| 1 | //===- ComplexDeinterleavingPass.cpp --------------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // Identification: |
| 10 | // This step is responsible for finding the patterns that can be lowered to |
| 11 | // complex instructions, and building a graph to represent the complex |
| 12 | // structures. Starting from the "Converging Shuffle" (a shuffle that |
| 13 | // reinterleaves the complex components, with a mask of <0, 2, 1, 3>), the |
| 14 | // operands are evaluated and identified as "Composite Nodes" (collections of |
| 15 | // instructions that can potentially be lowered to a single complex |
| 16 | // instruction). This is performed by checking the real and imaginary components |
| 17 | // and tracking the data flow for each component while following the operand |
| 18 | // pairs. Validity of each node is expected to be done upon creation, and any |
| 19 | // validation errors should halt traversal and prevent further graph |
| 20 | // construction. |
| 21 | // Instead of relying on Shuffle operations, vector interleaving and |
| 22 | // deinterleaving can be represented by vector.interleave2 and |
| 23 | // vector.deinterleave2 intrinsics. Scalable vectors can be represented only by |
| 24 | // these intrinsics, whereas, fixed-width vectors are recognized for both |
| 25 | // shufflevector instruction and intrinsics. |
| 26 | // |
| 27 | // Replacement: |
| 28 | // This step traverses the graph built up by identification, delegating to the |
| 29 | // target to validate and generate the correct intrinsics, and plumbs them |
| 30 | // together connecting each end of the new intrinsics graph to the existing |
| 31 | // use-def chain. This step is assumed to finish successfully, as all |
| 32 | // information is expected to be correct by this point. |
| 33 | // |
| 34 | // |
| 35 | // Internal data structure: |
| 36 | // ComplexDeinterleavingGraph: |
| 37 | // Keeps references to all the valid CompositeNodes formed as part of the |
| 38 | // transformation, and every Instruction contained within said nodes. It also |
| 39 | // holds onto a reference to the root Instruction, and the root node that should |
| 40 | // replace it. |
| 41 | // |
| 42 | // ComplexDeinterleavingCompositeNode: |
| 43 | // A CompositeNode represents a single transformation point; each node should |
| 44 | // transform into a single complex instruction (ignoring vector splitting, which |
| 45 | // would generate more instructions per node). They are identified in a |
| 46 | // depth-first manner, traversing and identifying the operands of each |
| 47 | // instruction in the order they appear in the IR. |
| 48 | // Each node maintains a reference to its Real and Imaginary instructions, |
| 49 | // as well as any additional instructions that make up the identified operation |
| 50 | // (Internal instructions should only have uses within their containing node). |
| 51 | // A Node also contains the rotation and operation type that it represents. |
| 52 | // Operands contains pointers to other CompositeNodes, acting as the edges in |
| 53 | // the graph. ReplacementValue is the transformed Value* that has been emitted |
| 54 | // to the IR. |
| 55 | // |
| 56 | // Note: If the operation of a Node is Shuffle, only the Real, Imaginary, and |
| 57 | // ReplacementValue fields of that Node are relevant, where the ReplacementValue |
| 58 | // should be pre-populated. |
| 59 | // |
| 60 | //===----------------------------------------------------------------------===// |
| 61 | |
| 62 | #include "llvm/CodeGen/ComplexDeinterleavingPass.h" |
| 63 | #include "llvm/ADT/AllocatorList.h" |
| 64 | #include "llvm/ADT/MapVector.h" |
| 65 | #include "llvm/ADT/Statistic.h" |
| 66 | #include "llvm/Analysis/TargetLibraryInfo.h" |
| 67 | #include "llvm/Analysis/TargetTransformInfo.h" |
| 68 | #include "llvm/CodeGen/TargetLowering.h" |
| 69 | #include "llvm/CodeGen/TargetSubtargetInfo.h" |
| 70 | #include "llvm/IR/IRBuilder.h" |
| 71 | #include "llvm/IR/Intrinsics.h" |
| 72 | #include "llvm/IR/PatternMatch.h" |
| 73 | #include "llvm/InitializePasses.h" |
| 74 | #include "llvm/Support/Allocator.h" |
| 75 | #include "llvm/Target/TargetMachine.h" |
| 76 | #include "llvm/Transforms/Utils/Local.h" |
| 77 | #include <algorithm> |
| 78 | |
| 79 | using namespace llvm; |
| 80 | using namespace PatternMatch; |
| 81 | |
| 82 | #define DEBUG_TYPE "complex-deinterleaving" |
| 83 | |
| 84 | STATISTIC(, "Amount of complex patterns transformed" ); |
| 85 | |
| 86 | static cl::opt<bool> ComplexDeinterleavingEnabled( |
| 87 | "enable-complex-deinterleaving" , |
| 88 | cl::desc("Enable generation of complex instructions" ), cl::init(Val: true), |
| 89 | cl::Hidden); |
| 90 | |
| 91 | /// Checks the given mask, and determines whether said mask is interleaving. |
| 92 | /// |
| 93 | /// To be interleaving, a mask must alternate between `i` and `i + (Length / |
| 94 | /// 2)`, and must contain all numbers within the range of `[0..Length)` (e.g. a |
| 95 | /// 4x vector interleaving mask would be <0, 2, 1, 3>). |
| 96 | static bool isInterleavingMask(ArrayRef<int> Mask); |
| 97 | |
| 98 | /// Checks the given mask, and determines whether said mask is deinterleaving. |
| 99 | /// |
| 100 | /// To be deinterleaving, a mask must increment in steps of 2, and either start |
| 101 | /// with 0 or 1. |
| 102 | /// (e.g. an 8x vector deinterleaving mask would be either <0, 2, 4, 6> or |
| 103 | /// <1, 3, 5, 7>). |
| 104 | static bool isDeinterleavingMask(ArrayRef<int> Mask); |
| 105 | |
| 106 | /// Returns true if the operation is a negation of V, and it works for both |
| 107 | /// integers and floats. |
| 108 | static bool isNeg(Value *V); |
| 109 | |
| 110 | /// Returns the operand for negation operation. |
| 111 | static Value *getNegOperand(Value *V); |
| 112 | |
| 113 | namespace { |
| 114 | struct ComplexValue { |
| 115 | Value *Real = nullptr; |
| 116 | Value *Imag = nullptr; |
| 117 | |
| 118 | bool operator==(const ComplexValue &Other) const { |
| 119 | return Real == Other.Real && Imag == Other.Imag; |
| 120 | } |
| 121 | }; |
| 122 | hash_code hash_value(const ComplexValue &Arg) { |
| 123 | return hash_combine(args: DenseMapInfo<Value *>::getHashValue(PtrVal: Arg.Real), |
| 124 | args: DenseMapInfo<Value *>::getHashValue(PtrVal: Arg.Imag)); |
| 125 | } |
| 126 | } // end namespace |
| 127 | typedef SmallVector<struct ComplexValue, 2> ComplexValues; |
| 128 | |
| 129 | template <> struct llvm::DenseMapInfo<ComplexValue> { |
| 130 | static inline ComplexValue getEmptyKey() { |
| 131 | return {.Real: DenseMapInfo<Value *>::getEmptyKey(), |
| 132 | .Imag: DenseMapInfo<Value *>::getEmptyKey()}; |
| 133 | } |
| 134 | static inline ComplexValue getTombstoneKey() { |
| 135 | return {.Real: DenseMapInfo<Value *>::getTombstoneKey(), |
| 136 | .Imag: DenseMapInfo<Value *>::getTombstoneKey()}; |
| 137 | } |
| 138 | static unsigned getHashValue(const ComplexValue &Val) { |
| 139 | return hash_combine(args: DenseMapInfo<Value *>::getHashValue(PtrVal: Val.Real), |
| 140 | args: DenseMapInfo<Value *>::getHashValue(PtrVal: Val.Imag)); |
| 141 | } |
| 142 | static bool isEqual(const ComplexValue &LHS, const ComplexValue &RHS) { |
| 143 | return LHS.Real == RHS.Real && LHS.Imag == RHS.Imag; |
| 144 | } |
| 145 | }; |
| 146 | |
| 147 | namespace { |
| 148 | template <typename T, typename IterT> |
| 149 | std::optional<T> findCommonBetweenCollections(IterT A, IterT B) { |
| 150 | auto Common = llvm::find_if(A, [B](T I) { return llvm::is_contained(B, I); }); |
| 151 | if (Common != A.end()) |
| 152 | return std::make_optional(*Common); |
| 153 | return std::nullopt; |
| 154 | } |
| 155 | |
| 156 | class ComplexDeinterleavingLegacyPass : public FunctionPass { |
| 157 | public: |
| 158 | static char ID; |
| 159 | |
| 160 | ComplexDeinterleavingLegacyPass(const TargetMachine *TM = nullptr) |
| 161 | : FunctionPass(ID), TM(TM) {} |
| 162 | |
| 163 | StringRef getPassName() const override { |
| 164 | return "Complex Deinterleaving Pass" ; |
| 165 | } |
| 166 | |
| 167 | bool runOnFunction(Function &F) override; |
| 168 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
| 169 | AU.addRequired<TargetLibraryInfoWrapperPass>(); |
| 170 | AU.setPreservesCFG(); |
| 171 | } |
| 172 | |
| 173 | private: |
| 174 | const TargetMachine *TM; |
| 175 | }; |
| 176 | |
| 177 | class ComplexDeinterleavingGraph; |
| 178 | struct ComplexDeinterleavingCompositeNode { |
| 179 | |
| 180 | ComplexDeinterleavingCompositeNode(ComplexDeinterleavingOperation Op, |
| 181 | Value *R, Value *I) |
| 182 | : Operation(Op) { |
| 183 | Vals.push_back(Elt: {.Real: R, .Imag: I}); |
| 184 | } |
| 185 | |
| 186 | ComplexDeinterleavingCompositeNode(ComplexDeinterleavingOperation Op, |
| 187 | ComplexValues &Other) |
| 188 | : Operation(Op), Vals(Other) {} |
| 189 | |
| 190 | private: |
| 191 | friend class ComplexDeinterleavingGraph; |
| 192 | using CompositeNode = ComplexDeinterleavingCompositeNode; |
| 193 | bool OperandsValid = true; |
| 194 | |
| 195 | public: |
| 196 | ComplexDeinterleavingOperation Operation; |
| 197 | ComplexValues Vals; |
| 198 | |
| 199 | // This two members are required exclusively for generating |
| 200 | // ComplexDeinterleavingOperation::Symmetric operations. |
| 201 | unsigned Opcode; |
| 202 | std::optional<FastMathFlags> Flags; |
| 203 | |
| 204 | ComplexDeinterleavingRotation Rotation = |
| 205 | ComplexDeinterleavingRotation::Rotation_0; |
| 206 | SmallVector<CompositeNode *> Operands; |
| 207 | Value *ReplacementNode = nullptr; |
| 208 | |
| 209 | void addOperand(CompositeNode *Node) { |
| 210 | if (!Node) |
| 211 | OperandsValid = false; |
| 212 | Operands.push_back(Elt: Node); |
| 213 | } |
| 214 | |
| 215 | void dump() { dump(OS&: dbgs()); } |
| 216 | void dump(raw_ostream &OS) { |
| 217 | auto PrintValue = [&](Value *V) { |
| 218 | if (V) { |
| 219 | OS << "\"" ; |
| 220 | V->print(O&: OS, IsForDebug: true); |
| 221 | OS << "\"\n" ; |
| 222 | } else |
| 223 | OS << "nullptr\n" ; |
| 224 | }; |
| 225 | auto PrintNodeRef = [&](CompositeNode *Ptr) { |
| 226 | if (Ptr) |
| 227 | OS << Ptr << "\n" ; |
| 228 | else |
| 229 | OS << "nullptr\n" ; |
| 230 | }; |
| 231 | |
| 232 | OS << "- CompositeNode: " << this << "\n" ; |
| 233 | for (unsigned I = 0; I < Vals.size(); I++) { |
| 234 | OS << " Real(" << I << ") : " ; |
| 235 | PrintValue(Vals[I].Real); |
| 236 | OS << " Imag(" << I << ") : " ; |
| 237 | PrintValue(Vals[I].Imag); |
| 238 | } |
| 239 | OS << " ReplacementNode: " ; |
| 240 | PrintValue(ReplacementNode); |
| 241 | OS << " Operation: " << (int)Operation << "\n" ; |
| 242 | OS << " Rotation: " << ((int)Rotation * 90) << "\n" ; |
| 243 | OS << " Operands: \n" ; |
| 244 | for (const auto &Op : Operands) { |
| 245 | OS << " - " ; |
| 246 | PrintNodeRef(Op); |
| 247 | } |
| 248 | } |
| 249 | |
| 250 | bool areOperandsValid() { return OperandsValid; } |
| 251 | }; |
| 252 | |
| 253 | class ComplexDeinterleavingGraph { |
| 254 | public: |
| 255 | struct Product { |
| 256 | Value *Multiplier; |
| 257 | Value *Multiplicand; |
| 258 | bool IsPositive; |
| 259 | }; |
| 260 | |
| 261 | using Addend = std::pair<Value *, bool>; |
| 262 | using AddendList = BumpPtrList<Addend>; |
| 263 | using CompositeNode = ComplexDeinterleavingCompositeNode::CompositeNode; |
| 264 | |
| 265 | // Helper struct for holding info about potential partial multiplication |
| 266 | // candidates |
| 267 | struct PartialMulCandidate { |
| 268 | Value *Common; |
| 269 | CompositeNode *Node; |
| 270 | unsigned RealIdx; |
| 271 | unsigned ImagIdx; |
| 272 | bool IsNodeInverted; |
| 273 | }; |
| 274 | |
| 275 | explicit ComplexDeinterleavingGraph(const TargetLowering *TL, |
| 276 | const TargetLibraryInfo *TLI, |
| 277 | unsigned Factor) |
| 278 | : TL(TL), TLI(TLI), Factor(Factor) {} |
| 279 | |
| 280 | private: |
| 281 | const TargetLowering *TL = nullptr; |
| 282 | const TargetLibraryInfo *TLI = nullptr; |
| 283 | unsigned Factor; |
| 284 | SmallVector<CompositeNode *> CompositeNodes; |
| 285 | DenseMap<ComplexValues, CompositeNode *> CachedResult; |
| 286 | SpecificBumpPtrAllocator<ComplexDeinterleavingCompositeNode> Allocator; |
| 287 | |
| 288 | SmallPtrSet<Instruction *, 16> FinalInstructions; |
| 289 | |
| 290 | /// Root instructions are instructions from which complex computation starts |
| 291 | DenseMap<Instruction *, CompositeNode *> RootToNode; |
| 292 | |
| 293 | /// Topologically sorted root instructions |
| 294 | SmallVector<Instruction *, 1> OrderedRoots; |
| 295 | |
| 296 | /// When examining a basic block for complex deinterleaving, if it is a simple |
| 297 | /// one-block loop, then the only incoming block is 'Incoming' and the |
| 298 | /// 'BackEdge' block is the block itself." |
| 299 | BasicBlock *BackEdge = nullptr; |
| 300 | BasicBlock *Incoming = nullptr; |
| 301 | |
| 302 | /// ReductionInfo maps from %ReductionOp to %PHInode and Instruction |
| 303 | /// %OutsideUser as it is shown in the IR: |
| 304 | /// |
| 305 | /// vector.body: |
| 306 | /// %PHInode = phi <vector type> [ zeroinitializer, %entry ], |
| 307 | /// [ %ReductionOp, %vector.body ] |
| 308 | /// ... |
| 309 | /// %ReductionOp = fadd i64 ... |
| 310 | /// ... |
| 311 | /// br i1 %condition, label %vector.body, %middle.block |
| 312 | /// |
| 313 | /// middle.block: |
| 314 | /// %OutsideUser = llvm.vector.reduce.fadd(..., %ReductionOp) |
| 315 | /// |
| 316 | /// %OutsideUser can be `llvm.vector.reduce.fadd` or `fadd` preceding |
| 317 | /// `llvm.vector.reduce.fadd` when unroll factor isn't one. |
| 318 | MapVector<Instruction *, std::pair<PHINode *, Instruction *>> ReductionInfo; |
| 319 | |
| 320 | /// In the process of detecting a reduction, we consider a pair of |
| 321 | /// %ReductionOP, which we refer to as real and imag (or vice versa), and |
| 322 | /// traverse the use-tree to detect complex operations. As this is a reduction |
| 323 | /// operation, it will eventually reach RealPHI and ImagPHI, which corresponds |
| 324 | /// to the %ReductionOPs that we suspect to be complex. |
| 325 | /// RealPHI and ImagPHI are used by the identifyPHINode method. |
| 326 | PHINode *RealPHI = nullptr; |
| 327 | PHINode *ImagPHI = nullptr; |
| 328 | |
| 329 | /// Set this flag to true if RealPHI and ImagPHI were reached during reduction |
| 330 | /// detection. |
| 331 | bool PHIsFound = false; |
| 332 | |
| 333 | /// OldToNewPHI maps the original real PHINode to a new, double-sized PHINode. |
| 334 | /// The new PHINode corresponds to a vector of deinterleaved complex numbers. |
| 335 | /// This mapping is populated during |
| 336 | /// ComplexDeinterleavingOperation::ReductionPHI node replacement. It is then |
| 337 | /// used in the ComplexDeinterleavingOperation::ReductionOperation node |
| 338 | /// replacement process. |
| 339 | DenseMap<PHINode *, PHINode *> OldToNewPHI; |
| 340 | |
| 341 | CompositeNode *prepareCompositeNode(ComplexDeinterleavingOperation Operation, |
| 342 | Value *R, Value *I) { |
| 343 | assert(((Operation != ComplexDeinterleavingOperation::ReductionPHI && |
| 344 | Operation != ComplexDeinterleavingOperation::ReductionOperation) || |
| 345 | (R && I)) && |
| 346 | "Reduction related nodes must have Real and Imaginary parts" ); |
| 347 | return new (Allocator.Allocate()) |
| 348 | ComplexDeinterleavingCompositeNode(Operation, R, I); |
| 349 | } |
| 350 | |
| 351 | CompositeNode *prepareCompositeNode(ComplexDeinterleavingOperation Operation, |
| 352 | ComplexValues &Vals) { |
| 353 | #ifndef NDEBUG |
| 354 | for (auto &V : Vals) { |
| 355 | assert( |
| 356 | ((Operation != ComplexDeinterleavingOperation::ReductionPHI && |
| 357 | Operation != ComplexDeinterleavingOperation::ReductionOperation) || |
| 358 | (V.Real && V.Imag)) && |
| 359 | "Reduction related nodes must have Real and Imaginary parts" ); |
| 360 | } |
| 361 | #endif |
| 362 | return new (Allocator.Allocate()) |
| 363 | ComplexDeinterleavingCompositeNode(Operation, Vals); |
| 364 | } |
| 365 | |
| 366 | CompositeNode *submitCompositeNode(CompositeNode *Node) { |
| 367 | CompositeNodes.push_back(Elt: Node); |
| 368 | if (Node->Vals[0].Real) |
| 369 | CachedResult[Node->Vals] = Node; |
| 370 | return Node; |
| 371 | } |
| 372 | |
| 373 | /// Identifies a complex partial multiply pattern and its rotation, based on |
| 374 | /// the following patterns |
| 375 | /// |
| 376 | /// 0: r: cr + ar * br |
| 377 | /// i: ci + ar * bi |
| 378 | /// 90: r: cr - ai * bi |
| 379 | /// i: ci + ai * br |
| 380 | /// 180: r: cr - ar * br |
| 381 | /// i: ci - ar * bi |
| 382 | /// 270: r: cr + ai * bi |
| 383 | /// i: ci - ai * br |
| 384 | CompositeNode *identifyPartialMul(Instruction *Real, Instruction *Imag); |
| 385 | |
| 386 | /// Identify the other branch of a Partial Mul, taking the CommonOperandI that |
| 387 | /// is partially known from identifyPartialMul, filling in the other half of |
| 388 | /// the complex pair. |
| 389 | CompositeNode * |
| 390 | identifyNodeWithImplicitAdd(Instruction *I, Instruction *J, |
| 391 | std::pair<Value *, Value *> &CommonOperandI); |
| 392 | |
| 393 | /// Identifies a complex add pattern and its rotation, based on the following |
| 394 | /// patterns. |
| 395 | /// |
| 396 | /// 90: r: ar - bi |
| 397 | /// i: ai + br |
| 398 | /// 270: r: ar + bi |
| 399 | /// i: ai - br |
| 400 | CompositeNode *identifyAdd(Instruction *Real, Instruction *Imag); |
| 401 | CompositeNode *identifySymmetricOperation(ComplexValues &Vals); |
| 402 | CompositeNode *identifyPartialReduction(Value *R, Value *I); |
| 403 | CompositeNode *identifyDotProduct(Value *Inst); |
| 404 | |
| 405 | CompositeNode *identifyNode(ComplexValues &Vals); |
| 406 | |
| 407 | CompositeNode *identifyNode(Value *R, Value *I) { |
| 408 | ComplexValues Vals; |
| 409 | Vals.push_back(Elt: {.Real: R, .Imag: I}); |
| 410 | return identifyNode(Vals); |
| 411 | } |
| 412 | |
| 413 | /// Determine if a sum of complex numbers can be formed from \p RealAddends |
| 414 | /// and \p ImagAddens. If \p Accumulator is not null, add the result to it. |
| 415 | /// Return nullptr if it is not possible to construct a complex number. |
| 416 | /// \p Flags are needed to generate symmetric Add and Sub operations. |
| 417 | CompositeNode *identifyAdditions(AddendList &RealAddends, |
| 418 | AddendList &ImagAddends, |
| 419 | std::optional<FastMathFlags> Flags, |
| 420 | CompositeNode *Accumulator); |
| 421 | |
| 422 | /// Extract one addend that have both real and imaginary parts positive. |
| 423 | CompositeNode *extractPositiveAddend(AddendList &RealAddends, |
| 424 | AddendList &ImagAddends); |
| 425 | |
| 426 | /// Determine if sum of multiplications of complex numbers can be formed from |
| 427 | /// \p RealMuls and \p ImagMuls. If \p Accumulator is not null, add the result |
| 428 | /// to it. Return nullptr if it is not possible to construct a complex number. |
| 429 | CompositeNode *identifyMultiplications(SmallVectorImpl<Product> &RealMuls, |
| 430 | SmallVectorImpl<Product> &ImagMuls, |
| 431 | CompositeNode *Accumulator); |
| 432 | |
| 433 | /// Go through pairs of multiplication (one Real and one Imag) and find all |
| 434 | /// possible candidates for partial multiplication and put them into \p |
| 435 | /// Candidates. Returns true if all Product has pair with common operand |
| 436 | bool collectPartialMuls(ArrayRef<Product> RealMuls, |
| 437 | ArrayRef<Product> ImagMuls, |
| 438 | SmallVectorImpl<PartialMulCandidate> &Candidates); |
| 439 | |
| 440 | /// If the code is compiled with -Ofast or expressions have `reassoc` flag, |
| 441 | /// the order of complex computation operations may be significantly altered, |
| 442 | /// and the real and imaginary parts may not be executed in parallel. This |
| 443 | /// function takes this into consideration and employs a more general approach |
| 444 | /// to identify complex computations. Initially, it gathers all the addends |
| 445 | /// and multiplicands and then constructs a complex expression from them. |
| 446 | CompositeNode *identifyReassocNodes(Instruction *I, Instruction *J); |
| 447 | |
| 448 | CompositeNode *identifyRoot(Instruction *I); |
| 449 | |
| 450 | /// Identifies the Deinterleave operation applied to a vector containing |
| 451 | /// complex numbers. There are two ways to represent the Deinterleave |
| 452 | /// operation: |
| 453 | /// * Using two shufflevectors with even indices for /pReal instruction and |
| 454 | /// odd indices for /pImag instructions (only for fixed-width vectors) |
| 455 | /// * Using N extractvalue instructions applied to `vector.deinterleaveN` |
| 456 | /// intrinsics (for both fixed and scalable vectors) where N is a multiple of |
| 457 | /// 2. |
| 458 | CompositeNode *identifyDeinterleave(ComplexValues &Vals); |
| 459 | |
| 460 | /// identifying the operation that represents a complex number repeated in a |
| 461 | /// Splat vector. There are two possible types of splats: ConstantExpr with |
| 462 | /// the opcode ShuffleVector and ShuffleVectorInstr. Both should have an |
| 463 | /// initialization mask with all values set to zero. |
| 464 | CompositeNode *identifySplat(ComplexValues &Vals); |
| 465 | |
| 466 | CompositeNode *identifyPHINode(Instruction *Real, Instruction *Imag); |
| 467 | |
| 468 | /// Identifies SelectInsts in a loop that has reduction with predication masks |
| 469 | /// and/or predicated tail folding |
| 470 | CompositeNode *identifySelectNode(Instruction *Real, Instruction *Imag); |
| 471 | |
| 472 | Value *replaceNode(IRBuilderBase &Builder, CompositeNode *Node); |
| 473 | |
| 474 | /// Complete IR modifications after producing new reduction operation: |
| 475 | /// * Populate the PHINode generated for |
| 476 | /// ComplexDeinterleavingOperation::ReductionPHI |
| 477 | /// * Deinterleave the final value outside of the loop and repurpose original |
| 478 | /// reduction users |
| 479 | void processReductionOperation(Value *OperationReplacement, |
| 480 | CompositeNode *Node); |
| 481 | void processReductionSingle(Value *OperationReplacement, CompositeNode *Node); |
| 482 | |
| 483 | public: |
| 484 | void dump() { dump(OS&: dbgs()); } |
| 485 | void dump(raw_ostream &OS) { |
| 486 | for (const auto &Node : CompositeNodes) |
| 487 | Node->dump(OS); |
| 488 | } |
| 489 | |
| 490 | /// Returns false if the deinterleaving operation should be cancelled for the |
| 491 | /// current graph. |
| 492 | bool identifyNodes(Instruction *RootI); |
| 493 | |
| 494 | /// In case \pB is one-block loop, this function seeks potential reductions |
| 495 | /// and populates ReductionInfo. Returns true if any reductions were |
| 496 | /// identified. |
| 497 | bool collectPotentialReductions(BasicBlock *B); |
| 498 | |
| 499 | void identifyReductionNodes(); |
| 500 | |
| 501 | /// Check that every instruction, from the roots to the leaves, has internal |
| 502 | /// uses. |
| 503 | bool checkNodes(); |
| 504 | |
| 505 | /// Perform the actual replacement of the underlying instruction graph. |
| 506 | void replaceNodes(); |
| 507 | }; |
| 508 | |
| 509 | class ComplexDeinterleaving { |
| 510 | public: |
| 511 | ComplexDeinterleaving(const TargetLowering *tl, const TargetLibraryInfo *tli) |
| 512 | : TL(tl), TLI(tli) {} |
| 513 | bool runOnFunction(Function &F); |
| 514 | |
| 515 | private: |
| 516 | bool evaluateBasicBlock(BasicBlock *B, unsigned Factor); |
| 517 | |
| 518 | const TargetLowering *TL = nullptr; |
| 519 | const TargetLibraryInfo *TLI = nullptr; |
| 520 | }; |
| 521 | |
| 522 | } // namespace |
| 523 | |
| 524 | char ComplexDeinterleavingLegacyPass::ID = 0; |
| 525 | |
| 526 | INITIALIZE_PASS_BEGIN(ComplexDeinterleavingLegacyPass, DEBUG_TYPE, |
| 527 | "Complex Deinterleaving" , false, false) |
| 528 | INITIALIZE_PASS_END(ComplexDeinterleavingLegacyPass, DEBUG_TYPE, |
| 529 | "Complex Deinterleaving" , false, false) |
| 530 | |
| 531 | PreservedAnalyses ComplexDeinterleavingPass::run(Function &F, |
| 532 | FunctionAnalysisManager &AM) { |
| 533 | const TargetLowering *TL = TM->getSubtargetImpl(F)->getTargetLowering(); |
| 534 | auto &TLI = AM.getResult<llvm::TargetLibraryAnalysis>(IR&: F); |
| 535 | if (!ComplexDeinterleaving(TL, &TLI).runOnFunction(F)) |
| 536 | return PreservedAnalyses::all(); |
| 537 | |
| 538 | PreservedAnalyses PA; |
| 539 | PA.preserve<FunctionAnalysisManagerModuleProxy>(); |
| 540 | return PA; |
| 541 | } |
| 542 | |
| 543 | FunctionPass *llvm::createComplexDeinterleavingPass(const TargetMachine *TM) { |
| 544 | return new ComplexDeinterleavingLegacyPass(TM); |
| 545 | } |
| 546 | |
| 547 | bool ComplexDeinterleavingLegacyPass::runOnFunction(Function &F) { |
| 548 | const auto *TL = TM->getSubtargetImpl(F)->getTargetLowering(); |
| 549 | auto TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); |
| 550 | return ComplexDeinterleaving(TL, &TLI).runOnFunction(F); |
| 551 | } |
| 552 | |
| 553 | bool ComplexDeinterleaving::runOnFunction(Function &F) { |
| 554 | if (!ComplexDeinterleavingEnabled) { |
| 555 | LLVM_DEBUG( |
| 556 | dbgs() << "Complex deinterleaving has been explicitly disabled.\n" ); |
| 557 | return false; |
| 558 | } |
| 559 | |
| 560 | if (!TL->isComplexDeinterleavingSupported()) { |
| 561 | LLVM_DEBUG( |
| 562 | dbgs() << "Complex deinterleaving has been disabled, target does " |
| 563 | "not support lowering of complex number operations.\n" ); |
| 564 | return false; |
| 565 | } |
| 566 | |
| 567 | bool Changed = false; |
| 568 | for (auto &B : F) |
| 569 | Changed |= evaluateBasicBlock(B: &B, Factor: 2); |
| 570 | |
| 571 | // TODO: Permit changes for both interleave factors in the same function. |
| 572 | if (!Changed) { |
| 573 | for (auto &B : F) |
| 574 | Changed |= evaluateBasicBlock(B: &B, Factor: 4); |
| 575 | } |
| 576 | |
| 577 | // TODO: We can also support interleave factors of 6 and 8 if needed. |
| 578 | |
| 579 | return Changed; |
| 580 | } |
| 581 | |
| 582 | static bool isInterleavingMask(ArrayRef<int> Mask) { |
| 583 | // If the size is not even, it's not an interleaving mask |
| 584 | if ((Mask.size() & 1)) |
| 585 | return false; |
| 586 | |
| 587 | int HalfNumElements = Mask.size() / 2; |
| 588 | for (int Idx = 0; Idx < HalfNumElements; ++Idx) { |
| 589 | int MaskIdx = Idx * 2; |
| 590 | if (Mask[MaskIdx] != Idx || Mask[MaskIdx + 1] != (Idx + HalfNumElements)) |
| 591 | return false; |
| 592 | } |
| 593 | |
| 594 | return true; |
| 595 | } |
| 596 | |
| 597 | static bool isDeinterleavingMask(ArrayRef<int> Mask) { |
| 598 | int Offset = Mask[0]; |
| 599 | int HalfNumElements = Mask.size() / 2; |
| 600 | |
| 601 | for (int Idx = 1; Idx < HalfNumElements; ++Idx) { |
| 602 | if (Mask[Idx] != (Idx * 2) + Offset) |
| 603 | return false; |
| 604 | } |
| 605 | |
| 606 | return true; |
| 607 | } |
| 608 | |
| 609 | bool isNeg(Value *V) { |
| 610 | return match(V, P: m_FNeg(X: m_Value())) || match(V, P: m_Neg(V: m_Value())); |
| 611 | } |
| 612 | |
| 613 | Value *getNegOperand(Value *V) { |
| 614 | assert(isNeg(V)); |
| 615 | auto *I = cast<Instruction>(Val: V); |
| 616 | if (I->getOpcode() == Instruction::FNeg) |
| 617 | return I->getOperand(i: 0); |
| 618 | |
| 619 | return I->getOperand(i: 1); |
| 620 | } |
| 621 | |
| 622 | bool ComplexDeinterleaving::evaluateBasicBlock(BasicBlock *B, unsigned Factor) { |
| 623 | ComplexDeinterleavingGraph Graph(TL, TLI, Factor); |
| 624 | if (Graph.collectPotentialReductions(B)) |
| 625 | Graph.identifyReductionNodes(); |
| 626 | |
| 627 | for (auto &I : *B) |
| 628 | Graph.identifyNodes(RootI: &I); |
| 629 | |
| 630 | if (Graph.checkNodes()) { |
| 631 | Graph.replaceNodes(); |
| 632 | return true; |
| 633 | } |
| 634 | |
| 635 | return false; |
| 636 | } |
| 637 | |
| 638 | ComplexDeinterleavingGraph::CompositeNode * |
| 639 | ComplexDeinterleavingGraph::identifyNodeWithImplicitAdd( |
| 640 | Instruction *Real, Instruction *Imag, |
| 641 | std::pair<Value *, Value *> &PartialMatch) { |
| 642 | LLVM_DEBUG(dbgs() << "identifyNodeWithImplicitAdd " << *Real << " / " << *Imag |
| 643 | << "\n" ); |
| 644 | |
| 645 | if (!Real->hasOneUse() || !Imag->hasOneUse()) { |
| 646 | LLVM_DEBUG(dbgs() << " - Mul operand has multiple uses.\n" ); |
| 647 | return nullptr; |
| 648 | } |
| 649 | |
| 650 | if ((Real->getOpcode() != Instruction::FMul && |
| 651 | Real->getOpcode() != Instruction::Mul) || |
| 652 | (Imag->getOpcode() != Instruction::FMul && |
| 653 | Imag->getOpcode() != Instruction::Mul)) { |
| 654 | LLVM_DEBUG( |
| 655 | dbgs() << " - Real or imaginary instruction is not fmul or mul\n" ); |
| 656 | return nullptr; |
| 657 | } |
| 658 | |
| 659 | Value *R0 = Real->getOperand(i: 0); |
| 660 | Value *R1 = Real->getOperand(i: 1); |
| 661 | Value *I0 = Imag->getOperand(i: 0); |
| 662 | Value *I1 = Imag->getOperand(i: 1); |
| 663 | |
| 664 | // A +/+ has a rotation of 0. If any of the operands are fneg, we flip the |
| 665 | // rotations and use the operand. |
| 666 | unsigned Negs = 0; |
| 667 | Value *Op; |
| 668 | if (match(V: R0, P: m_Neg(V: m_Value(V&: Op)))) { |
| 669 | Negs |= 1; |
| 670 | R0 = Op; |
| 671 | } else if (match(V: R1, P: m_Neg(V: m_Value(V&: Op)))) { |
| 672 | Negs |= 1; |
| 673 | R1 = Op; |
| 674 | } |
| 675 | |
| 676 | if (isNeg(V: I0)) { |
| 677 | Negs |= 2; |
| 678 | Negs ^= 1; |
| 679 | I0 = Op; |
| 680 | } else if (match(V: I1, P: m_Neg(V: m_Value(V&: Op)))) { |
| 681 | Negs |= 2; |
| 682 | Negs ^= 1; |
| 683 | I1 = Op; |
| 684 | } |
| 685 | |
| 686 | ComplexDeinterleavingRotation Rotation = (ComplexDeinterleavingRotation)Negs; |
| 687 | |
| 688 | Value *CommonOperand; |
| 689 | Value *UncommonRealOp; |
| 690 | Value *UncommonImagOp; |
| 691 | |
| 692 | if (R0 == I0 || R0 == I1) { |
| 693 | CommonOperand = R0; |
| 694 | UncommonRealOp = R1; |
| 695 | } else if (R1 == I0 || R1 == I1) { |
| 696 | CommonOperand = R1; |
| 697 | UncommonRealOp = R0; |
| 698 | } else { |
| 699 | LLVM_DEBUG(dbgs() << " - No equal operand\n" ); |
| 700 | return nullptr; |
| 701 | } |
| 702 | |
| 703 | UncommonImagOp = (CommonOperand == I0) ? I1 : I0; |
| 704 | if (Rotation == ComplexDeinterleavingRotation::Rotation_90 || |
| 705 | Rotation == ComplexDeinterleavingRotation::Rotation_270) |
| 706 | std::swap(a&: UncommonRealOp, b&: UncommonImagOp); |
| 707 | |
| 708 | // Between identifyPartialMul and here we need to have found a complete valid |
| 709 | // pair from the CommonOperand of each part. |
| 710 | if (Rotation == ComplexDeinterleavingRotation::Rotation_0 || |
| 711 | Rotation == ComplexDeinterleavingRotation::Rotation_180) |
| 712 | PartialMatch.first = CommonOperand; |
| 713 | else |
| 714 | PartialMatch.second = CommonOperand; |
| 715 | |
| 716 | if (!PartialMatch.first || !PartialMatch.second) { |
| 717 | LLVM_DEBUG(dbgs() << " - Incomplete partial match\n" ); |
| 718 | return nullptr; |
| 719 | } |
| 720 | |
| 721 | CompositeNode *CommonNode = |
| 722 | identifyNode(R: PartialMatch.first, I: PartialMatch.second); |
| 723 | if (!CommonNode) { |
| 724 | LLVM_DEBUG(dbgs() << " - No CommonNode identified\n" ); |
| 725 | return nullptr; |
| 726 | } |
| 727 | |
| 728 | CompositeNode *UncommonNode = identifyNode(R: UncommonRealOp, I: UncommonImagOp); |
| 729 | if (!UncommonNode) { |
| 730 | LLVM_DEBUG(dbgs() << " - No UncommonNode identified\n" ); |
| 731 | return nullptr; |
| 732 | } |
| 733 | |
| 734 | CompositeNode *Node = prepareCompositeNode( |
| 735 | Operation: ComplexDeinterleavingOperation::CMulPartial, R: Real, I: Imag); |
| 736 | Node->Rotation = Rotation; |
| 737 | Node->addOperand(Node: CommonNode); |
| 738 | Node->addOperand(Node: UncommonNode); |
| 739 | return submitCompositeNode(Node); |
| 740 | } |
| 741 | |
| 742 | ComplexDeinterleavingGraph::CompositeNode * |
| 743 | ComplexDeinterleavingGraph::identifyPartialMul(Instruction *Real, |
| 744 | Instruction *Imag) { |
| 745 | LLVM_DEBUG(dbgs() << "identifyPartialMul " << *Real << " / " << *Imag |
| 746 | << "\n" ); |
| 747 | |
| 748 | // Determine rotation |
| 749 | auto IsAdd = [](unsigned Op) { |
| 750 | return Op == Instruction::FAdd || Op == Instruction::Add; |
| 751 | }; |
| 752 | auto IsSub = [](unsigned Op) { |
| 753 | return Op == Instruction::FSub || Op == Instruction::Sub; |
| 754 | }; |
| 755 | ComplexDeinterleavingRotation Rotation; |
| 756 | if (IsAdd(Real->getOpcode()) && IsAdd(Imag->getOpcode())) |
| 757 | Rotation = ComplexDeinterleavingRotation::Rotation_0; |
| 758 | else if (IsSub(Real->getOpcode()) && IsAdd(Imag->getOpcode())) |
| 759 | Rotation = ComplexDeinterleavingRotation::Rotation_90; |
| 760 | else if (IsSub(Real->getOpcode()) && IsSub(Imag->getOpcode())) |
| 761 | Rotation = ComplexDeinterleavingRotation::Rotation_180; |
| 762 | else if (IsAdd(Real->getOpcode()) && IsSub(Imag->getOpcode())) |
| 763 | Rotation = ComplexDeinterleavingRotation::Rotation_270; |
| 764 | else { |
| 765 | LLVM_DEBUG(dbgs() << " - Unhandled rotation.\n" ); |
| 766 | return nullptr; |
| 767 | } |
| 768 | |
| 769 | if (isa<FPMathOperator>(Val: Real) && |
| 770 | (!Real->getFastMathFlags().allowContract() || |
| 771 | !Imag->getFastMathFlags().allowContract())) { |
| 772 | LLVM_DEBUG(dbgs() << " - Contract is missing from the FastMath flags.\n" ); |
| 773 | return nullptr; |
| 774 | } |
| 775 | |
| 776 | Value *CR = Real->getOperand(i: 0); |
| 777 | Instruction *RealMulI = dyn_cast<Instruction>(Val: Real->getOperand(i: 1)); |
| 778 | if (!RealMulI) |
| 779 | return nullptr; |
| 780 | Value *CI = Imag->getOperand(i: 0); |
| 781 | Instruction *ImagMulI = dyn_cast<Instruction>(Val: Imag->getOperand(i: 1)); |
| 782 | if (!ImagMulI) |
| 783 | return nullptr; |
| 784 | |
| 785 | if (!RealMulI->hasOneUse() || !ImagMulI->hasOneUse()) { |
| 786 | LLVM_DEBUG(dbgs() << " - Mul instruction has multiple uses\n" ); |
| 787 | return nullptr; |
| 788 | } |
| 789 | |
| 790 | Value *R0 = RealMulI->getOperand(i: 0); |
| 791 | Value *R1 = RealMulI->getOperand(i: 1); |
| 792 | Value *I0 = ImagMulI->getOperand(i: 0); |
| 793 | Value *I1 = ImagMulI->getOperand(i: 1); |
| 794 | |
| 795 | Value *CommonOperand; |
| 796 | Value *UncommonRealOp; |
| 797 | Value *UncommonImagOp; |
| 798 | |
| 799 | if (R0 == I0 || R0 == I1) { |
| 800 | CommonOperand = R0; |
| 801 | UncommonRealOp = R1; |
| 802 | } else if (R1 == I0 || R1 == I1) { |
| 803 | CommonOperand = R1; |
| 804 | UncommonRealOp = R0; |
| 805 | } else { |
| 806 | LLVM_DEBUG(dbgs() << " - No equal operand\n" ); |
| 807 | return nullptr; |
| 808 | } |
| 809 | |
| 810 | UncommonImagOp = (CommonOperand == I0) ? I1 : I0; |
| 811 | if (Rotation == ComplexDeinterleavingRotation::Rotation_90 || |
| 812 | Rotation == ComplexDeinterleavingRotation::Rotation_270) |
| 813 | std::swap(a&: UncommonRealOp, b&: UncommonImagOp); |
| 814 | |
| 815 | std::pair<Value *, Value *> PartialMatch( |
| 816 | (Rotation == ComplexDeinterleavingRotation::Rotation_0 || |
| 817 | Rotation == ComplexDeinterleavingRotation::Rotation_180) |
| 818 | ? CommonOperand |
| 819 | : nullptr, |
| 820 | (Rotation == ComplexDeinterleavingRotation::Rotation_90 || |
| 821 | Rotation == ComplexDeinterleavingRotation::Rotation_270) |
| 822 | ? CommonOperand |
| 823 | : nullptr); |
| 824 | |
| 825 | auto *CRInst = dyn_cast<Instruction>(Val: CR); |
| 826 | auto *CIInst = dyn_cast<Instruction>(Val: CI); |
| 827 | |
| 828 | if (!CRInst || !CIInst) { |
| 829 | LLVM_DEBUG(dbgs() << " - Common operands are not instructions.\n" ); |
| 830 | return nullptr; |
| 831 | } |
| 832 | |
| 833 | CompositeNode *CNode = |
| 834 | identifyNodeWithImplicitAdd(Real: CRInst, Imag: CIInst, PartialMatch); |
| 835 | if (!CNode) { |
| 836 | LLVM_DEBUG(dbgs() << " - No cnode identified\n" ); |
| 837 | return nullptr; |
| 838 | } |
| 839 | |
| 840 | CompositeNode *UncommonRes = identifyNode(R: UncommonRealOp, I: UncommonImagOp); |
| 841 | if (!UncommonRes) { |
| 842 | LLVM_DEBUG(dbgs() << " - No UncommonRes identified\n" ); |
| 843 | return nullptr; |
| 844 | } |
| 845 | |
| 846 | assert(PartialMatch.first && PartialMatch.second); |
| 847 | CompositeNode *CommonRes = |
| 848 | identifyNode(R: PartialMatch.first, I: PartialMatch.second); |
| 849 | if (!CommonRes) { |
| 850 | LLVM_DEBUG(dbgs() << " - No CommonRes identified\n" ); |
| 851 | return nullptr; |
| 852 | } |
| 853 | |
| 854 | CompositeNode *Node = prepareCompositeNode( |
| 855 | Operation: ComplexDeinterleavingOperation::CMulPartial, R: Real, I: Imag); |
| 856 | Node->Rotation = Rotation; |
| 857 | Node->addOperand(Node: CommonRes); |
| 858 | Node->addOperand(Node: UncommonRes); |
| 859 | Node->addOperand(Node: CNode); |
| 860 | return submitCompositeNode(Node); |
| 861 | } |
| 862 | |
| 863 | ComplexDeinterleavingGraph::CompositeNode * |
| 864 | ComplexDeinterleavingGraph::identifyAdd(Instruction *Real, Instruction *Imag) { |
| 865 | LLVM_DEBUG(dbgs() << "identifyAdd " << *Real << " / " << *Imag << "\n" ); |
| 866 | |
| 867 | // Determine rotation |
| 868 | ComplexDeinterleavingRotation Rotation; |
| 869 | if ((Real->getOpcode() == Instruction::FSub && |
| 870 | Imag->getOpcode() == Instruction::FAdd) || |
| 871 | (Real->getOpcode() == Instruction::Sub && |
| 872 | Imag->getOpcode() == Instruction::Add)) |
| 873 | Rotation = ComplexDeinterleavingRotation::Rotation_90; |
| 874 | else if ((Real->getOpcode() == Instruction::FAdd && |
| 875 | Imag->getOpcode() == Instruction::FSub) || |
| 876 | (Real->getOpcode() == Instruction::Add && |
| 877 | Imag->getOpcode() == Instruction::Sub)) |
| 878 | Rotation = ComplexDeinterleavingRotation::Rotation_270; |
| 879 | else { |
| 880 | LLVM_DEBUG(dbgs() << " - Unhandled case, rotation is not assigned.\n" ); |
| 881 | return nullptr; |
| 882 | } |
| 883 | |
| 884 | auto *AR = dyn_cast<Instruction>(Val: Real->getOperand(i: 0)); |
| 885 | auto *BI = dyn_cast<Instruction>(Val: Real->getOperand(i: 1)); |
| 886 | auto *AI = dyn_cast<Instruction>(Val: Imag->getOperand(i: 0)); |
| 887 | auto *BR = dyn_cast<Instruction>(Val: Imag->getOperand(i: 1)); |
| 888 | |
| 889 | if (!AR || !AI || !BR || !BI) { |
| 890 | LLVM_DEBUG(dbgs() << " - Not all operands are instructions.\n" ); |
| 891 | return nullptr; |
| 892 | } |
| 893 | |
| 894 | CompositeNode *ResA = identifyNode(R: AR, I: AI); |
| 895 | if (!ResA) { |
| 896 | LLVM_DEBUG(dbgs() << " - AR/AI is not identified as a composite node.\n" ); |
| 897 | return nullptr; |
| 898 | } |
| 899 | CompositeNode *ResB = identifyNode(R: BR, I: BI); |
| 900 | if (!ResB) { |
| 901 | LLVM_DEBUG(dbgs() << " - BR/BI is not identified as a composite node.\n" ); |
| 902 | return nullptr; |
| 903 | } |
| 904 | |
| 905 | CompositeNode *Node = |
| 906 | prepareCompositeNode(Operation: ComplexDeinterleavingOperation::CAdd, R: Real, I: Imag); |
| 907 | Node->Rotation = Rotation; |
| 908 | Node->addOperand(Node: ResA); |
| 909 | Node->addOperand(Node: ResB); |
| 910 | return submitCompositeNode(Node); |
| 911 | } |
| 912 | |
| 913 | static bool isInstructionPairAdd(Instruction *A, Instruction *B) { |
| 914 | unsigned OpcA = A->getOpcode(); |
| 915 | unsigned OpcB = B->getOpcode(); |
| 916 | |
| 917 | return (OpcA == Instruction::FSub && OpcB == Instruction::FAdd) || |
| 918 | (OpcA == Instruction::FAdd && OpcB == Instruction::FSub) || |
| 919 | (OpcA == Instruction::Sub && OpcB == Instruction::Add) || |
| 920 | (OpcA == Instruction::Add && OpcB == Instruction::Sub); |
| 921 | } |
| 922 | |
| 923 | static bool isInstructionPairMul(Instruction *A, Instruction *B) { |
| 924 | auto Pattern = |
| 925 | m_BinOp(L: m_FMul(L: m_Value(), R: m_Value()), R: m_FMul(L: m_Value(), R: m_Value())); |
| 926 | |
| 927 | return match(V: A, P: Pattern) && match(V: B, P: Pattern); |
| 928 | } |
| 929 | |
| 930 | static bool isInstructionPotentiallySymmetric(Instruction *I) { |
| 931 | switch (I->getOpcode()) { |
| 932 | case Instruction::FAdd: |
| 933 | case Instruction::FSub: |
| 934 | case Instruction::FMul: |
| 935 | case Instruction::FNeg: |
| 936 | case Instruction::Add: |
| 937 | case Instruction::Sub: |
| 938 | case Instruction::Mul: |
| 939 | return true; |
| 940 | default: |
| 941 | return false; |
| 942 | } |
| 943 | } |
| 944 | |
| 945 | ComplexDeinterleavingGraph::CompositeNode * |
| 946 | ComplexDeinterleavingGraph::identifySymmetricOperation(ComplexValues &Vals) { |
| 947 | auto *FirstReal = cast<Instruction>(Val: Vals[0].Real); |
| 948 | unsigned FirstOpc = FirstReal->getOpcode(); |
| 949 | for (auto &V : Vals) { |
| 950 | auto *Real = cast<Instruction>(Val: V.Real); |
| 951 | auto *Imag = cast<Instruction>(Val: V.Imag); |
| 952 | if (Real->getOpcode() != FirstOpc || Imag->getOpcode() != FirstOpc) |
| 953 | return nullptr; |
| 954 | |
| 955 | if (!isInstructionPotentiallySymmetric(I: Real) || |
| 956 | !isInstructionPotentiallySymmetric(I: Imag)) |
| 957 | return nullptr; |
| 958 | |
| 959 | if (isa<FPMathOperator>(Val: FirstReal)) |
| 960 | if (Real->getFastMathFlags() != FirstReal->getFastMathFlags() || |
| 961 | Imag->getFastMathFlags() != FirstReal->getFastMathFlags()) |
| 962 | return nullptr; |
| 963 | } |
| 964 | |
| 965 | ComplexValues OpVals; |
| 966 | for (auto &V : Vals) { |
| 967 | auto *R0 = cast<Instruction>(Val: V.Real)->getOperand(i: 0); |
| 968 | auto *I0 = cast<Instruction>(Val: V.Imag)->getOperand(i: 0); |
| 969 | OpVals.push_back(Elt: {.Real: R0, .Imag: I0}); |
| 970 | } |
| 971 | |
| 972 | CompositeNode *Op0 = identifyNode(Vals&: OpVals); |
| 973 | CompositeNode *Op1 = nullptr; |
| 974 | if (Op0 == nullptr) |
| 975 | return nullptr; |
| 976 | |
| 977 | if (FirstReal->isBinaryOp()) { |
| 978 | OpVals.clear(); |
| 979 | for (auto &V : Vals) { |
| 980 | auto *R1 = cast<Instruction>(Val: V.Real)->getOperand(i: 1); |
| 981 | auto *I1 = cast<Instruction>(Val: V.Imag)->getOperand(i: 1); |
| 982 | OpVals.push_back(Elt: {.Real: R1, .Imag: I1}); |
| 983 | } |
| 984 | Op1 = identifyNode(Vals&: OpVals); |
| 985 | if (Op1 == nullptr) |
| 986 | return nullptr; |
| 987 | } |
| 988 | |
| 989 | auto Node = |
| 990 | prepareCompositeNode(Operation: ComplexDeinterleavingOperation::Symmetric, Vals); |
| 991 | Node->Opcode = FirstReal->getOpcode(); |
| 992 | if (isa<FPMathOperator>(Val: FirstReal)) |
| 993 | Node->Flags = FirstReal->getFastMathFlags(); |
| 994 | |
| 995 | Node->addOperand(Node: Op0); |
| 996 | if (FirstReal->isBinaryOp()) |
| 997 | Node->addOperand(Node: Op1); |
| 998 | |
| 999 | return submitCompositeNode(Node); |
| 1000 | } |
| 1001 | |
| 1002 | ComplexDeinterleavingGraph::CompositeNode * |
| 1003 | ComplexDeinterleavingGraph::identifyDotProduct(Value *V) { |
| 1004 | if (!TL->isComplexDeinterleavingOperationSupported( |
| 1005 | Operation: ComplexDeinterleavingOperation::CDot, Ty: V->getType())) { |
| 1006 | LLVM_DEBUG(dbgs() << "Target doesn't support complex deinterleaving " |
| 1007 | "operation CDot with the type " |
| 1008 | << *V->getType() << "\n" ); |
| 1009 | return nullptr; |
| 1010 | } |
| 1011 | |
| 1012 | auto *Inst = cast<Instruction>(Val: V); |
| 1013 | auto *RealUser = cast<Instruction>(Val: *Inst->user_begin()); |
| 1014 | |
| 1015 | CompositeNode *CN = |
| 1016 | prepareCompositeNode(Operation: ComplexDeinterleavingOperation::CDot, R: Inst, I: nullptr); |
| 1017 | |
| 1018 | CompositeNode *ANode = nullptr; |
| 1019 | |
| 1020 | const Intrinsic::ID PartialReduceInt = Intrinsic::vector_partial_reduce_add; |
| 1021 | |
| 1022 | Value *AReal = nullptr; |
| 1023 | Value *AImag = nullptr; |
| 1024 | Value *BReal = nullptr; |
| 1025 | Value *BImag = nullptr; |
| 1026 | Value *Phi = nullptr; |
| 1027 | |
| 1028 | auto UnwrapCast = [](Value *V) -> Value * { |
| 1029 | if (auto *CI = dyn_cast<CastInst>(Val: V)) |
| 1030 | return CI->getOperand(i_nocapture: 0); |
| 1031 | return V; |
| 1032 | }; |
| 1033 | |
| 1034 | auto PatternRot0 = m_Intrinsic<PartialReduceInt>( |
| 1035 | Op0: m_Intrinsic<PartialReduceInt>(Op0: m_Value(V&: Phi), |
| 1036 | Op1: m_Mul(L: m_Value(V&: BReal), R: m_Value(V&: AReal))), |
| 1037 | Op1: m_Neg(V: m_Mul(L: m_Value(V&: BImag), R: m_Value(V&: AImag)))); |
| 1038 | |
| 1039 | auto PatternRot270 = m_Intrinsic<PartialReduceInt>( |
| 1040 | Op0: m_Intrinsic<PartialReduceInt>( |
| 1041 | Op0: m_Value(V&: Phi), Op1: m_Neg(V: m_Mul(L: m_Value(V&: BReal), R: m_Value(V&: AImag)))), |
| 1042 | Op1: m_Mul(L: m_Value(V&: BImag), R: m_Value(V&: AReal))); |
| 1043 | |
| 1044 | if (match(V: Inst, P: PatternRot0)) { |
| 1045 | CN->Rotation = ComplexDeinterleavingRotation::Rotation_0; |
| 1046 | } else if (match(V: Inst, P: PatternRot270)) { |
| 1047 | CN->Rotation = ComplexDeinterleavingRotation::Rotation_270; |
| 1048 | } else { |
| 1049 | Value *A0, *A1; |
| 1050 | // The rotations 90 and 180 share the same operation pattern, so inspect the |
| 1051 | // order of the operands, identifying where the real and imaginary |
| 1052 | // components of A go, to discern between the aforementioned rotations. |
| 1053 | auto PatternRot90Rot180 = m_Intrinsic<PartialReduceInt>( |
| 1054 | Op0: m_Intrinsic<PartialReduceInt>(Op0: m_Value(V&: Phi), |
| 1055 | Op1: m_Mul(L: m_Value(V&: BReal), R: m_Value(V&: A0))), |
| 1056 | Op1: m_Mul(L: m_Value(V&: BImag), R: m_Value(V&: A1))); |
| 1057 | |
| 1058 | if (!match(V: Inst, P: PatternRot90Rot180)) |
| 1059 | return nullptr; |
| 1060 | |
| 1061 | A0 = UnwrapCast(A0); |
| 1062 | A1 = UnwrapCast(A1); |
| 1063 | |
| 1064 | // Test if A0 is real/A1 is imag |
| 1065 | ANode = identifyNode(R: A0, I: A1); |
| 1066 | if (!ANode) { |
| 1067 | // Test if A0 is imag/A1 is real |
| 1068 | ANode = identifyNode(R: A1, I: A0); |
| 1069 | // Unable to identify operand components, thus unable to identify rotation |
| 1070 | if (!ANode) |
| 1071 | return nullptr; |
| 1072 | CN->Rotation = ComplexDeinterleavingRotation::Rotation_90; |
| 1073 | AReal = A1; |
| 1074 | AImag = A0; |
| 1075 | } else { |
| 1076 | AReal = A0; |
| 1077 | AImag = A1; |
| 1078 | CN->Rotation = ComplexDeinterleavingRotation::Rotation_180; |
| 1079 | } |
| 1080 | } |
| 1081 | |
| 1082 | AReal = UnwrapCast(AReal); |
| 1083 | AImag = UnwrapCast(AImag); |
| 1084 | BReal = UnwrapCast(BReal); |
| 1085 | BImag = UnwrapCast(BImag); |
| 1086 | |
| 1087 | VectorType *VTy = cast<VectorType>(Val: V->getType()); |
| 1088 | Type *ExpectedOperandTy = VectorType::getSubdividedVectorType(VTy, NumSubdivs: 2); |
| 1089 | if (AReal->getType() != ExpectedOperandTy) |
| 1090 | return nullptr; |
| 1091 | if (AImag->getType() != ExpectedOperandTy) |
| 1092 | return nullptr; |
| 1093 | if (BReal->getType() != ExpectedOperandTy) |
| 1094 | return nullptr; |
| 1095 | if (BImag->getType() != ExpectedOperandTy) |
| 1096 | return nullptr; |
| 1097 | |
| 1098 | if (Phi->getType() != VTy && RealUser->getType() != VTy) |
| 1099 | return nullptr; |
| 1100 | |
| 1101 | CompositeNode *Node = identifyNode(R: AReal, I: AImag); |
| 1102 | |
| 1103 | // In the case that a node was identified to figure out the rotation, ensure |
| 1104 | // that trying to identify a node with AReal and AImag post-unwrap results in |
| 1105 | // the same node |
| 1106 | if (ANode && Node != ANode) { |
| 1107 | LLVM_DEBUG( |
| 1108 | dbgs() |
| 1109 | << "Identified node is different from previously identified node. " |
| 1110 | "Unable to confidently generate a complex operation node\n" ); |
| 1111 | return nullptr; |
| 1112 | } |
| 1113 | |
| 1114 | CN->addOperand(Node); |
| 1115 | CN->addOperand(Node: identifyNode(R: BReal, I: BImag)); |
| 1116 | CN->addOperand(Node: identifyNode(R: Phi, I: RealUser)); |
| 1117 | |
| 1118 | return submitCompositeNode(Node: CN); |
| 1119 | } |
| 1120 | |
| 1121 | ComplexDeinterleavingGraph::CompositeNode * |
| 1122 | ComplexDeinterleavingGraph::identifyPartialReduction(Value *R, Value *I) { |
| 1123 | // Partial reductions don't support non-vector types, so check these first |
| 1124 | if (!isa<VectorType>(Val: R->getType()) || !isa<VectorType>(Val: I->getType())) |
| 1125 | return nullptr; |
| 1126 | |
| 1127 | if (!R->hasUseList() || !I->hasUseList()) |
| 1128 | return nullptr; |
| 1129 | |
| 1130 | auto CommonUser = |
| 1131 | findCommonBetweenCollections<Value *>(A: R->users(), B: I->users()); |
| 1132 | if (!CommonUser) |
| 1133 | return nullptr; |
| 1134 | |
| 1135 | auto *IInst = dyn_cast<IntrinsicInst>(Val: *CommonUser); |
| 1136 | if (!IInst || IInst->getIntrinsicID() != Intrinsic::vector_partial_reduce_add) |
| 1137 | return nullptr; |
| 1138 | |
| 1139 | if (CompositeNode *CN = identifyDotProduct(V: IInst)) |
| 1140 | return CN; |
| 1141 | |
| 1142 | return nullptr; |
| 1143 | } |
| 1144 | |
| 1145 | ComplexDeinterleavingGraph::CompositeNode * |
| 1146 | ComplexDeinterleavingGraph::identifyNode(ComplexValues &Vals) { |
| 1147 | auto It = CachedResult.find(Val: Vals); |
| 1148 | if (It != CachedResult.end()) { |
| 1149 | LLVM_DEBUG(dbgs() << " - Folding to existing node\n" ); |
| 1150 | return It->second; |
| 1151 | } |
| 1152 | |
| 1153 | if (Vals.size() == 1) { |
| 1154 | assert(Factor == 2 && "Can only handle interleave factors of 2" ); |
| 1155 | Value *R = Vals[0].Real; |
| 1156 | Value *I = Vals[0].Imag; |
| 1157 | if (CompositeNode *CN = identifyPartialReduction(R, I)) |
| 1158 | return CN; |
| 1159 | bool IsReduction = RealPHI == R && (!ImagPHI || ImagPHI == I); |
| 1160 | if (!IsReduction && R->getType() != I->getType()) |
| 1161 | return nullptr; |
| 1162 | } |
| 1163 | |
| 1164 | if (CompositeNode *CN = identifySplat(Vals)) |
| 1165 | return CN; |
| 1166 | |
| 1167 | for (auto &V : Vals) { |
| 1168 | auto *Real = dyn_cast<Instruction>(Val: V.Real); |
| 1169 | auto *Imag = dyn_cast<Instruction>(Val: V.Imag); |
| 1170 | if (!Real || !Imag) |
| 1171 | return nullptr; |
| 1172 | } |
| 1173 | |
| 1174 | if (CompositeNode *CN = identifyDeinterleave(Vals)) |
| 1175 | return CN; |
| 1176 | |
| 1177 | if (Vals.size() == 1) { |
| 1178 | assert(Factor == 2 && "Can only handle interleave factors of 2" ); |
| 1179 | auto *Real = dyn_cast<Instruction>(Val: Vals[0].Real); |
| 1180 | auto *Imag = dyn_cast<Instruction>(Val: Vals[0].Imag); |
| 1181 | if (CompositeNode *CN = identifyPHINode(Real, Imag)) |
| 1182 | return CN; |
| 1183 | |
| 1184 | if (CompositeNode *CN = identifySelectNode(Real, Imag)) |
| 1185 | return CN; |
| 1186 | |
| 1187 | auto *VTy = cast<VectorType>(Val: Real->getType()); |
| 1188 | auto *NewVTy = VectorType::getDoubleElementsVectorType(VTy); |
| 1189 | |
| 1190 | bool HasCMulSupport = TL->isComplexDeinterleavingOperationSupported( |
| 1191 | Operation: ComplexDeinterleavingOperation::CMulPartial, Ty: NewVTy); |
| 1192 | bool HasCAddSupport = TL->isComplexDeinterleavingOperationSupported( |
| 1193 | Operation: ComplexDeinterleavingOperation::CAdd, Ty: NewVTy); |
| 1194 | |
| 1195 | if (HasCMulSupport && isInstructionPairMul(A: Real, B: Imag)) { |
| 1196 | if (CompositeNode *CN = identifyPartialMul(Real, Imag)) |
| 1197 | return CN; |
| 1198 | } |
| 1199 | |
| 1200 | if (HasCAddSupport && isInstructionPairAdd(A: Real, B: Imag)) { |
| 1201 | if (CompositeNode *CN = identifyAdd(Real, Imag)) |
| 1202 | return CN; |
| 1203 | } |
| 1204 | |
| 1205 | if (HasCMulSupport && HasCAddSupport) { |
| 1206 | if (CompositeNode *CN = identifyReassocNodes(I: Real, J: Imag)) { |
| 1207 | return CN; |
| 1208 | } |
| 1209 | } |
| 1210 | } |
| 1211 | |
| 1212 | if (CompositeNode *CN = identifySymmetricOperation(Vals)) |
| 1213 | return CN; |
| 1214 | |
| 1215 | LLVM_DEBUG(dbgs() << " - Not recognised as a valid pattern.\n" ); |
| 1216 | CachedResult[Vals] = nullptr; |
| 1217 | return nullptr; |
| 1218 | } |
| 1219 | |
| 1220 | ComplexDeinterleavingGraph::CompositeNode * |
| 1221 | ComplexDeinterleavingGraph::identifyReassocNodes(Instruction *Real, |
| 1222 | Instruction *Imag) { |
| 1223 | auto IsOperationSupported = [](unsigned Opcode) -> bool { |
| 1224 | return Opcode == Instruction::FAdd || Opcode == Instruction::FSub || |
| 1225 | Opcode == Instruction::FNeg || Opcode == Instruction::Add || |
| 1226 | Opcode == Instruction::Sub; |
| 1227 | }; |
| 1228 | |
| 1229 | if (!IsOperationSupported(Real->getOpcode()) || |
| 1230 | !IsOperationSupported(Imag->getOpcode())) |
| 1231 | return nullptr; |
| 1232 | |
| 1233 | std::optional<FastMathFlags> Flags; |
| 1234 | if (isa<FPMathOperator>(Val: Real)) { |
| 1235 | if (Real->getFastMathFlags() != Imag->getFastMathFlags()) { |
| 1236 | LLVM_DEBUG(dbgs() << "The flags in Real and Imaginary instructions are " |
| 1237 | "not identical\n" ); |
| 1238 | return nullptr; |
| 1239 | } |
| 1240 | |
| 1241 | Flags = Real->getFastMathFlags(); |
| 1242 | if (!Flags->allowReassoc()) { |
| 1243 | LLVM_DEBUG( |
| 1244 | dbgs() |
| 1245 | << "the 'Reassoc' attribute is missing in the FastMath flags\n" ); |
| 1246 | return nullptr; |
| 1247 | } |
| 1248 | } |
| 1249 | |
| 1250 | // Collect multiplications and addend instructions from the given instruction |
| 1251 | // while traversing it operands. Additionally, verify that all instructions |
| 1252 | // have the same fast math flags. |
| 1253 | auto Collect = [&Flags](Instruction *Insn, SmallVectorImpl<Product> &Muls, |
| 1254 | AddendList &Addends) -> bool { |
| 1255 | SmallVector<PointerIntPair<Value *, 1, bool>> Worklist = {{Insn, true}}; |
| 1256 | SmallPtrSet<Value *, 8> Visited; |
| 1257 | while (!Worklist.empty()) { |
| 1258 | auto [V, IsPositive] = Worklist.pop_back_val(); |
| 1259 | if (!Visited.insert(Ptr: V).second) |
| 1260 | continue; |
| 1261 | |
| 1262 | Instruction *I = dyn_cast<Instruction>(Val: V); |
| 1263 | if (!I) { |
| 1264 | Addends.emplace_back(Vs&: V, Vs&: IsPositive); |
| 1265 | continue; |
| 1266 | } |
| 1267 | |
| 1268 | // If an instruction has more than one user, it indicates that it either |
| 1269 | // has an external user, which will be later checked by the checkNodes |
| 1270 | // function, or it is a subexpression utilized by multiple expressions. In |
| 1271 | // the latter case, we will attempt to separately identify the complex |
| 1272 | // operation from here in order to create a shared |
| 1273 | // ComplexDeinterleavingCompositeNode. |
| 1274 | if (I != Insn && I->hasNUsesOrMore(N: 2)) { |
| 1275 | LLVM_DEBUG(dbgs() << "Found potential sub-expression: " << *I << "\n" ); |
| 1276 | Addends.emplace_back(Vs&: I, Vs&: IsPositive); |
| 1277 | continue; |
| 1278 | } |
| 1279 | switch (I->getOpcode()) { |
| 1280 | case Instruction::FAdd: |
| 1281 | case Instruction::Add: |
| 1282 | Worklist.emplace_back(Args: I->getOperand(i: 1), Args&: IsPositive); |
| 1283 | Worklist.emplace_back(Args: I->getOperand(i: 0), Args&: IsPositive); |
| 1284 | break; |
| 1285 | case Instruction::FSub: |
| 1286 | Worklist.emplace_back(Args: I->getOperand(i: 1), Args: !IsPositive); |
| 1287 | Worklist.emplace_back(Args: I->getOperand(i: 0), Args&: IsPositive); |
| 1288 | break; |
| 1289 | case Instruction::Sub: |
| 1290 | if (isNeg(V: I)) { |
| 1291 | Worklist.emplace_back(Args: getNegOperand(V: I), Args: !IsPositive); |
| 1292 | } else { |
| 1293 | Worklist.emplace_back(Args: I->getOperand(i: 1), Args: !IsPositive); |
| 1294 | Worklist.emplace_back(Args: I->getOperand(i: 0), Args&: IsPositive); |
| 1295 | } |
| 1296 | break; |
| 1297 | case Instruction::FMul: |
| 1298 | case Instruction::Mul: { |
| 1299 | Value *A, *B; |
| 1300 | if (isNeg(V: I->getOperand(i: 0))) { |
| 1301 | A = getNegOperand(V: I->getOperand(i: 0)); |
| 1302 | IsPositive = !IsPositive; |
| 1303 | } else { |
| 1304 | A = I->getOperand(i: 0); |
| 1305 | } |
| 1306 | |
| 1307 | if (isNeg(V: I->getOperand(i: 1))) { |
| 1308 | B = getNegOperand(V: I->getOperand(i: 1)); |
| 1309 | IsPositive = !IsPositive; |
| 1310 | } else { |
| 1311 | B = I->getOperand(i: 1); |
| 1312 | } |
| 1313 | Muls.push_back(Elt: Product{.Multiplier: A, .Multiplicand: B, .IsPositive: IsPositive}); |
| 1314 | break; |
| 1315 | } |
| 1316 | case Instruction::FNeg: |
| 1317 | Worklist.emplace_back(Args: I->getOperand(i: 0), Args: !IsPositive); |
| 1318 | break; |
| 1319 | default: |
| 1320 | Addends.emplace_back(Vs&: I, Vs&: IsPositive); |
| 1321 | continue; |
| 1322 | } |
| 1323 | |
| 1324 | if (Flags && I->getFastMathFlags() != *Flags) { |
| 1325 | LLVM_DEBUG(dbgs() << "The instruction's fast math flags are " |
| 1326 | "inconsistent with the root instructions' flags: " |
| 1327 | << *I << "\n" ); |
| 1328 | return false; |
| 1329 | } |
| 1330 | } |
| 1331 | return true; |
| 1332 | }; |
| 1333 | |
| 1334 | SmallVector<Product> RealMuls, ImagMuls; |
| 1335 | AddendList RealAddends, ImagAddends; |
| 1336 | if (!Collect(Real, RealMuls, RealAddends) || |
| 1337 | !Collect(Imag, ImagMuls, ImagAddends)) |
| 1338 | return nullptr; |
| 1339 | |
| 1340 | if (RealAddends.size() != ImagAddends.size()) |
| 1341 | return nullptr; |
| 1342 | |
| 1343 | CompositeNode *FinalNode = nullptr; |
| 1344 | if (!RealMuls.empty() || !ImagMuls.empty()) { |
| 1345 | // If there are multiplicands, extract positive addend and use it as an |
| 1346 | // accumulator |
| 1347 | FinalNode = extractPositiveAddend(RealAddends, ImagAddends); |
| 1348 | FinalNode = identifyMultiplications(RealMuls, ImagMuls, Accumulator: FinalNode); |
| 1349 | if (!FinalNode) |
| 1350 | return nullptr; |
| 1351 | } |
| 1352 | |
| 1353 | // Identify and process remaining additions |
| 1354 | if (!RealAddends.empty() || !ImagAddends.empty()) { |
| 1355 | FinalNode = identifyAdditions(RealAddends, ImagAddends, Flags, Accumulator: FinalNode); |
| 1356 | if (!FinalNode) |
| 1357 | return nullptr; |
| 1358 | } |
| 1359 | assert(FinalNode && "FinalNode can not be nullptr here" ); |
| 1360 | assert(FinalNode->Vals.size() == 1); |
| 1361 | // Set the Real and Imag fields of the final node and submit it |
| 1362 | FinalNode->Vals[0].Real = Real; |
| 1363 | FinalNode->Vals[0].Imag = Imag; |
| 1364 | submitCompositeNode(Node: FinalNode); |
| 1365 | return FinalNode; |
| 1366 | } |
| 1367 | |
| 1368 | bool ComplexDeinterleavingGraph::collectPartialMuls( |
| 1369 | ArrayRef<Product> RealMuls, ArrayRef<Product> ImagMuls, |
| 1370 | SmallVectorImpl<PartialMulCandidate> &PartialMulCandidates) { |
| 1371 | // Helper function to extract a common operand from two products |
| 1372 | auto FindCommonInstruction = [](const Product &Real, |
| 1373 | const Product &Imag) -> Value * { |
| 1374 | if (Real.Multiplicand == Imag.Multiplicand || |
| 1375 | Real.Multiplicand == Imag.Multiplier) |
| 1376 | return Real.Multiplicand; |
| 1377 | |
| 1378 | if (Real.Multiplier == Imag.Multiplicand || |
| 1379 | Real.Multiplier == Imag.Multiplier) |
| 1380 | return Real.Multiplier; |
| 1381 | |
| 1382 | return nullptr; |
| 1383 | }; |
| 1384 | |
| 1385 | // Iterating over real and imaginary multiplications to find common operands |
| 1386 | // If a common operand is found, a partial multiplication candidate is created |
| 1387 | // and added to the candidates vector The function returns false if no common |
| 1388 | // operands are found for any product |
| 1389 | for (unsigned i = 0; i < RealMuls.size(); ++i) { |
| 1390 | bool FoundCommon = false; |
| 1391 | for (unsigned j = 0; j < ImagMuls.size(); ++j) { |
| 1392 | auto *Common = FindCommonInstruction(RealMuls[i], ImagMuls[j]); |
| 1393 | if (!Common) |
| 1394 | continue; |
| 1395 | |
| 1396 | auto *A = RealMuls[i].Multiplicand == Common ? RealMuls[i].Multiplier |
| 1397 | : RealMuls[i].Multiplicand; |
| 1398 | auto *B = ImagMuls[j].Multiplicand == Common ? ImagMuls[j].Multiplier |
| 1399 | : ImagMuls[j].Multiplicand; |
| 1400 | |
| 1401 | auto Node = identifyNode(R: A, I: B); |
| 1402 | if (Node) { |
| 1403 | FoundCommon = true; |
| 1404 | PartialMulCandidates.push_back(Elt: {.Common: Common, .Node: Node, .RealIdx: i, .ImagIdx: j, .IsNodeInverted: false}); |
| 1405 | } |
| 1406 | |
| 1407 | Node = identifyNode(R: B, I: A); |
| 1408 | if (Node) { |
| 1409 | FoundCommon = true; |
| 1410 | PartialMulCandidates.push_back(Elt: {.Common: Common, .Node: Node, .RealIdx: i, .ImagIdx: j, .IsNodeInverted: true}); |
| 1411 | } |
| 1412 | } |
| 1413 | if (!FoundCommon) |
| 1414 | return false; |
| 1415 | } |
| 1416 | return true; |
| 1417 | } |
| 1418 | |
| 1419 | ComplexDeinterleavingGraph::CompositeNode * |
| 1420 | ComplexDeinterleavingGraph::identifyMultiplications( |
| 1421 | SmallVectorImpl<Product> &RealMuls, SmallVectorImpl<Product> &ImagMuls, |
| 1422 | CompositeNode *Accumulator = nullptr) { |
| 1423 | if (RealMuls.size() != ImagMuls.size()) |
| 1424 | return nullptr; |
| 1425 | |
| 1426 | SmallVector<PartialMulCandidate> Info; |
| 1427 | if (!collectPartialMuls(RealMuls, ImagMuls, PartialMulCandidates&: Info)) |
| 1428 | return nullptr; |
| 1429 | |
| 1430 | // Map to store common instruction to node pointers |
| 1431 | DenseMap<Value *, CompositeNode *> CommonToNode; |
| 1432 | SmallVector<bool> Processed(Info.size(), false); |
| 1433 | for (unsigned I = 0; I < Info.size(); ++I) { |
| 1434 | if (Processed[I]) |
| 1435 | continue; |
| 1436 | |
| 1437 | PartialMulCandidate &InfoA = Info[I]; |
| 1438 | for (unsigned J = I + 1; J < Info.size(); ++J) { |
| 1439 | if (Processed[J]) |
| 1440 | continue; |
| 1441 | |
| 1442 | PartialMulCandidate &InfoB = Info[J]; |
| 1443 | auto *InfoReal = &InfoA; |
| 1444 | auto *InfoImag = &InfoB; |
| 1445 | |
| 1446 | auto NodeFromCommon = identifyNode(R: InfoReal->Common, I: InfoImag->Common); |
| 1447 | if (!NodeFromCommon) { |
| 1448 | std::swap(a&: InfoReal, b&: InfoImag); |
| 1449 | NodeFromCommon = identifyNode(R: InfoReal->Common, I: InfoImag->Common); |
| 1450 | } |
| 1451 | if (!NodeFromCommon) |
| 1452 | continue; |
| 1453 | |
| 1454 | CommonToNode[InfoReal->Common] = NodeFromCommon; |
| 1455 | CommonToNode[InfoImag->Common] = NodeFromCommon; |
| 1456 | Processed[I] = true; |
| 1457 | Processed[J] = true; |
| 1458 | } |
| 1459 | } |
| 1460 | |
| 1461 | SmallVector<bool> ProcessedReal(RealMuls.size(), false); |
| 1462 | SmallVector<bool> ProcessedImag(ImagMuls.size(), false); |
| 1463 | CompositeNode *Result = Accumulator; |
| 1464 | for (auto &PMI : Info) { |
| 1465 | if (ProcessedReal[PMI.RealIdx] || ProcessedImag[PMI.ImagIdx]) |
| 1466 | continue; |
| 1467 | |
| 1468 | auto It = CommonToNode.find(Val: PMI.Common); |
| 1469 | // TODO: Process independent complex multiplications. Cases like this: |
| 1470 | // A.real() * B where both A and B are complex numbers. |
| 1471 | if (It == CommonToNode.end()) { |
| 1472 | LLVM_DEBUG({ |
| 1473 | dbgs() << "Unprocessed independent partial multiplication:\n" ; |
| 1474 | for (auto *Mul : {&RealMuls[PMI.RealIdx], &RealMuls[PMI.RealIdx]}) |
| 1475 | dbgs().indent(4) << (Mul->IsPositive ? "+" : "-" ) << *Mul->Multiplier |
| 1476 | << " multiplied by " << *Mul->Multiplicand << "\n" ; |
| 1477 | }); |
| 1478 | return nullptr; |
| 1479 | } |
| 1480 | |
| 1481 | auto &RealMul = RealMuls[PMI.RealIdx]; |
| 1482 | auto &ImagMul = ImagMuls[PMI.ImagIdx]; |
| 1483 | |
| 1484 | auto NodeA = It->second; |
| 1485 | auto NodeB = PMI.Node; |
| 1486 | auto IsMultiplicandReal = PMI.Common == NodeA->Vals[0].Real; |
| 1487 | // The following table illustrates the relationship between multiplications |
| 1488 | // and rotations. If we consider the multiplication (X + iY) * (U + iV), we |
| 1489 | // can see: |
| 1490 | // |
| 1491 | // Rotation | Real | Imag | |
| 1492 | // ---------+--------+--------+ |
| 1493 | // 0 | x * u | x * v | |
| 1494 | // 90 | -y * v | y * u | |
| 1495 | // 180 | -x * u | -x * v | |
| 1496 | // 270 | y * v | -y * u | |
| 1497 | // |
| 1498 | // Check if the candidate can indeed be represented by partial |
| 1499 | // multiplication |
| 1500 | // TODO: Add support for multiplication by complex one |
| 1501 | if ((IsMultiplicandReal && PMI.IsNodeInverted) || |
| 1502 | (!IsMultiplicandReal && !PMI.IsNodeInverted)) |
| 1503 | continue; |
| 1504 | |
| 1505 | // Determine the rotation based on the multiplications |
| 1506 | ComplexDeinterleavingRotation Rotation; |
| 1507 | if (IsMultiplicandReal) { |
| 1508 | // Detect 0 and 180 degrees rotation |
| 1509 | if (RealMul.IsPositive && ImagMul.IsPositive) |
| 1510 | Rotation = llvm::ComplexDeinterleavingRotation::Rotation_0; |
| 1511 | else if (!RealMul.IsPositive && !ImagMul.IsPositive) |
| 1512 | Rotation = llvm::ComplexDeinterleavingRotation::Rotation_180; |
| 1513 | else |
| 1514 | continue; |
| 1515 | |
| 1516 | } else { |
| 1517 | // Detect 90 and 270 degrees rotation |
| 1518 | if (!RealMul.IsPositive && ImagMul.IsPositive) |
| 1519 | Rotation = llvm::ComplexDeinterleavingRotation::Rotation_90; |
| 1520 | else if (RealMul.IsPositive && !ImagMul.IsPositive) |
| 1521 | Rotation = llvm::ComplexDeinterleavingRotation::Rotation_270; |
| 1522 | else |
| 1523 | continue; |
| 1524 | } |
| 1525 | |
| 1526 | LLVM_DEBUG({ |
| 1527 | dbgs() << "Identified partial multiplication (X, Y) * (U, V):\n" ; |
| 1528 | dbgs().indent(4) << "X: " << *NodeA->Vals[0].Real << "\n" ; |
| 1529 | dbgs().indent(4) << "Y: " << *NodeA->Vals[0].Imag << "\n" ; |
| 1530 | dbgs().indent(4) << "U: " << *NodeB->Vals[0].Real << "\n" ; |
| 1531 | dbgs().indent(4) << "V: " << *NodeB->Vals[0].Imag << "\n" ; |
| 1532 | dbgs().indent(4) << "Rotation - " << (int)Rotation * 90 << "\n" ; |
| 1533 | }); |
| 1534 | |
| 1535 | CompositeNode *NodeMul = prepareCompositeNode( |
| 1536 | Operation: ComplexDeinterleavingOperation::CMulPartial, R: nullptr, I: nullptr); |
| 1537 | NodeMul->Rotation = Rotation; |
| 1538 | NodeMul->addOperand(Node: NodeA); |
| 1539 | NodeMul->addOperand(Node: NodeB); |
| 1540 | if (Result) |
| 1541 | NodeMul->addOperand(Node: Result); |
| 1542 | submitCompositeNode(Node: NodeMul); |
| 1543 | Result = NodeMul; |
| 1544 | ProcessedReal[PMI.RealIdx] = true; |
| 1545 | ProcessedImag[PMI.ImagIdx] = true; |
| 1546 | } |
| 1547 | |
| 1548 | // Ensure all products have been processed, if not return nullptr. |
| 1549 | if (!all_of(Range&: ProcessedReal, P: [](bool V) { return V; }) || |
| 1550 | !all_of(Range&: ProcessedImag, P: [](bool V) { return V; })) { |
| 1551 | |
| 1552 | // Dump debug information about which partial multiplications are not |
| 1553 | // processed. |
| 1554 | LLVM_DEBUG({ |
| 1555 | dbgs() << "Unprocessed products (Real):\n" ; |
| 1556 | for (size_t i = 0; i < ProcessedReal.size(); ++i) { |
| 1557 | if (!ProcessedReal[i]) |
| 1558 | dbgs().indent(4) << (RealMuls[i].IsPositive ? "+" : "-" ) |
| 1559 | << *RealMuls[i].Multiplier << " multiplied by " |
| 1560 | << *RealMuls[i].Multiplicand << "\n" ; |
| 1561 | } |
| 1562 | dbgs() << "Unprocessed products (Imag):\n" ; |
| 1563 | for (size_t i = 0; i < ProcessedImag.size(); ++i) { |
| 1564 | if (!ProcessedImag[i]) |
| 1565 | dbgs().indent(4) << (ImagMuls[i].IsPositive ? "+" : "-" ) |
| 1566 | << *ImagMuls[i].Multiplier << " multiplied by " |
| 1567 | << *ImagMuls[i].Multiplicand << "\n" ; |
| 1568 | } |
| 1569 | }); |
| 1570 | return nullptr; |
| 1571 | } |
| 1572 | |
| 1573 | return Result; |
| 1574 | } |
| 1575 | |
| 1576 | ComplexDeinterleavingGraph::CompositeNode * |
| 1577 | ComplexDeinterleavingGraph::identifyAdditions( |
| 1578 | AddendList &RealAddends, AddendList &ImagAddends, |
| 1579 | std::optional<FastMathFlags> Flags, CompositeNode *Accumulator = nullptr) { |
| 1580 | if (RealAddends.size() != ImagAddends.size()) |
| 1581 | return nullptr; |
| 1582 | |
| 1583 | CompositeNode *Result = nullptr; |
| 1584 | // If we have accumulator use it as first addend |
| 1585 | if (Accumulator) |
| 1586 | Result = Accumulator; |
| 1587 | // Otherwise find an element with both positive real and imaginary parts. |
| 1588 | else |
| 1589 | Result = extractPositiveAddend(RealAddends, ImagAddends); |
| 1590 | |
| 1591 | if (!Result) |
| 1592 | return nullptr; |
| 1593 | |
| 1594 | while (!RealAddends.empty()) { |
| 1595 | auto ItR = RealAddends.begin(); |
| 1596 | auto [R, IsPositiveR] = *ItR; |
| 1597 | |
| 1598 | bool FoundImag = false; |
| 1599 | for (auto ItI = ImagAddends.begin(); ItI != ImagAddends.end(); ++ItI) { |
| 1600 | auto [I, IsPositiveI] = *ItI; |
| 1601 | ComplexDeinterleavingRotation Rotation; |
| 1602 | if (IsPositiveR && IsPositiveI) |
| 1603 | Rotation = ComplexDeinterleavingRotation::Rotation_0; |
| 1604 | else if (!IsPositiveR && IsPositiveI) |
| 1605 | Rotation = ComplexDeinterleavingRotation::Rotation_90; |
| 1606 | else if (!IsPositiveR && !IsPositiveI) |
| 1607 | Rotation = ComplexDeinterleavingRotation::Rotation_180; |
| 1608 | else |
| 1609 | Rotation = ComplexDeinterleavingRotation::Rotation_270; |
| 1610 | |
| 1611 | CompositeNode *AddNode = nullptr; |
| 1612 | if (Rotation == ComplexDeinterleavingRotation::Rotation_0 || |
| 1613 | Rotation == ComplexDeinterleavingRotation::Rotation_180) { |
| 1614 | AddNode = identifyNode(R, I); |
| 1615 | } else { |
| 1616 | AddNode = identifyNode(R: I, I: R); |
| 1617 | } |
| 1618 | if (AddNode) { |
| 1619 | LLVM_DEBUG({ |
| 1620 | dbgs() << "Identified addition:\n" ; |
| 1621 | dbgs().indent(4) << "X: " << *R << "\n" ; |
| 1622 | dbgs().indent(4) << "Y: " << *I << "\n" ; |
| 1623 | dbgs().indent(4) << "Rotation - " << (int)Rotation * 90 << "\n" ; |
| 1624 | }); |
| 1625 | |
| 1626 | CompositeNode *TmpNode = nullptr; |
| 1627 | if (Rotation == llvm::ComplexDeinterleavingRotation::Rotation_0) { |
| 1628 | TmpNode = prepareCompositeNode( |
| 1629 | Operation: ComplexDeinterleavingOperation::Symmetric, R: nullptr, I: nullptr); |
| 1630 | if (Flags) { |
| 1631 | TmpNode->Opcode = Instruction::FAdd; |
| 1632 | TmpNode->Flags = *Flags; |
| 1633 | } else { |
| 1634 | TmpNode->Opcode = Instruction::Add; |
| 1635 | } |
| 1636 | } else if (Rotation == |
| 1637 | llvm::ComplexDeinterleavingRotation::Rotation_180) { |
| 1638 | TmpNode = prepareCompositeNode( |
| 1639 | Operation: ComplexDeinterleavingOperation::Symmetric, R: nullptr, I: nullptr); |
| 1640 | if (Flags) { |
| 1641 | TmpNode->Opcode = Instruction::FSub; |
| 1642 | TmpNode->Flags = *Flags; |
| 1643 | } else { |
| 1644 | TmpNode->Opcode = Instruction::Sub; |
| 1645 | } |
| 1646 | } else { |
| 1647 | TmpNode = prepareCompositeNode(Operation: ComplexDeinterleavingOperation::CAdd, |
| 1648 | R: nullptr, I: nullptr); |
| 1649 | TmpNode->Rotation = Rotation; |
| 1650 | } |
| 1651 | |
| 1652 | TmpNode->addOperand(Node: Result); |
| 1653 | TmpNode->addOperand(Node: AddNode); |
| 1654 | submitCompositeNode(Node: TmpNode); |
| 1655 | Result = TmpNode; |
| 1656 | RealAddends.erase(I: ItR); |
| 1657 | ImagAddends.erase(I: ItI); |
| 1658 | FoundImag = true; |
| 1659 | break; |
| 1660 | } |
| 1661 | } |
| 1662 | if (!FoundImag) |
| 1663 | return nullptr; |
| 1664 | } |
| 1665 | return Result; |
| 1666 | } |
| 1667 | |
| 1668 | ComplexDeinterleavingGraph::CompositeNode * |
| 1669 | ComplexDeinterleavingGraph::(AddendList &RealAddends, |
| 1670 | AddendList &ImagAddends) { |
| 1671 | for (auto ItR = RealAddends.begin(); ItR != RealAddends.end(); ++ItR) { |
| 1672 | for (auto ItI = ImagAddends.begin(); ItI != ImagAddends.end(); ++ItI) { |
| 1673 | auto [R, IsPositiveR] = *ItR; |
| 1674 | auto [I, IsPositiveI] = *ItI; |
| 1675 | if (IsPositiveR && IsPositiveI) { |
| 1676 | auto Result = identifyNode(R, I); |
| 1677 | if (Result) { |
| 1678 | RealAddends.erase(I: ItR); |
| 1679 | ImagAddends.erase(I: ItI); |
| 1680 | return Result; |
| 1681 | } |
| 1682 | } |
| 1683 | } |
| 1684 | } |
| 1685 | return nullptr; |
| 1686 | } |
| 1687 | |
| 1688 | bool ComplexDeinterleavingGraph::identifyNodes(Instruction *RootI) { |
| 1689 | // This potential root instruction might already have been recognized as |
| 1690 | // reduction. Because RootToNode maps both Real and Imaginary parts to |
| 1691 | // CompositeNode we should choose only one either Real or Imag instruction to |
| 1692 | // use as an anchor for generating complex instruction. |
| 1693 | auto It = RootToNode.find(Val: RootI); |
| 1694 | if (It != RootToNode.end()) { |
| 1695 | auto RootNode = It->second; |
| 1696 | assert(RootNode->Operation == |
| 1697 | ComplexDeinterleavingOperation::ReductionOperation || |
| 1698 | RootNode->Operation == |
| 1699 | ComplexDeinterleavingOperation::ReductionSingle); |
| 1700 | assert(RootNode->Vals.size() == 1 && |
| 1701 | "Cannot handle reductions involving multiple complex values" ); |
| 1702 | // Find out which part, Real or Imag, comes later, and only if we come to |
| 1703 | // the latest part, add it to OrderedRoots. |
| 1704 | auto *R = cast<Instruction>(Val: RootNode->Vals[0].Real); |
| 1705 | auto *I = RootNode->Vals[0].Imag ? cast<Instruction>(Val: RootNode->Vals[0].Imag) |
| 1706 | : nullptr; |
| 1707 | |
| 1708 | Instruction *ReplacementAnchor; |
| 1709 | if (I) |
| 1710 | ReplacementAnchor = R->comesBefore(Other: I) ? I : R; |
| 1711 | else |
| 1712 | ReplacementAnchor = R; |
| 1713 | |
| 1714 | if (ReplacementAnchor != RootI) |
| 1715 | return false; |
| 1716 | OrderedRoots.push_back(Elt: RootI); |
| 1717 | return true; |
| 1718 | } |
| 1719 | |
| 1720 | auto RootNode = identifyRoot(I: RootI); |
| 1721 | if (!RootNode) |
| 1722 | return false; |
| 1723 | |
| 1724 | LLVM_DEBUG({ |
| 1725 | Function *F = RootI->getFunction(); |
| 1726 | BasicBlock *B = RootI->getParent(); |
| 1727 | dbgs() << "Complex deinterleaving graph for " << F->getName() |
| 1728 | << "::" << B->getName() << ".\n" ; |
| 1729 | dump(dbgs()); |
| 1730 | dbgs() << "\n" ; |
| 1731 | }); |
| 1732 | RootToNode[RootI] = RootNode; |
| 1733 | OrderedRoots.push_back(Elt: RootI); |
| 1734 | return true; |
| 1735 | } |
| 1736 | |
| 1737 | bool ComplexDeinterleavingGraph::collectPotentialReductions(BasicBlock *B) { |
| 1738 | bool FoundPotentialReduction = false; |
| 1739 | if (Factor != 2) |
| 1740 | return false; |
| 1741 | |
| 1742 | auto *Br = dyn_cast<BranchInst>(Val: B->getTerminator()); |
| 1743 | if (!Br || Br->getNumSuccessors() != 2) |
| 1744 | return false; |
| 1745 | |
| 1746 | // Identify simple one-block loop |
| 1747 | if (Br->getSuccessor(i: 0) != B && Br->getSuccessor(i: 1) != B) |
| 1748 | return false; |
| 1749 | |
| 1750 | for (auto &PHI : B->phis()) { |
| 1751 | if (PHI.getNumIncomingValues() != 2) |
| 1752 | continue; |
| 1753 | |
| 1754 | if (!PHI.getType()->isVectorTy()) |
| 1755 | continue; |
| 1756 | |
| 1757 | auto *ReductionOp = dyn_cast<Instruction>(Val: PHI.getIncomingValueForBlock(BB: B)); |
| 1758 | if (!ReductionOp) |
| 1759 | continue; |
| 1760 | |
| 1761 | // Check if final instruction is reduced outside of current block |
| 1762 | Instruction *FinalReduction = nullptr; |
| 1763 | auto NumUsers = 0u; |
| 1764 | for (auto *U : ReductionOp->users()) { |
| 1765 | ++NumUsers; |
| 1766 | if (U == &PHI) |
| 1767 | continue; |
| 1768 | FinalReduction = dyn_cast<Instruction>(Val: U); |
| 1769 | } |
| 1770 | |
| 1771 | if (NumUsers != 2 || !FinalReduction || FinalReduction->getParent() == B || |
| 1772 | isa<PHINode>(Val: FinalReduction)) |
| 1773 | continue; |
| 1774 | |
| 1775 | ReductionInfo[ReductionOp] = {&PHI, FinalReduction}; |
| 1776 | BackEdge = B; |
| 1777 | auto BackEdgeIdx = PHI.getBasicBlockIndex(BB: B); |
| 1778 | auto IncomingIdx = BackEdgeIdx == 0 ? 1 : 0; |
| 1779 | Incoming = PHI.getIncomingBlock(i: IncomingIdx); |
| 1780 | FoundPotentialReduction = true; |
| 1781 | |
| 1782 | // If the initial value of PHINode is an Instruction, consider it a leaf |
| 1783 | // value of a complex deinterleaving graph. |
| 1784 | if (auto *InitPHI = |
| 1785 | dyn_cast<Instruction>(Val: PHI.getIncomingValueForBlock(BB: Incoming))) |
| 1786 | FinalInstructions.insert(Ptr: InitPHI); |
| 1787 | } |
| 1788 | return FoundPotentialReduction; |
| 1789 | } |
| 1790 | |
| 1791 | void ComplexDeinterleavingGraph::identifyReductionNodes() { |
| 1792 | assert(Factor == 2 && "Cannot handle multiple complex values" ); |
| 1793 | |
| 1794 | SmallVector<bool> Processed(ReductionInfo.size(), false); |
| 1795 | SmallVector<Instruction *> OperationInstruction; |
| 1796 | for (auto &P : ReductionInfo) |
| 1797 | OperationInstruction.push_back(Elt: P.first); |
| 1798 | |
| 1799 | // Identify a complex computation by evaluating two reduction operations that |
| 1800 | // potentially could be involved |
| 1801 | for (size_t i = 0; i < OperationInstruction.size(); ++i) { |
| 1802 | if (Processed[i]) |
| 1803 | continue; |
| 1804 | for (size_t j = i + 1; j < OperationInstruction.size(); ++j) { |
| 1805 | if (Processed[j]) |
| 1806 | continue; |
| 1807 | auto *Real = OperationInstruction[i]; |
| 1808 | auto *Imag = OperationInstruction[j]; |
| 1809 | if (Real->getType() != Imag->getType()) |
| 1810 | continue; |
| 1811 | |
| 1812 | RealPHI = ReductionInfo[Real].first; |
| 1813 | ImagPHI = ReductionInfo[Imag].first; |
| 1814 | PHIsFound = false; |
| 1815 | auto Node = identifyNode(R: Real, I: Imag); |
| 1816 | if (!Node) { |
| 1817 | std::swap(a&: Real, b&: Imag); |
| 1818 | std::swap(a&: RealPHI, b&: ImagPHI); |
| 1819 | Node = identifyNode(R: Real, I: Imag); |
| 1820 | } |
| 1821 | |
| 1822 | // If a node is identified and reduction PHINode is used in the chain of |
| 1823 | // operations, mark its operation instructions as used to prevent |
| 1824 | // re-identification and attach the node to the real part |
| 1825 | if (Node && PHIsFound) { |
| 1826 | LLVM_DEBUG(dbgs() << "Identified reduction starting from instructions: " |
| 1827 | << *Real << " / " << *Imag << "\n" ); |
| 1828 | Processed[i] = true; |
| 1829 | Processed[j] = true; |
| 1830 | auto RootNode = prepareCompositeNode( |
| 1831 | Operation: ComplexDeinterleavingOperation::ReductionOperation, R: Real, I: Imag); |
| 1832 | RootNode->addOperand(Node); |
| 1833 | RootToNode[Real] = RootNode; |
| 1834 | RootToNode[Imag] = RootNode; |
| 1835 | submitCompositeNode(Node: RootNode); |
| 1836 | break; |
| 1837 | } |
| 1838 | } |
| 1839 | |
| 1840 | auto *Real = OperationInstruction[i]; |
| 1841 | // We want to check that we have 2 operands, but the function attributes |
| 1842 | // being counted as operands bloats this value. |
| 1843 | if (Processed[i] || Real->getNumOperands() < 2) |
| 1844 | continue; |
| 1845 | |
| 1846 | // Can only combined integer reductions at the moment. |
| 1847 | if (!ReductionInfo[Real].second->getType()->isIntegerTy()) |
| 1848 | continue; |
| 1849 | |
| 1850 | RealPHI = ReductionInfo[Real].first; |
| 1851 | ImagPHI = nullptr; |
| 1852 | PHIsFound = false; |
| 1853 | auto Node = identifyNode(R: Real->getOperand(i: 0), I: Real->getOperand(i: 1)); |
| 1854 | if (Node && PHIsFound) { |
| 1855 | LLVM_DEBUG( |
| 1856 | dbgs() << "Identified single reduction starting from instruction: " |
| 1857 | << *Real << "/" << *ReductionInfo[Real].second << "\n" ); |
| 1858 | |
| 1859 | // Reducing to a single vector is not supported, only permit reducing down |
| 1860 | // to scalar values. |
| 1861 | // Doing this here will leave the prior node in the graph, |
| 1862 | // however with no uses the node will be unreachable by the replacement |
| 1863 | // process. That along with the usage outside the graph should prevent the |
| 1864 | // replacement process from kicking off at all for this graph. |
| 1865 | // TODO Add support for reducing to a single vector value |
| 1866 | if (ReductionInfo[Real].second->getType()->isVectorTy()) |
| 1867 | continue; |
| 1868 | |
| 1869 | Processed[i] = true; |
| 1870 | auto RootNode = prepareCompositeNode( |
| 1871 | Operation: ComplexDeinterleavingOperation::ReductionSingle, R: Real, I: nullptr); |
| 1872 | RootNode->addOperand(Node); |
| 1873 | RootToNode[Real] = RootNode; |
| 1874 | submitCompositeNode(Node: RootNode); |
| 1875 | } |
| 1876 | } |
| 1877 | |
| 1878 | RealPHI = nullptr; |
| 1879 | ImagPHI = nullptr; |
| 1880 | } |
| 1881 | |
| 1882 | bool ComplexDeinterleavingGraph::checkNodes() { |
| 1883 | bool FoundDeinterleaveNode = false; |
| 1884 | for (CompositeNode *N : CompositeNodes) { |
| 1885 | if (!N->areOperandsValid()) |
| 1886 | return false; |
| 1887 | |
| 1888 | if (N->Operation == ComplexDeinterleavingOperation::Deinterleave) |
| 1889 | FoundDeinterleaveNode = true; |
| 1890 | } |
| 1891 | |
| 1892 | // We need a deinterleave node in order to guarantee that we're working with |
| 1893 | // complex numbers. |
| 1894 | if (!FoundDeinterleaveNode) { |
| 1895 | LLVM_DEBUG( |
| 1896 | dbgs() << "Couldn't find a deinterleave node within the graph, cannot " |
| 1897 | "guarantee safety during graph transformation.\n" ); |
| 1898 | return false; |
| 1899 | } |
| 1900 | |
| 1901 | // Collect all instructions from roots to leaves |
| 1902 | SmallPtrSet<Instruction *, 16> AllInstructions; |
| 1903 | SmallVector<Instruction *, 8> Worklist; |
| 1904 | for (auto &Pair : RootToNode) |
| 1905 | Worklist.push_back(Elt: Pair.first); |
| 1906 | |
| 1907 | // Extract all instructions that are used by all XCMLA/XCADD/ADD/SUB/NEG |
| 1908 | // chains |
| 1909 | while (!Worklist.empty()) { |
| 1910 | auto *I = Worklist.pop_back_val(); |
| 1911 | |
| 1912 | if (!AllInstructions.insert(Ptr: I).second) |
| 1913 | continue; |
| 1914 | |
| 1915 | for (Value *Op : I->operands()) { |
| 1916 | if (auto *OpI = dyn_cast<Instruction>(Val: Op)) { |
| 1917 | if (!FinalInstructions.count(Ptr: I)) |
| 1918 | Worklist.emplace_back(Args&: OpI); |
| 1919 | } |
| 1920 | } |
| 1921 | } |
| 1922 | |
| 1923 | // Find instructions that have users outside of chain |
| 1924 | for (auto *I : AllInstructions) { |
| 1925 | // Skip root nodes |
| 1926 | if (RootToNode.count(Val: I)) |
| 1927 | continue; |
| 1928 | |
| 1929 | for (User *U : I->users()) { |
| 1930 | if (AllInstructions.count(Ptr: cast<Instruction>(Val: U))) |
| 1931 | continue; |
| 1932 | |
| 1933 | // Found an instruction that is not used by XCMLA/XCADD chain |
| 1934 | Worklist.emplace_back(Args&: I); |
| 1935 | break; |
| 1936 | } |
| 1937 | } |
| 1938 | |
| 1939 | // If any instructions are found to be used outside, find and remove roots |
| 1940 | // that somehow connect to those instructions. |
| 1941 | SmallPtrSet<Instruction *, 16> Visited; |
| 1942 | while (!Worklist.empty()) { |
| 1943 | auto *I = Worklist.pop_back_val(); |
| 1944 | if (!Visited.insert(Ptr: I).second) |
| 1945 | continue; |
| 1946 | |
| 1947 | // Found an impacted root node. Removing it from the nodes to be |
| 1948 | // deinterleaved |
| 1949 | if (RootToNode.count(Val: I)) { |
| 1950 | LLVM_DEBUG(dbgs() << "Instruction " << *I |
| 1951 | << " could be deinterleaved but its chain of complex " |
| 1952 | "operations have an outside user\n" ); |
| 1953 | RootToNode.erase(Val: I); |
| 1954 | } |
| 1955 | |
| 1956 | if (!AllInstructions.count(Ptr: I) || FinalInstructions.count(Ptr: I)) |
| 1957 | continue; |
| 1958 | |
| 1959 | for (User *U : I->users()) |
| 1960 | Worklist.emplace_back(Args: cast<Instruction>(Val: U)); |
| 1961 | |
| 1962 | for (Value *Op : I->operands()) { |
| 1963 | if (auto *OpI = dyn_cast<Instruction>(Val: Op)) |
| 1964 | Worklist.emplace_back(Args&: OpI); |
| 1965 | } |
| 1966 | } |
| 1967 | return !RootToNode.empty(); |
| 1968 | } |
| 1969 | |
| 1970 | ComplexDeinterleavingGraph::CompositeNode * |
| 1971 | ComplexDeinterleavingGraph::identifyRoot(Instruction *RootI) { |
| 1972 | if (auto *Intrinsic = dyn_cast<IntrinsicInst>(Val: RootI)) { |
| 1973 | if (Intrinsic::getInterleaveIntrinsicID(Factor) != |
| 1974 | Intrinsic->getIntrinsicID()) |
| 1975 | return nullptr; |
| 1976 | |
| 1977 | ComplexValues Vals; |
| 1978 | for (unsigned I = 0; I < Factor; I += 2) { |
| 1979 | auto *Real = dyn_cast<Instruction>(Val: Intrinsic->getOperand(i_nocapture: I)); |
| 1980 | auto *Imag = dyn_cast<Instruction>(Val: Intrinsic->getOperand(i_nocapture: I + 1)); |
| 1981 | if (!Real || !Imag) |
| 1982 | return nullptr; |
| 1983 | Vals.push_back(Elt: {.Real: Real, .Imag: Imag}); |
| 1984 | } |
| 1985 | |
| 1986 | ComplexDeinterleavingGraph::CompositeNode *Node1 = identifyNode(Vals); |
| 1987 | if (!Node1) |
| 1988 | return nullptr; |
| 1989 | return Node1; |
| 1990 | } |
| 1991 | |
| 1992 | // TODO: We could also add support for fixed-width interleave factors of 4 |
| 1993 | // and above, but currently for symmetric operations the interleaves and |
| 1994 | // deinterleaves are already removed by VectorCombine. If we extend this to |
| 1995 | // permit complex multiplications, reductions, etc. then we should also add |
| 1996 | // support for fixed-width here. |
| 1997 | if (Factor != 2) |
| 1998 | return nullptr; |
| 1999 | |
| 2000 | auto *SVI = dyn_cast<ShuffleVectorInst>(Val: RootI); |
| 2001 | if (!SVI) |
| 2002 | return nullptr; |
| 2003 | |
| 2004 | // Look for a shufflevector that takes separate vectors of the real and |
| 2005 | // imaginary components and recombines them into a single vector. |
| 2006 | if (!isInterleavingMask(Mask: SVI->getShuffleMask())) |
| 2007 | return nullptr; |
| 2008 | |
| 2009 | Instruction *Real; |
| 2010 | Instruction *Imag; |
| 2011 | if (!match(V: RootI, P: m_Shuffle(v1: m_Instruction(I&: Real), v2: m_Instruction(I&: Imag)))) |
| 2012 | return nullptr; |
| 2013 | |
| 2014 | return identifyNode(R: Real, I: Imag); |
| 2015 | } |
| 2016 | |
| 2017 | ComplexDeinterleavingGraph::CompositeNode * |
| 2018 | ComplexDeinterleavingGraph::identifyDeinterleave(ComplexValues &Vals) { |
| 2019 | Instruction *II = nullptr; |
| 2020 | |
| 2021 | // Must be at least one complex value. |
| 2022 | auto = [&](Value *V, unsigned ExpectedIdx, |
| 2023 | Instruction *ExpectedInsn) -> ExtractValueInst * { |
| 2024 | auto *EVI = dyn_cast<ExtractValueInst>(Val: V); |
| 2025 | if (!EVI || EVI->getNumIndices() != 1 || |
| 2026 | EVI->getIndices()[0] != ExpectedIdx || |
| 2027 | !isa<Instruction>(Val: EVI->getAggregateOperand()) || |
| 2028 | (ExpectedInsn && ExpectedInsn != EVI->getAggregateOperand())) |
| 2029 | return nullptr; |
| 2030 | return EVI; |
| 2031 | }; |
| 2032 | |
| 2033 | for (unsigned Idx = 0; Idx < Vals.size(); Idx++) { |
| 2034 | ExtractValueInst *RealEVI = CheckExtract(Vals[Idx].Real, Idx * 2, II); |
| 2035 | if (RealEVI && Idx == 0) |
| 2036 | II = cast<Instruction>(Val: RealEVI->getAggregateOperand()); |
| 2037 | if (!RealEVI || !CheckExtract(Vals[Idx].Imag, (Idx * 2) + 1, II)) { |
| 2038 | II = nullptr; |
| 2039 | break; |
| 2040 | } |
| 2041 | } |
| 2042 | |
| 2043 | if (auto *IntrinsicII = dyn_cast_or_null<IntrinsicInst>(Val: II)) { |
| 2044 | if (IntrinsicII->getIntrinsicID() != |
| 2045 | Intrinsic::getDeinterleaveIntrinsicID(Factor: 2 * Vals.size())) |
| 2046 | return nullptr; |
| 2047 | |
| 2048 | // The remaining should match too. |
| 2049 | CompositeNode *PlaceholderNode = prepareCompositeNode( |
| 2050 | Operation: llvm::ComplexDeinterleavingOperation::Deinterleave, Vals); |
| 2051 | PlaceholderNode->ReplacementNode = II->getOperand(i: 0); |
| 2052 | for (auto &V : Vals) { |
| 2053 | FinalInstructions.insert(Ptr: cast<Instruction>(Val: V.Real)); |
| 2054 | FinalInstructions.insert(Ptr: cast<Instruction>(Val: V.Imag)); |
| 2055 | } |
| 2056 | return submitCompositeNode(Node: PlaceholderNode); |
| 2057 | } |
| 2058 | |
| 2059 | if (Vals.size() != 1) |
| 2060 | return nullptr; |
| 2061 | |
| 2062 | Value *Real = Vals[0].Real; |
| 2063 | Value *Imag = Vals[0].Imag; |
| 2064 | auto *RealShuffle = dyn_cast<ShuffleVectorInst>(Val: Real); |
| 2065 | auto *ImagShuffle = dyn_cast<ShuffleVectorInst>(Val: Imag); |
| 2066 | if (!RealShuffle || !ImagShuffle) { |
| 2067 | if (RealShuffle || ImagShuffle) |
| 2068 | LLVM_DEBUG(dbgs() << " - There's a shuffle where there shouldn't be.\n" ); |
| 2069 | return nullptr; |
| 2070 | } |
| 2071 | |
| 2072 | Value *RealOp1 = RealShuffle->getOperand(i_nocapture: 1); |
| 2073 | if (!isa<UndefValue>(Val: RealOp1) && !isa<ConstantAggregateZero>(Val: RealOp1)) { |
| 2074 | LLVM_DEBUG(dbgs() << " - RealOp1 is not undef or zero.\n" ); |
| 2075 | return nullptr; |
| 2076 | } |
| 2077 | Value *ImagOp1 = ImagShuffle->getOperand(i_nocapture: 1); |
| 2078 | if (!isa<UndefValue>(Val: ImagOp1) && !isa<ConstantAggregateZero>(Val: ImagOp1)) { |
| 2079 | LLVM_DEBUG(dbgs() << " - ImagOp1 is not undef or zero.\n" ); |
| 2080 | return nullptr; |
| 2081 | } |
| 2082 | |
| 2083 | Value *RealOp0 = RealShuffle->getOperand(i_nocapture: 0); |
| 2084 | Value *ImagOp0 = ImagShuffle->getOperand(i_nocapture: 0); |
| 2085 | |
| 2086 | if (RealOp0 != ImagOp0) { |
| 2087 | LLVM_DEBUG(dbgs() << " - Shuffle operands are not equal.\n" ); |
| 2088 | return nullptr; |
| 2089 | } |
| 2090 | |
| 2091 | ArrayRef<int> RealMask = RealShuffle->getShuffleMask(); |
| 2092 | ArrayRef<int> ImagMask = ImagShuffle->getShuffleMask(); |
| 2093 | if (!isDeinterleavingMask(Mask: RealMask) || !isDeinterleavingMask(Mask: ImagMask)) { |
| 2094 | LLVM_DEBUG(dbgs() << " - Masks are not deinterleaving.\n" ); |
| 2095 | return nullptr; |
| 2096 | } |
| 2097 | |
| 2098 | if (RealMask[0] != 0 || ImagMask[0] != 1) { |
| 2099 | LLVM_DEBUG(dbgs() << " - Masks do not have the correct initial value.\n" ); |
| 2100 | return nullptr; |
| 2101 | } |
| 2102 | |
| 2103 | // Type checking, the shuffle type should be a vector type of the same |
| 2104 | // scalar type, but half the size |
| 2105 | auto CheckType = [&](ShuffleVectorInst *Shuffle) { |
| 2106 | Value *Op = Shuffle->getOperand(i_nocapture: 0); |
| 2107 | auto *ShuffleTy = cast<FixedVectorType>(Val: Shuffle->getType()); |
| 2108 | auto *OpTy = cast<FixedVectorType>(Val: Op->getType()); |
| 2109 | |
| 2110 | if (OpTy->getScalarType() != ShuffleTy->getScalarType()) |
| 2111 | return false; |
| 2112 | if ((ShuffleTy->getNumElements() * 2) != OpTy->getNumElements()) |
| 2113 | return false; |
| 2114 | |
| 2115 | return true; |
| 2116 | }; |
| 2117 | |
| 2118 | auto CheckDeinterleavingShuffle = [&](ShuffleVectorInst *Shuffle) -> bool { |
| 2119 | if (!CheckType(Shuffle)) |
| 2120 | return false; |
| 2121 | |
| 2122 | ArrayRef<int> Mask = Shuffle->getShuffleMask(); |
| 2123 | int Last = *Mask.rbegin(); |
| 2124 | |
| 2125 | Value *Op = Shuffle->getOperand(i_nocapture: 0); |
| 2126 | auto *OpTy = cast<FixedVectorType>(Val: Op->getType()); |
| 2127 | int NumElements = OpTy->getNumElements(); |
| 2128 | |
| 2129 | // Ensure that the deinterleaving shuffle only pulls from the first |
| 2130 | // shuffle operand. |
| 2131 | return Last < NumElements; |
| 2132 | }; |
| 2133 | |
| 2134 | if (RealShuffle->getType() != ImagShuffle->getType()) { |
| 2135 | LLVM_DEBUG(dbgs() << " - Shuffle types aren't equal.\n" ); |
| 2136 | return nullptr; |
| 2137 | } |
| 2138 | if (!CheckDeinterleavingShuffle(RealShuffle)) { |
| 2139 | LLVM_DEBUG(dbgs() << " - RealShuffle is invalid type.\n" ); |
| 2140 | return nullptr; |
| 2141 | } |
| 2142 | if (!CheckDeinterleavingShuffle(ImagShuffle)) { |
| 2143 | LLVM_DEBUG(dbgs() << " - ImagShuffle is invalid type.\n" ); |
| 2144 | return nullptr; |
| 2145 | } |
| 2146 | |
| 2147 | CompositeNode *PlaceholderNode = |
| 2148 | prepareCompositeNode(Operation: llvm::ComplexDeinterleavingOperation::Deinterleave, |
| 2149 | R: RealShuffle, I: ImagShuffle); |
| 2150 | PlaceholderNode->ReplacementNode = RealShuffle->getOperand(i_nocapture: 0); |
| 2151 | FinalInstructions.insert(Ptr: RealShuffle); |
| 2152 | FinalInstructions.insert(Ptr: ImagShuffle); |
| 2153 | return submitCompositeNode(Node: PlaceholderNode); |
| 2154 | } |
| 2155 | |
| 2156 | ComplexDeinterleavingGraph::CompositeNode * |
| 2157 | ComplexDeinterleavingGraph::identifySplat(ComplexValues &Vals) { |
| 2158 | auto IsSplat = [](Value *V) -> bool { |
| 2159 | // Fixed-width vector with constants |
| 2160 | if (isa<ConstantDataVector>(Val: V)) |
| 2161 | return true; |
| 2162 | |
| 2163 | if (isa<ConstantInt>(Val: V) || isa<ConstantFP>(Val: V)) |
| 2164 | return isa<VectorType>(Val: V->getType()); |
| 2165 | |
| 2166 | VectorType *VTy; |
| 2167 | ArrayRef<int> Mask; |
| 2168 | // Splats are represented differently depending on whether the repeated |
| 2169 | // value is a constant or an Instruction |
| 2170 | if (auto *Const = dyn_cast<ConstantExpr>(Val: V)) { |
| 2171 | if (Const->getOpcode() != Instruction::ShuffleVector) |
| 2172 | return false; |
| 2173 | VTy = cast<VectorType>(Val: Const->getType()); |
| 2174 | Mask = Const->getShuffleMask(); |
| 2175 | } else if (auto *Shuf = dyn_cast<ShuffleVectorInst>(Val: V)) { |
| 2176 | VTy = Shuf->getType(); |
| 2177 | Mask = Shuf->getShuffleMask(); |
| 2178 | } else { |
| 2179 | return false; |
| 2180 | } |
| 2181 | |
| 2182 | // When the data type is <1 x Type>, it's not possible to differentiate |
| 2183 | // between the ComplexDeinterleaving::Deinterleave and |
| 2184 | // ComplexDeinterleaving::Splat operations. |
| 2185 | if (!VTy->isScalableTy() && VTy->getElementCount().getKnownMinValue() == 1) |
| 2186 | return false; |
| 2187 | |
| 2188 | return all_equal(Range&: Mask) && Mask[0] == 0; |
| 2189 | }; |
| 2190 | |
| 2191 | // The splats must meet the following requirements: |
| 2192 | // 1. Must either be all instructions or all values. |
| 2193 | // 2. Non-constant splats must live in the same block. |
| 2194 | if (auto *FirstValAsInstruction = dyn_cast<Instruction>(Val: Vals[0].Real)) { |
| 2195 | BasicBlock *FirstBB = FirstValAsInstruction->getParent(); |
| 2196 | for (auto &V : Vals) { |
| 2197 | if (!IsSplat(V.Real) || !IsSplat(V.Imag)) |
| 2198 | return nullptr; |
| 2199 | |
| 2200 | auto *Real = dyn_cast<Instruction>(Val: V.Real); |
| 2201 | auto *Imag = dyn_cast<Instruction>(Val: V.Imag); |
| 2202 | if (!Real || !Imag || Real->getParent() != FirstBB || |
| 2203 | Imag->getParent() != FirstBB) |
| 2204 | return nullptr; |
| 2205 | } |
| 2206 | } else { |
| 2207 | for (auto &V : Vals) { |
| 2208 | if (!IsSplat(V.Real) || !IsSplat(V.Imag) || isa<Instruction>(Val: V.Real) || |
| 2209 | isa<Instruction>(Val: V.Imag)) |
| 2210 | return nullptr; |
| 2211 | } |
| 2212 | } |
| 2213 | |
| 2214 | for (auto &V : Vals) { |
| 2215 | auto *Real = dyn_cast<Instruction>(Val: V.Real); |
| 2216 | auto *Imag = dyn_cast<Instruction>(Val: V.Imag); |
| 2217 | if (Real && Imag) { |
| 2218 | FinalInstructions.insert(Ptr: Real); |
| 2219 | FinalInstructions.insert(Ptr: Imag); |
| 2220 | } |
| 2221 | } |
| 2222 | CompositeNode *PlaceholderNode = |
| 2223 | prepareCompositeNode(Operation: ComplexDeinterleavingOperation::Splat, Vals); |
| 2224 | return submitCompositeNode(Node: PlaceholderNode); |
| 2225 | } |
| 2226 | |
| 2227 | ComplexDeinterleavingGraph::CompositeNode * |
| 2228 | ComplexDeinterleavingGraph::identifyPHINode(Instruction *Real, |
| 2229 | Instruction *Imag) { |
| 2230 | if (Real != RealPHI || (ImagPHI && Imag != ImagPHI)) |
| 2231 | return nullptr; |
| 2232 | |
| 2233 | PHIsFound = true; |
| 2234 | CompositeNode *PlaceholderNode = prepareCompositeNode( |
| 2235 | Operation: ComplexDeinterleavingOperation::ReductionPHI, R: Real, I: Imag); |
| 2236 | return submitCompositeNode(Node: PlaceholderNode); |
| 2237 | } |
| 2238 | |
| 2239 | ComplexDeinterleavingGraph::CompositeNode * |
| 2240 | ComplexDeinterleavingGraph::identifySelectNode(Instruction *Real, |
| 2241 | Instruction *Imag) { |
| 2242 | auto *SelectReal = dyn_cast<SelectInst>(Val: Real); |
| 2243 | auto *SelectImag = dyn_cast<SelectInst>(Val: Imag); |
| 2244 | if (!SelectReal || !SelectImag) |
| 2245 | return nullptr; |
| 2246 | |
| 2247 | Instruction *MaskA, *MaskB; |
| 2248 | Instruction *AR, *AI, *RA, *BI; |
| 2249 | if (!match(V: Real, P: m_Select(C: m_Instruction(I&: MaskA), L: m_Instruction(I&: AR), |
| 2250 | R: m_Instruction(I&: RA))) || |
| 2251 | !match(V: Imag, P: m_Select(C: m_Instruction(I&: MaskB), L: m_Instruction(I&: AI), |
| 2252 | R: m_Instruction(I&: BI)))) |
| 2253 | return nullptr; |
| 2254 | |
| 2255 | if (MaskA != MaskB && !MaskA->isIdenticalTo(I: MaskB)) |
| 2256 | return nullptr; |
| 2257 | |
| 2258 | if (!MaskA->getType()->isVectorTy()) |
| 2259 | return nullptr; |
| 2260 | |
| 2261 | auto NodeA = identifyNode(R: AR, I: AI); |
| 2262 | if (!NodeA) |
| 2263 | return nullptr; |
| 2264 | |
| 2265 | auto NodeB = identifyNode(R: RA, I: BI); |
| 2266 | if (!NodeB) |
| 2267 | return nullptr; |
| 2268 | |
| 2269 | CompositeNode *PlaceholderNode = prepareCompositeNode( |
| 2270 | Operation: ComplexDeinterleavingOperation::ReductionSelect, R: Real, I: Imag); |
| 2271 | PlaceholderNode->addOperand(Node: NodeA); |
| 2272 | PlaceholderNode->addOperand(Node: NodeB); |
| 2273 | FinalInstructions.insert(Ptr: MaskA); |
| 2274 | FinalInstructions.insert(Ptr: MaskB); |
| 2275 | return submitCompositeNode(Node: PlaceholderNode); |
| 2276 | } |
| 2277 | |
| 2278 | static Value *replaceSymmetricNode(IRBuilderBase &B, unsigned Opcode, |
| 2279 | std::optional<FastMathFlags> Flags, |
| 2280 | Value *InputA, Value *InputB) { |
| 2281 | Value *I; |
| 2282 | switch (Opcode) { |
| 2283 | case Instruction::FNeg: |
| 2284 | I = B.CreateFNeg(V: InputA); |
| 2285 | break; |
| 2286 | case Instruction::FAdd: |
| 2287 | I = B.CreateFAdd(L: InputA, R: InputB); |
| 2288 | break; |
| 2289 | case Instruction::Add: |
| 2290 | I = B.CreateAdd(LHS: InputA, RHS: InputB); |
| 2291 | break; |
| 2292 | case Instruction::FSub: |
| 2293 | I = B.CreateFSub(L: InputA, R: InputB); |
| 2294 | break; |
| 2295 | case Instruction::Sub: |
| 2296 | I = B.CreateSub(LHS: InputA, RHS: InputB); |
| 2297 | break; |
| 2298 | case Instruction::FMul: |
| 2299 | I = B.CreateFMul(L: InputA, R: InputB); |
| 2300 | break; |
| 2301 | case Instruction::Mul: |
| 2302 | I = B.CreateMul(LHS: InputA, RHS: InputB); |
| 2303 | break; |
| 2304 | default: |
| 2305 | llvm_unreachable("Incorrect symmetric opcode" ); |
| 2306 | } |
| 2307 | if (Flags) |
| 2308 | cast<Instruction>(Val: I)->setFastMathFlags(*Flags); |
| 2309 | return I; |
| 2310 | } |
| 2311 | |
| 2312 | Value *ComplexDeinterleavingGraph::replaceNode(IRBuilderBase &Builder, |
| 2313 | CompositeNode *Node) { |
| 2314 | if (Node->ReplacementNode) |
| 2315 | return Node->ReplacementNode; |
| 2316 | |
| 2317 | auto ReplaceOperandIfExist = [&](CompositeNode *Node, |
| 2318 | unsigned Idx) -> Value * { |
| 2319 | return Node->Operands.size() > Idx |
| 2320 | ? replaceNode(Builder, Node: Node->Operands[Idx]) |
| 2321 | : nullptr; |
| 2322 | }; |
| 2323 | |
| 2324 | Value *ReplacementNode = nullptr; |
| 2325 | switch (Node->Operation) { |
| 2326 | case ComplexDeinterleavingOperation::CDot: { |
| 2327 | Value *Input0 = ReplaceOperandIfExist(Node, 0); |
| 2328 | Value *Input1 = ReplaceOperandIfExist(Node, 1); |
| 2329 | Value *Accumulator = ReplaceOperandIfExist(Node, 2); |
| 2330 | assert(!Input1 || (Input0->getType() == Input1->getType() && |
| 2331 | "Node inputs need to be of the same type" )); |
| 2332 | ReplacementNode = TL->createComplexDeinterleavingIR( |
| 2333 | B&: Builder, OperationType: Node->Operation, Rotation: Node->Rotation, InputA: Input0, InputB: Input1, Accumulator); |
| 2334 | break; |
| 2335 | } |
| 2336 | case ComplexDeinterleavingOperation::CAdd: |
| 2337 | case ComplexDeinterleavingOperation::CMulPartial: |
| 2338 | case ComplexDeinterleavingOperation::Symmetric: { |
| 2339 | Value *Input0 = ReplaceOperandIfExist(Node, 0); |
| 2340 | Value *Input1 = ReplaceOperandIfExist(Node, 1); |
| 2341 | Value *Accumulator = ReplaceOperandIfExist(Node, 2); |
| 2342 | assert(!Input1 || (Input0->getType() == Input1->getType() && |
| 2343 | "Node inputs need to be of the same type" )); |
| 2344 | assert(!Accumulator || |
| 2345 | (Input0->getType() == Accumulator->getType() && |
| 2346 | "Accumulator and input need to be of the same type" )); |
| 2347 | if (Node->Operation == ComplexDeinterleavingOperation::Symmetric) |
| 2348 | ReplacementNode = replaceSymmetricNode(B&: Builder, Opcode: Node->Opcode, Flags: Node->Flags, |
| 2349 | InputA: Input0, InputB: Input1); |
| 2350 | else |
| 2351 | ReplacementNode = TL->createComplexDeinterleavingIR( |
| 2352 | B&: Builder, OperationType: Node->Operation, Rotation: Node->Rotation, InputA: Input0, InputB: Input1, |
| 2353 | Accumulator); |
| 2354 | break; |
| 2355 | } |
| 2356 | case ComplexDeinterleavingOperation::Deinterleave: |
| 2357 | llvm_unreachable("Deinterleave node should already have ReplacementNode" ); |
| 2358 | break; |
| 2359 | case ComplexDeinterleavingOperation::Splat: { |
| 2360 | SmallVector<Value *> Ops; |
| 2361 | for (auto &V : Node->Vals) { |
| 2362 | Ops.push_back(Elt: V.Real); |
| 2363 | Ops.push_back(Elt: V.Imag); |
| 2364 | } |
| 2365 | auto *R = dyn_cast<Instruction>(Val: Node->Vals[0].Real); |
| 2366 | auto *I = dyn_cast<Instruction>(Val: Node->Vals[0].Imag); |
| 2367 | if (R && I) { |
| 2368 | // Splats that are not constant are interleaved where they are located |
| 2369 | Instruction *InsertPoint = R; |
| 2370 | for (auto V : Node->Vals) { |
| 2371 | if (InsertPoint->comesBefore(Other: cast<Instruction>(Val: V.Real))) |
| 2372 | InsertPoint = cast<Instruction>(Val: V.Real); |
| 2373 | if (InsertPoint->comesBefore(Other: cast<Instruction>(Val: V.Imag))) |
| 2374 | InsertPoint = cast<Instruction>(Val: V.Imag); |
| 2375 | } |
| 2376 | InsertPoint = InsertPoint->getNextNode(); |
| 2377 | IRBuilder<> IRB(InsertPoint); |
| 2378 | ReplacementNode = IRB.CreateVectorInterleave(Ops); |
| 2379 | } else { |
| 2380 | ReplacementNode = Builder.CreateVectorInterleave(Ops); |
| 2381 | } |
| 2382 | break; |
| 2383 | } |
| 2384 | case ComplexDeinterleavingOperation::ReductionPHI: { |
| 2385 | // If Operation is ReductionPHI, a new empty PHINode is created. |
| 2386 | // It is filled later when the ReductionOperation is processed. |
| 2387 | auto *OldPHI = cast<PHINode>(Val: Node->Vals[0].Real); |
| 2388 | auto *VTy = cast<VectorType>(Val: Node->Vals[0].Real->getType()); |
| 2389 | auto *NewVTy = VectorType::getDoubleElementsVectorType(VTy); |
| 2390 | auto *NewPHI = PHINode::Create(Ty: NewVTy, NumReservedValues: 0, NameStr: "" , InsertBefore: BackEdge->getFirstNonPHIIt()); |
| 2391 | OldToNewPHI[OldPHI] = NewPHI; |
| 2392 | ReplacementNode = NewPHI; |
| 2393 | break; |
| 2394 | } |
| 2395 | case ComplexDeinterleavingOperation::ReductionSingle: |
| 2396 | ReplacementNode = replaceNode(Builder, Node: Node->Operands[0]); |
| 2397 | processReductionSingle(OperationReplacement: ReplacementNode, Node); |
| 2398 | break; |
| 2399 | case ComplexDeinterleavingOperation::ReductionOperation: |
| 2400 | ReplacementNode = replaceNode(Builder, Node: Node->Operands[0]); |
| 2401 | processReductionOperation(OperationReplacement: ReplacementNode, Node); |
| 2402 | break; |
| 2403 | case ComplexDeinterleavingOperation::ReductionSelect: { |
| 2404 | auto *MaskReal = cast<Instruction>(Val: Node->Vals[0].Real)->getOperand(i: 0); |
| 2405 | auto *MaskImag = cast<Instruction>(Val: Node->Vals[0].Imag)->getOperand(i: 0); |
| 2406 | auto *A = replaceNode(Builder, Node: Node->Operands[0]); |
| 2407 | auto *B = replaceNode(Builder, Node: Node->Operands[1]); |
| 2408 | auto *NewMask = Builder.CreateVectorInterleave(Ops: {MaskReal, MaskImag}); |
| 2409 | ReplacementNode = Builder.CreateSelect(C: NewMask, True: A, False: B); |
| 2410 | break; |
| 2411 | } |
| 2412 | } |
| 2413 | |
| 2414 | assert(ReplacementNode && "Target failed to create Intrinsic call." ); |
| 2415 | NumComplexTransformations += 1; |
| 2416 | Node->ReplacementNode = ReplacementNode; |
| 2417 | return ReplacementNode; |
| 2418 | } |
| 2419 | |
| 2420 | void ComplexDeinterleavingGraph::processReductionSingle( |
| 2421 | Value *OperationReplacement, CompositeNode *Node) { |
| 2422 | auto *Real = cast<Instruction>(Val: Node->Vals[0].Real); |
| 2423 | auto *OldPHI = ReductionInfo[Real].first; |
| 2424 | auto *NewPHI = OldToNewPHI[OldPHI]; |
| 2425 | auto *VTy = cast<VectorType>(Val: Real->getType()); |
| 2426 | auto *NewVTy = VectorType::getDoubleElementsVectorType(VTy); |
| 2427 | |
| 2428 | Value *Init = OldPHI->getIncomingValueForBlock(BB: Incoming); |
| 2429 | |
| 2430 | IRBuilder<> Builder(Incoming->getTerminator()); |
| 2431 | |
| 2432 | Value *NewInit = nullptr; |
| 2433 | if (auto *C = dyn_cast<Constant>(Val: Init)) { |
| 2434 | if (C->isZeroValue()) |
| 2435 | NewInit = Constant::getNullValue(Ty: NewVTy); |
| 2436 | } |
| 2437 | |
| 2438 | if (!NewInit) |
| 2439 | NewInit = |
| 2440 | Builder.CreateVectorInterleave(Ops: {Init, Constant::getNullValue(Ty: VTy)}); |
| 2441 | |
| 2442 | NewPHI->addIncoming(V: NewInit, BB: Incoming); |
| 2443 | NewPHI->addIncoming(V: OperationReplacement, BB: BackEdge); |
| 2444 | |
| 2445 | auto *FinalReduction = ReductionInfo[Real].second; |
| 2446 | Builder.SetInsertPoint(&*FinalReduction->getParent()->getFirstInsertionPt()); |
| 2447 | |
| 2448 | auto *AddReduce = Builder.CreateAddReduce(Src: OperationReplacement); |
| 2449 | FinalReduction->replaceAllUsesWith(V: AddReduce); |
| 2450 | } |
| 2451 | |
| 2452 | void ComplexDeinterleavingGraph::processReductionOperation( |
| 2453 | Value *OperationReplacement, CompositeNode *Node) { |
| 2454 | auto *Real = cast<Instruction>(Val: Node->Vals[0].Real); |
| 2455 | auto *Imag = cast<Instruction>(Val: Node->Vals[0].Imag); |
| 2456 | auto *OldPHIReal = ReductionInfo[Real].first; |
| 2457 | auto *OldPHIImag = ReductionInfo[Imag].first; |
| 2458 | auto *NewPHI = OldToNewPHI[OldPHIReal]; |
| 2459 | |
| 2460 | // We have to interleave initial origin values coming from IncomingBlock |
| 2461 | Value *InitReal = OldPHIReal->getIncomingValueForBlock(BB: Incoming); |
| 2462 | Value *InitImag = OldPHIImag->getIncomingValueForBlock(BB: Incoming); |
| 2463 | |
| 2464 | IRBuilder<> Builder(Incoming->getTerminator()); |
| 2465 | auto *NewInit = Builder.CreateVectorInterleave(Ops: {InitReal, InitImag}); |
| 2466 | |
| 2467 | NewPHI->addIncoming(V: NewInit, BB: Incoming); |
| 2468 | NewPHI->addIncoming(V: OperationReplacement, BB: BackEdge); |
| 2469 | |
| 2470 | // Deinterleave complex vector outside of loop so that it can be finally |
| 2471 | // reduced |
| 2472 | auto *FinalReductionReal = ReductionInfo[Real].second; |
| 2473 | auto *FinalReductionImag = ReductionInfo[Imag].second; |
| 2474 | |
| 2475 | Builder.SetInsertPoint( |
| 2476 | &*FinalReductionReal->getParent()->getFirstInsertionPt()); |
| 2477 | auto *Deinterleave = Builder.CreateIntrinsic(ID: Intrinsic::vector_deinterleave2, |
| 2478 | Types: OperationReplacement->getType(), |
| 2479 | Args: OperationReplacement); |
| 2480 | |
| 2481 | auto *NewReal = Builder.CreateExtractValue(Agg: Deinterleave, Idxs: (uint64_t)0); |
| 2482 | FinalReductionReal->replaceUsesOfWith(From: Real, To: NewReal); |
| 2483 | |
| 2484 | Builder.SetInsertPoint(FinalReductionImag); |
| 2485 | auto *NewImag = Builder.CreateExtractValue(Agg: Deinterleave, Idxs: 1); |
| 2486 | FinalReductionImag->replaceUsesOfWith(From: Imag, To: NewImag); |
| 2487 | } |
| 2488 | |
| 2489 | void ComplexDeinterleavingGraph::replaceNodes() { |
| 2490 | SmallVector<Instruction *, 16> DeadInstrRoots; |
| 2491 | for (auto *RootInstruction : OrderedRoots) { |
| 2492 | // Check if this potential root went through check process and we can |
| 2493 | // deinterleave it |
| 2494 | if (!RootToNode.count(Val: RootInstruction)) |
| 2495 | continue; |
| 2496 | |
| 2497 | IRBuilder<> Builder(RootInstruction); |
| 2498 | auto RootNode = RootToNode[RootInstruction]; |
| 2499 | Value *R = replaceNode(Builder, Node: RootNode); |
| 2500 | |
| 2501 | if (RootNode->Operation == |
| 2502 | ComplexDeinterleavingOperation::ReductionOperation) { |
| 2503 | auto *RootReal = cast<Instruction>(Val: RootNode->Vals[0].Real); |
| 2504 | auto *RootImag = cast<Instruction>(Val: RootNode->Vals[0].Imag); |
| 2505 | ReductionInfo[RootReal].first->removeIncomingValue(BB: BackEdge); |
| 2506 | ReductionInfo[RootImag].first->removeIncomingValue(BB: BackEdge); |
| 2507 | DeadInstrRoots.push_back(Elt: RootReal); |
| 2508 | DeadInstrRoots.push_back(Elt: RootImag); |
| 2509 | } else if (RootNode->Operation == |
| 2510 | ComplexDeinterleavingOperation::ReductionSingle) { |
| 2511 | auto *RootInst = cast<Instruction>(Val: RootNode->Vals[0].Real); |
| 2512 | auto &Info = ReductionInfo[RootInst]; |
| 2513 | Info.first->removeIncomingValue(BB: BackEdge); |
| 2514 | DeadInstrRoots.push_back(Elt: Info.second); |
| 2515 | } else { |
| 2516 | assert(R && "Unable to find replacement for RootInstruction" ); |
| 2517 | DeadInstrRoots.push_back(Elt: RootInstruction); |
| 2518 | RootInstruction->replaceAllUsesWith(V: R); |
| 2519 | } |
| 2520 | } |
| 2521 | |
| 2522 | for (auto *I : DeadInstrRoots) |
| 2523 | RecursivelyDeleteTriviallyDeadInstructions(V: I, TLI); |
| 2524 | } |
| 2525 | |