1//===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// Bitcode writer implementation.
10//
11//===----------------------------------------------------------------------===//
12
13#include "llvm/Bitcode/BitcodeWriter.h"
14#include "ValueEnumerator.h"
15#include "llvm/ADT/APFloat.h"
16#include "llvm/ADT/APInt.h"
17#include "llvm/ADT/ArrayRef.h"
18#include "llvm/ADT/DenseMap.h"
19#include "llvm/ADT/STLExtras.h"
20#include "llvm/ADT/SetVector.h"
21#include "llvm/ADT/SmallPtrSet.h"
22#include "llvm/ADT/SmallString.h"
23#include "llvm/ADT/SmallVector.h"
24#include "llvm/ADT/StringMap.h"
25#include "llvm/ADT/StringRef.h"
26#include "llvm/Analysis/MemoryProfileInfo.h"
27#include "llvm/BinaryFormat/Dwarf.h"
28#include "llvm/Bitcode/BitcodeCommon.h"
29#include "llvm/Bitcode/BitcodeReader.h"
30#include "llvm/Bitcode/LLVMBitCodes.h"
31#include "llvm/Bitstream/BitCodes.h"
32#include "llvm/Bitstream/BitstreamWriter.h"
33#include "llvm/Config/llvm-config.h"
34#include "llvm/IR/Attributes.h"
35#include "llvm/IR/BasicBlock.h"
36#include "llvm/IR/Comdat.h"
37#include "llvm/IR/Constant.h"
38#include "llvm/IR/ConstantRangeList.h"
39#include "llvm/IR/Constants.h"
40#include "llvm/IR/DebugInfoMetadata.h"
41#include "llvm/IR/DebugLoc.h"
42#include "llvm/IR/DerivedTypes.h"
43#include "llvm/IR/Function.h"
44#include "llvm/IR/GlobalAlias.h"
45#include "llvm/IR/GlobalIFunc.h"
46#include "llvm/IR/GlobalObject.h"
47#include "llvm/IR/GlobalValue.h"
48#include "llvm/IR/GlobalVariable.h"
49#include "llvm/IR/InlineAsm.h"
50#include "llvm/IR/InstrTypes.h"
51#include "llvm/IR/Instruction.h"
52#include "llvm/IR/Instructions.h"
53#include "llvm/IR/LLVMContext.h"
54#include "llvm/IR/Metadata.h"
55#include "llvm/IR/Module.h"
56#include "llvm/IR/ModuleSummaryIndex.h"
57#include "llvm/IR/Operator.h"
58#include "llvm/IR/Type.h"
59#include "llvm/IR/UseListOrder.h"
60#include "llvm/IR/Value.h"
61#include "llvm/IR/ValueSymbolTable.h"
62#include "llvm/MC/StringTableBuilder.h"
63#include "llvm/MC/TargetRegistry.h"
64#include "llvm/Object/IRSymtab.h"
65#include "llvm/ProfileData/MemProf.h"
66#include "llvm/ProfileData/MemProfRadixTree.h"
67#include "llvm/Support/AtomicOrdering.h"
68#include "llvm/Support/Casting.h"
69#include "llvm/Support/CommandLine.h"
70#include "llvm/Support/Compiler.h"
71#include "llvm/Support/Endian.h"
72#include "llvm/Support/Error.h"
73#include "llvm/Support/ErrorHandling.h"
74#include "llvm/Support/MathExtras.h"
75#include "llvm/Support/SHA1.h"
76#include "llvm/Support/raw_ostream.h"
77#include "llvm/TargetParser/Triple.h"
78#include <algorithm>
79#include <cassert>
80#include <cstddef>
81#include <cstdint>
82#include <iterator>
83#include <map>
84#include <memory>
85#include <optional>
86#include <string>
87#include <utility>
88#include <vector>
89
90using namespace llvm;
91using namespace llvm::memprof;
92
93static cl::opt<unsigned>
94 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(Val: 25),
95 cl::desc("Number of metadatas above which we emit an index "
96 "to enable lazy-loading"));
97static cl::opt<uint32_t> FlushThreshold(
98 "bitcode-flush-threshold", cl::Hidden, cl::init(Val: 512),
99 cl::desc("The threshold (unit M) for flushing LLVM bitcode."));
100
101// Since we only use the context information in the memprof summary records in
102// the LTO backends to do assertion checking, save time and space by only
103// serializing the context for non-NDEBUG builds.
104// TODO: Currently this controls writing context of the allocation info records,
105// which are larger and more expensive, but we should do this for the callsite
106// records as well.
107// FIXME: Convert to a const once this has undergone more sigificant testing.
108static cl::opt<bool>
109 CombinedIndexMemProfContext("combined-index-memprof-context", cl::Hidden,
110#ifdef NDEBUG
111 cl::init(Val: false),
112#else
113 cl::init(true),
114#endif
115 cl::desc(""));
116
117static cl::opt<bool> PreserveBitcodeUseListOrder(
118 "preserve-bc-uselistorder", cl::Hidden, cl::init(Val: true),
119 cl::desc("Preserve use-list order when writing LLVM bitcode."));
120
121namespace llvm {
122extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold;
123}
124
125namespace {
126
127/// These are manifest constants used by the bitcode writer. They do not need to
128/// be kept in sync with the reader, but need to be consistent within this file.
129enum {
130 // VALUE_SYMTAB_BLOCK abbrev id's.
131 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
132 VST_ENTRY_7_ABBREV,
133 VST_ENTRY_6_ABBREV,
134 VST_BBENTRY_6_ABBREV,
135
136 // CONSTANTS_BLOCK abbrev id's.
137 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
138 CONSTANTS_INTEGER_ABBREV,
139 CONSTANTS_CE_CAST_Abbrev,
140 CONSTANTS_NULL_Abbrev,
141
142 // FUNCTION_BLOCK abbrev id's.
143 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
144 FUNCTION_INST_STORE_ABBREV,
145 FUNCTION_INST_UNOP_ABBREV,
146 FUNCTION_INST_UNOP_FLAGS_ABBREV,
147 FUNCTION_INST_BINOP_ABBREV,
148 FUNCTION_INST_BINOP_FLAGS_ABBREV,
149 FUNCTION_INST_CAST_ABBREV,
150 FUNCTION_INST_CAST_FLAGS_ABBREV,
151 FUNCTION_INST_RET_VOID_ABBREV,
152 FUNCTION_INST_RET_VAL_ABBREV,
153 FUNCTION_INST_BR_UNCOND_ABBREV,
154 FUNCTION_INST_BR_COND_ABBREV,
155 FUNCTION_INST_UNREACHABLE_ABBREV,
156 FUNCTION_INST_GEP_ABBREV,
157 FUNCTION_INST_CMP_ABBREV,
158 FUNCTION_INST_CMP_FLAGS_ABBREV,
159 FUNCTION_DEBUG_RECORD_VALUE_ABBREV,
160 FUNCTION_DEBUG_LOC_ABBREV,
161};
162
163/// Abstract class to manage the bitcode writing, subclassed for each bitcode
164/// file type.
165class BitcodeWriterBase {
166protected:
167 /// The stream created and owned by the client.
168 BitstreamWriter &Stream;
169
170 StringTableBuilder &StrtabBuilder;
171
172public:
173 /// Constructs a BitcodeWriterBase object that writes to the provided
174 /// \p Stream.
175 BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder)
176 : Stream(Stream), StrtabBuilder(StrtabBuilder) {}
177
178protected:
179 void writeModuleVersion();
180};
181
182void BitcodeWriterBase::writeModuleVersion() {
183 // VERSION: [version#]
184 Stream.EmitRecord(Code: bitc::MODULE_CODE_VERSION, Vals: ArrayRef<uint64_t>{2});
185}
186
187/// Base class to manage the module bitcode writing, currently subclassed for
188/// ModuleBitcodeWriter and ThinLinkBitcodeWriter.
189class ModuleBitcodeWriterBase : public BitcodeWriterBase {
190protected:
191 /// The Module to write to bitcode.
192 const Module &M;
193
194 /// Enumerates ids for all values in the module.
195 ValueEnumerator VE;
196
197 /// Optional per-module index to write for ThinLTO.
198 const ModuleSummaryIndex *Index;
199
200 /// Map that holds the correspondence between GUIDs in the summary index,
201 /// that came from indirect call profiles, and a value id generated by this
202 /// class to use in the VST and summary block records.
203 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap;
204
205 /// Tracks the last value id recorded in the GUIDToValueMap.
206 unsigned GlobalValueId;
207
208 /// Saves the offset of the VSTOffset record that must eventually be
209 /// backpatched with the offset of the actual VST.
210 uint64_t VSTOffsetPlaceholder = 0;
211
212public:
213 /// Constructs a ModuleBitcodeWriterBase object for the given Module,
214 /// writing to the provided \p Buffer.
215 ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder,
216 BitstreamWriter &Stream,
217 bool ShouldPreserveUseListOrder,
218 const ModuleSummaryIndex *Index)
219 : BitcodeWriterBase(Stream, StrtabBuilder), M(M),
220 VE(M, PreserveBitcodeUseListOrder.getNumOccurrences()
221 ? PreserveBitcodeUseListOrder
222 : ShouldPreserveUseListOrder),
223 Index(Index) {
224 // Assign ValueIds to any callee values in the index that came from
225 // indirect call profiles and were recorded as a GUID not a Value*
226 // (which would have been assigned an ID by the ValueEnumerator).
227 // The starting ValueId is just after the number of values in the
228 // ValueEnumerator, so that they can be emitted in the VST.
229 GlobalValueId = VE.getValues().size();
230 if (!Index)
231 return;
232 for (const auto &GUIDSummaryLists : *Index)
233 // Examine all summaries for this GUID.
234 for (auto &Summary : GUIDSummaryLists.second.getSummaryList())
235 if (auto FS = dyn_cast<FunctionSummary>(Val: Summary.get())) {
236 // For each call in the function summary, see if the call
237 // is to a GUID (which means it is for an indirect call,
238 // otherwise we would have a Value for it). If so, synthesize
239 // a value id.
240 for (auto &CallEdge : FS->calls())
241 if (!CallEdge.first.haveGVs() || !CallEdge.first.getValue())
242 assignValueId(ValGUID: CallEdge.first.getGUID());
243
244 // For each referenced variables in the function summary, see if the
245 // variable is represented by a GUID (as opposed to a symbol to
246 // declarations or definitions in the module). If so, synthesize a
247 // value id.
248 for (auto &RefEdge : FS->refs())
249 if (!RefEdge.haveGVs() || !RefEdge.getValue())
250 assignValueId(ValGUID: RefEdge.getGUID());
251 }
252 }
253
254protected:
255 void writePerModuleGlobalValueSummary();
256
257private:
258 void writePerModuleFunctionSummaryRecord(
259 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary,
260 unsigned ValueID, unsigned FSCallsProfileAbbrev, unsigned CallsiteAbbrev,
261 unsigned AllocAbbrev, unsigned ContextIdAbbvId, const Function &F,
262 DenseMap<CallStackId, LinearCallStackId> &CallStackPos,
263 CallStackId &CallStackCount);
264 void writeModuleLevelReferences(const GlobalVariable &V,
265 SmallVector<uint64_t, 64> &NameVals,
266 unsigned FSModRefsAbbrev,
267 unsigned FSModVTableRefsAbbrev);
268
269 void assignValueId(GlobalValue::GUID ValGUID) {
270 GUIDToValueIdMap[ValGUID] = ++GlobalValueId;
271 }
272
273 unsigned getValueId(GlobalValue::GUID ValGUID) {
274 const auto &VMI = GUIDToValueIdMap.find(x: ValGUID);
275 // Expect that any GUID value had a value Id assigned by an
276 // earlier call to assignValueId.
277 assert(VMI != GUIDToValueIdMap.end() &&
278 "GUID does not have assigned value Id");
279 return VMI->second;
280 }
281
282 // Helper to get the valueId for the type of value recorded in VI.
283 unsigned getValueId(ValueInfo VI) {
284 if (!VI.haveGVs() || !VI.getValue())
285 return getValueId(ValGUID: VI.getGUID());
286 return VE.getValueID(V: VI.getValue());
287 }
288
289 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; }
290};
291
292/// Class to manage the bitcode writing for a module.
293class ModuleBitcodeWriter : public ModuleBitcodeWriterBase {
294 /// True if a module hash record should be written.
295 bool GenerateHash;
296
297 /// If non-null, when GenerateHash is true, the resulting hash is written
298 /// into ModHash.
299 ModuleHash *ModHash;
300
301 SHA1 Hasher;
302
303 /// The start bit of the identification block.
304 uint64_t BitcodeStartBit;
305
306public:
307 /// Constructs a ModuleBitcodeWriter object for the given Module,
308 /// writing to the provided \p Buffer.
309 ModuleBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder,
310 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder,
311 const ModuleSummaryIndex *Index, bool GenerateHash,
312 ModuleHash *ModHash = nullptr)
313 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream,
314 ShouldPreserveUseListOrder, Index),
315 GenerateHash(GenerateHash), ModHash(ModHash),
316 BitcodeStartBit(Stream.GetCurrentBitNo()) {}
317
318 /// Emit the current module to the bitstream.
319 void write();
320
321private:
322 uint64_t bitcodeStartBit() { return BitcodeStartBit; }
323
324 size_t addToStrtab(StringRef Str);
325
326 void writeAttributeGroupTable();
327 void writeAttributeTable();
328 void writeTypeTable();
329 void writeComdats();
330 void writeValueSymbolTableForwardDecl();
331 void writeModuleInfo();
332 void writeValueAsMetadata(const ValueAsMetadata *MD,
333 SmallVectorImpl<uint64_t> &Record);
334 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record,
335 unsigned Abbrev);
336 unsigned createDILocationAbbrev();
337 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record,
338 unsigned &Abbrev);
339 unsigned createGenericDINodeAbbrev();
340 void writeGenericDINode(const GenericDINode *N,
341 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev);
342 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record,
343 unsigned Abbrev);
344 void writeDIGenericSubrange(const DIGenericSubrange *N,
345 SmallVectorImpl<uint64_t> &Record,
346 unsigned Abbrev);
347 void writeDIEnumerator(const DIEnumerator *N,
348 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
349 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record,
350 unsigned Abbrev);
351 void writeDIFixedPointType(const DIFixedPointType *N,
352 SmallVectorImpl<uint64_t> &Record,
353 unsigned Abbrev);
354 void writeDIStringType(const DIStringType *N,
355 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
356 void writeDIDerivedType(const DIDerivedType *N,
357 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
358 void writeDISubrangeType(const DISubrangeType *N,
359 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
360 void writeDICompositeType(const DICompositeType *N,
361 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
362 void writeDISubroutineType(const DISubroutineType *N,
363 SmallVectorImpl<uint64_t> &Record,
364 unsigned Abbrev);
365 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record,
366 unsigned Abbrev);
367 void writeDICompileUnit(const DICompileUnit *N,
368 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
369 void writeDISubprogram(const DISubprogram *N,
370 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
371 void writeDILexicalBlock(const DILexicalBlock *N,
372 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
373 void writeDILexicalBlockFile(const DILexicalBlockFile *N,
374 SmallVectorImpl<uint64_t> &Record,
375 unsigned Abbrev);
376 void writeDICommonBlock(const DICommonBlock *N,
377 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
378 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record,
379 unsigned Abbrev);
380 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record,
381 unsigned Abbrev);
382 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record,
383 unsigned Abbrev);
384 void writeDIArgList(const DIArgList *N, SmallVectorImpl<uint64_t> &Record);
385 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record,
386 unsigned Abbrev);
387 void writeDIAssignID(const DIAssignID *N, SmallVectorImpl<uint64_t> &Record,
388 unsigned Abbrev);
389 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N,
390 SmallVectorImpl<uint64_t> &Record,
391 unsigned Abbrev);
392 void writeDITemplateValueParameter(const DITemplateValueParameter *N,
393 SmallVectorImpl<uint64_t> &Record,
394 unsigned Abbrev);
395 void writeDIGlobalVariable(const DIGlobalVariable *N,
396 SmallVectorImpl<uint64_t> &Record,
397 unsigned Abbrev);
398 void writeDILocalVariable(const DILocalVariable *N,
399 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
400 void writeDILabel(const DILabel *N,
401 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
402 void writeDIExpression(const DIExpression *N,
403 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
404 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N,
405 SmallVectorImpl<uint64_t> &Record,
406 unsigned Abbrev);
407 void writeDIObjCProperty(const DIObjCProperty *N,
408 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
409 void writeDIImportedEntity(const DIImportedEntity *N,
410 SmallVectorImpl<uint64_t> &Record,
411 unsigned Abbrev);
412 unsigned createNamedMetadataAbbrev();
413 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record);
414 unsigned createMetadataStringsAbbrev();
415 void writeMetadataStrings(ArrayRef<const Metadata *> Strings,
416 SmallVectorImpl<uint64_t> &Record);
417 void writeMetadataRecords(ArrayRef<const Metadata *> MDs,
418 SmallVectorImpl<uint64_t> &Record,
419 std::vector<unsigned> *MDAbbrevs = nullptr,
420 std::vector<uint64_t> *IndexPos = nullptr);
421 void writeModuleMetadata();
422 void writeFunctionMetadata(const Function &F);
423 void writeFunctionMetadataAttachment(const Function &F);
424 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record,
425 const GlobalObject &GO);
426 void writeModuleMetadataKinds();
427 void writeOperandBundleTags();
428 void writeSyncScopeNames();
429 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal);
430 void writeModuleConstants();
431 bool pushValueAndType(const Value *V, unsigned InstID,
432 SmallVectorImpl<unsigned> &Vals);
433 bool pushValueOrMetadata(const Value *V, unsigned InstID,
434 SmallVectorImpl<unsigned> &Vals);
435 void writeOperandBundles(const CallBase &CB, unsigned InstID);
436 void pushValue(const Value *V, unsigned InstID,
437 SmallVectorImpl<unsigned> &Vals);
438 void pushValueSigned(const Value *V, unsigned InstID,
439 SmallVectorImpl<uint64_t> &Vals);
440 void writeInstruction(const Instruction &I, unsigned InstID,
441 SmallVectorImpl<unsigned> &Vals);
442 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST);
443 void writeGlobalValueSymbolTable(
444 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex);
445 void writeUseList(UseListOrder &&Order);
446 void writeUseListBlock(const Function *F);
447 void
448 writeFunction(const Function &F,
449 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex);
450 void writeBlockInfo();
451 void writeModuleHash(StringRef View);
452
453 unsigned getEncodedSyncScopeID(SyncScope::ID SSID) {
454 return unsigned(SSID);
455 }
456
457 unsigned getEncodedAlign(MaybeAlign Alignment) { return encode(A: Alignment); }
458};
459
460/// Class to manage the bitcode writing for a combined index.
461class IndexBitcodeWriter : public BitcodeWriterBase {
462 /// The combined index to write to bitcode.
463 const ModuleSummaryIndex &Index;
464
465 /// When writing combined summaries, provides the set of global value
466 /// summaries for which the value (function, function alias, etc) should be
467 /// imported as a declaration.
468 const GVSummaryPtrSet *DecSummaries = nullptr;
469
470 /// When writing a subset of the index for distributed backends, client
471 /// provides a map of modules to the corresponding GUIDs/summaries to write.
472 const ModuleToSummariesForIndexTy *ModuleToSummariesForIndex;
473
474 /// Map that holds the correspondence between the GUID used in the combined
475 /// index and a value id generated by this class to use in references.
476 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap;
477
478 // The stack ids used by this index, which will be a subset of those in
479 // the full index in the case of distributed indexes.
480 std::vector<uint64_t> StackIds;
481
482 // Keep a map of the stack id indices used by records being written for this
483 // index to the index of the corresponding stack id in the above StackIds
484 // vector. Ensures we write each referenced stack id once.
485 DenseMap<unsigned, unsigned> StackIdIndicesToIndex;
486
487 /// Tracks the last value id recorded in the GUIDToValueMap.
488 unsigned GlobalValueId = 0;
489
490 /// Tracks the assignment of module paths in the module path string table to
491 /// an id assigned for use in summary references to the module path.
492 DenseMap<StringRef, uint64_t> ModuleIdMap;
493
494public:
495 /// Constructs a IndexBitcodeWriter object for the given combined index,
496 /// writing to the provided \p Buffer. When writing a subset of the index
497 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map.
498 /// If provided, \p DecSummaries specifies the set of summaries for which
499 /// the corresponding functions or aliased functions should be imported as a
500 /// declaration (but not definition) for each module.
501 IndexBitcodeWriter(
502 BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder,
503 const ModuleSummaryIndex &Index,
504 const GVSummaryPtrSet *DecSummaries = nullptr,
505 const ModuleToSummariesForIndexTy *ModuleToSummariesForIndex = nullptr)
506 : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index),
507 DecSummaries(DecSummaries),
508 ModuleToSummariesForIndex(ModuleToSummariesForIndex) {
509
510 // See if the StackIdIndex was already added to the StackId map and
511 // vector. If not, record it.
512 auto RecordStackIdReference = [&](unsigned StackIdIndex) {
513 // If the StackIdIndex is not yet in the map, the below insert ensures
514 // that it will point to the new StackIds vector entry we push to just
515 // below.
516 auto Inserted =
517 StackIdIndicesToIndex.insert(KV: {StackIdIndex, StackIds.size()});
518 if (Inserted.second)
519 StackIds.push_back(x: Index.getStackIdAtIndex(Index: StackIdIndex));
520 };
521
522 // Assign unique value ids to all summaries to be written, for use
523 // in writing out the call graph edges. Save the mapping from GUID
524 // to the new global value id to use when writing those edges, which
525 // are currently saved in the index in terms of GUID.
526 forEachSummary(Callback: [&](GVInfo I, bool IsAliasee) {
527 GUIDToValueIdMap[I.first] = ++GlobalValueId;
528 // If this is invoked for an aliasee, we want to record the above mapping,
529 // but not the information needed for its summary entry (if the aliasee is
530 // to be imported, we will invoke this separately with IsAliasee=false).
531 if (IsAliasee)
532 return;
533 auto *FS = dyn_cast<FunctionSummary>(Val: I.second);
534 if (!FS)
535 return;
536 // Record all stack id indices actually used in the summary entries being
537 // written, so that we can compact them in the case of distributed ThinLTO
538 // indexes.
539 for (auto &CI : FS->callsites()) {
540 // If the stack id list is empty, this callsite info was synthesized for
541 // a missing tail call frame. Ensure that the callee's GUID gets a value
542 // id. Normally we only generate these for defined summaries, which in
543 // the case of distributed ThinLTO is only the functions already defined
544 // in the module or that we want to import. We don't bother to include
545 // all the callee symbols as they aren't normally needed in the backend.
546 // However, for the synthesized callsite infos we do need the callee
547 // GUID in the backend so that we can correlate the identified callee
548 // with this callsite info (which for non-tail calls is done by the
549 // ordering of the callsite infos and verified via stack ids).
550 if (CI.StackIdIndices.empty()) {
551 GUIDToValueIdMap[CI.Callee.getGUID()] = ++GlobalValueId;
552 continue;
553 }
554 for (auto Idx : CI.StackIdIndices)
555 RecordStackIdReference(Idx);
556 }
557 if (CombinedIndexMemProfContext) {
558 for (auto &AI : FS->allocs())
559 for (auto &MIB : AI.MIBs)
560 for (auto Idx : MIB.StackIdIndices)
561 RecordStackIdReference(Idx);
562 }
563 });
564 }
565
566 /// The below iterator returns the GUID and associated summary.
567 using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>;
568
569 /// Calls the callback for each value GUID and summary to be written to
570 /// bitcode. This hides the details of whether they are being pulled from the
571 /// entire index or just those in a provided ModuleToSummariesForIndex map.
572 template<typename Functor>
573 void forEachSummary(Functor Callback) {
574 if (ModuleToSummariesForIndex) {
575 for (auto &M : *ModuleToSummariesForIndex)
576 for (auto &Summary : M.second) {
577 Callback(Summary, false);
578 // Ensure aliasee is handled, e.g. for assigning a valueId,
579 // even if we are not importing the aliasee directly (the
580 // imported alias will contain a copy of aliasee).
581 if (auto *AS = dyn_cast<AliasSummary>(Val: Summary.getSecond()))
582 Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true);
583 }
584 } else {
585 for (auto &Summaries : Index)
586 for (auto &Summary : Summaries.second.getSummaryList())
587 Callback({Summaries.first, Summary.get()}, false);
588 }
589 }
590
591 /// Calls the callback for each entry in the modulePaths StringMap that
592 /// should be written to the module path string table. This hides the details
593 /// of whether they are being pulled from the entire index or just those in a
594 /// provided ModuleToSummariesForIndex map.
595 template <typename Functor> void forEachModule(Functor Callback) {
596 if (ModuleToSummariesForIndex) {
597 for (const auto &M : *ModuleToSummariesForIndex) {
598 const auto &MPI = Index.modulePaths().find(Key: M.first);
599 if (MPI == Index.modulePaths().end()) {
600 // This should only happen if the bitcode file was empty, in which
601 // case we shouldn't be importing (the ModuleToSummariesForIndex
602 // would only include the module we are writing and index for).
603 assert(ModuleToSummariesForIndex->size() == 1);
604 continue;
605 }
606 Callback(*MPI);
607 }
608 } else {
609 // Since StringMap iteration order isn't guaranteed, order by path string
610 // first.
611 // FIXME: Make this a vector of StringMapEntry instead to avoid the later
612 // map lookup.
613 std::vector<StringRef> ModulePaths;
614 for (auto &[ModPath, _] : Index.modulePaths())
615 ModulePaths.push_back(x: ModPath);
616 llvm::sort(C&: ModulePaths);
617 for (auto &ModPath : ModulePaths)
618 Callback(*Index.modulePaths().find(Key: ModPath));
619 }
620 }
621
622 /// Main entry point for writing a combined index to bitcode.
623 void write();
624
625private:
626 void writeModStrings();
627 void writeCombinedGlobalValueSummary();
628
629 std::optional<unsigned> getValueId(GlobalValue::GUID ValGUID) {
630 auto VMI = GUIDToValueIdMap.find(x: ValGUID);
631 if (VMI == GUIDToValueIdMap.end())
632 return std::nullopt;
633 return VMI->second;
634 }
635
636 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; }
637};
638
639} // end anonymous namespace
640
641static unsigned getEncodedCastOpcode(unsigned Opcode) {
642 switch (Opcode) {
643 default: llvm_unreachable("Unknown cast instruction!");
644 case Instruction::Trunc : return bitc::CAST_TRUNC;
645 case Instruction::ZExt : return bitc::CAST_ZEXT;
646 case Instruction::SExt : return bitc::CAST_SEXT;
647 case Instruction::FPToUI : return bitc::CAST_FPTOUI;
648 case Instruction::FPToSI : return bitc::CAST_FPTOSI;
649 case Instruction::UIToFP : return bitc::CAST_UITOFP;
650 case Instruction::SIToFP : return bitc::CAST_SITOFP;
651 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
652 case Instruction::FPExt : return bitc::CAST_FPEXT;
653 case Instruction::PtrToAddr: return bitc::CAST_PTRTOADDR;
654 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
655 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
656 case Instruction::BitCast : return bitc::CAST_BITCAST;
657 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST;
658 }
659}
660
661static unsigned getEncodedUnaryOpcode(unsigned Opcode) {
662 switch (Opcode) {
663 default: llvm_unreachable("Unknown binary instruction!");
664 case Instruction::FNeg: return bitc::UNOP_FNEG;
665 }
666}
667
668static unsigned getEncodedBinaryOpcode(unsigned Opcode) {
669 switch (Opcode) {
670 default: llvm_unreachable("Unknown binary instruction!");
671 case Instruction::Add:
672 case Instruction::FAdd: return bitc::BINOP_ADD;
673 case Instruction::Sub:
674 case Instruction::FSub: return bitc::BINOP_SUB;
675 case Instruction::Mul:
676 case Instruction::FMul: return bitc::BINOP_MUL;
677 case Instruction::UDiv: return bitc::BINOP_UDIV;
678 case Instruction::FDiv:
679 case Instruction::SDiv: return bitc::BINOP_SDIV;
680 case Instruction::URem: return bitc::BINOP_UREM;
681 case Instruction::FRem:
682 case Instruction::SRem: return bitc::BINOP_SREM;
683 case Instruction::Shl: return bitc::BINOP_SHL;
684 case Instruction::LShr: return bitc::BINOP_LSHR;
685 case Instruction::AShr: return bitc::BINOP_ASHR;
686 case Instruction::And: return bitc::BINOP_AND;
687 case Instruction::Or: return bitc::BINOP_OR;
688 case Instruction::Xor: return bitc::BINOP_XOR;
689 }
690}
691
692static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) {
693 switch (Op) {
694 default: llvm_unreachable("Unknown RMW operation!");
695 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG;
696 case AtomicRMWInst::Add: return bitc::RMW_ADD;
697 case AtomicRMWInst::Sub: return bitc::RMW_SUB;
698 case AtomicRMWInst::And: return bitc::RMW_AND;
699 case AtomicRMWInst::Nand: return bitc::RMW_NAND;
700 case AtomicRMWInst::Or: return bitc::RMW_OR;
701 case AtomicRMWInst::Xor: return bitc::RMW_XOR;
702 case AtomicRMWInst::Max: return bitc::RMW_MAX;
703 case AtomicRMWInst::Min: return bitc::RMW_MIN;
704 case AtomicRMWInst::UMax: return bitc::RMW_UMAX;
705 case AtomicRMWInst::UMin: return bitc::RMW_UMIN;
706 case AtomicRMWInst::FAdd: return bitc::RMW_FADD;
707 case AtomicRMWInst::FSub: return bitc::RMW_FSUB;
708 case AtomicRMWInst::FMax: return bitc::RMW_FMAX;
709 case AtomicRMWInst::FMin: return bitc::RMW_FMIN;
710 case AtomicRMWInst::FMaximum:
711 return bitc::RMW_FMAXIMUM;
712 case AtomicRMWInst::FMinimum:
713 return bitc::RMW_FMINIMUM;
714 case AtomicRMWInst::UIncWrap:
715 return bitc::RMW_UINC_WRAP;
716 case AtomicRMWInst::UDecWrap:
717 return bitc::RMW_UDEC_WRAP;
718 case AtomicRMWInst::USubCond:
719 return bitc::RMW_USUB_COND;
720 case AtomicRMWInst::USubSat:
721 return bitc::RMW_USUB_SAT;
722 }
723}
724
725static unsigned getEncodedOrdering(AtomicOrdering Ordering) {
726 switch (Ordering) {
727 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC;
728 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED;
729 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC;
730 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE;
731 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE;
732 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL;
733 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST;
734 }
735 llvm_unreachable("Invalid ordering");
736}
737
738static void writeStringRecord(BitstreamWriter &Stream, unsigned Code,
739 StringRef Str, unsigned AbbrevToUse) {
740 SmallVector<unsigned, 64> Vals;
741
742 // Code: [strchar x N]
743 for (char C : Str) {
744 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(C))
745 AbbrevToUse = 0;
746 Vals.push_back(Elt: C);
747 }
748
749 // Emit the finished record.
750 Stream.EmitRecord(Code, Vals, Abbrev: AbbrevToUse);
751}
752
753static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) {
754 switch (Kind) {
755 case Attribute::Alignment:
756 return bitc::ATTR_KIND_ALIGNMENT;
757 case Attribute::AllocAlign:
758 return bitc::ATTR_KIND_ALLOC_ALIGN;
759 case Attribute::AllocSize:
760 return bitc::ATTR_KIND_ALLOC_SIZE;
761 case Attribute::AlwaysInline:
762 return bitc::ATTR_KIND_ALWAYS_INLINE;
763 case Attribute::Builtin:
764 return bitc::ATTR_KIND_BUILTIN;
765 case Attribute::ByVal:
766 return bitc::ATTR_KIND_BY_VAL;
767 case Attribute::Convergent:
768 return bitc::ATTR_KIND_CONVERGENT;
769 case Attribute::InAlloca:
770 return bitc::ATTR_KIND_IN_ALLOCA;
771 case Attribute::Cold:
772 return bitc::ATTR_KIND_COLD;
773 case Attribute::DisableSanitizerInstrumentation:
774 return bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION;
775 case Attribute::FnRetThunkExtern:
776 return bitc::ATTR_KIND_FNRETTHUNK_EXTERN;
777 case Attribute::Hot:
778 return bitc::ATTR_KIND_HOT;
779 case Attribute::ElementType:
780 return bitc::ATTR_KIND_ELEMENTTYPE;
781 case Attribute::HybridPatchable:
782 return bitc::ATTR_KIND_HYBRID_PATCHABLE;
783 case Attribute::InlineHint:
784 return bitc::ATTR_KIND_INLINE_HINT;
785 case Attribute::InReg:
786 return bitc::ATTR_KIND_IN_REG;
787 case Attribute::JumpTable:
788 return bitc::ATTR_KIND_JUMP_TABLE;
789 case Attribute::MinSize:
790 return bitc::ATTR_KIND_MIN_SIZE;
791 case Attribute::AllocatedPointer:
792 return bitc::ATTR_KIND_ALLOCATED_POINTER;
793 case Attribute::AllocKind:
794 return bitc::ATTR_KIND_ALLOC_KIND;
795 case Attribute::Memory:
796 return bitc::ATTR_KIND_MEMORY;
797 case Attribute::NoFPClass:
798 return bitc::ATTR_KIND_NOFPCLASS;
799 case Attribute::Naked:
800 return bitc::ATTR_KIND_NAKED;
801 case Attribute::Nest:
802 return bitc::ATTR_KIND_NEST;
803 case Attribute::NoAlias:
804 return bitc::ATTR_KIND_NO_ALIAS;
805 case Attribute::NoBuiltin:
806 return bitc::ATTR_KIND_NO_BUILTIN;
807 case Attribute::NoCallback:
808 return bitc::ATTR_KIND_NO_CALLBACK;
809 case Attribute::NoDivergenceSource:
810 return bitc::ATTR_KIND_NO_DIVERGENCE_SOURCE;
811 case Attribute::NoDuplicate:
812 return bitc::ATTR_KIND_NO_DUPLICATE;
813 case Attribute::NoFree:
814 return bitc::ATTR_KIND_NOFREE;
815 case Attribute::NoImplicitFloat:
816 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT;
817 case Attribute::NoInline:
818 return bitc::ATTR_KIND_NO_INLINE;
819 case Attribute::NoRecurse:
820 return bitc::ATTR_KIND_NO_RECURSE;
821 case Attribute::NoMerge:
822 return bitc::ATTR_KIND_NO_MERGE;
823 case Attribute::NonLazyBind:
824 return bitc::ATTR_KIND_NON_LAZY_BIND;
825 case Attribute::NonNull:
826 return bitc::ATTR_KIND_NON_NULL;
827 case Attribute::Dereferenceable:
828 return bitc::ATTR_KIND_DEREFERENCEABLE;
829 case Attribute::DereferenceableOrNull:
830 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL;
831 case Attribute::NoRedZone:
832 return bitc::ATTR_KIND_NO_RED_ZONE;
833 case Attribute::NoReturn:
834 return bitc::ATTR_KIND_NO_RETURN;
835 case Attribute::NoSync:
836 return bitc::ATTR_KIND_NOSYNC;
837 case Attribute::NoCfCheck:
838 return bitc::ATTR_KIND_NOCF_CHECK;
839 case Attribute::NoProfile:
840 return bitc::ATTR_KIND_NO_PROFILE;
841 case Attribute::SkipProfile:
842 return bitc::ATTR_KIND_SKIP_PROFILE;
843 case Attribute::NoUnwind:
844 return bitc::ATTR_KIND_NO_UNWIND;
845 case Attribute::NoSanitizeBounds:
846 return bitc::ATTR_KIND_NO_SANITIZE_BOUNDS;
847 case Attribute::NoSanitizeCoverage:
848 return bitc::ATTR_KIND_NO_SANITIZE_COVERAGE;
849 case Attribute::NullPointerIsValid:
850 return bitc::ATTR_KIND_NULL_POINTER_IS_VALID;
851 case Attribute::OptimizeForDebugging:
852 return bitc::ATTR_KIND_OPTIMIZE_FOR_DEBUGGING;
853 case Attribute::OptForFuzzing:
854 return bitc::ATTR_KIND_OPT_FOR_FUZZING;
855 case Attribute::OptimizeForSize:
856 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE;
857 case Attribute::OptimizeNone:
858 return bitc::ATTR_KIND_OPTIMIZE_NONE;
859 case Attribute::ReadNone:
860 return bitc::ATTR_KIND_READ_NONE;
861 case Attribute::ReadOnly:
862 return bitc::ATTR_KIND_READ_ONLY;
863 case Attribute::Returned:
864 return bitc::ATTR_KIND_RETURNED;
865 case Attribute::ReturnsTwice:
866 return bitc::ATTR_KIND_RETURNS_TWICE;
867 case Attribute::SExt:
868 return bitc::ATTR_KIND_S_EXT;
869 case Attribute::Speculatable:
870 return bitc::ATTR_KIND_SPECULATABLE;
871 case Attribute::StackAlignment:
872 return bitc::ATTR_KIND_STACK_ALIGNMENT;
873 case Attribute::StackProtect:
874 return bitc::ATTR_KIND_STACK_PROTECT;
875 case Attribute::StackProtectReq:
876 return bitc::ATTR_KIND_STACK_PROTECT_REQ;
877 case Attribute::StackProtectStrong:
878 return bitc::ATTR_KIND_STACK_PROTECT_STRONG;
879 case Attribute::SafeStack:
880 return bitc::ATTR_KIND_SAFESTACK;
881 case Attribute::ShadowCallStack:
882 return bitc::ATTR_KIND_SHADOWCALLSTACK;
883 case Attribute::StrictFP:
884 return bitc::ATTR_KIND_STRICT_FP;
885 case Attribute::StructRet:
886 return bitc::ATTR_KIND_STRUCT_RET;
887 case Attribute::SanitizeAddress:
888 return bitc::ATTR_KIND_SANITIZE_ADDRESS;
889 case Attribute::SanitizeAllocToken:
890 return bitc::ATTR_KIND_SANITIZE_ALLOC_TOKEN;
891 case Attribute::SanitizeHWAddress:
892 return bitc::ATTR_KIND_SANITIZE_HWADDRESS;
893 case Attribute::SanitizeThread:
894 return bitc::ATTR_KIND_SANITIZE_THREAD;
895 case Attribute::SanitizeType:
896 return bitc::ATTR_KIND_SANITIZE_TYPE;
897 case Attribute::SanitizeMemory:
898 return bitc::ATTR_KIND_SANITIZE_MEMORY;
899 case Attribute::SanitizeNumericalStability:
900 return bitc::ATTR_KIND_SANITIZE_NUMERICAL_STABILITY;
901 case Attribute::SanitizeRealtime:
902 return bitc::ATTR_KIND_SANITIZE_REALTIME;
903 case Attribute::SanitizeRealtimeBlocking:
904 return bitc::ATTR_KIND_SANITIZE_REALTIME_BLOCKING;
905 case Attribute::SpeculativeLoadHardening:
906 return bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING;
907 case Attribute::SwiftError:
908 return bitc::ATTR_KIND_SWIFT_ERROR;
909 case Attribute::SwiftSelf:
910 return bitc::ATTR_KIND_SWIFT_SELF;
911 case Attribute::SwiftAsync:
912 return bitc::ATTR_KIND_SWIFT_ASYNC;
913 case Attribute::UWTable:
914 return bitc::ATTR_KIND_UW_TABLE;
915 case Attribute::VScaleRange:
916 return bitc::ATTR_KIND_VSCALE_RANGE;
917 case Attribute::WillReturn:
918 return bitc::ATTR_KIND_WILLRETURN;
919 case Attribute::WriteOnly:
920 return bitc::ATTR_KIND_WRITEONLY;
921 case Attribute::ZExt:
922 return bitc::ATTR_KIND_Z_EXT;
923 case Attribute::ImmArg:
924 return bitc::ATTR_KIND_IMMARG;
925 case Attribute::SanitizeMemTag:
926 return bitc::ATTR_KIND_SANITIZE_MEMTAG;
927 case Attribute::Preallocated:
928 return bitc::ATTR_KIND_PREALLOCATED;
929 case Attribute::NoUndef:
930 return bitc::ATTR_KIND_NOUNDEF;
931 case Attribute::ByRef:
932 return bitc::ATTR_KIND_BYREF;
933 case Attribute::MustProgress:
934 return bitc::ATTR_KIND_MUSTPROGRESS;
935 case Attribute::PresplitCoroutine:
936 return bitc::ATTR_KIND_PRESPLIT_COROUTINE;
937 case Attribute::Writable:
938 return bitc::ATTR_KIND_WRITABLE;
939 case Attribute::CoroDestroyOnlyWhenComplete:
940 return bitc::ATTR_KIND_CORO_ONLY_DESTROY_WHEN_COMPLETE;
941 case Attribute::CoroElideSafe:
942 return bitc::ATTR_KIND_CORO_ELIDE_SAFE;
943 case Attribute::DeadOnUnwind:
944 return bitc::ATTR_KIND_DEAD_ON_UNWIND;
945 case Attribute::Range:
946 return bitc::ATTR_KIND_RANGE;
947 case Attribute::Initializes:
948 return bitc::ATTR_KIND_INITIALIZES;
949 case Attribute::NoExt:
950 return bitc::ATTR_KIND_NO_EXT;
951 case Attribute::Captures:
952 return bitc::ATTR_KIND_CAPTURES;
953 case Attribute::DeadOnReturn:
954 return bitc::ATTR_KIND_DEAD_ON_RETURN;
955 case Attribute::NoCreateUndefOrPoison:
956 return bitc::ATTR_KIND_NO_CREATE_UNDEF_OR_POISON;
957 case Attribute::EndAttrKinds:
958 llvm_unreachable("Can not encode end-attribute kinds marker.");
959 case Attribute::None:
960 llvm_unreachable("Can not encode none-attribute.");
961 case Attribute::EmptyKey:
962 case Attribute::TombstoneKey:
963 llvm_unreachable("Trying to encode EmptyKey/TombstoneKey");
964 }
965
966 llvm_unreachable("Trying to encode unknown attribute");
967}
968
969static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) {
970 if ((int64_t)V >= 0)
971 Vals.push_back(Elt: V << 1);
972 else
973 Vals.push_back(Elt: (-V << 1) | 1);
974}
975
976static void emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, const APInt &A) {
977 // We have an arbitrary precision integer value to write whose
978 // bit width is > 64. However, in canonical unsigned integer
979 // format it is likely that the high bits are going to be zero.
980 // So, we only write the number of active words.
981 unsigned NumWords = A.getActiveWords();
982 const uint64_t *RawData = A.getRawData();
983 for (unsigned i = 0; i < NumWords; i++)
984 emitSignedInt64(Vals, V: RawData[i]);
985}
986
987static void emitConstantRange(SmallVectorImpl<uint64_t> &Record,
988 const ConstantRange &CR, bool EmitBitWidth) {
989 unsigned BitWidth = CR.getBitWidth();
990 if (EmitBitWidth)
991 Record.push_back(Elt: BitWidth);
992 if (BitWidth > 64) {
993 Record.push_back(Elt: CR.getLower().getActiveWords() |
994 (uint64_t(CR.getUpper().getActiveWords()) << 32));
995 emitWideAPInt(Vals&: Record, A: CR.getLower());
996 emitWideAPInt(Vals&: Record, A: CR.getUpper());
997 } else {
998 emitSignedInt64(Vals&: Record, V: CR.getLower().getSExtValue());
999 emitSignedInt64(Vals&: Record, V: CR.getUpper().getSExtValue());
1000 }
1001}
1002
1003void ModuleBitcodeWriter::writeAttributeGroupTable() {
1004 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps =
1005 VE.getAttributeGroups();
1006 if (AttrGrps.empty()) return;
1007
1008 Stream.EnterSubblock(BlockID: bitc::PARAMATTR_GROUP_BLOCK_ID, CodeLen: 3);
1009
1010 SmallVector<uint64_t, 64> Record;
1011 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) {
1012 unsigned AttrListIndex = Pair.first;
1013 AttributeSet AS = Pair.second;
1014 Record.push_back(Elt: VE.getAttributeGroupID(Group: Pair));
1015 Record.push_back(Elt: AttrListIndex);
1016
1017 for (Attribute Attr : AS) {
1018 if (Attr.isEnumAttribute()) {
1019 Record.push_back(Elt: 0);
1020 Record.push_back(Elt: getAttrKindEncoding(Kind: Attr.getKindAsEnum()));
1021 } else if (Attr.isIntAttribute()) {
1022 Record.push_back(Elt: 1);
1023 Attribute::AttrKind Kind = Attr.getKindAsEnum();
1024 Record.push_back(Elt: getAttrKindEncoding(Kind));
1025 if (Kind == Attribute::Memory) {
1026 // Version field for upgrading old memory effects.
1027 const uint64_t Version = 1;
1028 Record.push_back(Elt: (Version << 56) | Attr.getValueAsInt());
1029 } else {
1030 Record.push_back(Elt: Attr.getValueAsInt());
1031 }
1032 } else if (Attr.isStringAttribute()) {
1033 StringRef Kind = Attr.getKindAsString();
1034 StringRef Val = Attr.getValueAsString();
1035
1036 Record.push_back(Elt: Val.empty() ? 3 : 4);
1037 Record.append(in_start: Kind.begin(), in_end: Kind.end());
1038 Record.push_back(Elt: 0);
1039 if (!Val.empty()) {
1040 Record.append(in_start: Val.begin(), in_end: Val.end());
1041 Record.push_back(Elt: 0);
1042 }
1043 } else if (Attr.isTypeAttribute()) {
1044 Type *Ty = Attr.getValueAsType();
1045 Record.push_back(Elt: Ty ? 6 : 5);
1046 Record.push_back(Elt: getAttrKindEncoding(Kind: Attr.getKindAsEnum()));
1047 if (Ty)
1048 Record.push_back(Elt: VE.getTypeID(T: Attr.getValueAsType()));
1049 } else if (Attr.isConstantRangeAttribute()) {
1050 Record.push_back(Elt: 7);
1051 Record.push_back(Elt: getAttrKindEncoding(Kind: Attr.getKindAsEnum()));
1052 emitConstantRange(Record, CR: Attr.getValueAsConstantRange(),
1053 /*EmitBitWidth=*/true);
1054 } else {
1055 assert(Attr.isConstantRangeListAttribute());
1056 Record.push_back(Elt: 8);
1057 Record.push_back(Elt: getAttrKindEncoding(Kind: Attr.getKindAsEnum()));
1058 ArrayRef<ConstantRange> Val = Attr.getValueAsConstantRangeList();
1059 Record.push_back(Elt: Val.size());
1060 Record.push_back(Elt: Val[0].getBitWidth());
1061 for (auto &CR : Val)
1062 emitConstantRange(Record, CR, /*EmitBitWidth=*/false);
1063 }
1064 }
1065
1066 Stream.EmitRecord(Code: bitc::PARAMATTR_GRP_CODE_ENTRY, Vals: Record);
1067 Record.clear();
1068 }
1069
1070 Stream.ExitBlock();
1071}
1072
1073void ModuleBitcodeWriter::writeAttributeTable() {
1074 const std::vector<AttributeList> &Attrs = VE.getAttributeLists();
1075 if (Attrs.empty()) return;
1076
1077 Stream.EnterSubblock(BlockID: bitc::PARAMATTR_BLOCK_ID, CodeLen: 3);
1078
1079 SmallVector<uint64_t, 64> Record;
1080 for (const AttributeList &AL : Attrs) {
1081 for (unsigned i : AL.indexes()) {
1082 AttributeSet AS = AL.getAttributes(Index: i);
1083 if (AS.hasAttributes())
1084 Record.push_back(Elt: VE.getAttributeGroupID(Group: {i, AS}));
1085 }
1086
1087 Stream.EmitRecord(Code: bitc::PARAMATTR_CODE_ENTRY, Vals: Record);
1088 Record.clear();
1089 }
1090
1091 Stream.ExitBlock();
1092}
1093
1094/// WriteTypeTable - Write out the type table for a module.
1095void ModuleBitcodeWriter::writeTypeTable() {
1096 const ValueEnumerator::TypeList &TypeList = VE.getTypes();
1097
1098 Stream.EnterSubblock(BlockID: bitc::TYPE_BLOCK_ID_NEW, CodeLen: 4 /*count from # abbrevs */);
1099 SmallVector<uint64_t, 64> TypeVals;
1100
1101 uint64_t NumBits = VE.computeBitsRequiredForTypeIndices();
1102
1103 // Abbrev for TYPE_CODE_OPAQUE_POINTER.
1104 auto Abbv = std::make_shared<BitCodeAbbrev>();
1105 Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::TYPE_CODE_OPAQUE_POINTER));
1106 Abbv->Add(OpInfo: BitCodeAbbrevOp(0)); // Addrspace = 0
1107 unsigned OpaquePtrAbbrev = Stream.EmitAbbrev(Abbv: std::move(Abbv));
1108
1109 // Abbrev for TYPE_CODE_FUNCTION.
1110 Abbv = std::make_shared<BitCodeAbbrev>();
1111 Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
1112 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg
1113 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1114 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
1115 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv: std::move(Abbv));
1116
1117 // Abbrev for TYPE_CODE_STRUCT_ANON.
1118 Abbv = std::make_shared<BitCodeAbbrev>();
1119 Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON));
1120 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked
1121 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1122 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
1123 unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv: std::move(Abbv));
1124
1125 // Abbrev for TYPE_CODE_STRUCT_NAME.
1126 Abbv = std::make_shared<BitCodeAbbrev>();
1127 Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME));
1128 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1129 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1130 unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv: std::move(Abbv));
1131
1132 // Abbrev for TYPE_CODE_STRUCT_NAMED.
1133 Abbv = std::make_shared<BitCodeAbbrev>();
1134 Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED));
1135 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked
1136 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1137 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
1138 unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv: std::move(Abbv));
1139
1140 // Abbrev for TYPE_CODE_ARRAY.
1141 Abbv = std::make_shared<BitCodeAbbrev>();
1142 Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
1143 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size
1144 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
1145 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv: std::move(Abbv));
1146
1147 // Emit an entry count so the reader can reserve space.
1148 TypeVals.push_back(Elt: TypeList.size());
1149 Stream.EmitRecord(Code: bitc::TYPE_CODE_NUMENTRY, Vals: TypeVals);
1150 TypeVals.clear();
1151
1152 // Loop over all of the types, emitting each in turn.
1153 for (Type *T : TypeList) {
1154 int AbbrevToUse = 0;
1155 unsigned Code = 0;
1156
1157 switch (T->getTypeID()) {
1158 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break;
1159 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break;
1160 case Type::BFloatTyID: Code = bitc::TYPE_CODE_BFLOAT; break;
1161 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break;
1162 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break;
1163 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break;
1164 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break;
1165 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
1166 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break;
1167 case Type::MetadataTyID:
1168 Code = bitc::TYPE_CODE_METADATA;
1169 break;
1170 case Type::X86_AMXTyID: Code = bitc::TYPE_CODE_X86_AMX; break;
1171 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break;
1172 case Type::IntegerTyID:
1173 // INTEGER: [width]
1174 Code = bitc::TYPE_CODE_INTEGER;
1175 TypeVals.push_back(Elt: cast<IntegerType>(Val: T)->getBitWidth());
1176 break;
1177 case Type::PointerTyID: {
1178 PointerType *PTy = cast<PointerType>(Val: T);
1179 unsigned AddressSpace = PTy->getAddressSpace();
1180 // OPAQUE_POINTER: [address space]
1181 Code = bitc::TYPE_CODE_OPAQUE_POINTER;
1182 TypeVals.push_back(Elt: AddressSpace);
1183 if (AddressSpace == 0)
1184 AbbrevToUse = OpaquePtrAbbrev;
1185 break;
1186 }
1187 case Type::FunctionTyID: {
1188 FunctionType *FT = cast<FunctionType>(Val: T);
1189 // FUNCTION: [isvararg, retty, paramty x N]
1190 Code = bitc::TYPE_CODE_FUNCTION;
1191 TypeVals.push_back(Elt: FT->isVarArg());
1192 TypeVals.push_back(Elt: VE.getTypeID(T: FT->getReturnType()));
1193 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
1194 TypeVals.push_back(Elt: VE.getTypeID(T: FT->getParamType(i)));
1195 AbbrevToUse = FunctionAbbrev;
1196 break;
1197 }
1198 case Type::StructTyID: {
1199 StructType *ST = cast<StructType>(Val: T);
1200 // STRUCT: [ispacked, eltty x N]
1201 TypeVals.push_back(Elt: ST->isPacked());
1202 // Output all of the element types.
1203 for (Type *ET : ST->elements())
1204 TypeVals.push_back(Elt: VE.getTypeID(T: ET));
1205
1206 if (ST->isLiteral()) {
1207 Code = bitc::TYPE_CODE_STRUCT_ANON;
1208 AbbrevToUse = StructAnonAbbrev;
1209 } else {
1210 if (ST->isOpaque()) {
1211 Code = bitc::TYPE_CODE_OPAQUE;
1212 } else {
1213 Code = bitc::TYPE_CODE_STRUCT_NAMED;
1214 AbbrevToUse = StructNamedAbbrev;
1215 }
1216
1217 // Emit the name if it is present.
1218 if (!ST->getName().empty())
1219 writeStringRecord(Stream, Code: bitc::TYPE_CODE_STRUCT_NAME, Str: ST->getName(),
1220 AbbrevToUse: StructNameAbbrev);
1221 }
1222 break;
1223 }
1224 case Type::ArrayTyID: {
1225 ArrayType *AT = cast<ArrayType>(Val: T);
1226 // ARRAY: [numelts, eltty]
1227 Code = bitc::TYPE_CODE_ARRAY;
1228 TypeVals.push_back(Elt: AT->getNumElements());
1229 TypeVals.push_back(Elt: VE.getTypeID(T: AT->getElementType()));
1230 AbbrevToUse = ArrayAbbrev;
1231 break;
1232 }
1233 case Type::FixedVectorTyID:
1234 case Type::ScalableVectorTyID: {
1235 VectorType *VT = cast<VectorType>(Val: T);
1236 // VECTOR [numelts, eltty] or
1237 // [numelts, eltty, scalable]
1238 Code = bitc::TYPE_CODE_VECTOR;
1239 TypeVals.push_back(Elt: VT->getElementCount().getKnownMinValue());
1240 TypeVals.push_back(Elt: VE.getTypeID(T: VT->getElementType()));
1241 if (isa<ScalableVectorType>(Val: VT))
1242 TypeVals.push_back(Elt: true);
1243 break;
1244 }
1245 case Type::TargetExtTyID: {
1246 TargetExtType *TET = cast<TargetExtType>(Val: T);
1247 Code = bitc::TYPE_CODE_TARGET_TYPE;
1248 writeStringRecord(Stream, Code: bitc::TYPE_CODE_STRUCT_NAME, Str: TET->getName(),
1249 AbbrevToUse: StructNameAbbrev);
1250 TypeVals.push_back(Elt: TET->getNumTypeParameters());
1251 for (Type *InnerTy : TET->type_params())
1252 TypeVals.push_back(Elt: VE.getTypeID(T: InnerTy));
1253 llvm::append_range(C&: TypeVals, R: TET->int_params());
1254 break;
1255 }
1256 case Type::TypedPointerTyID:
1257 llvm_unreachable("Typed pointers cannot be added to IR modules");
1258 }
1259
1260 // Emit the finished record.
1261 Stream.EmitRecord(Code, Vals: TypeVals, Abbrev: AbbrevToUse);
1262 TypeVals.clear();
1263 }
1264
1265 Stream.ExitBlock();
1266}
1267
1268static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) {
1269 switch (Linkage) {
1270 case GlobalValue::ExternalLinkage:
1271 return 0;
1272 case GlobalValue::WeakAnyLinkage:
1273 return 16;
1274 case GlobalValue::AppendingLinkage:
1275 return 2;
1276 case GlobalValue::InternalLinkage:
1277 return 3;
1278 case GlobalValue::LinkOnceAnyLinkage:
1279 return 18;
1280 case GlobalValue::ExternalWeakLinkage:
1281 return 7;
1282 case GlobalValue::CommonLinkage:
1283 return 8;
1284 case GlobalValue::PrivateLinkage:
1285 return 9;
1286 case GlobalValue::WeakODRLinkage:
1287 return 17;
1288 case GlobalValue::LinkOnceODRLinkage:
1289 return 19;
1290 case GlobalValue::AvailableExternallyLinkage:
1291 return 12;
1292 }
1293 llvm_unreachable("Invalid linkage");
1294}
1295
1296static unsigned getEncodedLinkage(const GlobalValue &GV) {
1297 return getEncodedLinkage(Linkage: GV.getLinkage());
1298}
1299
1300static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) {
1301 uint64_t RawFlags = 0;
1302 RawFlags |= Flags.ReadNone;
1303 RawFlags |= (Flags.ReadOnly << 1);
1304 RawFlags |= (Flags.NoRecurse << 2);
1305 RawFlags |= (Flags.ReturnDoesNotAlias << 3);
1306 RawFlags |= (Flags.NoInline << 4);
1307 RawFlags |= (Flags.AlwaysInline << 5);
1308 RawFlags |= (Flags.NoUnwind << 6);
1309 RawFlags |= (Flags.MayThrow << 7);
1310 RawFlags |= (Flags.HasUnknownCall << 8);
1311 RawFlags |= (Flags.MustBeUnreachable << 9);
1312 return RawFlags;
1313}
1314
1315// Decode the flags for GlobalValue in the summary. See getDecodedGVSummaryFlags
1316// in BitcodeReader.cpp.
1317static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags,
1318 bool ImportAsDecl = false) {
1319 uint64_t RawFlags = 0;
1320
1321 RawFlags |= Flags.NotEligibleToImport; // bool
1322 RawFlags |= (Flags.Live << 1);
1323 RawFlags |= (Flags.DSOLocal << 2);
1324 RawFlags |= (Flags.CanAutoHide << 3);
1325
1326 // Linkage don't need to be remapped at that time for the summary. Any future
1327 // change to the getEncodedLinkage() function will need to be taken into
1328 // account here as well.
1329 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits
1330
1331 RawFlags |= (Flags.Visibility << 8); // 2 bits
1332
1333 unsigned ImportType = Flags.ImportType | ImportAsDecl;
1334 RawFlags |= (ImportType << 10); // 1 bit
1335
1336 return RawFlags;
1337}
1338
1339static uint64_t getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags) {
1340 uint64_t RawFlags = Flags.MaybeReadOnly | (Flags.MaybeWriteOnly << 1) |
1341 (Flags.Constant << 2) | Flags.VCallVisibility << 3;
1342 return RawFlags;
1343}
1344
1345static uint64_t getEncodedHotnessCallEdgeInfo(const CalleeInfo &CI) {
1346 uint64_t RawFlags = 0;
1347
1348 RawFlags |= CI.Hotness; // 3 bits
1349 RawFlags |= (CI.HasTailCall << 3); // 1 bit
1350
1351 return RawFlags;
1352}
1353
1354static unsigned getEncodedVisibility(const GlobalValue &GV) {
1355 switch (GV.getVisibility()) {
1356 case GlobalValue::DefaultVisibility: return 0;
1357 case GlobalValue::HiddenVisibility: return 1;
1358 case GlobalValue::ProtectedVisibility: return 2;
1359 }
1360 llvm_unreachable("Invalid visibility");
1361}
1362
1363static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) {
1364 switch (GV.getDLLStorageClass()) {
1365 case GlobalValue::DefaultStorageClass: return 0;
1366 case GlobalValue::DLLImportStorageClass: return 1;
1367 case GlobalValue::DLLExportStorageClass: return 2;
1368 }
1369 llvm_unreachable("Invalid DLL storage class");
1370}
1371
1372static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) {
1373 switch (GV.getThreadLocalMode()) {
1374 case GlobalVariable::NotThreadLocal: return 0;
1375 case GlobalVariable::GeneralDynamicTLSModel: return 1;
1376 case GlobalVariable::LocalDynamicTLSModel: return 2;
1377 case GlobalVariable::InitialExecTLSModel: return 3;
1378 case GlobalVariable::LocalExecTLSModel: return 4;
1379 }
1380 llvm_unreachable("Invalid TLS model");
1381}
1382
1383static unsigned getEncodedComdatSelectionKind(const Comdat &C) {
1384 switch (C.getSelectionKind()) {
1385 case Comdat::Any:
1386 return bitc::COMDAT_SELECTION_KIND_ANY;
1387 case Comdat::ExactMatch:
1388 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH;
1389 case Comdat::Largest:
1390 return bitc::COMDAT_SELECTION_KIND_LARGEST;
1391 case Comdat::NoDeduplicate:
1392 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES;
1393 case Comdat::SameSize:
1394 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE;
1395 }
1396 llvm_unreachable("Invalid selection kind");
1397}
1398
1399static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) {
1400 switch (GV.getUnnamedAddr()) {
1401 case GlobalValue::UnnamedAddr::None: return 0;
1402 case GlobalValue::UnnamedAddr::Local: return 2;
1403 case GlobalValue::UnnamedAddr::Global: return 1;
1404 }
1405 llvm_unreachable("Invalid unnamed_addr");
1406}
1407
1408size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) {
1409 if (GenerateHash)
1410 Hasher.update(Str);
1411 return StrtabBuilder.add(S: Str);
1412}
1413
1414void ModuleBitcodeWriter::writeComdats() {
1415 SmallVector<unsigned, 64> Vals;
1416 for (const Comdat *C : VE.getComdats()) {
1417 // COMDAT: [strtab offset, strtab size, selection_kind]
1418 Vals.push_back(Elt: addToStrtab(Str: C->getName()));
1419 Vals.push_back(Elt: C->getName().size());
1420 Vals.push_back(Elt: getEncodedComdatSelectionKind(C: *C));
1421 Stream.EmitRecord(Code: bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/Abbrev: 0);
1422 Vals.clear();
1423 }
1424}
1425
1426/// Write a record that will eventually hold the word offset of the
1427/// module-level VST. For now the offset is 0, which will be backpatched
1428/// after the real VST is written. Saves the bit offset to backpatch.
1429void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() {
1430 // Write a placeholder value in for the offset of the real VST,
1431 // which is written after the function blocks so that it can include
1432 // the offset of each function. The placeholder offset will be
1433 // updated when the real VST is written.
1434 auto Abbv = std::make_shared<BitCodeAbbrev>();
1435 Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET));
1436 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to
1437 // hold the real VST offset. Must use fixed instead of VBR as we don't
1438 // know how many VBR chunks to reserve ahead of time.
1439 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
1440 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(Abbv: std::move(Abbv));
1441
1442 // Emit the placeholder
1443 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0};
1444 Stream.EmitRecordWithAbbrev(Abbrev: VSTOffsetAbbrev, Vals);
1445
1446 // Compute and save the bit offset to the placeholder, which will be
1447 // patched when the real VST is written. We can simply subtract the 32-bit
1448 // fixed size from the current bit number to get the location to backpatch.
1449 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32;
1450}
1451
1452enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 };
1453
1454/// Determine the encoding to use for the given string name and length.
1455static StringEncoding getStringEncoding(StringRef Str) {
1456 bool isChar6 = true;
1457 for (char C : Str) {
1458 if (isChar6)
1459 isChar6 = BitCodeAbbrevOp::isChar6(C);
1460 if ((unsigned char)C & 128)
1461 // don't bother scanning the rest.
1462 return SE_Fixed8;
1463 }
1464 if (isChar6)
1465 return SE_Char6;
1466 return SE_Fixed7;
1467}
1468
1469static_assert(sizeof(GlobalValue::SanitizerMetadata) <= sizeof(unsigned),
1470 "Sanitizer Metadata is too large for naive serialization.");
1471static unsigned
1472serializeSanitizerMetadata(const GlobalValue::SanitizerMetadata &Meta) {
1473 return Meta.NoAddress | (Meta.NoHWAddress << 1) |
1474 (Meta.Memtag << 2) | (Meta.IsDynInit << 3);
1475}
1476
1477/// Emit top-level description of module, including target triple, inline asm,
1478/// descriptors for global variables, and function prototype info.
1479/// Returns the bit offset to backpatch with the location of the real VST.
1480void ModuleBitcodeWriter::writeModuleInfo() {
1481 // Emit various pieces of data attached to a module.
1482 if (!M.getTargetTriple().empty())
1483 writeStringRecord(Stream, Code: bitc::MODULE_CODE_TRIPLE,
1484 Str: M.getTargetTriple().str(), AbbrevToUse: 0 /*TODO*/);
1485 const std::string &DL = M.getDataLayoutStr();
1486 if (!DL.empty())
1487 writeStringRecord(Stream, Code: bitc::MODULE_CODE_DATALAYOUT, Str: DL, AbbrevToUse: 0 /*TODO*/);
1488 if (!M.getModuleInlineAsm().empty())
1489 writeStringRecord(Stream, Code: bitc::MODULE_CODE_ASM, Str: M.getModuleInlineAsm(),
1490 AbbrevToUse: 0 /*TODO*/);
1491
1492 // Emit information about sections and GC, computing how many there are. Also
1493 // compute the maximum alignment value.
1494 std::map<std::string, unsigned> SectionMap;
1495 std::map<std::string, unsigned> GCMap;
1496 MaybeAlign MaxGVarAlignment;
1497 unsigned MaxGlobalType = 0;
1498 for (const GlobalVariable &GV : M.globals()) {
1499 if (MaybeAlign A = GV.getAlign())
1500 MaxGVarAlignment = !MaxGVarAlignment ? *A : std::max(a: *MaxGVarAlignment, b: *A);
1501 MaxGlobalType = std::max(a: MaxGlobalType, b: VE.getTypeID(T: GV.getValueType()));
1502 if (GV.hasSection()) {
1503 // Give section names unique ID's.
1504 unsigned &Entry = SectionMap[std::string(GV.getSection())];
1505 if (!Entry) {
1506 writeStringRecord(Stream, Code: bitc::MODULE_CODE_SECTIONNAME, Str: GV.getSection(),
1507 AbbrevToUse: 0 /*TODO*/);
1508 Entry = SectionMap.size();
1509 }
1510 }
1511 }
1512 for (const Function &F : M) {
1513 if (F.hasSection()) {
1514 // Give section names unique ID's.
1515 unsigned &Entry = SectionMap[std::string(F.getSection())];
1516 if (!Entry) {
1517 writeStringRecord(Stream, Code: bitc::MODULE_CODE_SECTIONNAME, Str: F.getSection(),
1518 AbbrevToUse: 0 /*TODO*/);
1519 Entry = SectionMap.size();
1520 }
1521 }
1522 if (F.hasGC()) {
1523 // Same for GC names.
1524 unsigned &Entry = GCMap[F.getGC()];
1525 if (!Entry) {
1526 writeStringRecord(Stream, Code: bitc::MODULE_CODE_GCNAME, Str: F.getGC(),
1527 AbbrevToUse: 0 /*TODO*/);
1528 Entry = GCMap.size();
1529 }
1530 }
1531 }
1532
1533 // Emit abbrev for globals, now that we know # sections and max alignment.
1534 unsigned SimpleGVarAbbrev = 0;
1535 if (!M.global_empty()) {
1536 // Add an abbrev for common globals with no visibility or thread localness.
1537 auto Abbv = std::make_shared<BitCodeAbbrev>();
1538 Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
1539 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1540 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1541 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1542 Log2_32_Ceil(Value: MaxGlobalType+1)));
1543 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2
1544 //| explicitType << 1
1545 //| constant
1546 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer.
1547 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage.
1548 if (!MaxGVarAlignment) // Alignment.
1549 Abbv->Add(OpInfo: BitCodeAbbrevOp(0));
1550 else {
1551 unsigned MaxEncAlignment = getEncodedAlign(Alignment: MaxGVarAlignment);
1552 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1553 Log2_32_Ceil(Value: MaxEncAlignment+1)));
1554 }
1555 if (SectionMap.empty()) // Section.
1556 Abbv->Add(OpInfo: BitCodeAbbrevOp(0));
1557 else
1558 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1559 Log2_32_Ceil(Value: SectionMap.size()+1)));
1560 // Don't bother emitting vis + thread local.
1561 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv: std::move(Abbv));
1562 }
1563
1564 SmallVector<unsigned, 64> Vals;
1565 // Emit the module's source file name.
1566 {
1567 StringEncoding Bits = getStringEncoding(Str: M.getSourceFileName());
1568 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8);
1569 if (Bits == SE_Char6)
1570 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6);
1571 else if (Bits == SE_Fixed7)
1572 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7);
1573
1574 // MODULE_CODE_SOURCE_FILENAME: [namechar x N]
1575 auto Abbv = std::make_shared<BitCodeAbbrev>();
1576 Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME));
1577 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1578 Abbv->Add(OpInfo: AbbrevOpToUse);
1579 unsigned FilenameAbbrev = Stream.EmitAbbrev(Abbv: std::move(Abbv));
1580
1581 for (const auto P : M.getSourceFileName())
1582 Vals.push_back(Elt: (unsigned char)P);
1583
1584 // Emit the finished record.
1585 Stream.EmitRecord(Code: bitc::MODULE_CODE_SOURCE_FILENAME, Vals, Abbrev: FilenameAbbrev);
1586 Vals.clear();
1587 }
1588
1589 // Emit the global variable information.
1590 for (const GlobalVariable &GV : M.globals()) {
1591 unsigned AbbrevToUse = 0;
1592
1593 // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid,
1594 // linkage, alignment, section, visibility, threadlocal,
1595 // unnamed_addr, externally_initialized, dllstorageclass,
1596 // comdat, attributes, DSO_Local, GlobalSanitizer, code_model]
1597 Vals.push_back(Elt: addToStrtab(Str: GV.getName()));
1598 Vals.push_back(Elt: GV.getName().size());
1599 Vals.push_back(Elt: VE.getTypeID(T: GV.getValueType()));
1600 Vals.push_back(Elt: GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant());
1601 Vals.push_back(Elt: GV.isDeclaration() ? 0 :
1602 (VE.getValueID(V: GV.getInitializer()) + 1));
1603 Vals.push_back(Elt: getEncodedLinkage(GV));
1604 Vals.push_back(Elt: getEncodedAlign(Alignment: GV.getAlign()));
1605 Vals.push_back(Elt: GV.hasSection() ? SectionMap[std::string(GV.getSection())]
1606 : 0);
1607 if (GV.isThreadLocal() ||
1608 GV.getVisibility() != GlobalValue::DefaultVisibility ||
1609 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None ||
1610 GV.isExternallyInitialized() ||
1611 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass ||
1612 GV.hasComdat() || GV.hasAttributes() || GV.isDSOLocal() ||
1613 GV.hasPartition() || GV.hasSanitizerMetadata() || GV.getCodeModel()) {
1614 Vals.push_back(Elt: getEncodedVisibility(GV));
1615 Vals.push_back(Elt: getEncodedThreadLocalMode(GV));
1616 Vals.push_back(Elt: getEncodedUnnamedAddr(GV));
1617 Vals.push_back(Elt: GV.isExternallyInitialized());
1618 Vals.push_back(Elt: getEncodedDLLStorageClass(GV));
1619 Vals.push_back(Elt: GV.hasComdat() ? VE.getComdatID(C: GV.getComdat()) : 0);
1620
1621 auto AL = GV.getAttributesAsList(index: AttributeList::FunctionIndex);
1622 Vals.push_back(Elt: VE.getAttributeListID(PAL: AL));
1623
1624 Vals.push_back(Elt: GV.isDSOLocal());
1625 Vals.push_back(Elt: addToStrtab(Str: GV.getPartition()));
1626 Vals.push_back(Elt: GV.getPartition().size());
1627
1628 Vals.push_back(Elt: (GV.hasSanitizerMetadata() ? serializeSanitizerMetadata(
1629 Meta: GV.getSanitizerMetadata())
1630 : 0));
1631 Vals.push_back(Elt: GV.getCodeModelRaw());
1632 } else {
1633 AbbrevToUse = SimpleGVarAbbrev;
1634 }
1635
1636 Stream.EmitRecord(Code: bitc::MODULE_CODE_GLOBALVAR, Vals, Abbrev: AbbrevToUse);
1637 Vals.clear();
1638 }
1639
1640 // Emit the function proto information.
1641 for (const Function &F : M) {
1642 // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto,
1643 // linkage, paramattrs, alignment, section, visibility, gc,
1644 // unnamed_addr, prologuedata, dllstorageclass, comdat,
1645 // prefixdata, personalityfn, DSO_Local, addrspace]
1646 Vals.push_back(Elt: addToStrtab(Str: F.getName()));
1647 Vals.push_back(Elt: F.getName().size());
1648 Vals.push_back(Elt: VE.getTypeID(T: F.getFunctionType()));
1649 Vals.push_back(Elt: F.getCallingConv());
1650 Vals.push_back(Elt: F.isDeclaration());
1651 Vals.push_back(Elt: getEncodedLinkage(GV: F));
1652 Vals.push_back(Elt: VE.getAttributeListID(PAL: F.getAttributes()));
1653 Vals.push_back(Elt: getEncodedAlign(Alignment: F.getAlign()));
1654 Vals.push_back(Elt: F.hasSection() ? SectionMap[std::string(F.getSection())]
1655 : 0);
1656 Vals.push_back(Elt: getEncodedVisibility(GV: F));
1657 Vals.push_back(Elt: F.hasGC() ? GCMap[F.getGC()] : 0);
1658 Vals.push_back(Elt: getEncodedUnnamedAddr(GV: F));
1659 Vals.push_back(Elt: F.hasPrologueData() ? (VE.getValueID(V: F.getPrologueData()) + 1)
1660 : 0);
1661 Vals.push_back(Elt: getEncodedDLLStorageClass(GV: F));
1662 Vals.push_back(Elt: F.hasComdat() ? VE.getComdatID(C: F.getComdat()) : 0);
1663 Vals.push_back(Elt: F.hasPrefixData() ? (VE.getValueID(V: F.getPrefixData()) + 1)
1664 : 0);
1665 Vals.push_back(
1666 Elt: F.hasPersonalityFn() ? (VE.getValueID(V: F.getPersonalityFn()) + 1) : 0);
1667
1668 Vals.push_back(Elt: F.isDSOLocal());
1669 Vals.push_back(Elt: F.getAddressSpace());
1670 Vals.push_back(Elt: addToStrtab(Str: F.getPartition()));
1671 Vals.push_back(Elt: F.getPartition().size());
1672
1673 unsigned AbbrevToUse = 0;
1674 Stream.EmitRecord(Code: bitc::MODULE_CODE_FUNCTION, Vals, Abbrev: AbbrevToUse);
1675 Vals.clear();
1676 }
1677
1678 // Emit the alias information.
1679 for (const GlobalAlias &A : M.aliases()) {
1680 // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage,
1681 // visibility, dllstorageclass, threadlocal, unnamed_addr,
1682 // DSO_Local]
1683 Vals.push_back(Elt: addToStrtab(Str: A.getName()));
1684 Vals.push_back(Elt: A.getName().size());
1685 Vals.push_back(Elt: VE.getTypeID(T: A.getValueType()));
1686 Vals.push_back(Elt: A.getType()->getAddressSpace());
1687 Vals.push_back(Elt: VE.getValueID(V: A.getAliasee()));
1688 Vals.push_back(Elt: getEncodedLinkage(GV: A));
1689 Vals.push_back(Elt: getEncodedVisibility(GV: A));
1690 Vals.push_back(Elt: getEncodedDLLStorageClass(GV: A));
1691 Vals.push_back(Elt: getEncodedThreadLocalMode(GV: A));
1692 Vals.push_back(Elt: getEncodedUnnamedAddr(GV: A));
1693 Vals.push_back(Elt: A.isDSOLocal());
1694 Vals.push_back(Elt: addToStrtab(Str: A.getPartition()));
1695 Vals.push_back(Elt: A.getPartition().size());
1696
1697 unsigned AbbrevToUse = 0;
1698 Stream.EmitRecord(Code: bitc::MODULE_CODE_ALIAS, Vals, Abbrev: AbbrevToUse);
1699 Vals.clear();
1700 }
1701
1702 // Emit the ifunc information.
1703 for (const GlobalIFunc &I : M.ifuncs()) {
1704 // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver
1705 // val#, linkage, visibility, DSO_Local]
1706 Vals.push_back(Elt: addToStrtab(Str: I.getName()));
1707 Vals.push_back(Elt: I.getName().size());
1708 Vals.push_back(Elt: VE.getTypeID(T: I.getValueType()));
1709 Vals.push_back(Elt: I.getType()->getAddressSpace());
1710 Vals.push_back(Elt: VE.getValueID(V: I.getResolver()));
1711 Vals.push_back(Elt: getEncodedLinkage(GV: I));
1712 Vals.push_back(Elt: getEncodedVisibility(GV: I));
1713 Vals.push_back(Elt: I.isDSOLocal());
1714 Vals.push_back(Elt: addToStrtab(Str: I.getPartition()));
1715 Vals.push_back(Elt: I.getPartition().size());
1716 Stream.EmitRecord(Code: bitc::MODULE_CODE_IFUNC, Vals);
1717 Vals.clear();
1718 }
1719
1720 writeValueSymbolTableForwardDecl();
1721}
1722
1723static uint64_t getOptimizationFlags(const Value *V) {
1724 uint64_t Flags = 0;
1725
1726 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(Val: V)) {
1727 if (OBO->hasNoSignedWrap())
1728 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
1729 if (OBO->hasNoUnsignedWrap())
1730 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
1731 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(Val: V)) {
1732 if (PEO->isExact())
1733 Flags |= 1 << bitc::PEO_EXACT;
1734 } else if (const auto *PDI = dyn_cast<PossiblyDisjointInst>(Val: V)) {
1735 if (PDI->isDisjoint())
1736 Flags |= 1 << bitc::PDI_DISJOINT;
1737 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(Val: V)) {
1738 if (FPMO->hasAllowReassoc())
1739 Flags |= bitc::AllowReassoc;
1740 if (FPMO->hasNoNaNs())
1741 Flags |= bitc::NoNaNs;
1742 if (FPMO->hasNoInfs())
1743 Flags |= bitc::NoInfs;
1744 if (FPMO->hasNoSignedZeros())
1745 Flags |= bitc::NoSignedZeros;
1746 if (FPMO->hasAllowReciprocal())
1747 Flags |= bitc::AllowReciprocal;
1748 if (FPMO->hasAllowContract())
1749 Flags |= bitc::AllowContract;
1750 if (FPMO->hasApproxFunc())
1751 Flags |= bitc::ApproxFunc;
1752 } else if (const auto *NNI = dyn_cast<PossiblyNonNegInst>(Val: V)) {
1753 if (NNI->hasNonNeg())
1754 Flags |= 1 << bitc::PNNI_NON_NEG;
1755 } else if (const auto *TI = dyn_cast<TruncInst>(Val: V)) {
1756 if (TI->hasNoSignedWrap())
1757 Flags |= 1 << bitc::TIO_NO_SIGNED_WRAP;
1758 if (TI->hasNoUnsignedWrap())
1759 Flags |= 1 << bitc::TIO_NO_UNSIGNED_WRAP;
1760 } else if (const auto *GEP = dyn_cast<GEPOperator>(Val: V)) {
1761 if (GEP->isInBounds())
1762 Flags |= 1 << bitc::GEP_INBOUNDS;
1763 if (GEP->hasNoUnsignedSignedWrap())
1764 Flags |= 1 << bitc::GEP_NUSW;
1765 if (GEP->hasNoUnsignedWrap())
1766 Flags |= 1 << bitc::GEP_NUW;
1767 } else if (const auto *ICmp = dyn_cast<ICmpInst>(Val: V)) {
1768 if (ICmp->hasSameSign())
1769 Flags |= 1 << bitc::ICMP_SAME_SIGN;
1770 }
1771
1772 return Flags;
1773}
1774
1775void ModuleBitcodeWriter::writeValueAsMetadata(
1776 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) {
1777 // Mimic an MDNode with a value as one operand.
1778 Value *V = MD->getValue();
1779 Record.push_back(Elt: VE.getTypeID(T: V->getType()));
1780 Record.push_back(Elt: VE.getValueID(V));
1781 Stream.EmitRecord(Code: bitc::METADATA_VALUE, Vals: Record, Abbrev: 0);
1782 Record.clear();
1783}
1784
1785void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N,
1786 SmallVectorImpl<uint64_t> &Record,
1787 unsigned Abbrev) {
1788 for (const MDOperand &MDO : N->operands()) {
1789 Metadata *MD = MDO;
1790 assert(!(MD && isa<LocalAsMetadata>(MD)) &&
1791 "Unexpected function-local metadata");
1792 Record.push_back(Elt: VE.getMetadataOrNullID(MD));
1793 }
1794 Stream.EmitRecord(Code: N->isDistinct() ? bitc::METADATA_DISTINCT_NODE
1795 : bitc::METADATA_NODE,
1796 Vals: Record, Abbrev);
1797 Record.clear();
1798}
1799
1800unsigned ModuleBitcodeWriter::createDILocationAbbrev() {
1801 // Assume the column is usually under 128, and always output the inlined-at
1802 // location (it's never more expensive than building an array size 1).
1803 auto Abbv = std::make_shared<BitCodeAbbrev>();
1804 Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::METADATA_LOCATION));
1805 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isDistinct
1806 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // line
1807 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // column
1808 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // scope
1809 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // inlinedAt
1810 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isImplicitCode
1811 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // atomGroup
1812 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); // atomRank
1813 return Stream.EmitAbbrev(Abbv: std::move(Abbv));
1814}
1815
1816void ModuleBitcodeWriter::writeDILocation(const DILocation *N,
1817 SmallVectorImpl<uint64_t> &Record,
1818 unsigned &Abbrev) {
1819 if (!Abbrev)
1820 Abbrev = createDILocationAbbrev();
1821
1822 Record.push_back(Elt: N->isDistinct());
1823 Record.push_back(Elt: N->getLine());
1824 Record.push_back(Elt: N->getColumn());
1825 Record.push_back(Elt: VE.getMetadataID(MD: N->getScope()));
1826 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getInlinedAt()));
1827 Record.push_back(Elt: N->isImplicitCode());
1828 Record.push_back(Elt: N->getAtomGroup());
1829 Record.push_back(Elt: N->getAtomRank());
1830 Stream.EmitRecord(Code: bitc::METADATA_LOCATION, Vals: Record, Abbrev);
1831 Record.clear();
1832}
1833
1834unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() {
1835 // Assume the column is usually under 128, and always output the inlined-at
1836 // location (it's never more expensive than building an array size 1).
1837 auto Abbv = std::make_shared<BitCodeAbbrev>();
1838 Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG));
1839 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1840 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1841 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1842 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1843 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1844 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1845 return Stream.EmitAbbrev(Abbv: std::move(Abbv));
1846}
1847
1848void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N,
1849 SmallVectorImpl<uint64_t> &Record,
1850 unsigned &Abbrev) {
1851 if (!Abbrev)
1852 Abbrev = createGenericDINodeAbbrev();
1853
1854 Record.push_back(Elt: N->isDistinct());
1855 Record.push_back(Elt: N->getTag());
1856 Record.push_back(Elt: 0); // Per-tag version field; unused for now.
1857
1858 for (auto &I : N->operands())
1859 Record.push_back(Elt: VE.getMetadataOrNullID(MD: I));
1860
1861 Stream.EmitRecord(Code: bitc::METADATA_GENERIC_DEBUG, Vals: Record, Abbrev);
1862 Record.clear();
1863}
1864
1865void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N,
1866 SmallVectorImpl<uint64_t> &Record,
1867 unsigned Abbrev) {
1868 const uint64_t Version = 2 << 1;
1869 Record.push_back(Elt: (uint64_t)N->isDistinct() | Version);
1870 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getRawCountNode()));
1871 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getRawLowerBound()));
1872 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getRawUpperBound()));
1873 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getRawStride()));
1874
1875 Stream.EmitRecord(Code: bitc::METADATA_SUBRANGE, Vals: Record, Abbrev);
1876 Record.clear();
1877}
1878
1879void ModuleBitcodeWriter::writeDIGenericSubrange(
1880 const DIGenericSubrange *N, SmallVectorImpl<uint64_t> &Record,
1881 unsigned Abbrev) {
1882 Record.push_back(Elt: (uint64_t)N->isDistinct());
1883 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getRawCountNode()));
1884 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getRawLowerBound()));
1885 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getRawUpperBound()));
1886 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getRawStride()));
1887
1888 Stream.EmitRecord(Code: bitc::METADATA_GENERIC_SUBRANGE, Vals: Record, Abbrev);
1889 Record.clear();
1890}
1891
1892void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N,
1893 SmallVectorImpl<uint64_t> &Record,
1894 unsigned Abbrev) {
1895 const uint64_t IsBigInt = 1 << 2;
1896 Record.push_back(Elt: IsBigInt | (N->isUnsigned() << 1) | N->isDistinct());
1897 Record.push_back(Elt: N->getValue().getBitWidth());
1898 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getRawName()));
1899 emitWideAPInt(Vals&: Record, A: N->getValue());
1900
1901 Stream.EmitRecord(Code: bitc::METADATA_ENUMERATOR, Vals: Record, Abbrev);
1902 Record.clear();
1903}
1904
1905void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N,
1906 SmallVectorImpl<uint64_t> &Record,
1907 unsigned Abbrev) {
1908 const unsigned SizeIsMetadata = 0x2;
1909 Record.push_back(Elt: SizeIsMetadata | (unsigned)N->isDistinct());
1910 Record.push_back(Elt: N->getTag());
1911 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getRawName()));
1912 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getRawSizeInBits()));
1913 Record.push_back(Elt: N->getAlignInBits());
1914 Record.push_back(Elt: N->getEncoding());
1915 Record.push_back(Elt: N->getFlags());
1916 Record.push_back(Elt: N->getNumExtraInhabitants());
1917 Record.push_back(Elt: N->getDataSizeInBits());
1918
1919 Stream.EmitRecord(Code: bitc::METADATA_BASIC_TYPE, Vals: Record, Abbrev);
1920 Record.clear();
1921}
1922
1923void ModuleBitcodeWriter::writeDIFixedPointType(
1924 const DIFixedPointType *N, SmallVectorImpl<uint64_t> &Record,
1925 unsigned Abbrev) {
1926 const unsigned SizeIsMetadata = 0x2;
1927 Record.push_back(Elt: SizeIsMetadata | (unsigned)N->isDistinct());
1928 Record.push_back(Elt: N->getTag());
1929 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getRawName()));
1930 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getRawSizeInBits()));
1931 Record.push_back(Elt: N->getAlignInBits());
1932 Record.push_back(Elt: N->getEncoding());
1933 Record.push_back(Elt: N->getFlags());
1934 Record.push_back(Elt: N->getKind());
1935 Record.push_back(Elt: N->getFactorRaw());
1936
1937 auto WriteWideInt = [&](const APInt &Value) {
1938 // Write an encoded word that holds the number of active words and
1939 // the number of bits.
1940 uint64_t NumWords = Value.getActiveWords();
1941 uint64_t Encoded = (NumWords << 32) | Value.getBitWidth();
1942 Record.push_back(Elt: Encoded);
1943 emitWideAPInt(Vals&: Record, A: Value);
1944 };
1945
1946 WriteWideInt(N->getNumeratorRaw());
1947 WriteWideInt(N->getDenominatorRaw());
1948
1949 Stream.EmitRecord(Code: bitc::METADATA_FIXED_POINT_TYPE, Vals: Record, Abbrev);
1950 Record.clear();
1951}
1952
1953void ModuleBitcodeWriter::writeDIStringType(const DIStringType *N,
1954 SmallVectorImpl<uint64_t> &Record,
1955 unsigned Abbrev) {
1956 const unsigned SizeIsMetadata = 0x2;
1957 Record.push_back(Elt: SizeIsMetadata | (unsigned)N->isDistinct());
1958 Record.push_back(Elt: N->getTag());
1959 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getRawName()));
1960 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getStringLength()));
1961 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getStringLengthExp()));
1962 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getStringLocationExp()));
1963 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getRawSizeInBits()));
1964 Record.push_back(Elt: N->getAlignInBits());
1965 Record.push_back(Elt: N->getEncoding());
1966
1967 Stream.EmitRecord(Code: bitc::METADATA_STRING_TYPE, Vals: Record, Abbrev);
1968 Record.clear();
1969}
1970
1971void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N,
1972 SmallVectorImpl<uint64_t> &Record,
1973 unsigned Abbrev) {
1974 const unsigned SizeIsMetadata = 0x2;
1975 Record.push_back(Elt: SizeIsMetadata | (unsigned)N->isDistinct());
1976 Record.push_back(Elt: N->getTag());
1977 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getRawName()));
1978 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getFile()));
1979 Record.push_back(Elt: N->getLine());
1980 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getScope()));
1981 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getBaseType()));
1982 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getRawSizeInBits()));
1983 Record.push_back(Elt: N->getAlignInBits());
1984 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getRawOffsetInBits()));
1985 Record.push_back(Elt: N->getFlags());
1986 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getExtraData()));
1987
1988 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means
1989 // that there is no DWARF address space associated with DIDerivedType.
1990 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace())
1991 Record.push_back(Elt: *DWARFAddressSpace + 1);
1992 else
1993 Record.push_back(Elt: 0);
1994
1995 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getAnnotations().get()));
1996
1997 if (auto PtrAuthData = N->getPtrAuthData())
1998 Record.push_back(Elt: PtrAuthData->RawData);
1999 else
2000 Record.push_back(Elt: 0);
2001
2002 Stream.EmitRecord(Code: bitc::METADATA_DERIVED_TYPE, Vals: Record, Abbrev);
2003 Record.clear();
2004}
2005
2006void ModuleBitcodeWriter::writeDISubrangeType(const DISubrangeType *N,
2007 SmallVectorImpl<uint64_t> &Record,
2008 unsigned Abbrev) {
2009 const unsigned SizeIsMetadata = 0x2;
2010 Record.push_back(Elt: SizeIsMetadata | (unsigned)N->isDistinct());
2011 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getRawName()));
2012 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getFile()));
2013 Record.push_back(Elt: N->getLine());
2014 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getScope()));
2015 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getRawSizeInBits()));
2016 Record.push_back(Elt: N->getAlignInBits());
2017 Record.push_back(Elt: N->getFlags());
2018 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getBaseType()));
2019 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getRawLowerBound()));
2020 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getRawUpperBound()));
2021 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getRawStride()));
2022 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getRawBias()));
2023
2024 Stream.EmitRecord(Code: bitc::METADATA_SUBRANGE_TYPE, Vals: Record, Abbrev);
2025 Record.clear();
2026}
2027
2028void ModuleBitcodeWriter::writeDICompositeType(
2029 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record,
2030 unsigned Abbrev) {
2031 const unsigned IsNotUsedInOldTypeRef = 0x2;
2032 const unsigned SizeIsMetadata = 0x4;
2033 Record.push_back(Elt: SizeIsMetadata | IsNotUsedInOldTypeRef |
2034 (unsigned)N->isDistinct());
2035 Record.push_back(Elt: N->getTag());
2036 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getRawName()));
2037 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getFile()));
2038 Record.push_back(Elt: N->getLine());
2039 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getScope()));
2040 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getBaseType()));
2041 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getRawSizeInBits()));
2042 Record.push_back(Elt: N->getAlignInBits());
2043 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getRawOffsetInBits()));
2044 Record.push_back(Elt: N->getFlags());
2045 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getElements().get()));
2046 Record.push_back(Elt: N->getRuntimeLang());
2047 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getVTableHolder()));
2048 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getTemplateParams().get()));
2049 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getRawIdentifier()));
2050 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getDiscriminator()));
2051 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getRawDataLocation()));
2052 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getRawAssociated()));
2053 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getRawAllocated()));
2054 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getRawRank()));
2055 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getAnnotations().get()));
2056 Record.push_back(Elt: N->getNumExtraInhabitants());
2057 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getRawSpecification()));
2058 Record.push_back(
2059 Elt: N->getEnumKind().value_or(u: dwarf::DW_APPLE_ENUM_KIND_invalid));
2060 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getRawBitStride()));
2061
2062 Stream.EmitRecord(Code: bitc::METADATA_COMPOSITE_TYPE, Vals: Record, Abbrev);
2063 Record.clear();
2064}
2065
2066void ModuleBitcodeWriter::writeDISubroutineType(
2067 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record,
2068 unsigned Abbrev) {
2069 const unsigned HasNoOldTypeRefs = 0x2;
2070 Record.push_back(Elt: HasNoOldTypeRefs | (unsigned)N->isDistinct());
2071 Record.push_back(Elt: N->getFlags());
2072 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getTypeArray().get()));
2073 Record.push_back(Elt: N->getCC());
2074
2075 Stream.EmitRecord(Code: bitc::METADATA_SUBROUTINE_TYPE, Vals: Record, Abbrev);
2076 Record.clear();
2077}
2078
2079void ModuleBitcodeWriter::writeDIFile(const DIFile *N,
2080 SmallVectorImpl<uint64_t> &Record,
2081 unsigned Abbrev) {
2082 Record.push_back(Elt: N->isDistinct());
2083 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getRawFilename()));
2084 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getRawDirectory()));
2085 if (N->getRawChecksum()) {
2086 Record.push_back(Elt: N->getRawChecksum()->Kind);
2087 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getRawChecksum()->Value));
2088 } else {
2089 // Maintain backwards compatibility with the old internal representation of
2090 // CSK_None in ChecksumKind by writing nulls here when Checksum is None.
2091 Record.push_back(Elt: 0);
2092 Record.push_back(Elt: VE.getMetadataOrNullID(MD: nullptr));
2093 }
2094 auto Source = N->getRawSource();
2095 if (Source)
2096 Record.push_back(Elt: VE.getMetadataOrNullID(MD: Source));
2097
2098 Stream.EmitRecord(Code: bitc::METADATA_FILE, Vals: Record, Abbrev);
2099 Record.clear();
2100}
2101
2102void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N,
2103 SmallVectorImpl<uint64_t> &Record,
2104 unsigned Abbrev) {
2105 assert(N->isDistinct() && "Expected distinct compile units");
2106 Record.push_back(/* IsDistinct */ Elt: true);
2107
2108 auto Lang = N->getSourceLanguage();
2109 Record.push_back(Elt: Lang.getName());
2110 // Set bit so the MetadataLoader can distniguish between versioned and
2111 // unversioned names.
2112 if (Lang.hasVersionedName())
2113 Record.back() ^= (uint64_t(1) << 63);
2114
2115 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getFile()));
2116 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getRawProducer()));
2117 Record.push_back(Elt: N->isOptimized());
2118 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getRawFlags()));
2119 Record.push_back(Elt: N->getRuntimeVersion());
2120 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getRawSplitDebugFilename()));
2121 Record.push_back(Elt: N->getEmissionKind());
2122 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getEnumTypes().get()));
2123 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getRetainedTypes().get()));
2124 Record.push_back(/* subprograms */ Elt: 0);
2125 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getGlobalVariables().get()));
2126 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getImportedEntities().get()));
2127 Record.push_back(Elt: N->getDWOId());
2128 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getMacros().get()));
2129 Record.push_back(Elt: N->getSplitDebugInlining());
2130 Record.push_back(Elt: N->getDebugInfoForProfiling());
2131 Record.push_back(Elt: (unsigned)N->getNameTableKind());
2132 Record.push_back(Elt: N->getRangesBaseAddress());
2133 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getRawSysRoot()));
2134 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getRawSDK()));
2135 Record.push_back(Elt: Lang.hasVersionedName() ? Lang.getVersion() : 0);
2136
2137 Stream.EmitRecord(Code: bitc::METADATA_COMPILE_UNIT, Vals: Record, Abbrev);
2138 Record.clear();
2139}
2140
2141void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N,
2142 SmallVectorImpl<uint64_t> &Record,
2143 unsigned Abbrev) {
2144 const uint64_t HasUnitFlag = 1 << 1;
2145 const uint64_t HasSPFlagsFlag = 1 << 2;
2146 Record.push_back(Elt: uint64_t(N->isDistinct()) | HasUnitFlag | HasSPFlagsFlag);
2147 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getScope()));
2148 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getRawName()));
2149 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getRawLinkageName()));
2150 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getFile()));
2151 Record.push_back(Elt: N->getLine());
2152 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getType()));
2153 Record.push_back(Elt: N->getScopeLine());
2154 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getContainingType()));
2155 Record.push_back(Elt: N->getSPFlags());
2156 Record.push_back(Elt: N->getVirtualIndex());
2157 Record.push_back(Elt: N->getFlags());
2158 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getRawUnit()));
2159 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getTemplateParams().get()));
2160 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getDeclaration()));
2161 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getRetainedNodes().get()));
2162 Record.push_back(Elt: N->getThisAdjustment());
2163 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getThrownTypes().get()));
2164 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getAnnotations().get()));
2165 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getRawTargetFuncName()));
2166 Record.push_back(Elt: N->getKeyInstructionsEnabled());
2167
2168 Stream.EmitRecord(Code: bitc::METADATA_SUBPROGRAM, Vals: Record, Abbrev);
2169 Record.clear();
2170}
2171
2172void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N,
2173 SmallVectorImpl<uint64_t> &Record,
2174 unsigned Abbrev) {
2175 Record.push_back(Elt: N->isDistinct());
2176 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getScope()));
2177 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getFile()));
2178 Record.push_back(Elt: N->getLine());
2179 Record.push_back(Elt: N->getColumn());
2180
2181 Stream.EmitRecord(Code: bitc::METADATA_LEXICAL_BLOCK, Vals: Record, Abbrev);
2182 Record.clear();
2183}
2184
2185void ModuleBitcodeWriter::writeDILexicalBlockFile(
2186 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record,
2187 unsigned Abbrev) {
2188 Record.push_back(Elt: N->isDistinct());
2189 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getScope()));
2190 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getFile()));
2191 Record.push_back(Elt: N->getDiscriminator());
2192
2193 Stream.EmitRecord(Code: bitc::METADATA_LEXICAL_BLOCK_FILE, Vals: Record, Abbrev);
2194 Record.clear();
2195}
2196
2197void ModuleBitcodeWriter::writeDICommonBlock(const DICommonBlock *N,
2198 SmallVectorImpl<uint64_t> &Record,
2199 unsigned Abbrev) {
2200 Record.push_back(Elt: N->isDistinct());
2201 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getScope()));
2202 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getDecl()));
2203 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getRawName()));
2204 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getFile()));
2205 Record.push_back(Elt: N->getLineNo());
2206
2207 Stream.EmitRecord(Code: bitc::METADATA_COMMON_BLOCK, Vals: Record, Abbrev);
2208 Record.clear();
2209}
2210
2211void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N,
2212 SmallVectorImpl<uint64_t> &Record,
2213 unsigned Abbrev) {
2214 Record.push_back(Elt: N->isDistinct() | N->getExportSymbols() << 1);
2215 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getScope()));
2216 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getRawName()));
2217
2218 Stream.EmitRecord(Code: bitc::METADATA_NAMESPACE, Vals: Record, Abbrev);
2219 Record.clear();
2220}
2221
2222void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N,
2223 SmallVectorImpl<uint64_t> &Record,
2224 unsigned Abbrev) {
2225 Record.push_back(Elt: N->isDistinct());
2226 Record.push_back(Elt: N->getMacinfoType());
2227 Record.push_back(Elt: N->getLine());
2228 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getRawName()));
2229 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getRawValue()));
2230
2231 Stream.EmitRecord(Code: bitc::METADATA_MACRO, Vals: Record, Abbrev);
2232 Record.clear();
2233}
2234
2235void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N,
2236 SmallVectorImpl<uint64_t> &Record,
2237 unsigned Abbrev) {
2238 Record.push_back(Elt: N->isDistinct());
2239 Record.push_back(Elt: N->getMacinfoType());
2240 Record.push_back(Elt: N->getLine());
2241 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getFile()));
2242 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getElements().get()));
2243
2244 Stream.EmitRecord(Code: bitc::METADATA_MACRO_FILE, Vals: Record, Abbrev);
2245 Record.clear();
2246}
2247
2248void ModuleBitcodeWriter::writeDIArgList(const DIArgList *N,
2249 SmallVectorImpl<uint64_t> &Record) {
2250 Record.reserve(N: N->getArgs().size());
2251 for (ValueAsMetadata *MD : N->getArgs())
2252 Record.push_back(Elt: VE.getMetadataID(MD));
2253
2254 Stream.EmitRecord(Code: bitc::METADATA_ARG_LIST, Vals: Record);
2255 Record.clear();
2256}
2257
2258void ModuleBitcodeWriter::writeDIModule(const DIModule *N,
2259 SmallVectorImpl<uint64_t> &Record,
2260 unsigned Abbrev) {
2261 Record.push_back(Elt: N->isDistinct());
2262 for (auto &I : N->operands())
2263 Record.push_back(Elt: VE.getMetadataOrNullID(MD: I));
2264 Record.push_back(Elt: N->getLineNo());
2265 Record.push_back(Elt: N->getIsDecl());
2266
2267 Stream.EmitRecord(Code: bitc::METADATA_MODULE, Vals: Record, Abbrev);
2268 Record.clear();
2269}
2270
2271void ModuleBitcodeWriter::writeDIAssignID(const DIAssignID *N,
2272 SmallVectorImpl<uint64_t> &Record,
2273 unsigned Abbrev) {
2274 // There are no arguments for this metadata type.
2275 Record.push_back(Elt: N->isDistinct());
2276 Stream.EmitRecord(Code: bitc::METADATA_ASSIGN_ID, Vals: Record, Abbrev);
2277 Record.clear();
2278}
2279
2280void ModuleBitcodeWriter::writeDITemplateTypeParameter(
2281 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record,
2282 unsigned Abbrev) {
2283 Record.push_back(Elt: N->isDistinct());
2284 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getRawName()));
2285 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getType()));
2286 Record.push_back(Elt: N->isDefault());
2287
2288 Stream.EmitRecord(Code: bitc::METADATA_TEMPLATE_TYPE, Vals: Record, Abbrev);
2289 Record.clear();
2290}
2291
2292void ModuleBitcodeWriter::writeDITemplateValueParameter(
2293 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record,
2294 unsigned Abbrev) {
2295 Record.push_back(Elt: N->isDistinct());
2296 Record.push_back(Elt: N->getTag());
2297 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getRawName()));
2298 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getType()));
2299 Record.push_back(Elt: N->isDefault());
2300 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getValue()));
2301
2302 Stream.EmitRecord(Code: bitc::METADATA_TEMPLATE_VALUE, Vals: Record, Abbrev);
2303 Record.clear();
2304}
2305
2306void ModuleBitcodeWriter::writeDIGlobalVariable(
2307 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record,
2308 unsigned Abbrev) {
2309 const uint64_t Version = 2 << 1;
2310 Record.push_back(Elt: (uint64_t)N->isDistinct() | Version);
2311 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getScope()));
2312 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getRawName()));
2313 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getRawLinkageName()));
2314 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getFile()));
2315 Record.push_back(Elt: N->getLine());
2316 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getType()));
2317 Record.push_back(Elt: N->isLocalToUnit());
2318 Record.push_back(Elt: N->isDefinition());
2319 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getStaticDataMemberDeclaration()));
2320 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getTemplateParams()));
2321 Record.push_back(Elt: N->getAlignInBits());
2322 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getAnnotations().get()));
2323
2324 Stream.EmitRecord(Code: bitc::METADATA_GLOBAL_VAR, Vals: Record, Abbrev);
2325 Record.clear();
2326}
2327
2328void ModuleBitcodeWriter::writeDILocalVariable(
2329 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record,
2330 unsigned Abbrev) {
2331 // In order to support all possible bitcode formats in BitcodeReader we need
2332 // to distinguish the following cases:
2333 // 1) Record has no artificial tag (Record[1]),
2334 // has no obsolete inlinedAt field (Record[9]).
2335 // In this case Record size will be 8, HasAlignment flag is false.
2336 // 2) Record has artificial tag (Record[1]),
2337 // has no obsolete inlignedAt field (Record[9]).
2338 // In this case Record size will be 9, HasAlignment flag is false.
2339 // 3) Record has both artificial tag (Record[1]) and
2340 // obsolete inlignedAt field (Record[9]).
2341 // In this case Record size will be 10, HasAlignment flag is false.
2342 // 4) Record has neither artificial tag, nor inlignedAt field, but
2343 // HasAlignment flag is true and Record[8] contains alignment value.
2344 const uint64_t HasAlignmentFlag = 1 << 1;
2345 Record.push_back(Elt: (uint64_t)N->isDistinct() | HasAlignmentFlag);
2346 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getScope()));
2347 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getRawName()));
2348 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getFile()));
2349 Record.push_back(Elt: N->getLine());
2350 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getType()));
2351 Record.push_back(Elt: N->getArg());
2352 Record.push_back(Elt: N->getFlags());
2353 Record.push_back(Elt: N->getAlignInBits());
2354 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getAnnotations().get()));
2355
2356 Stream.EmitRecord(Code: bitc::METADATA_LOCAL_VAR, Vals: Record, Abbrev);
2357 Record.clear();
2358}
2359
2360void ModuleBitcodeWriter::writeDILabel(
2361 const DILabel *N, SmallVectorImpl<uint64_t> &Record,
2362 unsigned Abbrev) {
2363 uint64_t IsArtificialFlag = uint64_t(N->isArtificial()) << 1;
2364 Record.push_back(Elt: (uint64_t)N->isDistinct() | IsArtificialFlag);
2365 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getScope()));
2366 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getRawName()));
2367 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getFile()));
2368 Record.push_back(Elt: N->getLine());
2369 Record.push_back(Elt: N->getColumn());
2370 Record.push_back(Elt: N->getCoroSuspendIdx().has_value()
2371 ? (uint64_t)N->getCoroSuspendIdx().value()
2372 : std::numeric_limits<uint64_t>::max());
2373
2374 Stream.EmitRecord(Code: bitc::METADATA_LABEL, Vals: Record, Abbrev);
2375 Record.clear();
2376}
2377
2378void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N,
2379 SmallVectorImpl<uint64_t> &Record,
2380 unsigned Abbrev) {
2381 Record.reserve(N: N->getElements().size() + 1);
2382 const uint64_t Version = 3 << 1;
2383 Record.push_back(Elt: (uint64_t)N->isDistinct() | Version);
2384 Record.append(in_start: N->elements_begin(), in_end: N->elements_end());
2385
2386 Stream.EmitRecord(Code: bitc::METADATA_EXPRESSION, Vals: Record, Abbrev);
2387 Record.clear();
2388}
2389
2390void ModuleBitcodeWriter::writeDIGlobalVariableExpression(
2391 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record,
2392 unsigned Abbrev) {
2393 Record.push_back(Elt: N->isDistinct());
2394 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getVariable()));
2395 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getExpression()));
2396
2397 Stream.EmitRecord(Code: bitc::METADATA_GLOBAL_VAR_EXPR, Vals: Record, Abbrev);
2398 Record.clear();
2399}
2400
2401void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N,
2402 SmallVectorImpl<uint64_t> &Record,
2403 unsigned Abbrev) {
2404 Record.push_back(Elt: N->isDistinct());
2405 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getRawName()));
2406 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getFile()));
2407 Record.push_back(Elt: N->getLine());
2408 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getRawSetterName()));
2409 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getRawGetterName()));
2410 Record.push_back(Elt: N->getAttributes());
2411 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getType()));
2412
2413 Stream.EmitRecord(Code: bitc::METADATA_OBJC_PROPERTY, Vals: Record, Abbrev);
2414 Record.clear();
2415}
2416
2417void ModuleBitcodeWriter::writeDIImportedEntity(
2418 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record,
2419 unsigned Abbrev) {
2420 Record.push_back(Elt: N->isDistinct());
2421 Record.push_back(Elt: N->getTag());
2422 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getScope()));
2423 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getEntity()));
2424 Record.push_back(Elt: N->getLine());
2425 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getRawName()));
2426 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getRawFile()));
2427 Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getElements().get()));
2428
2429 Stream.EmitRecord(Code: bitc::METADATA_IMPORTED_ENTITY, Vals: Record, Abbrev);
2430 Record.clear();
2431}
2432
2433unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() {
2434 auto Abbv = std::make_shared<BitCodeAbbrev>();
2435 Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::METADATA_NAME));
2436 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2437 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
2438 return Stream.EmitAbbrev(Abbv: std::move(Abbv));
2439}
2440
2441void ModuleBitcodeWriter::writeNamedMetadata(
2442 SmallVectorImpl<uint64_t> &Record) {
2443 if (M.named_metadata_empty())
2444 return;
2445
2446 unsigned Abbrev = createNamedMetadataAbbrev();
2447 for (const NamedMDNode &NMD : M.named_metadata()) {
2448 // Write name.
2449 StringRef Str = NMD.getName();
2450 Record.append(in_start: Str.bytes_begin(), in_end: Str.bytes_end());
2451 Stream.EmitRecord(Code: bitc::METADATA_NAME, Vals: Record, Abbrev);
2452 Record.clear();
2453
2454 // Write named metadata operands.
2455 for (const MDNode *N : NMD.operands())
2456 Record.push_back(Elt: VE.getMetadataID(MD: N));
2457 Stream.EmitRecord(Code: bitc::METADATA_NAMED_NODE, Vals: Record, Abbrev: 0);
2458 Record.clear();
2459 }
2460}
2461
2462unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() {
2463 auto Abbv = std::make_shared<BitCodeAbbrev>();
2464 Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::METADATA_STRINGS));
2465 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings
2466 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars
2467 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
2468 return Stream.EmitAbbrev(Abbv: std::move(Abbv));
2469}
2470
2471/// Write out a record for MDString.
2472///
2473/// All the metadata strings in a metadata block are emitted in a single
2474/// record. The sizes and strings themselves are shoved into a blob.
2475void ModuleBitcodeWriter::writeMetadataStrings(
2476 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) {
2477 if (Strings.empty())
2478 return;
2479
2480 // Start the record with the number of strings.
2481 Record.push_back(Elt: bitc::METADATA_STRINGS);
2482 Record.push_back(Elt: Strings.size());
2483
2484 // Emit the sizes of the strings in the blob.
2485 SmallString<256> Blob;
2486 {
2487 BitstreamWriter W(Blob);
2488 for (const Metadata *MD : Strings)
2489 W.EmitVBR(Val: cast<MDString>(Val: MD)->getLength(), NumBits: 6);
2490 W.FlushToWord();
2491 }
2492
2493 // Add the offset to the strings to the record.
2494 Record.push_back(Elt: Blob.size());
2495
2496 // Add the strings to the blob.
2497 for (const Metadata *MD : Strings)
2498 Blob.append(RHS: cast<MDString>(Val: MD)->getString());
2499
2500 // Emit the final record.
2501 Stream.EmitRecordWithBlob(Abbrev: createMetadataStringsAbbrev(), Vals: Record, Blob);
2502 Record.clear();
2503}
2504
2505// Generates an enum to use as an index in the Abbrev array of Metadata record.
2506enum MetadataAbbrev : unsigned {
2507#define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID,
2508#include "llvm/IR/Metadata.def"
2509 LastPlusOne
2510};
2511
2512void ModuleBitcodeWriter::writeMetadataRecords(
2513 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record,
2514 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) {
2515 if (MDs.empty())
2516 return;
2517
2518 // Initialize MDNode abbreviations.
2519#define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0;
2520#include "llvm/IR/Metadata.def"
2521
2522 for (const Metadata *MD : MDs) {
2523 if (IndexPos)
2524 IndexPos->push_back(x: Stream.GetCurrentBitNo());
2525 if (const MDNode *N = dyn_cast<MDNode>(Val: MD)) {
2526 assert(N->isResolved() && "Expected forward references to be resolved");
2527
2528 switch (N->getMetadataID()) {
2529 default:
2530 llvm_unreachable("Invalid MDNode subclass");
2531#define HANDLE_MDNODE_LEAF(CLASS) \
2532 case Metadata::CLASS##Kind: \
2533 if (MDAbbrevs) \
2534 write##CLASS(cast<CLASS>(N), Record, \
2535 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \
2536 else \
2537 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \
2538 continue;
2539#include "llvm/IR/Metadata.def"
2540 }
2541 }
2542 if (auto *AL = dyn_cast<DIArgList>(Val: MD)) {
2543 writeDIArgList(N: AL, Record);
2544 continue;
2545 }
2546 writeValueAsMetadata(MD: cast<ValueAsMetadata>(Val: MD), Record);
2547 }
2548}
2549
2550void ModuleBitcodeWriter::writeModuleMetadata() {
2551 if (!VE.hasMDs() && M.named_metadata_empty())
2552 return;
2553
2554 Stream.EnterSubblock(BlockID: bitc::METADATA_BLOCK_ID, CodeLen: 4);
2555 SmallVector<uint64_t, 64> Record;
2556
2557 // Emit all abbrevs upfront, so that the reader can jump in the middle of the
2558 // block and load any metadata.
2559 std::vector<unsigned> MDAbbrevs;
2560
2561 MDAbbrevs.resize(new_size: MetadataAbbrev::LastPlusOne);
2562 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev();
2563 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] =
2564 createGenericDINodeAbbrev();
2565
2566 auto Abbv = std::make_shared<BitCodeAbbrev>();
2567 Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET));
2568 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
2569 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
2570 unsigned OffsetAbbrev = Stream.EmitAbbrev(Abbv: std::move(Abbv));
2571
2572 Abbv = std::make_shared<BitCodeAbbrev>();
2573 Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::METADATA_INDEX));
2574 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2575 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
2576 unsigned IndexAbbrev = Stream.EmitAbbrev(Abbv: std::move(Abbv));
2577
2578 // Emit MDStrings together upfront.
2579 writeMetadataStrings(Strings: VE.getMDStrings(), Record);
2580
2581 // We only emit an index for the metadata record if we have more than a given
2582 // (naive) threshold of metadatas, otherwise it is not worth it.
2583 if (VE.getNonMDStrings().size() > IndexThreshold) {
2584 // Write a placeholder value in for the offset of the metadata index,
2585 // which is written after the records, so that it can include
2586 // the offset of each entry. The placeholder offset will be
2587 // updated after all records are emitted.
2588 uint64_t Vals[] = {0, 0};
2589 Stream.EmitRecord(Code: bitc::METADATA_INDEX_OFFSET, Vals, Abbrev: OffsetAbbrev);
2590 }
2591
2592 // Compute and save the bit offset to the current position, which will be
2593 // patched when we emit the index later. We can simply subtract the 64-bit
2594 // fixed size from the current bit number to get the location to backpatch.
2595 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo();
2596
2597 // This index will contain the bitpos for each individual record.
2598 std::vector<uint64_t> IndexPos;
2599 IndexPos.reserve(n: VE.getNonMDStrings().size());
2600
2601 // Write all the records
2602 writeMetadataRecords(MDs: VE.getNonMDStrings(), Record, MDAbbrevs: &MDAbbrevs, IndexPos: &IndexPos);
2603
2604 if (VE.getNonMDStrings().size() > IndexThreshold) {
2605 // Now that we have emitted all the records we will emit the index. But
2606 // first
2607 // backpatch the forward reference so that the reader can skip the records
2608 // efficiently.
2609 Stream.BackpatchWord64(BitNo: IndexOffsetRecordBitPos - 64,
2610 Val: Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos);
2611
2612 // Delta encode the index.
2613 uint64_t PreviousValue = IndexOffsetRecordBitPos;
2614 for (auto &Elt : IndexPos) {
2615 auto EltDelta = Elt - PreviousValue;
2616 PreviousValue = Elt;
2617 Elt = EltDelta;
2618 }
2619 // Emit the index record.
2620 Stream.EmitRecord(Code: bitc::METADATA_INDEX, Vals: IndexPos, Abbrev: IndexAbbrev);
2621 IndexPos.clear();
2622 }
2623
2624 // Write the named metadata now.
2625 writeNamedMetadata(Record);
2626
2627 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) {
2628 SmallVector<uint64_t, 4> Record;
2629 Record.push_back(Elt: VE.getValueID(V: &GO));
2630 pushGlobalMetadataAttachment(Record, GO);
2631 Stream.EmitRecord(Code: bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Vals: Record);
2632 };
2633 for (const Function &F : M)
2634 if (F.isDeclaration() && F.hasMetadata())
2635 AddDeclAttachedMetadata(F);
2636 for (const GlobalIFunc &GI : M.ifuncs())
2637 if (GI.hasMetadata())
2638 AddDeclAttachedMetadata(GI);
2639 // FIXME: Only store metadata for declarations here, and move data for global
2640 // variable definitions to a separate block (PR28134).
2641 for (const GlobalVariable &GV : M.globals())
2642 if (GV.hasMetadata())
2643 AddDeclAttachedMetadata(GV);
2644
2645 Stream.ExitBlock();
2646}
2647
2648void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) {
2649 if (!VE.hasMDs())
2650 return;
2651
2652 Stream.EnterSubblock(BlockID: bitc::METADATA_BLOCK_ID, CodeLen: 3);
2653 SmallVector<uint64_t, 64> Record;
2654 writeMetadataStrings(Strings: VE.getMDStrings(), Record);
2655 writeMetadataRecords(MDs: VE.getNonMDStrings(), Record);
2656 Stream.ExitBlock();
2657}
2658
2659void ModuleBitcodeWriter::pushGlobalMetadataAttachment(
2660 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) {
2661 // [n x [id, mdnode]]
2662 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2663 GO.getAllMetadata(MDs);
2664 for (const auto &I : MDs) {
2665 Record.push_back(Elt: I.first);
2666 Record.push_back(Elt: VE.getMetadataID(MD: I.second));
2667 }
2668}
2669
2670void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) {
2671 Stream.EnterSubblock(BlockID: bitc::METADATA_ATTACHMENT_ID, CodeLen: 3);
2672
2673 SmallVector<uint64_t, 64> Record;
2674
2675 if (F.hasMetadata()) {
2676 pushGlobalMetadataAttachment(Record, GO: F);
2677 Stream.EmitRecord(Code: bitc::METADATA_ATTACHMENT, Vals: Record, Abbrev: 0);
2678 Record.clear();
2679 }
2680
2681 // Write metadata attachments
2682 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
2683 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2684 for (const BasicBlock &BB : F)
2685 for (const Instruction &I : BB) {
2686 MDs.clear();
2687 I.getAllMetadataOtherThanDebugLoc(MDs);
2688
2689 // If no metadata, ignore instruction.
2690 if (MDs.empty()) continue;
2691
2692 Record.push_back(Elt: VE.getInstructionID(I: &I));
2693
2694 for (const auto &[ID, MD] : MDs) {
2695 Record.push_back(Elt: ID);
2696 Record.push_back(Elt: VE.getMetadataID(MD));
2697 }
2698 Stream.EmitRecord(Code: bitc::METADATA_ATTACHMENT, Vals: Record, Abbrev: 0);
2699 Record.clear();
2700 }
2701
2702 Stream.ExitBlock();
2703}
2704
2705void ModuleBitcodeWriter::writeModuleMetadataKinds() {
2706 SmallVector<uint64_t, 64> Record;
2707
2708 // Write metadata kinds
2709 // METADATA_KIND - [n x [id, name]]
2710 SmallVector<StringRef, 8> Names;
2711 M.getMDKindNames(Result&: Names);
2712
2713 if (Names.empty()) return;
2714
2715 Stream.EnterSubblock(BlockID: bitc::METADATA_KIND_BLOCK_ID, CodeLen: 3);
2716
2717 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
2718 Record.push_back(Elt: MDKindID);
2719 StringRef KName = Names[MDKindID];
2720 Record.append(in_start: KName.begin(), in_end: KName.end());
2721
2722 Stream.EmitRecord(Code: bitc::METADATA_KIND, Vals: Record, Abbrev: 0);
2723 Record.clear();
2724 }
2725
2726 Stream.ExitBlock();
2727}
2728
2729void ModuleBitcodeWriter::writeOperandBundleTags() {
2730 // Write metadata kinds
2731 //
2732 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG
2733 //
2734 // OPERAND_BUNDLE_TAG - [strchr x N]
2735
2736 SmallVector<StringRef, 8> Tags;
2737 M.getOperandBundleTags(Result&: Tags);
2738
2739 if (Tags.empty())
2740 return;
2741
2742 Stream.EnterSubblock(BlockID: bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, CodeLen: 3);
2743
2744 SmallVector<uint64_t, 64> Record;
2745
2746 for (auto Tag : Tags) {
2747 Record.append(in_start: Tag.begin(), in_end: Tag.end());
2748
2749 Stream.EmitRecord(Code: bitc::OPERAND_BUNDLE_TAG, Vals: Record, Abbrev: 0);
2750 Record.clear();
2751 }
2752
2753 Stream.ExitBlock();
2754}
2755
2756void ModuleBitcodeWriter::writeSyncScopeNames() {
2757 SmallVector<StringRef, 8> SSNs;
2758 M.getContext().getSyncScopeNames(SSNs);
2759 if (SSNs.empty())
2760 return;
2761
2762 Stream.EnterSubblock(BlockID: bitc::SYNC_SCOPE_NAMES_BLOCK_ID, CodeLen: 2);
2763
2764 SmallVector<uint64_t, 64> Record;
2765 for (auto SSN : SSNs) {
2766 Record.append(in_start: SSN.begin(), in_end: SSN.end());
2767 Stream.EmitRecord(Code: bitc::SYNC_SCOPE_NAME, Vals: Record, Abbrev: 0);
2768 Record.clear();
2769 }
2770
2771 Stream.ExitBlock();
2772}
2773
2774void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal,
2775 bool isGlobal) {
2776 if (FirstVal == LastVal) return;
2777
2778 Stream.EnterSubblock(BlockID: bitc::CONSTANTS_BLOCK_ID, CodeLen: 4);
2779
2780 unsigned AggregateAbbrev = 0;
2781 unsigned String8Abbrev = 0;
2782 unsigned CString7Abbrev = 0;
2783 unsigned CString6Abbrev = 0;
2784 // If this is a constant pool for the module, emit module-specific abbrevs.
2785 if (isGlobal) {
2786 // Abbrev for CST_CODE_AGGREGATE.
2787 auto Abbv = std::make_shared<BitCodeAbbrev>();
2788 Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
2789 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2790 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(Value: LastVal+1)));
2791 AggregateAbbrev = Stream.EmitAbbrev(Abbv: std::move(Abbv));
2792
2793 // Abbrev for CST_CODE_STRING.
2794 Abbv = std::make_shared<BitCodeAbbrev>();
2795 Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::CST_CODE_STRING));
2796 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2797 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
2798 String8Abbrev = Stream.EmitAbbrev(Abbv: std::move(Abbv));
2799 // Abbrev for CST_CODE_CSTRING.
2800 Abbv = std::make_shared<BitCodeAbbrev>();
2801 Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
2802 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2803 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
2804 CString7Abbrev = Stream.EmitAbbrev(Abbv: std::move(Abbv));
2805 // Abbrev for CST_CODE_CSTRING.
2806 Abbv = std::make_shared<BitCodeAbbrev>();
2807 Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
2808 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2809 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
2810 CString6Abbrev = Stream.EmitAbbrev(Abbv: std::move(Abbv));
2811 }
2812
2813 SmallVector<uint64_t, 64> Record;
2814
2815 const ValueEnumerator::ValueList &Vals = VE.getValues();
2816 Type *LastTy = nullptr;
2817 for (unsigned i = FirstVal; i != LastVal; ++i) {
2818 const Value *V = Vals[i].first;
2819 // If we need to switch types, do so now.
2820 if (V->getType() != LastTy) {
2821 LastTy = V->getType();
2822 Record.push_back(Elt: VE.getTypeID(T: LastTy));
2823 Stream.EmitRecord(Code: bitc::CST_CODE_SETTYPE, Vals: Record,
2824 Abbrev: CONSTANTS_SETTYPE_ABBREV);
2825 Record.clear();
2826 }
2827
2828 if (const InlineAsm *IA = dyn_cast<InlineAsm>(Val: V)) {
2829 Record.push_back(Elt: VE.getTypeID(T: IA->getFunctionType()));
2830 Record.push_back(
2831 Elt: unsigned(IA->hasSideEffects()) | unsigned(IA->isAlignStack()) << 1 |
2832 unsigned(IA->getDialect() & 1) << 2 | unsigned(IA->canThrow()) << 3);
2833
2834 // Add the asm string.
2835 StringRef AsmStr = IA->getAsmString();
2836 Record.push_back(Elt: AsmStr.size());
2837 Record.append(in_start: AsmStr.begin(), in_end: AsmStr.end());
2838
2839 // Add the constraint string.
2840 StringRef ConstraintStr = IA->getConstraintString();
2841 Record.push_back(Elt: ConstraintStr.size());
2842 Record.append(in_start: ConstraintStr.begin(), in_end: ConstraintStr.end());
2843 Stream.EmitRecord(Code: bitc::CST_CODE_INLINEASM, Vals: Record);
2844 Record.clear();
2845 continue;
2846 }
2847 const Constant *C = cast<Constant>(Val: V);
2848 unsigned Code = -1U;
2849 unsigned AbbrevToUse = 0;
2850 if (C->isNullValue()) {
2851 Code = bitc::CST_CODE_NULL;
2852 } else if (isa<PoisonValue>(Val: C)) {
2853 Code = bitc::CST_CODE_POISON;
2854 } else if (isa<UndefValue>(Val: C)) {
2855 Code = bitc::CST_CODE_UNDEF;
2856 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(Val: C)) {
2857 if (IV->getBitWidth() <= 64) {
2858 uint64_t V = IV->getSExtValue();
2859 emitSignedInt64(Vals&: Record, V);
2860 Code = bitc::CST_CODE_INTEGER;
2861 AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
2862 } else { // Wide integers, > 64 bits in size.
2863 emitWideAPInt(Vals&: Record, A: IV->getValue());
2864 Code = bitc::CST_CODE_WIDE_INTEGER;
2865 }
2866 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(Val: C)) {
2867 Code = bitc::CST_CODE_FLOAT;
2868 Type *Ty = CFP->getType()->getScalarType();
2869 if (Ty->isHalfTy() || Ty->isBFloatTy() || Ty->isFloatTy() ||
2870 Ty->isDoubleTy()) {
2871 Record.push_back(Elt: CFP->getValueAPF().bitcastToAPInt().getZExtValue());
2872 } else if (Ty->isX86_FP80Ty()) {
2873 // api needed to prevent premature destruction
2874 // bits are not in the same order as a normal i80 APInt, compensate.
2875 APInt api = CFP->getValueAPF().bitcastToAPInt();
2876 const uint64_t *p = api.getRawData();
2877 Record.push_back(Elt: (p[1] << 48) | (p[0] >> 16));
2878 Record.push_back(Elt: p[0] & 0xffffLL);
2879 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
2880 APInt api = CFP->getValueAPF().bitcastToAPInt();
2881 const uint64_t *p = api.getRawData();
2882 Record.push_back(Elt: p[0]);
2883 Record.push_back(Elt: p[1]);
2884 } else {
2885 assert(0 && "Unknown FP type!");
2886 }
2887 } else if (isa<ConstantDataSequential>(Val: C) &&
2888 cast<ConstantDataSequential>(Val: C)->isString()) {
2889 const ConstantDataSequential *Str = cast<ConstantDataSequential>(Val: C);
2890 // Emit constant strings specially.
2891 uint64_t NumElts = Str->getNumElements();
2892 // If this is a null-terminated string, use the denser CSTRING encoding.
2893 if (Str->isCString()) {
2894 Code = bitc::CST_CODE_CSTRING;
2895 --NumElts; // Don't encode the null, which isn't allowed by char6.
2896 } else {
2897 Code = bitc::CST_CODE_STRING;
2898 AbbrevToUse = String8Abbrev;
2899 }
2900 bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
2901 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
2902 for (uint64_t i = 0; i != NumElts; ++i) {
2903 unsigned char V = Str->getElementAsInteger(i);
2904 Record.push_back(Elt: V);
2905 isCStr7 &= (V & 128) == 0;
2906 if (isCStrChar6)
2907 isCStrChar6 = BitCodeAbbrevOp::isChar6(C: V);
2908 }
2909
2910 if (isCStrChar6)
2911 AbbrevToUse = CString6Abbrev;
2912 else if (isCStr7)
2913 AbbrevToUse = CString7Abbrev;
2914 } else if (const ConstantDataSequential *CDS =
2915 dyn_cast<ConstantDataSequential>(Val: C)) {
2916 Code = bitc::CST_CODE_DATA;
2917 Type *EltTy = CDS->getElementType();
2918 if (isa<IntegerType>(Val: EltTy)) {
2919 for (uint64_t i = 0, e = CDS->getNumElements(); i != e; ++i)
2920 Record.push_back(Elt: CDS->getElementAsInteger(i));
2921 } else {
2922 for (uint64_t i = 0, e = CDS->getNumElements(); i != e; ++i)
2923 Record.push_back(
2924 Elt: CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue());
2925 }
2926 } else if (isa<ConstantAggregate>(Val: C)) {
2927 Code = bitc::CST_CODE_AGGREGATE;
2928 for (const Value *Op : C->operands())
2929 Record.push_back(Elt: VE.getValueID(V: Op));
2930 AbbrevToUse = AggregateAbbrev;
2931 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(Val: C)) {
2932 switch (CE->getOpcode()) {
2933 default:
2934 if (Instruction::isCast(Opcode: CE->getOpcode())) {
2935 Code = bitc::CST_CODE_CE_CAST;
2936 Record.push_back(Elt: getEncodedCastOpcode(Opcode: CE->getOpcode()));
2937 Record.push_back(Elt: VE.getTypeID(T: C->getOperand(i: 0)->getType()));
2938 Record.push_back(Elt: VE.getValueID(V: C->getOperand(i: 0)));
2939 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
2940 } else {
2941 assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
2942 Code = bitc::CST_CODE_CE_BINOP;
2943 Record.push_back(Elt: getEncodedBinaryOpcode(Opcode: CE->getOpcode()));
2944 Record.push_back(Elt: VE.getValueID(V: C->getOperand(i: 0)));
2945 Record.push_back(Elt: VE.getValueID(V: C->getOperand(i: 1)));
2946 uint64_t Flags = getOptimizationFlags(V: CE);
2947 if (Flags != 0)
2948 Record.push_back(Elt: Flags);
2949 }
2950 break;
2951 case Instruction::FNeg: {
2952 assert(CE->getNumOperands() == 1 && "Unknown constant expr!");
2953 Code = bitc::CST_CODE_CE_UNOP;
2954 Record.push_back(Elt: getEncodedUnaryOpcode(Opcode: CE->getOpcode()));
2955 Record.push_back(Elt: VE.getValueID(V: C->getOperand(i: 0)));
2956 uint64_t Flags = getOptimizationFlags(V: CE);
2957 if (Flags != 0)
2958 Record.push_back(Elt: Flags);
2959 break;
2960 }
2961 case Instruction::GetElementPtr: {
2962 Code = bitc::CST_CODE_CE_GEP;
2963 const auto *GO = cast<GEPOperator>(Val: C);
2964 Record.push_back(Elt: VE.getTypeID(T: GO->getSourceElementType()));
2965 Record.push_back(Elt: getOptimizationFlags(V: GO));
2966 if (std::optional<ConstantRange> Range = GO->getInRange()) {
2967 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE;
2968 emitConstantRange(Record, CR: *Range, /*EmitBitWidth=*/true);
2969 }
2970 for (const Value *Op : CE->operands()) {
2971 Record.push_back(Elt: VE.getTypeID(T: Op->getType()));
2972 Record.push_back(Elt: VE.getValueID(V: Op));
2973 }
2974 break;
2975 }
2976 case Instruction::ExtractElement:
2977 Code = bitc::CST_CODE_CE_EXTRACTELT;
2978 Record.push_back(Elt: VE.getTypeID(T: C->getOperand(i: 0)->getType()));
2979 Record.push_back(Elt: VE.getValueID(V: C->getOperand(i: 0)));
2980 Record.push_back(Elt: VE.getTypeID(T: C->getOperand(i: 1)->getType()));
2981 Record.push_back(Elt: VE.getValueID(V: C->getOperand(i: 1)));
2982 break;
2983 case Instruction::InsertElement:
2984 Code = bitc::CST_CODE_CE_INSERTELT;
2985 Record.push_back(Elt: VE.getValueID(V: C->getOperand(i: 0)));
2986 Record.push_back(Elt: VE.getValueID(V: C->getOperand(i: 1)));
2987 Record.push_back(Elt: VE.getTypeID(T: C->getOperand(i: 2)->getType()));
2988 Record.push_back(Elt: VE.getValueID(V: C->getOperand(i: 2)));
2989 break;
2990 case Instruction::ShuffleVector:
2991 // If the return type and argument types are the same, this is a
2992 // standard shufflevector instruction. If the types are different,
2993 // then the shuffle is widening or truncating the input vectors, and
2994 // the argument type must also be encoded.
2995 if (C->getType() == C->getOperand(i: 0)->getType()) {
2996 Code = bitc::CST_CODE_CE_SHUFFLEVEC;
2997 } else {
2998 Code = bitc::CST_CODE_CE_SHUFVEC_EX;
2999 Record.push_back(Elt: VE.getTypeID(T: C->getOperand(i: 0)->getType()));
3000 }
3001 Record.push_back(Elt: VE.getValueID(V: C->getOperand(i: 0)));
3002 Record.push_back(Elt: VE.getValueID(V: C->getOperand(i: 1)));
3003 Record.push_back(Elt: VE.getValueID(V: CE->getShuffleMaskForBitcode()));
3004 break;
3005 }
3006 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(Val: C)) {
3007 Code = bitc::CST_CODE_BLOCKADDRESS;
3008 Record.push_back(Elt: VE.getTypeID(T: BA->getFunction()->getType()));
3009 Record.push_back(Elt: VE.getValueID(V: BA->getFunction()));
3010 Record.push_back(Elt: VE.getGlobalBasicBlockID(BB: BA->getBasicBlock()));
3011 } else if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(Val: C)) {
3012 Code = bitc::CST_CODE_DSO_LOCAL_EQUIVALENT;
3013 Record.push_back(Elt: VE.getTypeID(T: Equiv->getGlobalValue()->getType()));
3014 Record.push_back(Elt: VE.getValueID(V: Equiv->getGlobalValue()));
3015 } else if (const auto *NC = dyn_cast<NoCFIValue>(Val: C)) {
3016 Code = bitc::CST_CODE_NO_CFI_VALUE;
3017 Record.push_back(Elt: VE.getTypeID(T: NC->getGlobalValue()->getType()));
3018 Record.push_back(Elt: VE.getValueID(V: NC->getGlobalValue()));
3019 } else if (const auto *CPA = dyn_cast<ConstantPtrAuth>(Val: C)) {
3020 Code = bitc::CST_CODE_PTRAUTH2;
3021 Record.push_back(Elt: VE.getValueID(V: CPA->getPointer()));
3022 Record.push_back(Elt: VE.getValueID(V: CPA->getKey()));
3023 Record.push_back(Elt: VE.getValueID(V: CPA->getDiscriminator()));
3024 Record.push_back(Elt: VE.getValueID(V: CPA->getAddrDiscriminator()));
3025 Record.push_back(Elt: VE.getValueID(V: CPA->getDeactivationSymbol()));
3026 } else {
3027#ifndef NDEBUG
3028 C->dump();
3029#endif
3030 llvm_unreachable("Unknown constant!");
3031 }
3032 Stream.EmitRecord(Code, Vals: Record, Abbrev: AbbrevToUse);
3033 Record.clear();
3034 }
3035
3036 Stream.ExitBlock();
3037}
3038
3039void ModuleBitcodeWriter::writeModuleConstants() {
3040 const ValueEnumerator::ValueList &Vals = VE.getValues();
3041
3042 // Find the first constant to emit, which is the first non-globalvalue value.
3043 // We know globalvalues have been emitted by WriteModuleInfo.
3044 for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
3045 if (!isa<GlobalValue>(Val: Vals[i].first)) {
3046 writeConstants(FirstVal: i, LastVal: Vals.size(), isGlobal: true);
3047 return;
3048 }
3049 }
3050}
3051
3052/// pushValueAndType - The file has to encode both the value and type id for
3053/// many values, because we need to know what type to create for forward
3054/// references. However, most operands are not forward references, so this type
3055/// field is not needed.
3056///
3057/// This function adds V's value ID to Vals. If the value ID is higher than the
3058/// instruction ID, then it is a forward reference, and it also includes the
3059/// type ID. The value ID that is written is encoded relative to the InstID.
3060bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID,
3061 SmallVectorImpl<unsigned> &Vals) {
3062 unsigned ValID = VE.getValueID(V);
3063 // Make encoding relative to the InstID.
3064 Vals.push_back(Elt: InstID - ValID);
3065 if (ValID >= InstID) {
3066 Vals.push_back(Elt: VE.getTypeID(T: V->getType()));
3067 return true;
3068 }
3069 return false;
3070}
3071
3072bool ModuleBitcodeWriter::pushValueOrMetadata(const Value *V, unsigned InstID,
3073 SmallVectorImpl<unsigned> &Vals) {
3074 bool IsMetadata = V->getType()->isMetadataTy();
3075 if (IsMetadata) {
3076 Vals.push_back(Elt: bitc::OB_METADATA);
3077 Metadata *MD = cast<MetadataAsValue>(Val: V)->getMetadata();
3078 unsigned ValID = VE.getMetadataID(MD);
3079 Vals.push_back(Elt: InstID - ValID);
3080 return false;
3081 }
3082 return pushValueAndType(V, InstID, Vals);
3083}
3084
3085void ModuleBitcodeWriter::writeOperandBundles(const CallBase &CS,
3086 unsigned InstID) {
3087 SmallVector<unsigned, 64> Record;
3088 LLVMContext &C = CS.getContext();
3089
3090 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) {
3091 const auto &Bundle = CS.getOperandBundleAt(Index: i);
3092 Record.push_back(Elt: C.getOperandBundleTagID(Tag: Bundle.getTagName()));
3093
3094 for (auto &Input : Bundle.Inputs)
3095 pushValueOrMetadata(V: Input, InstID, Vals&: Record);
3096
3097 Stream.EmitRecord(Code: bitc::FUNC_CODE_OPERAND_BUNDLE, Vals: Record);
3098 Record.clear();
3099 }
3100}
3101
3102/// pushValue - Like pushValueAndType, but where the type of the value is
3103/// omitted (perhaps it was already encoded in an earlier operand).
3104void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID,
3105 SmallVectorImpl<unsigned> &Vals) {
3106 unsigned ValID = VE.getValueID(V);
3107 Vals.push_back(Elt: InstID - ValID);
3108}
3109
3110void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID,
3111 SmallVectorImpl<uint64_t> &Vals) {
3112 unsigned ValID = VE.getValueID(V);
3113 int64_t diff = ((int32_t)InstID - (int32_t)ValID);
3114 emitSignedInt64(Vals, V: diff);
3115}
3116
3117/// WriteInstruction - Emit an instruction to the specified stream.
3118void ModuleBitcodeWriter::writeInstruction(const Instruction &I,
3119 unsigned InstID,
3120 SmallVectorImpl<unsigned> &Vals) {
3121 unsigned Code = 0;
3122 unsigned AbbrevToUse = 0;
3123 VE.setInstructionID(&I);
3124 switch (I.getOpcode()) {
3125 default:
3126 if (Instruction::isCast(Opcode: I.getOpcode())) {
3127 Code = bitc::FUNC_CODE_INST_CAST;
3128 if (!pushValueAndType(V: I.getOperand(i: 0), InstID, Vals))
3129 AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
3130 Vals.push_back(Elt: VE.getTypeID(T: I.getType()));
3131 Vals.push_back(Elt: getEncodedCastOpcode(Opcode: I.getOpcode()));
3132 uint64_t Flags = getOptimizationFlags(V: &I);
3133 if (Flags != 0) {
3134 if (AbbrevToUse == FUNCTION_INST_CAST_ABBREV)
3135 AbbrevToUse = FUNCTION_INST_CAST_FLAGS_ABBREV;
3136 Vals.push_back(Elt: Flags);
3137 }
3138 } else {
3139 assert(isa<BinaryOperator>(I) && "Unknown instruction!");
3140 Code = bitc::FUNC_CODE_INST_BINOP;
3141 if (!pushValueAndType(V: I.getOperand(i: 0), InstID, Vals))
3142 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
3143 pushValue(V: I.getOperand(i: 1), InstID, Vals);
3144 Vals.push_back(Elt: getEncodedBinaryOpcode(Opcode: I.getOpcode()));
3145 uint64_t Flags = getOptimizationFlags(V: &I);
3146 if (Flags != 0) {
3147 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
3148 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
3149 Vals.push_back(Elt: Flags);
3150 }
3151 }
3152 break;
3153 case Instruction::FNeg: {
3154 Code = bitc::FUNC_CODE_INST_UNOP;
3155 if (!pushValueAndType(V: I.getOperand(i: 0), InstID, Vals))
3156 AbbrevToUse = FUNCTION_INST_UNOP_ABBREV;
3157 Vals.push_back(Elt: getEncodedUnaryOpcode(Opcode: I.getOpcode()));
3158 uint64_t Flags = getOptimizationFlags(V: &I);
3159 if (Flags != 0) {
3160 if (AbbrevToUse == FUNCTION_INST_UNOP_ABBREV)
3161 AbbrevToUse = FUNCTION_INST_UNOP_FLAGS_ABBREV;
3162 Vals.push_back(Elt: Flags);
3163 }
3164 break;
3165 }
3166 case Instruction::GetElementPtr: {
3167 Code = bitc::FUNC_CODE_INST_GEP;
3168 AbbrevToUse = FUNCTION_INST_GEP_ABBREV;
3169 auto &GEPInst = cast<GetElementPtrInst>(Val: I);
3170 Vals.push_back(Elt: getOptimizationFlags(V: &I));
3171 Vals.push_back(Elt: VE.getTypeID(T: GEPInst.getSourceElementType()));
3172 for (const Value *Op : I.operands())
3173 pushValueAndType(V: Op, InstID, Vals);
3174 break;
3175 }
3176 case Instruction::ExtractValue: {
3177 Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
3178 pushValueAndType(V: I.getOperand(i: 0), InstID, Vals);
3179 const ExtractValueInst *EVI = cast<ExtractValueInst>(Val: &I);
3180 Vals.append(in_start: EVI->idx_begin(), in_end: EVI->idx_end());
3181 break;
3182 }
3183 case Instruction::InsertValue: {
3184 Code = bitc::FUNC_CODE_INST_INSERTVAL;
3185 pushValueAndType(V: I.getOperand(i: 0), InstID, Vals);
3186 pushValueAndType(V: I.getOperand(i: 1), InstID, Vals);
3187 const InsertValueInst *IVI = cast<InsertValueInst>(Val: &I);
3188 Vals.append(in_start: IVI->idx_begin(), in_end: IVI->idx_end());
3189 break;
3190 }
3191 case Instruction::Select: {
3192 Code = bitc::FUNC_CODE_INST_VSELECT;
3193 pushValueAndType(V: I.getOperand(i: 1), InstID, Vals);
3194 pushValue(V: I.getOperand(i: 2), InstID, Vals);
3195 pushValueAndType(V: I.getOperand(i: 0), InstID, Vals);
3196 uint64_t Flags = getOptimizationFlags(V: &I);
3197 if (Flags != 0)
3198 Vals.push_back(Elt: Flags);
3199 break;
3200 }
3201 case Instruction::ExtractElement:
3202 Code = bitc::FUNC_CODE_INST_EXTRACTELT;
3203 pushValueAndType(V: I.getOperand(i: 0), InstID, Vals);
3204 pushValueAndType(V: I.getOperand(i: 1), InstID, Vals);
3205 break;
3206 case Instruction::InsertElement:
3207 Code = bitc::FUNC_CODE_INST_INSERTELT;
3208 pushValueAndType(V: I.getOperand(i: 0), InstID, Vals);
3209 pushValue(V: I.getOperand(i: 1), InstID, Vals);
3210 pushValueAndType(V: I.getOperand(i: 2), InstID, Vals);
3211 break;
3212 case Instruction::ShuffleVector:
3213 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
3214 pushValueAndType(V: I.getOperand(i: 0), InstID, Vals);
3215 pushValue(V: I.getOperand(i: 1), InstID, Vals);
3216 pushValue(V: cast<ShuffleVectorInst>(Val: I).getShuffleMaskForBitcode(), InstID,
3217 Vals);
3218 break;
3219 case Instruction::ICmp:
3220 case Instruction::FCmp: {
3221 // compare returning Int1Ty or vector of Int1Ty
3222 Code = bitc::FUNC_CODE_INST_CMP2;
3223 AbbrevToUse = FUNCTION_INST_CMP_ABBREV;
3224 if (pushValueAndType(V: I.getOperand(i: 0), InstID, Vals))
3225 AbbrevToUse = 0;
3226 pushValue(V: I.getOperand(i: 1), InstID, Vals);
3227 Vals.push_back(Elt: cast<CmpInst>(Val: I).getPredicate());
3228 uint64_t Flags = getOptimizationFlags(V: &I);
3229 if (Flags != 0) {
3230 Vals.push_back(Elt: Flags);
3231 if (AbbrevToUse)
3232 AbbrevToUse = FUNCTION_INST_CMP_FLAGS_ABBREV;
3233 }
3234 break;
3235 }
3236
3237 case Instruction::Ret:
3238 {
3239 Code = bitc::FUNC_CODE_INST_RET;
3240 unsigned NumOperands = I.getNumOperands();
3241 if (NumOperands == 0)
3242 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
3243 else if (NumOperands == 1) {
3244 if (!pushValueAndType(V: I.getOperand(i: 0), InstID, Vals))
3245 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
3246 } else {
3247 for (const Value *Op : I.operands())
3248 pushValueAndType(V: Op, InstID, Vals);
3249 }
3250 }
3251 break;
3252 case Instruction::Br:
3253 {
3254 Code = bitc::FUNC_CODE_INST_BR;
3255 AbbrevToUse = FUNCTION_INST_BR_UNCOND_ABBREV;
3256 const BranchInst &II = cast<BranchInst>(Val: I);
3257 Vals.push_back(Elt: VE.getValueID(V: II.getSuccessor(i: 0)));
3258 if (II.isConditional()) {
3259 Vals.push_back(Elt: VE.getValueID(V: II.getSuccessor(i: 1)));
3260 pushValue(V: II.getCondition(), InstID, Vals);
3261 AbbrevToUse = FUNCTION_INST_BR_COND_ABBREV;
3262 }
3263 }
3264 break;
3265 case Instruction::Switch:
3266 {
3267 Code = bitc::FUNC_CODE_INST_SWITCH;
3268 const SwitchInst &SI = cast<SwitchInst>(Val: I);
3269 Vals.push_back(Elt: VE.getTypeID(T: SI.getCondition()->getType()));
3270 pushValue(V: SI.getCondition(), InstID, Vals);
3271 Vals.push_back(Elt: VE.getValueID(V: SI.getDefaultDest()));
3272 for (auto Case : SI.cases()) {
3273 Vals.push_back(Elt: VE.getValueID(V: Case.getCaseValue()));
3274 Vals.push_back(Elt: VE.getValueID(V: Case.getCaseSuccessor()));
3275 }
3276 }
3277 break;
3278 case Instruction::IndirectBr:
3279 Code = bitc::FUNC_CODE_INST_INDIRECTBR;
3280 Vals.push_back(Elt: VE.getTypeID(T: I.getOperand(i: 0)->getType()));
3281 // Encode the address operand as relative, but not the basic blocks.
3282 pushValue(V: I.getOperand(i: 0), InstID, Vals);
3283 for (const Value *Op : drop_begin(RangeOrContainer: I.operands()))
3284 Vals.push_back(Elt: VE.getValueID(V: Op));
3285 break;
3286
3287 case Instruction::Invoke: {
3288 const InvokeInst *II = cast<InvokeInst>(Val: &I);
3289 const Value *Callee = II->getCalledOperand();
3290 FunctionType *FTy = II->getFunctionType();
3291
3292 if (II->hasOperandBundles())
3293 writeOperandBundles(CS: *II, InstID);
3294
3295 Code = bitc::FUNC_CODE_INST_INVOKE;
3296
3297 Vals.push_back(Elt: VE.getAttributeListID(PAL: II->getAttributes()));
3298 Vals.push_back(Elt: II->getCallingConv() | 1 << 13);
3299 Vals.push_back(Elt: VE.getValueID(V: II->getNormalDest()));
3300 Vals.push_back(Elt: VE.getValueID(V: II->getUnwindDest()));
3301 Vals.push_back(Elt: VE.getTypeID(T: FTy));
3302 pushValueAndType(V: Callee, InstID, Vals);
3303
3304 // Emit value #'s for the fixed parameters.
3305 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
3306 pushValue(V: I.getOperand(i), InstID, Vals); // fixed param.
3307
3308 // Emit type/value pairs for varargs params.
3309 if (FTy->isVarArg()) {
3310 for (unsigned i = FTy->getNumParams(), e = II->arg_size(); i != e; ++i)
3311 pushValueAndType(V: I.getOperand(i), InstID, Vals); // vararg
3312 }
3313 break;
3314 }
3315 case Instruction::Resume:
3316 Code = bitc::FUNC_CODE_INST_RESUME;
3317 pushValueAndType(V: I.getOperand(i: 0), InstID, Vals);
3318 break;
3319 case Instruction::CleanupRet: {
3320 Code = bitc::FUNC_CODE_INST_CLEANUPRET;
3321 const auto &CRI = cast<CleanupReturnInst>(Val: I);
3322 pushValue(V: CRI.getCleanupPad(), InstID, Vals);
3323 if (CRI.hasUnwindDest())
3324 Vals.push_back(Elt: VE.getValueID(V: CRI.getUnwindDest()));
3325 break;
3326 }
3327 case Instruction::CatchRet: {
3328 Code = bitc::FUNC_CODE_INST_CATCHRET;
3329 const auto &CRI = cast<CatchReturnInst>(Val: I);
3330 pushValue(V: CRI.getCatchPad(), InstID, Vals);
3331 Vals.push_back(Elt: VE.getValueID(V: CRI.getSuccessor()));
3332 break;
3333 }
3334 case Instruction::CleanupPad:
3335 case Instruction::CatchPad: {
3336 const auto &FuncletPad = cast<FuncletPadInst>(Val: I);
3337 Code = isa<CatchPadInst>(Val: FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD
3338 : bitc::FUNC_CODE_INST_CLEANUPPAD;
3339 pushValue(V: FuncletPad.getParentPad(), InstID, Vals);
3340
3341 unsigned NumArgOperands = FuncletPad.arg_size();
3342 Vals.push_back(Elt: NumArgOperands);
3343 for (unsigned Op = 0; Op != NumArgOperands; ++Op)
3344 pushValueAndType(V: FuncletPad.getArgOperand(i: Op), InstID, Vals);
3345 break;
3346 }
3347 case Instruction::CatchSwitch: {
3348 Code = bitc::FUNC_CODE_INST_CATCHSWITCH;
3349 const auto &CatchSwitch = cast<CatchSwitchInst>(Val: I);
3350
3351 pushValue(V: CatchSwitch.getParentPad(), InstID, Vals);
3352
3353 unsigned NumHandlers = CatchSwitch.getNumHandlers();
3354 Vals.push_back(Elt: NumHandlers);
3355 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers())
3356 Vals.push_back(Elt: VE.getValueID(V: CatchPadBB));
3357
3358 if (CatchSwitch.hasUnwindDest())
3359 Vals.push_back(Elt: VE.getValueID(V: CatchSwitch.getUnwindDest()));
3360 break;
3361 }
3362 case Instruction::CallBr: {
3363 const CallBrInst *CBI = cast<CallBrInst>(Val: &I);
3364 const Value *Callee = CBI->getCalledOperand();
3365 FunctionType *FTy = CBI->getFunctionType();
3366
3367 if (CBI->hasOperandBundles())
3368 writeOperandBundles(CS: *CBI, InstID);
3369
3370 Code = bitc::FUNC_CODE_INST_CALLBR;
3371
3372 Vals.push_back(Elt: VE.getAttributeListID(PAL: CBI->getAttributes()));
3373
3374 Vals.push_back(Elt: CBI->getCallingConv() << bitc::CALL_CCONV |
3375 1 << bitc::CALL_EXPLICIT_TYPE);
3376
3377 Vals.push_back(Elt: VE.getValueID(V: CBI->getDefaultDest()));
3378 Vals.push_back(Elt: CBI->getNumIndirectDests());
3379 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i)
3380 Vals.push_back(Elt: VE.getValueID(V: CBI->getIndirectDest(i)));
3381
3382 Vals.push_back(Elt: VE.getTypeID(T: FTy));
3383 pushValueAndType(V: Callee, InstID, Vals);
3384
3385 // Emit value #'s for the fixed parameters.
3386 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
3387 pushValue(V: I.getOperand(i), InstID, Vals); // fixed param.
3388
3389 // Emit type/value pairs for varargs params.
3390 if (FTy->isVarArg()) {
3391 for (unsigned i = FTy->getNumParams(), e = CBI->arg_size(); i != e; ++i)
3392 pushValueAndType(V: I.getOperand(i), InstID, Vals); // vararg
3393 }
3394 break;
3395 }
3396 case Instruction::Unreachable:
3397 Code = bitc::FUNC_CODE_INST_UNREACHABLE;
3398 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
3399 break;
3400
3401 case Instruction::PHI: {
3402 const PHINode &PN = cast<PHINode>(Val: I);
3403 Code = bitc::FUNC_CODE_INST_PHI;
3404 // With the newer instruction encoding, forward references could give
3405 // negative valued IDs. This is most common for PHIs, so we use
3406 // signed VBRs.
3407 SmallVector<uint64_t, 128> Vals64;
3408 Vals64.push_back(Elt: VE.getTypeID(T: PN.getType()));
3409 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
3410 pushValueSigned(V: PN.getIncomingValue(i), InstID, Vals&: Vals64);
3411 Vals64.push_back(Elt: VE.getValueID(V: PN.getIncomingBlock(i)));
3412 }
3413
3414 uint64_t Flags = getOptimizationFlags(V: &I);
3415 if (Flags != 0)
3416 Vals64.push_back(Elt: Flags);
3417
3418 // Emit a Vals64 vector and exit.
3419 Stream.EmitRecord(Code, Vals: Vals64, Abbrev: AbbrevToUse);
3420 Vals64.clear();
3421 return;
3422 }
3423
3424 case Instruction::LandingPad: {
3425 const LandingPadInst &LP = cast<LandingPadInst>(Val: I);
3426 Code = bitc::FUNC_CODE_INST_LANDINGPAD;
3427 Vals.push_back(Elt: VE.getTypeID(T: LP.getType()));
3428 Vals.push_back(Elt: LP.isCleanup());
3429 Vals.push_back(Elt: LP.getNumClauses());
3430 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) {
3431 if (LP.isCatch(Idx: I))
3432 Vals.push_back(Elt: LandingPadInst::Catch);
3433 else
3434 Vals.push_back(Elt: LandingPadInst::Filter);
3435 pushValueAndType(V: LP.getClause(Idx: I), InstID, Vals);
3436 }
3437 break;
3438 }
3439
3440 case Instruction::Alloca: {
3441 Code = bitc::FUNC_CODE_INST_ALLOCA;
3442 const AllocaInst &AI = cast<AllocaInst>(Val: I);
3443 Vals.push_back(Elt: VE.getTypeID(T: AI.getAllocatedType()));
3444 Vals.push_back(Elt: VE.getTypeID(T: I.getOperand(i: 0)->getType()));
3445 Vals.push_back(Elt: VE.getValueID(V: I.getOperand(i: 0))); // size.
3446 using APV = AllocaPackedValues;
3447 unsigned Record = 0;
3448 unsigned EncodedAlign = getEncodedAlign(Alignment: AI.getAlign());
3449 Bitfield::set<APV::AlignLower>(
3450 Packed&: Record, Value: EncodedAlign & ((1 << APV::AlignLower::Bits) - 1));
3451 Bitfield::set<APV::AlignUpper>(Packed&: Record,
3452 Value: EncodedAlign >> APV::AlignLower::Bits);
3453 Bitfield::set<APV::UsedWithInAlloca>(Packed&: Record, Value: AI.isUsedWithInAlloca());
3454 Bitfield::set<APV::ExplicitType>(Packed&: Record, Value: true);
3455 Bitfield::set<APV::SwiftError>(Packed&: Record, Value: AI.isSwiftError());
3456 Vals.push_back(Elt: Record);
3457
3458 unsigned AS = AI.getAddressSpace();
3459 if (AS != M.getDataLayout().getAllocaAddrSpace())
3460 Vals.push_back(Elt: AS);
3461 break;
3462 }
3463
3464 case Instruction::Load:
3465 if (cast<LoadInst>(Val: I).isAtomic()) {
3466 Code = bitc::FUNC_CODE_INST_LOADATOMIC;
3467 pushValueAndType(V: I.getOperand(i: 0), InstID, Vals);
3468 } else {
3469 Code = bitc::FUNC_CODE_INST_LOAD;
3470 if (!pushValueAndType(V: I.getOperand(i: 0), InstID, Vals)) // ptr
3471 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
3472 }
3473 Vals.push_back(Elt: VE.getTypeID(T: I.getType()));
3474 Vals.push_back(Elt: getEncodedAlign(Alignment: cast<LoadInst>(Val: I).getAlign()));
3475 Vals.push_back(Elt: cast<LoadInst>(Val: I).isVolatile());
3476 if (cast<LoadInst>(Val: I).isAtomic()) {
3477 Vals.push_back(Elt: getEncodedOrdering(Ordering: cast<LoadInst>(Val: I).getOrdering()));
3478 Vals.push_back(Elt: getEncodedSyncScopeID(SSID: cast<LoadInst>(Val: I).getSyncScopeID()));
3479 }
3480 break;
3481 case Instruction::Store:
3482 if (cast<StoreInst>(Val: I).isAtomic()) {
3483 Code = bitc::FUNC_CODE_INST_STOREATOMIC;
3484 } else {
3485 Code = bitc::FUNC_CODE_INST_STORE;
3486 AbbrevToUse = FUNCTION_INST_STORE_ABBREV;
3487 }
3488 if (pushValueAndType(V: I.getOperand(i: 1), InstID, Vals)) // ptrty + ptr
3489 AbbrevToUse = 0;
3490 if (pushValueAndType(V: I.getOperand(i: 0), InstID, Vals)) // valty + val
3491 AbbrevToUse = 0;
3492 Vals.push_back(Elt: getEncodedAlign(Alignment: cast<StoreInst>(Val: I).getAlign()));
3493 Vals.push_back(Elt: cast<StoreInst>(Val: I).isVolatile());
3494 if (cast<StoreInst>(Val: I).isAtomic()) {
3495 Vals.push_back(Elt: getEncodedOrdering(Ordering: cast<StoreInst>(Val: I).getOrdering()));
3496 Vals.push_back(
3497 Elt: getEncodedSyncScopeID(SSID: cast<StoreInst>(Val: I).getSyncScopeID()));
3498 }
3499 break;
3500 case Instruction::AtomicCmpXchg:
3501 Code = bitc::FUNC_CODE_INST_CMPXCHG;
3502 pushValueAndType(V: I.getOperand(i: 0), InstID, Vals); // ptrty + ptr
3503 pushValueAndType(V: I.getOperand(i: 1), InstID, Vals); // cmp.
3504 pushValue(V: I.getOperand(i: 2), InstID, Vals); // newval.
3505 Vals.push_back(Elt: cast<AtomicCmpXchgInst>(Val: I).isVolatile());
3506 Vals.push_back(
3507 Elt: getEncodedOrdering(Ordering: cast<AtomicCmpXchgInst>(Val: I).getSuccessOrdering()));
3508 Vals.push_back(
3509 Elt: getEncodedSyncScopeID(SSID: cast<AtomicCmpXchgInst>(Val: I).getSyncScopeID()));
3510 Vals.push_back(
3511 Elt: getEncodedOrdering(Ordering: cast<AtomicCmpXchgInst>(Val: I).getFailureOrdering()));
3512 Vals.push_back(Elt: cast<AtomicCmpXchgInst>(Val: I).isWeak());
3513 Vals.push_back(Elt: getEncodedAlign(Alignment: cast<AtomicCmpXchgInst>(Val: I).getAlign()));
3514 break;
3515 case Instruction::AtomicRMW:
3516 Code = bitc::FUNC_CODE_INST_ATOMICRMW;
3517 pushValueAndType(V: I.getOperand(i: 0), InstID, Vals); // ptrty + ptr
3518 pushValueAndType(V: I.getOperand(i: 1), InstID, Vals); // valty + val
3519 Vals.push_back(
3520 Elt: getEncodedRMWOperation(Op: cast<AtomicRMWInst>(Val: I).getOperation()));
3521 Vals.push_back(Elt: cast<AtomicRMWInst>(Val: I).isVolatile());
3522 Vals.push_back(Elt: getEncodedOrdering(Ordering: cast<AtomicRMWInst>(Val: I).getOrdering()));
3523 Vals.push_back(
3524 Elt: getEncodedSyncScopeID(SSID: cast<AtomicRMWInst>(Val: I).getSyncScopeID()));
3525 Vals.push_back(Elt: getEncodedAlign(Alignment: cast<AtomicRMWInst>(Val: I).getAlign()));
3526 break;
3527 case Instruction::Fence:
3528 Code = bitc::FUNC_CODE_INST_FENCE;
3529 Vals.push_back(Elt: getEncodedOrdering(Ordering: cast<FenceInst>(Val: I).getOrdering()));
3530 Vals.push_back(Elt: getEncodedSyncScopeID(SSID: cast<FenceInst>(Val: I).getSyncScopeID()));
3531 break;
3532 case Instruction::Call: {
3533 const CallInst &CI = cast<CallInst>(Val: I);
3534 FunctionType *FTy = CI.getFunctionType();
3535
3536 if (CI.hasOperandBundles())
3537 writeOperandBundles(CS: CI, InstID);
3538
3539 Code = bitc::FUNC_CODE_INST_CALL;
3540
3541 Vals.push_back(Elt: VE.getAttributeListID(PAL: CI.getAttributes()));
3542
3543 unsigned Flags = getOptimizationFlags(V: &I);
3544 Vals.push_back(Elt: CI.getCallingConv() << bitc::CALL_CCONV |
3545 unsigned(CI.isTailCall()) << bitc::CALL_TAIL |
3546 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL |
3547 1 << bitc::CALL_EXPLICIT_TYPE |
3548 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL |
3549 unsigned(Flags != 0) << bitc::CALL_FMF);
3550 if (Flags != 0)
3551 Vals.push_back(Elt: Flags);
3552
3553 Vals.push_back(Elt: VE.getTypeID(T: FTy));
3554 pushValueAndType(V: CI.getCalledOperand(), InstID, Vals); // Callee
3555
3556 // Emit value #'s for the fixed parameters.
3557 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
3558 pushValue(V: CI.getArgOperand(i), InstID, Vals); // fixed param.
3559
3560 // Emit type/value pairs for varargs params.
3561 if (FTy->isVarArg()) {
3562 for (unsigned i = FTy->getNumParams(), e = CI.arg_size(); i != e; ++i)
3563 pushValueAndType(V: CI.getArgOperand(i), InstID, Vals); // varargs
3564 }
3565 break;
3566 }
3567 case Instruction::VAArg:
3568 Code = bitc::FUNC_CODE_INST_VAARG;
3569 Vals.push_back(Elt: VE.getTypeID(T: I.getOperand(i: 0)->getType())); // valistty
3570 pushValue(V: I.getOperand(i: 0), InstID, Vals); // valist.
3571 Vals.push_back(Elt: VE.getTypeID(T: I.getType())); // restype.
3572 break;
3573 case Instruction::Freeze:
3574 Code = bitc::FUNC_CODE_INST_FREEZE;
3575 pushValueAndType(V: I.getOperand(i: 0), InstID, Vals);
3576 break;
3577 }
3578
3579 Stream.EmitRecord(Code, Vals, Abbrev: AbbrevToUse);
3580 Vals.clear();
3581}
3582
3583/// Write a GlobalValue VST to the module. The purpose of this data structure is
3584/// to allow clients to efficiently find the function body.
3585void ModuleBitcodeWriter::writeGlobalValueSymbolTable(
3586 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) {
3587 // Get the offset of the VST we are writing, and backpatch it into
3588 // the VST forward declaration record.
3589 uint64_t VSTOffset = Stream.GetCurrentBitNo();
3590 // The BitcodeStartBit was the stream offset of the identification block.
3591 VSTOffset -= bitcodeStartBit();
3592 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned");
3593 // Note that we add 1 here because the offset is relative to one word
3594 // before the start of the identification block, which was historically
3595 // always the start of the regular bitcode header.
3596 Stream.BackpatchWord(BitNo: VSTOffsetPlaceholder, Val: VSTOffset / 32 + 1);
3597
3598 Stream.EnterSubblock(BlockID: bitc::VALUE_SYMTAB_BLOCK_ID, CodeLen: 4);
3599
3600 auto Abbv = std::make_shared<BitCodeAbbrev>();
3601 Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY));
3602 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
3603 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset
3604 unsigned FnEntryAbbrev = Stream.EmitAbbrev(Abbv: std::move(Abbv));
3605
3606 for (const Function &F : M) {
3607 uint64_t Record[2];
3608
3609 if (F.isDeclaration())
3610 continue;
3611
3612 Record[0] = VE.getValueID(V: &F);
3613
3614 // Save the word offset of the function (from the start of the
3615 // actual bitcode written to the stream).
3616 uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit();
3617 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned");
3618 // Note that we add 1 here because the offset is relative to one word
3619 // before the start of the identification block, which was historically
3620 // always the start of the regular bitcode header.
3621 Record[1] = BitcodeIndex / 32 + 1;
3622
3623 Stream.EmitRecord(Code: bitc::VST_CODE_FNENTRY, Vals: Record, Abbrev: FnEntryAbbrev);
3624 }
3625
3626 Stream.ExitBlock();
3627}
3628
3629/// Emit names for arguments, instructions and basic blocks in a function.
3630void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable(
3631 const ValueSymbolTable &VST) {
3632 if (VST.empty())
3633 return;
3634
3635 Stream.EnterSubblock(BlockID: bitc::VALUE_SYMTAB_BLOCK_ID, CodeLen: 4);
3636
3637 // FIXME: Set up the abbrev, we know how many values there are!
3638 // FIXME: We know if the type names can use 7-bit ascii.
3639 SmallVector<uint64_t, 64> NameVals;
3640
3641 for (const ValueName &Name : VST) {
3642 // Figure out the encoding to use for the name.
3643 StringEncoding Bits = getStringEncoding(Str: Name.getKey());
3644
3645 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
3646 NameVals.push_back(Elt: VE.getValueID(V: Name.getValue()));
3647
3648 // VST_CODE_ENTRY: [valueid, namechar x N]
3649 // VST_CODE_BBENTRY: [bbid, namechar x N]
3650 unsigned Code;
3651 if (isa<BasicBlock>(Val: Name.getValue())) {
3652 Code = bitc::VST_CODE_BBENTRY;
3653 if (Bits == SE_Char6)
3654 AbbrevToUse = VST_BBENTRY_6_ABBREV;
3655 } else {
3656 Code = bitc::VST_CODE_ENTRY;
3657 if (Bits == SE_Char6)
3658 AbbrevToUse = VST_ENTRY_6_ABBREV;
3659 else if (Bits == SE_Fixed7)
3660 AbbrevToUse = VST_ENTRY_7_ABBREV;
3661 }
3662
3663 for (const auto P : Name.getKey())
3664 NameVals.push_back(Elt: (unsigned char)P);
3665
3666 // Emit the finished record.
3667 Stream.EmitRecord(Code, Vals: NameVals, Abbrev: AbbrevToUse);
3668 NameVals.clear();
3669 }
3670
3671 Stream.ExitBlock();
3672}
3673
3674void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) {
3675 assert(Order.Shuffle.size() >= 2 && "Shuffle too small");
3676 unsigned Code;
3677 if (isa<BasicBlock>(Val: Order.V))
3678 Code = bitc::USELIST_CODE_BB;
3679 else
3680 Code = bitc::USELIST_CODE_DEFAULT;
3681
3682 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end());
3683 Record.push_back(Elt: VE.getValueID(V: Order.V));
3684 Stream.EmitRecord(Code, Vals: Record);
3685}
3686
3687void ModuleBitcodeWriter::writeUseListBlock(const Function *F) {
3688 assert(VE.shouldPreserveUseListOrder() &&
3689 "Expected to be preserving use-list order");
3690
3691 auto hasMore = [&]() {
3692 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F;
3693 };
3694 if (!hasMore())
3695 // Nothing to do.
3696 return;
3697
3698 Stream.EnterSubblock(BlockID: bitc::USELIST_BLOCK_ID, CodeLen: 3);
3699 while (hasMore()) {
3700 writeUseList(Order: std::move(VE.UseListOrders.back()));
3701 VE.UseListOrders.pop_back();
3702 }
3703 Stream.ExitBlock();
3704}
3705
3706/// Emit a function body to the module stream.
3707void ModuleBitcodeWriter::writeFunction(
3708 const Function &F,
3709 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) {
3710 // Save the bitcode index of the start of this function block for recording
3711 // in the VST.
3712 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo();
3713
3714 Stream.EnterSubblock(BlockID: bitc::FUNCTION_BLOCK_ID, CodeLen: 5);
3715 VE.incorporateFunction(F);
3716
3717 SmallVector<unsigned, 64> Vals;
3718
3719 // Emit the number of basic blocks, so the reader can create them ahead of
3720 // time.
3721 Vals.push_back(Elt: VE.getBasicBlocks().size());
3722 Stream.EmitRecord(Code: bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
3723 Vals.clear();
3724
3725 // If there are function-local constants, emit them now.
3726 unsigned CstStart, CstEnd;
3727 VE.getFunctionConstantRange(Start&: CstStart, End&: CstEnd);
3728 writeConstants(FirstVal: CstStart, LastVal: CstEnd, isGlobal: false);
3729
3730 // If there is function-local metadata, emit it now.
3731 writeFunctionMetadata(F);
3732
3733 // Keep a running idea of what the instruction ID is.
3734 unsigned InstID = CstEnd;
3735
3736 bool NeedsMetadataAttachment = F.hasMetadata();
3737
3738 DILocation *LastDL = nullptr;
3739 SmallSetVector<Function *, 4> BlockAddressUsers;
3740
3741 // Finally, emit all the instructions, in order.
3742 for (const BasicBlock &BB : F) {
3743 for (const Instruction &I : BB) {
3744 writeInstruction(I, InstID, Vals);
3745
3746 if (!I.getType()->isVoidTy())
3747 ++InstID;
3748
3749 // If the instruction has metadata, write a metadata attachment later.
3750 NeedsMetadataAttachment |= I.hasMetadataOtherThanDebugLoc();
3751
3752 // If the instruction has a debug location, emit it.
3753 if (DILocation *DL = I.getDebugLoc()) {
3754 if (DL == LastDL) {
3755 // Just repeat the same debug loc as last time.
3756 Stream.EmitRecord(Code: bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
3757 } else {
3758 Vals.push_back(Elt: DL->getLine());
3759 Vals.push_back(Elt: DL->getColumn());
3760 Vals.push_back(Elt: VE.getMetadataOrNullID(MD: DL->getScope()));
3761 Vals.push_back(Elt: VE.getMetadataOrNullID(MD: DL->getInlinedAt()));
3762 Vals.push_back(Elt: DL->isImplicitCode());
3763 Vals.push_back(Elt: DL->getAtomGroup());
3764 Vals.push_back(Elt: DL->getAtomRank());
3765 Stream.EmitRecord(Code: bitc::FUNC_CODE_DEBUG_LOC, Vals,
3766 Abbrev: FUNCTION_DEBUG_LOC_ABBREV);
3767 Vals.clear();
3768 LastDL = DL;
3769 }
3770 }
3771
3772 // If the instruction has DbgRecords attached to it, emit them. Note that
3773 // they come after the instruction so that it's easy to attach them again
3774 // when reading the bitcode, even though conceptually the debug locations
3775 // start "before" the instruction.
3776 if (I.hasDbgRecords()) {
3777 /// Try to push the value only (unwrapped), otherwise push the
3778 /// metadata wrapped value. Returns true if the value was pushed
3779 /// without the ValueAsMetadata wrapper.
3780 auto PushValueOrMetadata = [&Vals, InstID,
3781 this](Metadata *RawLocation) {
3782 assert(RawLocation &&
3783 "RawLocation unexpectedly null in DbgVariableRecord");
3784 if (ValueAsMetadata *VAM = dyn_cast<ValueAsMetadata>(Val: RawLocation)) {
3785 SmallVector<unsigned, 2> ValAndType;
3786 // If the value is a fwd-ref the type is also pushed. We don't
3787 // want the type, so fwd-refs are kept wrapped (pushValueAndType
3788 // returns false if the value is pushed without type).
3789 if (!pushValueAndType(V: VAM->getValue(), InstID, Vals&: ValAndType)) {
3790 Vals.push_back(Elt: ValAndType[0]);
3791 return true;
3792 }
3793 }
3794 // The metadata is a DIArgList, or ValueAsMetadata wrapping a
3795 // fwd-ref. Push the metadata ID.
3796 Vals.push_back(Elt: VE.getMetadataID(MD: RawLocation));
3797 return false;
3798 };
3799
3800 // Write out non-instruction debug information attached to this
3801 // instruction. Write it after the instruction so that it's easy to
3802 // re-attach to the instruction reading the records in.
3803 for (DbgRecord &DR : I.DebugMarker->getDbgRecordRange()) {
3804 if (DbgLabelRecord *DLR = dyn_cast<DbgLabelRecord>(Val: &DR)) {
3805 Vals.push_back(Elt: VE.getMetadataID(MD: &*DLR->getDebugLoc()));
3806 Vals.push_back(Elt: VE.getMetadataID(MD: DLR->getLabel()));
3807 Stream.EmitRecord(Code: bitc::FUNC_CODE_DEBUG_RECORD_LABEL, Vals);
3808 Vals.clear();
3809 continue;
3810 }
3811
3812 // First 3 fields are common to all kinds:
3813 // DILocation, DILocalVariable, DIExpression
3814 // dbg_value (FUNC_CODE_DEBUG_RECORD_VALUE)
3815 // ..., LocationMetadata
3816 // dbg_value (FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE - abbrev'd)
3817 // ..., Value
3818 // dbg_declare (FUNC_CODE_DEBUG_RECORD_DECLARE)
3819 // ..., LocationMetadata
3820 // dbg_assign (FUNC_CODE_DEBUG_RECORD_ASSIGN)
3821 // ..., LocationMetadata, DIAssignID, DIExpression, LocationMetadata
3822 DbgVariableRecord &DVR = cast<DbgVariableRecord>(Val&: DR);
3823 Vals.push_back(Elt: VE.getMetadataID(MD: &*DVR.getDebugLoc()));
3824 Vals.push_back(Elt: VE.getMetadataID(MD: DVR.getVariable()));
3825 Vals.push_back(Elt: VE.getMetadataID(MD: DVR.getExpression()));
3826 if (DVR.isDbgValue()) {
3827 if (PushValueOrMetadata(DVR.getRawLocation()))
3828 Stream.EmitRecord(Code: bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE, Vals,
3829 Abbrev: FUNCTION_DEBUG_RECORD_VALUE_ABBREV);
3830 else
3831 Stream.EmitRecord(Code: bitc::FUNC_CODE_DEBUG_RECORD_VALUE, Vals);
3832 } else if (DVR.isDbgDeclare()) {
3833 Vals.push_back(Elt: VE.getMetadataID(MD: DVR.getRawLocation()));
3834 Stream.EmitRecord(Code: bitc::FUNC_CODE_DEBUG_RECORD_DECLARE, Vals);
3835 } else if (DVR.isDbgDeclareValue()) {
3836 Vals.push_back(Elt: VE.getMetadataID(MD: DVR.getRawLocation()));
3837 Stream.EmitRecord(Code: bitc::FUNC_CODE_DEBUG_RECORD_DECLARE_VALUE, Vals);
3838 } else {
3839 assert(DVR.isDbgAssign() && "Unexpected DbgRecord kind");
3840 Vals.push_back(Elt: VE.getMetadataID(MD: DVR.getRawLocation()));
3841 Vals.push_back(Elt: VE.getMetadataID(MD: DVR.getAssignID()));
3842 Vals.push_back(Elt: VE.getMetadataID(MD: DVR.getAddressExpression()));
3843 Vals.push_back(Elt: VE.getMetadataID(MD: DVR.getRawAddress()));
3844 Stream.EmitRecord(Code: bitc::FUNC_CODE_DEBUG_RECORD_ASSIGN, Vals);
3845 }
3846 Vals.clear();
3847 }
3848 }
3849 }
3850
3851 if (BlockAddress *BA = BlockAddress::lookup(BB: &BB)) {
3852 SmallVector<Value *> Worklist{BA};
3853 SmallPtrSet<Value *, 8> Visited{BA};
3854 while (!Worklist.empty()) {
3855 Value *V = Worklist.pop_back_val();
3856 for (User *U : V->users()) {
3857 if (auto *I = dyn_cast<Instruction>(Val: U)) {
3858 Function *P = I->getFunction();
3859 if (P != &F)
3860 BlockAddressUsers.insert(X: P);
3861 } else if (isa<Constant>(Val: U) && !isa<GlobalValue>(Val: U) &&
3862 Visited.insert(Ptr: U).second)
3863 Worklist.push_back(Elt: U);
3864 }
3865 }
3866 }
3867 }
3868
3869 if (!BlockAddressUsers.empty()) {
3870 Vals.resize(N: BlockAddressUsers.size());
3871 for (auto I : llvm::enumerate(First&: BlockAddressUsers))
3872 Vals[I.index()] = VE.getValueID(V: I.value());
3873 Stream.EmitRecord(Code: bitc::FUNC_CODE_BLOCKADDR_USERS, Vals);
3874 Vals.clear();
3875 }
3876
3877 // Emit names for all the instructions etc.
3878 if (auto *Symtab = F.getValueSymbolTable())
3879 writeFunctionLevelValueSymbolTable(VST: *Symtab);
3880
3881 if (NeedsMetadataAttachment)
3882 writeFunctionMetadataAttachment(F);
3883 if (VE.shouldPreserveUseListOrder())
3884 writeUseListBlock(F: &F);
3885 VE.purgeFunction();
3886 Stream.ExitBlock();
3887}
3888
3889// Emit blockinfo, which defines the standard abbreviations etc.
3890void ModuleBitcodeWriter::writeBlockInfo() {
3891 // We only want to emit block info records for blocks that have multiple
3892 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.
3893 // Other blocks can define their abbrevs inline.
3894 Stream.EnterBlockInfoBlock();
3895
3896 // Encode type indices using fixed size based on number of types.
3897 BitCodeAbbrevOp TypeAbbrevOp(BitCodeAbbrevOp::Fixed,
3898 VE.computeBitsRequiredForTypeIndices());
3899 // Encode value indices as 6-bit VBR.
3900 BitCodeAbbrevOp ValAbbrevOp(BitCodeAbbrevOp::VBR, 6);
3901
3902 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings.
3903 auto Abbv = std::make_shared<BitCodeAbbrev>();
3904 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
3905 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3906 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3907 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
3908 if (Stream.EmitBlockInfoAbbrev(BlockID: bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3909 VST_ENTRY_8_ABBREV)
3910 llvm_unreachable("Unexpected abbrev ordering!");
3911 }
3912
3913 { // 7-bit fixed width VST_CODE_ENTRY strings.
3914 auto Abbv = std::make_shared<BitCodeAbbrev>();
3915 Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
3916 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3917 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3918 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
3919 if (Stream.EmitBlockInfoAbbrev(BlockID: bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3920 VST_ENTRY_7_ABBREV)
3921 llvm_unreachable("Unexpected abbrev ordering!");
3922 }
3923 { // 6-bit char6 VST_CODE_ENTRY strings.
3924 auto Abbv = std::make_shared<BitCodeAbbrev>();
3925 Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
3926 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3927 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3928 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3929 if (Stream.EmitBlockInfoAbbrev(BlockID: bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3930 VST_ENTRY_6_ABBREV)
3931 llvm_unreachable("Unexpected abbrev ordering!");
3932 }
3933 { // 6-bit char6 VST_CODE_BBENTRY strings.
3934 auto Abbv = std::make_shared<BitCodeAbbrev>();
3935 Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
3936 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3937 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3938 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3939 if (Stream.EmitBlockInfoAbbrev(BlockID: bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3940 VST_BBENTRY_6_ABBREV)
3941 llvm_unreachable("Unexpected abbrev ordering!");
3942 }
3943
3944 { // SETTYPE abbrev for CONSTANTS_BLOCK.
3945 auto Abbv = std::make_shared<BitCodeAbbrev>();
3946 Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
3947 Abbv->Add(OpInfo: TypeAbbrevOp);
3948 if (Stream.EmitBlockInfoAbbrev(BlockID: bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3949 CONSTANTS_SETTYPE_ABBREV)
3950 llvm_unreachable("Unexpected abbrev ordering!");
3951 }
3952
3953 { // INTEGER abbrev for CONSTANTS_BLOCK.
3954 auto Abbv = std::make_shared<BitCodeAbbrev>();
3955 Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
3956 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3957 if (Stream.EmitBlockInfoAbbrev(BlockID: bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3958 CONSTANTS_INTEGER_ABBREV)
3959 llvm_unreachable("Unexpected abbrev ordering!");
3960 }
3961
3962 { // CE_CAST abbrev for CONSTANTS_BLOCK.
3963 auto Abbv = std::make_shared<BitCodeAbbrev>();
3964 Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
3965 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc
3966 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid
3967 VE.computeBitsRequiredForTypeIndices()));
3968 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
3969
3970 if (Stream.EmitBlockInfoAbbrev(BlockID: bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3971 CONSTANTS_CE_CAST_Abbrev)
3972 llvm_unreachable("Unexpected abbrev ordering!");
3973 }
3974 { // NULL abbrev for CONSTANTS_BLOCK.
3975 auto Abbv = std::make_shared<BitCodeAbbrev>();
3976 Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::CST_CODE_NULL));
3977 if (Stream.EmitBlockInfoAbbrev(BlockID: bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3978 CONSTANTS_NULL_Abbrev)
3979 llvm_unreachable("Unexpected abbrev ordering!");
3980 }
3981
3982 // FIXME: This should only use space for first class types!
3983
3984 { // INST_LOAD abbrev for FUNCTION_BLOCK.
3985 auto Abbv = std::make_shared<BitCodeAbbrev>();
3986 Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
3987 Abbv->Add(OpInfo: ValAbbrevOp); // Ptr
3988 Abbv->Add(OpInfo: TypeAbbrevOp); // dest ty
3989 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
3990 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
3991 if (Stream.EmitBlockInfoAbbrev(BlockID: bitc::FUNCTION_BLOCK_ID, Abbv) !=
3992 FUNCTION_INST_LOAD_ABBREV)
3993 llvm_unreachable("Unexpected abbrev ordering!");
3994 }
3995 {
3996 auto Abbv = std::make_shared<BitCodeAbbrev>();
3997 Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::FUNC_CODE_INST_STORE));
3998 Abbv->Add(OpInfo: ValAbbrevOp); // op1
3999 Abbv->Add(OpInfo: ValAbbrevOp); // op0
4000 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // align
4001 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
4002 if (Stream.EmitBlockInfoAbbrev(BlockID: bitc::FUNCTION_BLOCK_ID, Abbv) !=
4003 FUNCTION_INST_STORE_ABBREV)
4004 llvm_unreachable("Unexpected abbrev ordering!");
4005 }
4006 { // INST_UNOP abbrev for FUNCTION_BLOCK.
4007 auto Abbv = std::make_shared<BitCodeAbbrev>();
4008 Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP));
4009 Abbv->Add(OpInfo: ValAbbrevOp); // LHS
4010 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
4011 if (Stream.EmitBlockInfoAbbrev(BlockID: bitc::FUNCTION_BLOCK_ID, Abbv) !=
4012 FUNCTION_INST_UNOP_ABBREV)
4013 llvm_unreachable("Unexpected abbrev ordering!");
4014 }
4015 { // INST_UNOP_FLAGS abbrev for FUNCTION_BLOCK.
4016 auto Abbv = std::make_shared<BitCodeAbbrev>();
4017 Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP));
4018 Abbv->Add(OpInfo: ValAbbrevOp); // LHS
4019 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
4020 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags
4021 if (Stream.EmitBlockInfoAbbrev(BlockID: bitc::FUNCTION_BLOCK_ID, Abbv) !=
4022 FUNCTION_INST_UNOP_FLAGS_ABBREV)
4023 llvm_unreachable("Unexpected abbrev ordering!");
4024 }
4025 { // INST_BINOP abbrev for FUNCTION_BLOCK.
4026 auto Abbv = std::make_shared<BitCodeAbbrev>();
4027 Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
4028 Abbv->Add(OpInfo: ValAbbrevOp); // LHS
4029 Abbv->Add(OpInfo: ValAbbrevOp); // RHS
4030 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
4031 if (Stream.EmitBlockInfoAbbrev(BlockID: bitc::FUNCTION_BLOCK_ID, Abbv) !=
4032 FUNCTION_INST_BINOP_ABBREV)
4033 llvm_unreachable("Unexpected abbrev ordering!");
4034 }
4035 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
4036 auto Abbv = std::make_shared<BitCodeAbbrev>();
4037 Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
4038 Abbv->Add(OpInfo: ValAbbrevOp); // LHS
4039 Abbv->Add(OpInfo: ValAbbrevOp); // RHS
4040 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
4041 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags
4042 if (Stream.EmitBlockInfoAbbrev(BlockID: bitc::FUNCTION_BLOCK_ID, Abbv) !=
4043 FUNCTION_INST_BINOP_FLAGS_ABBREV)
4044 llvm_unreachable("Unexpected abbrev ordering!");
4045 }
4046 { // INST_CAST abbrev for FUNCTION_BLOCK.
4047 auto Abbv = std::make_shared<BitCodeAbbrev>();
4048 Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
4049 Abbv->Add(OpInfo: ValAbbrevOp); // OpVal
4050 Abbv->Add(OpInfo: TypeAbbrevOp); // dest ty
4051 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
4052 if (Stream.EmitBlockInfoAbbrev(BlockID: bitc::FUNCTION_BLOCK_ID, Abbv) !=
4053 FUNCTION_INST_CAST_ABBREV)
4054 llvm_unreachable("Unexpected abbrev ordering!");
4055 }
4056 { // INST_CAST_FLAGS abbrev for FUNCTION_BLOCK.
4057 auto Abbv = std::make_shared<BitCodeAbbrev>();
4058 Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
4059 Abbv->Add(OpInfo: ValAbbrevOp); // OpVal
4060 Abbv->Add(OpInfo: TypeAbbrevOp); // dest ty
4061 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
4062 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags
4063 if (Stream.EmitBlockInfoAbbrev(BlockID: bitc::FUNCTION_BLOCK_ID, Abbv) !=
4064 FUNCTION_INST_CAST_FLAGS_ABBREV)
4065 llvm_unreachable("Unexpected abbrev ordering!");
4066 }
4067
4068 { // INST_RET abbrev for FUNCTION_BLOCK.
4069 auto Abbv = std::make_shared<BitCodeAbbrev>();
4070 Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
4071 if (Stream.EmitBlockInfoAbbrev(BlockID: bitc::FUNCTION_BLOCK_ID, Abbv) !=
4072 FUNCTION_INST_RET_VOID_ABBREV)
4073 llvm_unreachable("Unexpected abbrev ordering!");
4074 }
4075 { // INST_RET abbrev for FUNCTION_BLOCK.
4076 auto Abbv = std::make_shared<BitCodeAbbrev>();
4077 Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
4078 Abbv->Add(OpInfo: ValAbbrevOp);
4079 if (Stream.EmitBlockInfoAbbrev(BlockID: bitc::FUNCTION_BLOCK_ID, Abbv) !=
4080 FUNCTION_INST_RET_VAL_ABBREV)
4081 llvm_unreachable("Unexpected abbrev ordering!");
4082 }
4083 {
4084 auto Abbv = std::make_shared<BitCodeAbbrev>();
4085 Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BR));
4086 // TODO: Use different abbrev for absolute value reference (succ0)?
4087 Abbv->Add(OpInfo: ValAbbrevOp); // succ0
4088 if (Stream.EmitBlockInfoAbbrev(BlockID: bitc::FUNCTION_BLOCK_ID, Abbv) !=
4089 FUNCTION_INST_BR_UNCOND_ABBREV)
4090 llvm_unreachable("Unexpected abbrev ordering!");
4091 }
4092 {
4093 auto Abbv = std::make_shared<BitCodeAbbrev>();
4094 Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BR));
4095 // TODO: Use different abbrev for absolute value references (succ0, succ1)?
4096 Abbv->Add(OpInfo: ValAbbrevOp); // succ0
4097 Abbv->Add(OpInfo: ValAbbrevOp); // succ1
4098 Abbv->Add(OpInfo: ValAbbrevOp); // cond
4099 if (Stream.EmitBlockInfoAbbrev(BlockID: bitc::FUNCTION_BLOCK_ID, Abbv) !=
4100 FUNCTION_INST_BR_COND_ABBREV)
4101 llvm_unreachable("Unexpected abbrev ordering!");
4102 }
4103 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
4104 auto Abbv = std::make_shared<BitCodeAbbrev>();
4105 Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
4106 if (Stream.EmitBlockInfoAbbrev(BlockID: bitc::FUNCTION_BLOCK_ID, Abbv) !=
4107 FUNCTION_INST_UNREACHABLE_ABBREV)
4108 llvm_unreachable("Unexpected abbrev ordering!");
4109 }
4110 {
4111 auto Abbv = std::make_shared<BitCodeAbbrev>();
4112 Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP));
4113 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); // flags
4114 Abbv->Add(OpInfo: TypeAbbrevOp); // dest ty
4115 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4116 Abbv->Add(OpInfo: ValAbbrevOp);
4117 if (Stream.EmitBlockInfoAbbrev(BlockID: bitc::FUNCTION_BLOCK_ID, Abbv) !=
4118 FUNCTION_INST_GEP_ABBREV)
4119 llvm_unreachable("Unexpected abbrev ordering!");
4120 }
4121 {
4122 auto Abbv = std::make_shared<BitCodeAbbrev>();
4123 Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CMP2));
4124 Abbv->Add(OpInfo: ValAbbrevOp); // op0
4125 Abbv->Add(OpInfo: ValAbbrevOp); // op1
4126 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 6)); // pred
4127 if (Stream.EmitBlockInfoAbbrev(BlockID: bitc::FUNCTION_BLOCK_ID, Abbv) !=
4128 FUNCTION_INST_CMP_ABBREV)
4129 llvm_unreachable("Unexpected abbrev ordering!");
4130 }
4131 {
4132 auto Abbv = std::make_shared<BitCodeAbbrev>();
4133 Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CMP2));
4134 Abbv->Add(OpInfo: ValAbbrevOp); // op0
4135 Abbv->Add(OpInfo: ValAbbrevOp); // op1
4136 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 6)); // pred
4137 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags
4138 if (Stream.EmitBlockInfoAbbrev(BlockID: bitc::FUNCTION_BLOCK_ID, Abbv) !=
4139 FUNCTION_INST_CMP_FLAGS_ABBREV)
4140 llvm_unreachable("Unexpected abbrev ordering!");
4141 }
4142 {
4143 auto Abbv = std::make_shared<BitCodeAbbrev>();
4144 Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE));
4145 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 7)); // dbgloc
4146 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 7)); // var
4147 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 7)); // expr
4148 Abbv->Add(OpInfo: ValAbbrevOp); // val
4149 if (Stream.EmitBlockInfoAbbrev(BlockID: bitc::FUNCTION_BLOCK_ID, Abbv) !=
4150 FUNCTION_DEBUG_RECORD_VALUE_ABBREV)
4151 llvm_unreachable("Unexpected abbrev ordering! 1");
4152 }
4153 {
4154 auto Abbv = std::make_shared<BitCodeAbbrev>();
4155 Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::FUNC_CODE_DEBUG_LOC));
4156 // NOTE: No IsDistinct field for FUNC_CODE_DEBUG_LOC.
4157 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
4158 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4159 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
4160 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
4161 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
4162 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Atom group.
4163 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 3)); // Atom rank.
4164 if (Stream.EmitBlockInfoAbbrev(BlockID: bitc::FUNCTION_BLOCK_ID, Abbv) !=
4165 FUNCTION_DEBUG_LOC_ABBREV)
4166 llvm_unreachable("Unexpected abbrev ordering!");
4167 }
4168 Stream.ExitBlock();
4169}
4170
4171/// Write the module path strings, currently only used when generating
4172/// a combined index file.
4173void IndexBitcodeWriter::writeModStrings() {
4174 Stream.EnterSubblock(BlockID: bitc::MODULE_STRTAB_BLOCK_ID, CodeLen: 3);
4175
4176 // TODO: See which abbrev sizes we actually need to emit
4177
4178 // 8-bit fixed-width MST_ENTRY strings.
4179 auto Abbv = std::make_shared<BitCodeAbbrev>();
4180 Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
4181 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4182 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4183 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
4184 unsigned Abbrev8Bit = Stream.EmitAbbrev(Abbv: std::move(Abbv));
4185
4186 // 7-bit fixed width MST_ENTRY strings.
4187 Abbv = std::make_shared<BitCodeAbbrev>();
4188 Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
4189 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4190 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4191 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
4192 unsigned Abbrev7Bit = Stream.EmitAbbrev(Abbv: std::move(Abbv));
4193
4194 // 6-bit char6 MST_ENTRY strings.
4195 Abbv = std::make_shared<BitCodeAbbrev>();
4196 Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
4197 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4198 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4199 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
4200 unsigned Abbrev6Bit = Stream.EmitAbbrev(Abbv: std::move(Abbv));
4201
4202 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY.
4203 Abbv = std::make_shared<BitCodeAbbrev>();
4204 Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::MST_CODE_HASH));
4205 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
4206 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
4207 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
4208 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
4209 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
4210 unsigned AbbrevHash = Stream.EmitAbbrev(Abbv: std::move(Abbv));
4211
4212 SmallVector<unsigned, 64> Vals;
4213 forEachModule(Callback: [&](const StringMapEntry<ModuleHash> &MPSE) {
4214 StringRef Key = MPSE.getKey();
4215 const auto &Hash = MPSE.getValue();
4216 StringEncoding Bits = getStringEncoding(Str: Key);
4217 unsigned AbbrevToUse = Abbrev8Bit;
4218 if (Bits == SE_Char6)
4219 AbbrevToUse = Abbrev6Bit;
4220 else if (Bits == SE_Fixed7)
4221 AbbrevToUse = Abbrev7Bit;
4222
4223 auto ModuleId = ModuleIdMap.size();
4224 ModuleIdMap[Key] = ModuleId;
4225 Vals.push_back(Elt: ModuleId);
4226 Vals.append(in_start: Key.begin(), in_end: Key.end());
4227
4228 // Emit the finished record.
4229 Stream.EmitRecord(Code: bitc::MST_CODE_ENTRY, Vals, Abbrev: AbbrevToUse);
4230
4231 // Emit an optional hash for the module now
4232 if (llvm::any_of(Range: Hash, P: [](uint32_t H) { return H; })) {
4233 Vals.assign(in_start: Hash.begin(), in_end: Hash.end());
4234 // Emit the hash record.
4235 Stream.EmitRecord(Code: bitc::MST_CODE_HASH, Vals, Abbrev: AbbrevHash);
4236 }
4237
4238 Vals.clear();
4239 });
4240 Stream.ExitBlock();
4241}
4242
4243/// Write the function type metadata related records that need to appear before
4244/// a function summary entry (whether per-module or combined).
4245template <typename Fn>
4246static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream,
4247 FunctionSummary *FS,
4248 Fn GetValueID) {
4249 if (!FS->type_tests().empty())
4250 Stream.EmitRecord(Code: bitc::FS_TYPE_TESTS, Vals: FS->type_tests());
4251
4252 SmallVector<uint64_t, 64> Record;
4253
4254 auto WriteVFuncIdVec = [&](uint64_t Ty,
4255 ArrayRef<FunctionSummary::VFuncId> VFs) {
4256 if (VFs.empty())
4257 return;
4258 Record.clear();
4259 for (auto &VF : VFs) {
4260 Record.push_back(Elt: VF.GUID);
4261 Record.push_back(Elt: VF.Offset);
4262 }
4263 Stream.EmitRecord(Code: Ty, Vals: Record);
4264 };
4265
4266 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS,
4267 FS->type_test_assume_vcalls());
4268 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS,
4269 FS->type_checked_load_vcalls());
4270
4271 auto WriteConstVCallVec = [&](uint64_t Ty,
4272 ArrayRef<FunctionSummary::ConstVCall> VCs) {
4273 for (auto &VC : VCs) {
4274 Record.clear();
4275 Record.push_back(Elt: VC.VFunc.GUID);
4276 Record.push_back(Elt: VC.VFunc.Offset);
4277 llvm::append_range(C&: Record, R: VC.Args);
4278 Stream.EmitRecord(Code: Ty, Vals: Record);
4279 }
4280 };
4281
4282 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL,
4283 FS->type_test_assume_const_vcalls());
4284 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL,
4285 FS->type_checked_load_const_vcalls());
4286
4287 auto WriteRange = [&](ConstantRange Range) {
4288 Range = Range.sextOrTrunc(BitWidth: FunctionSummary::ParamAccess::RangeWidth);
4289 assert(Range.getLower().getNumWords() == 1);
4290 assert(Range.getUpper().getNumWords() == 1);
4291 emitSignedInt64(Vals&: Record, V: *Range.getLower().getRawData());
4292 emitSignedInt64(Vals&: Record, V: *Range.getUpper().getRawData());
4293 };
4294
4295 if (!FS->paramAccesses().empty()) {
4296 Record.clear();
4297 for (auto &Arg : FS->paramAccesses()) {
4298 size_t UndoSize = Record.size();
4299 Record.push_back(Elt: Arg.ParamNo);
4300 WriteRange(Arg.Use);
4301 Record.push_back(Elt: Arg.Calls.size());
4302 for (auto &Call : Arg.Calls) {
4303 Record.push_back(Elt: Call.ParamNo);
4304 std::optional<unsigned> ValueID = GetValueID(Call.Callee);
4305 if (!ValueID) {
4306 // If ValueID is unknown we can't drop just this call, we must drop
4307 // entire parameter.
4308 Record.resize(N: UndoSize);
4309 break;
4310 }
4311 Record.push_back(Elt: *ValueID);
4312 WriteRange(Call.Offsets);
4313 }
4314 }
4315 if (!Record.empty())
4316 Stream.EmitRecord(Code: bitc::FS_PARAM_ACCESS, Vals: Record);
4317 }
4318}
4319
4320/// Collect type IDs from type tests used by function.
4321static void
4322getReferencedTypeIds(FunctionSummary *FS,
4323 std::set<GlobalValue::GUID> &ReferencedTypeIds) {
4324 if (!FS->type_tests().empty())
4325 for (auto &TT : FS->type_tests())
4326 ReferencedTypeIds.insert(x: TT);
4327
4328 auto GetReferencedTypesFromVFuncIdVec =
4329 [&](ArrayRef<FunctionSummary::VFuncId> VFs) {
4330 for (auto &VF : VFs)
4331 ReferencedTypeIds.insert(x: VF.GUID);
4332 };
4333
4334 GetReferencedTypesFromVFuncIdVec(FS->type_test_assume_vcalls());
4335 GetReferencedTypesFromVFuncIdVec(FS->type_checked_load_vcalls());
4336
4337 auto GetReferencedTypesFromConstVCallVec =
4338 [&](ArrayRef<FunctionSummary::ConstVCall> VCs) {
4339 for (auto &VC : VCs)
4340 ReferencedTypeIds.insert(x: VC.VFunc.GUID);
4341 };
4342
4343 GetReferencedTypesFromConstVCallVec(FS->type_test_assume_const_vcalls());
4344 GetReferencedTypesFromConstVCallVec(FS->type_checked_load_const_vcalls());
4345}
4346
4347static void writeWholeProgramDevirtResolutionByArg(
4348 SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args,
4349 const WholeProgramDevirtResolution::ByArg &ByArg) {
4350 NameVals.push_back(Elt: args.size());
4351 llvm::append_range(C&: NameVals, R: args);
4352
4353 NameVals.push_back(Elt: ByArg.TheKind);
4354 NameVals.push_back(Elt: ByArg.Info);
4355 NameVals.push_back(Elt: ByArg.Byte);
4356 NameVals.push_back(Elt: ByArg.Bit);
4357}
4358
4359static void writeWholeProgramDevirtResolution(
4360 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder,
4361 uint64_t Id, const WholeProgramDevirtResolution &Wpd) {
4362 NameVals.push_back(Elt: Id);
4363
4364 NameVals.push_back(Elt: Wpd.TheKind);
4365 NameVals.push_back(Elt: StrtabBuilder.add(S: Wpd.SingleImplName));
4366 NameVals.push_back(Elt: Wpd.SingleImplName.size());
4367
4368 NameVals.push_back(Elt: Wpd.ResByArg.size());
4369 for (auto &A : Wpd.ResByArg)
4370 writeWholeProgramDevirtResolutionByArg(NameVals, args: A.first, ByArg: A.second);
4371}
4372
4373static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals,
4374 StringTableBuilder &StrtabBuilder,
4375 StringRef Id,
4376 const TypeIdSummary &Summary) {
4377 NameVals.push_back(Elt: StrtabBuilder.add(S: Id));
4378 NameVals.push_back(Elt: Id.size());
4379
4380 NameVals.push_back(Elt: Summary.TTRes.TheKind);
4381 NameVals.push_back(Elt: Summary.TTRes.SizeM1BitWidth);
4382 NameVals.push_back(Elt: Summary.TTRes.AlignLog2);
4383 NameVals.push_back(Elt: Summary.TTRes.SizeM1);
4384 NameVals.push_back(Elt: Summary.TTRes.BitMask);
4385 NameVals.push_back(Elt: Summary.TTRes.InlineBits);
4386
4387 for (auto &W : Summary.WPDRes)
4388 writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, Id: W.first,
4389 Wpd: W.second);
4390}
4391
4392static void writeTypeIdCompatibleVtableSummaryRecord(
4393 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder,
4394 StringRef Id, const TypeIdCompatibleVtableInfo &Summary,
4395 ValueEnumerator &VE) {
4396 NameVals.push_back(Elt: StrtabBuilder.add(S: Id));
4397 NameVals.push_back(Elt: Id.size());
4398
4399 for (auto &P : Summary) {
4400 NameVals.push_back(Elt: P.AddressPointOffset);
4401 NameVals.push_back(Elt: VE.getValueID(V: P.VTableVI.getValue()));
4402 }
4403}
4404
4405// Adds the allocation contexts to the CallStacks map. We simply use the
4406// size at the time the context was added as the CallStackId. This works because
4407// when we look up the call stacks later on we process the function summaries
4408// and their allocation records in the same exact order.
4409static void collectMemProfCallStacks(
4410 FunctionSummary *FS, std::function<LinearFrameId(unsigned)> GetStackIndex,
4411 MapVector<CallStackId, llvm::SmallVector<LinearFrameId>> &CallStacks) {
4412 // The interfaces in ProfileData/MemProf.h use a type alias for a stack frame
4413 // id offset into the index of the full stack frames. The ModuleSummaryIndex
4414 // currently uses unsigned. Make sure these stay in sync.
4415 static_assert(std::is_same_v<LinearFrameId, unsigned>);
4416 for (auto &AI : FS->allocs()) {
4417 for (auto &MIB : AI.MIBs) {
4418 SmallVector<unsigned> StackIdIndices;
4419 StackIdIndices.reserve(N: MIB.StackIdIndices.size());
4420 for (auto Id : MIB.StackIdIndices)
4421 StackIdIndices.push_back(Elt: GetStackIndex(Id));
4422 // The CallStackId is the size at the time this context was inserted.
4423 CallStacks.insert(KV: {CallStacks.size(), StackIdIndices});
4424 }
4425 }
4426}
4427
4428// Build the radix tree from the accumulated CallStacks, write out the resulting
4429// linearized radix tree array, and return the map of call stack positions into
4430// this array for use when writing the allocation records. The returned map is
4431// indexed by a CallStackId which in this case is implicitly determined by the
4432// order of function summaries and their allocation infos being written.
4433static DenseMap<CallStackId, LinearCallStackId> writeMemoryProfileRadixTree(
4434 MapVector<CallStackId, llvm::SmallVector<LinearFrameId>> &&CallStacks,
4435 BitstreamWriter &Stream, unsigned RadixAbbrev) {
4436 assert(!CallStacks.empty());
4437 DenseMap<unsigned, FrameStat> FrameHistogram =
4438 computeFrameHistogram<LinearFrameId>(MemProfCallStackData&: CallStacks);
4439 CallStackRadixTreeBuilder<LinearFrameId> Builder;
4440 // We don't need a MemProfFrameIndexes map as we have already converted the
4441 // full stack id hash to a linear offset into the StackIds array.
4442 Builder.build(MemProfCallStackData: std::move(CallStacks), /*MemProfFrameIndexes=*/nullptr,
4443 FrameHistogram);
4444 Stream.EmitRecord(Code: bitc::FS_CONTEXT_RADIX_TREE_ARRAY, Vals: Builder.getRadixArray(),
4445 Abbrev: RadixAbbrev);
4446 return Builder.takeCallStackPos();
4447}
4448
4449static void writeFunctionHeapProfileRecords(
4450 BitstreamWriter &Stream, FunctionSummary *FS, unsigned CallsiteAbbrev,
4451 unsigned AllocAbbrev, unsigned ContextIdAbbvId, bool PerModule,
4452 std::function<unsigned(const ValueInfo &VI)> GetValueID,
4453 std::function<unsigned(unsigned)> GetStackIndex,
4454 bool WriteContextSizeInfoIndex,
4455 DenseMap<CallStackId, LinearCallStackId> &CallStackPos,
4456 CallStackId &CallStackCount) {
4457 SmallVector<uint64_t> Record;
4458
4459 for (auto &CI : FS->callsites()) {
4460 Record.clear();
4461 // Per module callsite clones should always have a single entry of
4462 // value 0.
4463 assert(!PerModule || (CI.Clones.size() == 1 && CI.Clones[0] == 0));
4464 Record.push_back(Elt: GetValueID(CI.Callee));
4465 if (!PerModule) {
4466 Record.push_back(Elt: CI.StackIdIndices.size());
4467 Record.push_back(Elt: CI.Clones.size());
4468 }
4469 for (auto Id : CI.StackIdIndices)
4470 Record.push_back(Elt: GetStackIndex(Id));
4471 if (!PerModule)
4472 llvm::append_range(C&: Record, R: CI.Clones);
4473 Stream.EmitRecord(Code: PerModule ? bitc::FS_PERMODULE_CALLSITE_INFO
4474 : bitc::FS_COMBINED_CALLSITE_INFO,
4475 Vals: Record, Abbrev: CallsiteAbbrev);
4476 }
4477
4478 for (auto &AI : FS->allocs()) {
4479 Record.clear();
4480 // Per module alloc versions should always have a single entry of
4481 // value 0.
4482 assert(!PerModule || (AI.Versions.size() == 1 && AI.Versions[0] == 0));
4483 Record.push_back(Elt: AI.MIBs.size());
4484 if (!PerModule)
4485 Record.push_back(Elt: AI.Versions.size());
4486 for (auto &MIB : AI.MIBs) {
4487 Record.push_back(Elt: (uint8_t)MIB.AllocType);
4488 // The per-module summary always needs to include the alloc context, as we
4489 // use it during the thin link. For the combined index it is optional (see
4490 // comments where CombinedIndexMemProfContext is defined).
4491 if (PerModule || CombinedIndexMemProfContext) {
4492 // Record the index into the radix tree array for this context.
4493 assert(CallStackCount <= CallStackPos.size());
4494 Record.push_back(Elt: CallStackPos[CallStackCount++]);
4495 }
4496 }
4497 if (!PerModule)
4498 llvm::append_range(C&: Record, R: AI.Versions);
4499 assert(AI.ContextSizeInfos.empty() ||
4500 AI.ContextSizeInfos.size() == AI.MIBs.size());
4501 // Optionally emit the context size information if it exists.
4502 if (WriteContextSizeInfoIndex && !AI.ContextSizeInfos.empty()) {
4503 // The abbreviation id for the context ids record should have been created
4504 // if we are emitting the per-module index, which is where we write this
4505 // info.
4506 assert(ContextIdAbbvId);
4507 SmallVector<uint32_t> ContextIds;
4508 // At least one context id per ContextSizeInfos entry (MIB), broken into 2
4509 // halves.
4510 ContextIds.reserve(N: AI.ContextSizeInfos.size() * 2);
4511 for (auto &Infos : AI.ContextSizeInfos) {
4512 Record.push_back(Elt: Infos.size());
4513 for (auto [FullStackId, TotalSize] : Infos) {
4514 // The context ids are emitted separately as a fixed width array,
4515 // which is more efficient than a VBR given that these hashes are
4516 // typically close to 64-bits. The max fixed width entry is 32 bits so
4517 // it is split into 2.
4518 ContextIds.push_back(Elt: static_cast<uint32_t>(FullStackId >> 32));
4519 ContextIds.push_back(Elt: static_cast<uint32_t>(FullStackId));
4520 Record.push_back(Elt: TotalSize);
4521 }
4522 }
4523 // The context ids are expected by the reader to immediately precede the
4524 // associated alloc info record.
4525 Stream.EmitRecord(Code: bitc::FS_ALLOC_CONTEXT_IDS, Vals: ContextIds,
4526 Abbrev: ContextIdAbbvId);
4527 }
4528 Stream.EmitRecord(Code: PerModule
4529 ? bitc::FS_PERMODULE_ALLOC_INFO
4530 : (CombinedIndexMemProfContext
4531 ? bitc::FS_COMBINED_ALLOC_INFO
4532 : bitc::FS_COMBINED_ALLOC_INFO_NO_CONTEXT),
4533 Vals: Record, Abbrev: AllocAbbrev);
4534 }
4535}
4536
4537// Helper to emit a single function summary record.
4538void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord(
4539 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary,
4540 unsigned ValueID, unsigned FSCallsProfileAbbrev, unsigned CallsiteAbbrev,
4541 unsigned AllocAbbrev, unsigned ContextIdAbbvId, const Function &F,
4542 DenseMap<CallStackId, LinearCallStackId> &CallStackPos,
4543 CallStackId &CallStackCount) {
4544 NameVals.push_back(Elt: ValueID);
4545
4546 FunctionSummary *FS = cast<FunctionSummary>(Val: Summary);
4547
4548 writeFunctionTypeMetadataRecords(
4549 Stream, FS, GetValueID: [&](const ValueInfo &VI) -> std::optional<unsigned> {
4550 return {VE.getValueID(V: VI.getValue())};
4551 });
4552
4553 writeFunctionHeapProfileRecords(
4554 Stream, FS, CallsiteAbbrev, AllocAbbrev, ContextIdAbbvId,
4555 /*PerModule*/ true,
4556 /*GetValueId*/ GetValueID: [&](const ValueInfo &VI) { return getValueId(VI); },
4557 /*GetStackIndex*/ [&](unsigned I) { return I; },
4558 /*WriteContextSizeInfoIndex*/ true, CallStackPos, CallStackCount);
4559
4560 auto SpecialRefCnts = FS->specialRefCounts();
4561 NameVals.push_back(Elt: getEncodedGVSummaryFlags(Flags: FS->flags()));
4562 NameVals.push_back(Elt: FS->instCount());
4563 NameVals.push_back(Elt: getEncodedFFlags(Flags: FS->fflags()));
4564 NameVals.push_back(Elt: FS->refs().size());
4565 NameVals.push_back(Elt: SpecialRefCnts.first); // rorefcnt
4566 NameVals.push_back(Elt: SpecialRefCnts.second); // worefcnt
4567
4568 for (auto &RI : FS->refs())
4569 NameVals.push_back(Elt: getValueId(VI: RI));
4570
4571 for (auto &ECI : FS->calls()) {
4572 NameVals.push_back(Elt: getValueId(VI: ECI.first));
4573 NameVals.push_back(Elt: getEncodedHotnessCallEdgeInfo(CI: ECI.second));
4574 }
4575
4576 // Emit the finished record.
4577 Stream.EmitRecord(Code: bitc::FS_PERMODULE_PROFILE, Vals: NameVals, Abbrev: FSCallsProfileAbbrev);
4578 NameVals.clear();
4579}
4580
4581// Collect the global value references in the given variable's initializer,
4582// and emit them in a summary record.
4583void ModuleBitcodeWriterBase::writeModuleLevelReferences(
4584 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals,
4585 unsigned FSModRefsAbbrev, unsigned FSModVTableRefsAbbrev) {
4586 auto VI = Index->getValueInfo(GUID: V.getGUID());
4587 if (!VI || VI.getSummaryList().empty()) {
4588 // Only declarations should not have a summary (a declaration might however
4589 // have a summary if the def was in module level asm).
4590 assert(V.isDeclaration());
4591 return;
4592 }
4593 auto *Summary = VI.getSummaryList()[0].get();
4594 NameVals.push_back(Elt: VE.getValueID(V: &V));
4595 GlobalVarSummary *VS = cast<GlobalVarSummary>(Val: Summary);
4596 NameVals.push_back(Elt: getEncodedGVSummaryFlags(Flags: VS->flags()));
4597 NameVals.push_back(Elt: getEncodedGVarFlags(Flags: VS->varflags()));
4598
4599 auto VTableFuncs = VS->vTableFuncs();
4600 if (!VTableFuncs.empty())
4601 NameVals.push_back(Elt: VS->refs().size());
4602
4603 unsigned SizeBeforeRefs = NameVals.size();
4604 for (auto &RI : VS->refs())
4605 NameVals.push_back(Elt: VE.getValueID(V: RI.getValue()));
4606 // Sort the refs for determinism output, the vector returned by FS->refs() has
4607 // been initialized from a DenseSet.
4608 llvm::sort(C: drop_begin(RangeOrContainer&: NameVals, N: SizeBeforeRefs));
4609
4610 if (VTableFuncs.empty())
4611 Stream.EmitRecord(Code: bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, Vals: NameVals,
4612 Abbrev: FSModRefsAbbrev);
4613 else {
4614 // VTableFuncs pairs should already be sorted by offset.
4615 for (auto &P : VTableFuncs) {
4616 NameVals.push_back(Elt: VE.getValueID(V: P.FuncVI.getValue()));
4617 NameVals.push_back(Elt: P.VTableOffset);
4618 }
4619
4620 Stream.EmitRecord(Code: bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS, Vals: NameVals,
4621 Abbrev: FSModVTableRefsAbbrev);
4622 }
4623 NameVals.clear();
4624}
4625
4626/// Emit the per-module summary section alongside the rest of
4627/// the module's bitcode.
4628void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() {
4629 // By default we compile with ThinLTO if the module has a summary, but the
4630 // client can request full LTO with a module flag.
4631 bool IsThinLTO = true;
4632 if (auto *MD =
4633 mdconst::extract_or_null<ConstantInt>(MD: M.getModuleFlag(Key: "ThinLTO")))
4634 IsThinLTO = MD->getZExtValue();
4635 Stream.EnterSubblock(BlockID: IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID
4636 : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID,
4637 CodeLen: 4);
4638
4639 Stream.EmitRecord(
4640 Code: bitc::FS_VERSION,
4641 Vals: ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion});
4642
4643 // Write the index flags.
4644 uint64_t Flags = 0;
4645 // Bits 1-3 are set only in the combined index, skip them.
4646 if (Index->enableSplitLTOUnit())
4647 Flags |= 0x8;
4648 if (Index->hasUnifiedLTO())
4649 Flags |= 0x200;
4650
4651 Stream.EmitRecord(Code: bitc::FS_FLAGS, Vals: ArrayRef<uint64_t>{Flags});
4652
4653 if (Index->begin() == Index->end()) {
4654 Stream.ExitBlock();
4655 return;
4656 }
4657
4658 auto Abbv = std::make_shared<BitCodeAbbrev>();
4659 Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::FS_VALUE_GUID));
4660 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
4661 // GUIDS often use up most of 64-bits, so encode as two Fixed 32.
4662 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
4663 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
4664 unsigned ValueGuidAbbrev = Stream.EmitAbbrev(Abbv: std::move(Abbv));
4665
4666 for (const auto &GVI : valueIds()) {
4667 Stream.EmitRecord(Code: bitc::FS_VALUE_GUID,
4668 Vals: ArrayRef<uint32_t>{GVI.second,
4669 static_cast<uint32_t>(GVI.first >> 32),
4670 static_cast<uint32_t>(GVI.first)},
4671 Abbrev: ValueGuidAbbrev);
4672 }
4673
4674 if (!Index->stackIds().empty()) {
4675 auto StackIdAbbv = std::make_shared<BitCodeAbbrev>();
4676 StackIdAbbv->Add(OpInfo: BitCodeAbbrevOp(bitc::FS_STACK_IDS));
4677 // numids x stackid
4678 StackIdAbbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4679 // The stack ids are hashes that are close to 64 bits in size, so emitting
4680 // as a pair of 32-bit fixed-width values is more efficient than a VBR.
4681 StackIdAbbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
4682 unsigned StackIdAbbvId = Stream.EmitAbbrev(Abbv: std::move(StackIdAbbv));
4683 SmallVector<uint32_t> Vals;
4684 Vals.reserve(N: Index->stackIds().size() * 2);
4685 for (auto Id : Index->stackIds()) {
4686 Vals.push_back(Elt: static_cast<uint32_t>(Id >> 32));
4687 Vals.push_back(Elt: static_cast<uint32_t>(Id));
4688 }
4689 Stream.EmitRecord(Code: bitc::FS_STACK_IDS, Vals, Abbrev: StackIdAbbvId);
4690 }
4691
4692 unsigned ContextIdAbbvId = 0;
4693 if (metadataMayIncludeContextSizeInfo()) {
4694 // n x context id
4695 auto ContextIdAbbv = std::make_shared<BitCodeAbbrev>();
4696 ContextIdAbbv->Add(OpInfo: BitCodeAbbrevOp(bitc::FS_ALLOC_CONTEXT_IDS));
4697 ContextIdAbbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4698 // The context ids are hashes that are close to 64 bits in size, so emitting
4699 // as a pair of 32-bit fixed-width values is more efficient than a VBR if we
4700 // are emitting them for all MIBs. Otherwise we use VBR to better compress 0
4701 // values that are expected to more frequently occur in an alloc's memprof
4702 // summary.
4703 if (metadataIncludesAllContextSizeInfo())
4704 ContextIdAbbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
4705 else
4706 ContextIdAbbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4707 ContextIdAbbvId = Stream.EmitAbbrev(Abbv: std::move(ContextIdAbbv));
4708 }
4709
4710 // Abbrev for FS_PERMODULE_PROFILE.
4711 Abbv = std::make_shared<BitCodeAbbrev>();
4712 Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE));
4713 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
4714 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // flags
4715 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount
4716 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags
4717 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs
4718 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt
4719 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt
4720 // numrefs x valueid, n x (valueid, hotness+tailcall flags)
4721 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4722 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4723 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(Abbv: std::move(Abbv));
4724
4725 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS.
4726 Abbv = std::make_shared<BitCodeAbbrev>();
4727 Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS));
4728 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
4729 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
4730 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids
4731 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4732 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(Abbv: std::move(Abbv));
4733
4734 // Abbrev for FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS.
4735 Abbv = std::make_shared<BitCodeAbbrev>();
4736 Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS));
4737 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
4738 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
4739 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs
4740 // numrefs x valueid, n x (valueid , offset)
4741 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4742 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4743 unsigned FSModVTableRefsAbbrev = Stream.EmitAbbrev(Abbv: std::move(Abbv));
4744
4745 // Abbrev for FS_ALIAS.
4746 Abbv = std::make_shared<BitCodeAbbrev>();
4747 Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::FS_ALIAS));
4748 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
4749 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
4750 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
4751 unsigned FSAliasAbbrev = Stream.EmitAbbrev(Abbv: std::move(Abbv));
4752
4753 // Abbrev for FS_TYPE_ID_METADATA
4754 Abbv = std::make_shared<BitCodeAbbrev>();
4755 Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::FS_TYPE_ID_METADATA));
4756 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid strtab index
4757 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid length
4758 // n x (valueid , offset)
4759 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4760 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4761 unsigned TypeIdCompatibleVtableAbbrev = Stream.EmitAbbrev(Abbv: std::move(Abbv));
4762
4763 Abbv = std::make_shared<BitCodeAbbrev>();
4764 Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::FS_PERMODULE_CALLSITE_INFO));
4765 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
4766 // n x stackidindex
4767 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4768 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4769 unsigned CallsiteAbbrev = Stream.EmitAbbrev(Abbv: std::move(Abbv));
4770
4771 Abbv = std::make_shared<BitCodeAbbrev>();
4772 Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::FS_PERMODULE_ALLOC_INFO));
4773 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // nummib
4774 // n x (alloc type, context radix tree index)
4775 // optional: nummib x (numcontext x total size)
4776 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4777 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4778 unsigned AllocAbbrev = Stream.EmitAbbrev(Abbv: std::move(Abbv));
4779
4780 Abbv = std::make_shared<BitCodeAbbrev>();
4781 Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::FS_CONTEXT_RADIX_TREE_ARRAY));
4782 // n x entry
4783 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4784 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4785 unsigned RadixAbbrev = Stream.EmitAbbrev(Abbv: std::move(Abbv));
4786
4787 // First walk through all the functions and collect the allocation contexts in
4788 // their associated summaries, for use in constructing a radix tree of
4789 // contexts. Note that we need to do this in the same order as the functions
4790 // are processed further below since the call stack positions in the resulting
4791 // radix tree array are identified based on this order.
4792 MapVector<CallStackId, llvm::SmallVector<LinearFrameId>> CallStacks;
4793 for (const Function &F : M) {
4794 // Summary emission does not support anonymous functions, they have to be
4795 // renamed using the anonymous function renaming pass.
4796 if (!F.hasName())
4797 report_fatal_error(reason: "Unexpected anonymous function when writing summary");
4798
4799 ValueInfo VI = Index->getValueInfo(GUID: F.getGUID());
4800 if (!VI || VI.getSummaryList().empty()) {
4801 // Only declarations should not have a summary (a declaration might
4802 // however have a summary if the def was in module level asm).
4803 assert(F.isDeclaration());
4804 continue;
4805 }
4806 auto *Summary = VI.getSummaryList()[0].get();
4807 FunctionSummary *FS = cast<FunctionSummary>(Val: Summary);
4808 collectMemProfCallStacks(
4809 FS, /*GetStackIndex*/ [](unsigned I) { return I; }, CallStacks);
4810 }
4811 // Finalize the radix tree, write it out, and get the map of positions in the
4812 // linearized tree array.
4813 DenseMap<CallStackId, LinearCallStackId> CallStackPos;
4814 if (!CallStacks.empty()) {
4815 CallStackPos =
4816 writeMemoryProfileRadixTree(CallStacks: std::move(CallStacks), Stream, RadixAbbrev);
4817 }
4818
4819 // Keep track of the current index into the CallStackPos map.
4820 CallStackId CallStackCount = 0;
4821
4822 SmallVector<uint64_t, 64> NameVals;
4823 // Iterate over the list of functions instead of the Index to
4824 // ensure the ordering is stable.
4825 for (const Function &F : M) {
4826 // Summary emission does not support anonymous functions, they have to
4827 // renamed using the anonymous function renaming pass.
4828 if (!F.hasName())
4829 report_fatal_error(reason: "Unexpected anonymous function when writing summary");
4830
4831 ValueInfo VI = Index->getValueInfo(GUID: F.getGUID());
4832 if (!VI || VI.getSummaryList().empty()) {
4833 // Only declarations should not have a summary (a declaration might
4834 // however have a summary if the def was in module level asm).
4835 assert(F.isDeclaration());
4836 continue;
4837 }
4838 auto *Summary = VI.getSummaryList()[0].get();
4839 writePerModuleFunctionSummaryRecord(NameVals, Summary, ValueID: VE.getValueID(V: &F),
4840 FSCallsProfileAbbrev, CallsiteAbbrev,
4841 AllocAbbrev, ContextIdAbbvId, F,
4842 CallStackPos, CallStackCount);
4843 }
4844
4845 // Capture references from GlobalVariable initializers, which are outside
4846 // of a function scope.
4847 for (const GlobalVariable &G : M.globals())
4848 writeModuleLevelReferences(V: G, NameVals, FSModRefsAbbrev,
4849 FSModVTableRefsAbbrev);
4850
4851 for (const GlobalAlias &A : M.aliases()) {
4852 auto *Aliasee = A.getAliaseeObject();
4853 // Skip ifunc and nameless functions which don't have an entry in the
4854 // summary.
4855 if (!Aliasee->hasName() || isa<GlobalIFunc>(Val: Aliasee))
4856 continue;
4857 auto AliasId = VE.getValueID(V: &A);
4858 auto AliaseeId = VE.getValueID(V: Aliasee);
4859 NameVals.push_back(Elt: AliasId);
4860 auto *Summary = Index->getGlobalValueSummary(GV: A);
4861 AliasSummary *AS = cast<AliasSummary>(Val: Summary);
4862 NameVals.push_back(Elt: getEncodedGVSummaryFlags(Flags: AS->flags()));
4863 NameVals.push_back(Elt: AliaseeId);
4864 Stream.EmitRecord(Code: bitc::FS_ALIAS, Vals: NameVals, Abbrev: FSAliasAbbrev);
4865 NameVals.clear();
4866 }
4867
4868 for (auto &S : Index->typeIdCompatibleVtableMap()) {
4869 writeTypeIdCompatibleVtableSummaryRecord(NameVals, StrtabBuilder, Id: S.first,
4870 Summary: S.second, VE);
4871 Stream.EmitRecord(Code: bitc::FS_TYPE_ID_METADATA, Vals: NameVals,
4872 Abbrev: TypeIdCompatibleVtableAbbrev);
4873 NameVals.clear();
4874 }
4875
4876 if (Index->getBlockCount())
4877 Stream.EmitRecord(Code: bitc::FS_BLOCK_COUNT,
4878 Vals: ArrayRef<uint64_t>{Index->getBlockCount()});
4879
4880 Stream.ExitBlock();
4881}
4882
4883/// Emit the combined summary section into the combined index file.
4884void IndexBitcodeWriter::writeCombinedGlobalValueSummary() {
4885 Stream.EnterSubblock(BlockID: bitc::GLOBALVAL_SUMMARY_BLOCK_ID, CodeLen: 4);
4886 Stream.EmitRecord(
4887 Code: bitc::FS_VERSION,
4888 Vals: ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion});
4889
4890 // Write the index flags.
4891 Stream.EmitRecord(Code: bitc::FS_FLAGS, Vals: ArrayRef<uint64_t>{Index.getFlags()});
4892
4893 auto Abbv = std::make_shared<BitCodeAbbrev>();
4894 Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::FS_VALUE_GUID));
4895 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
4896 // GUIDS often use up most of 64-bits, so encode as two Fixed 32.
4897 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
4898 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
4899 unsigned ValueGuidAbbrev = Stream.EmitAbbrev(Abbv: std::move(Abbv));
4900
4901 for (const auto &GVI : valueIds()) {
4902 Stream.EmitRecord(Code: bitc::FS_VALUE_GUID,
4903 Vals: ArrayRef<uint32_t>{GVI.second,
4904 static_cast<uint32_t>(GVI.first >> 32),
4905 static_cast<uint32_t>(GVI.first)},
4906 Abbrev: ValueGuidAbbrev);
4907 }
4908
4909 // Write the stack ids used by this index, which will be a subset of those in
4910 // the full index in the case of distributed indexes.
4911 if (!StackIds.empty()) {
4912 auto StackIdAbbv = std::make_shared<BitCodeAbbrev>();
4913 StackIdAbbv->Add(OpInfo: BitCodeAbbrevOp(bitc::FS_STACK_IDS));
4914 // numids x stackid
4915 StackIdAbbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4916 // The stack ids are hashes that are close to 64 bits in size, so emitting
4917 // as a pair of 32-bit fixed-width values is more efficient than a VBR.
4918 StackIdAbbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
4919 unsigned StackIdAbbvId = Stream.EmitAbbrev(Abbv: std::move(StackIdAbbv));
4920 SmallVector<uint32_t> Vals;
4921 Vals.reserve(N: StackIds.size() * 2);
4922 for (auto Id : StackIds) {
4923 Vals.push_back(Elt: static_cast<uint32_t>(Id >> 32));
4924 Vals.push_back(Elt: static_cast<uint32_t>(Id));
4925 }
4926 Stream.EmitRecord(Code: bitc::FS_STACK_IDS, Vals, Abbrev: StackIdAbbvId);
4927 }
4928
4929 // Abbrev for FS_COMBINED_PROFILE.
4930 Abbv = std::make_shared<BitCodeAbbrev>();
4931 Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE));
4932 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
4933 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid
4934 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
4935 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount
4936 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags
4937 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount
4938 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs
4939 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt
4940 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt
4941 // numrefs x valueid, n x (valueid, hotness+tailcall flags)
4942 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4943 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4944 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(Abbv: std::move(Abbv));
4945
4946 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS.
4947 Abbv = std::make_shared<BitCodeAbbrev>();
4948 Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS));
4949 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
4950 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid
4951 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
4952 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids
4953 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4954 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(Abbv: std::move(Abbv));
4955
4956 // Abbrev for FS_COMBINED_ALIAS.
4957 Abbv = std::make_shared<BitCodeAbbrev>();
4958 Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS));
4959 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
4960 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid
4961 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
4962 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
4963 unsigned FSAliasAbbrev = Stream.EmitAbbrev(Abbv: std::move(Abbv));
4964
4965 Abbv = std::make_shared<BitCodeAbbrev>();
4966 Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::FS_COMBINED_CALLSITE_INFO));
4967 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
4968 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numstackindices
4969 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numver
4970 // numstackindices x stackidindex, numver x version
4971 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4972 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4973 unsigned CallsiteAbbrev = Stream.EmitAbbrev(Abbv: std::move(Abbv));
4974
4975 Abbv = std::make_shared<BitCodeAbbrev>();
4976 Abbv->Add(OpInfo: BitCodeAbbrevOp(CombinedIndexMemProfContext
4977 ? bitc::FS_COMBINED_ALLOC_INFO
4978 : bitc::FS_COMBINED_ALLOC_INFO_NO_CONTEXT));
4979 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // nummib
4980 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numver
4981 // nummib x (alloc type, context radix tree index),
4982 // numver x version
4983 // optional: nummib x total size
4984 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4985 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4986 unsigned AllocAbbrev = Stream.EmitAbbrev(Abbv: std::move(Abbv));
4987
4988 auto shouldImportValueAsDecl = [&](GlobalValueSummary *GVS) -> bool {
4989 if (DecSummaries == nullptr)
4990 return false;
4991 return DecSummaries->count(x: GVS);
4992 };
4993
4994 // The aliases are emitted as a post-pass, and will point to the value
4995 // id of the aliasee. Save them in a vector for post-processing.
4996 SmallVector<AliasSummary *, 64> Aliases;
4997
4998 // Save the value id for each summary for alias emission.
4999 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap;
5000
5001 SmallVector<uint64_t, 64> NameVals;
5002
5003 // Set that will be populated during call to writeFunctionTypeMetadataRecords
5004 // with the type ids referenced by this index file.
5005 std::set<GlobalValue::GUID> ReferencedTypeIds;
5006
5007 // For local linkage, we also emit the original name separately
5008 // immediately after the record.
5009 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) {
5010 // We don't need to emit the original name if we are writing the index for
5011 // distributed backends (in which case ModuleToSummariesForIndex is
5012 // non-null). The original name is only needed during the thin link, since
5013 // for SamplePGO the indirect call targets for local functions have
5014 // have the original name annotated in profile.
5015 // Continue to emit it when writing out the entire combined index, which is
5016 // used in testing the thin link via llvm-lto.
5017 if (ModuleToSummariesForIndex || !GlobalValue::isLocalLinkage(Linkage: S.linkage()))
5018 return;
5019 NameVals.push_back(Elt: S.getOriginalName());
5020 Stream.EmitRecord(Code: bitc::FS_COMBINED_ORIGINAL_NAME, Vals: NameVals);
5021 NameVals.clear();
5022 };
5023
5024 DenseMap<CallStackId, LinearCallStackId> CallStackPos;
5025 if (CombinedIndexMemProfContext) {
5026 Abbv = std::make_shared<BitCodeAbbrev>();
5027 Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::FS_CONTEXT_RADIX_TREE_ARRAY));
5028 // n x entry
5029 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
5030 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
5031 unsigned RadixAbbrev = Stream.EmitAbbrev(Abbv: std::move(Abbv));
5032
5033 // First walk through all the functions and collect the allocation contexts
5034 // in their associated summaries, for use in constructing a radix tree of
5035 // contexts. Note that we need to do this in the same order as the functions
5036 // are processed further below since the call stack positions in the
5037 // resulting radix tree array are identified based on this order.
5038 MapVector<CallStackId, llvm::SmallVector<LinearFrameId>> CallStacks;
5039 forEachSummary(Callback: [&](GVInfo I, bool IsAliasee) {
5040 // Don't collect this when invoked for an aliasee, as it is not needed for
5041 // the alias summary. If the aliasee is to be imported, we will invoke
5042 // this separately with IsAliasee=false.
5043 if (IsAliasee)
5044 return;
5045 GlobalValueSummary *S = I.second;
5046 assert(S);
5047 auto *FS = dyn_cast<FunctionSummary>(Val: S);
5048 if (!FS)
5049 return;
5050 collectMemProfCallStacks(
5051 FS,
5052 /*GetStackIndex*/
5053 [&](unsigned I) {
5054 // Get the corresponding index into the list of StackIds actually
5055 // being written for this combined index (which may be a subset in
5056 // the case of distributed indexes).
5057 assert(StackIdIndicesToIndex.contains(I));
5058 return StackIdIndicesToIndex[I];
5059 },
5060 CallStacks);
5061 });
5062 // Finalize the radix tree, write it out, and get the map of positions in
5063 // the linearized tree array.
5064 if (!CallStacks.empty()) {
5065 CallStackPos = writeMemoryProfileRadixTree(CallStacks: std::move(CallStacks), Stream,
5066 RadixAbbrev);
5067 }
5068 }
5069
5070 // Keep track of the current index into the CallStackPos map. Not used if
5071 // CombinedIndexMemProfContext is false.
5072 CallStackId CallStackCount = 0;
5073
5074 DenseSet<GlobalValue::GUID> DefOrUseGUIDs;
5075 forEachSummary(Callback: [&](GVInfo I, bool IsAliasee) {
5076 GlobalValueSummary *S = I.second;
5077 assert(S);
5078 DefOrUseGUIDs.insert(V: I.first);
5079 for (const ValueInfo &VI : S->refs())
5080 DefOrUseGUIDs.insert(V: VI.getGUID());
5081
5082 auto ValueId = getValueId(ValGUID: I.first);
5083 assert(ValueId);
5084 SummaryToValueIdMap[S] = *ValueId;
5085
5086 // If this is invoked for an aliasee, we want to record the above
5087 // mapping, but then not emit a summary entry (if the aliasee is
5088 // to be imported, we will invoke this separately with IsAliasee=false).
5089 if (IsAliasee)
5090 return;
5091
5092 if (auto *AS = dyn_cast<AliasSummary>(Val: S)) {
5093 // Will process aliases as a post-pass because the reader wants all
5094 // global to be loaded first.
5095 Aliases.push_back(Elt: AS);
5096 return;
5097 }
5098
5099 if (auto *VS = dyn_cast<GlobalVarSummary>(Val: S)) {
5100 NameVals.push_back(Elt: *ValueId);
5101 assert(ModuleIdMap.count(VS->modulePath()));
5102 NameVals.push_back(Elt: ModuleIdMap[VS->modulePath()]);
5103 NameVals.push_back(
5104 Elt: getEncodedGVSummaryFlags(Flags: VS->flags(), ImportAsDecl: shouldImportValueAsDecl(VS)));
5105 NameVals.push_back(Elt: getEncodedGVarFlags(Flags: VS->varflags()));
5106 for (auto &RI : VS->refs()) {
5107 auto RefValueId = getValueId(ValGUID: RI.getGUID());
5108 if (!RefValueId)
5109 continue;
5110 NameVals.push_back(Elt: *RefValueId);
5111 }
5112
5113 // Emit the finished record.
5114 Stream.EmitRecord(Code: bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, Vals: NameVals,
5115 Abbrev: FSModRefsAbbrev);
5116 NameVals.clear();
5117 MaybeEmitOriginalName(*S);
5118 return;
5119 }
5120
5121 auto GetValueId = [&](const ValueInfo &VI) -> std::optional<unsigned> {
5122 if (!VI)
5123 return std::nullopt;
5124 return getValueId(ValGUID: VI.getGUID());
5125 };
5126
5127 auto *FS = cast<FunctionSummary>(Val: S);
5128 writeFunctionTypeMetadataRecords(Stream, FS, GetValueID: GetValueId);
5129 getReferencedTypeIds(FS, ReferencedTypeIds);
5130
5131 writeFunctionHeapProfileRecords(
5132 Stream, FS, CallsiteAbbrev, AllocAbbrev, /*ContextIdAbbvId*/ 0,
5133 /*PerModule*/ false,
5134 /*GetValueId*/
5135 GetValueID: [&](const ValueInfo &VI) -> unsigned {
5136 std::optional<unsigned> ValueID = GetValueId(VI);
5137 // This can happen in shared index files for distributed ThinLTO if
5138 // the callee function summary is not included. Record 0 which we
5139 // will have to deal with conservatively when doing any kind of
5140 // validation in the ThinLTO backends.
5141 if (!ValueID)
5142 return 0;
5143 return *ValueID;
5144 },
5145 /*GetStackIndex*/
5146 [&](unsigned I) {
5147 // Get the corresponding index into the list of StackIds actually
5148 // being written for this combined index (which may be a subset in
5149 // the case of distributed indexes).
5150 assert(StackIdIndicesToIndex.contains(I));
5151 return StackIdIndicesToIndex[I];
5152 },
5153 /*WriteContextSizeInfoIndex*/ false, CallStackPos, CallStackCount);
5154
5155 NameVals.push_back(Elt: *ValueId);
5156 assert(ModuleIdMap.count(FS->modulePath()));
5157 NameVals.push_back(Elt: ModuleIdMap[FS->modulePath()]);
5158 NameVals.push_back(
5159 Elt: getEncodedGVSummaryFlags(Flags: FS->flags(), ImportAsDecl: shouldImportValueAsDecl(FS)));
5160 NameVals.push_back(Elt: FS->instCount());
5161 NameVals.push_back(Elt: getEncodedFFlags(Flags: FS->fflags()));
5162 // TODO: Stop writing entry count and bump bitcode version.
5163 NameVals.push_back(Elt: 0 /* EntryCount */);
5164
5165 // Fill in below
5166 NameVals.push_back(Elt: 0); // numrefs
5167 NameVals.push_back(Elt: 0); // rorefcnt
5168 NameVals.push_back(Elt: 0); // worefcnt
5169
5170 unsigned Count = 0, RORefCnt = 0, WORefCnt = 0;
5171 for (auto &RI : FS->refs()) {
5172 auto RefValueId = getValueId(ValGUID: RI.getGUID());
5173 if (!RefValueId)
5174 continue;
5175 NameVals.push_back(Elt: *RefValueId);
5176 if (RI.isReadOnly())
5177 RORefCnt++;
5178 else if (RI.isWriteOnly())
5179 WORefCnt++;
5180 Count++;
5181 }
5182 NameVals[6] = Count;
5183 NameVals[7] = RORefCnt;
5184 NameVals[8] = WORefCnt;
5185
5186 for (auto &EI : FS->calls()) {
5187 // If this GUID doesn't have a value id, it doesn't have a function
5188 // summary and we don't need to record any calls to it.
5189 std::optional<unsigned> CallValueId = GetValueId(EI.first);
5190 if (!CallValueId)
5191 continue;
5192 NameVals.push_back(Elt: *CallValueId);
5193 NameVals.push_back(Elt: getEncodedHotnessCallEdgeInfo(CI: EI.second));
5194 }
5195
5196 // Emit the finished record.
5197 Stream.EmitRecord(Code: bitc::FS_COMBINED_PROFILE, Vals: NameVals,
5198 Abbrev: FSCallsProfileAbbrev);
5199 NameVals.clear();
5200 MaybeEmitOriginalName(*S);
5201 });
5202
5203 for (auto *AS : Aliases) {
5204 auto AliasValueId = SummaryToValueIdMap[AS];
5205 assert(AliasValueId);
5206 NameVals.push_back(Elt: AliasValueId);
5207 assert(ModuleIdMap.count(AS->modulePath()));
5208 NameVals.push_back(Elt: ModuleIdMap[AS->modulePath()]);
5209 NameVals.push_back(
5210 Elt: getEncodedGVSummaryFlags(Flags: AS->flags(), ImportAsDecl: shouldImportValueAsDecl(AS)));
5211 // Set value id to 0 when an alias is imported but the aliasee summary is
5212 // not contained in the index.
5213 auto AliaseeValueId =
5214 AS->hasAliasee() ? SummaryToValueIdMap[&AS->getAliasee()] : 0;
5215 NameVals.push_back(Elt: AliaseeValueId);
5216
5217 // Emit the finished record.
5218 Stream.EmitRecord(Code: bitc::FS_COMBINED_ALIAS, Vals: NameVals, Abbrev: FSAliasAbbrev);
5219 NameVals.clear();
5220 MaybeEmitOriginalName(*AS);
5221
5222 if (AS->hasAliasee())
5223 if (auto *FS = dyn_cast<FunctionSummary>(Val: &AS->getAliasee()))
5224 getReferencedTypeIds(FS, ReferencedTypeIds);
5225 }
5226
5227 SmallVector<StringRef, 4> Functions;
5228 auto EmitCfiFunctions = [&](const CfiFunctionIndex &CfiIndex,
5229 bitc::GlobalValueSummarySymtabCodes Code) {
5230 if (CfiIndex.empty())
5231 return;
5232 for (GlobalValue::GUID GUID : DefOrUseGUIDs) {
5233 auto Defs = CfiIndex.forGuid(GUID);
5234 llvm::append_range(C&: Functions, R&: Defs);
5235 }
5236 if (Functions.empty())
5237 return;
5238 llvm::sort(C&: Functions);
5239 for (const auto &S : Functions) {
5240 NameVals.push_back(Elt: StrtabBuilder.add(S));
5241 NameVals.push_back(Elt: S.size());
5242 }
5243 Stream.EmitRecord(Code, Vals: NameVals);
5244 NameVals.clear();
5245 Functions.clear();
5246 };
5247
5248 EmitCfiFunctions(Index.cfiFunctionDefs(), bitc::FS_CFI_FUNCTION_DEFS);
5249 EmitCfiFunctions(Index.cfiFunctionDecls(), bitc::FS_CFI_FUNCTION_DECLS);
5250
5251 // Walk the GUIDs that were referenced, and write the
5252 // corresponding type id records.
5253 for (auto &T : ReferencedTypeIds) {
5254 auto TidIter = Index.typeIds().equal_range(x: T);
5255 for (const auto &[GUID, TypeIdPair] : make_range(p: TidIter)) {
5256 writeTypeIdSummaryRecord(NameVals, StrtabBuilder, Id: TypeIdPair.first,
5257 Summary: TypeIdPair.second);
5258 Stream.EmitRecord(Code: bitc::FS_TYPE_ID, Vals: NameVals);
5259 NameVals.clear();
5260 }
5261 }
5262
5263 if (Index.getBlockCount())
5264 Stream.EmitRecord(Code: bitc::FS_BLOCK_COUNT,
5265 Vals: ArrayRef<uint64_t>{Index.getBlockCount()});
5266
5267 Stream.ExitBlock();
5268}
5269
5270/// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the
5271/// current llvm version, and a record for the epoch number.
5272static void writeIdentificationBlock(BitstreamWriter &Stream) {
5273 Stream.EnterSubblock(BlockID: bitc::IDENTIFICATION_BLOCK_ID, CodeLen: 5);
5274
5275 // Write the "user readable" string identifying the bitcode producer
5276 auto Abbv = std::make_shared<BitCodeAbbrev>();
5277 Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING));
5278 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
5279 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
5280 auto StringAbbrev = Stream.EmitAbbrev(Abbv: std::move(Abbv));
5281 writeStringRecord(Stream, Code: bitc::IDENTIFICATION_CODE_STRING,
5282 Str: "LLVM" LLVM_VERSION_STRING, AbbrevToUse: StringAbbrev);
5283
5284 // Write the epoch version
5285 Abbv = std::make_shared<BitCodeAbbrev>();
5286 Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH));
5287 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
5288 auto EpochAbbrev = Stream.EmitAbbrev(Abbv: std::move(Abbv));
5289 constexpr std::array<unsigned, 1> Vals = {._M_elems: {bitc::BITCODE_CURRENT_EPOCH}};
5290 Stream.EmitRecord(Code: bitc::IDENTIFICATION_CODE_EPOCH, Vals, Abbrev: EpochAbbrev);
5291 Stream.ExitBlock();
5292}
5293
5294void ModuleBitcodeWriter::writeModuleHash(StringRef View) {
5295 // Emit the module's hash.
5296 // MODULE_CODE_HASH: [5*i32]
5297 if (GenerateHash) {
5298 uint32_t Vals[5];
5299 Hasher.update(Data: ArrayRef<uint8_t>(
5300 reinterpret_cast<const uint8_t *>(View.data()), View.size()));
5301 std::array<uint8_t, 20> Hash = Hasher.result();
5302 for (int Pos = 0; Pos < 20; Pos += 4) {
5303 Vals[Pos / 4] = support::endian::read32be(P: Hash.data() + Pos);
5304 }
5305
5306 // Emit the finished record.
5307 Stream.EmitRecord(Code: bitc::MODULE_CODE_HASH, Vals);
5308
5309 if (ModHash)
5310 // Save the written hash value.
5311 llvm::copy(Range&: Vals, Out: std::begin(cont&: *ModHash));
5312 }
5313}
5314
5315void ModuleBitcodeWriter::write() {
5316 writeIdentificationBlock(Stream);
5317
5318 Stream.EnterSubblock(BlockID: bitc::MODULE_BLOCK_ID, CodeLen: 3);
5319 // We will want to write the module hash at this point. Block any flushing so
5320 // we can have access to the whole underlying data later.
5321 Stream.markAndBlockFlushing();
5322
5323 writeModuleVersion();
5324
5325 // Emit blockinfo, which defines the standard abbreviations etc.
5326 writeBlockInfo();
5327
5328 // Emit information describing all of the types in the module.
5329 writeTypeTable();
5330
5331 // Emit information about attribute groups.
5332 writeAttributeGroupTable();
5333
5334 // Emit information about parameter attributes.
5335 writeAttributeTable();
5336
5337 writeComdats();
5338
5339 // Emit top-level description of module, including target triple, inline asm,
5340 // descriptors for global variables, and function prototype info.
5341 writeModuleInfo();
5342
5343 // Emit constants.
5344 writeModuleConstants();
5345
5346 // Emit metadata kind names.
5347 writeModuleMetadataKinds();
5348
5349 // Emit metadata.
5350 writeModuleMetadata();
5351
5352 // Emit module-level use-lists.
5353 if (VE.shouldPreserveUseListOrder())
5354 writeUseListBlock(F: nullptr);
5355
5356 writeOperandBundleTags();
5357 writeSyncScopeNames();
5358
5359 // Emit function bodies.
5360 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex;
5361 for (const Function &F : M)
5362 if (!F.isDeclaration())
5363 writeFunction(F, FunctionToBitcodeIndex);
5364
5365 // Need to write after the above call to WriteFunction which populates
5366 // the summary information in the index.
5367 if (Index)
5368 writePerModuleGlobalValueSummary();
5369
5370 writeGlobalValueSymbolTable(FunctionToBitcodeIndex);
5371
5372 writeModuleHash(View: Stream.getMarkedBufferAndResumeFlushing());
5373
5374 Stream.ExitBlock();
5375}
5376
5377static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer,
5378 uint32_t &Position) {
5379 support::endian::write32le(P: &Buffer[Position], V: Value);
5380 Position += 4;
5381}
5382
5383/// If generating a bc file on darwin, we have to emit a
5384/// header and trailer to make it compatible with the system archiver. To do
5385/// this we emit the following header, and then emit a trailer that pads the
5386/// file out to be a multiple of 16 bytes.
5387///
5388/// struct bc_header {
5389/// uint32_t Magic; // 0x0B17C0DE
5390/// uint32_t Version; // Version, currently always 0.
5391/// uint32_t BitcodeOffset; // Offset to traditional bitcode file.
5392/// uint32_t BitcodeSize; // Size of traditional bitcode file.
5393/// uint32_t CPUType; // CPU specifier.
5394/// ... potentially more later ...
5395/// };
5396static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer,
5397 const Triple &TT) {
5398 unsigned CPUType = ~0U;
5399
5400 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*,
5401 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic
5402 // number from /usr/include/mach/machine.h. It is ok to reproduce the
5403 // specific constants here because they are implicitly part of the Darwin ABI.
5404 enum {
5405 DARWIN_CPU_ARCH_ABI64 = 0x01000000,
5406 DARWIN_CPU_TYPE_X86 = 7,
5407 DARWIN_CPU_TYPE_ARM = 12,
5408 DARWIN_CPU_TYPE_POWERPC = 18
5409 };
5410
5411 Triple::ArchType Arch = TT.getArch();
5412 if (Arch == Triple::x86_64)
5413 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
5414 else if (Arch == Triple::x86)
5415 CPUType = DARWIN_CPU_TYPE_X86;
5416 else if (Arch == Triple::ppc)
5417 CPUType = DARWIN_CPU_TYPE_POWERPC;
5418 else if (Arch == Triple::ppc64)
5419 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
5420 else if (Arch == Triple::arm || Arch == Triple::thumb)
5421 CPUType = DARWIN_CPU_TYPE_ARM;
5422
5423 // Traditional Bitcode starts after header.
5424 assert(Buffer.size() >= BWH_HeaderSize &&
5425 "Expected header size to be reserved");
5426 unsigned BCOffset = BWH_HeaderSize;
5427 unsigned BCSize = Buffer.size() - BWH_HeaderSize;
5428
5429 // Write the magic and version.
5430 unsigned Position = 0;
5431 writeInt32ToBuffer(Value: 0x0B17C0DE, Buffer, Position);
5432 writeInt32ToBuffer(Value: 0, Buffer, Position); // Version.
5433 writeInt32ToBuffer(Value: BCOffset, Buffer, Position);
5434 writeInt32ToBuffer(Value: BCSize, Buffer, Position);
5435 writeInt32ToBuffer(Value: CPUType, Buffer, Position);
5436
5437 // If the file is not a multiple of 16 bytes, insert dummy padding.
5438 while (Buffer.size() & 15)
5439 Buffer.push_back(Elt: 0);
5440}
5441
5442/// Helper to write the header common to all bitcode files.
5443static void writeBitcodeHeader(BitstreamWriter &Stream) {
5444 // Emit the file header.
5445 Stream.Emit(Val: (unsigned)'B', NumBits: 8);
5446 Stream.Emit(Val: (unsigned)'C', NumBits: 8);
5447 Stream.Emit(Val: 0x0, NumBits: 4);
5448 Stream.Emit(Val: 0xC, NumBits: 4);
5449 Stream.Emit(Val: 0xE, NumBits: 4);
5450 Stream.Emit(Val: 0xD, NumBits: 4);
5451}
5452
5453BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer)
5454 : Stream(new BitstreamWriter(Buffer)) {
5455 writeBitcodeHeader(Stream&: *Stream);
5456}
5457
5458BitcodeWriter::BitcodeWriter(raw_ostream &FS)
5459 : Stream(new BitstreamWriter(FS, FlushThreshold)) {
5460 writeBitcodeHeader(Stream&: *Stream);
5461}
5462
5463BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); }
5464
5465void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) {
5466 Stream->EnterSubblock(BlockID: Block, CodeLen: 3);
5467
5468 auto Abbv = std::make_shared<BitCodeAbbrev>();
5469 Abbv->Add(OpInfo: BitCodeAbbrevOp(Record));
5470 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
5471 auto AbbrevNo = Stream->EmitAbbrev(Abbv: std::move(Abbv));
5472
5473 Stream->EmitRecordWithBlob(Abbrev: AbbrevNo, Vals: ArrayRef<uint64_t>{Record}, Blob);
5474
5475 Stream->ExitBlock();
5476}
5477
5478void BitcodeWriter::writeSymtab() {
5479 assert(!WroteStrtab && !WroteSymtab);
5480
5481 // If any module has module-level inline asm, we will require a registered asm
5482 // parser for the target so that we can create an accurate symbol table for
5483 // the module.
5484 for (Module *M : Mods) {
5485 if (M->getModuleInlineAsm().empty())
5486 continue;
5487
5488 std::string Err;
5489 const Triple TT(M->getTargetTriple());
5490 const Target *T = TargetRegistry::lookupTarget(TheTriple: TT, Error&: Err);
5491 if (!T || !T->hasMCAsmParser())
5492 return;
5493 }
5494
5495 WroteSymtab = true;
5496 SmallVector<char, 0> Symtab;
5497 // The irsymtab::build function may be unable to create a symbol table if the
5498 // module is malformed (e.g. it contains an invalid alias). Writing a symbol
5499 // table is not required for correctness, but we still want to be able to
5500 // write malformed modules to bitcode files, so swallow the error.
5501 if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) {
5502 consumeError(Err: std::move(E));
5503 return;
5504 }
5505
5506 writeBlob(Block: bitc::SYMTAB_BLOCK_ID, Record: bitc::SYMTAB_BLOB,
5507 Blob: {Symtab.data(), Symtab.size()});
5508}
5509
5510void BitcodeWriter::writeStrtab() {
5511 assert(!WroteStrtab);
5512
5513 std::vector<char> Strtab;
5514 StrtabBuilder.finalizeInOrder();
5515 Strtab.resize(new_size: StrtabBuilder.getSize());
5516 StrtabBuilder.write(Buf: (uint8_t *)Strtab.data());
5517
5518 writeBlob(Block: bitc::STRTAB_BLOCK_ID, Record: bitc::STRTAB_BLOB,
5519 Blob: {Strtab.data(), Strtab.size()});
5520
5521 WroteStrtab = true;
5522}
5523
5524void BitcodeWriter::copyStrtab(StringRef Strtab) {
5525 writeBlob(Block: bitc::STRTAB_BLOCK_ID, Record: bitc::STRTAB_BLOB, Blob: Strtab);
5526 WroteStrtab = true;
5527}
5528
5529void BitcodeWriter::writeModule(const Module &M,
5530 bool ShouldPreserveUseListOrder,
5531 const ModuleSummaryIndex *Index,
5532 bool GenerateHash, ModuleHash *ModHash) {
5533 assert(!WroteStrtab);
5534
5535 // The Mods vector is used by irsymtab::build, which requires non-const
5536 // Modules in case it needs to materialize metadata. But the bitcode writer
5537 // requires that the module is materialized, so we can cast to non-const here,
5538 // after checking that it is in fact materialized.
5539 assert(M.isMaterialized());
5540 Mods.push_back(x: const_cast<Module *>(&M));
5541
5542 ModuleBitcodeWriter ModuleWriter(M, StrtabBuilder, *Stream,
5543 ShouldPreserveUseListOrder, Index,
5544 GenerateHash, ModHash);
5545 ModuleWriter.write();
5546}
5547
5548void BitcodeWriter::writeIndex(
5549 const ModuleSummaryIndex *Index,
5550 const ModuleToSummariesForIndexTy *ModuleToSummariesForIndex,
5551 const GVSummaryPtrSet *DecSummaries) {
5552 IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index, DecSummaries,
5553 ModuleToSummariesForIndex);
5554 IndexWriter.write();
5555}
5556
5557/// Write the specified module to the specified output stream.
5558void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out,
5559 bool ShouldPreserveUseListOrder,
5560 const ModuleSummaryIndex *Index,
5561 bool GenerateHash, ModuleHash *ModHash) {
5562 auto Write = [&](BitcodeWriter &Writer) {
5563 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash,
5564 ModHash);
5565 Writer.writeSymtab();
5566 Writer.writeStrtab();
5567 };
5568 Triple TT(M.getTargetTriple());
5569 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) {
5570 // If this is darwin or another generic macho target, reserve space for the
5571 // header. Note that the header is computed *after* the output is known, so
5572 // we currently explicitly use a buffer, write to it, and then subsequently
5573 // flush to Out.
5574 SmallVector<char, 0> Buffer;
5575 Buffer.reserve(N: 256 * 1024);
5576 Buffer.insert(I: Buffer.begin(), NumToInsert: BWH_HeaderSize, Elt: 0);
5577 BitcodeWriter Writer(Buffer);
5578 Write(Writer);
5579 emitDarwinBCHeaderAndTrailer(Buffer, TT);
5580 Out.write(Ptr: Buffer.data(), Size: Buffer.size());
5581 } else {
5582 BitcodeWriter Writer(Out);
5583 Write(Writer);
5584 }
5585}
5586
5587void IndexBitcodeWriter::write() {
5588 Stream.EnterSubblock(BlockID: bitc::MODULE_BLOCK_ID, CodeLen: 3);
5589
5590 writeModuleVersion();
5591
5592 // Write the module paths in the combined index.
5593 writeModStrings();
5594
5595 // Write the summary combined index records.
5596 writeCombinedGlobalValueSummary();
5597
5598 Stream.ExitBlock();
5599}
5600
5601// Write the specified module summary index to the given raw output stream,
5602// where it will be written in a new bitcode block. This is used when
5603// writing the combined index file for ThinLTO. When writing a subset of the
5604// index for a distributed backend, provide a \p ModuleToSummariesForIndex map.
5605void llvm::writeIndexToFile(
5606 const ModuleSummaryIndex &Index, raw_ostream &Out,
5607 const ModuleToSummariesForIndexTy *ModuleToSummariesForIndex,
5608 const GVSummaryPtrSet *DecSummaries) {
5609 SmallVector<char, 0> Buffer;
5610 Buffer.reserve(N: 256 * 1024);
5611
5612 BitcodeWriter Writer(Buffer);
5613 Writer.writeIndex(Index: &Index, ModuleToSummariesForIndex, DecSummaries);
5614 Writer.writeStrtab();
5615
5616 Out.write(Ptr: (char *)&Buffer.front(), Size: Buffer.size());
5617}
5618
5619namespace {
5620
5621/// Class to manage the bitcode writing for a thin link bitcode file.
5622class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase {
5623 /// ModHash is for use in ThinLTO incremental build, generated while writing
5624 /// the module bitcode file.
5625 const ModuleHash *ModHash;
5626
5627public:
5628 ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder,
5629 BitstreamWriter &Stream,
5630 const ModuleSummaryIndex &Index,
5631 const ModuleHash &ModHash)
5632 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream,
5633 /*ShouldPreserveUseListOrder=*/false, &Index),
5634 ModHash(&ModHash) {}
5635
5636 void write();
5637
5638private:
5639 void writeSimplifiedModuleInfo();
5640};
5641
5642} // end anonymous namespace
5643
5644// This function writes a simpilified module info for thin link bitcode file.
5645// It only contains the source file name along with the name(the offset and
5646// size in strtab) and linkage for global values. For the global value info
5647// entry, in order to keep linkage at offset 5, there are three zeros used
5648// as padding.
5649void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() {
5650 SmallVector<unsigned, 64> Vals;
5651 // Emit the module's source file name.
5652 {
5653 StringEncoding Bits = getStringEncoding(Str: M.getSourceFileName());
5654 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8);
5655 if (Bits == SE_Char6)
5656 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6);
5657 else if (Bits == SE_Fixed7)
5658 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7);
5659
5660 // MODULE_CODE_SOURCE_FILENAME: [namechar x N]
5661 auto Abbv = std::make_shared<BitCodeAbbrev>();
5662 Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME));
5663 Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
5664 Abbv->Add(OpInfo: AbbrevOpToUse);
5665 unsigned FilenameAbbrev = Stream.EmitAbbrev(Abbv: std::move(Abbv));
5666
5667 for (const auto P : M.getSourceFileName())
5668 Vals.push_back(Elt: (unsigned char)P);
5669
5670 Stream.EmitRecord(Code: bitc::MODULE_CODE_SOURCE_FILENAME, Vals, Abbrev: FilenameAbbrev);
5671 Vals.clear();
5672 }
5673
5674 // Emit the global variable information.
5675 for (const GlobalVariable &GV : M.globals()) {
5676 // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage]
5677 Vals.push_back(Elt: StrtabBuilder.add(S: GV.getName()));
5678 Vals.push_back(Elt: GV.getName().size());
5679 Vals.push_back(Elt: 0);
5680 Vals.push_back(Elt: 0);
5681 Vals.push_back(Elt: 0);
5682 Vals.push_back(Elt: getEncodedLinkage(GV));
5683
5684 Stream.EmitRecord(Code: bitc::MODULE_CODE_GLOBALVAR, Vals);
5685 Vals.clear();
5686 }
5687
5688 // Emit the function proto information.
5689 for (const Function &F : M) {
5690 // FUNCTION: [strtab offset, strtab size, 0, 0, 0, linkage]
5691 Vals.push_back(Elt: StrtabBuilder.add(S: F.getName()));
5692 Vals.push_back(Elt: F.getName().size());
5693 Vals.push_back(Elt: 0);
5694 Vals.push_back(Elt: 0);
5695 Vals.push_back(Elt: 0);
5696 Vals.push_back(Elt: getEncodedLinkage(GV: F));
5697
5698 Stream.EmitRecord(Code: bitc::MODULE_CODE_FUNCTION, Vals);
5699 Vals.clear();
5700 }
5701
5702 // Emit the alias information.
5703 for (const GlobalAlias &A : M.aliases()) {
5704 // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage]
5705 Vals.push_back(Elt: StrtabBuilder.add(S: A.getName()));
5706 Vals.push_back(Elt: A.getName().size());
5707 Vals.push_back(Elt: 0);
5708 Vals.push_back(Elt: 0);
5709 Vals.push_back(Elt: 0);
5710 Vals.push_back(Elt: getEncodedLinkage(GV: A));
5711
5712 Stream.EmitRecord(Code: bitc::MODULE_CODE_ALIAS, Vals);
5713 Vals.clear();
5714 }
5715
5716 // Emit the ifunc information.
5717 for (const GlobalIFunc &I : M.ifuncs()) {
5718 // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage]
5719 Vals.push_back(Elt: StrtabBuilder.add(S: I.getName()));
5720 Vals.push_back(Elt: I.getName().size());
5721 Vals.push_back(Elt: 0);
5722 Vals.push_back(Elt: 0);
5723 Vals.push_back(Elt: 0);
5724 Vals.push_back(Elt: getEncodedLinkage(GV: I));
5725
5726 Stream.EmitRecord(Code: bitc::MODULE_CODE_IFUNC, Vals);
5727 Vals.clear();
5728 }
5729}
5730
5731void ThinLinkBitcodeWriter::write() {
5732 Stream.EnterSubblock(BlockID: bitc::MODULE_BLOCK_ID, CodeLen: 3);
5733
5734 writeModuleVersion();
5735
5736 writeSimplifiedModuleInfo();
5737
5738 writePerModuleGlobalValueSummary();
5739
5740 // Write module hash.
5741 Stream.EmitRecord(Code: bitc::MODULE_CODE_HASH, Vals: ArrayRef<uint32_t>(*ModHash));
5742
5743 Stream.ExitBlock();
5744}
5745
5746void BitcodeWriter::writeThinLinkBitcode(const Module &M,
5747 const ModuleSummaryIndex &Index,
5748 const ModuleHash &ModHash) {
5749 assert(!WroteStrtab);
5750
5751 // The Mods vector is used by irsymtab::build, which requires non-const
5752 // Modules in case it needs to materialize metadata. But the bitcode writer
5753 // requires that the module is materialized, so we can cast to non-const here,
5754 // after checking that it is in fact materialized.
5755 assert(M.isMaterialized());
5756 Mods.push_back(x: const_cast<Module *>(&M));
5757
5758 ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index,
5759 ModHash);
5760 ThinLinkWriter.write();
5761}
5762
5763// Write the specified thin link bitcode file to the given raw output stream,
5764// where it will be written in a new bitcode block. This is used when
5765// writing the per-module index file for ThinLTO.
5766void llvm::writeThinLinkBitcodeToFile(const Module &M, raw_ostream &Out,
5767 const ModuleSummaryIndex &Index,
5768 const ModuleHash &ModHash) {
5769 SmallVector<char, 0> Buffer;
5770 Buffer.reserve(N: 256 * 1024);
5771
5772 BitcodeWriter Writer(Buffer);
5773 Writer.writeThinLinkBitcode(M, Index, ModHash);
5774 Writer.writeSymtab();
5775 Writer.writeStrtab();
5776
5777 Out.write(Ptr: (char *)&Buffer.front(), Size: Buffer.size());
5778}
5779
5780static const char *getSectionNameForBitcode(const Triple &T) {
5781 switch (T.getObjectFormat()) {
5782 case Triple::MachO:
5783 return "__LLVM,__bitcode";
5784 case Triple::COFF:
5785 case Triple::ELF:
5786 case Triple::Wasm:
5787 case Triple::UnknownObjectFormat:
5788 return ".llvmbc";
5789 case Triple::GOFF:
5790 llvm_unreachable("GOFF is not yet implemented");
5791 break;
5792 case Triple::SPIRV:
5793 if (T.getVendor() == Triple::AMD)
5794 return ".llvmbc";
5795 llvm_unreachable("SPIRV is not yet implemented");
5796 break;
5797 case Triple::XCOFF:
5798 llvm_unreachable("XCOFF is not yet implemented");
5799 break;
5800 case Triple::DXContainer:
5801 llvm_unreachable("DXContainer is not yet implemented");
5802 break;
5803 }
5804 llvm_unreachable("Unimplemented ObjectFormatType");
5805}
5806
5807static const char *getSectionNameForCommandline(const Triple &T) {
5808 switch (T.getObjectFormat()) {
5809 case Triple::MachO:
5810 return "__LLVM,__cmdline";
5811 case Triple::COFF:
5812 case Triple::ELF:
5813 case Triple::Wasm:
5814 case Triple::UnknownObjectFormat:
5815 return ".llvmcmd";
5816 case Triple::GOFF:
5817 llvm_unreachable("GOFF is not yet implemented");
5818 break;
5819 case Triple::SPIRV:
5820 if (T.getVendor() == Triple::AMD)
5821 return ".llvmcmd";
5822 llvm_unreachable("SPIRV is not yet implemented");
5823 break;
5824 case Triple::XCOFF:
5825 llvm_unreachable("XCOFF is not yet implemented");
5826 break;
5827 case Triple::DXContainer:
5828 llvm_unreachable("DXC is not yet implemented");
5829 break;
5830 }
5831 llvm_unreachable("Unimplemented ObjectFormatType");
5832}
5833
5834void llvm::embedBitcodeInModule(llvm::Module &M, llvm::MemoryBufferRef Buf,
5835 bool EmbedBitcode, bool EmbedCmdline,
5836 const std::vector<uint8_t> &CmdArgs) {
5837 // Save llvm.compiler.used and remove it.
5838 SmallVector<Constant *, 2> UsedArray;
5839 SmallVector<GlobalValue *, 4> UsedGlobals;
5840 GlobalVariable *Used = collectUsedGlobalVariables(M, Vec&: UsedGlobals, CompilerUsed: true);
5841 Type *UsedElementType = Used ? Used->getValueType()->getArrayElementType()
5842 : PointerType::getUnqual(C&: M.getContext());
5843 for (auto *GV : UsedGlobals) {
5844 if (GV->getName() != "llvm.embedded.module" &&
5845 GV->getName() != "llvm.cmdline")
5846 UsedArray.push_back(
5847 Elt: ConstantExpr::getPointerBitCastOrAddrSpaceCast(C: GV, Ty: UsedElementType));
5848 }
5849 if (Used)
5850 Used->eraseFromParent();
5851
5852 // Embed the bitcode for the llvm module.
5853 std::string Data;
5854 ArrayRef<uint8_t> ModuleData;
5855 Triple T(M.getTargetTriple());
5856
5857 if (EmbedBitcode) {
5858 if (Buf.getBufferSize() == 0 ||
5859 !isBitcode(BufPtr: (const unsigned char *)Buf.getBufferStart(),
5860 BufEnd: (const unsigned char *)Buf.getBufferEnd())) {
5861 // If the input is LLVM Assembly, bitcode is produced by serializing
5862 // the module. Use-lists order need to be preserved in this case.
5863 llvm::raw_string_ostream OS(Data);
5864 llvm::WriteBitcodeToFile(M, Out&: OS, /* ShouldPreserveUseListOrder */ true);
5865 ModuleData =
5866 ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size());
5867 } else
5868 // If the input is LLVM bitcode, write the input byte stream directly.
5869 ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(),
5870 Buf.getBufferSize());
5871 }
5872 llvm::Constant *ModuleConstant =
5873 llvm::ConstantDataArray::get(Context&: M.getContext(), Elts: ModuleData);
5874 llvm::GlobalVariable *GV = new llvm::GlobalVariable(
5875 M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage,
5876 ModuleConstant);
5877 GV->setSection(getSectionNameForBitcode(T));
5878 // Set alignment to 1 to prevent padding between two contributions from input
5879 // sections after linking.
5880 GV->setAlignment(Align(1));
5881 UsedArray.push_back(
5882 Elt: ConstantExpr::getPointerBitCastOrAddrSpaceCast(C: GV, Ty: UsedElementType));
5883 if (llvm::GlobalVariable *Old =
5884 M.getGlobalVariable(Name: "llvm.embedded.module", AllowInternal: true)) {
5885 assert(Old->hasZeroLiveUses() &&
5886 "llvm.embedded.module can only be used once in llvm.compiler.used");
5887 GV->takeName(V: Old);
5888 Old->eraseFromParent();
5889 } else {
5890 GV->setName("llvm.embedded.module");
5891 }
5892
5893 // Skip if only bitcode needs to be embedded.
5894 if (EmbedCmdline) {
5895 // Embed command-line options.
5896 ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CmdArgs.data()),
5897 CmdArgs.size());
5898 llvm::Constant *CmdConstant =
5899 llvm::ConstantDataArray::get(Context&: M.getContext(), Elts: CmdData);
5900 GV = new llvm::GlobalVariable(M, CmdConstant->getType(), true,
5901 llvm::GlobalValue::PrivateLinkage,
5902 CmdConstant);
5903 GV->setSection(getSectionNameForCommandline(T));
5904 GV->setAlignment(Align(1));
5905 UsedArray.push_back(
5906 Elt: ConstantExpr::getPointerBitCastOrAddrSpaceCast(C: GV, Ty: UsedElementType));
5907 if (llvm::GlobalVariable *Old = M.getGlobalVariable(Name: "llvm.cmdline", AllowInternal: true)) {
5908 assert(Old->hasZeroLiveUses() &&
5909 "llvm.cmdline can only be used once in llvm.compiler.used");
5910 GV->takeName(V: Old);
5911 Old->eraseFromParent();
5912 } else {
5913 GV->setName("llvm.cmdline");
5914 }
5915 }
5916
5917 if (UsedArray.empty())
5918 return;
5919
5920 // Recreate llvm.compiler.used.
5921 ArrayType *ATy = ArrayType::get(ElementType: UsedElementType, NumElements: UsedArray.size());
5922 auto *NewUsed = new GlobalVariable(
5923 M, ATy, false, llvm::GlobalValue::AppendingLinkage,
5924 llvm::ConstantArray::get(T: ATy, V: UsedArray), "llvm.compiler.used");
5925 NewUsed->setSection("llvm.metadata");
5926}
5927