| 1 | //===- MachineLoopInfo.cpp - Natural Loop Calculator ----------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file defines the MachineLoopInfo class that is used to identify natural |
| 10 | // loops and determine the loop depth of various nodes of the CFG. Note that |
| 11 | // the loops identified may actually be several natural loops that share the |
| 12 | // same header node... not just a single natural loop. |
| 13 | // |
| 14 | //===----------------------------------------------------------------------===// |
| 15 | |
| 16 | #include "llvm/CodeGen/MachineLoopInfo.h" |
| 17 | #include "llvm/CodeGen/MachineDominators.h" |
| 18 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
| 19 | #include "llvm/CodeGen/TargetInstrInfo.h" |
| 20 | #include "llvm/CodeGen/TargetSubtargetInfo.h" |
| 21 | #include "llvm/Config/llvm-config.h" |
| 22 | #include "llvm/InitializePasses.h" |
| 23 | #include "llvm/Pass.h" |
| 24 | #include "llvm/Support/Compiler.h" |
| 25 | #include "llvm/Support/GenericLoopInfoImpl.h" |
| 26 | |
| 27 | using namespace llvm; |
| 28 | |
| 29 | // Explicitly instantiate methods in LoopInfoImpl.h for MI-level Loops. |
| 30 | template class LLVM_EXPORT_TEMPLATE |
| 31 | llvm::LoopBase<MachineBasicBlock, MachineLoop>; |
| 32 | template class LLVM_EXPORT_TEMPLATE |
| 33 | llvm::LoopInfoBase<MachineBasicBlock, MachineLoop>; |
| 34 | |
| 35 | AnalysisKey MachineLoopAnalysis::Key; |
| 36 | |
| 37 | MachineLoopAnalysis::Result |
| 38 | MachineLoopAnalysis::run(MachineFunction &MF, |
| 39 | MachineFunctionAnalysisManager &MFAM) { |
| 40 | return MachineLoopInfo(MFAM.getResult<MachineDominatorTreeAnalysis>(IR&: MF)); |
| 41 | } |
| 42 | |
| 43 | PreservedAnalyses |
| 44 | MachineLoopPrinterPass::run(MachineFunction &MF, |
| 45 | MachineFunctionAnalysisManager &MFAM) { |
| 46 | OS << "Machine loop info for machine function '" << MF.getName() << "':\n" ; |
| 47 | MFAM.getResult<MachineLoopAnalysis>(IR&: MF).print(OS); |
| 48 | return PreservedAnalyses::all(); |
| 49 | } |
| 50 | |
| 51 | char MachineLoopInfoWrapperPass::ID = 0; |
| 52 | MachineLoopInfoWrapperPass::MachineLoopInfoWrapperPass() |
| 53 | : MachineFunctionPass(ID) {} |
| 54 | INITIALIZE_PASS_BEGIN(MachineLoopInfoWrapperPass, "machine-loops" , |
| 55 | "Machine Natural Loop Construction" , true, true) |
| 56 | INITIALIZE_PASS_DEPENDENCY(MachineDominatorTreeWrapperPass) |
| 57 | INITIALIZE_PASS_END(MachineLoopInfoWrapperPass, "machine-loops" , |
| 58 | "Machine Natural Loop Construction" , true, true) |
| 59 | |
| 60 | char &llvm::MachineLoopInfoID = MachineLoopInfoWrapperPass::ID; |
| 61 | |
| 62 | bool MachineLoopInfoWrapperPass::runOnMachineFunction(MachineFunction &) { |
| 63 | LI.calculate(MDT&: getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree()); |
| 64 | return false; |
| 65 | } |
| 66 | |
| 67 | bool MachineLoopInfo::invalidate( |
| 68 | MachineFunction &, const PreservedAnalyses &PA, |
| 69 | MachineFunctionAnalysisManager::Invalidator &) { |
| 70 | // Check whether the analysis, all analyses on functions, or the function's |
| 71 | // CFG have been preserved. |
| 72 | auto PAC = PA.getChecker<MachineLoopAnalysis>(); |
| 73 | return !PAC.preserved() && |
| 74 | !PAC.preservedSet<AllAnalysesOn<MachineFunction>>() && |
| 75 | !PAC.preservedSet<CFGAnalyses>(); |
| 76 | } |
| 77 | |
| 78 | void MachineLoopInfo::calculate(MachineDominatorTree &MDT) { |
| 79 | releaseMemory(); |
| 80 | analyze(DomTree: MDT); |
| 81 | } |
| 82 | |
| 83 | void MachineLoopInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { |
| 84 | AU.setPreservesAll(); |
| 85 | AU.addRequired<MachineDominatorTreeWrapperPass>(); |
| 86 | MachineFunctionPass::getAnalysisUsage(AU); |
| 87 | } |
| 88 | |
| 89 | MachineBasicBlock *MachineLoop::getTopBlock() { |
| 90 | MachineBasicBlock *TopMBB = getHeader(); |
| 91 | MachineFunction::iterator Begin = TopMBB->getParent()->begin(); |
| 92 | if (TopMBB->getIterator() != Begin) { |
| 93 | MachineBasicBlock *PriorMBB = &*std::prev(x: TopMBB->getIterator()); |
| 94 | while (contains(BB: PriorMBB)) { |
| 95 | TopMBB = PriorMBB; |
| 96 | if (TopMBB->getIterator() == Begin) |
| 97 | break; |
| 98 | PriorMBB = &*std::prev(x: TopMBB->getIterator()); |
| 99 | } |
| 100 | } |
| 101 | return TopMBB; |
| 102 | } |
| 103 | |
| 104 | MachineBasicBlock *MachineLoop::getBottomBlock() { |
| 105 | MachineBasicBlock *BotMBB = getHeader(); |
| 106 | MachineFunction::iterator End = BotMBB->getParent()->end(); |
| 107 | if (BotMBB->getIterator() != std::prev(x: End)) { |
| 108 | MachineBasicBlock *NextMBB = &*std::next(x: BotMBB->getIterator()); |
| 109 | while (contains(BB: NextMBB)) { |
| 110 | BotMBB = NextMBB; |
| 111 | if (BotMBB == &*std::next(x: BotMBB->getIterator())) |
| 112 | break; |
| 113 | NextMBB = &*std::next(x: BotMBB->getIterator()); |
| 114 | } |
| 115 | } |
| 116 | return BotMBB; |
| 117 | } |
| 118 | |
| 119 | MachineBasicBlock *MachineLoop::findLoopControlBlock() const { |
| 120 | if (MachineBasicBlock *Latch = getLoopLatch()) { |
| 121 | if (isLoopExiting(BB: Latch)) |
| 122 | return Latch; |
| 123 | else |
| 124 | return getExitingBlock(); |
| 125 | } |
| 126 | return nullptr; |
| 127 | } |
| 128 | |
| 129 | DebugLoc MachineLoop::getStartLoc() const { |
| 130 | // Try the pre-header first. |
| 131 | if (MachineBasicBlock *PHeadMBB = getLoopPreheader()) |
| 132 | if (const BasicBlock *PHeadBB = PHeadMBB->getBasicBlock()) |
| 133 | if (DebugLoc DL = PHeadBB->getTerminator()->getDebugLoc()) |
| 134 | return DL; |
| 135 | |
| 136 | // If we have no pre-header or there are no instructions with debug |
| 137 | // info in it, try the header. |
| 138 | if (MachineBasicBlock *HeadMBB = getHeader()) |
| 139 | if (const BasicBlock *HeadBB = HeadMBB->getBasicBlock()) |
| 140 | return HeadBB->getTerminator()->getDebugLoc(); |
| 141 | |
| 142 | return DebugLoc(); |
| 143 | } |
| 144 | |
| 145 | MachineBasicBlock * |
| 146 | MachineLoopInfo::(MachineLoop *L, bool , |
| 147 | bool ) const { |
| 148 | if (MachineBasicBlock *PB = L->getLoopPreheader()) |
| 149 | return PB; |
| 150 | |
| 151 | if (!SpeculativePreheader) |
| 152 | return nullptr; |
| 153 | |
| 154 | MachineBasicBlock *HB = L->getHeader(), *LB = L->getLoopLatch(); |
| 155 | if (HB->pred_size() != 2 || HB->hasAddressTaken()) |
| 156 | return nullptr; |
| 157 | // Find the predecessor of the header that is not the latch block. |
| 158 | MachineBasicBlock * = nullptr; |
| 159 | for (MachineBasicBlock *P : HB->predecessors()) { |
| 160 | if (P == LB) |
| 161 | continue; |
| 162 | // Sanity. |
| 163 | if (Preheader) |
| 164 | return nullptr; |
| 165 | Preheader = P; |
| 166 | } |
| 167 | |
| 168 | // Check if the preheader candidate is a successor of any other loop |
| 169 | // headers. We want to avoid having two loop setups in the same block. |
| 170 | if (!FindMultiLoopPreheader) { |
| 171 | for (MachineBasicBlock *S : Preheader->successors()) { |
| 172 | if (S == HB) |
| 173 | continue; |
| 174 | MachineLoop *T = getLoopFor(BB: S); |
| 175 | if (T && T->getHeader() == S) |
| 176 | return nullptr; |
| 177 | } |
| 178 | } |
| 179 | return Preheader; |
| 180 | } |
| 181 | |
| 182 | MDNode *MachineLoop::getLoopID() const { |
| 183 | MDNode *LoopID = nullptr; |
| 184 | |
| 185 | // Go through the latch blocks and check the terminator for the metadata |
| 186 | SmallVector<MachineBasicBlock *, 4> LatchesBlocks; |
| 187 | getLoopLatches(LoopLatches&: LatchesBlocks); |
| 188 | for (const auto *MBB : LatchesBlocks) { |
| 189 | const auto *BB = MBB->getBasicBlock(); |
| 190 | if (!BB) |
| 191 | return nullptr; |
| 192 | const auto *TI = BB->getTerminator(); |
| 193 | if (!TI) |
| 194 | return nullptr; |
| 195 | |
| 196 | MDNode *MD = TI->getMetadata(KindID: LLVMContext::MD_loop); |
| 197 | if (!MD) |
| 198 | return nullptr; |
| 199 | |
| 200 | if (!LoopID) |
| 201 | LoopID = MD; |
| 202 | else if (MD != LoopID) |
| 203 | return nullptr; |
| 204 | } |
| 205 | |
| 206 | if (!LoopID || LoopID->getNumOperands() == 0 || |
| 207 | LoopID->getOperand(I: 0) != LoopID) |
| 208 | return nullptr; |
| 209 | |
| 210 | return LoopID; |
| 211 | } |
| 212 | |
| 213 | bool MachineLoop::isLoopInvariantImplicitPhysReg(Register Reg) const { |
| 214 | MachineFunction *MF = getHeader()->getParent(); |
| 215 | MachineRegisterInfo *MRI = &MF->getRegInfo(); |
| 216 | |
| 217 | if (MRI->isConstantPhysReg(PhysReg: Reg)) |
| 218 | return true; |
| 219 | |
| 220 | if (!MF->getSubtarget() |
| 221 | .getRegisterInfo() |
| 222 | ->shouldAnalyzePhysregInMachineLoopInfo(R: Reg)) |
| 223 | return false; |
| 224 | |
| 225 | return !llvm::any_of( |
| 226 | Range: MRI->def_instructions(Reg), |
| 227 | P: [this](const MachineInstr &MI) { return this->contains(Inst: &MI); }); |
| 228 | } |
| 229 | |
| 230 | bool MachineLoop::isLoopInvariant(MachineInstr &I, |
| 231 | const Register ExcludeReg) const { |
| 232 | MachineFunction *MF = I.getParent()->getParent(); |
| 233 | MachineRegisterInfo *MRI = &MF->getRegInfo(); |
| 234 | const TargetSubtargetInfo &ST = MF->getSubtarget(); |
| 235 | const TargetRegisterInfo *TRI = ST.getRegisterInfo(); |
| 236 | const TargetInstrInfo *TII = ST.getInstrInfo(); |
| 237 | |
| 238 | // The instruction is loop invariant if all of its operands are. |
| 239 | for (const MachineOperand &MO : I.operands()) { |
| 240 | if (!MO.isReg()) |
| 241 | continue; |
| 242 | |
| 243 | Register Reg = MO.getReg(); |
| 244 | if (Reg == 0) continue; |
| 245 | |
| 246 | if (ExcludeReg == Reg) |
| 247 | continue; |
| 248 | |
| 249 | // An instruction that uses or defines a physical register can't e.g. be |
| 250 | // hoisted, so mark this as not invariant. |
| 251 | if (Reg.isPhysical()) { |
| 252 | if (MO.isUse()) { |
| 253 | // If the physreg has no defs anywhere, it's just an ambient register |
| 254 | // and we can freely move its uses. Alternatively, if it's allocatable, |
| 255 | // it could get allocated to something with a def during allocation. |
| 256 | // However, if the physreg is known to always be caller saved/restored |
| 257 | // then this use is safe to hoist. |
| 258 | if (!isLoopInvariantImplicitPhysReg(Reg) && |
| 259 | !(TRI->isCallerPreservedPhysReg(PhysReg: Reg.asMCReg(), MF: *I.getMF())) && |
| 260 | !TII->isIgnorableUse(MO)) |
| 261 | return false; |
| 262 | // Otherwise it's safe to move. |
| 263 | continue; |
| 264 | } else if (!MO.isDead()) { |
| 265 | // A def that isn't dead can't be moved. |
| 266 | return false; |
| 267 | } else if (getHeader()->isLiveIn(Reg)) { |
| 268 | // If the reg is live into the loop, we can't hoist an instruction |
| 269 | // which would clobber it. |
| 270 | return false; |
| 271 | } |
| 272 | } |
| 273 | |
| 274 | if (!MO.readsReg()) |
| 275 | continue; |
| 276 | |
| 277 | assert(MRI->getVRegDef(Reg) && |
| 278 | "Machine instr not mapped for this vreg?!" ); |
| 279 | |
| 280 | // If the loop contains the definition of an operand, then the instruction |
| 281 | // isn't loop invariant. |
| 282 | if (contains(Inst: MRI->getVRegDef(Reg))) |
| 283 | return false; |
| 284 | } |
| 285 | |
| 286 | // If we got this far, the instruction is loop invariant! |
| 287 | return true; |
| 288 | } |
| 289 | |
| 290 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 291 | LLVM_DUMP_METHOD void MachineLoop::dump() const { |
| 292 | print(dbgs()); |
| 293 | } |
| 294 | #endif |
| 295 | |