auto Range = getDeclaratorRange( |
| 1572 | Builder.sourceManager(), D->getTypeSourceInfo()->getTypeLoc(), |
| 1573 | getQualifiedNameStart(D), getInitializerRange(D)); |
| 1574 | |
| 1575 | // There doesn't have to be a declarator (e.g. `void foo(int)` only has |
| 1576 | // declaration, but no declarator). |
| 1577 | if (!Range.getBegin().isValid()) { |
| 1578 | Builder.markChild(N: new (allocator()) syntax::DeclaratorList, |
| 1579 | R: syntax::NodeRole::Declarators); |
| 1580 | Builder.foldNode(Builder.getDeclarationRange(D), |
| 1581 | new (allocator()) syntax::SimpleDeclaration, D); |
| 1582 | return true; |
| 1583 | } |
| 1584 | |
| 1585 | auto *N = new (allocator()) syntax::SimpleDeclarator; |
| 1586 | Builder.foldNode(Builder.getRange(Range), N, nullptr); |
| 1587 | Builder.markChild(N, R: syntax::NodeRole::ListElement); |
| 1588 | |
| 1589 | if (!Builder.isResponsibleForCreatingDeclaration(D)) { |
| 1590 | // If this is not the last declarator in the declaration we expect a |
| 1591 | // delimiter after it. |
| 1592 | const auto *DelimiterToken = std::next(Builder.findToken(L: Range.getEnd())); |
| 1593 | if (DelimiterToken->kind() == clang::tok::TokenKind::comma) |
| 1594 | Builder.markChildToken(DelimiterToken, syntax::NodeRole::ListDelimiter); |
| 1595 | } else { |
| 1596 | auto *DL = new (allocator()) syntax::DeclaratorList; |
| 1597 | auto DeclarationRange = Builder.getDeclarationRange(D); |
| 1598 | Builder.foldList(SuperRange: DeclarationRange, New: DL, From: nullptr); |
| 1599 | |
| 1600 | Builder.markChild(N: DL, R: syntax::NodeRole::Declarators); |
| 1601 | Builder.foldNode(DeclarationRange, |
| 1602 | new (allocator()) syntax::SimpleDeclaration, D); |
| 1603 | } |
| 1604 | return true; |
| 1605 | } |
| 1606 | |
| 1607 | /// Returns the range of the built node. |
| 1608 | syntax::TrailingReturnType *buildTrailingReturn(FunctionProtoTypeLoc L) { |
| 1609 | assert(L.getTypePtr()->hasTrailingReturn()); |
| 1610 | |
| 1611 | auto ReturnedType = L.getReturnLoc(); |
| 1612 | // Build node for the declarator, if any. |
| 1613 | auto ReturnDeclaratorRange = SourceRange(GetStartLoc().Visit(TyLoc: ReturnedType), |
| 1614 | ReturnedType.getEndLoc()); |
| 1615 | syntax::SimpleDeclarator *ReturnDeclarator = nullptr; |
| 1616 | if (ReturnDeclaratorRange.isValid()) { |
| 1617 | ReturnDeclarator = new (allocator()) syntax::SimpleDeclarator; |
| 1618 | Builder.foldNode(Range: Builder.getRange(Range: ReturnDeclaratorRange), |
| 1619 | New: ReturnDeclarator, From: nullptr); |
| 1620 | } |
| 1621 | |
| 1622 | // Build node for trailing return type. |
| 1623 | auto Return = Builder.getRange(Range: ReturnedType.getSourceRange()); |
| 1624 | const auto *Arrow = Return.begin() - 1; |
| 1625 | assert(Arrow->kind() == tok::arrow); |
| 1626 | auto Tokens = llvm::ArrayRef(Arrow, Return.end()); |
| 1627 | Builder.markChildToken(T: Arrow, R: syntax::NodeRole::ArrowToken); |
| 1628 | if (ReturnDeclarator) |
| 1629 | Builder.markChild(N: ReturnDeclarator, R: syntax::NodeRole::Declarator); |
| 1630 | auto *R = new (allocator()) syntax::TrailingReturnType; |
| 1631 | Builder.foldNode(Range: Tokens, New: R, L); |
| 1632 | return R; |
| 1633 | } |
| 1634 | |
| 1635 | void foldExplicitTemplateInstantiation( |
| 1636 | ArrayRef<syntax::Token> Range, const syntax::Token *ExternKW, |
| 1637 | const syntax::Token *TemplateKW, |
| 1638 | syntax::SimpleDeclaration *InnerDeclaration, Decl *From) { |
| 1639 | assert(!ExternKW || ExternKW->kind() == tok::kw_extern); |
| 1640 | assert(TemplateKW && TemplateKW->kind() == tok::kw_template); |
| 1641 | Builder.markChildToken(T: ExternKW, R: syntax::NodeRole::ExternKeyword); |
| 1642 | Builder.markChildToken(T: TemplateKW, R: syntax::NodeRole::IntroducerKeyword); |
| 1643 | Builder.markChild(N: InnerDeclaration, R: syntax::NodeRole::Declaration); |
| 1644 | Builder.foldNode( |
| 1645 | Range, New: new (allocator()) syntax::ExplicitTemplateInstantiation, From); |
| 1646 | } |
| 1647 | |
| 1648 | syntax::TemplateDeclaration *foldTemplateDeclaration( |
| 1649 | ArrayRef<syntax::Token> Range, const syntax::Token *TemplateKW, |
| 1650 | ArrayRef<syntax::Token> TemplatedDeclaration, Decl *From) { |
| 1651 | assert(TemplateKW && TemplateKW->kind() == tok::kw_template); |
| 1652 | Builder.markChildToken(T: TemplateKW, R: syntax::NodeRole::IntroducerKeyword); |
| 1653 | |
| 1654 | auto *N = new (allocator()) syntax::TemplateDeclaration; |
| 1655 | Builder.foldNode(Range, New: N, From); |
| 1656 | Builder.markChild(N, R: syntax::NodeRole::Declaration); |
| 1657 | return N; |
| 1658 | } |
| 1659 | |
| 1660 | /// A small helper to save some typing. |
| 1661 | llvm::BumpPtrAllocator &allocator() { return Builder.allocator(); } |
| 1662 | |
| 1663 | syntax::TreeBuilder &Builder; |
| 1664 | const ASTContext &Context; |
| 1665 | }; |
| 1666 | } // namespace |
| 1667 | |
| 1668 | void syntax::TreeBuilder::noticeDeclWithoutSemicolon(Decl *D) { |
| 1669 | DeclsWithoutSemicolons.insert(V: D); |
| 1670 | } |
| 1671 | |
| 1672 | void syntax::TreeBuilder::markChildToken(SourceLocation Loc, NodeRole Role) { |
| 1673 | if (Loc.isInvalid()) |
| 1674 | return; |
| 1675 | Pending.assignRole(Range: *findToken(L: Loc), Role); |
| 1676 | } |
| 1677 | |
| 1678 | void syntax::TreeBuilder::markChildToken(const syntax::Token *T, NodeRole R) { |
| 1679 | if (!T) |
| 1680 | return; |
| 1681 | Pending.assignRole(Range: *T, Role: R); |
| 1682 | } |
| 1683 | |
| 1684 | void syntax::TreeBuilder::markChild(syntax::Node *N, NodeRole R) { |
| 1685 | assert(N); |
| 1686 | setRole(N, R); |
| 1687 | } |
| 1688 | |
| 1689 | void syntax::TreeBuilder::markChild(ASTPtr N, NodeRole R) { |
| 1690 | auto *SN = Mapping.find(P: N); |
| 1691 | assert(SN != nullptr); |
| 1692 | setRole(N: SN, R); |
| 1693 | } |
| 1694 | void syntax::TreeBuilder::markChild(NestedNameSpecifierLoc NNSLoc, NodeRole R) { |
| 1695 | auto *SN = Mapping.find(P: NNSLoc); |
| 1696 | assert(SN != nullptr); |
| 1697 | setRole(N: SN, R); |
| 1698 | } |
| 1699 | |
| 1700 | void syntax::TreeBuilder::markStmtChild(Stmt *Child, NodeRole Role) { |
| 1701 | if (!Child) |
| 1702 | return; |
| 1703 | |
| 1704 | syntax::Tree *ChildNode; |
| 1705 | if (Expr *ChildExpr = dyn_cast<Expr>(Val: Child)) { |
| 1706 | // This is an expression in a statement position, consume the trailing |
| 1707 | // semicolon and form an 'ExpressionStatement' node. |
| 1708 | markExprChild(Child: ChildExpr, Role: NodeRole::Expression); |
| 1709 | ChildNode = new (allocator()) syntax::ExpressionStatement; |
| 1710 | // (!) 'getStmtRange()' ensures this covers a trailing semicolon. |
| 1711 | Pending.foldChildren(TB: TBTM.tokenBuffer(), Tokens: getStmtRange(S: Child), Node: ChildNode); |
| 1712 | } else { |
| 1713 | ChildNode = Mapping.find(P: Child); |
| 1714 | } |
| 1715 | assert(ChildNode != nullptr); |
| 1716 | setRole(N: ChildNode, R: Role); |
| 1717 | } |
| 1718 | |
| 1719 | void syntax::TreeBuilder::markExprChild(Expr *Child, NodeRole Role) { |
| 1720 | if (!Child) |
| 1721 | return; |
| 1722 | Child = IgnoreImplicit(E: Child); |
| 1723 | |
| 1724 | syntax::Tree *ChildNode = Mapping.find(P: Child); |
| 1725 | assert(ChildNode != nullptr); |
| 1726 | setRole(N: ChildNode, R: Role); |
| 1727 | } |
| 1728 | |
| 1729 | const syntax::Token *syntax::TreeBuilder::findToken(SourceLocation L) const { |
| 1730 | if (L.isInvalid()) |
| 1731 | return nullptr; |
| 1732 | auto It = LocationToToken.find(Val: L); |
| 1733 | assert(It != LocationToToken.end()); |
| 1734 | return It->second; |
| 1735 | } |
| 1736 | |
| 1737 | syntax::TranslationUnit *syntax::buildSyntaxTree(Arena &A, |
| 1738 | TokenBufferTokenManager& TBTM, |
| 1739 | ASTContext &Context) { |
| 1740 | TreeBuilder Builder(A, TBTM); |
| 1741 | BuildTreeVisitor(Context, Builder).TraverseAST(AST&: Context); |
| 1742 | return std::move(Builder).finalize(); |
| 1743 | } |
| 1744 | |