| 1 | //===- MemoryLocation.cpp - Memory location descriptions -------------------==// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #include "llvm/Analysis/MemoryLocation.h" |
| 10 | #include "llvm/Analysis/TargetLibraryInfo.h" |
| 11 | #include "llvm/IR/DataLayout.h" |
| 12 | #include "llvm/IR/Instructions.h" |
| 13 | #include "llvm/IR/IntrinsicInst.h" |
| 14 | #include "llvm/IR/IntrinsicsARM.h" |
| 15 | #include "llvm/IR/PatternMatch.h" |
| 16 | #include "llvm/IR/Type.h" |
| 17 | #include <optional> |
| 18 | using namespace llvm; |
| 19 | |
| 20 | void LocationSize::print(raw_ostream &OS) const { |
| 21 | OS << "LocationSize::" ; |
| 22 | if (*this == beforeOrAfterPointer()) |
| 23 | OS << "beforeOrAfterPointer" ; |
| 24 | else if (*this == afterPointer()) |
| 25 | OS << "afterPointer" ; |
| 26 | else if (*this == mapEmpty()) |
| 27 | OS << "mapEmpty" ; |
| 28 | else if (*this == mapTombstone()) |
| 29 | OS << "mapTombstone" ; |
| 30 | else if (isPrecise()) |
| 31 | OS << "precise(" << getValue() << ')'; |
| 32 | else |
| 33 | OS << "upperBound(" << getValue() << ')'; |
| 34 | } |
| 35 | |
| 36 | MemoryLocation MemoryLocation::get(const LoadInst *LI) { |
| 37 | const auto &DL = LI->getDataLayout(); |
| 38 | |
| 39 | return MemoryLocation( |
| 40 | LI->getPointerOperand(), |
| 41 | LocationSize::precise(Value: DL.getTypeStoreSize(Ty: LI->getType())), |
| 42 | LI->getAAMetadata()); |
| 43 | } |
| 44 | |
| 45 | MemoryLocation MemoryLocation::get(const StoreInst *SI) { |
| 46 | const auto &DL = SI->getDataLayout(); |
| 47 | |
| 48 | return MemoryLocation(SI->getPointerOperand(), |
| 49 | LocationSize::precise(Value: DL.getTypeStoreSize( |
| 50 | Ty: SI->getValueOperand()->getType())), |
| 51 | SI->getAAMetadata()); |
| 52 | } |
| 53 | |
| 54 | MemoryLocation MemoryLocation::get(const VAArgInst *VI) { |
| 55 | return MemoryLocation(VI->getPointerOperand(), |
| 56 | LocationSize::afterPointer(), VI->getAAMetadata()); |
| 57 | } |
| 58 | |
| 59 | MemoryLocation MemoryLocation::get(const AtomicCmpXchgInst *CXI) { |
| 60 | const auto &DL = CXI->getDataLayout(); |
| 61 | |
| 62 | return MemoryLocation(CXI->getPointerOperand(), |
| 63 | LocationSize::precise(Value: DL.getTypeStoreSize( |
| 64 | Ty: CXI->getCompareOperand()->getType())), |
| 65 | CXI->getAAMetadata()); |
| 66 | } |
| 67 | |
| 68 | MemoryLocation MemoryLocation::get(const AtomicRMWInst *RMWI) { |
| 69 | const auto &DL = RMWI->getDataLayout(); |
| 70 | |
| 71 | return MemoryLocation(RMWI->getPointerOperand(), |
| 72 | LocationSize::precise(Value: DL.getTypeStoreSize( |
| 73 | Ty: RMWI->getValOperand()->getType())), |
| 74 | RMWI->getAAMetadata()); |
| 75 | } |
| 76 | |
| 77 | std::optional<MemoryLocation> |
| 78 | MemoryLocation::getOrNone(const Instruction *Inst) { |
| 79 | switch (Inst->getOpcode()) { |
| 80 | case Instruction::Load: |
| 81 | return get(LI: cast<LoadInst>(Val: Inst)); |
| 82 | case Instruction::Store: |
| 83 | return get(SI: cast<StoreInst>(Val: Inst)); |
| 84 | case Instruction::VAArg: |
| 85 | return get(VI: cast<VAArgInst>(Val: Inst)); |
| 86 | case Instruction::AtomicCmpXchg: |
| 87 | return get(CXI: cast<AtomicCmpXchgInst>(Val: Inst)); |
| 88 | case Instruction::AtomicRMW: |
| 89 | return get(RMWI: cast<AtomicRMWInst>(Val: Inst)); |
| 90 | default: |
| 91 | return std::nullopt; |
| 92 | } |
| 93 | } |
| 94 | |
| 95 | MemoryLocation MemoryLocation::getForSource(const MemTransferInst *MTI) { |
| 96 | return getForSource(MTI: cast<AnyMemTransferInst>(Val: MTI)); |
| 97 | } |
| 98 | |
| 99 | MemoryLocation MemoryLocation::getForSource(const AnyMemTransferInst *MTI) { |
| 100 | assert(MTI->getRawSource() == MTI->getArgOperand(1)); |
| 101 | return getForArgument(Call: MTI, ArgIdx: 1, TLI: nullptr); |
| 102 | } |
| 103 | |
| 104 | MemoryLocation MemoryLocation::getForDest(const MemIntrinsic *MI) { |
| 105 | return getForDest(MI: cast<AnyMemIntrinsic>(Val: MI)); |
| 106 | } |
| 107 | |
| 108 | MemoryLocation MemoryLocation::getForDest(const AnyMemIntrinsic *MI) { |
| 109 | assert(MI->getRawDest() == MI->getArgOperand(0)); |
| 110 | return getForArgument(Call: MI, ArgIdx: 0, TLI: nullptr); |
| 111 | } |
| 112 | |
| 113 | std::optional<MemoryLocation> |
| 114 | MemoryLocation::getForDest(const CallBase *CB, const TargetLibraryInfo &TLI) { |
| 115 | // Check that the only possible writes are to arguments. |
| 116 | MemoryEffects WriteME = CB->getMemoryEffects() & MemoryEffects::writeOnly(); |
| 117 | if (!WriteME.onlyAccessesArgPointees()) |
| 118 | return std::nullopt; |
| 119 | |
| 120 | if (CB->hasOperandBundles()) |
| 121 | // TODO: remove implementation restriction |
| 122 | return std::nullopt; |
| 123 | |
| 124 | Value *UsedV = nullptr; |
| 125 | std::optional<unsigned> UsedIdx; |
| 126 | for (unsigned i = 0; i < CB->arg_size(); i++) { |
| 127 | if (!CB->getArgOperand(i)->getType()->isPointerTy()) |
| 128 | continue; |
| 129 | if (CB->onlyReadsMemory(OpNo: i)) |
| 130 | continue; |
| 131 | if (!UsedV) { |
| 132 | // First potentially writing parameter |
| 133 | UsedV = CB->getArgOperand(i); |
| 134 | UsedIdx = i; |
| 135 | continue; |
| 136 | } |
| 137 | UsedIdx = std::nullopt; |
| 138 | if (UsedV != CB->getArgOperand(i)) |
| 139 | // Can't describe writing to two distinct locations. |
| 140 | // TODO: This results in an inprecision when two values derived from the |
| 141 | // same object are passed as arguments to the same function. |
| 142 | return std::nullopt; |
| 143 | } |
| 144 | if (!UsedV) |
| 145 | // We don't currently have a way to represent a "does not write" result |
| 146 | // and thus have to be conservative and return unknown. |
| 147 | return std::nullopt; |
| 148 | |
| 149 | if (UsedIdx) |
| 150 | return getForArgument(Call: CB, ArgIdx: *UsedIdx, TLI: &TLI); |
| 151 | return MemoryLocation::getBeforeOrAfter(Ptr: UsedV, AATags: CB->getAAMetadata()); |
| 152 | } |
| 153 | |
| 154 | // If the mask for a memory op is a get active lane mask intrinsic |
| 155 | // we can possibly infer the size of memory written or read |
| 156 | static std::optional<FixedVectorType *> |
| 157 | getKnownTypeFromMaskedOp(Value *Mask, VectorType *Ty) { |
| 158 | using namespace llvm::PatternMatch; |
| 159 | ConstantInt *Op0, *Op1; |
| 160 | if (!match(V: Mask, P: m_Intrinsic<Intrinsic::get_active_lane_mask>( |
| 161 | Op0: m_ConstantInt(CI&: Op0), Op1: m_ConstantInt(CI&: Op1)))) |
| 162 | return std::nullopt; |
| 163 | |
| 164 | APInt LaneMaskLo = Op0->getValue(); |
| 165 | APInt LaneMaskHi = Op1->getValue(); |
| 166 | if (LaneMaskHi.ule(RHS: LaneMaskLo)) |
| 167 | return std::nullopt; |
| 168 | |
| 169 | APInt NumElts = LaneMaskHi - LaneMaskLo; |
| 170 | if (NumElts.ugt(RHS: Ty->getElementCount().getKnownMinValue())) { |
| 171 | if (isa<ScalableVectorType>(Val: Ty)) |
| 172 | return std::nullopt; |
| 173 | // Unlike scalable vectors, fixed vector types are guaranteed to handle the |
| 174 | // KnownMinValue and can be clamped |
| 175 | NumElts = Ty->getElementCount().getKnownMinValue(); |
| 176 | } |
| 177 | |
| 178 | return FixedVectorType::get(ElementType: Ty->getElementType(), NumElts: NumElts.getZExtValue()); |
| 179 | } |
| 180 | |
| 181 | MemoryLocation MemoryLocation::getForArgument(const CallBase *Call, |
| 182 | unsigned ArgIdx, |
| 183 | const TargetLibraryInfo *TLI) { |
| 184 | AAMDNodes AATags = Call->getAAMetadata(); |
| 185 | const Value *Arg = Call->getArgOperand(i: ArgIdx); |
| 186 | |
| 187 | // We may be able to produce an exact size for known intrinsics. |
| 188 | if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Val: Call)) { |
| 189 | const DataLayout &DL = II->getDataLayout(); |
| 190 | |
| 191 | switch (II->getIntrinsicID()) { |
| 192 | default: |
| 193 | break; |
| 194 | case Intrinsic::memset: |
| 195 | case Intrinsic::memcpy: |
| 196 | case Intrinsic::memcpy_inline: |
| 197 | case Intrinsic::memmove: |
| 198 | case Intrinsic::memcpy_element_unordered_atomic: |
| 199 | case Intrinsic::memmove_element_unordered_atomic: |
| 200 | case Intrinsic::memset_element_unordered_atomic: |
| 201 | assert((ArgIdx == 0 || ArgIdx == 1) && |
| 202 | "Invalid argument index for memory intrinsic" ); |
| 203 | if (ConstantInt *LenCI = dyn_cast<ConstantInt>(Val: II->getArgOperand(i: 2))) |
| 204 | return MemoryLocation(Arg, LocationSize::precise(Value: LenCI->getZExtValue()), |
| 205 | AATags); |
| 206 | return MemoryLocation::getAfter(Ptr: Arg, AATags); |
| 207 | |
| 208 | case Intrinsic::experimental_memset_pattern: |
| 209 | assert((ArgIdx == 0 || ArgIdx == 1) && |
| 210 | "Invalid argument index for memory intrinsic" ); |
| 211 | if (ConstantInt *LenCI = dyn_cast<ConstantInt>(Val: II->getArgOperand(i: 2))) |
| 212 | return MemoryLocation( |
| 213 | Arg, |
| 214 | LocationSize::precise( |
| 215 | Value: LenCI->getZExtValue() * |
| 216 | DL.getTypeAllocSize(Ty: II->getArgOperand(i: 1)->getType())), |
| 217 | AATags); |
| 218 | return MemoryLocation::getAfter(Ptr: Arg, AATags); |
| 219 | |
| 220 | case Intrinsic::lifetime_start: |
| 221 | case Intrinsic::lifetime_end: { |
| 222 | assert(ArgIdx == 0 && "Invalid argument index" ); |
| 223 | auto *AI = dyn_cast<AllocaInst>(Val: Arg); |
| 224 | if (!AI) |
| 225 | // lifetime of poison value. |
| 226 | return MemoryLocation::getBeforeOrAfter(Ptr: Arg); |
| 227 | |
| 228 | std::optional<TypeSize> AllocSize = |
| 229 | AI->getAllocationSize(DL: II->getDataLayout()); |
| 230 | return MemoryLocation(Arg, |
| 231 | AllocSize ? LocationSize::precise(Value: *AllocSize) |
| 232 | : LocationSize::afterPointer(), |
| 233 | AATags); |
| 234 | } |
| 235 | |
| 236 | case Intrinsic::invariant_start: |
| 237 | assert(ArgIdx == 1 && "Invalid argument index" ); |
| 238 | return MemoryLocation( |
| 239 | Arg, |
| 240 | LocationSize::precise( |
| 241 | Value: cast<ConstantInt>(Val: II->getArgOperand(i: 0))->getZExtValue()), |
| 242 | AATags); |
| 243 | |
| 244 | case Intrinsic::masked_load: { |
| 245 | assert(ArgIdx == 0 && "Invalid argument index" ); |
| 246 | |
| 247 | auto *Ty = cast<VectorType>(Val: II->getType()); |
| 248 | if (auto KnownType = getKnownTypeFromMaskedOp(Mask: II->getOperand(i_nocapture: 1), Ty)) |
| 249 | return MemoryLocation(Arg, DL.getTypeStoreSize(Ty: *KnownType), AATags); |
| 250 | |
| 251 | return MemoryLocation( |
| 252 | Arg, LocationSize::upperBound(Value: DL.getTypeStoreSize(Ty)), AATags); |
| 253 | } |
| 254 | case Intrinsic::masked_store: { |
| 255 | assert(ArgIdx == 1 && "Invalid argument index" ); |
| 256 | |
| 257 | auto *Ty = cast<VectorType>(Val: II->getArgOperand(i: 0)->getType()); |
| 258 | if (auto KnownType = getKnownTypeFromMaskedOp(Mask: II->getOperand(i_nocapture: 2), Ty)) |
| 259 | return MemoryLocation(Arg, DL.getTypeStoreSize(Ty: *KnownType), AATags); |
| 260 | |
| 261 | return MemoryLocation( |
| 262 | Arg, LocationSize::upperBound(Value: DL.getTypeStoreSize(Ty)), AATags); |
| 263 | } |
| 264 | |
| 265 | case Intrinsic::invariant_end: |
| 266 | // The first argument to an invariant.end is a "descriptor" type (e.g. a |
| 267 | // pointer to a empty struct) which is never actually dereferenced. |
| 268 | if (ArgIdx == 0) |
| 269 | return MemoryLocation(Arg, LocationSize::precise(Value: 0), AATags); |
| 270 | assert(ArgIdx == 2 && "Invalid argument index" ); |
| 271 | return MemoryLocation( |
| 272 | Arg, |
| 273 | LocationSize::precise( |
| 274 | Value: cast<ConstantInt>(Val: II->getArgOperand(i: 1))->getZExtValue()), |
| 275 | AATags); |
| 276 | |
| 277 | case Intrinsic::arm_neon_vld1: |
| 278 | assert(ArgIdx == 0 && "Invalid argument index" ); |
| 279 | // LLVM's vld1 and vst1 intrinsics currently only support a single |
| 280 | // vector register. |
| 281 | return MemoryLocation( |
| 282 | Arg, LocationSize::precise(Value: DL.getTypeStoreSize(Ty: II->getType())), |
| 283 | AATags); |
| 284 | |
| 285 | case Intrinsic::arm_neon_vst1: |
| 286 | assert(ArgIdx == 0 && "Invalid argument index" ); |
| 287 | return MemoryLocation(Arg, |
| 288 | LocationSize::precise(Value: DL.getTypeStoreSize( |
| 289 | Ty: II->getArgOperand(i: 1)->getType())), |
| 290 | AATags); |
| 291 | case Intrinsic::matrix_column_major_load: |
| 292 | case Intrinsic::matrix_column_major_store: { |
| 293 | bool IsLoad = II->getIntrinsicID() == Intrinsic::matrix_column_major_load; |
| 294 | assert(ArgIdx == (IsLoad ? 0 : 1) && "Invalid argument index" ); |
| 295 | |
| 296 | auto *Stride = dyn_cast<ConstantInt>(Val: II->getArgOperand(i: IsLoad ? 1 : 2)); |
| 297 | uint64_t Rows = |
| 298 | cast<ConstantInt>(Val: II->getArgOperand(i: IsLoad ? 3 : 4))->getZExtValue(); |
| 299 | uint64_t Cols = |
| 300 | cast<ConstantInt>(Val: II->getArgOperand(i: IsLoad ? 4 : 5))->getZExtValue(); |
| 301 | |
| 302 | // The stride is dynamic, so there's nothing we can say. |
| 303 | if (!Stride) |
| 304 | return MemoryLocation(Arg, LocationSize::afterPointer(), AATags); |
| 305 | |
| 306 | uint64_t ConstStride = Stride->getZExtValue(); |
| 307 | auto *VT = cast<VectorType>(Val: IsLoad ? II->getType() |
| 308 | : II->getArgOperand(i: 0)->getType()); |
| 309 | assert(Cols != 0 && "Matrix cannot have 0 columns" ); |
| 310 | TypeSize Size = DL.getTypeAllocSize(Ty: VT->getScalarType()) * |
| 311 | (ConstStride * (Cols - 1) + Rows); |
| 312 | |
| 313 | // In the unstrided case, we have a precise size, ... |
| 314 | if (ConstStride == Rows) |
| 315 | return MemoryLocation(Arg, LocationSize::precise(Value: Size), AATags); |
| 316 | // otherwise we merely obtain an upper bound. |
| 317 | return MemoryLocation(Arg, LocationSize::upperBound(Value: Size), AATags); |
| 318 | } |
| 319 | } |
| 320 | |
| 321 | assert( |
| 322 | !isa<AnyMemTransferInst>(II) && |
| 323 | "all memory transfer intrinsics should be handled by the switch above" ); |
| 324 | } |
| 325 | |
| 326 | // We can bound the aliasing properties of memset_pattern16 just as we can |
| 327 | // for memcpy/memset. This is particularly important because the |
| 328 | // LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16 |
| 329 | // whenever possible. |
| 330 | LibFunc F; |
| 331 | if (TLI && TLI->getLibFunc(CB: *Call, F) && TLI->has(F)) { |
| 332 | switch (F) { |
| 333 | case LibFunc_strcpy: |
| 334 | case LibFunc_strcat: |
| 335 | case LibFunc_strncat: |
| 336 | assert((ArgIdx == 0 || ArgIdx == 1) && "Invalid argument index for str function" ); |
| 337 | return MemoryLocation::getAfter(Ptr: Arg, AATags); |
| 338 | |
| 339 | case LibFunc_memset_chk: |
| 340 | assert(ArgIdx == 0 && "Invalid argument index for memset_chk" ); |
| 341 | [[fallthrough]]; |
| 342 | case LibFunc_memcpy_chk: { |
| 343 | assert((ArgIdx == 0 || ArgIdx == 1) && |
| 344 | "Invalid argument index for memcpy_chk" ); |
| 345 | LocationSize Size = LocationSize::afterPointer(); |
| 346 | if (const auto *Len = dyn_cast<ConstantInt>(Val: Call->getArgOperand(i: 2))) { |
| 347 | // memset_chk writes at most Len bytes, memcpy_chk reads/writes at most |
| 348 | // Len bytes. They may read/write less, if Len exceeds the specified max |
| 349 | // size and aborts. |
| 350 | Size = LocationSize::upperBound(Value: Len->getZExtValue()); |
| 351 | } |
| 352 | return MemoryLocation(Arg, Size, AATags); |
| 353 | } |
| 354 | case LibFunc_strncpy: { |
| 355 | assert((ArgIdx == 0 || ArgIdx == 1) && |
| 356 | "Invalid argument index for strncpy" ); |
| 357 | LocationSize Size = LocationSize::afterPointer(); |
| 358 | if (const auto *Len = dyn_cast<ConstantInt>(Val: Call->getArgOperand(i: 2))) { |
| 359 | // strncpy is guaranteed to write Len bytes, but only reads up to Len |
| 360 | // bytes. |
| 361 | Size = ArgIdx == 0 ? LocationSize::precise(Value: Len->getZExtValue()) |
| 362 | : LocationSize::upperBound(Value: Len->getZExtValue()); |
| 363 | } |
| 364 | return MemoryLocation(Arg, Size, AATags); |
| 365 | } |
| 366 | case LibFunc_memset_pattern16: |
| 367 | case LibFunc_memset_pattern4: |
| 368 | case LibFunc_memset_pattern8: |
| 369 | assert((ArgIdx == 0 || ArgIdx == 1) && |
| 370 | "Invalid argument index for memset_pattern16" ); |
| 371 | if (ArgIdx == 1) { |
| 372 | unsigned Size = 16; |
| 373 | if (F == LibFunc_memset_pattern4) |
| 374 | Size = 4; |
| 375 | else if (F == LibFunc_memset_pattern8) |
| 376 | Size = 8; |
| 377 | return MemoryLocation(Arg, LocationSize::precise(Value: Size), AATags); |
| 378 | } |
| 379 | if (const ConstantInt *LenCI = |
| 380 | dyn_cast<ConstantInt>(Val: Call->getArgOperand(i: 2))) |
| 381 | return MemoryLocation(Arg, LocationSize::precise(Value: LenCI->getZExtValue()), |
| 382 | AATags); |
| 383 | return MemoryLocation::getAfter(Ptr: Arg, AATags); |
| 384 | case LibFunc_bcmp: |
| 385 | case LibFunc_memcmp: |
| 386 | assert((ArgIdx == 0 || ArgIdx == 1) && |
| 387 | "Invalid argument index for memcmp/bcmp" ); |
| 388 | if (const ConstantInt *LenCI = |
| 389 | dyn_cast<ConstantInt>(Val: Call->getArgOperand(i: 2))) |
| 390 | return MemoryLocation(Arg, LocationSize::precise(Value: LenCI->getZExtValue()), |
| 391 | AATags); |
| 392 | return MemoryLocation::getAfter(Ptr: Arg, AATags); |
| 393 | case LibFunc_memchr: |
| 394 | assert((ArgIdx == 0) && "Invalid argument index for memchr" ); |
| 395 | if (const ConstantInt *LenCI = |
| 396 | dyn_cast<ConstantInt>(Val: Call->getArgOperand(i: 2))) |
| 397 | return MemoryLocation(Arg, LocationSize::precise(Value: LenCI->getZExtValue()), |
| 398 | AATags); |
| 399 | return MemoryLocation::getAfter(Ptr: Arg, AATags); |
| 400 | case LibFunc_memccpy: |
| 401 | assert((ArgIdx == 0 || ArgIdx == 1) && |
| 402 | "Invalid argument index for memccpy" ); |
| 403 | // We only know an upper bound on the number of bytes read/written. |
| 404 | if (const ConstantInt *LenCI = |
| 405 | dyn_cast<ConstantInt>(Val: Call->getArgOperand(i: 3))) |
| 406 | return MemoryLocation( |
| 407 | Arg, LocationSize::upperBound(Value: LenCI->getZExtValue()), AATags); |
| 408 | return MemoryLocation::getAfter(Ptr: Arg, AATags); |
| 409 | default: |
| 410 | break; |
| 411 | }; |
| 412 | } |
| 413 | |
| 414 | return MemoryLocation::getBeforeOrAfter(Ptr: Call->getArgOperand(i: ArgIdx), AATags); |
| 415 | } |
| 416 | |