| 1 | //===-- DependenceAnalysis.cpp - DA Implementation --------------*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // DependenceAnalysis is an LLVM pass that analyses dependences between memory |
| 10 | // accesses. Currently, it is an (incomplete) implementation of the approach |
| 11 | // described in |
| 12 | // |
| 13 | // Practical Dependence Testing |
| 14 | // Goff, Kennedy, Tseng |
| 15 | // PLDI 1991 |
| 16 | // |
| 17 | // There's a single entry point that analyzes the dependence between a pair |
| 18 | // of memory references in a function, returning either NULL, for no dependence, |
| 19 | // or a more-or-less detailed description of the dependence between them. |
| 20 | // |
| 21 | // Since Clang linearizes some array subscripts, the dependence |
| 22 | // analysis is using SCEV->delinearize to recover the representation of multiple |
| 23 | // subscripts, and thus avoid the more expensive and less precise MIV tests. The |
| 24 | // delinearization is controlled by the flag -da-delinearize. |
| 25 | // |
| 26 | // We should pay some careful attention to the possibility of integer overflow |
| 27 | // in the implementation of the various tests. This could happen with Add, |
| 28 | // Subtract, or Multiply, with both APInt's and SCEV's. |
| 29 | // |
| 30 | // Some non-linear subscript pairs can be handled by the GCD test |
| 31 | // (and perhaps other tests). |
| 32 | // Should explore how often these things occur. |
| 33 | // |
| 34 | // Finally, it seems like certain test cases expose weaknesses in the SCEV |
| 35 | // simplification, especially in the handling of sign and zero extensions. |
| 36 | // It could be useful to spend time exploring these. |
| 37 | // |
| 38 | // Please note that this is work in progress and the interface is subject to |
| 39 | // change. |
| 40 | // |
| 41 | //===----------------------------------------------------------------------===// |
| 42 | // // |
| 43 | // In memory of Ken Kennedy, 1945 - 2007 // |
| 44 | // // |
| 45 | //===----------------------------------------------------------------------===// |
| 46 | |
| 47 | #include "llvm/Analysis/DependenceAnalysis.h" |
| 48 | #include "llvm/ADT/Statistic.h" |
| 49 | #include "llvm/Analysis/AliasAnalysis.h" |
| 50 | #include "llvm/Analysis/Delinearization.h" |
| 51 | #include "llvm/Analysis/LoopInfo.h" |
| 52 | #include "llvm/Analysis/ScalarEvolution.h" |
| 53 | #include "llvm/Analysis/ScalarEvolutionExpressions.h" |
| 54 | #include "llvm/Analysis/ValueTracking.h" |
| 55 | #include "llvm/IR/InstIterator.h" |
| 56 | #include "llvm/IR/Module.h" |
| 57 | #include "llvm/InitializePasses.h" |
| 58 | #include "llvm/Support/CommandLine.h" |
| 59 | #include "llvm/Support/Debug.h" |
| 60 | #include "llvm/Support/ErrorHandling.h" |
| 61 | #include "llvm/Support/raw_ostream.h" |
| 62 | |
| 63 | using namespace llvm; |
| 64 | |
| 65 | #define DEBUG_TYPE "da" |
| 66 | |
| 67 | //===----------------------------------------------------------------------===// |
| 68 | // statistics |
| 69 | |
| 70 | STATISTIC(TotalArrayPairs, "Array pairs tested" ); |
| 71 | STATISTIC(NonlinearSubscriptPairs, "Nonlinear subscript pairs" ); |
| 72 | STATISTIC(ZIVapplications, "ZIV applications" ); |
| 73 | STATISTIC(ZIVindependence, "ZIV independence" ); |
| 74 | STATISTIC(StrongSIVapplications, "Strong SIV applications" ); |
| 75 | STATISTIC(StrongSIVsuccesses, "Strong SIV successes" ); |
| 76 | STATISTIC(StrongSIVindependence, "Strong SIV independence" ); |
| 77 | STATISTIC(WeakCrossingSIVapplications, "Weak-Crossing SIV applications" ); |
| 78 | STATISTIC(WeakCrossingSIVsuccesses, "Weak-Crossing SIV successes" ); |
| 79 | STATISTIC(WeakCrossingSIVindependence, "Weak-Crossing SIV independence" ); |
| 80 | STATISTIC(ExactSIVapplications, "Exact SIV applications" ); |
| 81 | STATISTIC(ExactSIVsuccesses, "Exact SIV successes" ); |
| 82 | STATISTIC(ExactSIVindependence, "Exact SIV independence" ); |
| 83 | STATISTIC(WeakZeroSIVapplications, "Weak-Zero SIV applications" ); |
| 84 | STATISTIC(WeakZeroSIVsuccesses, "Weak-Zero SIV successes" ); |
| 85 | STATISTIC(WeakZeroSIVindependence, "Weak-Zero SIV independence" ); |
| 86 | STATISTIC(ExactRDIVapplications, "Exact RDIV applications" ); |
| 87 | STATISTIC(ExactRDIVindependence, "Exact RDIV independence" ); |
| 88 | STATISTIC(SymbolicRDIVapplications, "Symbolic RDIV applications" ); |
| 89 | STATISTIC(SymbolicRDIVindependence, "Symbolic RDIV independence" ); |
| 90 | STATISTIC(GCDapplications, "GCD applications" ); |
| 91 | STATISTIC(GCDsuccesses, "GCD successes" ); |
| 92 | STATISTIC(GCDindependence, "GCD independence" ); |
| 93 | STATISTIC(BanerjeeApplications, "Banerjee applications" ); |
| 94 | STATISTIC(BanerjeeIndependence, "Banerjee independence" ); |
| 95 | STATISTIC(BanerjeeSuccesses, "Banerjee successes" ); |
| 96 | STATISTIC(SameSDLoopsCount, "Loops with Same iteration Space and Depth" ); |
| 97 | |
| 98 | static cl::opt<bool> |
| 99 | Delinearize("da-delinearize" , cl::init(Val: true), cl::Hidden, |
| 100 | cl::desc("Try to delinearize array references." )); |
| 101 | static cl::opt<bool> DisableDelinearizationChecks( |
| 102 | "da-disable-delinearization-checks" , cl::Hidden, |
| 103 | cl::desc( |
| 104 | "Disable checks that try to statically verify validity of " |
| 105 | "delinearized subscripts. Enabling this option may result in incorrect " |
| 106 | "dependence vectors for languages that allow the subscript of one " |
| 107 | "dimension to underflow or overflow into another dimension." )); |
| 108 | |
| 109 | static cl::opt<unsigned> MIVMaxLevelThreshold( |
| 110 | "da-miv-max-level-threshold" , cl::init(Val: 7), cl::Hidden, |
| 111 | cl::desc("Maximum depth allowed for the recursive algorithm used to " |
| 112 | "explore MIV direction vectors." )); |
| 113 | |
| 114 | namespace { |
| 115 | |
| 116 | /// Types of dependence test routines. |
| 117 | enum class DependenceTestType { |
| 118 | All, |
| 119 | StrongSIV, |
| 120 | WeakCrossingSIV, |
| 121 | ExactSIV, |
| 122 | WeakZeroSIV, |
| 123 | ExactRDIV, |
| 124 | SymbolicRDIV, |
| 125 | GCDMIV, |
| 126 | BanerjeeMIV, |
| 127 | }; |
| 128 | |
| 129 | } // anonymous namespace |
| 130 | |
| 131 | static cl::opt<DependenceTestType> EnableDependenceTest( |
| 132 | "da-enable-dependence-test" , cl::init(Val: DependenceTestType::All), |
| 133 | cl::ReallyHidden, |
| 134 | cl::desc("Run only specified dependence test routine and disable others. " |
| 135 | "The purpose is mainly to exclude the influence of other " |
| 136 | "dependence test routines in regression tests. If set to All, all " |
| 137 | "dependence test routines are enabled." ), |
| 138 | cl::values(clEnumValN(DependenceTestType::All, "all" , |
| 139 | "Enable all dependence test routines." ), |
| 140 | clEnumValN(DependenceTestType::StrongSIV, "strong-siv" , |
| 141 | "Enable only Strong SIV test." ), |
| 142 | clEnumValN(DependenceTestType::WeakCrossingSIV, |
| 143 | "weak-crossing-siv" , |
| 144 | "Enable only Weak-Crossing SIV test." ), |
| 145 | clEnumValN(DependenceTestType::ExactSIV, "exact-siv" , |
| 146 | "Enable only Exact SIV test." ), |
| 147 | clEnumValN(DependenceTestType::WeakZeroSIV, "weak-zero-siv" , |
| 148 | "Enable only Weak-Zero SIV test." ), |
| 149 | clEnumValN(DependenceTestType::ExactRDIV, "exact-rdiv" , |
| 150 | "Enable only Exact RDIV test." ), |
| 151 | clEnumValN(DependenceTestType::SymbolicRDIV, "symbolic-rdiv" , |
| 152 | "Enable only Symbolic RDIV test." ), |
| 153 | clEnumValN(DependenceTestType::GCDMIV, "gcd-miv" , |
| 154 | "Enable only GCD MIV test." ), |
| 155 | clEnumValN(DependenceTestType::BanerjeeMIV, "banerjee-miv" , |
| 156 | "Enable only Banerjee MIV test." ))); |
| 157 | |
| 158 | // TODO: This flag is disabled by default because it is still under development. |
| 159 | // Enable it or delete this flag when the feature is ready. |
| 160 | static cl::opt<bool> EnableMonotonicityCheck( |
| 161 | "da-enable-monotonicity-check" , cl::init(Val: false), cl::Hidden, |
| 162 | cl::desc("Check if the subscripts are monotonic. If it's not, dependence " |
| 163 | "is reported as unknown." )); |
| 164 | |
| 165 | static cl::opt<bool> DumpMonotonicityReport( |
| 166 | "da-dump-monotonicity-report" , cl::init(Val: false), cl::Hidden, |
| 167 | cl::desc( |
| 168 | "When printing analysis, dump the results of monotonicity checks." )); |
| 169 | |
| 170 | //===----------------------------------------------------------------------===// |
| 171 | // basics |
| 172 | |
| 173 | DependenceAnalysis::Result |
| 174 | DependenceAnalysis::run(Function &F, FunctionAnalysisManager &FAM) { |
| 175 | auto &AA = FAM.getResult<AAManager>(IR&: F); |
| 176 | auto &SE = FAM.getResult<ScalarEvolutionAnalysis>(IR&: F); |
| 177 | auto &LI = FAM.getResult<LoopAnalysis>(IR&: F); |
| 178 | return DependenceInfo(&F, &AA, &SE, &LI); |
| 179 | } |
| 180 | |
| 181 | AnalysisKey DependenceAnalysis::Key; |
| 182 | |
| 183 | INITIALIZE_PASS_BEGIN(DependenceAnalysisWrapperPass, "da" , |
| 184 | "Dependence Analysis" , true, true) |
| 185 | INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) |
| 186 | INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) |
| 187 | INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) |
| 188 | INITIALIZE_PASS_END(DependenceAnalysisWrapperPass, "da" , "Dependence Analysis" , |
| 189 | true, true) |
| 190 | |
| 191 | char DependenceAnalysisWrapperPass::ID = 0; |
| 192 | |
| 193 | DependenceAnalysisWrapperPass::DependenceAnalysisWrapperPass() |
| 194 | : FunctionPass(ID) {} |
| 195 | |
| 196 | FunctionPass *llvm::createDependenceAnalysisWrapperPass() { |
| 197 | return new DependenceAnalysisWrapperPass(); |
| 198 | } |
| 199 | |
| 200 | bool DependenceAnalysisWrapperPass::runOnFunction(Function &F) { |
| 201 | auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); |
| 202 | auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); |
| 203 | auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); |
| 204 | info.reset(p: new DependenceInfo(&F, &AA, &SE, &LI)); |
| 205 | return false; |
| 206 | } |
| 207 | |
| 208 | DependenceInfo &DependenceAnalysisWrapperPass::getDI() const { return *info; } |
| 209 | |
| 210 | void DependenceAnalysisWrapperPass::releaseMemory() { info.reset(); } |
| 211 | |
| 212 | void DependenceAnalysisWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { |
| 213 | AU.setPreservesAll(); |
| 214 | AU.addRequiredTransitive<AAResultsWrapperPass>(); |
| 215 | AU.addRequiredTransitive<ScalarEvolutionWrapperPass>(); |
| 216 | AU.addRequiredTransitive<LoopInfoWrapperPass>(); |
| 217 | } |
| 218 | |
| 219 | namespace { |
| 220 | |
| 221 | /// The property of monotonicity of a SCEV. To define the monotonicity, assume |
| 222 | /// a SCEV defined within N-nested loops. Let i_k denote the iteration number |
| 223 | /// of the k-th loop. Then we can regard the SCEV as an N-ary function: |
| 224 | /// |
| 225 | /// F(i_1, i_2, ..., i_N) |
| 226 | /// |
| 227 | /// The domain of i_k is the closed range [0, BTC_k], where BTC_k is the |
| 228 | /// backedge-taken count of the k-th loop. |
| 229 | /// |
| 230 | /// A function F is said to be "monotonically increasing with respect to the |
| 231 | /// k-th loop" if x <= y implies the following condition: |
| 232 | /// |
| 233 | /// F(i_1, ..., i_{k-1}, x, i_{k+1}, ..., i_N) <= |
| 234 | /// F(i_1, ..., i_{k-1}, y, i_{k+1}, ..., i_N) |
| 235 | /// |
| 236 | /// where i_1, ..., i_{k-1}, i_{k+1}, ..., i_N, x, and y are elements of their |
| 237 | /// respective domains. |
| 238 | /// |
| 239 | /// Likewise F is "monotonically decreasing with respect to the k-th loop" |
| 240 | /// if x <= y implies |
| 241 | /// |
| 242 | /// F(i_1, ..., i_{k-1}, x, i_{k+1}, ..., i_N) >= |
| 243 | /// F(i_1, ..., i_{k-1}, y, i_{k+1}, ..., i_N) |
| 244 | /// |
| 245 | /// A function F that is monotonically increasing or decreasing with respect to |
| 246 | /// the k-th loop is simply called "monotonic with respect to k-th loop". |
| 247 | /// |
| 248 | /// A function F is said to be "multivariate monotonic" when it is monotonic |
| 249 | /// with respect to all of the N loops. |
| 250 | /// |
| 251 | /// Since integer comparison can be either signed or unsigned, we need to |
| 252 | /// distinguish monotonicity in the signed sense from that in the unsigned |
| 253 | /// sense. Note that the inequality "x <= y" merely indicates loop progression |
| 254 | /// and is not affected by the difference between signed and unsigned order. |
| 255 | /// |
| 256 | /// Currently we only consider monotonicity in a signed sense. |
| 257 | enum class SCEVMonotonicityType { |
| 258 | /// We don't know anything about the monotonicity of the SCEV. |
| 259 | Unknown, |
| 260 | |
| 261 | /// The SCEV is loop-invariant with respect to the outermost loop. In other |
| 262 | /// words, the function F corresponding to the SCEV is a constant function. |
| 263 | Invariant, |
| 264 | |
| 265 | /// The function F corresponding to the SCEV is multivariate monotonic in a |
| 266 | /// signed sense. Note that the multivariate monotonic function may also be a |
| 267 | /// constant function. The order employed in the definition of monotonicity |
| 268 | /// is not strict order. |
| 269 | MultivariateSignedMonotonic, |
| 270 | }; |
| 271 | |
| 272 | struct SCEVMonotonicity { |
| 273 | SCEVMonotonicity(SCEVMonotonicityType Type, |
| 274 | const SCEV *FailurePoint = nullptr); |
| 275 | |
| 276 | SCEVMonotonicityType getType() const { return Type; } |
| 277 | |
| 278 | const SCEV *getFailurePoint() const { return FailurePoint; } |
| 279 | |
| 280 | bool isUnknown() const { return Type == SCEVMonotonicityType::Unknown; } |
| 281 | |
| 282 | void print(raw_ostream &OS, unsigned Depth) const; |
| 283 | |
| 284 | private: |
| 285 | SCEVMonotonicityType Type; |
| 286 | |
| 287 | /// The subexpression that caused Unknown. Mainly for debugging purpose. |
| 288 | const SCEV *FailurePoint; |
| 289 | }; |
| 290 | |
| 291 | /// Check the monotonicity of a SCEV. Since dependence tests (SIV, MIV, etc.) |
| 292 | /// assume that subscript expressions are (multivariate) monotonic, we need to |
| 293 | /// verify this property before applying those tests. Violating this assumption |
| 294 | /// may cause them to produce incorrect results. |
| 295 | struct SCEVMonotonicityChecker |
| 296 | : public SCEVVisitor<SCEVMonotonicityChecker, SCEVMonotonicity> { |
| 297 | |
| 298 | SCEVMonotonicityChecker(ScalarEvolution *SE) : SE(SE) {} |
| 299 | |
| 300 | /// Check the monotonicity of \p Expr. \p Expr must be integer type. If \p |
| 301 | /// OutermostLoop is not null, \p Expr must be defined in \p OutermostLoop or |
| 302 | /// one of its nested loops. |
| 303 | SCEVMonotonicity checkMonotonicity(const SCEV *Expr, |
| 304 | const Loop *OutermostLoop); |
| 305 | |
| 306 | private: |
| 307 | ScalarEvolution *SE; |
| 308 | |
| 309 | /// The outermost loop that DA is analyzing. |
| 310 | const Loop *OutermostLoop; |
| 311 | |
| 312 | /// A helper to classify \p Expr as either Invariant or Unknown. |
| 313 | SCEVMonotonicity invariantOrUnknown(const SCEV *Expr); |
| 314 | |
| 315 | /// Return true if \p Expr is loop-invariant with respect to the outermost |
| 316 | /// loop. |
| 317 | bool isLoopInvariant(const SCEV *Expr) const; |
| 318 | |
| 319 | /// A helper to create an Unknown SCEVMonotonicity. |
| 320 | SCEVMonotonicity createUnknown(const SCEV *FailurePoint) { |
| 321 | return SCEVMonotonicity(SCEVMonotonicityType::Unknown, FailurePoint); |
| 322 | } |
| 323 | |
| 324 | SCEVMonotonicity visitAddRecExpr(const SCEVAddRecExpr *Expr); |
| 325 | |
| 326 | SCEVMonotonicity visitConstant(const SCEVConstant *) { |
| 327 | return SCEVMonotonicity(SCEVMonotonicityType::Invariant); |
| 328 | } |
| 329 | SCEVMonotonicity visitVScale(const SCEVVScale *) { |
| 330 | return SCEVMonotonicity(SCEVMonotonicityType::Invariant); |
| 331 | } |
| 332 | |
| 333 | // TODO: Handle more cases. |
| 334 | SCEVMonotonicity visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { |
| 335 | return invariantOrUnknown(Expr); |
| 336 | } |
| 337 | SCEVMonotonicity visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { |
| 338 | return invariantOrUnknown(Expr); |
| 339 | } |
| 340 | SCEVMonotonicity visitAddExpr(const SCEVAddExpr *Expr) { |
| 341 | return invariantOrUnknown(Expr); |
| 342 | } |
| 343 | SCEVMonotonicity visitMulExpr(const SCEVMulExpr *Expr) { |
| 344 | return invariantOrUnknown(Expr); |
| 345 | } |
| 346 | SCEVMonotonicity visitPtrToAddrExpr(const SCEVPtrToAddrExpr *Expr) { |
| 347 | return invariantOrUnknown(Expr); |
| 348 | } |
| 349 | SCEVMonotonicity visitPtrToIntExpr(const SCEVPtrToIntExpr *Expr) { |
| 350 | return invariantOrUnknown(Expr); |
| 351 | } |
| 352 | SCEVMonotonicity visitTruncateExpr(const SCEVTruncateExpr *Expr) { |
| 353 | return invariantOrUnknown(Expr); |
| 354 | } |
| 355 | SCEVMonotonicity visitUDivExpr(const SCEVUDivExpr *Expr) { |
| 356 | return invariantOrUnknown(Expr); |
| 357 | } |
| 358 | SCEVMonotonicity visitSMaxExpr(const SCEVSMaxExpr *Expr) { |
| 359 | return invariantOrUnknown(Expr); |
| 360 | } |
| 361 | SCEVMonotonicity visitUMaxExpr(const SCEVUMaxExpr *Expr) { |
| 362 | return invariantOrUnknown(Expr); |
| 363 | } |
| 364 | SCEVMonotonicity visitSMinExpr(const SCEVSMinExpr *Expr) { |
| 365 | return invariantOrUnknown(Expr); |
| 366 | } |
| 367 | SCEVMonotonicity visitUMinExpr(const SCEVUMinExpr *Expr) { |
| 368 | return invariantOrUnknown(Expr); |
| 369 | } |
| 370 | SCEVMonotonicity visitSequentialUMinExpr(const SCEVSequentialUMinExpr *Expr) { |
| 371 | return invariantOrUnknown(Expr); |
| 372 | } |
| 373 | SCEVMonotonicity visitUnknown(const SCEVUnknown *Expr) { |
| 374 | return invariantOrUnknown(Expr); |
| 375 | } |
| 376 | SCEVMonotonicity visitCouldNotCompute(const SCEVCouldNotCompute *Expr) { |
| 377 | return invariantOrUnknown(Expr); |
| 378 | } |
| 379 | |
| 380 | friend struct SCEVVisitor<SCEVMonotonicityChecker, SCEVMonotonicity>; |
| 381 | }; |
| 382 | |
| 383 | /// A wrapper class for std::optional<APInt> that provides arithmetic operators |
| 384 | /// with overflow checking in a signed sense. This allows us to omit inserting |
| 385 | /// an overflow check at every arithmetic operation, which simplifies the code |
| 386 | /// if the operations are chained like `a + b + c + ...`. |
| 387 | /// |
| 388 | /// If an calculation overflows, the result becomes "invalid" which is |
| 389 | /// internally represented by std::nullopt. If any operand of an arithmetic |
| 390 | /// operation is "invalid", the result will also be "invalid". |
| 391 | struct OverflowSafeSignedAPInt { |
| 392 | OverflowSafeSignedAPInt() : Value(std::nullopt) {} |
| 393 | OverflowSafeSignedAPInt(const APInt &V) : Value(V) {} |
| 394 | OverflowSafeSignedAPInt(const std::optional<APInt> &V) : Value(V) {} |
| 395 | |
| 396 | OverflowSafeSignedAPInt operator+(const OverflowSafeSignedAPInt &RHS) const { |
| 397 | if (!Value || !RHS.Value) |
| 398 | return OverflowSafeSignedAPInt(); |
| 399 | bool Overflow; |
| 400 | APInt Result = Value->sadd_ov(RHS: *RHS.Value, Overflow); |
| 401 | if (Overflow) |
| 402 | return OverflowSafeSignedAPInt(); |
| 403 | return OverflowSafeSignedAPInt(Result); |
| 404 | } |
| 405 | |
| 406 | OverflowSafeSignedAPInt operator+(int RHS) const { |
| 407 | if (!Value) |
| 408 | return OverflowSafeSignedAPInt(); |
| 409 | return *this + fromInt(V: RHS); |
| 410 | } |
| 411 | |
| 412 | OverflowSafeSignedAPInt operator-(const OverflowSafeSignedAPInt &RHS) const { |
| 413 | if (!Value || !RHS.Value) |
| 414 | return OverflowSafeSignedAPInt(); |
| 415 | bool Overflow; |
| 416 | APInt Result = Value->ssub_ov(RHS: *RHS.Value, Overflow); |
| 417 | if (Overflow) |
| 418 | return OverflowSafeSignedAPInt(); |
| 419 | return OverflowSafeSignedAPInt(Result); |
| 420 | } |
| 421 | |
| 422 | OverflowSafeSignedAPInt operator-(int RHS) const { |
| 423 | if (!Value) |
| 424 | return OverflowSafeSignedAPInt(); |
| 425 | return *this - fromInt(V: RHS); |
| 426 | } |
| 427 | |
| 428 | OverflowSafeSignedAPInt operator*(const OverflowSafeSignedAPInt &RHS) const { |
| 429 | if (!Value || !RHS.Value) |
| 430 | return OverflowSafeSignedAPInt(); |
| 431 | bool Overflow; |
| 432 | APInt Result = Value->smul_ov(RHS: *RHS.Value, Overflow); |
| 433 | if (Overflow) |
| 434 | return OverflowSafeSignedAPInt(); |
| 435 | return OverflowSafeSignedAPInt(Result); |
| 436 | } |
| 437 | |
| 438 | OverflowSafeSignedAPInt operator-() const { |
| 439 | if (!Value) |
| 440 | return OverflowSafeSignedAPInt(); |
| 441 | if (Value->isMinSignedValue()) |
| 442 | return OverflowSafeSignedAPInt(); |
| 443 | return OverflowSafeSignedAPInt(-*Value); |
| 444 | } |
| 445 | |
| 446 | operator bool() const { return Value.has_value(); } |
| 447 | |
| 448 | bool operator!() const { return !Value.has_value(); } |
| 449 | |
| 450 | const APInt &operator*() const { |
| 451 | assert(Value && "Value is not available." ); |
| 452 | return *Value; |
| 453 | } |
| 454 | |
| 455 | const APInt *operator->() const { |
| 456 | assert(Value && "Value is not available." ); |
| 457 | return &*Value; |
| 458 | } |
| 459 | |
| 460 | private: |
| 461 | /// Underlying value. std::nullopt means "unknown". An arithmetic operation on |
| 462 | /// "unknown" always produces "unknown". |
| 463 | std::optional<APInt> Value; |
| 464 | |
| 465 | OverflowSafeSignedAPInt fromInt(uint64_t V) const { |
| 466 | assert(Value && "Value is not available." ); |
| 467 | return OverflowSafeSignedAPInt( |
| 468 | APInt(Value->getBitWidth(), V, /*isSigned=*/true)); |
| 469 | } |
| 470 | }; |
| 471 | |
| 472 | } // anonymous namespace |
| 473 | |
| 474 | // Used to test the dependence analyzer. |
| 475 | // Looks through the function, noting instructions that may access memory. |
| 476 | // Calls depends() on every possible pair and prints out the result. |
| 477 | // Ignores all other instructions. |
| 478 | static void dumpExampleDependence(raw_ostream &OS, DependenceInfo *DA, |
| 479 | ScalarEvolution &SE, LoopInfo &LI, |
| 480 | bool NormalizeResults) { |
| 481 | auto *F = DA->getFunction(); |
| 482 | |
| 483 | if (DumpMonotonicityReport) { |
| 484 | SCEVMonotonicityChecker Checker(&SE); |
| 485 | OS << "Monotonicity check:\n" ; |
| 486 | for (Instruction &Inst : instructions(F)) { |
| 487 | if (!isa<LoadInst>(Val: Inst) && !isa<StoreInst>(Val: Inst)) |
| 488 | continue; |
| 489 | Value *Ptr = getLoadStorePointerOperand(V: &Inst); |
| 490 | const Loop *L = LI.getLoopFor(BB: Inst.getParent()); |
| 491 | const Loop *OutermostLoop = L ? L->getOutermostLoop() : nullptr; |
| 492 | const SCEV *PtrSCEV = SE.getSCEVAtScope(V: Ptr, L); |
| 493 | const SCEV *AccessFn = SE.removePointerBase(S: PtrSCEV); |
| 494 | SCEVMonotonicity Mon = Checker.checkMonotonicity(Expr: AccessFn, OutermostLoop); |
| 495 | OS.indent(NumSpaces: 2) << "Inst: " << Inst << "\n" ; |
| 496 | OS.indent(NumSpaces: 4) << "Expr: " << *AccessFn << "\n" ; |
| 497 | Mon.print(OS, Depth: 4); |
| 498 | } |
| 499 | OS << "\n" ; |
| 500 | } |
| 501 | |
| 502 | for (inst_iterator SrcI = inst_begin(F), SrcE = inst_end(F); SrcI != SrcE; |
| 503 | ++SrcI) { |
| 504 | if (SrcI->mayReadOrWriteMemory()) { |
| 505 | for (inst_iterator DstI = SrcI, DstE = inst_end(F); DstI != DstE; |
| 506 | ++DstI) { |
| 507 | if (DstI->mayReadOrWriteMemory()) { |
| 508 | OS << "Src:" << *SrcI << " --> Dst:" << *DstI << "\n" ; |
| 509 | OS << " da analyze - " ; |
| 510 | if (auto D = DA->depends(Src: &*SrcI, Dst: &*DstI, |
| 511 | /*UnderRuntimeAssumptions=*/true)) { |
| 512 | |
| 513 | #ifndef NDEBUG |
| 514 | // Verify that the distance being zero is equivalent to the |
| 515 | // direction being EQ. |
| 516 | for (unsigned Level = 1; Level <= D->getLevels(); Level++) { |
| 517 | const SCEV *Distance = D->getDistance(Level); |
| 518 | bool IsDistanceZero = Distance && Distance->isZero(); |
| 519 | bool IsDirectionEQ = |
| 520 | D->getDirection(Level) == Dependence::DVEntry::EQ; |
| 521 | assert(IsDistanceZero == IsDirectionEQ && |
| 522 | "Inconsistent distance and direction." ); |
| 523 | } |
| 524 | #endif |
| 525 | |
| 526 | // Normalize negative direction vectors if required by clients. |
| 527 | if (NormalizeResults && D->normalize(SE: &SE)) |
| 528 | OS << "normalized - " ; |
| 529 | D->dump(OS); |
| 530 | } else |
| 531 | OS << "none!\n" ; |
| 532 | } |
| 533 | } |
| 534 | } |
| 535 | } |
| 536 | } |
| 537 | |
| 538 | void DependenceAnalysisWrapperPass::print(raw_ostream &OS, |
| 539 | const Module *) const { |
| 540 | dumpExampleDependence( |
| 541 | OS, DA: info.get(), SE&: getAnalysis<ScalarEvolutionWrapperPass>().getSE(), |
| 542 | LI&: getAnalysis<LoopInfoWrapperPass>().getLoopInfo(), NormalizeResults: false); |
| 543 | } |
| 544 | |
| 545 | PreservedAnalyses |
| 546 | DependenceAnalysisPrinterPass::run(Function &F, FunctionAnalysisManager &FAM) { |
| 547 | OS << "Printing analysis 'Dependence Analysis' for function '" << F.getName() |
| 548 | << "':\n" ; |
| 549 | dumpExampleDependence(OS, DA: &FAM.getResult<DependenceAnalysis>(IR&: F), |
| 550 | SE&: FAM.getResult<ScalarEvolutionAnalysis>(IR&: F), |
| 551 | LI&: FAM.getResult<LoopAnalysis>(IR&: F), NormalizeResults); |
| 552 | return PreservedAnalyses::all(); |
| 553 | } |
| 554 | |
| 555 | //===----------------------------------------------------------------------===// |
| 556 | // Dependence methods |
| 557 | |
| 558 | // Returns true if this is an input dependence. |
| 559 | bool Dependence::isInput() const { |
| 560 | return Src->mayReadFromMemory() && Dst->mayReadFromMemory(); |
| 561 | } |
| 562 | |
| 563 | // Returns true if this is an output dependence. |
| 564 | bool Dependence::isOutput() const { |
| 565 | return Src->mayWriteToMemory() && Dst->mayWriteToMemory(); |
| 566 | } |
| 567 | |
| 568 | // Returns true if this is an flow (aka true) dependence. |
| 569 | bool Dependence::isFlow() const { |
| 570 | return Src->mayWriteToMemory() && Dst->mayReadFromMemory(); |
| 571 | } |
| 572 | |
| 573 | // Returns true if this is an anti dependence. |
| 574 | bool Dependence::isAnti() const { |
| 575 | return Src->mayReadFromMemory() && Dst->mayWriteToMemory(); |
| 576 | } |
| 577 | |
| 578 | // Returns true if a particular level is scalar; that is, |
| 579 | // if no subscript in the source or destination mention the induction |
| 580 | // variable associated with the loop at this level. |
| 581 | // Leave this out of line, so it will serve as a virtual method anchor |
| 582 | bool Dependence::isScalar(unsigned level, bool IsSameSD) const { return false; } |
| 583 | |
| 584 | //===----------------------------------------------------------------------===// |
| 585 | // FullDependence methods |
| 586 | |
| 587 | FullDependence::FullDependence(Instruction *Source, Instruction *Destination, |
| 588 | const SCEVUnionPredicate &Assumes, |
| 589 | bool PossiblyLoopIndependent, |
| 590 | unsigned CommonLevels) |
| 591 | : Dependence(Source, Destination, Assumes), Levels(CommonLevels), |
| 592 | LoopIndependent(PossiblyLoopIndependent) { |
| 593 | Consistent = true; |
| 594 | SameSDLevels = 0; |
| 595 | if (CommonLevels) |
| 596 | DV = std::make_unique<DVEntry[]>(num: CommonLevels); |
| 597 | } |
| 598 | |
| 599 | // FIXME: in some cases the meaning of a negative direction vector |
| 600 | // may not be straightforward, e.g., |
| 601 | // for (int i = 0; i < 32; ++i) { |
| 602 | // Src: A[i] = ...; |
| 603 | // Dst: use(A[31 - i]); |
| 604 | // } |
| 605 | // The dependency is |
| 606 | // flow { Src[i] -> Dst[31 - i] : when i >= 16 } and |
| 607 | // anti { Dst[i] -> Src[31 - i] : when i < 16 }, |
| 608 | // -- hence a [<>]. |
| 609 | // As long as a dependence result contains '>' ('<>', '<=>', "*"), it |
| 610 | // means that a reversed/normalized dependence needs to be considered |
| 611 | // as well. Nevertheless, current isDirectionNegative() only returns |
| 612 | // true with a '>' or '>=' dependency for ease of canonicalizing the |
| 613 | // dependency vector, since the reverse of '<>', '<=>' and "*" is itself. |
| 614 | bool FullDependence::isDirectionNegative() const { |
| 615 | for (unsigned Level = 1; Level <= Levels; ++Level) { |
| 616 | unsigned char Direction = DV[Level - 1].Direction; |
| 617 | if (Direction == Dependence::DVEntry::EQ) |
| 618 | continue; |
| 619 | if (Direction == Dependence::DVEntry::GT || |
| 620 | Direction == Dependence::DVEntry::GE) |
| 621 | return true; |
| 622 | return false; |
| 623 | } |
| 624 | return false; |
| 625 | } |
| 626 | |
| 627 | bool FullDependence::normalize(ScalarEvolution *SE) { |
| 628 | if (!isDirectionNegative()) |
| 629 | return false; |
| 630 | |
| 631 | LLVM_DEBUG(dbgs() << "Before normalizing negative direction vectors:\n" ; |
| 632 | dump(dbgs());); |
| 633 | std::swap(a&: Src, b&: Dst); |
| 634 | for (unsigned Level = 1; Level <= Levels; ++Level) { |
| 635 | unsigned char Direction = DV[Level - 1].Direction; |
| 636 | // Reverse the direction vector, this means LT becomes GT |
| 637 | // and GT becomes LT. |
| 638 | unsigned char RevDirection = Direction & Dependence::DVEntry::EQ; |
| 639 | if (Direction & Dependence::DVEntry::LT) |
| 640 | RevDirection |= Dependence::DVEntry::GT; |
| 641 | if (Direction & Dependence::DVEntry::GT) |
| 642 | RevDirection |= Dependence::DVEntry::LT; |
| 643 | DV[Level - 1].Direction = RevDirection; |
| 644 | // Reverse the dependence distance as well. |
| 645 | if (DV[Level - 1].Distance != nullptr) |
| 646 | DV[Level - 1].Distance = SE->getNegativeSCEV(V: DV[Level - 1].Distance); |
| 647 | } |
| 648 | |
| 649 | LLVM_DEBUG(dbgs() << "After normalizing negative direction vectors:\n" ; |
| 650 | dump(dbgs());); |
| 651 | return true; |
| 652 | } |
| 653 | |
| 654 | // The rest are simple getters that hide the implementation. |
| 655 | |
| 656 | // getDirection - Returns the direction associated with a particular common or |
| 657 | // SameSD level. |
| 658 | unsigned FullDependence::getDirection(unsigned Level, bool IsSameSD) const { |
| 659 | return getDVEntry(Level, IsSameSD).Direction; |
| 660 | } |
| 661 | |
| 662 | // Returns the distance (or NULL) associated with a particular common or |
| 663 | // SameSD level. |
| 664 | const SCEV *FullDependence::getDistance(unsigned Level, bool IsSameSD) const { |
| 665 | return getDVEntry(Level, IsSameSD).Distance; |
| 666 | } |
| 667 | |
| 668 | // Returns true if a particular regular or SameSD level is scalar; that is, |
| 669 | // if no subscript in the source or destination mention the induction variable |
| 670 | // associated with the loop at this level. |
| 671 | bool FullDependence::isScalar(unsigned Level, bool IsSameSD) const { |
| 672 | return getDVEntry(Level, IsSameSD).Scalar; |
| 673 | } |
| 674 | |
| 675 | // Returns true if peeling the first iteration from this regular or SameSD |
| 676 | // loop level will break this dependence. |
| 677 | bool FullDependence::isPeelFirst(unsigned Level, bool IsSameSD) const { |
| 678 | return getDVEntry(Level, IsSameSD).PeelFirst; |
| 679 | } |
| 680 | |
| 681 | // Returns true if peeling the last iteration from this regular or SameSD |
| 682 | // loop level will break this dependence. |
| 683 | bool FullDependence::isPeelLast(unsigned Level, bool IsSameSD) const { |
| 684 | return getDVEntry(Level, IsSameSD).PeelLast; |
| 685 | } |
| 686 | |
| 687 | // inSameSDLoops - Returns true if this level is an SameSD level, i.e., |
| 688 | // performed across two separate loop nests that have the Same iteration space |
| 689 | // and Depth. |
| 690 | bool FullDependence::inSameSDLoops(unsigned Level) const { |
| 691 | assert(0 < Level && Level <= static_cast<unsigned>(Levels) + SameSDLevels && |
| 692 | "Level out of range" ); |
| 693 | return Level > Levels; |
| 694 | } |
| 695 | |
| 696 | //===----------------------------------------------------------------------===// |
| 697 | // SCEVMonotonicity |
| 698 | |
| 699 | SCEVMonotonicity::SCEVMonotonicity(SCEVMonotonicityType Type, |
| 700 | const SCEV *FailurePoint) |
| 701 | : Type(Type), FailurePoint(FailurePoint) { |
| 702 | assert( |
| 703 | ((Type == SCEVMonotonicityType::Unknown) == (FailurePoint != nullptr)) && |
| 704 | "FailurePoint must be provided iff Type is Unknown" ); |
| 705 | } |
| 706 | |
| 707 | void SCEVMonotonicity::print(raw_ostream &OS, unsigned Depth) const { |
| 708 | OS.indent(NumSpaces: Depth) << "Monotonicity: " ; |
| 709 | switch (Type) { |
| 710 | case SCEVMonotonicityType::Unknown: |
| 711 | assert(FailurePoint && "FailurePoint must be provided for Unknown" ); |
| 712 | OS << "Unknown\n" ; |
| 713 | OS.indent(NumSpaces: Depth) << "Reason: " << *FailurePoint << "\n" ; |
| 714 | break; |
| 715 | case SCEVMonotonicityType::Invariant: |
| 716 | OS << "Invariant\n" ; |
| 717 | break; |
| 718 | case SCEVMonotonicityType::MultivariateSignedMonotonic: |
| 719 | OS << "MultivariateSignedMonotonic\n" ; |
| 720 | break; |
| 721 | } |
| 722 | } |
| 723 | |
| 724 | bool SCEVMonotonicityChecker::isLoopInvariant(const SCEV *Expr) const { |
| 725 | return !OutermostLoop || SE->isLoopInvariant(S: Expr, L: OutermostLoop); |
| 726 | } |
| 727 | |
| 728 | SCEVMonotonicity SCEVMonotonicityChecker::invariantOrUnknown(const SCEV *Expr) { |
| 729 | if (isLoopInvariant(Expr)) |
| 730 | return SCEVMonotonicity(SCEVMonotonicityType::Invariant); |
| 731 | return createUnknown(FailurePoint: Expr); |
| 732 | } |
| 733 | |
| 734 | SCEVMonotonicity |
| 735 | SCEVMonotonicityChecker::checkMonotonicity(const SCEV *Expr, |
| 736 | const Loop *OutermostLoop) { |
| 737 | assert((!OutermostLoop || OutermostLoop->isOutermost()) && |
| 738 | "OutermostLoop must be outermost" ); |
| 739 | assert(Expr->getType()->isIntegerTy() && "Expr must be integer type" ); |
| 740 | this->OutermostLoop = OutermostLoop; |
| 741 | return visit(S: Expr); |
| 742 | } |
| 743 | |
| 744 | /// We only care about an affine AddRec at the moment. For an affine AddRec, |
| 745 | /// the monotonicity can be inferred from its nowrap property. For example, let |
| 746 | /// X and Y be loop-invariant, and assume Y is non-negative. An AddRec |
| 747 | /// {X,+.Y}<nsw> implies: |
| 748 | /// |
| 749 | /// X <=s (X + Y) <=s ((X + Y) + Y) <=s ... |
| 750 | /// |
| 751 | /// Thus, we can conclude that the AddRec is monotonically increasing with |
| 752 | /// respect to the associated loop in a signed sense. The similar reasoning |
| 753 | /// applies when Y is non-positive, leading to a monotonically decreasing |
| 754 | /// AddRec. |
| 755 | SCEVMonotonicity |
| 756 | SCEVMonotonicityChecker::visitAddRecExpr(const SCEVAddRecExpr *Expr) { |
| 757 | if (!Expr->isAffine() || !Expr->hasNoSignedWrap()) |
| 758 | return createUnknown(FailurePoint: Expr); |
| 759 | |
| 760 | const SCEV *Start = Expr->getStart(); |
| 761 | const SCEV *Step = Expr->getStepRecurrence(SE&: *SE); |
| 762 | |
| 763 | SCEVMonotonicity StartMon = visit(S: Start); |
| 764 | if (StartMon.isUnknown()) |
| 765 | return StartMon; |
| 766 | |
| 767 | if (!isLoopInvariant(Expr: Step)) |
| 768 | return createUnknown(FailurePoint: Expr); |
| 769 | |
| 770 | return SCEVMonotonicity(SCEVMonotonicityType::MultivariateSignedMonotonic); |
| 771 | } |
| 772 | |
| 773 | //===----------------------------------------------------------------------===// |
| 774 | // DependenceInfo methods |
| 775 | |
| 776 | // For debugging purposes. Dumps a dependence to OS. |
| 777 | void Dependence::dump(raw_ostream &OS) const { |
| 778 | if (isConfused()) |
| 779 | OS << "confused" ; |
| 780 | else { |
| 781 | if (isConsistent()) |
| 782 | OS << "consistent " ; |
| 783 | if (isFlow()) |
| 784 | OS << "flow" ; |
| 785 | else if (isOutput()) |
| 786 | OS << "output" ; |
| 787 | else if (isAnti()) |
| 788 | OS << "anti" ; |
| 789 | else if (isInput()) |
| 790 | OS << "input" ; |
| 791 | dumpImp(OS); |
| 792 | unsigned SameSDLevels = getSameSDLevels(); |
| 793 | if (SameSDLevels > 0) { |
| 794 | OS << " / assuming " << SameSDLevels << " loop level(s) fused: " ; |
| 795 | dumpImp(OS, IsSameSD: true); |
| 796 | } |
| 797 | } |
| 798 | OS << "!\n" ; |
| 799 | |
| 800 | SCEVUnionPredicate Assumptions = getRuntimeAssumptions(); |
| 801 | if (!Assumptions.isAlwaysTrue()) { |
| 802 | OS << " Runtime Assumptions:\n" ; |
| 803 | Assumptions.print(OS, Depth: 2); |
| 804 | } |
| 805 | } |
| 806 | |
| 807 | // For debugging purposes. Dumps a dependence to OS with or without considering |
| 808 | // the SameSD levels. |
| 809 | void Dependence::dumpImp(raw_ostream &OS, bool IsSameSD) const { |
| 810 | unsigned Levels = getLevels(); |
| 811 | unsigned SameSDLevels = getSameSDLevels(); |
| 812 | bool OnSameSD = false; |
| 813 | unsigned LevelNum = Levels; |
| 814 | if (IsSameSD) |
| 815 | LevelNum += SameSDLevels; |
| 816 | OS << " [" ; |
| 817 | for (unsigned II = 1; II <= LevelNum; ++II) { |
| 818 | if (!OnSameSD && inSameSDLoops(Level: II)) |
| 819 | OnSameSD = true; |
| 820 | if (isPeelFirst(Level: II, SameSD: OnSameSD)) |
| 821 | OS << 'p'; |
| 822 | const SCEV *Distance = getDistance(Level: II, SameSD: OnSameSD); |
| 823 | if (Distance) |
| 824 | OS << *Distance; |
| 825 | else if (isScalar(level: II, IsSameSD: OnSameSD)) |
| 826 | OS << "S" ; |
| 827 | else { |
| 828 | unsigned Direction = getDirection(Level: II, SameSD: OnSameSD); |
| 829 | if (Direction == DVEntry::ALL) |
| 830 | OS << "*" ; |
| 831 | else { |
| 832 | if (Direction & DVEntry::LT) |
| 833 | OS << "<" ; |
| 834 | if (Direction & DVEntry::EQ) |
| 835 | OS << "=" ; |
| 836 | if (Direction & DVEntry::GT) |
| 837 | OS << ">" ; |
| 838 | } |
| 839 | } |
| 840 | if (isPeelLast(Level: II, SameSD: OnSameSD)) |
| 841 | OS << 'p'; |
| 842 | if (II < LevelNum) |
| 843 | OS << " " ; |
| 844 | } |
| 845 | if (isLoopIndependent()) |
| 846 | OS << "|<" ; |
| 847 | OS << "]" ; |
| 848 | } |
| 849 | |
| 850 | // Returns NoAlias/MayAliass/MustAlias for two memory locations based upon their |
| 851 | // underlaying objects. If LocA and LocB are known to not alias (for any reason: |
| 852 | // tbaa, non-overlapping regions etc), then it is known there is no dependecy. |
| 853 | // Otherwise the underlying objects are checked to see if they point to |
| 854 | // different identifiable objects. |
| 855 | static AliasResult underlyingObjectsAlias(AAResults *AA, const DataLayout &DL, |
| 856 | const MemoryLocation &LocA, |
| 857 | const MemoryLocation &LocB) { |
| 858 | // Check the original locations (minus size) for noalias, which can happen for |
| 859 | // tbaa, incompatible underlying object locations, etc. |
| 860 | MemoryLocation LocAS = |
| 861 | MemoryLocation::getBeforeOrAfter(Ptr: LocA.Ptr, AATags: LocA.AATags); |
| 862 | MemoryLocation LocBS = |
| 863 | MemoryLocation::getBeforeOrAfter(Ptr: LocB.Ptr, AATags: LocB.AATags); |
| 864 | BatchAAResults BAA(*AA); |
| 865 | BAA.enableCrossIterationMode(); |
| 866 | |
| 867 | if (BAA.isNoAlias(LocA: LocAS, LocB: LocBS)) |
| 868 | return AliasResult::NoAlias; |
| 869 | |
| 870 | // Check the underlying objects are the same |
| 871 | const Value *AObj = getUnderlyingObject(V: LocA.Ptr); |
| 872 | const Value *BObj = getUnderlyingObject(V: LocB.Ptr); |
| 873 | |
| 874 | // If the underlying objects are the same, they must alias |
| 875 | if (AObj == BObj) |
| 876 | return AliasResult::MustAlias; |
| 877 | |
| 878 | // We may have hit the recursion limit for underlying objects, or have |
| 879 | // underlying objects where we don't know they will alias. |
| 880 | if (!isIdentifiedObject(V: AObj) || !isIdentifiedObject(V: BObj)) |
| 881 | return AliasResult::MayAlias; |
| 882 | |
| 883 | // Otherwise we know the objects are different and both identified objects so |
| 884 | // must not alias. |
| 885 | return AliasResult::NoAlias; |
| 886 | } |
| 887 | |
| 888 | // Returns true if the load or store can be analyzed. Atomic and volatile |
| 889 | // operations have properties which this analysis does not understand. |
| 890 | static bool isLoadOrStore(const Instruction *I) { |
| 891 | if (const LoadInst *LI = dyn_cast<LoadInst>(Val: I)) |
| 892 | return LI->isUnordered(); |
| 893 | else if (const StoreInst *SI = dyn_cast<StoreInst>(Val: I)) |
| 894 | return SI->isUnordered(); |
| 895 | return false; |
| 896 | } |
| 897 | |
| 898 | // Returns true if two loops have the Same iteration Space and Depth. To be |
| 899 | // more specific, two loops have SameSD if they are in the same nesting |
| 900 | // depth and have the same backedge count. SameSD stands for Same iteration |
| 901 | // Space and Depth. |
| 902 | bool DependenceInfo::haveSameSD(const Loop *SrcLoop, |
| 903 | const Loop *DstLoop) const { |
| 904 | if (SrcLoop == DstLoop) |
| 905 | return true; |
| 906 | |
| 907 | if (SrcLoop->getLoopDepth() != DstLoop->getLoopDepth()) |
| 908 | return false; |
| 909 | |
| 910 | if (!SrcLoop || !SrcLoop->getLoopLatch() || !DstLoop || |
| 911 | !DstLoop->getLoopLatch()) |
| 912 | return false; |
| 913 | |
| 914 | const SCEV *SrcUB = nullptr, *DstUP = nullptr; |
| 915 | if (SE->hasLoopInvariantBackedgeTakenCount(L: SrcLoop)) |
| 916 | SrcUB = SE->getBackedgeTakenCount(L: SrcLoop); |
| 917 | if (SE->hasLoopInvariantBackedgeTakenCount(L: DstLoop)) |
| 918 | DstUP = SE->getBackedgeTakenCount(L: DstLoop); |
| 919 | |
| 920 | if (SrcUB != nullptr && DstUP != nullptr) { |
| 921 | Type *WiderType = SE->getWiderType(Ty1: SrcUB->getType(), Ty2: DstUP->getType()); |
| 922 | SrcUB = SE->getNoopOrZeroExtend(V: SrcUB, Ty: WiderType); |
| 923 | DstUP = SE->getNoopOrZeroExtend(V: DstUP, Ty: WiderType); |
| 924 | |
| 925 | if (SE->isKnownPredicate(Pred: ICmpInst::ICMP_EQ, LHS: SrcUB, RHS: DstUP)) |
| 926 | return true; |
| 927 | } |
| 928 | |
| 929 | return false; |
| 930 | } |
| 931 | |
| 932 | // Examines the loop nesting of the Src and Dst |
| 933 | // instructions and establishes their shared loops. Sets the variables |
| 934 | // CommonLevels, SrcLevels, and MaxLevels. |
| 935 | // The source and destination instructions needn't be contained in the same |
| 936 | // loop. The routine establishNestingLevels finds the level of most deeply |
| 937 | // nested loop that contains them both, CommonLevels. An instruction that's |
| 938 | // not contained in a loop is at level = 0. MaxLevels is equal to the level |
| 939 | // of the source plus the level of the destination, minus CommonLevels. |
| 940 | // This lets us allocate vectors MaxLevels in length, with room for every |
| 941 | // distinct loop referenced in both the source and destination subscripts. |
| 942 | // The variable SrcLevels is the nesting depth of the source instruction. |
| 943 | // It's used to help calculate distinct loops referenced by the destination. |
| 944 | // Here's the map from loops to levels: |
| 945 | // 0 - unused |
| 946 | // 1 - outermost common loop |
| 947 | // ... - other common loops |
| 948 | // CommonLevels - innermost common loop |
| 949 | // ... - loops containing Src but not Dst |
| 950 | // SrcLevels - innermost loop containing Src but not Dst |
| 951 | // ... - loops containing Dst but not Src |
| 952 | // MaxLevels - innermost loops containing Dst but not Src |
| 953 | // Consider the follow code fragment: |
| 954 | // for (a = ...) { |
| 955 | // for (b = ...) { |
| 956 | // for (c = ...) { |
| 957 | // for (d = ...) { |
| 958 | // A[] = ...; |
| 959 | // } |
| 960 | // } |
| 961 | // for (e = ...) { |
| 962 | // for (f = ...) { |
| 963 | // for (g = ...) { |
| 964 | // ... = A[]; |
| 965 | // } |
| 966 | // } |
| 967 | // } |
| 968 | // } |
| 969 | // } |
| 970 | // If we're looking at the possibility of a dependence between the store |
| 971 | // to A (the Src) and the load from A (the Dst), we'll note that they |
| 972 | // have 2 loops in common, so CommonLevels will equal 2 and the direction |
| 973 | // vector for Result will have 2 entries. SrcLevels = 4 and MaxLevels = 7. |
| 974 | // A map from loop names to loop numbers would look like |
| 975 | // a - 1 |
| 976 | // b - 2 = CommonLevels |
| 977 | // c - 3 |
| 978 | // d - 4 = SrcLevels |
| 979 | // e - 5 |
| 980 | // f - 6 |
| 981 | // g - 7 = MaxLevels |
| 982 | // SameSDLevels counts the number of levels after common levels that are |
| 983 | // not common but have the same iteration space and depth. Internally this |
| 984 | // is checked using haveSameSD. Assume that in this code fragment, levels c and |
| 985 | // e have the same iteration space and depth, but levels d and f does not. Then |
| 986 | // SameSDLevels is set to 1. In that case the level numbers for the previous |
| 987 | // code look like |
| 988 | // a - 1 |
| 989 | // b - 2 |
| 990 | // c,e - 3 = CommonLevels |
| 991 | // d - 4 = SrcLevels |
| 992 | // f - 5 |
| 993 | // g - 6 = MaxLevels |
| 994 | void DependenceInfo::establishNestingLevels(const Instruction *Src, |
| 995 | const Instruction *Dst) { |
| 996 | const BasicBlock *SrcBlock = Src->getParent(); |
| 997 | const BasicBlock *DstBlock = Dst->getParent(); |
| 998 | unsigned SrcLevel = LI->getLoopDepth(BB: SrcBlock); |
| 999 | unsigned DstLevel = LI->getLoopDepth(BB: DstBlock); |
| 1000 | const Loop *SrcLoop = LI->getLoopFor(BB: SrcBlock); |
| 1001 | const Loop *DstLoop = LI->getLoopFor(BB: DstBlock); |
| 1002 | SrcLevels = SrcLevel; |
| 1003 | MaxLevels = SrcLevel + DstLevel; |
| 1004 | SameSDLevels = 0; |
| 1005 | while (SrcLevel > DstLevel) { |
| 1006 | SrcLoop = SrcLoop->getParentLoop(); |
| 1007 | SrcLevel--; |
| 1008 | } |
| 1009 | while (DstLevel > SrcLevel) { |
| 1010 | DstLoop = DstLoop->getParentLoop(); |
| 1011 | DstLevel--; |
| 1012 | } |
| 1013 | |
| 1014 | // find the first common level and count the SameSD levels leading to it |
| 1015 | while (SrcLoop != DstLoop) { |
| 1016 | SameSDLevels++; |
| 1017 | if (!haveSameSD(SrcLoop, DstLoop)) |
| 1018 | SameSDLevels = 0; |
| 1019 | SrcLoop = SrcLoop->getParentLoop(); |
| 1020 | DstLoop = DstLoop->getParentLoop(); |
| 1021 | SrcLevel--; |
| 1022 | } |
| 1023 | CommonLevels = SrcLevel; |
| 1024 | MaxLevels -= CommonLevels; |
| 1025 | } |
| 1026 | |
| 1027 | // Given one of the loops containing the source, return |
| 1028 | // its level index in our numbering scheme. |
| 1029 | unsigned DependenceInfo::mapSrcLoop(const Loop *SrcLoop) const { |
| 1030 | return SrcLoop->getLoopDepth(); |
| 1031 | } |
| 1032 | |
| 1033 | // Given one of the loops containing the destination, |
| 1034 | // return its level index in our numbering scheme. |
| 1035 | unsigned DependenceInfo::mapDstLoop(const Loop *DstLoop) const { |
| 1036 | unsigned D = DstLoop->getLoopDepth(); |
| 1037 | if (D > CommonLevels) |
| 1038 | // This tries to make sure that we assign unique numbers to src and dst when |
| 1039 | // the memory accesses reside in different loops that have the same depth. |
| 1040 | return D - CommonLevels + SrcLevels; |
| 1041 | else |
| 1042 | return D; |
| 1043 | } |
| 1044 | |
| 1045 | // Returns true if Expression is loop invariant in LoopNest. |
| 1046 | bool DependenceInfo::isLoopInvariant(const SCEV *Expression, |
| 1047 | const Loop *LoopNest) const { |
| 1048 | // Unlike ScalarEvolution::isLoopInvariant() we consider an access outside of |
| 1049 | // any loop as invariant, because we only consier expression evaluation at a |
| 1050 | // specific position (where the array access takes place), and not across the |
| 1051 | // entire function. |
| 1052 | if (!LoopNest) |
| 1053 | return true; |
| 1054 | |
| 1055 | // If the expression is invariant in the outermost loop of the loop nest, it |
| 1056 | // is invariant anywhere in the loop nest. |
| 1057 | return SE->isLoopInvariant(S: Expression, L: LoopNest->getOutermostLoop()); |
| 1058 | } |
| 1059 | |
| 1060 | // Finds the set of loops from the LoopNest that |
| 1061 | // have a level <= CommonLevels and are referred to by the SCEV Expression. |
| 1062 | void DependenceInfo::collectCommonLoops(const SCEV *Expression, |
| 1063 | const Loop *LoopNest, |
| 1064 | SmallBitVector &Loops) const { |
| 1065 | while (LoopNest) { |
| 1066 | unsigned Level = LoopNest->getLoopDepth(); |
| 1067 | if (Level <= CommonLevels && !SE->isLoopInvariant(S: Expression, L: LoopNest)) |
| 1068 | Loops.set(Level); |
| 1069 | LoopNest = LoopNest->getParentLoop(); |
| 1070 | } |
| 1071 | } |
| 1072 | |
| 1073 | void DependenceInfo::unifySubscriptType(ArrayRef<Subscript *> Pairs) { |
| 1074 | |
| 1075 | unsigned widestWidthSeen = 0; |
| 1076 | Type *widestType; |
| 1077 | |
| 1078 | // Go through each pair and find the widest bit to which we need |
| 1079 | // to extend all of them. |
| 1080 | for (Subscript *Pair : Pairs) { |
| 1081 | const SCEV *Src = Pair->Src; |
| 1082 | const SCEV *Dst = Pair->Dst; |
| 1083 | IntegerType *SrcTy = dyn_cast<IntegerType>(Val: Src->getType()); |
| 1084 | IntegerType *DstTy = dyn_cast<IntegerType>(Val: Dst->getType()); |
| 1085 | if (SrcTy == nullptr || DstTy == nullptr) { |
| 1086 | assert(SrcTy == DstTy && |
| 1087 | "This function only unify integer types and " |
| 1088 | "expect Src and Dst share the same type otherwise." ); |
| 1089 | continue; |
| 1090 | } |
| 1091 | if (SrcTy->getBitWidth() > widestWidthSeen) { |
| 1092 | widestWidthSeen = SrcTy->getBitWidth(); |
| 1093 | widestType = SrcTy; |
| 1094 | } |
| 1095 | if (DstTy->getBitWidth() > widestWidthSeen) { |
| 1096 | widestWidthSeen = DstTy->getBitWidth(); |
| 1097 | widestType = DstTy; |
| 1098 | } |
| 1099 | } |
| 1100 | |
| 1101 | assert(widestWidthSeen > 0); |
| 1102 | |
| 1103 | // Now extend each pair to the widest seen. |
| 1104 | for (Subscript *Pair : Pairs) { |
| 1105 | const SCEV *Src = Pair->Src; |
| 1106 | const SCEV *Dst = Pair->Dst; |
| 1107 | IntegerType *SrcTy = dyn_cast<IntegerType>(Val: Src->getType()); |
| 1108 | IntegerType *DstTy = dyn_cast<IntegerType>(Val: Dst->getType()); |
| 1109 | if (SrcTy == nullptr || DstTy == nullptr) { |
| 1110 | assert(SrcTy == DstTy && |
| 1111 | "This function only unify integer types and " |
| 1112 | "expect Src and Dst share the same type otherwise." ); |
| 1113 | continue; |
| 1114 | } |
| 1115 | if (SrcTy->getBitWidth() < widestWidthSeen) |
| 1116 | // Sign-extend Src to widestType |
| 1117 | Pair->Src = SE->getSignExtendExpr(Op: Src, Ty: widestType); |
| 1118 | if (DstTy->getBitWidth() < widestWidthSeen) { |
| 1119 | // Sign-extend Dst to widestType |
| 1120 | Pair->Dst = SE->getSignExtendExpr(Op: Dst, Ty: widestType); |
| 1121 | } |
| 1122 | } |
| 1123 | } |
| 1124 | |
| 1125 | // removeMatchingExtensions - Examines a subscript pair. |
| 1126 | // If the source and destination are identically sign (or zero) |
| 1127 | // extended, it strips off the extension in an effect to simplify |
| 1128 | // the actual analysis. |
| 1129 | void DependenceInfo::removeMatchingExtensions(Subscript *Pair) { |
| 1130 | const SCEV *Src = Pair->Src; |
| 1131 | const SCEV *Dst = Pair->Dst; |
| 1132 | if ((isa<SCEVZeroExtendExpr>(Val: Src) && isa<SCEVZeroExtendExpr>(Val: Dst)) || |
| 1133 | (isa<SCEVSignExtendExpr>(Val: Src) && isa<SCEVSignExtendExpr>(Val: Dst))) { |
| 1134 | const SCEVIntegralCastExpr *SrcCast = cast<SCEVIntegralCastExpr>(Val: Src); |
| 1135 | const SCEVIntegralCastExpr *DstCast = cast<SCEVIntegralCastExpr>(Val: Dst); |
| 1136 | const SCEV *SrcCastOp = SrcCast->getOperand(); |
| 1137 | const SCEV *DstCastOp = DstCast->getOperand(); |
| 1138 | if (SrcCastOp->getType() == DstCastOp->getType()) { |
| 1139 | Pair->Src = SrcCastOp; |
| 1140 | Pair->Dst = DstCastOp; |
| 1141 | } |
| 1142 | } |
| 1143 | } |
| 1144 | |
| 1145 | // Examine the scev and return true iff it's affine. |
| 1146 | // Collect any loops mentioned in the set of "Loops". |
| 1147 | bool DependenceInfo::checkSubscript(const SCEV *Expr, const Loop *LoopNest, |
| 1148 | SmallBitVector &Loops, bool IsSrc) { |
| 1149 | const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Val: Expr); |
| 1150 | if (!AddRec) |
| 1151 | return isLoopInvariant(Expression: Expr, LoopNest); |
| 1152 | |
| 1153 | // The AddRec must depend on one of the containing loops. Otherwise, |
| 1154 | // mapSrcLoop and mapDstLoop return indices outside the intended range. This |
| 1155 | // can happen when a subscript in one loop references an IV from a sibling |
| 1156 | // loop that could not be replaced with a concrete exit value by |
| 1157 | // getSCEVAtScope. |
| 1158 | const Loop *L = LoopNest; |
| 1159 | while (L && AddRec->getLoop() != L) |
| 1160 | L = L->getParentLoop(); |
| 1161 | if (!L) |
| 1162 | return false; |
| 1163 | |
| 1164 | const SCEV *Start = AddRec->getStart(); |
| 1165 | const SCEV *Step = AddRec->getStepRecurrence(SE&: *SE); |
| 1166 | if (!isLoopInvariant(Expression: Step, LoopNest)) |
| 1167 | return false; |
| 1168 | if (IsSrc) |
| 1169 | Loops.set(mapSrcLoop(SrcLoop: AddRec->getLoop())); |
| 1170 | else |
| 1171 | Loops.set(mapDstLoop(DstLoop: AddRec->getLoop())); |
| 1172 | return checkSubscript(Expr: Start, LoopNest, Loops, IsSrc); |
| 1173 | } |
| 1174 | |
| 1175 | // Examine the scev and return true iff it's linear. |
| 1176 | // Collect any loops mentioned in the set of "Loops". |
| 1177 | bool DependenceInfo::checkSrcSubscript(const SCEV *Src, const Loop *LoopNest, |
| 1178 | SmallBitVector &Loops) { |
| 1179 | return checkSubscript(Expr: Src, LoopNest, Loops, IsSrc: true); |
| 1180 | } |
| 1181 | |
| 1182 | // Examine the scev and return true iff it's linear. |
| 1183 | // Collect any loops mentioned in the set of "Loops". |
| 1184 | bool DependenceInfo::checkDstSubscript(const SCEV *Dst, const Loop *LoopNest, |
| 1185 | SmallBitVector &Loops) { |
| 1186 | return checkSubscript(Expr: Dst, LoopNest, Loops, IsSrc: false); |
| 1187 | } |
| 1188 | |
| 1189 | // Examines the subscript pair (the Src and Dst SCEVs) |
| 1190 | // and classifies it as either ZIV, SIV, RDIV, MIV, or Nonlinear. |
| 1191 | // Collects the associated loops in a set. |
| 1192 | DependenceInfo::Subscript::ClassificationKind |
| 1193 | DependenceInfo::classifyPair(const SCEV *Src, const Loop *SrcLoopNest, |
| 1194 | const SCEV *Dst, const Loop *DstLoopNest, |
| 1195 | SmallBitVector &Loops) { |
| 1196 | SmallBitVector SrcLoops(MaxLevels + 1); |
| 1197 | SmallBitVector DstLoops(MaxLevels + 1); |
| 1198 | if (!checkSrcSubscript(Src, LoopNest: SrcLoopNest, Loops&: SrcLoops)) |
| 1199 | return Subscript::NonLinear; |
| 1200 | if (!checkDstSubscript(Dst, LoopNest: DstLoopNest, Loops&: DstLoops)) |
| 1201 | return Subscript::NonLinear; |
| 1202 | Loops = SrcLoops; |
| 1203 | Loops |= DstLoops; |
| 1204 | unsigned N = Loops.count(); |
| 1205 | if (N == 0) |
| 1206 | return Subscript::ZIV; |
| 1207 | if (N == 1) |
| 1208 | return Subscript::SIV; |
| 1209 | if (N == 2 && (SrcLoops.count() == 0 || DstLoops.count() == 0 || |
| 1210 | (SrcLoops.count() == 1 && DstLoops.count() == 1))) |
| 1211 | return Subscript::RDIV; |
| 1212 | return Subscript::MIV; |
| 1213 | } |
| 1214 | |
| 1215 | // All subscripts are all the same type. |
| 1216 | // Loop bound may be smaller (e.g., a char). |
| 1217 | // Should zero extend loop bound, since it's always >= 0. |
| 1218 | // This routine collects upper bound and extends or truncates if needed. |
| 1219 | // Truncating is safe when subscripts are known not to wrap. Cases without |
| 1220 | // nowrap flags should have been rejected earlier. |
| 1221 | // Return null if no bound available. |
| 1222 | const SCEV *DependenceInfo::collectUpperBound(const Loop *L, Type *T) const { |
| 1223 | if (SE->hasLoopInvariantBackedgeTakenCount(L)) { |
| 1224 | const SCEV *UB = SE->getBackedgeTakenCount(L); |
| 1225 | return SE->getTruncateOrZeroExtend(V: UB, Ty: T); |
| 1226 | } |
| 1227 | return nullptr; |
| 1228 | } |
| 1229 | |
| 1230 | // Calls collectUpperBound(), then attempts to cast it to SCEVConstant. |
| 1231 | // If the cast fails, returns NULL. |
| 1232 | const SCEVConstant *DependenceInfo::collectConstantUpperBound(const Loop *L, |
| 1233 | Type *T) const { |
| 1234 | if (const SCEV *UB = collectUpperBound(L, T)) |
| 1235 | return dyn_cast<SCEVConstant>(Val: UB); |
| 1236 | return nullptr; |
| 1237 | } |
| 1238 | |
| 1239 | /// Returns \p A - \p B if it guaranteed not to signed wrap. Otherwise returns |
| 1240 | /// nullptr. \p A and \p B must have the same integer type. |
| 1241 | static const SCEV *minusSCEVNoSignedOverflow(const SCEV *A, const SCEV *B, |
| 1242 | ScalarEvolution &SE) { |
| 1243 | if (SE.willNotOverflow(BinOp: Instruction::Sub, /*Signed=*/true, LHS: A, RHS: B)) |
| 1244 | return SE.getMinusSCEV(LHS: A, RHS: B); |
| 1245 | return nullptr; |
| 1246 | } |
| 1247 | |
| 1248 | /// Returns \p A * \p B if it guaranteed not to signed wrap. Otherwise returns |
| 1249 | /// nullptr. \p A and \p B must have the same integer type. |
| 1250 | static const SCEV *mulSCEVNoSignedOverflow(const SCEV *A, const SCEV *B, |
| 1251 | ScalarEvolution &SE) { |
| 1252 | if (SE.willNotOverflow(BinOp: Instruction::Mul, /*Signed=*/true, LHS: A, RHS: B)) |
| 1253 | return SE.getMulExpr(LHS: A, RHS: B); |
| 1254 | return nullptr; |
| 1255 | } |
| 1256 | |
| 1257 | /// Returns the absolute value of \p A. In the context of dependence analysis, |
| 1258 | /// we need an absolute value in a mathematical sense. If \p A is the signed |
| 1259 | /// minimum value, we cannot represent it unless extending the original type. |
| 1260 | /// Thus if we cannot prove that \p A is not the signed minimum value, returns |
| 1261 | /// nullptr. |
| 1262 | static const SCEV *absSCEVNoSignedOverflow(const SCEV *A, ScalarEvolution &SE) { |
| 1263 | IntegerType *Ty = cast<IntegerType>(Val: A->getType()); |
| 1264 | if (!Ty) |
| 1265 | return nullptr; |
| 1266 | |
| 1267 | const SCEV *SMin = |
| 1268 | SE.getConstant(Val: APInt::getSignedMinValue(numBits: Ty->getBitWidth())); |
| 1269 | if (!SE.isKnownPredicate(Pred: CmpInst::ICMP_NE, LHS: A, RHS: SMin)) |
| 1270 | return nullptr; |
| 1271 | return SE.getAbsExpr(Op: A, /*IsNSW=*/true); |
| 1272 | } |
| 1273 | |
| 1274 | /// Returns true iff \p Test is enabled. |
| 1275 | static bool isDependenceTestEnabled(DependenceTestType Test) { |
| 1276 | if (EnableDependenceTest == DependenceTestType::All) |
| 1277 | return true; |
| 1278 | return EnableDependenceTest == Test; |
| 1279 | } |
| 1280 | |
| 1281 | // testZIV - |
| 1282 | // When we have a pair of subscripts of the form [c1] and [c2], |
| 1283 | // where c1 and c2 are both loop invariant, we attack it using |
| 1284 | // the ZIV test. Basically, we test by comparing the two values, |
| 1285 | // but there are actually three possible results: |
| 1286 | // 1) the values are equal, so there's a dependence |
| 1287 | // 2) the values are different, so there's no dependence |
| 1288 | // 3) the values might be equal, so we have to assume a dependence. |
| 1289 | // |
| 1290 | // Return true if dependence disproved. |
| 1291 | bool DependenceInfo::testZIV(const SCEV *Src, const SCEV *Dst, |
| 1292 | FullDependence &Result) const { |
| 1293 | LLVM_DEBUG(dbgs() << " src = " << *Src << "\n" ); |
| 1294 | LLVM_DEBUG(dbgs() << " dst = " << *Dst << "\n" ); |
| 1295 | ++ZIVapplications; |
| 1296 | if (SE->isKnownPredicate(Pred: CmpInst::ICMP_EQ, LHS: Src, RHS: Dst)) { |
| 1297 | LLVM_DEBUG(dbgs() << " provably dependent\n" ); |
| 1298 | return false; // provably dependent |
| 1299 | } |
| 1300 | if (SE->isKnownPredicate(Pred: CmpInst::ICMP_NE, LHS: Src, RHS: Dst)) { |
| 1301 | LLVM_DEBUG(dbgs() << " provably independent\n" ); |
| 1302 | ++ZIVindependence; |
| 1303 | return true; // provably independent |
| 1304 | } |
| 1305 | LLVM_DEBUG(dbgs() << " possibly dependent\n" ); |
| 1306 | Result.Consistent = false; |
| 1307 | return false; // possibly dependent |
| 1308 | } |
| 1309 | |
| 1310 | // strongSIVtest - |
| 1311 | // From the paper, Practical Dependence Testing, Section 4.2.1 |
| 1312 | // |
| 1313 | // When we have a pair of subscripts of the form [c1 + a*i] and [c2 + a*i], |
| 1314 | // where i is an induction variable, c1 and c2 are loop invariant, |
| 1315 | // and a is a constant, we can solve it exactly using the Strong SIV test. |
| 1316 | // |
| 1317 | // Can prove independence. Failing that, can compute distance (and direction). |
| 1318 | // In the presence of symbolic terms, we can sometimes make progress. |
| 1319 | // |
| 1320 | // If there's a dependence, |
| 1321 | // |
| 1322 | // c1 + a*i = c2 + a*i' |
| 1323 | // |
| 1324 | // The dependence distance is |
| 1325 | // |
| 1326 | // d = i' - i = (c1 - c2)/a |
| 1327 | // |
| 1328 | // A dependence only exists if d is an integer and abs(d) <= U, where U is the |
| 1329 | // loop's upper bound. If a dependence exists, the dependence direction is |
| 1330 | // defined as |
| 1331 | // |
| 1332 | // { < if d > 0 |
| 1333 | // direction = { = if d = 0 |
| 1334 | // { > if d < 0 |
| 1335 | // |
| 1336 | // Return true if dependence disproved. |
| 1337 | bool DependenceInfo::strongSIVtest(const SCEV *Coeff, const SCEV *SrcConst, |
| 1338 | const SCEV *DstConst, const Loop *CurSrcLoop, |
| 1339 | const Loop *CurDstLoop, unsigned Level, |
| 1340 | FullDependence &Result, |
| 1341 | bool UnderRuntimeAssumptions) { |
| 1342 | if (!isDependenceTestEnabled(Test: DependenceTestType::StrongSIV)) |
| 1343 | return false; |
| 1344 | |
| 1345 | LLVM_DEBUG(dbgs() << "\tStrong SIV test\n" ); |
| 1346 | LLVM_DEBUG(dbgs() << "\t Coeff = " << *Coeff); |
| 1347 | LLVM_DEBUG(dbgs() << ", " << *Coeff->getType() << "\n" ); |
| 1348 | LLVM_DEBUG(dbgs() << "\t SrcConst = " << *SrcConst); |
| 1349 | LLVM_DEBUG(dbgs() << ", " << *SrcConst->getType() << "\n" ); |
| 1350 | LLVM_DEBUG(dbgs() << "\t DstConst = " << *DstConst); |
| 1351 | LLVM_DEBUG(dbgs() << ", " << *DstConst->getType() << "\n" ); |
| 1352 | ++StrongSIVapplications; |
| 1353 | assert(0 < Level && Level <= CommonLevels && "level out of range" ); |
| 1354 | Level--; |
| 1355 | |
| 1356 | const SCEV *Delta = minusSCEVNoSignedOverflow(A: SrcConst, B: DstConst, SE&: *SE); |
| 1357 | if (!Delta) { |
| 1358 | Result.Consistent = false; |
| 1359 | return false; |
| 1360 | } |
| 1361 | LLVM_DEBUG(dbgs() << "\t Delta = " << *Delta); |
| 1362 | LLVM_DEBUG(dbgs() << ", " << *Delta->getType() << "\n" ); |
| 1363 | |
| 1364 | // check that |Delta| < iteration count |
| 1365 | bool IsDeltaLarge = [&] { |
| 1366 | const SCEV *UpperBound = collectUpperBound(L: CurSrcLoop, T: Delta->getType()); |
| 1367 | if (!UpperBound) |
| 1368 | return false; |
| 1369 | |
| 1370 | LLVM_DEBUG(dbgs() << "\t UpperBound = " << *UpperBound); |
| 1371 | LLVM_DEBUG(dbgs() << ", " << *UpperBound->getType() << "\n" ); |
| 1372 | const SCEV *AbsDelta = absSCEVNoSignedOverflow(A: Delta, SE&: *SE); |
| 1373 | const SCEV *AbsCoeff = absSCEVNoSignedOverflow(A: Coeff, SE&: *SE); |
| 1374 | if (!AbsDelta || !AbsCoeff) |
| 1375 | return false; |
| 1376 | const SCEV *Product = mulSCEVNoSignedOverflow(A: UpperBound, B: AbsCoeff, SE&: *SE); |
| 1377 | if (!Product) |
| 1378 | return false; |
| 1379 | return SE->isKnownPredicate(Pred: CmpInst::ICMP_SGT, LHS: AbsDelta, RHS: Product); |
| 1380 | }(); |
| 1381 | if (IsDeltaLarge) { |
| 1382 | // Distance greater than trip count - no dependence |
| 1383 | ++StrongSIVindependence; |
| 1384 | ++StrongSIVsuccesses; |
| 1385 | return true; |
| 1386 | } |
| 1387 | |
| 1388 | // Can we compute distance? |
| 1389 | if (isa<SCEVConstant>(Val: Delta) && isa<SCEVConstant>(Val: Coeff)) { |
| 1390 | APInt ConstDelta = cast<SCEVConstant>(Val: Delta)->getAPInt(); |
| 1391 | APInt ConstCoeff = cast<SCEVConstant>(Val: Coeff)->getAPInt(); |
| 1392 | APInt Distance = ConstDelta; // these need to be initialized |
| 1393 | APInt Remainder = ConstDelta; |
| 1394 | APInt::sdivrem(LHS: ConstDelta, RHS: ConstCoeff, Quotient&: Distance, Remainder); |
| 1395 | LLVM_DEBUG(dbgs() << "\t Distance = " << Distance << "\n" ); |
| 1396 | LLVM_DEBUG(dbgs() << "\t Remainder = " << Remainder << "\n" ); |
| 1397 | // Make sure Coeff divides Delta exactly |
| 1398 | if (Remainder != 0) { |
| 1399 | // Coeff doesn't divide Distance, no dependence |
| 1400 | ++StrongSIVindependence; |
| 1401 | ++StrongSIVsuccesses; |
| 1402 | return true; |
| 1403 | } |
| 1404 | Result.DV[Level].Distance = SE->getConstant(Val: Distance); |
| 1405 | if (Distance.sgt(RHS: 0)) |
| 1406 | Result.DV[Level].Direction &= Dependence::DVEntry::LT; |
| 1407 | else if (Distance.slt(RHS: 0)) |
| 1408 | Result.DV[Level].Direction &= Dependence::DVEntry::GT; |
| 1409 | else |
| 1410 | Result.DV[Level].Direction &= Dependence::DVEntry::EQ; |
| 1411 | ++StrongSIVsuccesses; |
| 1412 | } else if (Delta->isZero()) { |
| 1413 | // Check if coefficient could be zero. If so, 0/0 is undefined and we |
| 1414 | // cannot conclude that only same-iteration dependencies exist. |
| 1415 | // When coeff=0, all iterations access the same location. |
| 1416 | if (SE->isKnownNonZero(S: Coeff)) { |
| 1417 | LLVM_DEBUG( |
| 1418 | dbgs() << "\t Coefficient proven non-zero by SCEV analysis\n" ); |
| 1419 | } else { |
| 1420 | // Cannot prove at compile time, would need runtime assumption. |
| 1421 | if (UnderRuntimeAssumptions) { |
| 1422 | const SCEVPredicate *Pred = SE->getComparePredicate( |
| 1423 | Pred: ICmpInst::ICMP_NE, LHS: Coeff, RHS: SE->getZero(Ty: Coeff->getType())); |
| 1424 | Result.Assumptions = Result.Assumptions.getUnionWith(N: Pred, SE&: *SE); |
| 1425 | LLVM_DEBUG(dbgs() << "\t Added runtime assumption: " << *Coeff |
| 1426 | << " != 0\n" ); |
| 1427 | } else { |
| 1428 | // Cannot add runtime assumptions, this test cannot handle this case. |
| 1429 | // Let more complex tests try. |
| 1430 | LLVM_DEBUG(dbgs() << "\t Would need runtime assumption " << *Coeff |
| 1431 | << " != 0, but not allowed. Failing this test.\n" ); |
| 1432 | return false; |
| 1433 | } |
| 1434 | } |
| 1435 | // Since 0/X == 0 (where X is known non-zero or assumed non-zero). |
| 1436 | Result.DV[Level].Distance = Delta; |
| 1437 | Result.DV[Level].Direction &= Dependence::DVEntry::EQ; |
| 1438 | ++StrongSIVsuccesses; |
| 1439 | } else { |
| 1440 | if (Coeff->isOne()) { |
| 1441 | LLVM_DEBUG(dbgs() << "\t Distance = " << *Delta << "\n" ); |
| 1442 | Result.DV[Level].Distance = Delta; // since X/1 == X |
| 1443 | } else { |
| 1444 | Result.Consistent = false; |
| 1445 | } |
| 1446 | |
| 1447 | // maybe we can get a useful direction |
| 1448 | bool DeltaMaybeZero = !SE->isKnownNonZero(S: Delta); |
| 1449 | bool DeltaMaybePositive = !SE->isKnownNonPositive(S: Delta); |
| 1450 | bool DeltaMaybeNegative = !SE->isKnownNonNegative(S: Delta); |
| 1451 | bool CoeffMaybePositive = !SE->isKnownNonPositive(S: Coeff); |
| 1452 | bool CoeffMaybeNegative = !SE->isKnownNonNegative(S: Coeff); |
| 1453 | // The double negatives above are confusing. |
| 1454 | // It helps to read !SE->isKnownNonZero(Delta) |
| 1455 | // as "Delta might be Zero" |
| 1456 | unsigned NewDirection = Dependence::DVEntry::NONE; |
| 1457 | if ((DeltaMaybePositive && CoeffMaybePositive) || |
| 1458 | (DeltaMaybeNegative && CoeffMaybeNegative)) |
| 1459 | NewDirection = Dependence::DVEntry::LT; |
| 1460 | if (DeltaMaybeZero) |
| 1461 | NewDirection |= Dependence::DVEntry::EQ; |
| 1462 | if ((DeltaMaybeNegative && CoeffMaybePositive) || |
| 1463 | (DeltaMaybePositive && CoeffMaybeNegative)) |
| 1464 | NewDirection |= Dependence::DVEntry::GT; |
| 1465 | if (NewDirection < Result.DV[Level].Direction) |
| 1466 | ++StrongSIVsuccesses; |
| 1467 | Result.DV[Level].Direction &= NewDirection; |
| 1468 | } |
| 1469 | return false; |
| 1470 | } |
| 1471 | |
| 1472 | // weakCrossingSIVtest - |
| 1473 | // From the paper, Practical Dependence Testing, Section 4.2.2 |
| 1474 | // |
| 1475 | // When we have a pair of subscripts of the form [c1 + a*i] and [c2 - a*i], |
| 1476 | // where i is an induction variable, c1 and c2 are loop invariant, |
| 1477 | // and a is a constant, we can solve it exactly using the |
| 1478 | // Weak-Crossing SIV test. |
| 1479 | // |
| 1480 | // Given c1 + a*i = c2 - a*i', we can look for the intersection of |
| 1481 | // the two lines, where i = i', yielding |
| 1482 | // |
| 1483 | // c1 + a*i = c2 - a*i |
| 1484 | // 2a*i = c2 - c1 |
| 1485 | // i = (c2 - c1)/2a |
| 1486 | // |
| 1487 | // If i < 0, there is no dependence. |
| 1488 | // If i > upperbound, there is no dependence. |
| 1489 | // If i = 0 (i.e., if c1 = c2), there's a dependence with distance = 0. |
| 1490 | // If i = upperbound, there's a dependence with distance = 0. |
| 1491 | // If i is integral, there's a dependence (all directions). |
| 1492 | // If the non-integer part = 1/2, there's a dependence (<> directions). |
| 1493 | // Otherwise, there's no dependence. |
| 1494 | // |
| 1495 | // Can prove independence. Failing that, |
| 1496 | // can sometimes refine the directions. |
| 1497 | // Can determine iteration for splitting. |
| 1498 | // |
| 1499 | // Return true if dependence disproved. |
| 1500 | bool DependenceInfo::weakCrossingSIVtest(const SCEV *Coeff, |
| 1501 | const SCEV *SrcConst, |
| 1502 | const SCEV *DstConst, |
| 1503 | const Loop *CurSrcLoop, |
| 1504 | const Loop *CurDstLoop, unsigned Level, |
| 1505 | FullDependence &Result) const { |
| 1506 | if (!isDependenceTestEnabled(Test: DependenceTestType::WeakCrossingSIV)) |
| 1507 | return false; |
| 1508 | |
| 1509 | LLVM_DEBUG(dbgs() << "\tWeak-Crossing SIV test\n" ); |
| 1510 | LLVM_DEBUG(dbgs() << "\t Coeff = " << *Coeff << "\n" ); |
| 1511 | LLVM_DEBUG(dbgs() << "\t SrcConst = " << *SrcConst << "\n" ); |
| 1512 | LLVM_DEBUG(dbgs() << "\t DstConst = " << *DstConst << "\n" ); |
| 1513 | ++WeakCrossingSIVapplications; |
| 1514 | assert(0 < Level && Level <= CommonLevels && "Level out of range" ); |
| 1515 | Level--; |
| 1516 | Result.Consistent = false; |
| 1517 | const SCEV *Delta = SE->getMinusSCEV(LHS: DstConst, RHS: SrcConst); |
| 1518 | LLVM_DEBUG(dbgs() << "\t Delta = " << *Delta << "\n" ); |
| 1519 | if (Delta->isZero()) { |
| 1520 | Result.DV[Level].Direction &= ~Dependence::DVEntry::LT; |
| 1521 | Result.DV[Level].Direction &= ~Dependence::DVEntry::GT; |
| 1522 | ++WeakCrossingSIVsuccesses; |
| 1523 | if (!Result.DV[Level].Direction) { |
| 1524 | ++WeakCrossingSIVindependence; |
| 1525 | return true; |
| 1526 | } |
| 1527 | Result.DV[Level].Distance = Delta; // = 0 |
| 1528 | return false; |
| 1529 | } |
| 1530 | const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(Val: Coeff); |
| 1531 | if (!ConstCoeff) |
| 1532 | return false; |
| 1533 | |
| 1534 | if (SE->isKnownNegative(S: ConstCoeff)) { |
| 1535 | ConstCoeff = dyn_cast<SCEVConstant>(Val: SE->getNegativeSCEV(V: ConstCoeff)); |
| 1536 | assert(ConstCoeff && |
| 1537 | "dynamic cast of negative of ConstCoeff should yield constant" ); |
| 1538 | Delta = SE->getNegativeSCEV(V: Delta); |
| 1539 | } |
| 1540 | assert(SE->isKnownPositive(ConstCoeff) && "ConstCoeff should be positive" ); |
| 1541 | |
| 1542 | const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Val: Delta); |
| 1543 | if (!ConstDelta) |
| 1544 | return false; |
| 1545 | |
| 1546 | // We're certain that ConstCoeff > 0; therefore, |
| 1547 | // if Delta < 0, then no dependence. |
| 1548 | LLVM_DEBUG(dbgs() << "\t Delta = " << *Delta << "\n" ); |
| 1549 | LLVM_DEBUG(dbgs() << "\t ConstCoeff = " << *ConstCoeff << "\n" ); |
| 1550 | if (SE->isKnownNegative(S: Delta)) { |
| 1551 | // No dependence, Delta < 0 |
| 1552 | ++WeakCrossingSIVindependence; |
| 1553 | ++WeakCrossingSIVsuccesses; |
| 1554 | return true; |
| 1555 | } |
| 1556 | |
| 1557 | // We're certain that Delta > 0 and ConstCoeff > 0. |
| 1558 | // Check Delta/(2*ConstCoeff) against upper loop bound |
| 1559 | if (const SCEV *UpperBound = |
| 1560 | collectUpperBound(L: CurSrcLoop, T: Delta->getType())) { |
| 1561 | LLVM_DEBUG(dbgs() << "\t UpperBound = " << *UpperBound << "\n" ); |
| 1562 | const SCEV *ConstantTwo = SE->getConstant(Ty: UpperBound->getType(), V: 2); |
| 1563 | const SCEV *ML = |
| 1564 | SE->getMulExpr(LHS: SE->getMulExpr(LHS: ConstCoeff, RHS: UpperBound), RHS: ConstantTwo); |
| 1565 | LLVM_DEBUG(dbgs() << "\t ML = " << *ML << "\n" ); |
| 1566 | if (SE->isKnownPredicate(Pred: CmpInst::ICMP_SGT, LHS: Delta, RHS: ML)) { |
| 1567 | // Delta too big, no dependence |
| 1568 | ++WeakCrossingSIVindependence; |
| 1569 | ++WeakCrossingSIVsuccesses; |
| 1570 | return true; |
| 1571 | } |
| 1572 | if (SE->isKnownPredicate(Pred: CmpInst::ICMP_EQ, LHS: Delta, RHS: ML)) { |
| 1573 | // i = i' = UB |
| 1574 | Result.DV[Level].Direction &= ~Dependence::DVEntry::LT; |
| 1575 | Result.DV[Level].Direction &= ~Dependence::DVEntry::GT; |
| 1576 | ++WeakCrossingSIVsuccesses; |
| 1577 | if (!Result.DV[Level].Direction) { |
| 1578 | ++WeakCrossingSIVindependence; |
| 1579 | return true; |
| 1580 | } |
| 1581 | Result.DV[Level].Distance = SE->getZero(Ty: Delta->getType()); |
| 1582 | return false; |
| 1583 | } |
| 1584 | } |
| 1585 | |
| 1586 | // check that Coeff divides Delta |
| 1587 | APInt APDelta = ConstDelta->getAPInt(); |
| 1588 | APInt APCoeff = ConstCoeff->getAPInt(); |
| 1589 | APInt Distance = APDelta; // these need to be initialzed |
| 1590 | APInt Remainder = APDelta; |
| 1591 | APInt::sdivrem(LHS: APDelta, RHS: APCoeff, Quotient&: Distance, Remainder); |
| 1592 | LLVM_DEBUG(dbgs() << "\t Remainder = " << Remainder << "\n" ); |
| 1593 | if (Remainder != 0) { |
| 1594 | // Coeff doesn't divide Delta, no dependence |
| 1595 | ++WeakCrossingSIVindependence; |
| 1596 | ++WeakCrossingSIVsuccesses; |
| 1597 | return true; |
| 1598 | } |
| 1599 | LLVM_DEBUG(dbgs() << "\t Distance = " << Distance << "\n" ); |
| 1600 | |
| 1601 | // if 2*Coeff doesn't divide Delta, then the equal direction isn't possible |
| 1602 | APInt Two = APInt(Distance.getBitWidth(), 2, true); |
| 1603 | Remainder = Distance.srem(RHS: Two); |
| 1604 | LLVM_DEBUG(dbgs() << "\t Remainder = " << Remainder << "\n" ); |
| 1605 | if (Remainder != 0) { |
| 1606 | // Equal direction isn't possible |
| 1607 | Result.DV[Level].Direction &= ~Dependence::DVEntry::EQ; |
| 1608 | ++WeakCrossingSIVsuccesses; |
| 1609 | } |
| 1610 | return false; |
| 1611 | } |
| 1612 | |
| 1613 | // Kirch's algorithm, from |
| 1614 | // |
| 1615 | // Optimizing Supercompilers for Supercomputers |
| 1616 | // Michael Wolfe |
| 1617 | // MIT Press, 1989 |
| 1618 | // |
| 1619 | // Program 2.1, page 29. |
| 1620 | // Computes the GCD of AM and BM. |
| 1621 | // Also finds a solution to the equation ax - by = gcd(a, b). |
| 1622 | // Returns true if dependence disproved; i.e., gcd does not divide Delta. |
| 1623 | // |
| 1624 | // We don't use OverflowSafeSignedAPInt here because it's known that this |
| 1625 | // algorithm doesn't overflow. |
| 1626 | static bool findGCD(unsigned Bits, const APInt &AM, const APInt &BM, |
| 1627 | const APInt &Delta, APInt &G, APInt &X, APInt &Y) { |
| 1628 | APInt A0(Bits, 1, true), A1(Bits, 0, true); |
| 1629 | APInt B0(Bits, 0, true), B1(Bits, 1, true); |
| 1630 | APInt G0 = AM.abs(); |
| 1631 | APInt G1 = BM.abs(); |
| 1632 | APInt Q = G0; // these need to be initialized |
| 1633 | APInt R = G0; |
| 1634 | APInt::sdivrem(LHS: G0, RHS: G1, Quotient&: Q, Remainder&: R); |
| 1635 | while (R != 0) { |
| 1636 | // clang-format off |
| 1637 | APInt A2 = A0 - Q*A1; A0 = A1; A1 = A2; |
| 1638 | APInt B2 = B0 - Q*B1; B0 = B1; B1 = B2; |
| 1639 | G0 = G1; G1 = R; |
| 1640 | // clang-format on |
| 1641 | APInt::sdivrem(LHS: G0, RHS: G1, Quotient&: Q, Remainder&: R); |
| 1642 | } |
| 1643 | G = G1; |
| 1644 | LLVM_DEBUG(dbgs() << "\t GCD = " << G << "\n" ); |
| 1645 | X = AM.slt(RHS: 0) ? -A1 : A1; |
| 1646 | Y = BM.slt(RHS: 0) ? B1 : -B1; |
| 1647 | |
| 1648 | // make sure gcd divides Delta |
| 1649 | R = Delta.srem(RHS: G); |
| 1650 | if (R != 0) |
| 1651 | return true; // gcd doesn't divide Delta, no dependence |
| 1652 | Q = Delta.sdiv(RHS: G); |
| 1653 | return false; |
| 1654 | } |
| 1655 | |
| 1656 | static OverflowSafeSignedAPInt |
| 1657 | floorOfQuotient(const OverflowSafeSignedAPInt &OA, |
| 1658 | const OverflowSafeSignedAPInt &OB) { |
| 1659 | if (!OA || !OB) |
| 1660 | return OverflowSafeSignedAPInt(); |
| 1661 | |
| 1662 | APInt A = *OA; |
| 1663 | APInt B = *OB; |
| 1664 | APInt Q = A; // these need to be initialized |
| 1665 | APInt R = A; |
| 1666 | APInt::sdivrem(LHS: A, RHS: B, Quotient&: Q, Remainder&: R); |
| 1667 | if (R == 0) |
| 1668 | return Q; |
| 1669 | if ((A.sgt(RHS: 0) && B.sgt(RHS: 0)) || (A.slt(RHS: 0) && B.slt(RHS: 0))) |
| 1670 | return Q; |
| 1671 | return OverflowSafeSignedAPInt(Q) - 1; |
| 1672 | } |
| 1673 | |
| 1674 | static OverflowSafeSignedAPInt |
| 1675 | ceilingOfQuotient(const OverflowSafeSignedAPInt &OA, |
| 1676 | const OverflowSafeSignedAPInt &OB) { |
| 1677 | if (!OA || !OB) |
| 1678 | return OverflowSafeSignedAPInt(); |
| 1679 | |
| 1680 | APInt A = *OA; |
| 1681 | APInt B = *OB; |
| 1682 | APInt Q = A; // these need to be initialized |
| 1683 | APInt R = A; |
| 1684 | APInt::sdivrem(LHS: A, RHS: B, Quotient&: Q, Remainder&: R); |
| 1685 | if (R == 0) |
| 1686 | return Q; |
| 1687 | if ((A.sgt(RHS: 0) && B.sgt(RHS: 0)) || (A.slt(RHS: 0) && B.slt(RHS: 0))) |
| 1688 | return OverflowSafeSignedAPInt(Q) + 1; |
| 1689 | return Q; |
| 1690 | } |
| 1691 | |
| 1692 | /// Given an affine expression of the form A*k + B, where k is an arbitrary |
| 1693 | /// integer, infer the possible range of k based on the known range of the |
| 1694 | /// affine expression. If we know A*k + B is non-negative, i.e., |
| 1695 | /// |
| 1696 | /// A*k + B >= 0 |
| 1697 | /// |
| 1698 | /// we can derive the following inequalities for k when A is positive: |
| 1699 | /// |
| 1700 | /// k >= -B / A |
| 1701 | /// |
| 1702 | /// Since k is an integer, it means k is greater than or equal to the |
| 1703 | /// ceil(-B / A). |
| 1704 | /// |
| 1705 | /// If the upper bound of the affine expression \p UB is passed, the following |
| 1706 | /// inequality can be derived as well: |
| 1707 | /// |
| 1708 | /// A*k + B <= UB |
| 1709 | /// |
| 1710 | /// which leads to: |
| 1711 | /// |
| 1712 | /// k <= (UB - B) / A |
| 1713 | /// |
| 1714 | /// Again, as k is an integer, it means k is less than or equal to the |
| 1715 | /// floor((UB - B) / A). |
| 1716 | /// |
| 1717 | /// The similar logic applies when A is negative, but the inequalities sign flip |
| 1718 | /// while working with them. |
| 1719 | /// |
| 1720 | /// Preconditions: \p A is non-zero, and we know A*k + B is non-negative. |
| 1721 | static std::pair<OverflowSafeSignedAPInt, OverflowSafeSignedAPInt> |
| 1722 | inferDomainOfAffine(OverflowSafeSignedAPInt A, OverflowSafeSignedAPInt B, |
| 1723 | OverflowSafeSignedAPInt UB) { |
| 1724 | assert(A && B && "A and B must be available" ); |
| 1725 | assert(*A != 0 && "A must be non-zero" ); |
| 1726 | OverflowSafeSignedAPInt TL, TU; |
| 1727 | if (A->sgt(RHS: 0)) { |
| 1728 | TL = ceilingOfQuotient(OA: -B, OB: A); |
| 1729 | LLVM_DEBUG(if (TL) dbgs() << "\t Possible TL = " << *TL << "\n" ); |
| 1730 | |
| 1731 | // New bound check - modification to Banerjee's e3 check |
| 1732 | TU = floorOfQuotient(OA: UB - B, OB: A); |
| 1733 | LLVM_DEBUG(if (TU) dbgs() << "\t Possible TU = " << *TU << "\n" ); |
| 1734 | } else { |
| 1735 | TU = floorOfQuotient(OA: -B, OB: A); |
| 1736 | LLVM_DEBUG(if (TU) dbgs() << "\t Possible TU = " << *TU << "\n" ); |
| 1737 | |
| 1738 | // New bound check - modification to Banerjee's e3 check |
| 1739 | TL = ceilingOfQuotient(OA: UB - B, OB: A); |
| 1740 | LLVM_DEBUG(if (TL) dbgs() << "\t Possible TL = " << *TL << "\n" ); |
| 1741 | } |
| 1742 | return std::make_pair(x&: TL, y&: TU); |
| 1743 | } |
| 1744 | |
| 1745 | // exactSIVtest - |
| 1746 | // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*i], |
| 1747 | // where i is an induction variable, c1 and c2 are loop invariant, and a1 |
| 1748 | // and a2 are constant, we can solve it exactly using an algorithm developed |
| 1749 | // by Banerjee and Wolfe. See Algorithm 6.2.1 (case 2.5) in: |
| 1750 | // |
| 1751 | // Dependence Analysis for Supercomputing |
| 1752 | // Utpal Banerjee |
| 1753 | // Kluwer Academic Publishers, 1988 |
| 1754 | // |
| 1755 | // It's slower than the specialized tests (strong SIV, weak-zero SIV, etc), |
| 1756 | // so use them if possible. They're also a bit better with symbolics and, |
| 1757 | // in the case of the strong SIV test, can compute Distances. |
| 1758 | // |
| 1759 | // Return true if dependence disproved. |
| 1760 | // |
| 1761 | // This is a modified version of the original Banerjee algorithm. The original |
| 1762 | // only tested whether Dst depends on Src. This algorithm extends that and |
| 1763 | // returns all the dependencies that exist between Dst and Src. |
| 1764 | bool DependenceInfo::exactSIVtest(const SCEV *SrcCoeff, const SCEV *DstCoeff, |
| 1765 | const SCEV *SrcConst, const SCEV *DstConst, |
| 1766 | const Loop *CurSrcLoop, |
| 1767 | const Loop *CurDstLoop, unsigned Level, |
| 1768 | FullDependence &Result) const { |
| 1769 | if (!isDependenceTestEnabled(Test: DependenceTestType::ExactSIV)) |
| 1770 | return false; |
| 1771 | |
| 1772 | LLVM_DEBUG(dbgs() << "\tExact SIV test\n" ); |
| 1773 | LLVM_DEBUG(dbgs() << "\t SrcCoeff = " << *SrcCoeff << " = AM\n" ); |
| 1774 | LLVM_DEBUG(dbgs() << "\t DstCoeff = " << *DstCoeff << " = BM\n" ); |
| 1775 | LLVM_DEBUG(dbgs() << "\t SrcConst = " << *SrcConst << "\n" ); |
| 1776 | LLVM_DEBUG(dbgs() << "\t DstConst = " << *DstConst << "\n" ); |
| 1777 | ++ExactSIVapplications; |
| 1778 | assert(0 < Level && Level <= CommonLevels && "Level out of range" ); |
| 1779 | Level--; |
| 1780 | Result.Consistent = false; |
| 1781 | const SCEV *Delta = minusSCEVNoSignedOverflow(A: DstConst, B: SrcConst, SE&: *SE); |
| 1782 | if (!Delta) |
| 1783 | return false; |
| 1784 | LLVM_DEBUG(dbgs() << "\t Delta = " << *Delta << "\n" ); |
| 1785 | const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Val: Delta); |
| 1786 | const SCEVConstant *ConstSrcCoeff = dyn_cast<SCEVConstant>(Val: SrcCoeff); |
| 1787 | const SCEVConstant *ConstDstCoeff = dyn_cast<SCEVConstant>(Val: DstCoeff); |
| 1788 | if (!ConstDelta || !ConstSrcCoeff || !ConstDstCoeff) |
| 1789 | return false; |
| 1790 | |
| 1791 | // find gcd |
| 1792 | APInt G, X, Y; |
| 1793 | APInt AM = ConstSrcCoeff->getAPInt(); |
| 1794 | APInt BM = ConstDstCoeff->getAPInt(); |
| 1795 | APInt CM = ConstDelta->getAPInt(); |
| 1796 | unsigned Bits = AM.getBitWidth(); |
| 1797 | if (findGCD(Bits, AM, BM, Delta: CM, G, X, Y)) { |
| 1798 | // gcd doesn't divide Delta, no dependence |
| 1799 | ++ExactSIVindependence; |
| 1800 | ++ExactSIVsuccesses; |
| 1801 | return true; |
| 1802 | } |
| 1803 | |
| 1804 | LLVM_DEBUG(dbgs() << "\t X = " << X << ", Y = " << Y << "\n" ); |
| 1805 | |
| 1806 | // since SCEV construction normalizes, LM = 0 |
| 1807 | std::optional<APInt> UM; |
| 1808 | // UM is perhaps unavailable, let's check |
| 1809 | if (const SCEVConstant *CUB = |
| 1810 | collectConstantUpperBound(L: CurSrcLoop, T: Delta->getType())) { |
| 1811 | UM = CUB->getAPInt(); |
| 1812 | LLVM_DEBUG(dbgs() << "\t UM = " << *UM << "\n" ); |
| 1813 | } |
| 1814 | |
| 1815 | APInt TU(APInt::getSignedMaxValue(numBits: Bits)); |
| 1816 | APInt TL(APInt::getSignedMinValue(numBits: Bits)); |
| 1817 | APInt TC = CM.sdiv(RHS: G); |
| 1818 | APInt TX = X * TC; |
| 1819 | APInt TY = Y * TC; |
| 1820 | LLVM_DEBUG(dbgs() << "\t TC = " << TC << "\n" ); |
| 1821 | LLVM_DEBUG(dbgs() << "\t TX = " << TX << "\n" ); |
| 1822 | LLVM_DEBUG(dbgs() << "\t TY = " << TY << "\n" ); |
| 1823 | |
| 1824 | APInt TB = BM.sdiv(RHS: G); |
| 1825 | APInt TA = AM.sdiv(RHS: G); |
| 1826 | |
| 1827 | // At this point, we have the following equations: |
| 1828 | // |
| 1829 | // TA*i0 - TB*i1 = TC |
| 1830 | // |
| 1831 | // Also, we know that the all pairs of (i0, i1) can be expressed as: |
| 1832 | // |
| 1833 | // (TX + k*TB, TY + k*TA) |
| 1834 | // |
| 1835 | // where k is an arbitrary integer. |
| 1836 | auto [TL0, TU0] = inferDomainOfAffine(A: TB, B: TX, UB: UM); |
| 1837 | auto [TL1, TU1] = inferDomainOfAffine(A: TA, B: TY, UB: UM); |
| 1838 | |
| 1839 | auto CreateVec = [](const OverflowSafeSignedAPInt &V0, |
| 1840 | const OverflowSafeSignedAPInt &V1) { |
| 1841 | SmallVector<APInt, 2> Vec; |
| 1842 | if (V0) |
| 1843 | Vec.push_back(Elt: *V0); |
| 1844 | if (V1) |
| 1845 | Vec.push_back(Elt: *V1); |
| 1846 | return Vec; |
| 1847 | }; |
| 1848 | |
| 1849 | SmallVector<APInt, 2> TLVec = CreateVec(TL0, TL1); |
| 1850 | SmallVector<APInt, 2> TUVec = CreateVec(TU0, TU1); |
| 1851 | |
| 1852 | LLVM_DEBUG(dbgs() << "\t TA = " << TA << "\n" ); |
| 1853 | LLVM_DEBUG(dbgs() << "\t TB = " << TB << "\n" ); |
| 1854 | |
| 1855 | if (TLVec.empty() || TUVec.empty()) |
| 1856 | return false; |
| 1857 | TL = APIntOps::smax(A: TLVec.front(), B: TLVec.back()); |
| 1858 | TU = APIntOps::smin(A: TUVec.front(), B: TUVec.back()); |
| 1859 | LLVM_DEBUG(dbgs() << "\t TL = " << TL << "\n" ); |
| 1860 | LLVM_DEBUG(dbgs() << "\t TU = " << TU << "\n" ); |
| 1861 | |
| 1862 | if (TL.sgt(RHS: TU)) { |
| 1863 | ++ExactSIVindependence; |
| 1864 | ++ExactSIVsuccesses; |
| 1865 | return true; |
| 1866 | } |
| 1867 | |
| 1868 | // explore directions |
| 1869 | unsigned NewDirection = Dependence::DVEntry::NONE; |
| 1870 | OverflowSafeSignedAPInt LowerDistance, UpperDistance; |
| 1871 | OverflowSafeSignedAPInt OTY(TY), OTX(TX), OTA(TA), OTB(TB), OTL(TL), OTU(TU); |
| 1872 | // NOTE: It's unclear whether these calculations can overflow. At the moment, |
| 1873 | // we conservatively assume they can. |
| 1874 | if (TA.sgt(RHS: TB)) { |
| 1875 | LowerDistance = (OTY - OTX) + (OTA - OTB) * OTL; |
| 1876 | UpperDistance = (OTY - OTX) + (OTA - OTB) * OTU; |
| 1877 | } else { |
| 1878 | LowerDistance = (OTY - OTX) + (OTA - OTB) * OTU; |
| 1879 | UpperDistance = (OTY - OTX) + (OTA - OTB) * OTL; |
| 1880 | } |
| 1881 | |
| 1882 | if (!LowerDistance || !UpperDistance) |
| 1883 | return false; |
| 1884 | |
| 1885 | LLVM_DEBUG(dbgs() << "\t LowerDistance = " << *LowerDistance << "\n" ); |
| 1886 | LLVM_DEBUG(dbgs() << "\t UpperDistance = " << *UpperDistance << "\n" ); |
| 1887 | |
| 1888 | if (LowerDistance->sle(RHS: 0) && UpperDistance->sge(RHS: 0)) { |
| 1889 | NewDirection |= Dependence::DVEntry::EQ; |
| 1890 | ++ExactSIVsuccesses; |
| 1891 | } |
| 1892 | if (LowerDistance->slt(RHS: 0)) { |
| 1893 | NewDirection |= Dependence::DVEntry::GT; |
| 1894 | ++ExactSIVsuccesses; |
| 1895 | } |
| 1896 | if (UpperDistance->sgt(RHS: 0)) { |
| 1897 | NewDirection |= Dependence::DVEntry::LT; |
| 1898 | ++ExactSIVsuccesses; |
| 1899 | } |
| 1900 | |
| 1901 | // finished |
| 1902 | Result.DV[Level].Direction &= NewDirection; |
| 1903 | if (Result.DV[Level].Direction == Dependence::DVEntry::NONE) |
| 1904 | ++ExactSIVindependence; |
| 1905 | LLVM_DEBUG(dbgs() << "\t Result = " ); |
| 1906 | LLVM_DEBUG(Result.dump(dbgs())); |
| 1907 | return Result.DV[Level].Direction == Dependence::DVEntry::NONE; |
| 1908 | } |
| 1909 | |
| 1910 | // Return true if the divisor evenly divides the dividend. |
| 1911 | static bool isRemainderZero(const SCEVConstant *Dividend, |
| 1912 | const SCEVConstant *Divisor) { |
| 1913 | const APInt &ConstDividend = Dividend->getAPInt(); |
| 1914 | const APInt &ConstDivisor = Divisor->getAPInt(); |
| 1915 | return ConstDividend.srem(RHS: ConstDivisor) == 0; |
| 1916 | } |
| 1917 | |
| 1918 | // weakZeroSrcSIVtest - |
| 1919 | // From the paper, Practical Dependence Testing, Section 4.2.2 |
| 1920 | // |
| 1921 | // When we have a pair of subscripts of the form [c1] and [c2 + a*i], |
| 1922 | // where i is an induction variable, c1 and c2 are loop invariant, |
| 1923 | // and a is a constant, we can solve it exactly using the |
| 1924 | // Weak-Zero SIV test. |
| 1925 | // |
| 1926 | // Given |
| 1927 | // |
| 1928 | // c1 = c2 + a*i |
| 1929 | // |
| 1930 | // we get |
| 1931 | // |
| 1932 | // (c1 - c2)/a = i |
| 1933 | // |
| 1934 | // If i is not an integer, there's no dependence. |
| 1935 | // If i < 0 or > UB, there's no dependence. |
| 1936 | // If i = 0, the direction is >= and peeling the |
| 1937 | // 1st iteration will break the dependence. |
| 1938 | // If i = UB, the direction is <= and peeling the |
| 1939 | // last iteration will break the dependence. |
| 1940 | // Otherwise, the direction is *. |
| 1941 | // |
| 1942 | // Can prove independence. Failing that, we can sometimes refine |
| 1943 | // the directions. Can sometimes show that first or last |
| 1944 | // iteration carries all the dependences (so worth peeling). |
| 1945 | // |
| 1946 | // (see also weakZeroDstSIVtest) |
| 1947 | // |
| 1948 | // Return true if dependence disproved. |
| 1949 | bool DependenceInfo::weakZeroSrcSIVtest(const SCEV *DstCoeff, |
| 1950 | const SCEV *SrcConst, |
| 1951 | const SCEV *DstConst, |
| 1952 | const Loop *CurSrcLoop, |
| 1953 | const Loop *CurDstLoop, unsigned Level, |
| 1954 | FullDependence &Result) const { |
| 1955 | if (!isDependenceTestEnabled(Test: DependenceTestType::WeakZeroSIV)) |
| 1956 | return false; |
| 1957 | |
| 1958 | // For the WeakSIV test, it's possible the loop isn't common to |
| 1959 | // the Src and Dst loops. If it isn't, then there's no need to |
| 1960 | // record a direction. |
| 1961 | LLVM_DEBUG(dbgs() << "\tWeak-Zero (src) SIV test\n" ); |
| 1962 | LLVM_DEBUG(dbgs() << "\t DstCoeff = " << *DstCoeff << "\n" ); |
| 1963 | LLVM_DEBUG(dbgs() << "\t SrcConst = " << *SrcConst << "\n" ); |
| 1964 | LLVM_DEBUG(dbgs() << "\t DstConst = " << *DstConst << "\n" ); |
| 1965 | ++WeakZeroSIVapplications; |
| 1966 | assert(0 < Level && Level <= MaxLevels && "Level out of range" ); |
| 1967 | Level--; |
| 1968 | Result.Consistent = false; |
| 1969 | const SCEV *Delta = SE->getMinusSCEV(LHS: SrcConst, RHS: DstConst); |
| 1970 | LLVM_DEBUG(dbgs() << "\t Delta = " << *Delta << "\n" ); |
| 1971 | if (SE->isKnownPredicate(Pred: CmpInst::ICMP_EQ, LHS: SrcConst, RHS: DstConst)) { |
| 1972 | if (Level < CommonLevels) { |
| 1973 | Result.DV[Level].Direction &= Dependence::DVEntry::GE; |
| 1974 | Result.DV[Level].PeelFirst = true; |
| 1975 | ++WeakZeroSIVsuccesses; |
| 1976 | } |
| 1977 | return false; // dependences caused by first iteration |
| 1978 | } |
| 1979 | const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(Val: DstCoeff); |
| 1980 | if (!ConstCoeff) |
| 1981 | return false; |
| 1982 | |
| 1983 | // Since ConstCoeff is constant, !isKnownNegative means it's non-negative. |
| 1984 | // TODO: Bail out if it's a signed minimum value. |
| 1985 | const SCEV *AbsCoeff = SE->isKnownNegative(S: ConstCoeff) |
| 1986 | ? SE->getNegativeSCEV(V: ConstCoeff) |
| 1987 | : ConstCoeff; |
| 1988 | const SCEV *NewDelta = |
| 1989 | SE->isKnownNegative(S: ConstCoeff) ? SE->getNegativeSCEV(V: Delta) : Delta; |
| 1990 | |
| 1991 | // check that Delta/SrcCoeff < iteration count |
| 1992 | // really check NewDelta < count*AbsCoeff |
| 1993 | if (const SCEV *UpperBound = |
| 1994 | collectUpperBound(L: CurSrcLoop, T: Delta->getType())) { |
| 1995 | LLVM_DEBUG(dbgs() << "\t UpperBound = " << *UpperBound << "\n" ); |
| 1996 | const SCEV *Product = SE->getMulExpr(LHS: AbsCoeff, RHS: UpperBound); |
| 1997 | if (SE->isKnownPredicate(Pred: CmpInst::ICMP_SGT, LHS: NewDelta, RHS: Product)) { |
| 1998 | ++WeakZeroSIVindependence; |
| 1999 | ++WeakZeroSIVsuccesses; |
| 2000 | return true; |
| 2001 | } |
| 2002 | if (SE->isKnownPredicate(Pred: CmpInst::ICMP_EQ, LHS: NewDelta, RHS: Product)) { |
| 2003 | // dependences caused by last iteration |
| 2004 | if (Level < CommonLevels) { |
| 2005 | Result.DV[Level].Direction &= Dependence::DVEntry::LE; |
| 2006 | Result.DV[Level].PeelLast = true; |
| 2007 | ++WeakZeroSIVsuccesses; |
| 2008 | } |
| 2009 | return false; |
| 2010 | } |
| 2011 | } |
| 2012 | |
| 2013 | // check that Delta/SrcCoeff >= 0 |
| 2014 | // really check that NewDelta >= 0 |
| 2015 | if (SE->isKnownNegative(S: NewDelta)) { |
| 2016 | // No dependence, newDelta < 0 |
| 2017 | ++WeakZeroSIVindependence; |
| 2018 | ++WeakZeroSIVsuccesses; |
| 2019 | return true; |
| 2020 | } |
| 2021 | |
| 2022 | // if SrcCoeff doesn't divide Delta, then no dependence |
| 2023 | if (isa<SCEVConstant>(Val: Delta) && |
| 2024 | !isRemainderZero(Dividend: cast<SCEVConstant>(Val: Delta), Divisor: ConstCoeff)) { |
| 2025 | ++WeakZeroSIVindependence; |
| 2026 | ++WeakZeroSIVsuccesses; |
| 2027 | return true; |
| 2028 | } |
| 2029 | return false; |
| 2030 | } |
| 2031 | |
| 2032 | // weakZeroDstSIVtest - |
| 2033 | // From the paper, Practical Dependence Testing, Section 4.2.2 |
| 2034 | // |
| 2035 | // When we have a pair of subscripts of the form [c1 + a*i] and [c2], |
| 2036 | // where i is an induction variable, c1 and c2 are loop invariant, |
| 2037 | // and a is a constant, we can solve it exactly using the |
| 2038 | // Weak-Zero SIV test. |
| 2039 | // |
| 2040 | // Given |
| 2041 | // |
| 2042 | // c1 + a*i = c2 |
| 2043 | // |
| 2044 | // we get |
| 2045 | // |
| 2046 | // i = (c2 - c1)/a |
| 2047 | // |
| 2048 | // If i is not an integer, there's no dependence. |
| 2049 | // If i < 0 or > UB, there's no dependence. |
| 2050 | // If i = 0, the direction is <= and peeling the |
| 2051 | // 1st iteration will break the dependence. |
| 2052 | // If i = UB, the direction is >= and peeling the |
| 2053 | // last iteration will break the dependence. |
| 2054 | // Otherwise, the direction is *. |
| 2055 | // |
| 2056 | // Can prove independence. Failing that, we can sometimes refine |
| 2057 | // the directions. Can sometimes show that first or last |
| 2058 | // iteration carries all the dependences (so worth peeling). |
| 2059 | // |
| 2060 | // (see also weakZeroSrcSIVtest) |
| 2061 | // |
| 2062 | // Return true if dependence disproved. |
| 2063 | bool DependenceInfo::weakZeroDstSIVtest(const SCEV *SrcCoeff, |
| 2064 | const SCEV *SrcConst, |
| 2065 | const SCEV *DstConst, |
| 2066 | const Loop *CurSrcLoop, |
| 2067 | const Loop *CurDstLoop, unsigned Level, |
| 2068 | FullDependence &Result) const { |
| 2069 | if (!isDependenceTestEnabled(Test: DependenceTestType::WeakZeroSIV)) |
| 2070 | return false; |
| 2071 | |
| 2072 | // For the WeakSIV test, it's possible the loop isn't common to the |
| 2073 | // Src and Dst loops. If it isn't, then there's no need to record a direction. |
| 2074 | LLVM_DEBUG(dbgs() << "\tWeak-Zero (dst) SIV test\n" ); |
| 2075 | LLVM_DEBUG(dbgs() << "\t SrcCoeff = " << *SrcCoeff << "\n" ); |
| 2076 | LLVM_DEBUG(dbgs() << "\t SrcConst = " << *SrcConst << "\n" ); |
| 2077 | LLVM_DEBUG(dbgs() << "\t DstConst = " << *DstConst << "\n" ); |
| 2078 | ++WeakZeroSIVapplications; |
| 2079 | assert(0 < Level && Level <= SrcLevels && "Level out of range" ); |
| 2080 | Level--; |
| 2081 | Result.Consistent = false; |
| 2082 | const SCEV *Delta = SE->getMinusSCEV(LHS: DstConst, RHS: SrcConst); |
| 2083 | LLVM_DEBUG(dbgs() << "\t Delta = " << *Delta << "\n" ); |
| 2084 | if (SE->isKnownPredicate(Pred: CmpInst::ICMP_EQ, LHS: DstConst, RHS: SrcConst)) { |
| 2085 | if (Level < CommonLevels) { |
| 2086 | Result.DV[Level].Direction &= Dependence::DVEntry::LE; |
| 2087 | Result.DV[Level].PeelFirst = true; |
| 2088 | ++WeakZeroSIVsuccesses; |
| 2089 | } |
| 2090 | return false; // dependences caused by first iteration |
| 2091 | } |
| 2092 | const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(Val: SrcCoeff); |
| 2093 | if (!ConstCoeff) |
| 2094 | return false; |
| 2095 | |
| 2096 | // Since ConstCoeff is constant, !isKnownNegative means it's non-negative. |
| 2097 | // TODO: Bail out if it's a signed minimum value. |
| 2098 | const SCEV *AbsCoeff = SE->isKnownNegative(S: ConstCoeff) |
| 2099 | ? SE->getNegativeSCEV(V: ConstCoeff) |
| 2100 | : ConstCoeff; |
| 2101 | const SCEV *NewDelta = |
| 2102 | SE->isKnownNegative(S: ConstCoeff) ? SE->getNegativeSCEV(V: Delta) : Delta; |
| 2103 | |
| 2104 | // check that Delta/SrcCoeff < iteration count |
| 2105 | // really check NewDelta < count*AbsCoeff |
| 2106 | if (const SCEV *UpperBound = |
| 2107 | collectUpperBound(L: CurSrcLoop, T: Delta->getType())) { |
| 2108 | LLVM_DEBUG(dbgs() << "\t UpperBound = " << *UpperBound << "\n" ); |
| 2109 | const SCEV *Product = SE->getMulExpr(LHS: AbsCoeff, RHS: UpperBound); |
| 2110 | if (SE->isKnownPredicate(Pred: CmpInst::ICMP_SGT, LHS: NewDelta, RHS: Product)) { |
| 2111 | ++WeakZeroSIVindependence; |
| 2112 | ++WeakZeroSIVsuccesses; |
| 2113 | return true; |
| 2114 | } |
| 2115 | if (SE->isKnownPredicate(Pred: CmpInst::ICMP_EQ, LHS: NewDelta, RHS: Product)) { |
| 2116 | // dependences caused by last iteration |
| 2117 | if (Level < CommonLevels) { |
| 2118 | Result.DV[Level].Direction &= Dependence::DVEntry::GE; |
| 2119 | Result.DV[Level].PeelLast = true; |
| 2120 | ++WeakZeroSIVsuccesses; |
| 2121 | } |
| 2122 | return false; |
| 2123 | } |
| 2124 | } |
| 2125 | |
| 2126 | // check that Delta/SrcCoeff >= 0 |
| 2127 | // really check that NewDelta >= 0 |
| 2128 | if (SE->isKnownNegative(S: NewDelta)) { |
| 2129 | // No dependence, newDelta < 0 |
| 2130 | ++WeakZeroSIVindependence; |
| 2131 | ++WeakZeroSIVsuccesses; |
| 2132 | return true; |
| 2133 | } |
| 2134 | |
| 2135 | // if SrcCoeff doesn't divide Delta, then no dependence |
| 2136 | if (isa<SCEVConstant>(Val: Delta) && |
| 2137 | !isRemainderZero(Dividend: cast<SCEVConstant>(Val: Delta), Divisor: ConstCoeff)) { |
| 2138 | ++WeakZeroSIVindependence; |
| 2139 | ++WeakZeroSIVsuccesses; |
| 2140 | return true; |
| 2141 | } |
| 2142 | return false; |
| 2143 | } |
| 2144 | |
| 2145 | // exactRDIVtest - Tests the RDIV subscript pair for dependence. |
| 2146 | // Things of the form [c1 + a*i] and [c2 + b*j], |
| 2147 | // where i and j are induction variable, c1 and c2 are loop invariant, |
| 2148 | // and a and b are constants. |
| 2149 | // Returns true if any possible dependence is disproved. |
| 2150 | // Marks the result as inconsistent. |
| 2151 | // Works in some cases that symbolicRDIVtest doesn't, and vice versa. |
| 2152 | bool DependenceInfo::exactRDIVtest(const SCEV *SrcCoeff, const SCEV *DstCoeff, |
| 2153 | const SCEV *SrcConst, const SCEV *DstConst, |
| 2154 | const Loop *SrcLoop, const Loop *DstLoop, |
| 2155 | FullDependence &Result) const { |
| 2156 | if (!isDependenceTestEnabled(Test: DependenceTestType::ExactRDIV)) |
| 2157 | return false; |
| 2158 | |
| 2159 | LLVM_DEBUG(dbgs() << "\tExact RDIV test\n" ); |
| 2160 | LLVM_DEBUG(dbgs() << "\t SrcCoeff = " << *SrcCoeff << " = AM\n" ); |
| 2161 | LLVM_DEBUG(dbgs() << "\t DstCoeff = " << *DstCoeff << " = BM\n" ); |
| 2162 | LLVM_DEBUG(dbgs() << "\t SrcConst = " << *SrcConst << "\n" ); |
| 2163 | LLVM_DEBUG(dbgs() << "\t DstConst = " << *DstConst << "\n" ); |
| 2164 | ++ExactRDIVapplications; |
| 2165 | Result.Consistent = false; |
| 2166 | const SCEV *Delta = SE->getMinusSCEV(LHS: DstConst, RHS: SrcConst); |
| 2167 | LLVM_DEBUG(dbgs() << "\t Delta = " << *Delta << "\n" ); |
| 2168 | const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Val: Delta); |
| 2169 | const SCEVConstant *ConstSrcCoeff = dyn_cast<SCEVConstant>(Val: SrcCoeff); |
| 2170 | const SCEVConstant *ConstDstCoeff = dyn_cast<SCEVConstant>(Val: DstCoeff); |
| 2171 | if (!ConstDelta || !ConstSrcCoeff || !ConstDstCoeff) |
| 2172 | return false; |
| 2173 | |
| 2174 | // find gcd |
| 2175 | APInt G, X, Y; |
| 2176 | APInt AM = ConstSrcCoeff->getAPInt(); |
| 2177 | APInt BM = ConstDstCoeff->getAPInt(); |
| 2178 | APInt CM = ConstDelta->getAPInt(); |
| 2179 | unsigned Bits = AM.getBitWidth(); |
| 2180 | if (findGCD(Bits, AM, BM, Delta: CM, G, X, Y)) { |
| 2181 | // gcd doesn't divide Delta, no dependence |
| 2182 | ++ExactRDIVindependence; |
| 2183 | return true; |
| 2184 | } |
| 2185 | |
| 2186 | LLVM_DEBUG(dbgs() << "\t X = " << X << ", Y = " << Y << "\n" ); |
| 2187 | |
| 2188 | // since SCEV construction seems to normalize, LM = 0 |
| 2189 | std::optional<APInt> SrcUM; |
| 2190 | // SrcUM is perhaps unavailable, let's check |
| 2191 | if (const SCEVConstant *UpperBound = |
| 2192 | collectConstantUpperBound(L: SrcLoop, T: Delta->getType())) { |
| 2193 | SrcUM = UpperBound->getAPInt(); |
| 2194 | LLVM_DEBUG(dbgs() << "\t SrcUM = " << *SrcUM << "\n" ); |
| 2195 | } |
| 2196 | |
| 2197 | std::optional<APInt> DstUM; |
| 2198 | // UM is perhaps unavailable, let's check |
| 2199 | if (const SCEVConstant *UpperBound = |
| 2200 | collectConstantUpperBound(L: DstLoop, T: Delta->getType())) { |
| 2201 | DstUM = UpperBound->getAPInt(); |
| 2202 | LLVM_DEBUG(dbgs() << "\t DstUM = " << *DstUM << "\n" ); |
| 2203 | } |
| 2204 | |
| 2205 | APInt TU(APInt::getSignedMaxValue(numBits: Bits)); |
| 2206 | APInt TL(APInt::getSignedMinValue(numBits: Bits)); |
| 2207 | APInt TC = CM.sdiv(RHS: G); |
| 2208 | APInt TX = X * TC; |
| 2209 | APInt TY = Y * TC; |
| 2210 | LLVM_DEBUG(dbgs() << "\t TC = " << TC << "\n" ); |
| 2211 | LLVM_DEBUG(dbgs() << "\t TX = " << TX << "\n" ); |
| 2212 | LLVM_DEBUG(dbgs() << "\t TY = " << TY << "\n" ); |
| 2213 | |
| 2214 | APInt TB = BM.sdiv(RHS: G); |
| 2215 | APInt TA = AM.sdiv(RHS: G); |
| 2216 | |
| 2217 | // At this point, we have the following equations: |
| 2218 | // |
| 2219 | // TA*i - TB*j = TC |
| 2220 | // |
| 2221 | // Also, we know that the all pairs of (i, j) can be expressed as: |
| 2222 | // |
| 2223 | // (TX + k*TB, TY + k*TA) |
| 2224 | // |
| 2225 | // where k is an arbitrary integer. |
| 2226 | auto [TL0, TU0] = inferDomainOfAffine(A: TB, B: TX, UB: SrcUM); |
| 2227 | auto [TL1, TU1] = inferDomainOfAffine(A: TA, B: TY, UB: DstUM); |
| 2228 | |
| 2229 | LLVM_DEBUG(dbgs() << "\t TA = " << TA << "\n" ); |
| 2230 | LLVM_DEBUG(dbgs() << "\t TB = " << TB << "\n" ); |
| 2231 | |
| 2232 | auto CreateVec = [](const OverflowSafeSignedAPInt &V0, |
| 2233 | const OverflowSafeSignedAPInt &V1) { |
| 2234 | SmallVector<APInt, 2> Vec; |
| 2235 | if (V0) |
| 2236 | Vec.push_back(Elt: *V0); |
| 2237 | if (V1) |
| 2238 | Vec.push_back(Elt: *V1); |
| 2239 | return Vec; |
| 2240 | }; |
| 2241 | |
| 2242 | SmallVector<APInt, 2> TLVec = CreateVec(TL0, TL1); |
| 2243 | SmallVector<APInt, 2> TUVec = CreateVec(TU0, TU1); |
| 2244 | if (TLVec.empty() || TUVec.empty()) |
| 2245 | return false; |
| 2246 | |
| 2247 | TL = APIntOps::smax(A: TLVec.front(), B: TLVec.back()); |
| 2248 | TU = APIntOps::smin(A: TUVec.front(), B: TUVec.back()); |
| 2249 | LLVM_DEBUG(dbgs() << "\t TL = " << TL << "\n" ); |
| 2250 | LLVM_DEBUG(dbgs() << "\t TU = " << TU << "\n" ); |
| 2251 | |
| 2252 | if (TL.sgt(RHS: TU)) |
| 2253 | ++ExactRDIVindependence; |
| 2254 | return TL.sgt(RHS: TU); |
| 2255 | } |
| 2256 | |
| 2257 | // symbolicRDIVtest - |
| 2258 | // In Section 4.5 of the Practical Dependence Testing paper,the authors |
| 2259 | // introduce a special case of Banerjee's Inequalities (also called the |
| 2260 | // Extreme-Value Test) that can handle some of the SIV and RDIV cases, |
| 2261 | // particularly cases with symbolics. Since it's only able to disprove |
| 2262 | // dependence (not compute distances or directions), we'll use it as a |
| 2263 | // fall back for the other tests. |
| 2264 | // |
| 2265 | // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*j] |
| 2266 | // where i and j are induction variables and c1 and c2 are loop invariants, |
| 2267 | // we can use the symbolic tests to disprove some dependences, serving as a |
| 2268 | // backup for the RDIV test. Note that i and j can be the same variable, |
| 2269 | // letting this test serve as a backup for the various SIV tests. |
| 2270 | // |
| 2271 | // For a dependence to exist, c1 + a1*i must equal c2 + a2*j for some |
| 2272 | // 0 <= i <= N1 and some 0 <= j <= N2, where N1 and N2 are the (normalized) |
| 2273 | // loop bounds for the i and j loops, respectively. So, ... |
| 2274 | // |
| 2275 | // c1 + a1*i = c2 + a2*j |
| 2276 | // a1*i - a2*j = c2 - c1 |
| 2277 | // |
| 2278 | // To test for a dependence, we compute c2 - c1 and make sure it's in the |
| 2279 | // range of the maximum and minimum possible values of a1*i - a2*j. |
| 2280 | // Considering the signs of a1 and a2, we have 4 possible cases: |
| 2281 | // |
| 2282 | // 1) If a1 >= 0 and a2 >= 0, then |
| 2283 | // a1*0 - a2*N2 <= c2 - c1 <= a1*N1 - a2*0 |
| 2284 | // -a2*N2 <= c2 - c1 <= a1*N1 |
| 2285 | // |
| 2286 | // 2) If a1 >= 0 and a2 <= 0, then |
| 2287 | // a1*0 - a2*0 <= c2 - c1 <= a1*N1 - a2*N2 |
| 2288 | // 0 <= c2 - c1 <= a1*N1 - a2*N2 |
| 2289 | // |
| 2290 | // 3) If a1 <= 0 and a2 >= 0, then |
| 2291 | // a1*N1 - a2*N2 <= c2 - c1 <= a1*0 - a2*0 |
| 2292 | // a1*N1 - a2*N2 <= c2 - c1 <= 0 |
| 2293 | // |
| 2294 | // 4) If a1 <= 0 and a2 <= 0, then |
| 2295 | // a1*N1 - a2*0 <= c2 - c1 <= a1*0 - a2*N2 |
| 2296 | // a1*N1 <= c2 - c1 <= -a2*N2 |
| 2297 | // |
| 2298 | // return true if dependence disproved |
| 2299 | bool DependenceInfo::symbolicRDIVtest(const SCEV *A1, const SCEV *A2, |
| 2300 | const SCEV *C1, const SCEV *C2, |
| 2301 | const Loop *Loop1, |
| 2302 | const Loop *Loop2) const { |
| 2303 | if (!isDependenceTestEnabled(Test: DependenceTestType::SymbolicRDIV)) |
| 2304 | return false; |
| 2305 | |
| 2306 | ++SymbolicRDIVapplications; |
| 2307 | LLVM_DEBUG(dbgs() << "\ttry symbolic RDIV test\n" ); |
| 2308 | LLVM_DEBUG(dbgs() << "\t A1 = " << *A1); |
| 2309 | LLVM_DEBUG(dbgs() << ", type = " << *A1->getType() << "\n" ); |
| 2310 | LLVM_DEBUG(dbgs() << "\t A2 = " << *A2 << "\n" ); |
| 2311 | LLVM_DEBUG(dbgs() << "\t C1 = " << *C1 << "\n" ); |
| 2312 | LLVM_DEBUG(dbgs() << "\t C2 = " << *C2 << "\n" ); |
| 2313 | const SCEV *N1 = collectUpperBound(L: Loop1, T: A1->getType()); |
| 2314 | const SCEV *N2 = collectUpperBound(L: Loop2, T: A1->getType()); |
| 2315 | LLVM_DEBUG(if (N1) dbgs() << "\t N1 = " << *N1 << "\n" ); |
| 2316 | LLVM_DEBUG(if (N2) dbgs() << "\t N2 = " << *N2 << "\n" ); |
| 2317 | const SCEV *C2_C1 = SE->getMinusSCEV(LHS: C2, RHS: C1); |
| 2318 | const SCEV *C1_C2 = SE->getMinusSCEV(LHS: C1, RHS: C2); |
| 2319 | LLVM_DEBUG(dbgs() << "\t C2 - C1 = " << *C2_C1 << "\n" ); |
| 2320 | LLVM_DEBUG(dbgs() << "\t C1 - C2 = " << *C1_C2 << "\n" ); |
| 2321 | if (SE->isKnownNonNegative(S: A1)) { |
| 2322 | if (SE->isKnownNonNegative(S: A2)) { |
| 2323 | // A1 >= 0 && A2 >= 0 |
| 2324 | if (N1) { |
| 2325 | // make sure that c2 - c1 <= a1*N1 |
| 2326 | const SCEV *A1N1 = SE->getMulExpr(LHS: A1, RHS: N1); |
| 2327 | LLVM_DEBUG(dbgs() << "\t A1*N1 = " << *A1N1 << "\n" ); |
| 2328 | if (SE->isKnownPredicate(Pred: CmpInst::ICMP_SGT, LHS: C2_C1, RHS: A1N1)) { |
| 2329 | ++SymbolicRDIVindependence; |
| 2330 | return true; |
| 2331 | } |
| 2332 | } |
| 2333 | if (N2) { |
| 2334 | // make sure that -a2*N2 <= c2 - c1, or a2*N2 >= c1 - c2 |
| 2335 | const SCEV *A2N2 = SE->getMulExpr(LHS: A2, RHS: N2); |
| 2336 | LLVM_DEBUG(dbgs() << "\t A2*N2 = " << *A2N2 << "\n" ); |
| 2337 | if (SE->isKnownPredicate(Pred: CmpInst::ICMP_SLT, LHS: A2N2, RHS: C1_C2)) { |
| 2338 | ++SymbolicRDIVindependence; |
| 2339 | return true; |
| 2340 | } |
| 2341 | } |
| 2342 | } else if (SE->isKnownNonPositive(S: A2)) { |
| 2343 | // a1 >= 0 && a2 <= 0 |
| 2344 | if (N1 && N2) { |
| 2345 | // make sure that c2 - c1 <= a1*N1 - a2*N2 |
| 2346 | const SCEV *A1N1 = SE->getMulExpr(LHS: A1, RHS: N1); |
| 2347 | const SCEV *A2N2 = SE->getMulExpr(LHS: A2, RHS: N2); |
| 2348 | const SCEV *A1N1_A2N2 = SE->getMinusSCEV(LHS: A1N1, RHS: A2N2); |
| 2349 | LLVM_DEBUG(dbgs() << "\t A1*N1 - A2*N2 = " << *A1N1_A2N2 << "\n" ); |
| 2350 | if (SE->isKnownPredicate(Pred: CmpInst::ICMP_SGT, LHS: C2_C1, RHS: A1N1_A2N2)) { |
| 2351 | ++SymbolicRDIVindependence; |
| 2352 | return true; |
| 2353 | } |
| 2354 | } |
| 2355 | // make sure that 0 <= c2 - c1 |
| 2356 | if (SE->isKnownNegative(S: C2_C1)) { |
| 2357 | ++SymbolicRDIVindependence; |
| 2358 | return true; |
| 2359 | } |
| 2360 | } |
| 2361 | } else if (SE->isKnownNonPositive(S: A1)) { |
| 2362 | if (SE->isKnownNonNegative(S: A2)) { |
| 2363 | // a1 <= 0 && a2 >= 0 |
| 2364 | if (N1 && N2) { |
| 2365 | // make sure that a1*N1 - a2*N2 <= c2 - c1 |
| 2366 | const SCEV *A1N1 = SE->getMulExpr(LHS: A1, RHS: N1); |
| 2367 | const SCEV *A2N2 = SE->getMulExpr(LHS: A2, RHS: N2); |
| 2368 | const SCEV *A1N1_A2N2 = SE->getMinusSCEV(LHS: A1N1, RHS: A2N2); |
| 2369 | LLVM_DEBUG(dbgs() << "\t A1*N1 - A2*N2 = " << *A1N1_A2N2 << "\n" ); |
| 2370 | if (SE->isKnownPredicate(Pred: CmpInst::ICMP_SGT, LHS: A1N1_A2N2, RHS: C2_C1)) { |
| 2371 | ++SymbolicRDIVindependence; |
| 2372 | return true; |
| 2373 | } |
| 2374 | } |
| 2375 | // make sure that c2 - c1 <= 0 |
| 2376 | if (SE->isKnownPositive(S: C2_C1)) { |
| 2377 | ++SymbolicRDIVindependence; |
| 2378 | return true; |
| 2379 | } |
| 2380 | } else if (SE->isKnownNonPositive(S: A2)) { |
| 2381 | // a1 <= 0 && a2 <= 0 |
| 2382 | if (N1) { |
| 2383 | // make sure that a1*N1 <= c2 - c1 |
| 2384 | const SCEV *A1N1 = SE->getMulExpr(LHS: A1, RHS: N1); |
| 2385 | LLVM_DEBUG(dbgs() << "\t A1*N1 = " << *A1N1 << "\n" ); |
| 2386 | if (SE->isKnownPredicate(Pred: CmpInst::ICMP_SGT, LHS: A1N1, RHS: C2_C1)) { |
| 2387 | ++SymbolicRDIVindependence; |
| 2388 | return true; |
| 2389 | } |
| 2390 | } |
| 2391 | if (N2) { |
| 2392 | // make sure that c2 - c1 <= -a2*N2, or c1 - c2 >= a2*N2 |
| 2393 | const SCEV *A2N2 = SE->getMulExpr(LHS: A2, RHS: N2); |
| 2394 | LLVM_DEBUG(dbgs() << "\t A2*N2 = " << *A2N2 << "\n" ); |
| 2395 | if (SE->isKnownPredicate(Pred: CmpInst::ICMP_SLT, LHS: C1_C2, RHS: A2N2)) { |
| 2396 | ++SymbolicRDIVindependence; |
| 2397 | return true; |
| 2398 | } |
| 2399 | } |
| 2400 | } |
| 2401 | } |
| 2402 | return false; |
| 2403 | } |
| 2404 | |
| 2405 | // testSIV - |
| 2406 | // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 - a2*i] |
| 2407 | // where i is an induction variable, c1 and c2 are loop invariant, and a1 and |
| 2408 | // a2 are constant, we attack it with an SIV test. While they can all be |
| 2409 | // solved with the Exact SIV test, it's worthwhile to use simpler tests when |
| 2410 | // they apply; they're cheaper and sometimes more precise. |
| 2411 | // |
| 2412 | // Return true if dependence disproved. |
| 2413 | bool DependenceInfo::testSIV(const SCEV *Src, const SCEV *Dst, unsigned &Level, |
| 2414 | FullDependence &Result, |
| 2415 | bool UnderRuntimeAssumptions) { |
| 2416 | LLVM_DEBUG(dbgs() << " src = " << *Src << "\n" ); |
| 2417 | LLVM_DEBUG(dbgs() << " dst = " << *Dst << "\n" ); |
| 2418 | const SCEVAddRecExpr *SrcAddRec = dyn_cast<SCEVAddRecExpr>(Val: Src); |
| 2419 | const SCEVAddRecExpr *DstAddRec = dyn_cast<SCEVAddRecExpr>(Val: Dst); |
| 2420 | if (SrcAddRec && DstAddRec) { |
| 2421 | const SCEV *SrcConst = SrcAddRec->getStart(); |
| 2422 | const SCEV *DstConst = DstAddRec->getStart(); |
| 2423 | const SCEV *SrcCoeff = SrcAddRec->getStepRecurrence(SE&: *SE); |
| 2424 | const SCEV *DstCoeff = DstAddRec->getStepRecurrence(SE&: *SE); |
| 2425 | const Loop *CurSrcLoop = SrcAddRec->getLoop(); |
| 2426 | const Loop *CurDstLoop = DstAddRec->getLoop(); |
| 2427 | assert(haveSameSD(CurSrcLoop, CurDstLoop) && |
| 2428 | "Loops in the SIV test should have the same iteration space and " |
| 2429 | "depth" ); |
| 2430 | Level = mapSrcLoop(SrcLoop: CurSrcLoop); |
| 2431 | bool disproven; |
| 2432 | if (SrcCoeff == DstCoeff) |
| 2433 | disproven = |
| 2434 | strongSIVtest(Coeff: SrcCoeff, SrcConst, DstConst, CurSrcLoop, CurDstLoop, |
| 2435 | Level, Result, UnderRuntimeAssumptions); |
| 2436 | else if (SrcCoeff == SE->getNegativeSCEV(V: DstCoeff)) |
| 2437 | disproven = weakCrossingSIVtest(Coeff: SrcCoeff, SrcConst, DstConst, CurSrcLoop, |
| 2438 | CurDstLoop, Level, Result); |
| 2439 | else |
| 2440 | disproven = exactSIVtest(SrcCoeff, DstCoeff, SrcConst, DstConst, |
| 2441 | CurSrcLoop, CurDstLoop, Level, Result); |
| 2442 | return disproven || gcdMIVtest(Src, Dst, Result) || |
| 2443 | symbolicRDIVtest(A1: SrcCoeff, A2: DstCoeff, C1: SrcConst, C2: DstConst, Loop1: CurSrcLoop, |
| 2444 | Loop2: CurDstLoop); |
| 2445 | } |
| 2446 | if (SrcAddRec) { |
| 2447 | const SCEV *SrcConst = SrcAddRec->getStart(); |
| 2448 | const SCEV *SrcCoeff = SrcAddRec->getStepRecurrence(SE&: *SE); |
| 2449 | const SCEV *DstConst = Dst; |
| 2450 | const Loop *CurSrcLoop = SrcAddRec->getLoop(); |
| 2451 | Level = mapSrcLoop(SrcLoop: CurSrcLoop); |
| 2452 | return weakZeroDstSIVtest(SrcCoeff, SrcConst, DstConst, CurSrcLoop, |
| 2453 | CurDstLoop: CurSrcLoop, Level, Result) || |
| 2454 | gcdMIVtest(Src, Dst, Result); |
| 2455 | } |
| 2456 | if (DstAddRec) { |
| 2457 | const SCEV *DstConst = DstAddRec->getStart(); |
| 2458 | const SCEV *DstCoeff = DstAddRec->getStepRecurrence(SE&: *SE); |
| 2459 | const SCEV *SrcConst = Src; |
| 2460 | const Loop *CurDstLoop = DstAddRec->getLoop(); |
| 2461 | Level = mapDstLoop(DstLoop: CurDstLoop); |
| 2462 | return weakZeroSrcSIVtest(DstCoeff, SrcConst, DstConst, CurSrcLoop: CurDstLoop, |
| 2463 | CurDstLoop, Level, Result) || |
| 2464 | gcdMIVtest(Src, Dst, Result); |
| 2465 | } |
| 2466 | llvm_unreachable("SIV test expected at least one AddRec" ); |
| 2467 | return false; |
| 2468 | } |
| 2469 | |
| 2470 | // testRDIV - |
| 2471 | // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*j] |
| 2472 | // where i and j are induction variables, c1 and c2 are loop invariant, |
| 2473 | // and a1 and a2 are constant, we can solve it exactly with an easy adaptation |
| 2474 | // of the Exact SIV test, the Restricted Double Index Variable (RDIV) test. |
| 2475 | // It doesn't make sense to talk about distance or direction in this case, |
| 2476 | // so there's no point in making special versions of the Strong SIV test or |
| 2477 | // the Weak-crossing SIV test. |
| 2478 | // |
| 2479 | // With minor algebra, this test can also be used for things like |
| 2480 | // [c1 + a1*i + a2*j][c2]. |
| 2481 | // |
| 2482 | // Return true if dependence disproved. |
| 2483 | bool DependenceInfo::testRDIV(const SCEV *Src, const SCEV *Dst, |
| 2484 | FullDependence &Result) const { |
| 2485 | // we have 3 possible situations here: |
| 2486 | // 1) [a*i + b] and [c*j + d] |
| 2487 | // 2) [a*i + c*j + b] and [d] |
| 2488 | // 3) [b] and [a*i + c*j + d] |
| 2489 | // We need to find what we've got and get organized |
| 2490 | |
| 2491 | const SCEV *SrcConst, *DstConst; |
| 2492 | const SCEV *SrcCoeff, *DstCoeff; |
| 2493 | const Loop *SrcLoop, *DstLoop; |
| 2494 | |
| 2495 | LLVM_DEBUG(dbgs() << " src = " << *Src << "\n" ); |
| 2496 | LLVM_DEBUG(dbgs() << " dst = " << *Dst << "\n" ); |
| 2497 | const SCEVAddRecExpr *SrcAddRec = dyn_cast<SCEVAddRecExpr>(Val: Src); |
| 2498 | const SCEVAddRecExpr *DstAddRec = dyn_cast<SCEVAddRecExpr>(Val: Dst); |
| 2499 | if (SrcAddRec && DstAddRec) { |
| 2500 | SrcConst = SrcAddRec->getStart(); |
| 2501 | SrcCoeff = SrcAddRec->getStepRecurrence(SE&: *SE); |
| 2502 | SrcLoop = SrcAddRec->getLoop(); |
| 2503 | DstConst = DstAddRec->getStart(); |
| 2504 | DstCoeff = DstAddRec->getStepRecurrence(SE&: *SE); |
| 2505 | DstLoop = DstAddRec->getLoop(); |
| 2506 | } else if (SrcAddRec) { |
| 2507 | if (const SCEVAddRecExpr *tmpAddRec = |
| 2508 | dyn_cast<SCEVAddRecExpr>(Val: SrcAddRec->getStart())) { |
| 2509 | SrcConst = tmpAddRec->getStart(); |
| 2510 | SrcCoeff = tmpAddRec->getStepRecurrence(SE&: *SE); |
| 2511 | SrcLoop = tmpAddRec->getLoop(); |
| 2512 | DstConst = Dst; |
| 2513 | DstCoeff = SE->getNegativeSCEV(V: SrcAddRec->getStepRecurrence(SE&: *SE)); |
| 2514 | DstLoop = SrcAddRec->getLoop(); |
| 2515 | } else |
| 2516 | llvm_unreachable("RDIV reached by surprising SCEVs" ); |
| 2517 | } else if (DstAddRec) { |
| 2518 | if (const SCEVAddRecExpr *tmpAddRec = |
| 2519 | dyn_cast<SCEVAddRecExpr>(Val: DstAddRec->getStart())) { |
| 2520 | DstConst = tmpAddRec->getStart(); |
| 2521 | DstCoeff = tmpAddRec->getStepRecurrence(SE&: *SE); |
| 2522 | DstLoop = tmpAddRec->getLoop(); |
| 2523 | SrcConst = Src; |
| 2524 | SrcCoeff = SE->getNegativeSCEV(V: DstAddRec->getStepRecurrence(SE&: *SE)); |
| 2525 | SrcLoop = DstAddRec->getLoop(); |
| 2526 | } else |
| 2527 | llvm_unreachable("RDIV reached by surprising SCEVs" ); |
| 2528 | } else |
| 2529 | llvm_unreachable("RDIV expected at least one AddRec" ); |
| 2530 | return exactRDIVtest(SrcCoeff, DstCoeff, SrcConst, DstConst, SrcLoop, DstLoop, |
| 2531 | Result) || |
| 2532 | gcdMIVtest(Src, Dst, Result) || |
| 2533 | symbolicRDIVtest(A1: SrcCoeff, A2: DstCoeff, C1: SrcConst, C2: DstConst, Loop1: SrcLoop, |
| 2534 | Loop2: DstLoop); |
| 2535 | } |
| 2536 | |
| 2537 | // Tests the single-subscript MIV pair (Src and Dst) for dependence. |
| 2538 | // Return true if dependence disproved. |
| 2539 | // Can sometimes refine direction vectors. |
| 2540 | bool DependenceInfo::testMIV(const SCEV *Src, const SCEV *Dst, |
| 2541 | const SmallBitVector &Loops, |
| 2542 | FullDependence &Result) const { |
| 2543 | LLVM_DEBUG(dbgs() << " src = " << *Src << "\n" ); |
| 2544 | LLVM_DEBUG(dbgs() << " dst = " << *Dst << "\n" ); |
| 2545 | Result.Consistent = false; |
| 2546 | return gcdMIVtest(Src, Dst, Result) || |
| 2547 | banerjeeMIVtest(Src, Dst, Loops, Result); |
| 2548 | } |
| 2549 | |
| 2550 | /// Given a SCEVMulExpr, returns its first operand if its first operand is a |
| 2551 | /// constant and the product doesn't overflow in a signed sense. Otherwise, |
| 2552 | /// returns std::nullopt. For example, given (10 * X * Y)<nsw>, it returns 10. |
| 2553 | /// Notably, if it doesn't have nsw, the multiplication may overflow, and if |
| 2554 | /// so, it may not a multiple of 10. |
| 2555 | static std::optional<APInt> getConstantCoefficient(const SCEV *Expr) { |
| 2556 | if (const auto *Constant = dyn_cast<SCEVConstant>(Val: Expr)) |
| 2557 | return Constant->getAPInt(); |
| 2558 | if (const auto *Product = dyn_cast<SCEVMulExpr>(Val: Expr)) |
| 2559 | if (const auto *Constant = dyn_cast<SCEVConstant>(Val: Product->getOperand(i: 0))) |
| 2560 | if (Product->hasNoSignedWrap()) |
| 2561 | return Constant->getAPInt(); |
| 2562 | return std::nullopt; |
| 2563 | } |
| 2564 | |
| 2565 | bool DependenceInfo::accumulateCoefficientsGCD(const SCEV *Expr, |
| 2566 | const Loop *CurLoop, |
| 2567 | const SCEV *&CurLoopCoeff, |
| 2568 | APInt &RunningGCD) const { |
| 2569 | // If RunningGCD is already 1, exit early. |
| 2570 | // TODO: It might be better to continue the recursion to find CurLoopCoeff. |
| 2571 | if (RunningGCD == 1) |
| 2572 | return true; |
| 2573 | |
| 2574 | const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Val: Expr); |
| 2575 | if (!AddRec) { |
| 2576 | assert(isLoopInvariant(Expr, CurLoop) && |
| 2577 | "Expected loop invariant expression" ); |
| 2578 | return true; |
| 2579 | } |
| 2580 | |
| 2581 | assert(AddRec->isAffine() && "Unexpected Expr" ); |
| 2582 | const SCEV *Start = AddRec->getStart(); |
| 2583 | const SCEV *Step = AddRec->getStepRecurrence(SE&: *SE); |
| 2584 | if (AddRec->getLoop() == CurLoop) { |
| 2585 | CurLoopCoeff = Step; |
| 2586 | } else { |
| 2587 | std::optional<APInt> ConstCoeff = getConstantCoefficient(Expr: Step); |
| 2588 | |
| 2589 | // If the coefficient is the product of a constant and other stuff, we can |
| 2590 | // use the constant in the GCD computation. |
| 2591 | if (!ConstCoeff) |
| 2592 | return false; |
| 2593 | |
| 2594 | // TODO: What happens if ConstCoeff is the "most negative" signed number |
| 2595 | // (e.g. -128 for 8 bit wide APInt)? |
| 2596 | RunningGCD = APIntOps::GreatestCommonDivisor(A: RunningGCD, B: ConstCoeff->abs()); |
| 2597 | } |
| 2598 | |
| 2599 | return accumulateCoefficientsGCD(Expr: Start, CurLoop, CurLoopCoeff, RunningGCD); |
| 2600 | } |
| 2601 | |
| 2602 | //===----------------------------------------------------------------------===// |
| 2603 | // gcdMIVtest - |
| 2604 | // Tests an MIV subscript pair for dependence. |
| 2605 | // Returns true if any possible dependence is disproved. |
| 2606 | // Marks the result as inconsistent. |
| 2607 | // Can sometimes disprove the equal direction for 1 or more loops, |
| 2608 | // as discussed in Michael Wolfe's book, |
| 2609 | // High Performance Compilers for Parallel Computing, page 235. |
| 2610 | // |
| 2611 | // We spend some effort (code!) to handle cases like |
| 2612 | // [10*i + 5*N*j + 15*M + 6], where i and j are induction variables, |
| 2613 | // but M and N are just loop-invariant variables. |
| 2614 | // This should help us handle linearized subscripts; |
| 2615 | // also makes this test a useful backup to the various SIV tests. |
| 2616 | // |
| 2617 | // It occurs to me that the presence of loop-invariant variables |
| 2618 | // changes the nature of the test from "greatest common divisor" |
| 2619 | // to "a common divisor". |
| 2620 | bool DependenceInfo::gcdMIVtest(const SCEV *Src, const SCEV *Dst, |
| 2621 | FullDependence &Result) const { |
| 2622 | if (!isDependenceTestEnabled(Test: DependenceTestType::GCDMIV)) |
| 2623 | return false; |
| 2624 | |
| 2625 | LLVM_DEBUG(dbgs() << "starting gcd\n" ); |
| 2626 | ++GCDapplications; |
| 2627 | unsigned BitWidth = SE->getTypeSizeInBits(Ty: Src->getType()); |
| 2628 | APInt RunningGCD = APInt::getZero(numBits: BitWidth); |
| 2629 | |
| 2630 | // Examine Src coefficients. |
| 2631 | // Compute running GCD and record source constant. |
| 2632 | // Because we're looking for the constant at the end of the chain, |
| 2633 | // we can't quit the loop just because the GCD == 1. |
| 2634 | const SCEV *Coefficients = Src; |
| 2635 | while (const SCEVAddRecExpr *AddRec = |
| 2636 | dyn_cast<SCEVAddRecExpr>(Val: Coefficients)) { |
| 2637 | const SCEV *Coeff = AddRec->getStepRecurrence(SE&: *SE); |
| 2638 | // If the coefficient is the product of a constant and other stuff, |
| 2639 | // we can use the constant in the GCD computation. |
| 2640 | std::optional<APInt> ConstCoeff = getConstantCoefficient(Expr: Coeff); |
| 2641 | if (!ConstCoeff) |
| 2642 | return false; |
| 2643 | RunningGCD = APIntOps::GreatestCommonDivisor(A: RunningGCD, B: ConstCoeff->abs()); |
| 2644 | Coefficients = AddRec->getStart(); |
| 2645 | } |
| 2646 | const SCEV *SrcConst = Coefficients; |
| 2647 | |
| 2648 | // Examine Dst coefficients. |
| 2649 | // Compute running GCD and record destination constant. |
| 2650 | // Because we're looking for the constant at the end of the chain, |
| 2651 | // we can't quit the loop just because the GCD == 1. |
| 2652 | Coefficients = Dst; |
| 2653 | while (const SCEVAddRecExpr *AddRec = |
| 2654 | dyn_cast<SCEVAddRecExpr>(Val: Coefficients)) { |
| 2655 | const SCEV *Coeff = AddRec->getStepRecurrence(SE&: *SE); |
| 2656 | // If the coefficient is the product of a constant and other stuff, |
| 2657 | // we can use the constant in the GCD computation. |
| 2658 | std::optional<APInt> ConstCoeff = getConstantCoefficient(Expr: Coeff); |
| 2659 | if (!ConstCoeff) |
| 2660 | return false; |
| 2661 | RunningGCD = APIntOps::GreatestCommonDivisor(A: RunningGCD, B: ConstCoeff->abs()); |
| 2662 | Coefficients = AddRec->getStart(); |
| 2663 | } |
| 2664 | const SCEV *DstConst = Coefficients; |
| 2665 | |
| 2666 | APInt = APInt::getZero(numBits: BitWidth); |
| 2667 | const SCEV *Delta = minusSCEVNoSignedOverflow(A: DstConst, B: SrcConst, SE&: *SE); |
| 2668 | if (!Delta) |
| 2669 | return false; |
| 2670 | LLVM_DEBUG(dbgs() << " Delta = " << *Delta << "\n" ); |
| 2671 | const SCEVConstant *Constant = dyn_cast<SCEVConstant>(Val: Delta); |
| 2672 | if (!Constant) |
| 2673 | return false; |
| 2674 | APInt ConstDelta = cast<SCEVConstant>(Val: Constant)->getAPInt(); |
| 2675 | LLVM_DEBUG(dbgs() << " ConstDelta = " << ConstDelta << "\n" ); |
| 2676 | if (ConstDelta == 0) |
| 2677 | return false; |
| 2678 | LLVM_DEBUG(dbgs() << " RunningGCD = " << RunningGCD << "\n" ); |
| 2679 | APInt Remainder = ConstDelta.srem(RHS: RunningGCD); |
| 2680 | if (Remainder != 0) { |
| 2681 | ++GCDindependence; |
| 2682 | return true; |
| 2683 | } |
| 2684 | |
| 2685 | // Try to disprove equal directions. |
| 2686 | // For example, given a subscript pair [3*i + 2*j] and [i' + 2*j' - 1], |
| 2687 | // the code above can't disprove the dependence because the GCD = 1. |
| 2688 | // So we consider what happen if i = i' and what happens if j = j'. |
| 2689 | // If i = i', we can simplify the subscript to [2*i + 2*j] and [2*j' - 1], |
| 2690 | // which is infeasible, so we can disallow the = direction for the i level. |
| 2691 | // Setting j = j' doesn't help matters, so we end up with a direction vector |
| 2692 | // of [<>, *] |
| 2693 | // |
| 2694 | // Given A[5*i + 10*j*M + 9*M*N] and A[15*i + 20*j*M - 21*N*M + 5], |
| 2695 | // we need to remember that the constant part is 5 and the RunningGCD should |
| 2696 | // be initialized to ExtraGCD = 30. |
| 2697 | LLVM_DEBUG(dbgs() << " ExtraGCD = " << ExtraGCD << '\n'); |
| 2698 | |
| 2699 | bool Improved = false; |
| 2700 | Coefficients = Src; |
| 2701 | while (const SCEVAddRecExpr *AddRec = |
| 2702 | dyn_cast<SCEVAddRecExpr>(Val: Coefficients)) { |
| 2703 | Coefficients = AddRec->getStart(); |
| 2704 | const Loop *CurLoop = AddRec->getLoop(); |
| 2705 | RunningGCD = ExtraGCD; |
| 2706 | const SCEV *SrcCoeff = AddRec->getStepRecurrence(SE&: *SE); |
| 2707 | const SCEV *DstCoeff = SE->getMinusSCEV(LHS: SrcCoeff, RHS: SrcCoeff); |
| 2708 | |
| 2709 | if (!accumulateCoefficientsGCD(Expr: Src, CurLoop, CurLoopCoeff&: SrcCoeff, RunningGCD) || |
| 2710 | !accumulateCoefficientsGCD(Expr: Dst, CurLoop, CurLoopCoeff&: DstCoeff, RunningGCD)) |
| 2711 | return false; |
| 2712 | |
| 2713 | Delta = SE->getMinusSCEV(LHS: SrcCoeff, RHS: DstCoeff); |
| 2714 | // If the coefficient is the product of a constant and other stuff, |
| 2715 | // we can use the constant in the GCD computation. |
| 2716 | std::optional<APInt> ConstCoeff = getConstantCoefficient(Expr: Delta); |
| 2717 | if (!ConstCoeff) |
| 2718 | // The difference of the two coefficients might not be a product |
| 2719 | // or constant, in which case we give up on this direction. |
| 2720 | continue; |
| 2721 | RunningGCD = APIntOps::GreatestCommonDivisor(A: RunningGCD, B: ConstCoeff->abs()); |
| 2722 | LLVM_DEBUG(dbgs() << "\tRunningGCD = " << RunningGCD << "\n" ); |
| 2723 | if (RunningGCD != 0) { |
| 2724 | Remainder = ConstDelta.srem(RHS: RunningGCD); |
| 2725 | LLVM_DEBUG(dbgs() << "\tRemainder = " << Remainder << "\n" ); |
| 2726 | if (Remainder != 0) { |
| 2727 | unsigned Level = mapSrcLoop(SrcLoop: CurLoop); |
| 2728 | Result.DV[Level - 1].Direction &= ~Dependence::DVEntry::EQ; |
| 2729 | Improved = true; |
| 2730 | } |
| 2731 | } |
| 2732 | } |
| 2733 | if (Improved) |
| 2734 | ++GCDsuccesses; |
| 2735 | LLVM_DEBUG(dbgs() << "all done\n" ); |
| 2736 | return false; |
| 2737 | } |
| 2738 | |
| 2739 | //===----------------------------------------------------------------------===// |
| 2740 | // banerjeeMIVtest - |
| 2741 | // Use Banerjee's Inequalities to test an MIV subscript pair. |
| 2742 | // (Wolfe, in the race-car book, calls this the Extreme Value Test.) |
| 2743 | // Generally follows the discussion in Section 2.5.2 of |
| 2744 | // |
| 2745 | // Optimizing Supercompilers for Supercomputers |
| 2746 | // Michael Wolfe |
| 2747 | // |
| 2748 | // The inequalities given on page 25 are simplified in that loops are |
| 2749 | // normalized so that the lower bound is always 0 and the stride is always 1. |
| 2750 | // For example, Wolfe gives |
| 2751 | // |
| 2752 | // LB^<_k = (A^-_k - B_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k |
| 2753 | // |
| 2754 | // where A_k is the coefficient of the kth index in the source subscript, |
| 2755 | // B_k is the coefficient of the kth index in the destination subscript, |
| 2756 | // U_k is the upper bound of the kth index, L_k is the lower bound of the Kth |
| 2757 | // index, and N_k is the stride of the kth index. Since all loops are normalized |
| 2758 | // by the SCEV package, N_k = 1 and L_k = 0, allowing us to simplify the |
| 2759 | // equation to |
| 2760 | // |
| 2761 | // LB^<_k = (A^-_k - B_k)^- (U_k - 0 - 1) + (A_k - B_k)0 - B_k 1 |
| 2762 | // = (A^-_k - B_k)^- (U_k - 1) - B_k |
| 2763 | // |
| 2764 | // Similar simplifications are possible for the other equations. |
| 2765 | // |
| 2766 | // When we can't determine the number of iterations for a loop, |
| 2767 | // we use NULL as an indicator for the worst case, infinity. |
| 2768 | // When computing the upper bound, NULL denotes +inf; |
| 2769 | // for the lower bound, NULL denotes -inf. |
| 2770 | // |
| 2771 | // Return true if dependence disproved. |
| 2772 | bool DependenceInfo::banerjeeMIVtest(const SCEV *Src, const SCEV *Dst, |
| 2773 | const SmallBitVector &Loops, |
| 2774 | FullDependence &Result) const { |
| 2775 | if (!isDependenceTestEnabled(Test: DependenceTestType::BanerjeeMIV)) |
| 2776 | return false; |
| 2777 | |
| 2778 | LLVM_DEBUG(dbgs() << "starting Banerjee\n" ); |
| 2779 | ++BanerjeeApplications; |
| 2780 | LLVM_DEBUG(dbgs() << " Src = " << *Src << '\n'); |
| 2781 | const SCEV *A0; |
| 2782 | CoefficientInfo *A = collectCoeffInfo(Subscript: Src, SrcFlag: true, Constant&: A0); |
| 2783 | LLVM_DEBUG(dbgs() << " Dst = " << *Dst << '\n'); |
| 2784 | const SCEV *B0; |
| 2785 | CoefficientInfo *B = collectCoeffInfo(Subscript: Dst, SrcFlag: false, Constant&: B0); |
| 2786 | BoundInfo *Bound = new BoundInfo[MaxLevels + 1]; |
| 2787 | const SCEV *Delta = SE->getMinusSCEV(LHS: B0, RHS: A0); |
| 2788 | LLVM_DEBUG(dbgs() << "\tDelta = " << *Delta << '\n'); |
| 2789 | |
| 2790 | // Compute bounds for all the * directions. |
| 2791 | LLVM_DEBUG(dbgs() << "\tBounds[*]\n" ); |
| 2792 | for (unsigned K = 1; K <= MaxLevels; ++K) { |
| 2793 | Bound[K].Iterations = A[K].Iterations ? A[K].Iterations : B[K].Iterations; |
| 2794 | Bound[K].Direction = Dependence::DVEntry::ALL; |
| 2795 | Bound[K].DirSet = Dependence::DVEntry::NONE; |
| 2796 | findBoundsALL(A, B, Bound, K); |
| 2797 | #ifndef NDEBUG |
| 2798 | LLVM_DEBUG(dbgs() << "\t " << K << '\t'); |
| 2799 | if (Bound[K].Lower[Dependence::DVEntry::ALL]) |
| 2800 | LLVM_DEBUG(dbgs() << *Bound[K].Lower[Dependence::DVEntry::ALL] << '\t'); |
| 2801 | else |
| 2802 | LLVM_DEBUG(dbgs() << "-inf\t" ); |
| 2803 | if (Bound[K].Upper[Dependence::DVEntry::ALL]) |
| 2804 | LLVM_DEBUG(dbgs() << *Bound[K].Upper[Dependence::DVEntry::ALL] << '\n'); |
| 2805 | else |
| 2806 | LLVM_DEBUG(dbgs() << "+inf\n" ); |
| 2807 | #endif |
| 2808 | } |
| 2809 | |
| 2810 | // Test the *, *, *, ... case. |
| 2811 | bool Disproved = false; |
| 2812 | if (testBounds(DirKind: Dependence::DVEntry::ALL, Level: 0, Bound, Delta)) { |
| 2813 | // Explore the direction vector hierarchy. |
| 2814 | unsigned DepthExpanded = 0; |
| 2815 | unsigned NewDeps = |
| 2816 | exploreDirections(Level: 1, A, B, Bound, Loops, DepthExpanded, Delta); |
| 2817 | if (NewDeps > 0) { |
| 2818 | bool Improved = false; |
| 2819 | for (unsigned K = 1; K <= CommonLevels; ++K) { |
| 2820 | if (Loops[K]) { |
| 2821 | unsigned Old = Result.DV[K - 1].Direction; |
| 2822 | Result.DV[K - 1].Direction = Old & Bound[K].DirSet; |
| 2823 | Improved |= Old != Result.DV[K - 1].Direction; |
| 2824 | if (!Result.DV[K - 1].Direction) { |
| 2825 | Improved = false; |
| 2826 | Disproved = true; |
| 2827 | break; |
| 2828 | } |
| 2829 | } |
| 2830 | } |
| 2831 | if (Improved) |
| 2832 | ++BanerjeeSuccesses; |
| 2833 | } else { |
| 2834 | ++BanerjeeIndependence; |
| 2835 | Disproved = true; |
| 2836 | } |
| 2837 | } else { |
| 2838 | ++BanerjeeIndependence; |
| 2839 | Disproved = true; |
| 2840 | } |
| 2841 | delete[] Bound; |
| 2842 | delete[] A; |
| 2843 | delete[] B; |
| 2844 | return Disproved; |
| 2845 | } |
| 2846 | |
| 2847 | // Hierarchically expands the direction vector |
| 2848 | // search space, combining the directions of discovered dependences |
| 2849 | // in the DirSet field of Bound. Returns the number of distinct |
| 2850 | // dependences discovered. If the dependence is disproved, |
| 2851 | // it will return 0. |
| 2852 | unsigned DependenceInfo::exploreDirections(unsigned Level, CoefficientInfo *A, |
| 2853 | CoefficientInfo *B, BoundInfo *Bound, |
| 2854 | const SmallBitVector &Loops, |
| 2855 | unsigned &DepthExpanded, |
| 2856 | const SCEV *Delta) const { |
| 2857 | // This algorithm has worst case complexity of O(3^n), where 'n' is the number |
| 2858 | // of common loop levels. To avoid excessive compile-time, pessimize all the |
| 2859 | // results and immediately return when the number of common levels is beyond |
| 2860 | // the given threshold. |
| 2861 | if (CommonLevels > MIVMaxLevelThreshold) { |
| 2862 | LLVM_DEBUG(dbgs() << "Number of common levels exceeded the threshold. MIV " |
| 2863 | "direction exploration is terminated.\n" ); |
| 2864 | for (unsigned K = 1; K <= CommonLevels; ++K) |
| 2865 | if (Loops[K]) |
| 2866 | Bound[K].DirSet = Dependence::DVEntry::ALL; |
| 2867 | return 1; |
| 2868 | } |
| 2869 | |
| 2870 | if (Level > CommonLevels) { |
| 2871 | // record result |
| 2872 | LLVM_DEBUG(dbgs() << "\t[" ); |
| 2873 | for (unsigned K = 1; K <= CommonLevels; ++K) { |
| 2874 | if (Loops[K]) { |
| 2875 | Bound[K].DirSet |= Bound[K].Direction; |
| 2876 | #ifndef NDEBUG |
| 2877 | switch (Bound[K].Direction) { |
| 2878 | case Dependence::DVEntry::LT: |
| 2879 | LLVM_DEBUG(dbgs() << " <" ); |
| 2880 | break; |
| 2881 | case Dependence::DVEntry::EQ: |
| 2882 | LLVM_DEBUG(dbgs() << " =" ); |
| 2883 | break; |
| 2884 | case Dependence::DVEntry::GT: |
| 2885 | LLVM_DEBUG(dbgs() << " >" ); |
| 2886 | break; |
| 2887 | case Dependence::DVEntry::ALL: |
| 2888 | LLVM_DEBUG(dbgs() << " *" ); |
| 2889 | break; |
| 2890 | default: |
| 2891 | llvm_unreachable("unexpected Bound[K].Direction" ); |
| 2892 | } |
| 2893 | #endif |
| 2894 | } |
| 2895 | } |
| 2896 | LLVM_DEBUG(dbgs() << " ]\n" ); |
| 2897 | return 1; |
| 2898 | } |
| 2899 | if (Loops[Level]) { |
| 2900 | if (Level > DepthExpanded) { |
| 2901 | DepthExpanded = Level; |
| 2902 | // compute bounds for <, =, > at current level |
| 2903 | findBoundsLT(A, B, Bound, K: Level); |
| 2904 | findBoundsGT(A, B, Bound, K: Level); |
| 2905 | findBoundsEQ(A, B, Bound, K: Level); |
| 2906 | #ifndef NDEBUG |
| 2907 | LLVM_DEBUG(dbgs() << "\tBound for level = " << Level << '\n'); |
| 2908 | LLVM_DEBUG(dbgs() << "\t <\t" ); |
| 2909 | if (Bound[Level].Lower[Dependence::DVEntry::LT]) |
| 2910 | LLVM_DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::LT] |
| 2911 | << '\t'); |
| 2912 | else |
| 2913 | LLVM_DEBUG(dbgs() << "-inf\t" ); |
| 2914 | if (Bound[Level].Upper[Dependence::DVEntry::LT]) |
| 2915 | LLVM_DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::LT] |
| 2916 | << '\n'); |
| 2917 | else |
| 2918 | LLVM_DEBUG(dbgs() << "+inf\n" ); |
| 2919 | LLVM_DEBUG(dbgs() << "\t =\t" ); |
| 2920 | if (Bound[Level].Lower[Dependence::DVEntry::EQ]) |
| 2921 | LLVM_DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::EQ] |
| 2922 | << '\t'); |
| 2923 | else |
| 2924 | LLVM_DEBUG(dbgs() << "-inf\t" ); |
| 2925 | if (Bound[Level].Upper[Dependence::DVEntry::EQ]) |
| 2926 | LLVM_DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::EQ] |
| 2927 | << '\n'); |
| 2928 | else |
| 2929 | LLVM_DEBUG(dbgs() << "+inf\n" ); |
| 2930 | LLVM_DEBUG(dbgs() << "\t >\t" ); |
| 2931 | if (Bound[Level].Lower[Dependence::DVEntry::GT]) |
| 2932 | LLVM_DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::GT] |
| 2933 | << '\t'); |
| 2934 | else |
| 2935 | LLVM_DEBUG(dbgs() << "-inf\t" ); |
| 2936 | if (Bound[Level].Upper[Dependence::DVEntry::GT]) |
| 2937 | LLVM_DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::GT] |
| 2938 | << '\n'); |
| 2939 | else |
| 2940 | LLVM_DEBUG(dbgs() << "+inf\n" ); |
| 2941 | #endif |
| 2942 | } |
| 2943 | |
| 2944 | unsigned NewDeps = 0; |
| 2945 | |
| 2946 | // test bounds for <, *, *, ... |
| 2947 | if (testBounds(DirKind: Dependence::DVEntry::LT, Level, Bound, Delta)) |
| 2948 | NewDeps += exploreDirections(Level: Level + 1, A, B, Bound, Loops, DepthExpanded, |
| 2949 | Delta); |
| 2950 | |
| 2951 | // Test bounds for =, *, *, ... |
| 2952 | if (testBounds(DirKind: Dependence::DVEntry::EQ, Level, Bound, Delta)) |
| 2953 | NewDeps += exploreDirections(Level: Level + 1, A, B, Bound, Loops, DepthExpanded, |
| 2954 | Delta); |
| 2955 | |
| 2956 | // test bounds for >, *, *, ... |
| 2957 | if (testBounds(DirKind: Dependence::DVEntry::GT, Level, Bound, Delta)) |
| 2958 | NewDeps += exploreDirections(Level: Level + 1, A, B, Bound, Loops, DepthExpanded, |
| 2959 | Delta); |
| 2960 | |
| 2961 | Bound[Level].Direction = Dependence::DVEntry::ALL; |
| 2962 | return NewDeps; |
| 2963 | } else |
| 2964 | return exploreDirections(Level: Level + 1, A, B, Bound, Loops, DepthExpanded, |
| 2965 | Delta); |
| 2966 | } |
| 2967 | |
| 2968 | // Returns true iff the current bounds are plausible. |
| 2969 | bool DependenceInfo::testBounds(unsigned char DirKind, unsigned Level, |
| 2970 | BoundInfo *Bound, const SCEV *Delta) const { |
| 2971 | Bound[Level].Direction = DirKind; |
| 2972 | if (const SCEV *LowerBound = getLowerBound(Bound)) |
| 2973 | if (SE->isKnownPredicate(Pred: CmpInst::ICMP_SGT, LHS: LowerBound, RHS: Delta)) |
| 2974 | return false; |
| 2975 | if (const SCEV *UpperBound = getUpperBound(Bound)) |
| 2976 | if (SE->isKnownPredicate(Pred: CmpInst::ICMP_SGT, LHS: Delta, RHS: UpperBound)) |
| 2977 | return false; |
| 2978 | return true; |
| 2979 | } |
| 2980 | |
| 2981 | // Computes the upper and lower bounds for level K |
| 2982 | // using the * direction. Records them in Bound. |
| 2983 | // Wolfe gives the equations |
| 2984 | // |
| 2985 | // LB^*_k = (A^-_k - B^+_k)(U_k - L_k) + (A_k - B_k)L_k |
| 2986 | // UB^*_k = (A^+_k - B^-_k)(U_k - L_k) + (A_k - B_k)L_k |
| 2987 | // |
| 2988 | // Since we normalize loops, we can simplify these equations to |
| 2989 | // |
| 2990 | // LB^*_k = (A^-_k - B^+_k)U_k |
| 2991 | // UB^*_k = (A^+_k - B^-_k)U_k |
| 2992 | // |
| 2993 | // We must be careful to handle the case where the upper bound is unknown. |
| 2994 | // Note that the lower bound is always <= 0 |
| 2995 | // and the upper bound is always >= 0. |
| 2996 | void DependenceInfo::findBoundsALL(CoefficientInfo *A, CoefficientInfo *B, |
| 2997 | BoundInfo *Bound, unsigned K) const { |
| 2998 | Bound[K].Lower[Dependence::DVEntry::ALL] = |
| 2999 | nullptr; // Default value = -infinity. |
| 3000 | Bound[K].Upper[Dependence::DVEntry::ALL] = |
| 3001 | nullptr; // Default value = +infinity. |
| 3002 | if (Bound[K].Iterations) { |
| 3003 | Bound[K].Lower[Dependence::DVEntry::ALL] = SE->getMulExpr( |
| 3004 | LHS: SE->getMinusSCEV(LHS: A[K].NegPart, RHS: B[K].PosPart), RHS: Bound[K].Iterations); |
| 3005 | Bound[K].Upper[Dependence::DVEntry::ALL] = SE->getMulExpr( |
| 3006 | LHS: SE->getMinusSCEV(LHS: A[K].PosPart, RHS: B[K].NegPart), RHS: Bound[K].Iterations); |
| 3007 | } else { |
| 3008 | // If the difference is 0, we won't need to know the number of iterations. |
| 3009 | if (SE->isKnownPredicate(Pred: CmpInst::ICMP_EQ, LHS: A[K].NegPart, RHS: B[K].PosPart)) |
| 3010 | Bound[K].Lower[Dependence::DVEntry::ALL] = |
| 3011 | SE->getZero(Ty: A[K].Coeff->getType()); |
| 3012 | if (SE->isKnownPredicate(Pred: CmpInst::ICMP_EQ, LHS: A[K].PosPart, RHS: B[K].NegPart)) |
| 3013 | Bound[K].Upper[Dependence::DVEntry::ALL] = |
| 3014 | SE->getZero(Ty: A[K].Coeff->getType()); |
| 3015 | } |
| 3016 | } |
| 3017 | |
| 3018 | // Computes the upper and lower bounds for level K |
| 3019 | // using the = direction. Records them in Bound. |
| 3020 | // Wolfe gives the equations |
| 3021 | // |
| 3022 | // LB^=_k = (A_k - B_k)^- (U_k - L_k) + (A_k - B_k)L_k |
| 3023 | // UB^=_k = (A_k - B_k)^+ (U_k - L_k) + (A_k - B_k)L_k |
| 3024 | // |
| 3025 | // Since we normalize loops, we can simplify these equations to |
| 3026 | // |
| 3027 | // LB^=_k = (A_k - B_k)^- U_k |
| 3028 | // UB^=_k = (A_k - B_k)^+ U_k |
| 3029 | // |
| 3030 | // We must be careful to handle the case where the upper bound is unknown. |
| 3031 | // Note that the lower bound is always <= 0 |
| 3032 | // and the upper bound is always >= 0. |
| 3033 | void DependenceInfo::findBoundsEQ(CoefficientInfo *A, CoefficientInfo *B, |
| 3034 | BoundInfo *Bound, unsigned K) const { |
| 3035 | Bound[K].Lower[Dependence::DVEntry::EQ] = |
| 3036 | nullptr; // Default value = -infinity. |
| 3037 | Bound[K].Upper[Dependence::DVEntry::EQ] = |
| 3038 | nullptr; // Default value = +infinity. |
| 3039 | if (Bound[K].Iterations) { |
| 3040 | const SCEV *Delta = SE->getMinusSCEV(LHS: A[K].Coeff, RHS: B[K].Coeff); |
| 3041 | const SCEV *NegativePart = getNegativePart(X: Delta); |
| 3042 | Bound[K].Lower[Dependence::DVEntry::EQ] = |
| 3043 | SE->getMulExpr(LHS: NegativePart, RHS: Bound[K].Iterations); |
| 3044 | const SCEV *PositivePart = getPositivePart(X: Delta); |
| 3045 | Bound[K].Upper[Dependence::DVEntry::EQ] = |
| 3046 | SE->getMulExpr(LHS: PositivePart, RHS: Bound[K].Iterations); |
| 3047 | } else { |
| 3048 | // If the positive/negative part of the difference is 0, |
| 3049 | // we won't need to know the number of iterations. |
| 3050 | const SCEV *Delta = SE->getMinusSCEV(LHS: A[K].Coeff, RHS: B[K].Coeff); |
| 3051 | const SCEV *NegativePart = getNegativePart(X: Delta); |
| 3052 | if (NegativePart->isZero()) |
| 3053 | Bound[K].Lower[Dependence::DVEntry::EQ] = NegativePart; // Zero |
| 3054 | const SCEV *PositivePart = getPositivePart(X: Delta); |
| 3055 | if (PositivePart->isZero()) |
| 3056 | Bound[K].Upper[Dependence::DVEntry::EQ] = PositivePart; // Zero |
| 3057 | } |
| 3058 | } |
| 3059 | |
| 3060 | // Computes the upper and lower bounds for level K |
| 3061 | // using the < direction. Records them in Bound. |
| 3062 | // Wolfe gives the equations |
| 3063 | // |
| 3064 | // LB^<_k = (A^-_k - B_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k |
| 3065 | // UB^<_k = (A^+_k - B_k)^+ (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k |
| 3066 | // |
| 3067 | // Since we normalize loops, we can simplify these equations to |
| 3068 | // |
| 3069 | // LB^<_k = (A^-_k - B_k)^- (U_k - 1) - B_k |
| 3070 | // UB^<_k = (A^+_k - B_k)^+ (U_k - 1) - B_k |
| 3071 | // |
| 3072 | // We must be careful to handle the case where the upper bound is unknown. |
| 3073 | void DependenceInfo::findBoundsLT(CoefficientInfo *A, CoefficientInfo *B, |
| 3074 | BoundInfo *Bound, unsigned K) const { |
| 3075 | Bound[K].Lower[Dependence::DVEntry::LT] = |
| 3076 | nullptr; // Default value = -infinity. |
| 3077 | Bound[K].Upper[Dependence::DVEntry::LT] = |
| 3078 | nullptr; // Default value = +infinity. |
| 3079 | if (Bound[K].Iterations) { |
| 3080 | const SCEV *Iter_1 = SE->getMinusSCEV( |
| 3081 | LHS: Bound[K].Iterations, RHS: SE->getOne(Ty: Bound[K].Iterations->getType())); |
| 3082 | const SCEV *NegPart = |
| 3083 | getNegativePart(X: SE->getMinusSCEV(LHS: A[K].NegPart, RHS: B[K].Coeff)); |
| 3084 | Bound[K].Lower[Dependence::DVEntry::LT] = |
| 3085 | SE->getMinusSCEV(LHS: SE->getMulExpr(LHS: NegPart, RHS: Iter_1), RHS: B[K].Coeff); |
| 3086 | const SCEV *PosPart = |
| 3087 | getPositivePart(X: SE->getMinusSCEV(LHS: A[K].PosPart, RHS: B[K].Coeff)); |
| 3088 | Bound[K].Upper[Dependence::DVEntry::LT] = |
| 3089 | SE->getMinusSCEV(LHS: SE->getMulExpr(LHS: PosPart, RHS: Iter_1), RHS: B[K].Coeff); |
| 3090 | } else { |
| 3091 | // If the positive/negative part of the difference is 0, |
| 3092 | // we won't need to know the number of iterations. |
| 3093 | const SCEV *NegPart = |
| 3094 | getNegativePart(X: SE->getMinusSCEV(LHS: A[K].NegPart, RHS: B[K].Coeff)); |
| 3095 | if (NegPart->isZero()) |
| 3096 | Bound[K].Lower[Dependence::DVEntry::LT] = SE->getNegativeSCEV(V: B[K].Coeff); |
| 3097 | const SCEV *PosPart = |
| 3098 | getPositivePart(X: SE->getMinusSCEV(LHS: A[K].PosPart, RHS: B[K].Coeff)); |
| 3099 | if (PosPart->isZero()) |
| 3100 | Bound[K].Upper[Dependence::DVEntry::LT] = SE->getNegativeSCEV(V: B[K].Coeff); |
| 3101 | } |
| 3102 | } |
| 3103 | |
| 3104 | // Computes the upper and lower bounds for level K |
| 3105 | // using the > direction. Records them in Bound. |
| 3106 | // Wolfe gives the equations |
| 3107 | // |
| 3108 | // LB^>_k = (A_k - B^+_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k + A_k N_k |
| 3109 | // UB^>_k = (A_k - B^-_k)^+ (U_k - L_k - N_k) + (A_k - B_k)L_k + A_k N_k |
| 3110 | // |
| 3111 | // Since we normalize loops, we can simplify these equations to |
| 3112 | // |
| 3113 | // LB^>_k = (A_k - B^+_k)^- (U_k - 1) + A_k |
| 3114 | // UB^>_k = (A_k - B^-_k)^+ (U_k - 1) + A_k |
| 3115 | // |
| 3116 | // We must be careful to handle the case where the upper bound is unknown. |
| 3117 | void DependenceInfo::findBoundsGT(CoefficientInfo *A, CoefficientInfo *B, |
| 3118 | BoundInfo *Bound, unsigned K) const { |
| 3119 | Bound[K].Lower[Dependence::DVEntry::GT] = |
| 3120 | nullptr; // Default value = -infinity. |
| 3121 | Bound[K].Upper[Dependence::DVEntry::GT] = |
| 3122 | nullptr; // Default value = +infinity. |
| 3123 | if (Bound[K].Iterations) { |
| 3124 | const SCEV *Iter_1 = SE->getMinusSCEV( |
| 3125 | LHS: Bound[K].Iterations, RHS: SE->getOne(Ty: Bound[K].Iterations->getType())); |
| 3126 | const SCEV *NegPart = |
| 3127 | getNegativePart(X: SE->getMinusSCEV(LHS: A[K].Coeff, RHS: B[K].PosPart)); |
| 3128 | Bound[K].Lower[Dependence::DVEntry::GT] = |
| 3129 | SE->getAddExpr(LHS: SE->getMulExpr(LHS: NegPart, RHS: Iter_1), RHS: A[K].Coeff); |
| 3130 | const SCEV *PosPart = |
| 3131 | getPositivePart(X: SE->getMinusSCEV(LHS: A[K].Coeff, RHS: B[K].NegPart)); |
| 3132 | Bound[K].Upper[Dependence::DVEntry::GT] = |
| 3133 | SE->getAddExpr(LHS: SE->getMulExpr(LHS: PosPart, RHS: Iter_1), RHS: A[K].Coeff); |
| 3134 | } else { |
| 3135 | // If the positive/negative part of the difference is 0, |
| 3136 | // we won't need to know the number of iterations. |
| 3137 | const SCEV *NegPart = |
| 3138 | getNegativePart(X: SE->getMinusSCEV(LHS: A[K].Coeff, RHS: B[K].PosPart)); |
| 3139 | if (NegPart->isZero()) |
| 3140 | Bound[K].Lower[Dependence::DVEntry::GT] = A[K].Coeff; |
| 3141 | const SCEV *PosPart = |
| 3142 | getPositivePart(X: SE->getMinusSCEV(LHS: A[K].Coeff, RHS: B[K].NegPart)); |
| 3143 | if (PosPart->isZero()) |
| 3144 | Bound[K].Upper[Dependence::DVEntry::GT] = A[K].Coeff; |
| 3145 | } |
| 3146 | } |
| 3147 | |
| 3148 | // X^+ = max(X, 0) |
| 3149 | const SCEV *DependenceInfo::getPositivePart(const SCEV *X) const { |
| 3150 | return SE->getSMaxExpr(LHS: X, RHS: SE->getZero(Ty: X->getType())); |
| 3151 | } |
| 3152 | |
| 3153 | // X^- = min(X, 0) |
| 3154 | const SCEV *DependenceInfo::getNegativePart(const SCEV *X) const { |
| 3155 | return SE->getSMinExpr(LHS: X, RHS: SE->getZero(Ty: X->getType())); |
| 3156 | } |
| 3157 | |
| 3158 | // Walks through the subscript, |
| 3159 | // collecting each coefficient, the associated loop bounds, |
| 3160 | // and recording its positive and negative parts for later use. |
| 3161 | DependenceInfo::CoefficientInfo * |
| 3162 | DependenceInfo::collectCoeffInfo(const SCEV *Subscript, bool SrcFlag, |
| 3163 | const SCEV *&Constant) const { |
| 3164 | const SCEV *Zero = SE->getZero(Ty: Subscript->getType()); |
| 3165 | CoefficientInfo *CI = new CoefficientInfo[MaxLevels + 1]; |
| 3166 | for (unsigned K = 1; K <= MaxLevels; ++K) { |
| 3167 | CI[K].Coeff = Zero; |
| 3168 | CI[K].PosPart = Zero; |
| 3169 | CI[K].NegPart = Zero; |
| 3170 | CI[K].Iterations = nullptr; |
| 3171 | } |
| 3172 | while (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Val: Subscript)) { |
| 3173 | const Loop *L = AddRec->getLoop(); |
| 3174 | unsigned K = SrcFlag ? mapSrcLoop(SrcLoop: L) : mapDstLoop(DstLoop: L); |
| 3175 | CI[K].Coeff = AddRec->getStepRecurrence(SE&: *SE); |
| 3176 | CI[K].PosPart = getPositivePart(X: CI[K].Coeff); |
| 3177 | CI[K].NegPart = getNegativePart(X: CI[K].Coeff); |
| 3178 | CI[K].Iterations = collectUpperBound(L, T: Subscript->getType()); |
| 3179 | Subscript = AddRec->getStart(); |
| 3180 | } |
| 3181 | Constant = Subscript; |
| 3182 | #ifndef NDEBUG |
| 3183 | LLVM_DEBUG(dbgs() << "\tCoefficient Info\n" ); |
| 3184 | for (unsigned K = 1; K <= MaxLevels; ++K) { |
| 3185 | LLVM_DEBUG(dbgs() << "\t " << K << "\t" << *CI[K].Coeff); |
| 3186 | LLVM_DEBUG(dbgs() << "\tPos Part = " ); |
| 3187 | LLVM_DEBUG(dbgs() << *CI[K].PosPart); |
| 3188 | LLVM_DEBUG(dbgs() << "\tNeg Part = " ); |
| 3189 | LLVM_DEBUG(dbgs() << *CI[K].NegPart); |
| 3190 | LLVM_DEBUG(dbgs() << "\tUpper Bound = " ); |
| 3191 | if (CI[K].Iterations) |
| 3192 | LLVM_DEBUG(dbgs() << *CI[K].Iterations); |
| 3193 | else |
| 3194 | LLVM_DEBUG(dbgs() << "+inf" ); |
| 3195 | LLVM_DEBUG(dbgs() << '\n'); |
| 3196 | } |
| 3197 | LLVM_DEBUG(dbgs() << "\t Constant = " << *Subscript << '\n'); |
| 3198 | #endif |
| 3199 | return CI; |
| 3200 | } |
| 3201 | |
| 3202 | // Looks through all the bounds info and |
| 3203 | // computes the lower bound given the current direction settings |
| 3204 | // at each level. If the lower bound for any level is -inf, |
| 3205 | // the result is -inf. |
| 3206 | const SCEV *DependenceInfo::getLowerBound(BoundInfo *Bound) const { |
| 3207 | const SCEV *Sum = Bound[1].Lower[Bound[1].Direction]; |
| 3208 | for (unsigned K = 2; Sum && K <= MaxLevels; ++K) { |
| 3209 | if (Bound[K].Lower[Bound[K].Direction]) |
| 3210 | Sum = SE->getAddExpr(LHS: Sum, RHS: Bound[K].Lower[Bound[K].Direction]); |
| 3211 | else |
| 3212 | Sum = nullptr; |
| 3213 | } |
| 3214 | return Sum; |
| 3215 | } |
| 3216 | |
| 3217 | // Looks through all the bounds info and |
| 3218 | // computes the upper bound given the current direction settings |
| 3219 | // at each level. If the upper bound at any level is +inf, |
| 3220 | // the result is +inf. |
| 3221 | const SCEV *DependenceInfo::getUpperBound(BoundInfo *Bound) const { |
| 3222 | const SCEV *Sum = Bound[1].Upper[Bound[1].Direction]; |
| 3223 | for (unsigned K = 2; Sum && K <= MaxLevels; ++K) { |
| 3224 | if (Bound[K].Upper[Bound[K].Direction]) |
| 3225 | Sum = SE->getAddExpr(LHS: Sum, RHS: Bound[K].Upper[Bound[K].Direction]); |
| 3226 | else |
| 3227 | Sum = nullptr; |
| 3228 | } |
| 3229 | return Sum; |
| 3230 | } |
| 3231 | |
| 3232 | /// Check if we can delinearize the subscripts. If the SCEVs representing the |
| 3233 | /// source and destination array references are recurrences on a nested loop, |
| 3234 | /// this function flattens the nested recurrences into separate recurrences |
| 3235 | /// for each loop level. |
| 3236 | bool DependenceInfo::tryDelinearize(Instruction *Src, Instruction *Dst, |
| 3237 | SmallVectorImpl<Subscript> &Pair) { |
| 3238 | assert(isLoadOrStore(Src) && "instruction is not load or store" ); |
| 3239 | assert(isLoadOrStore(Dst) && "instruction is not load or store" ); |
| 3240 | Value *SrcPtr = getLoadStorePointerOperand(V: Src); |
| 3241 | Value *DstPtr = getLoadStorePointerOperand(V: Dst); |
| 3242 | Loop *SrcLoop = LI->getLoopFor(BB: Src->getParent()); |
| 3243 | Loop *DstLoop = LI->getLoopFor(BB: Dst->getParent()); |
| 3244 | const SCEV *SrcAccessFn = SE->getSCEVAtScope(V: SrcPtr, L: SrcLoop); |
| 3245 | const SCEV *DstAccessFn = SE->getSCEVAtScope(V: DstPtr, L: DstLoop); |
| 3246 | const SCEVUnknown *SrcBase = |
| 3247 | dyn_cast<SCEVUnknown>(Val: SE->getPointerBase(V: SrcAccessFn)); |
| 3248 | const SCEVUnknown *DstBase = |
| 3249 | dyn_cast<SCEVUnknown>(Val: SE->getPointerBase(V: DstAccessFn)); |
| 3250 | |
| 3251 | if (!SrcBase || !DstBase || SrcBase != DstBase) |
| 3252 | return false; |
| 3253 | |
| 3254 | SmallVector<const SCEV *, 4> SrcSubscripts, DstSubscripts; |
| 3255 | |
| 3256 | if (!tryDelinearizeFixedSize(Src, Dst, SrcAccessFn, DstAccessFn, |
| 3257 | SrcSubscripts, DstSubscripts) && |
| 3258 | !tryDelinearizeParametricSize(Src, Dst, SrcAccessFn, DstAccessFn, |
| 3259 | SrcSubscripts, DstSubscripts)) |
| 3260 | return false; |
| 3261 | |
| 3262 | assert(isLoopInvariant(SrcBase, SrcLoop) && |
| 3263 | isLoopInvariant(DstBase, DstLoop) && |
| 3264 | "Expected SrcBase and DstBase to be loop invariant" ); |
| 3265 | |
| 3266 | int Size = SrcSubscripts.size(); |
| 3267 | LLVM_DEBUG({ |
| 3268 | dbgs() << "\nSrcSubscripts: " ; |
| 3269 | for (int I = 0; I < Size; I++) |
| 3270 | dbgs() << *SrcSubscripts[I]; |
| 3271 | dbgs() << "\nDstSubscripts: " ; |
| 3272 | for (int I = 0; I < Size; I++) |
| 3273 | dbgs() << *DstSubscripts[I]; |
| 3274 | }); |
| 3275 | |
| 3276 | // The delinearization transforms a single-subscript MIV dependence test into |
| 3277 | // a multi-subscript SIV dependence test that is easier to compute. So we |
| 3278 | // resize Pair to contain as many pairs of subscripts as the delinearization |
| 3279 | // has found, and then initialize the pairs following the delinearization. |
| 3280 | Pair.resize(N: Size); |
| 3281 | SCEVMonotonicityChecker MonChecker(SE); |
| 3282 | const Loop *OutermostLoop = SrcLoop ? SrcLoop->getOutermostLoop() : nullptr; |
| 3283 | for (int I = 0; I < Size; ++I) { |
| 3284 | Pair[I].Src = SrcSubscripts[I]; |
| 3285 | Pair[I].Dst = DstSubscripts[I]; |
| 3286 | unifySubscriptType(Pairs: &Pair[I]); |
| 3287 | |
| 3288 | if (EnableMonotonicityCheck) { |
| 3289 | if (MonChecker.checkMonotonicity(Expr: Pair[I].Src, OutermostLoop).isUnknown()) |
| 3290 | return false; |
| 3291 | if (MonChecker.checkMonotonicity(Expr: Pair[I].Dst, OutermostLoop).isUnknown()) |
| 3292 | return false; |
| 3293 | } |
| 3294 | } |
| 3295 | |
| 3296 | return true; |
| 3297 | } |
| 3298 | |
| 3299 | /// Try to delinearize \p SrcAccessFn and \p DstAccessFn if the underlying |
| 3300 | /// arrays accessed are fixed-size arrays. Return true if delinearization was |
| 3301 | /// successful. |
| 3302 | bool DependenceInfo::tryDelinearizeFixedSize( |
| 3303 | Instruction *Src, Instruction *Dst, const SCEV *SrcAccessFn, |
| 3304 | const SCEV *DstAccessFn, SmallVectorImpl<const SCEV *> &SrcSubscripts, |
| 3305 | SmallVectorImpl<const SCEV *> &DstSubscripts) { |
| 3306 | LLVM_DEBUG({ |
| 3307 | const SCEVUnknown *SrcBase = |
| 3308 | dyn_cast<SCEVUnknown>(SE->getPointerBase(SrcAccessFn)); |
| 3309 | const SCEVUnknown *DstBase = |
| 3310 | dyn_cast<SCEVUnknown>(SE->getPointerBase(DstAccessFn)); |
| 3311 | assert(SrcBase && DstBase && SrcBase == DstBase && |
| 3312 | "expected src and dst scev unknowns to be equal" ); |
| 3313 | }); |
| 3314 | |
| 3315 | const SCEV *ElemSize = SE->getElementSize(Inst: Src); |
| 3316 | assert(ElemSize == SE->getElementSize(Dst) && "Different element sizes" ); |
| 3317 | SmallVector<const SCEV *, 4> SrcSizes, DstSizes; |
| 3318 | if (!delinearizeFixedSizeArray(SE&: *SE, Expr: SE->removePointerBase(S: SrcAccessFn), |
| 3319 | Subscripts&: SrcSubscripts, Sizes&: SrcSizes, ElementSize: ElemSize) || |
| 3320 | !delinearizeFixedSizeArray(SE&: *SE, Expr: SE->removePointerBase(S: DstAccessFn), |
| 3321 | Subscripts&: DstSubscripts, Sizes&: DstSizes, ElementSize: ElemSize)) |
| 3322 | return false; |
| 3323 | |
| 3324 | // Check that the two size arrays are non-empty and equal in length and |
| 3325 | // value. SCEV expressions are uniqued, so we can compare pointers. |
| 3326 | if (SrcSizes.size() != DstSizes.size() || |
| 3327 | !std::equal(first1: SrcSizes.begin(), last1: SrcSizes.end(), first2: DstSizes.begin())) { |
| 3328 | SrcSubscripts.clear(); |
| 3329 | DstSubscripts.clear(); |
| 3330 | return false; |
| 3331 | } |
| 3332 | |
| 3333 | assert(SrcSubscripts.size() == DstSubscripts.size() && |
| 3334 | "Expected equal number of entries in the list of SrcSubscripts and " |
| 3335 | "DstSubscripts." ); |
| 3336 | |
| 3337 | // In general we cannot safely assume that the subscripts recovered from GEPs |
| 3338 | // are in the range of values defined for their corresponding array |
| 3339 | // dimensions. For example some C language usage/interpretation make it |
| 3340 | // impossible to verify this at compile-time. As such we can only delinearize |
| 3341 | // iff the subscripts are positive and are less than the range of the |
| 3342 | // dimension. |
| 3343 | if (!DisableDelinearizationChecks) { |
| 3344 | if (!validateDelinearizationResult(SE&: *SE, Sizes: SrcSizes, Subscripts: SrcSubscripts) || |
| 3345 | !validateDelinearizationResult(SE&: *SE, Sizes: DstSizes, Subscripts: DstSubscripts)) { |
| 3346 | SrcSubscripts.clear(); |
| 3347 | DstSubscripts.clear(); |
| 3348 | return false; |
| 3349 | } |
| 3350 | } |
| 3351 | LLVM_DEBUG({ |
| 3352 | dbgs() << "Delinearized subscripts of fixed-size array\n" |
| 3353 | << "SrcGEP:" << *getLoadStorePointerOperand(Src) << "\n" |
| 3354 | << "DstGEP:" << *getLoadStorePointerOperand(Dst) << "\n" ; |
| 3355 | }); |
| 3356 | return true; |
| 3357 | } |
| 3358 | |
| 3359 | bool DependenceInfo::tryDelinearizeParametricSize( |
| 3360 | Instruction *Src, Instruction *Dst, const SCEV *SrcAccessFn, |
| 3361 | const SCEV *DstAccessFn, SmallVectorImpl<const SCEV *> &SrcSubscripts, |
| 3362 | SmallVectorImpl<const SCEV *> &DstSubscripts) { |
| 3363 | |
| 3364 | const SCEVUnknown *SrcBase = |
| 3365 | dyn_cast<SCEVUnknown>(Val: SE->getPointerBase(V: SrcAccessFn)); |
| 3366 | const SCEVUnknown *DstBase = |
| 3367 | dyn_cast<SCEVUnknown>(Val: SE->getPointerBase(V: DstAccessFn)); |
| 3368 | assert(SrcBase && DstBase && SrcBase == DstBase && |
| 3369 | "expected src and dst scev unknowns to be equal" ); |
| 3370 | |
| 3371 | const SCEV *ElementSize = SE->getElementSize(Inst: Src); |
| 3372 | if (ElementSize != SE->getElementSize(Inst: Dst)) |
| 3373 | return false; |
| 3374 | |
| 3375 | const SCEV *SrcSCEV = SE->getMinusSCEV(LHS: SrcAccessFn, RHS: SrcBase); |
| 3376 | const SCEV *DstSCEV = SE->getMinusSCEV(LHS: DstAccessFn, RHS: DstBase); |
| 3377 | |
| 3378 | const SCEVAddRecExpr *SrcAR = dyn_cast<SCEVAddRecExpr>(Val: SrcSCEV); |
| 3379 | const SCEVAddRecExpr *DstAR = dyn_cast<SCEVAddRecExpr>(Val: DstSCEV); |
| 3380 | if (!SrcAR || !DstAR || !SrcAR->isAffine() || !DstAR->isAffine()) |
| 3381 | return false; |
| 3382 | |
| 3383 | // First step: collect parametric terms in both array references. |
| 3384 | SmallVector<const SCEV *, 4> Terms; |
| 3385 | collectParametricTerms(SE&: *SE, Expr: SrcAR, Terms); |
| 3386 | collectParametricTerms(SE&: *SE, Expr: DstAR, Terms); |
| 3387 | |
| 3388 | // Second step: find subscript sizes. |
| 3389 | SmallVector<const SCEV *, 4> Sizes; |
| 3390 | findArrayDimensions(SE&: *SE, Terms, Sizes, ElementSize); |
| 3391 | |
| 3392 | // Third step: compute the access functions for each subscript. |
| 3393 | computeAccessFunctions(SE&: *SE, Expr: SrcAR, Subscripts&: SrcSubscripts, Sizes); |
| 3394 | computeAccessFunctions(SE&: *SE, Expr: DstAR, Subscripts&: DstSubscripts, Sizes); |
| 3395 | |
| 3396 | // Fail when there is only a subscript: that's a linearized access function. |
| 3397 | if (SrcSubscripts.size() < 2 || DstSubscripts.size() < 2 || |
| 3398 | SrcSubscripts.size() != DstSubscripts.size()) |
| 3399 | return false; |
| 3400 | |
| 3401 | // Statically check that the array bounds are in-range. The first subscript we |
| 3402 | // don't have a size for and it cannot overflow into another subscript, so is |
| 3403 | // always safe. The others need to be 0 <= subscript[i] < bound, for both src |
| 3404 | // and dst. |
| 3405 | // FIXME: It may be better to record these sizes and add them as constraints |
| 3406 | // to the dependency checks. |
| 3407 | if (!DisableDelinearizationChecks) |
| 3408 | if (!validateDelinearizationResult(SE&: *SE, Sizes, Subscripts: SrcSubscripts) || |
| 3409 | !validateDelinearizationResult(SE&: *SE, Sizes, Subscripts: DstSubscripts)) |
| 3410 | return false; |
| 3411 | |
| 3412 | return true; |
| 3413 | } |
| 3414 | |
| 3415 | //===----------------------------------------------------------------------===// |
| 3416 | |
| 3417 | #ifndef NDEBUG |
| 3418 | // For debugging purposes, dump a small bit vector to dbgs(). |
| 3419 | static void dumpSmallBitVector(SmallBitVector &BV) { |
| 3420 | dbgs() << "{" ; |
| 3421 | for (unsigned VI : BV.set_bits()) { |
| 3422 | dbgs() << VI; |
| 3423 | if (BV.find_next(VI) >= 0) |
| 3424 | dbgs() << ' '; |
| 3425 | } |
| 3426 | dbgs() << "}\n" ; |
| 3427 | } |
| 3428 | #endif |
| 3429 | |
| 3430 | bool DependenceInfo::invalidate(Function &F, const PreservedAnalyses &PA, |
| 3431 | FunctionAnalysisManager::Invalidator &Inv) { |
| 3432 | // Check if the analysis itself has been invalidated. |
| 3433 | auto PAC = PA.getChecker<DependenceAnalysis>(); |
| 3434 | if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<Function>>()) |
| 3435 | return true; |
| 3436 | |
| 3437 | // Check transitive dependencies. |
| 3438 | return Inv.invalidate<AAManager>(IR&: F, PA) || |
| 3439 | Inv.invalidate<ScalarEvolutionAnalysis>(IR&: F, PA) || |
| 3440 | Inv.invalidate<LoopAnalysis>(IR&: F, PA); |
| 3441 | } |
| 3442 | |
| 3443 | // depends - |
| 3444 | // Returns NULL if there is no dependence. |
| 3445 | // Otherwise, return a Dependence with as many details as possible. |
| 3446 | // Corresponds to Section 3.1 in the paper |
| 3447 | // |
| 3448 | // Practical Dependence Testing |
| 3449 | // Goff, Kennedy, Tseng |
| 3450 | // PLDI 1991 |
| 3451 | // |
| 3452 | std::unique_ptr<Dependence> |
| 3453 | DependenceInfo::depends(Instruction *Src, Instruction *Dst, |
| 3454 | bool UnderRuntimeAssumptions) { |
| 3455 | SmallVector<const SCEVPredicate *, 4> Assume; |
| 3456 | bool PossiblyLoopIndependent = true; |
| 3457 | if (Src == Dst) |
| 3458 | PossiblyLoopIndependent = false; |
| 3459 | |
| 3460 | if (!(Src->mayReadOrWriteMemory() && Dst->mayReadOrWriteMemory())) |
| 3461 | // if both instructions don't reference memory, there's no dependence |
| 3462 | return nullptr; |
| 3463 | |
| 3464 | if (!isLoadOrStore(I: Src) || !isLoadOrStore(I: Dst)) { |
| 3465 | // can only analyze simple loads and stores, i.e., no calls, invokes, etc. |
| 3466 | LLVM_DEBUG(dbgs() << "can only handle simple loads and stores\n" ); |
| 3467 | return std::make_unique<Dependence>(args&: Src, args&: Dst, |
| 3468 | args: SCEVUnionPredicate(Assume, *SE)); |
| 3469 | } |
| 3470 | |
| 3471 | const MemoryLocation &DstLoc = MemoryLocation::get(Inst: Dst); |
| 3472 | const MemoryLocation &SrcLoc = MemoryLocation::get(Inst: Src); |
| 3473 | |
| 3474 | switch (underlyingObjectsAlias(AA, DL: F->getDataLayout(), LocA: DstLoc, LocB: SrcLoc)) { |
| 3475 | case AliasResult::MayAlias: |
| 3476 | case AliasResult::PartialAlias: |
| 3477 | // cannot analyse objects if we don't understand their aliasing. |
| 3478 | LLVM_DEBUG(dbgs() << "can't analyze may or partial alias\n" ); |
| 3479 | return std::make_unique<Dependence>(args&: Src, args&: Dst, |
| 3480 | args: SCEVUnionPredicate(Assume, *SE)); |
| 3481 | case AliasResult::NoAlias: |
| 3482 | // If the objects noalias, they are distinct, accesses are independent. |
| 3483 | LLVM_DEBUG(dbgs() << "no alias\n" ); |
| 3484 | return nullptr; |
| 3485 | case AliasResult::MustAlias: |
| 3486 | break; // The underlying objects alias; test accesses for dependence. |
| 3487 | } |
| 3488 | |
| 3489 | if (DstLoc.Size != SrcLoc.Size || !DstLoc.Size.isPrecise() || |
| 3490 | !SrcLoc.Size.isPrecise()) { |
| 3491 | // The dependence test gets confused if the size of the memory accesses |
| 3492 | // differ. |
| 3493 | LLVM_DEBUG(dbgs() << "can't analyze must alias with different sizes\n" ); |
| 3494 | return std::make_unique<Dependence>(args&: Src, args&: Dst, |
| 3495 | args: SCEVUnionPredicate(Assume, *SE)); |
| 3496 | } |
| 3497 | |
| 3498 | Value *SrcPtr = getLoadStorePointerOperand(V: Src); |
| 3499 | Value *DstPtr = getLoadStorePointerOperand(V: Dst); |
| 3500 | const SCEV *SrcSCEV = SE->getSCEV(V: SrcPtr); |
| 3501 | const SCEV *DstSCEV = SE->getSCEV(V: DstPtr); |
| 3502 | LLVM_DEBUG(dbgs() << " SrcSCEV = " << *SrcSCEV << "\n" ); |
| 3503 | LLVM_DEBUG(dbgs() << " DstSCEV = " << *DstSCEV << "\n" ); |
| 3504 | const SCEV *SrcBase = SE->getPointerBase(V: SrcSCEV); |
| 3505 | const SCEV *DstBase = SE->getPointerBase(V: DstSCEV); |
| 3506 | if (SrcBase != DstBase) { |
| 3507 | // If two pointers have different bases, trying to analyze indexes won't |
| 3508 | // work; we can't compare them to each other. This can happen, for example, |
| 3509 | // if one is produced by an LCSSA PHI node. |
| 3510 | // |
| 3511 | // We check this upfront so we don't crash in cases where getMinusSCEV() |
| 3512 | // returns a SCEVCouldNotCompute. |
| 3513 | LLVM_DEBUG(dbgs() << "can't analyze SCEV with different pointer base\n" ); |
| 3514 | return std::make_unique<Dependence>(args&: Src, args&: Dst, |
| 3515 | args: SCEVUnionPredicate(Assume, *SE)); |
| 3516 | } |
| 3517 | |
| 3518 | // Even if the base pointers are the same, they may not be loop-invariant. It |
| 3519 | // could lead to incorrect results, as we're analyzing loop-carried |
| 3520 | // dependencies. Src and Dst can be in different loops, so we need to check |
| 3521 | // the base pointer is invariant in both loops. |
| 3522 | Loop *SrcLoop = LI->getLoopFor(BB: Src->getParent()); |
| 3523 | Loop *DstLoop = LI->getLoopFor(BB: Dst->getParent()); |
| 3524 | if (!isLoopInvariant(Expression: SrcBase, LoopNest: SrcLoop) || |
| 3525 | !isLoopInvariant(Expression: DstBase, LoopNest: DstLoop)) { |
| 3526 | LLVM_DEBUG(dbgs() << "The base pointer is not loop invariant.\n" ); |
| 3527 | return std::make_unique<Dependence>(args&: Src, args&: Dst, |
| 3528 | args: SCEVUnionPredicate(Assume, *SE)); |
| 3529 | } |
| 3530 | |
| 3531 | uint64_t EltSize = SrcLoc.Size.toRaw(); |
| 3532 | const SCEV *SrcEv = SE->getMinusSCEV(LHS: SrcSCEV, RHS: SrcBase); |
| 3533 | const SCEV *DstEv = SE->getMinusSCEV(LHS: DstSCEV, RHS: DstBase); |
| 3534 | |
| 3535 | // Check that memory access offsets are multiples of element sizes. |
| 3536 | if (!SE->isKnownMultipleOf(S: SrcEv, M: EltSize, Assumptions&: Assume) || |
| 3537 | !SE->isKnownMultipleOf(S: DstEv, M: EltSize, Assumptions&: Assume)) { |
| 3538 | LLVM_DEBUG(dbgs() << "can't analyze SCEV with different offsets\n" ); |
| 3539 | return std::make_unique<Dependence>(args&: Src, args&: Dst, |
| 3540 | args: SCEVUnionPredicate(Assume, *SE)); |
| 3541 | } |
| 3542 | |
| 3543 | // Runtime assumptions needed but not allowed. |
| 3544 | if (!Assume.empty() && !UnderRuntimeAssumptions) |
| 3545 | return std::make_unique<Dependence>(args&: Src, args&: Dst, |
| 3546 | args: SCEVUnionPredicate(Assume, *SE)); |
| 3547 | |
| 3548 | unsigned Pairs = 1; |
| 3549 | SmallVector<Subscript, 2> Pair(Pairs); |
| 3550 | Pair[0].Src = SrcEv; |
| 3551 | Pair[0].Dst = DstEv; |
| 3552 | |
| 3553 | SCEVMonotonicityChecker MonChecker(SE); |
| 3554 | const Loop *OutermostLoop = SrcLoop ? SrcLoop->getOutermostLoop() : nullptr; |
| 3555 | if (EnableMonotonicityCheck) |
| 3556 | if (MonChecker.checkMonotonicity(Expr: Pair[0].Src, OutermostLoop).isUnknown() || |
| 3557 | MonChecker.checkMonotonicity(Expr: Pair[0].Dst, OutermostLoop).isUnknown()) |
| 3558 | return std::make_unique<Dependence>(args&: Src, args&: Dst, |
| 3559 | args: SCEVUnionPredicate(Assume, *SE)); |
| 3560 | |
| 3561 | if (Delinearize) { |
| 3562 | if (tryDelinearize(Src, Dst, Pair)) { |
| 3563 | LLVM_DEBUG(dbgs() << " delinearized\n" ); |
| 3564 | Pairs = Pair.size(); |
| 3565 | } |
| 3566 | } |
| 3567 | |
| 3568 | // Establish loop nesting levels considering SameSD loops as common |
| 3569 | establishNestingLevels(Src, Dst); |
| 3570 | |
| 3571 | LLVM_DEBUG(dbgs() << " common nesting levels = " << CommonLevels << "\n" ); |
| 3572 | LLVM_DEBUG(dbgs() << " maximum nesting levels = " << MaxLevels << "\n" ); |
| 3573 | LLVM_DEBUG(dbgs() << " SameSD nesting levels = " << SameSDLevels << "\n" ); |
| 3574 | |
| 3575 | // Modify common levels to consider the SameSD levels in the tests |
| 3576 | CommonLevels += SameSDLevels; |
| 3577 | MaxLevels -= SameSDLevels; |
| 3578 | if (SameSDLevels > 0) { |
| 3579 | // Not all tests are handled yet over SameSD loops |
| 3580 | // Revoke if there are any tests other than ZIV, SIV or RDIV |
| 3581 | for (unsigned P = 0; P < Pairs; ++P) { |
| 3582 | SmallBitVector Loops; |
| 3583 | Subscript::ClassificationKind TestClass = |
| 3584 | classifyPair(Src: Pair[P].Src, SrcLoopNest: LI->getLoopFor(BB: Src->getParent()), |
| 3585 | Dst: Pair[P].Dst, DstLoopNest: LI->getLoopFor(BB: Dst->getParent()), Loops); |
| 3586 | |
| 3587 | if (TestClass != Subscript::ZIV && TestClass != Subscript::SIV && |
| 3588 | TestClass != Subscript::RDIV) { |
| 3589 | // Revert the levels to not consider the SameSD levels |
| 3590 | CommonLevels -= SameSDLevels; |
| 3591 | MaxLevels += SameSDLevels; |
| 3592 | SameSDLevels = 0; |
| 3593 | break; |
| 3594 | } |
| 3595 | } |
| 3596 | } |
| 3597 | |
| 3598 | if (SameSDLevels > 0) |
| 3599 | SameSDLoopsCount++; |
| 3600 | |
| 3601 | FullDependence Result(Src, Dst, SCEVUnionPredicate(Assume, *SE), |
| 3602 | PossiblyLoopIndependent, CommonLevels); |
| 3603 | ++TotalArrayPairs; |
| 3604 | |
| 3605 | for (unsigned P = 0; P < Pairs; ++P) { |
| 3606 | assert(Pair[P].Src->getType()->isIntegerTy() && "Src must be an integer" ); |
| 3607 | assert(Pair[P].Dst->getType()->isIntegerTy() && "Dst must be an integer" ); |
| 3608 | Pair[P].Loops.resize(N: MaxLevels + 1); |
| 3609 | Pair[P].GroupLoops.resize(N: MaxLevels + 1); |
| 3610 | Pair[P].Group.resize(N: Pairs); |
| 3611 | removeMatchingExtensions(Pair: &Pair[P]); |
| 3612 | Pair[P].Classification = |
| 3613 | classifyPair(Src: Pair[P].Src, SrcLoopNest: LI->getLoopFor(BB: Src->getParent()), Dst: Pair[P].Dst, |
| 3614 | DstLoopNest: LI->getLoopFor(BB: Dst->getParent()), Loops&: Pair[P].Loops); |
| 3615 | Pair[P].GroupLoops = Pair[P].Loops; |
| 3616 | Pair[P].Group.set(P); |
| 3617 | LLVM_DEBUG(dbgs() << " subscript " << P << "\n" ); |
| 3618 | LLVM_DEBUG(dbgs() << "\tsrc = " << *Pair[P].Src << "\n" ); |
| 3619 | LLVM_DEBUG(dbgs() << "\tdst = " << *Pair[P].Dst << "\n" ); |
| 3620 | LLVM_DEBUG(dbgs() << "\tclass = " << Pair[P].Classification << "\n" ); |
| 3621 | LLVM_DEBUG(dbgs() << "\tloops = " ); |
| 3622 | LLVM_DEBUG(dumpSmallBitVector(Pair[P].Loops)); |
| 3623 | } |
| 3624 | |
| 3625 | // Test each subscript individually |
| 3626 | for (unsigned SI = 0; SI < Pairs; ++SI) { |
| 3627 | LLVM_DEBUG(dbgs() << "testing subscript " << SI); |
| 3628 | switch (Pair[SI].Classification) { |
| 3629 | case Subscript::NonLinear: |
| 3630 | // ignore these, but collect loops for later |
| 3631 | ++NonlinearSubscriptPairs; |
| 3632 | collectCommonLoops(Expression: Pair[SI].Src, LoopNest: LI->getLoopFor(BB: Src->getParent()), |
| 3633 | Loops&: Pair[SI].Loops); |
| 3634 | collectCommonLoops(Expression: Pair[SI].Dst, LoopNest: LI->getLoopFor(BB: Dst->getParent()), |
| 3635 | Loops&: Pair[SI].Loops); |
| 3636 | Result.Consistent = false; |
| 3637 | break; |
| 3638 | case Subscript::ZIV: |
| 3639 | LLVM_DEBUG(dbgs() << ", ZIV\n" ); |
| 3640 | if (testZIV(Src: Pair[SI].Src, Dst: Pair[SI].Dst, Result)) |
| 3641 | return nullptr; |
| 3642 | break; |
| 3643 | case Subscript::SIV: { |
| 3644 | LLVM_DEBUG(dbgs() << ", SIV\n" ); |
| 3645 | unsigned Level; |
| 3646 | if (testSIV(Src: Pair[SI].Src, Dst: Pair[SI].Dst, Level, Result, |
| 3647 | UnderRuntimeAssumptions)) |
| 3648 | return nullptr; |
| 3649 | break; |
| 3650 | } |
| 3651 | case Subscript::RDIV: |
| 3652 | LLVM_DEBUG(dbgs() << ", RDIV\n" ); |
| 3653 | if (testRDIV(Src: Pair[SI].Src, Dst: Pair[SI].Dst, Result)) |
| 3654 | return nullptr; |
| 3655 | break; |
| 3656 | case Subscript::MIV: |
| 3657 | LLVM_DEBUG(dbgs() << ", MIV\n" ); |
| 3658 | if (testMIV(Src: Pair[SI].Src, Dst: Pair[SI].Dst, Loops: Pair[SI].Loops, Result)) |
| 3659 | return nullptr; |
| 3660 | break; |
| 3661 | } |
| 3662 | } |
| 3663 | |
| 3664 | // Make sure the Scalar flags are set correctly. |
| 3665 | SmallBitVector CompleteLoops(MaxLevels + 1); |
| 3666 | for (unsigned SI = 0; SI < Pairs; ++SI) |
| 3667 | CompleteLoops |= Pair[SI].Loops; |
| 3668 | for (unsigned II = 1; II <= CommonLevels; ++II) |
| 3669 | if (CompleteLoops[II]) |
| 3670 | Result.DV[II - 1].Scalar = false; |
| 3671 | |
| 3672 | // Set the distance to zero if the direction is EQ. |
| 3673 | // TODO: Ideally, the distance should be set to 0 immediately simultaneously |
| 3674 | // with the corresponding direction being set to EQ. |
| 3675 | for (unsigned II = 1; II <= Result.getLevels(); ++II) { |
| 3676 | if (Result.getDirection(Level: II) == Dependence::DVEntry::EQ) { |
| 3677 | if (Result.DV[II - 1].Distance == nullptr) |
| 3678 | Result.DV[II - 1].Distance = SE->getZero(Ty: SrcSCEV->getType()); |
| 3679 | else |
| 3680 | assert(Result.DV[II - 1].Distance->isZero() && |
| 3681 | "Inconsistency between distance and direction" ); |
| 3682 | } |
| 3683 | |
| 3684 | #ifndef NDEBUG |
| 3685 | // Check that the converse (i.e., if the distance is zero, then the |
| 3686 | // direction is EQ) holds. |
| 3687 | const SCEV *Distance = Result.getDistance(II); |
| 3688 | if (Distance && Distance->isZero()) |
| 3689 | assert(Result.getDirection(II) == Dependence::DVEntry::EQ && |
| 3690 | "Distance is zero, but direction is not EQ" ); |
| 3691 | #endif |
| 3692 | } |
| 3693 | |
| 3694 | if (SameSDLevels > 0) { |
| 3695 | // Extracting SameSD levels from the common levels |
| 3696 | // Reverting CommonLevels and MaxLevels to their original values |
| 3697 | assert(CommonLevels >= SameSDLevels); |
| 3698 | CommonLevels -= SameSDLevels; |
| 3699 | MaxLevels += SameSDLevels; |
| 3700 | std::unique_ptr<FullDependence::DVEntry[]> DV, DVSameSD; |
| 3701 | DV = std::make_unique<FullDependence::DVEntry[]>(num: CommonLevels); |
| 3702 | DVSameSD = std::make_unique<FullDependence::DVEntry[]>(num: SameSDLevels); |
| 3703 | for (unsigned Level = 0; Level < CommonLevels; ++Level) |
| 3704 | DV[Level] = Result.DV[Level]; |
| 3705 | for (unsigned Level = 0; Level < SameSDLevels; ++Level) |
| 3706 | DVSameSD[Level] = Result.DV[CommonLevels + Level]; |
| 3707 | Result.DV = std::move(DV); |
| 3708 | Result.DVSameSD = std::move(DVSameSD); |
| 3709 | Result.Levels = CommonLevels; |
| 3710 | Result.SameSDLevels = SameSDLevels; |
| 3711 | // Result is not consistent if it considers SameSD levels |
| 3712 | Result.Consistent = false; |
| 3713 | } |
| 3714 | |
| 3715 | if (PossiblyLoopIndependent) { |
| 3716 | // Make sure the LoopIndependent flag is set correctly. |
| 3717 | // All directions must include equal, otherwise no |
| 3718 | // loop-independent dependence is possible. |
| 3719 | for (unsigned II = 1; II <= CommonLevels; ++II) { |
| 3720 | if (!(Result.getDirection(Level: II) & Dependence::DVEntry::EQ)) { |
| 3721 | Result.LoopIndependent = false; |
| 3722 | break; |
| 3723 | } |
| 3724 | } |
| 3725 | } else { |
| 3726 | // On the other hand, if all directions are equal and there's no |
| 3727 | // loop-independent dependence possible, then no dependence exists. |
| 3728 | // However, if there are runtime assumptions, we must return the result. |
| 3729 | bool AllEqual = true; |
| 3730 | for (unsigned II = 1; II <= CommonLevels; ++II) { |
| 3731 | if (Result.getDirection(Level: II) != Dependence::DVEntry::EQ) { |
| 3732 | AllEqual = false; |
| 3733 | break; |
| 3734 | } |
| 3735 | } |
| 3736 | if (AllEqual && Result.Assumptions.getPredicates().empty()) |
| 3737 | return nullptr; |
| 3738 | } |
| 3739 | |
| 3740 | return std::make_unique<FullDependence>(args: std::move(Result)); |
| 3741 | } |
| 3742 | |