1//===-- sanitizer_win.cpp -------------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file is shared between AddressSanitizer and ThreadSanitizer
10// run-time libraries and implements windows-specific functions from
11// sanitizer_libc.h.
12//===----------------------------------------------------------------------===//
13
14#include "sanitizer_platform.h"
15#if SANITIZER_WINDOWS
16
17#define WIN32_LEAN_AND_MEAN
18#define NOGDI
19#include <windows.h>
20#include <io.h>
21#include <psapi.h>
22#include <stdlib.h>
23
24#include "sanitizer_common.h"
25#include "sanitizer_file.h"
26#include "sanitizer_libc.h"
27#include "sanitizer_mutex.h"
28#include "sanitizer_placement_new.h"
29#include "sanitizer_win_defs.h"
30
31#if defined(PSAPI_VERSION) && PSAPI_VERSION == 1
32#pragma comment(lib, "psapi")
33#endif
34#if SANITIZER_WIN_TRACE
35#include <traceloggingprovider.h>
36// Windows trace logging provider init
37#pragma comment(lib, "advapi32.lib")
38TRACELOGGING_DECLARE_PROVIDER(g_asan_provider);
39// GUID must be the same in utils/AddressSanitizerLoggingProvider.wprp
40TRACELOGGING_DEFINE_PROVIDER(g_asan_provider, "AddressSanitizerLoggingProvider",
41 (0x6c6c766d, 0x3846, 0x4e6a, 0xa4, 0xfb, 0x5b,
42 0x53, 0x0b, 0xd0, 0xf3, 0xfa));
43#else
44#define TraceLoggingUnregister(x)
45#endif
46
47// For WaitOnAddress
48# pragma comment(lib, "synchronization.lib")
49
50// A macro to tell the compiler that this part of the code cannot be reached,
51// if the compiler supports this feature. Since we're using this in
52// code that is called when terminating the process, the expansion of the
53// macro should not terminate the process to avoid infinite recursion.
54#if defined(__clang__)
55# define BUILTIN_UNREACHABLE() __builtin_unreachable()
56#elif defined(__GNUC__) && \
57 (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 5))
58# define BUILTIN_UNREACHABLE() __builtin_unreachable()
59#elif defined(_MSC_VER)
60# define BUILTIN_UNREACHABLE() __assume(0)
61#else
62# define BUILTIN_UNREACHABLE()
63#endif
64
65namespace __sanitizer {
66
67#include "sanitizer_syscall_generic.inc"
68
69// --------------------- sanitizer_common.h
70uptr GetPageSize() {
71 SYSTEM_INFO si;
72 GetSystemInfo(&si);
73 return si.dwPageSize;
74}
75
76uptr GetMmapGranularity() {
77 SYSTEM_INFO si;
78 GetSystemInfo(&si);
79 return si.dwAllocationGranularity;
80}
81
82uptr GetMaxUserVirtualAddress() {
83 SYSTEM_INFO si;
84 GetSystemInfo(&si);
85 return (uptr)si.lpMaximumApplicationAddress;
86}
87
88uptr GetMaxVirtualAddress() {
89 return GetMaxUserVirtualAddress();
90}
91
92bool FileExists(const char *filename) {
93 return ::GetFileAttributesA(filename) != INVALID_FILE_ATTRIBUTES;
94}
95
96bool DirExists(const char *path) {
97 auto attr = ::GetFileAttributesA(path);
98 return (attr != INVALID_FILE_ATTRIBUTES) && (attr & FILE_ATTRIBUTE_DIRECTORY);
99}
100
101uptr internal_getpid() {
102 return GetProcessId(GetCurrentProcess());
103}
104
105int internal_dlinfo(void *handle, int request, void *p) {
106 UNIMPLEMENTED();
107}
108
109// In contrast to POSIX, on Windows GetCurrentThreadId()
110// returns a system-unique identifier.
111ThreadID GetTid() { return GetCurrentThreadId(); }
112
113uptr GetThreadSelf() {
114 return GetTid();
115}
116
117#if !SANITIZER_GO
118void GetThreadStackTopAndBottom(bool at_initialization, uptr *stack_top,
119 uptr *stack_bottom) {
120 CHECK(stack_top);
121 CHECK(stack_bottom);
122 MEMORY_BASIC_INFORMATION mbi;
123 CHECK_NE(VirtualQuery(&mbi /* on stack */, &mbi, sizeof(mbi)), 0);
124 // FIXME: is it possible for the stack to not be a single allocation?
125 // Are these values what ASan expects to get (reserved, not committed;
126 // including stack guard page) ?
127 *stack_top = (uptr)mbi.BaseAddress + mbi.RegionSize;
128 *stack_bottom = (uptr)mbi.AllocationBase;
129}
130#endif // #if !SANITIZER_GO
131
132bool ErrorIsOOM(error_t err) {
133 // TODO: This should check which `err`s correspond to OOM.
134 return false;
135}
136
137void *MmapOrDie(uptr size, const char *mem_type, bool raw_report) {
138 void *rv = VirtualAlloc(0, size, MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);
139 if (rv == 0)
140 ReportMmapFailureAndDie(size, mem_type, "allocate",
141 GetLastError(), raw_report);
142 return rv;
143}
144
145void UnmapOrDie(void *addr, uptr size, bool raw_report) {
146 if (!size || !addr)
147 return;
148
149 MEMORY_BASIC_INFORMATION mbi;
150 CHECK(VirtualQuery(addr, &mbi, sizeof(mbi)));
151
152 // MEM_RELEASE can only be used to unmap whole regions previously mapped with
153 // VirtualAlloc. So we first try MEM_RELEASE since it is better, and if that
154 // fails try MEM_DECOMMIT.
155 if (VirtualFree(addr, 0, MEM_RELEASE) == 0) {
156 if (VirtualFree(addr, size, MEM_DECOMMIT) == 0) {
157 ReportMunmapFailureAndDie(addr, size, GetLastError(), raw_report);
158 }
159 }
160}
161
162static void *ReturnNullptrOnOOMOrDie(uptr size, const char *mem_type,
163 const char *mmap_type) {
164 error_t last_error = GetLastError();
165
166 // Assumption: VirtualAlloc is the last system call that was invoked before
167 // this method.
168 // VirtualAlloc emits one of 3 error codes when running out of memory
169 // 1. ERROR_NOT_ENOUGH_MEMORY:
170 // There's not enough memory to execute the command
171 // 2. ERROR_INVALID_PARAMETER:
172 // VirtualAlloc will return this if the request would allocate memory at an
173 // address exceeding or being very close to the maximum application address
174 // (the `lpMaximumApplicationAddress` field within the `SystemInfo` struct).
175 // This does not seem to be officially documented, but is corroborated here:
176 // https://stackoverflow.com/questions/45833674/why-does-virtualalloc-fail-for-lpaddress-greater-than-0x6ffffffffff
177 // 3. ERROR_COMMITMENT_LIMIT:
178 // VirtualAlloc will return this if e.g. the pagefile is too small to commit
179 // the requested amount of memory.
180 if (last_error == ERROR_NOT_ENOUGH_MEMORY ||
181 last_error == ERROR_INVALID_PARAMETER ||
182 last_error == ERROR_COMMITMENT_LIMIT)
183 return nullptr;
184 ReportMmapFailureAndDie(size, mem_type, mmap_type, last_error);
185}
186
187void *MmapOrDieOnFatalError(uptr size, const char *mem_type) {
188 void *rv = VirtualAlloc(0, size, MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);
189 if (rv == 0)
190 return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate");
191 return rv;
192}
193
194// We want to map a chunk of address space aligned to 'alignment'.
195void *MmapAlignedOrDieOnFatalError(uptr size, uptr alignment,
196 const char *mem_type) {
197 CHECK(IsPowerOfTwo(size));
198 CHECK(IsPowerOfTwo(alignment));
199
200 // Windows will align our allocations to at least 64K.
201 alignment = Max(alignment, GetMmapGranularity());
202
203 uptr mapped_addr =
204 (uptr)VirtualAlloc(0, size, MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);
205 if (!mapped_addr)
206 return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate aligned");
207
208 // If we got it right on the first try, return. Otherwise, unmap it and go to
209 // the slow path.
210 if (IsAligned(mapped_addr, alignment))
211 return (void*)mapped_addr;
212 if (VirtualFree((void *)mapped_addr, 0, MEM_RELEASE) == 0)
213 ReportMmapFailureAndDie(size, mem_type, "deallocate", GetLastError());
214
215 // If we didn't get an aligned address, overallocate, find an aligned address,
216 // unmap, and try to allocate at that aligned address.
217 int retries = 0;
218 const int kMaxRetries = 10;
219 for (; retries < kMaxRetries &&
220 (mapped_addr == 0 || !IsAligned(mapped_addr, alignment));
221 retries++) {
222 // Overallocate size + alignment bytes.
223 mapped_addr =
224 (uptr)VirtualAlloc(0, size + alignment, MEM_RESERVE, PAGE_NOACCESS);
225 if (!mapped_addr)
226 return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate aligned");
227
228 // Find the aligned address.
229 uptr aligned_addr = RoundUpTo(mapped_addr, alignment);
230
231 // Free the overallocation.
232 if (VirtualFree((void *)mapped_addr, 0, MEM_RELEASE) == 0)
233 ReportMmapFailureAndDie(size, mem_type, "deallocate", GetLastError());
234
235 // Attempt to allocate exactly the number of bytes we need at the aligned
236 // address. This may fail for a number of reasons, in which case we continue
237 // the loop.
238 mapped_addr = (uptr)VirtualAlloc((void *)aligned_addr, size,
239 MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);
240 }
241
242 // Fail if we can't make this work quickly.
243 if (retries == kMaxRetries && mapped_addr == 0)
244 return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate aligned");
245
246 return (void *)mapped_addr;
247}
248
249// ZeroMmapFixedRegion zero's out a region of memory previously returned from a
250// call to one of the MmapFixed* helpers. On non-windows systems this would be
251// done with another mmap, but on windows remapping is not an option.
252// VirtualFree(DECOMMIT)+VirtualAlloc(RECOMMIT) would also be a way to zero the
253// memory, but we can't do this atomically, so instead we fall back to using
254// internal_memset.
255bool ZeroMmapFixedRegion(uptr fixed_addr, uptr size) {
256 internal_memset((void*) fixed_addr, 0, size);
257 return true;
258}
259
260bool MmapFixedNoReserve(uptr fixed_addr, uptr size, const char *name) {
261 // FIXME: is this really "NoReserve"? On Win32 this does not matter much,
262 // but on Win64 it does.
263 (void)name; // unsupported
264#if !SANITIZER_GO && SANITIZER_WINDOWS64
265 // On asan/Windows64, use MEM_COMMIT would result in error
266 // 1455:ERROR_COMMITMENT_LIMIT.
267 // Asan uses exception handler to commit page on demand.
268 void *p = VirtualAlloc((LPVOID)fixed_addr, size, MEM_RESERVE, PAGE_READWRITE);
269#else
270 void *p = VirtualAlloc((LPVOID)fixed_addr, size, MEM_RESERVE | MEM_COMMIT,
271 PAGE_READWRITE);
272#endif
273 if (p == 0) {
274 Report("ERROR: %s failed to "
275 "allocate %p (%zd) bytes at %p (error code: %d)\n",
276 SanitizerToolName, size, size, fixed_addr, GetLastError());
277 return false;
278 }
279 return true;
280}
281
282bool MmapFixedSuperNoReserve(uptr fixed_addr, uptr size, const char *name) {
283 // FIXME: Windows support large pages too. Might be worth checking
284 return MmapFixedNoReserve(fixed_addr, size, name);
285}
286
287// Memory space mapped by 'MmapFixedOrDie' must have been reserved by
288// 'MmapFixedNoAccess'.
289void *MmapFixedOrDie(uptr fixed_addr, uptr size, const char *name) {
290 void *p = VirtualAlloc((LPVOID)fixed_addr, size,
291 MEM_COMMIT, PAGE_READWRITE);
292 if (p == 0) {
293 char mem_type[30];
294 internal_snprintf(mem_type, sizeof(mem_type), "memory at address %p",
295 (void *)fixed_addr);
296 ReportMmapFailureAndDie(size, mem_type, "allocate", GetLastError());
297 }
298 return p;
299}
300
301// Uses fixed_addr for now.
302// Will use offset instead once we've implemented this function for real.
303uptr ReservedAddressRange::Map(uptr fixed_addr, uptr size, const char *name) {
304 return reinterpret_cast<uptr>(MmapFixedOrDieOnFatalError(fixed_addr, size));
305}
306
307uptr ReservedAddressRange::MapOrDie(uptr fixed_addr, uptr size,
308 const char *name) {
309 return reinterpret_cast<uptr>(MmapFixedOrDie(fixed_addr, size));
310}
311
312void ReservedAddressRange::Unmap(uptr addr, uptr size) {
313 // Only unmap if it covers the entire range.
314 CHECK((addr == reinterpret_cast<uptr>(base_)) && (size == size_));
315 // We unmap the whole range, just null out the base.
316 base_ = nullptr;
317 size_ = 0;
318 UnmapOrDie(reinterpret_cast<void*>(addr), size);
319}
320
321void *MmapFixedOrDieOnFatalError(uptr fixed_addr, uptr size, const char *name) {
322 void *p = VirtualAlloc((LPVOID)fixed_addr, size,
323 MEM_COMMIT, PAGE_READWRITE);
324 if (p == 0) {
325 char mem_type[30];
326 internal_snprintf(mem_type, sizeof(mem_type), "memory at address %p",
327 (void *)fixed_addr);
328 return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate");
329 }
330 return p;
331}
332
333void *MmapNoReserveOrDie(uptr size, const char *mem_type) {
334 // FIXME: make this really NoReserve?
335 return MmapOrDie(size, mem_type);
336}
337
338uptr ReservedAddressRange::Init(uptr size, const char *name, uptr fixed_addr) {
339 base_ = fixed_addr ? MmapFixedNoAccess(fixed_addr, size) : MmapNoAccess(size);
340 size_ = size;
341 name_ = name;
342 (void)os_handle_; // unsupported
343 return reinterpret_cast<uptr>(base_);
344}
345
346
347void *MmapFixedNoAccess(uptr fixed_addr, uptr size, const char *name) {
348 (void)name; // unsupported
349 void *res = VirtualAlloc((LPVOID)fixed_addr, size,
350 MEM_RESERVE, PAGE_NOACCESS);
351 if (res == 0)
352 Report("WARNING: %s failed to "
353 "mprotect %p (%zd) bytes at %p (error code: %d)\n",
354 SanitizerToolName, size, size, fixed_addr, GetLastError());
355 return res;
356}
357
358void *MmapNoAccess(uptr size) {
359 void *res = VirtualAlloc(nullptr, size, MEM_RESERVE, PAGE_NOACCESS);
360 if (res == 0)
361 Report("WARNING: %s failed to "
362 "mprotect %p (%zd) bytes (error code: %d)\n",
363 SanitizerToolName, size, size, GetLastError());
364 return res;
365}
366
367bool MprotectNoAccess(uptr addr, uptr size) {
368 DWORD old_protection;
369 return VirtualProtect((LPVOID)addr, size, PAGE_NOACCESS, &old_protection);
370}
371
372bool MprotectReadOnly(uptr addr, uptr size) {
373 DWORD old_protection;
374 return VirtualProtect((LPVOID)addr, size, PAGE_READONLY, &old_protection);
375}
376
377bool MprotectReadWrite(uptr addr, uptr size) {
378 DWORD old_protection;
379 return VirtualProtect((LPVOID)addr, size, PAGE_READWRITE, &old_protection);
380}
381
382void ReleaseMemoryPagesToOS(uptr beg, uptr end) {
383 uptr beg_aligned = RoundDownTo(beg, GetPageSizeCached()),
384 end_aligned = RoundDownTo(end, GetPageSizeCached());
385 CHECK(beg < end); // make sure the region is sane
386 if (beg_aligned == end_aligned) // make sure we're freeing at least 1 page;
387 return;
388 UnmapOrDie((void *)beg, end_aligned - beg_aligned);
389}
390
391void SetShadowRegionHugePageMode(uptr addr, uptr size) {
392 // FIXME: probably similar to ReleaseMemoryToOS.
393}
394
395bool DontDumpShadowMemory(uptr addr, uptr length) {
396 // This is almost useless on 32-bits.
397 // FIXME: add madvise-analog when we move to 64-bits.
398 return true;
399}
400
401uptr MapDynamicShadow(uptr shadow_size_bytes, uptr shadow_scale,
402 uptr min_shadow_base_alignment, UNUSED uptr &high_mem_end,
403 uptr granularity) {
404 const uptr alignment =
405 Max<uptr>(granularity << shadow_scale, 1ULL << min_shadow_base_alignment);
406 const uptr left_padding =
407 Max<uptr>(granularity, 1ULL << min_shadow_base_alignment);
408 uptr space_size = shadow_size_bytes + left_padding;
409 uptr shadow_start = FindAvailableMemoryRange(space_size, alignment,
410 granularity, nullptr, nullptr);
411 CHECK_NE((uptr)0, shadow_start);
412 CHECK(IsAligned(shadow_start, alignment));
413 return shadow_start;
414}
415
416uptr FindAvailableMemoryRange(uptr size, uptr alignment, uptr left_padding,
417 uptr *largest_gap_found,
418 uptr *max_occupied_addr) {
419 uptr address = 0;
420 while (true) {
421 MEMORY_BASIC_INFORMATION info;
422 if (!::VirtualQuery((void*)address, &info, sizeof(info)))
423 return 0;
424
425 if (info.State == MEM_FREE) {
426 uptr shadow_address = RoundUpTo((uptr)info.BaseAddress + left_padding,
427 alignment);
428 if (shadow_address + size < (uptr)info.BaseAddress + info.RegionSize)
429 return shadow_address;
430 }
431
432 // Move to the next region.
433 address = (uptr)info.BaseAddress + info.RegionSize;
434 }
435 return 0;
436}
437
438uptr MapDynamicShadowAndAliases(uptr shadow_size, uptr alias_size,
439 uptr num_aliases, uptr ring_buffer_size) {
440 CHECK(false && "HWASan aliasing is unimplemented on Windows");
441 return 0;
442}
443
444bool MemoryRangeIsAvailable(uptr range_start, uptr range_end) {
445 MEMORY_BASIC_INFORMATION mbi;
446 CHECK(VirtualQuery((void *)range_start, &mbi, sizeof(mbi)));
447 return mbi.Protect == PAGE_NOACCESS &&
448 (uptr)mbi.BaseAddress + mbi.RegionSize >= range_end;
449}
450
451void *MapFileToMemory(const char *file_name, uptr *buff_size) {
452 UNIMPLEMENTED();
453}
454
455void *MapWritableFileToMemory(void *addr, uptr size, fd_t fd, OFF_T offset) {
456 UNIMPLEMENTED();
457}
458
459static const int kMaxEnvNameLength = 128;
460static const DWORD kMaxEnvValueLength = 32767;
461
462namespace {
463
464struct EnvVariable {
465 char name[kMaxEnvNameLength];
466 char value[kMaxEnvValueLength];
467};
468
469} // namespace
470
471static const int kEnvVariables = 5;
472static EnvVariable env_vars[kEnvVariables];
473static int num_env_vars;
474
475const char *GetEnv(const char *name) {
476 // Note: this implementation caches the values of the environment variables
477 // and limits their quantity.
478 for (int i = 0; i < num_env_vars; i++) {
479 if (0 == internal_strcmp(name, env_vars[i].name))
480 return env_vars[i].value;
481 }
482 CHECK_LT(num_env_vars, kEnvVariables);
483 DWORD rv = GetEnvironmentVariableA(name, env_vars[num_env_vars].value,
484 kMaxEnvValueLength);
485 if (rv > 0 && rv < kMaxEnvValueLength) {
486 CHECK_LT(internal_strlen(name), kMaxEnvNameLength);
487 internal_strncpy(env_vars[num_env_vars].name, name, kMaxEnvNameLength);
488 num_env_vars++;
489 return env_vars[num_env_vars - 1].value;
490 }
491 return 0;
492}
493
494const char *GetPwd() {
495 UNIMPLEMENTED();
496}
497
498u32 GetUid() {
499 UNIMPLEMENTED();
500}
501
502namespace {
503struct ModuleInfo {
504 const char *filepath;
505 uptr base_address;
506 uptr end_address;
507};
508
509#if !SANITIZER_GO
510int CompareModulesBase(const void *pl, const void *pr) {
511 const ModuleInfo *l = (const ModuleInfo *)pl, *r = (const ModuleInfo *)pr;
512 if (l->base_address < r->base_address)
513 return -1;
514 return l->base_address > r->base_address;
515}
516#endif
517} // namespace
518
519#if !SANITIZER_GO
520void DumpProcessMap() {
521 Report("Dumping process modules:\n");
522 ListOfModules modules;
523 modules.init();
524 uptr num_modules = modules.size();
525
526 InternalMmapVector<ModuleInfo> module_infos(num_modules);
527 for (size_t i = 0; i < num_modules; ++i) {
528 module_infos[i].filepath = modules[i].full_name();
529 module_infos[i].base_address = modules[i].ranges().front()->beg;
530 module_infos[i].end_address = modules[i].ranges().back()->end;
531 }
532 qsort(module_infos.data(), num_modules, sizeof(ModuleInfo),
533 CompareModulesBase);
534
535 for (size_t i = 0; i < num_modules; ++i) {
536 const ModuleInfo &mi = module_infos[i];
537 if (mi.end_address != 0) {
538 Printf("\t%p-%p %s\n", mi.base_address, mi.end_address,
539 mi.filepath[0] ? mi.filepath : "[no name]");
540 } else if (mi.filepath[0]) {
541 Printf("\t??\?-??? %s\n", mi.filepath);
542 } else {
543 Printf("\t???\n");
544 }
545 }
546}
547#endif
548
549void DisableCoreDumperIfNecessary() {
550 // Do nothing.
551}
552
553void ReExec() {
554 UNIMPLEMENTED();
555}
556
557void PlatformPrepareForSandboxing(void *args) {}
558
559bool StackSizeIsUnlimited() {
560 UNIMPLEMENTED();
561}
562
563void SetStackSizeLimitInBytes(uptr limit) {
564 UNIMPLEMENTED();
565}
566
567bool AddressSpaceIsUnlimited() {
568 UNIMPLEMENTED();
569}
570
571void SetAddressSpaceUnlimited() {
572 UNIMPLEMENTED();
573}
574
575bool IsPathSeparator(const char c) {
576 return c == '\\' || c == '/';
577}
578
579static bool IsAlpha(char c) {
580 c = ToLower(c);
581 return c >= 'a' && c <= 'z';
582}
583
584bool IsAbsolutePath(const char *path) {
585 return path != nullptr && IsAlpha(path[0]) && path[1] == ':' &&
586 IsPathSeparator(path[2]);
587}
588
589void internal_usleep(u64 useconds) { Sleep(useconds / 1000); }
590
591u64 NanoTime() {
592 static LARGE_INTEGER frequency = {};
593 LARGE_INTEGER counter;
594 if (UNLIKELY(frequency.QuadPart == 0)) {
595 QueryPerformanceFrequency(&frequency);
596 CHECK_NE(frequency.QuadPart, 0);
597 }
598 QueryPerformanceCounter(&counter);
599 counter.QuadPart *= 1000ULL * 1000000ULL;
600 counter.QuadPart /= frequency.QuadPart;
601 return counter.QuadPart;
602}
603
604u64 MonotonicNanoTime() { return NanoTime(); }
605
606void Abort() {
607 internal__exit(3);
608}
609
610bool CreateDir(const char *pathname) {
611 return CreateDirectoryA(pathname, nullptr) != 0;
612}
613
614#if !SANITIZER_GO
615// Read the file to extract the ImageBase field from the PE header. If ASLR is
616// disabled and this virtual address is available, the loader will typically
617// load the image at this address. Therefore, we call it the preferred base. Any
618// addresses in the DWARF typically assume that the object has been loaded at
619// this address.
620static uptr GetPreferredBase(const char *modname, char *buf, size_t buf_size) {
621 fd_t fd = OpenFile(modname, RdOnly, nullptr);
622 if (fd == kInvalidFd)
623 return 0;
624 FileCloser closer(fd);
625
626 // Read just the DOS header.
627 IMAGE_DOS_HEADER dos_header;
628 uptr bytes_read;
629 if (!ReadFromFile(fd, &dos_header, sizeof(dos_header), &bytes_read) ||
630 bytes_read != sizeof(dos_header))
631 return 0;
632
633 // The file should start with the right signature.
634 if (dos_header.e_magic != IMAGE_DOS_SIGNATURE)
635 return 0;
636
637 // The layout at e_lfanew is:
638 // "PE\0\0"
639 // IMAGE_FILE_HEADER
640 // IMAGE_OPTIONAL_HEADER
641 // Seek to e_lfanew and read all that data.
642 if (::SetFilePointer(fd, dos_header.e_lfanew, nullptr, FILE_BEGIN) ==
643 INVALID_SET_FILE_POINTER)
644 return 0;
645 if (!ReadFromFile(fd, buf, buf_size, &bytes_read) || bytes_read != buf_size)
646 return 0;
647
648 // Check for "PE\0\0" before the PE header.
649 char *pe_sig = &buf[0];
650 if (internal_memcmp(pe_sig, "PE\0\0", 4) != 0)
651 return 0;
652
653 // Skip over IMAGE_FILE_HEADER. We could do more validation here if we wanted.
654 IMAGE_OPTIONAL_HEADER *pe_header =
655 (IMAGE_OPTIONAL_HEADER *)(pe_sig + 4 + sizeof(IMAGE_FILE_HEADER));
656
657 // Check for more magic in the PE header.
658 if (pe_header->Magic != IMAGE_NT_OPTIONAL_HDR_MAGIC)
659 return 0;
660
661 // Finally, return the ImageBase.
662 return (uptr)pe_header->ImageBase;
663}
664
665void ListOfModules::init() {
666 clearOrInit();
667 HANDLE cur_process = GetCurrentProcess();
668
669 // Query the list of modules. Start by assuming there are no more than 256
670 // modules and retry if that's not sufficient.
671 HMODULE *hmodules = 0;
672 uptr modules_buffer_size = sizeof(HMODULE) * 256;
673 DWORD bytes_required;
674 while (!hmodules) {
675 hmodules = (HMODULE *)MmapOrDie(modules_buffer_size, __FUNCTION__);
676 CHECK(EnumProcessModules(cur_process, hmodules, modules_buffer_size,
677 &bytes_required));
678 if (bytes_required > modules_buffer_size) {
679 // Either there turned out to be more than 256 hmodules, or new hmodules
680 // could have loaded since the last try. Retry.
681 UnmapOrDie(hmodules, modules_buffer_size);
682 hmodules = 0;
683 modules_buffer_size = bytes_required;
684 }
685 }
686
687 InternalMmapVector<char> buf(4 + sizeof(IMAGE_FILE_HEADER) +
688 sizeof(IMAGE_OPTIONAL_HEADER));
689 InternalMmapVector<wchar_t> modname_utf16(kMaxPathLength);
690 InternalMmapVector<char> module_name(kMaxPathLength);
691 // |num_modules| is the number of modules actually present,
692 size_t num_modules = bytes_required / sizeof(HMODULE);
693 for (size_t i = 0; i < num_modules; ++i) {
694 HMODULE handle = hmodules[i];
695 MODULEINFO mi;
696 if (!GetModuleInformation(cur_process, handle, &mi, sizeof(mi)))
697 continue;
698
699 // Get the UTF-16 path and convert to UTF-8.
700 int modname_utf16_len =
701 GetModuleFileNameW(handle, &modname_utf16[0], kMaxPathLength);
702 if (modname_utf16_len == 0)
703 modname_utf16[0] = '\0';
704 int module_name_len = ::WideCharToMultiByte(
705 CP_UTF8, 0, &modname_utf16[0], modname_utf16_len + 1, &module_name[0],
706 kMaxPathLength, NULL, NULL);
707 module_name[module_name_len] = '\0';
708
709 uptr base_address = (uptr)mi.lpBaseOfDll;
710 uptr end_address = (uptr)mi.lpBaseOfDll + mi.SizeOfImage;
711
712 // Adjust the base address of the module so that we get a VA instead of an
713 // RVA when computing the module offset. This helps llvm-symbolizer find the
714 // right DWARF CU. In the common case that the image is loaded at it's
715 // preferred address, we will now print normal virtual addresses.
716 uptr preferred_base =
717 GetPreferredBase(&module_name[0], &buf[0], buf.size());
718 uptr adjusted_base = base_address - preferred_base;
719
720 modules_.push_back(LoadedModule());
721 LoadedModule &cur_module = modules_.back();
722 cur_module.set(&module_name[0], adjusted_base);
723 // We add the whole module as one single address range.
724 cur_module.addAddressRange(base_address, end_address, /*executable*/ true,
725 /*writable*/ true);
726 }
727 UnmapOrDie(hmodules, modules_buffer_size);
728}
729
730void ListOfModules::fallbackInit() { clear(); }
731
732// We can't use atexit() directly at __asan_init time as the CRT is not fully
733// initialized at this point. Place the functions into a vector and use
734// atexit() as soon as it is ready for use (i.e. after .CRT$XIC initializers).
735InternalMmapVectorNoCtor<void (*)(void)> atexit_functions;
736
737static int queueAtexit(void (*function)(void)) {
738 atexit_functions.push_back(function);
739 return 0;
740}
741
742// If Atexit() is being called after RunAtexit() has already been run, it needs
743// to be able to call atexit() directly. Here we use a function ponter to
744// switch out its behaviour.
745// An example of where this is needed is the asan_dynamic runtime on MinGW-w64.
746// On this environment, __asan_init is called during global constructor phase,
747// way after calling the .CRT$XID initializer.
748static int (*volatile queueOrCallAtExit)(void (*)(void)) = &queueAtexit;
749
750int Atexit(void (*function)(void)) { return queueOrCallAtExit(function); }
751
752static int RunAtexit() {
753 TraceLoggingUnregister(g_asan_provider);
754 queueOrCallAtExit = &atexit;
755 int ret = 0;
756 for (uptr i = 0; i < atexit_functions.size(); ++i) {
757 ret |= atexit(atexit_functions[i]);
758 }
759 return ret;
760}
761
762#pragma section(".CRT$XID", long, read)
763__declspec(allocate(".CRT$XID")) int (*__run_atexit)() = RunAtexit;
764#endif
765
766// ------------------ sanitizer_libc.h
767fd_t OpenFile(const char *filename, FileAccessMode mode, error_t *last_error) {
768 // FIXME: Use the wide variants to handle Unicode filenames.
769 fd_t res;
770 if (mode == RdOnly) {
771 res = CreateFileA(filename, GENERIC_READ,
772 FILE_SHARE_READ | FILE_SHARE_WRITE | FILE_SHARE_DELETE,
773 nullptr, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, nullptr);
774 } else if (mode == WrOnly) {
775 res = CreateFileA(filename, GENERIC_WRITE, 0, nullptr, CREATE_ALWAYS,
776 FILE_ATTRIBUTE_NORMAL, nullptr);
777 } else {
778 UNIMPLEMENTED();
779 }
780 CHECK(res != kStdoutFd || kStdoutFd == kInvalidFd);
781 CHECK(res != kStderrFd || kStderrFd == kInvalidFd);
782 if (res == kInvalidFd && last_error)
783 *last_error = GetLastError();
784 return res;
785}
786
787void CloseFile(fd_t fd) {
788 CloseHandle(fd);
789}
790
791bool ReadFromFile(fd_t fd, void *buff, uptr buff_size, uptr *bytes_read,
792 error_t *error_p) {
793 CHECK(fd != kInvalidFd);
794
795 // bytes_read can't be passed directly to ReadFile:
796 // uptr is unsigned long long on 64-bit Windows.
797 unsigned long num_read_long;
798
799 bool success = ::ReadFile(fd, buff, buff_size, &num_read_long, nullptr);
800 if (!success && error_p)
801 *error_p = GetLastError();
802 if (bytes_read)
803 *bytes_read = num_read_long;
804 return success;
805}
806
807bool SupportsColoredOutput(fd_t fd) {
808 // FIXME: support colored output.
809 return false;
810}
811
812bool WriteToFile(fd_t fd, const void *buff, uptr buff_size, uptr *bytes_written,
813 error_t *error_p) {
814 CHECK(fd != kInvalidFd);
815
816 // Handle null optional parameters.
817 error_t dummy_error;
818 error_p = error_p ? error_p : &dummy_error;
819 uptr dummy_bytes_written;
820 bytes_written = bytes_written ? bytes_written : &dummy_bytes_written;
821
822 // Initialize output parameters in case we fail.
823 *error_p = 0;
824 *bytes_written = 0;
825
826 // Map the conventional Unix fds 1 and 2 to Windows handles. They might be
827 // closed, in which case this will fail.
828 if (fd == kStdoutFd || fd == kStderrFd) {
829 fd = GetStdHandle(fd == kStdoutFd ? STD_OUTPUT_HANDLE : STD_ERROR_HANDLE);
830 if (fd == 0) {
831 *error_p = ERROR_INVALID_HANDLE;
832 return false;
833 }
834 }
835
836 DWORD bytes_written_32;
837 if (!WriteFile(fd, buff, buff_size, &bytes_written_32, 0)) {
838 *error_p = GetLastError();
839 return false;
840 } else {
841 *bytes_written = bytes_written_32;
842 return true;
843 }
844}
845
846uptr internal_sched_yield() {
847 Sleep(0);
848 return 0;
849}
850
851void internal__exit(int exitcode) {
852 TraceLoggingUnregister(g_asan_provider);
853 // ExitProcess runs some finalizers, so use TerminateProcess to avoid that.
854 // The debugger doesn't stop on TerminateProcess like it does on ExitProcess,
855 // so add our own breakpoint here.
856 if (::IsDebuggerPresent())
857 __debugbreak();
858 TerminateProcess(GetCurrentProcess(), exitcode);
859 BUILTIN_UNREACHABLE();
860}
861
862uptr internal_ftruncate(fd_t fd, uptr size) {
863 UNIMPLEMENTED();
864}
865
866uptr GetRSS() {
867 PROCESS_MEMORY_COUNTERS counters;
868 if (!GetProcessMemoryInfo(GetCurrentProcess(), &counters, sizeof(counters)))
869 return 0;
870 return counters.WorkingSetSize;
871}
872
873void *internal_start_thread(void *(*func)(void *arg), void *arg) { return 0; }
874void internal_join_thread(void *th) { }
875
876void FutexWait(atomic_uint32_t *p, u32 cmp) {
877 WaitOnAddress(p, &cmp, sizeof(cmp), INFINITE);
878}
879
880void FutexWake(atomic_uint32_t *p, u32 count) {
881 if (count == 1)
882 WakeByAddressSingle(p);
883 else
884 WakeByAddressAll(p);
885}
886
887uptr GetTlsSize() {
888 return 0;
889}
890
891void GetThreadStackAndTls(bool main, uptr *stk_begin, uptr *stk_end,
892 uptr *tls_begin, uptr *tls_end) {
893# if SANITIZER_GO
894 *stk_begin = 0;
895 *stk_end = 0;
896 *tls_begin = 0;
897 *tls_end = 0;
898# else
899 GetThreadStackTopAndBottom(main, stk_end, stk_begin);
900 *tls_begin = 0;
901 *tls_end = 0;
902# endif
903}
904
905void ReportFile::Write(const char *buffer, uptr length) {
906 SpinMutexLock l(mu);
907 ReopenIfNecessary();
908 if (!WriteToFile(fd, buffer, length)) {
909 // stderr may be closed, but we may be able to print to the debugger
910 // instead. This is the case when launching a program from Visual Studio,
911 // and the following routine should write to its console.
912 OutputDebugStringA(buffer);
913 }
914}
915
916void SetAlternateSignalStack() {
917 // FIXME: Decide what to do on Windows.
918}
919
920void UnsetAlternateSignalStack() {
921 // FIXME: Decide what to do on Windows.
922}
923
924void InstallDeadlySignalHandlers(SignalHandlerType handler) {
925 (void)handler;
926 // FIXME: Decide what to do on Windows.
927}
928
929HandleSignalMode GetHandleSignalMode(int signum) {
930 // FIXME: Decide what to do on Windows.
931 return kHandleSignalNo;
932}
933
934// Check based on flags if we should handle this exception.
935bool IsHandledDeadlyException(DWORD exceptionCode) {
936 switch (exceptionCode) {
937 case EXCEPTION_ACCESS_VIOLATION:
938 case EXCEPTION_ARRAY_BOUNDS_EXCEEDED:
939 case EXCEPTION_STACK_OVERFLOW:
940 case EXCEPTION_DATATYPE_MISALIGNMENT:
941 case EXCEPTION_IN_PAGE_ERROR:
942 return common_flags()->handle_segv;
943 case EXCEPTION_ILLEGAL_INSTRUCTION:
944 case EXCEPTION_PRIV_INSTRUCTION:
945 case EXCEPTION_BREAKPOINT:
946 return common_flags()->handle_sigill;
947 case EXCEPTION_FLT_DENORMAL_OPERAND:
948 case EXCEPTION_FLT_DIVIDE_BY_ZERO:
949 case EXCEPTION_FLT_INEXACT_RESULT:
950 case EXCEPTION_FLT_INVALID_OPERATION:
951 case EXCEPTION_FLT_OVERFLOW:
952 case EXCEPTION_FLT_STACK_CHECK:
953 case EXCEPTION_FLT_UNDERFLOW:
954 case EXCEPTION_INT_DIVIDE_BY_ZERO:
955 case EXCEPTION_INT_OVERFLOW:
956 return common_flags()->handle_sigfpe;
957 }
958 return false;
959}
960
961bool IsAccessibleMemoryRange(uptr beg, uptr size) {
962 SYSTEM_INFO si;
963 GetNativeSystemInfo(&si);
964 uptr page_size = si.dwPageSize;
965 uptr page_mask = ~(page_size - 1);
966
967 for (uptr page = beg & page_mask, end = (beg + size - 1) & page_mask;
968 page <= end;) {
969 MEMORY_BASIC_INFORMATION info;
970 if (VirtualQuery((LPCVOID)page, &info, sizeof(info)) != sizeof(info))
971 return false;
972
973 if (info.Protect == 0 || info.Protect == PAGE_NOACCESS ||
974 info.Protect == PAGE_EXECUTE)
975 return false;
976
977 if (info.RegionSize == 0)
978 return false;
979
980 page += info.RegionSize;
981 }
982
983 return true;
984}
985
986bool TryMemCpy(void *dest, const void *src, uptr n) {
987 // TODO: implement.
988 return false;
989}
990
991bool SignalContext::IsStackOverflow() const {
992 return (DWORD)GetType() == EXCEPTION_STACK_OVERFLOW;
993}
994
995void SignalContext::InitPcSpBp() {
996 EXCEPTION_RECORD *exception_record = (EXCEPTION_RECORD *)siginfo;
997 CONTEXT *context_record = (CONTEXT *)context;
998
999 pc = (uptr)exception_record->ExceptionAddress;
1000# if SANITIZER_WINDOWS64
1001# if SANITIZER_ARM64
1002 bp = (uptr)context_record->Fp;
1003 sp = (uptr)context_record->Sp;
1004# else
1005 bp = (uptr)context_record->Rbp;
1006 sp = (uptr)context_record->Rsp;
1007# endif
1008# else
1009# if SANITIZER_ARM
1010 bp = (uptr)context_record->R11;
1011 sp = (uptr)context_record->Sp;
1012# elif SANITIZER_MIPS32
1013 bp = (uptr)context_record->IntS8;
1014 sp = (uptr)context_record->IntSp;
1015# else
1016 bp = (uptr)context_record->Ebp;
1017 sp = (uptr)context_record->Esp;
1018# endif
1019# endif
1020}
1021
1022uptr SignalContext::GetAddress() const {
1023 EXCEPTION_RECORD *exception_record = (EXCEPTION_RECORD *)siginfo;
1024 if (exception_record->ExceptionCode == EXCEPTION_ACCESS_VIOLATION)
1025 return exception_record->ExceptionInformation[1];
1026 return (uptr)exception_record->ExceptionAddress;
1027}
1028
1029bool SignalContext::IsMemoryAccess() const {
1030 return ((EXCEPTION_RECORD *)siginfo)->ExceptionCode ==
1031 EXCEPTION_ACCESS_VIOLATION;
1032}
1033
1034bool SignalContext::IsTrueFaultingAddress() const { return true; }
1035
1036SignalContext::WriteFlag SignalContext::GetWriteFlag() const {
1037 EXCEPTION_RECORD *exception_record = (EXCEPTION_RECORD *)siginfo;
1038
1039 // The write flag is only available for access violation exceptions.
1040 if (exception_record->ExceptionCode != EXCEPTION_ACCESS_VIOLATION)
1041 return SignalContext::Unknown;
1042
1043 // The contents of this array are documented at
1044 // https://docs.microsoft.com/en-us/windows/win32/api/winnt/ns-winnt-exception_record
1045 // The first element indicates read as 0, write as 1, or execute as 8. The
1046 // second element is the faulting address.
1047 switch (exception_record->ExceptionInformation[0]) {
1048 case 0:
1049 return SignalContext::Read;
1050 case 1:
1051 return SignalContext::Write;
1052 case 8:
1053 return SignalContext::Unknown;
1054 }
1055 return SignalContext::Unknown;
1056}
1057
1058void SignalContext::DumpAllRegisters(void *context) {
1059 CONTEXT *ctx = (CONTEXT *)context;
1060# if defined(_M_X64)
1061 Report("Register values:\n");
1062 Printf("rax = %llx ", ctx->Rax);
1063 Printf("rbx = %llx ", ctx->Rbx);
1064 Printf("rcx = %llx ", ctx->Rcx);
1065 Printf("rdx = %llx ", ctx->Rdx);
1066 Printf("\n");
1067 Printf("rdi = %llx ", ctx->Rdi);
1068 Printf("rsi = %llx ", ctx->Rsi);
1069 Printf("rbp = %llx ", ctx->Rbp);
1070 Printf("rsp = %llx ", ctx->Rsp);
1071 Printf("\n");
1072 Printf("r8 = %llx ", ctx->R8);
1073 Printf("r9 = %llx ", ctx->R9);
1074 Printf("r10 = %llx ", ctx->R10);
1075 Printf("r11 = %llx ", ctx->R11);
1076 Printf("\n");
1077 Printf("r12 = %llx ", ctx->R12);
1078 Printf("r13 = %llx ", ctx->R13);
1079 Printf("r14 = %llx ", ctx->R14);
1080 Printf("r15 = %llx ", ctx->R15);
1081 Printf("\n");
1082# elif defined(_M_IX86)
1083 Report("Register values:\n");
1084 Printf("eax = %lx ", ctx->Eax);
1085 Printf("ebx = %lx ", ctx->Ebx);
1086 Printf("ecx = %lx ", ctx->Ecx);
1087 Printf("edx = %lx ", ctx->Edx);
1088 Printf("\n");
1089 Printf("edi = %lx ", ctx->Edi);
1090 Printf("esi = %lx ", ctx->Esi);
1091 Printf("ebp = %lx ", ctx->Ebp);
1092 Printf("esp = %lx ", ctx->Esp);
1093 Printf("\n");
1094# elif defined(_M_ARM64)
1095 Report("Register values:\n");
1096 for (int i = 0; i <= 30; i++) {
1097 Printf("x%d%s = %llx", i < 10 ? " " : "", ctx->X[i]);
1098 if (i % 4 == 3)
1099 Printf("\n");
1100 }
1101# else
1102 // TODO
1103 (void)ctx;
1104# endif
1105}
1106
1107int SignalContext::GetType() const {
1108 return static_cast<const EXCEPTION_RECORD *>(siginfo)->ExceptionCode;
1109}
1110
1111const char *SignalContext::Describe() const {
1112 unsigned code = GetType();
1113 // Get the string description of the exception if this is a known deadly
1114 // exception.
1115 switch (code) {
1116 case EXCEPTION_ACCESS_VIOLATION:
1117 return "access-violation";
1118 case EXCEPTION_ARRAY_BOUNDS_EXCEEDED:
1119 return "array-bounds-exceeded";
1120 case EXCEPTION_STACK_OVERFLOW:
1121 return "stack-overflow";
1122 case EXCEPTION_DATATYPE_MISALIGNMENT:
1123 return "datatype-misalignment";
1124 case EXCEPTION_IN_PAGE_ERROR:
1125 return "in-page-error";
1126 case EXCEPTION_ILLEGAL_INSTRUCTION:
1127 return "illegal-instruction";
1128 case EXCEPTION_PRIV_INSTRUCTION:
1129 return "priv-instruction";
1130 case EXCEPTION_BREAKPOINT:
1131 return "breakpoint";
1132 case EXCEPTION_FLT_DENORMAL_OPERAND:
1133 return "flt-denormal-operand";
1134 case EXCEPTION_FLT_DIVIDE_BY_ZERO:
1135 return "flt-divide-by-zero";
1136 case EXCEPTION_FLT_INEXACT_RESULT:
1137 return "flt-inexact-result";
1138 case EXCEPTION_FLT_INVALID_OPERATION:
1139 return "flt-invalid-operation";
1140 case EXCEPTION_FLT_OVERFLOW:
1141 return "flt-overflow";
1142 case EXCEPTION_FLT_STACK_CHECK:
1143 return "flt-stack-check";
1144 case EXCEPTION_FLT_UNDERFLOW:
1145 return "flt-underflow";
1146 case EXCEPTION_INT_DIVIDE_BY_ZERO:
1147 return "int-divide-by-zero";
1148 case EXCEPTION_INT_OVERFLOW:
1149 return "int-overflow";
1150 }
1151 return "unknown exception";
1152}
1153
1154uptr ReadBinaryName(/*out*/char *buf, uptr buf_len) {
1155 if (buf_len == 0)
1156 return 0;
1157
1158 // Get the UTF-16 path and convert to UTF-8.
1159 InternalMmapVector<wchar_t> binname_utf16(kMaxPathLength);
1160 int binname_utf16_len =
1161 GetModuleFileNameW(NULL, &binname_utf16[0], kMaxPathLength);
1162 if (binname_utf16_len == 0) {
1163 buf[0] = '\0';
1164 return 0;
1165 }
1166 int binary_name_len =
1167 ::WideCharToMultiByte(CP_UTF8, 0, &binname_utf16[0], binname_utf16_len,
1168 buf, buf_len, NULL, NULL);
1169 if ((unsigned)binary_name_len == buf_len)
1170 --binary_name_len;
1171 buf[binary_name_len] = '\0';
1172 return binary_name_len;
1173}
1174
1175uptr ReadLongProcessName(/*out*/char *buf, uptr buf_len) {
1176 return ReadBinaryName(buf, buf_len);
1177}
1178
1179void CheckVMASize() {
1180 // Do nothing.
1181}
1182
1183void InitializePlatformEarly() {
1184 // Do nothing.
1185}
1186
1187void CheckASLR() {
1188 // Do nothing
1189}
1190
1191void CheckMPROTECT() {
1192 // Do nothing
1193}
1194
1195char **GetArgv() {
1196 // FIXME: Actually implement this function.
1197 return 0;
1198}
1199
1200char **GetEnviron() {
1201 // FIXME: Actually implement this function.
1202 return 0;
1203}
1204
1205pid_t StartSubprocess(const char *program, const char *const argv[],
1206 const char *const envp[], fd_t stdin_fd, fd_t stdout_fd,
1207 fd_t stderr_fd) {
1208 // FIXME: implement on this platform
1209 // Should be implemented based on
1210 // SymbolizerProcess::StarAtSymbolizerSubprocess
1211 // from lib/sanitizer_common/sanitizer_symbolizer_win.cpp.
1212 return -1;
1213}
1214
1215bool IsProcessRunning(pid_t pid) {
1216 // FIXME: implement on this platform.
1217 return false;
1218}
1219
1220int WaitForProcess(pid_t pid) { return -1; }
1221
1222// FIXME implement on this platform.
1223void GetMemoryProfile(fill_profile_f cb, uptr *stats) {}
1224
1225void CheckNoDeepBind(const char *filename, int flag) {
1226 // Do nothing.
1227}
1228
1229// FIXME: implement on this platform.
1230bool GetRandom(void *buffer, uptr length, bool blocking) {
1231 UNIMPLEMENTED();
1232}
1233
1234u32 GetNumberOfCPUs() {
1235 SYSTEM_INFO sysinfo = {};
1236 GetNativeSystemInfo(&sysinfo);
1237 return sysinfo.dwNumberOfProcessors;
1238}
1239
1240#if SANITIZER_WIN_TRACE
1241// TODO(mcgov): Rename this project-wide to PlatformLogInit
1242void AndroidLogInit(void) {
1243 HRESULT hr = TraceLoggingRegister(g_asan_provider);
1244 if (!SUCCEEDED(hr))
1245 return;
1246}
1247
1248void SetAbortMessage(const char *) {}
1249
1250void LogFullErrorReport(const char *buffer) {
1251 if (common_flags()->log_to_syslog) {
1252 InternalMmapVector<wchar_t> filename;
1253 DWORD filename_length = 0;
1254 do {
1255 filename.resize(filename.size() + 0x100);
1256 filename_length =
1257 GetModuleFileNameW(NULL, filename.begin(), filename.size());
1258 } while (filename_length >= filename.size());
1259 TraceLoggingWrite(g_asan_provider, "AsanReportEvent",
1260 TraceLoggingValue(filename.begin(), "ExecutableName"),
1261 TraceLoggingValue(buffer, "AsanReportContents"));
1262 }
1263}
1264#endif // SANITIZER_WIN_TRACE
1265
1266void InitializePlatformCommonFlags(CommonFlags *cf) {}
1267
1268} // namespace __sanitizer
1269
1270#endif // _WIN32
1271