| 1 | //===-- IndirectCallVisitor.h - indirect call visitor ---------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file implements defines a visitor class and a helper function that find |
| 10 | // all indirect call-sites in a function. |
| 11 | |
| 12 | #ifndef LLVM_ANALYSIS_INDIRECTCALLVISITOR_H |
| 13 | #define LLVM_ANALYSIS_INDIRECTCALLVISITOR_H |
| 14 | |
| 15 | #include "llvm/IR/InstVisitor.h" |
| 16 | #include <vector> |
| 17 | |
| 18 | namespace llvm { |
| 19 | // Visitor class that finds indirect calls or instructions that gives vtable |
| 20 | // value, depending on Type. |
| 21 | struct PGOIndirectCallVisitor : public InstVisitor<PGOIndirectCallVisitor> { |
| 22 | enum class InstructionType { |
| 23 | kIndirectCall = 0, |
| 24 | kVTableVal = 1, |
| 25 | }; |
| 26 | std::vector<CallBase *> IndirectCalls; |
| 27 | std::vector<Instruction *> ProfiledAddresses; |
| 28 | PGOIndirectCallVisitor(InstructionType Type) : Type(Type) {} |
| 29 | |
| 30 | // Given an indirect call instruction, try to find the the following pattern |
| 31 | // |
| 32 | // %vtable = load ptr, ptr %obj |
| 33 | // %vfn = getelementptr inbounds ptr, ptr %vtable, i64 1 |
| 34 | // %2 = load ptr, ptr %vfn |
| 35 | // $call = tail call i32 %2 |
| 36 | // |
| 37 | // A heuristic is used to find the address feeding instructions. |
| 38 | static Instruction *tryGetVTableInstruction(CallBase *CB) { |
| 39 | assert(CB != nullptr && "Caller guaranteed" ); |
| 40 | if (!CB->isIndirectCall()) |
| 41 | return nullptr; |
| 42 | |
| 43 | LoadInst *LI = dyn_cast<LoadInst>(Val: CB->getCalledOperand()); |
| 44 | if (LI != nullptr) { |
| 45 | Value *FuncPtr = LI->getPointerOperand(); // GEP (or bitcast) |
| 46 | Value *VTablePtr = FuncPtr->stripInBoundsConstantOffsets(); |
| 47 | // FIXME: Add support in the frontend so LLVM type intrinsics are |
| 48 | // emitted without LTO. This way, added intrinsics could filter |
| 49 | // non-vtable instructions and reduce instrumentation overhead. |
| 50 | // Since a non-vtable profiled address is not within the address |
| 51 | // range of vtable objects, it's stored as zero in indexed profiles. |
| 52 | // A pass that looks up symbol with an zero hash will (almost) always |
| 53 | // find nullptr and skip the actual transformation (e.g., comparison |
| 54 | // of symbols). So the performance overhead from non-vtable profiled |
| 55 | // address is negligible if exists at all. Comparing loaded address |
| 56 | // with symbol address guarantees correctness. |
| 57 | if (VTablePtr != nullptr && isa<Instruction>(Val: VTablePtr)) |
| 58 | return cast<Instruction>(Val: VTablePtr); |
| 59 | } |
| 60 | return nullptr; |
| 61 | } |
| 62 | |
| 63 | void visitCallBase(CallBase &Call) { |
| 64 | if (Call.isIndirectCall()) { |
| 65 | IndirectCalls.push_back(x: &Call); |
| 66 | |
| 67 | if (Type != InstructionType::kVTableVal) |
| 68 | return; |
| 69 | |
| 70 | Instruction *VPtr = |
| 71 | PGOIndirectCallVisitor::tryGetVTableInstruction(CB: &Call); |
| 72 | if (VPtr) |
| 73 | ProfiledAddresses.push_back(x: VPtr); |
| 74 | } |
| 75 | } |
| 76 | |
| 77 | private: |
| 78 | InstructionType Type; |
| 79 | }; |
| 80 | |
| 81 | inline std::vector<CallBase *> findIndirectCalls(Function &F) { |
| 82 | PGOIndirectCallVisitor ICV( |
| 83 | PGOIndirectCallVisitor::InstructionType::kIndirectCall); |
| 84 | ICV.visit(F); |
| 85 | return ICV.IndirectCalls; |
| 86 | } |
| 87 | |
| 88 | inline std::vector<Instruction *> findVTableAddrs(Function &F) { |
| 89 | PGOIndirectCallVisitor ICV( |
| 90 | PGOIndirectCallVisitor::InstructionType::kVTableVal); |
| 91 | ICV.visit(F); |
| 92 | return ICV.ProfiledAddresses; |
| 93 | } |
| 94 | |
| 95 | } // namespace llvm |
| 96 | |
| 97 | #endif |
| 98 | |