| 1 | //===- RegAllocPBQP.cpp ---- PBQP Register Allocator ----------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file contains a Partitioned Boolean Quadratic Programming (PBQP) based |
| 10 | // register allocator for LLVM. This allocator works by constructing a PBQP |
| 11 | // problem representing the register allocation problem under consideration, |
| 12 | // solving this using a PBQP solver, and mapping the solution back to a |
| 13 | // register assignment. If any variables are selected for spilling then spill |
| 14 | // code is inserted and the process repeated. |
| 15 | // |
| 16 | // The PBQP solver (pbqp.c) provided for this allocator uses a heuristic tuned |
| 17 | // for register allocation. For more information on PBQP for register |
| 18 | // allocation, see the following papers: |
| 19 | // |
| 20 | // (1) Hames, L. and Scholz, B. 2006. Nearly optimal register allocation with |
| 21 | // PBQP. In Proceedings of the 7th Joint Modular Languages Conference |
| 22 | // (JMLC'06). LNCS, vol. 4228. Springer, New York, NY, USA. 346-361. |
| 23 | // |
| 24 | // (2) Scholz, B., Eckstein, E. 2002. Register allocation for irregular |
| 25 | // architectures. In Proceedings of the Joint Conference on Languages, |
| 26 | // Compilers and Tools for Embedded Systems (LCTES'02), ACM Press, New York, |
| 27 | // NY, USA, 139-148. |
| 28 | // |
| 29 | //===----------------------------------------------------------------------===// |
| 30 | |
| 31 | #include "llvm/CodeGen/RegAllocPBQP.h" |
| 32 | #include "RegisterCoalescer.h" |
| 33 | #include "llvm/ADT/ArrayRef.h" |
| 34 | #include "llvm/ADT/BitVector.h" |
| 35 | #include "llvm/ADT/DenseMap.h" |
| 36 | #include "llvm/ADT/DenseSet.h" |
| 37 | #include "llvm/ADT/STLExtras.h" |
| 38 | #include "llvm/ADT/SmallPtrSet.h" |
| 39 | #include "llvm/ADT/SmallVector.h" |
| 40 | #include "llvm/ADT/StringRef.h" |
| 41 | #include "llvm/Analysis/AliasAnalysis.h" |
| 42 | #include "llvm/CodeGen/CalcSpillWeights.h" |
| 43 | #include "llvm/CodeGen/LiveInterval.h" |
| 44 | #include "llvm/CodeGen/LiveIntervals.h" |
| 45 | #include "llvm/CodeGen/LiveRangeEdit.h" |
| 46 | #include "llvm/CodeGen/LiveStacks.h" |
| 47 | #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" |
| 48 | #include "llvm/CodeGen/MachineDominators.h" |
| 49 | #include "llvm/CodeGen/MachineFunction.h" |
| 50 | #include "llvm/CodeGen/MachineFunctionPass.h" |
| 51 | #include "llvm/CodeGen/MachineInstr.h" |
| 52 | #include "llvm/CodeGen/MachineLoopInfo.h" |
| 53 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
| 54 | #include "llvm/CodeGen/PBQP/Graph.h" |
| 55 | #include "llvm/CodeGen/PBQP/Math.h" |
| 56 | #include "llvm/CodeGen/PBQP/Solution.h" |
| 57 | #include "llvm/CodeGen/PBQPRAConstraint.h" |
| 58 | #include "llvm/CodeGen/RegAllocRegistry.h" |
| 59 | #include "llvm/CodeGen/SlotIndexes.h" |
| 60 | #include "llvm/CodeGen/Spiller.h" |
| 61 | #include "llvm/CodeGen/TargetRegisterInfo.h" |
| 62 | #include "llvm/CodeGen/TargetSubtargetInfo.h" |
| 63 | #include "llvm/CodeGen/VirtRegMap.h" |
| 64 | #include "llvm/Config/llvm-config.h" |
| 65 | #include "llvm/IR/Function.h" |
| 66 | #include "llvm/IR/Module.h" |
| 67 | #include "llvm/Pass.h" |
| 68 | #include "llvm/Support/CommandLine.h" |
| 69 | #include "llvm/Support/Compiler.h" |
| 70 | #include "llvm/Support/Debug.h" |
| 71 | #include "llvm/Support/FileSystem.h" |
| 72 | #include "llvm/Support/Printable.h" |
| 73 | #include "llvm/Support/raw_ostream.h" |
| 74 | #include <algorithm> |
| 75 | #include <cassert> |
| 76 | #include <cstddef> |
| 77 | #include <limits> |
| 78 | #include <map> |
| 79 | #include <memory> |
| 80 | #include <queue> |
| 81 | #include <set> |
| 82 | #include <sstream> |
| 83 | #include <string> |
| 84 | #include <system_error> |
| 85 | #include <tuple> |
| 86 | #include <utility> |
| 87 | #include <vector> |
| 88 | |
| 89 | using namespace llvm; |
| 90 | |
| 91 | #define DEBUG_TYPE "regalloc" |
| 92 | |
| 93 | static RegisterRegAlloc |
| 94 | RegisterPBQPRepAlloc("pbqp" , "PBQP register allocator" , |
| 95 | createDefaultPBQPRegisterAllocator); |
| 96 | |
| 97 | static cl::opt<bool> |
| 98 | PBQPCoalescing("pbqp-coalescing" , |
| 99 | cl::desc("Attempt coalescing during PBQP register allocation." ), |
| 100 | cl::init(Val: false), cl::Hidden); |
| 101 | |
| 102 | #ifndef NDEBUG |
| 103 | static cl::opt<bool> |
| 104 | PBQPDumpGraphs("pbqp-dump-graphs" , |
| 105 | cl::desc("Dump graphs for each function/round in the compilation unit." ), |
| 106 | cl::init(false), cl::Hidden); |
| 107 | #endif |
| 108 | |
| 109 | namespace { |
| 110 | |
| 111 | /// |
| 112 | /// PBQP based allocators solve the register allocation problem by mapping |
| 113 | /// register allocation problems to Partitioned Boolean Quadratic |
| 114 | /// Programming problems. |
| 115 | class RegAllocPBQP : public MachineFunctionPass { |
| 116 | public: |
| 117 | static char ID; |
| 118 | |
| 119 | /// Construct a PBQP register allocator. |
| 120 | RegAllocPBQP(char *cPassID = nullptr) |
| 121 | : MachineFunctionPass(ID), customPassID(cPassID) {} |
| 122 | |
| 123 | /// Return the pass name. |
| 124 | StringRef getPassName() const override { return "PBQP Register Allocator" ; } |
| 125 | |
| 126 | /// PBQP analysis usage. |
| 127 | void getAnalysisUsage(AnalysisUsage &au) const override; |
| 128 | |
| 129 | /// Perform register allocation |
| 130 | bool runOnMachineFunction(MachineFunction &MF) override; |
| 131 | |
| 132 | MachineFunctionProperties getRequiredProperties() const override { |
| 133 | return MachineFunctionProperties().setNoPHIs(); |
| 134 | } |
| 135 | |
| 136 | MachineFunctionProperties getClearedProperties() const override { |
| 137 | return MachineFunctionProperties().setIsSSA(); |
| 138 | } |
| 139 | |
| 140 | private: |
| 141 | using RegSet = std::set<Register>; |
| 142 | |
| 143 | char *customPassID; |
| 144 | |
| 145 | RegSet VRegsToAlloc, EmptyIntervalVRegs; |
| 146 | |
| 147 | /// Inst which is a def of an original reg and whose defs are already all |
| 148 | /// dead after remat is saved in DeadRemats. The deletion of such inst is |
| 149 | /// postponed till all the allocations are done, so its remat expr is |
| 150 | /// always available for the remat of all the siblings of the original reg. |
| 151 | SmallPtrSet<MachineInstr *, 32> DeadRemats; |
| 152 | |
| 153 | /// Finds the initial set of vreg intervals to allocate. |
| 154 | void findVRegIntervalsToAlloc(const MachineFunction &MF, LiveIntervals &LIS); |
| 155 | |
| 156 | /// Constructs an initial graph. |
| 157 | void initializeGraph(PBQPRAGraph &G, VirtRegMap &VRM, Spiller &VRegSpiller); |
| 158 | |
| 159 | /// Spill the given VReg. |
| 160 | void spillVReg(Register VReg, SmallVectorImpl<Register> &NewIntervals, |
| 161 | MachineFunction &MF, LiveIntervals &LIS, VirtRegMap &VRM, |
| 162 | Spiller &VRegSpiller); |
| 163 | |
| 164 | /// Given a solved PBQP problem maps this solution back to a register |
| 165 | /// assignment. |
| 166 | bool mapPBQPToRegAlloc(const PBQPRAGraph &G, |
| 167 | const PBQP::Solution &Solution, |
| 168 | VirtRegMap &VRM, |
| 169 | Spiller &VRegSpiller); |
| 170 | |
| 171 | /// Postprocessing before final spilling. Sets basic block "live in" |
| 172 | /// variables. |
| 173 | void finalizeAlloc(MachineFunction &MF, LiveIntervals &LIS, |
| 174 | VirtRegMap &VRM) const; |
| 175 | |
| 176 | void postOptimization(Spiller &VRegSpiller, LiveIntervals &LIS); |
| 177 | }; |
| 178 | |
| 179 | char RegAllocPBQP::ID = 0; |
| 180 | |
| 181 | /// Set spill costs for each node in the PBQP reg-alloc graph. |
| 182 | class SpillCosts : public PBQPRAConstraint { |
| 183 | public: |
| 184 | void apply(PBQPRAGraph &G) override { |
| 185 | LiveIntervals &LIS = G.getMetadata().LIS; |
| 186 | |
| 187 | // A minimum spill costs, so that register constraints can be set |
| 188 | // without normalization in the [0.0:MinSpillCost( interval. |
| 189 | const PBQP::PBQPNum MinSpillCost = 10.0; |
| 190 | |
| 191 | for (auto NId : G.nodeIds()) { |
| 192 | PBQP::PBQPNum SpillCost = |
| 193 | LIS.getInterval(Reg: G.getNodeMetadata(NId).getVReg()).weight(); |
| 194 | if (SpillCost == 0.0) |
| 195 | SpillCost = std::numeric_limits<PBQP::PBQPNum>::min(); |
| 196 | else |
| 197 | SpillCost += MinSpillCost; |
| 198 | PBQPRAGraph::RawVector NodeCosts(G.getNodeCosts(NId)); |
| 199 | NodeCosts[PBQP::RegAlloc::getSpillOptionIdx()] = SpillCost; |
| 200 | G.setNodeCosts(NId, Costs: std::move(NodeCosts)); |
| 201 | } |
| 202 | } |
| 203 | }; |
| 204 | |
| 205 | /// Add interference edges between overlapping vregs. |
| 206 | class Interference : public PBQPRAConstraint { |
| 207 | private: |
| 208 | using AllowedRegVecPtr = const PBQP::RegAlloc::AllowedRegVector *; |
| 209 | using IKey = std::pair<AllowedRegVecPtr, AllowedRegVecPtr>; |
| 210 | using IMatrixCache = DenseMap<IKey, PBQPRAGraph::MatrixPtr>; |
| 211 | using DisjointAllowedRegsCache = DenseSet<IKey>; |
| 212 | using IEdgeKey = std::pair<PBQP::GraphBase::NodeId, PBQP::GraphBase::NodeId>; |
| 213 | using IEdgeCache = DenseSet<IEdgeKey>; |
| 214 | |
| 215 | bool haveDisjointAllowedRegs(const PBQPRAGraph &G, PBQPRAGraph::NodeId NId, |
| 216 | PBQPRAGraph::NodeId MId, |
| 217 | const DisjointAllowedRegsCache &D) const { |
| 218 | const auto *NRegs = &G.getNodeMetadata(NId).getAllowedRegs(); |
| 219 | const auto *MRegs = &G.getNodeMetadata(NId: MId).getAllowedRegs(); |
| 220 | |
| 221 | if (NRegs == MRegs) |
| 222 | return false; |
| 223 | |
| 224 | if (NRegs < MRegs) |
| 225 | return D.contains(V: IKey(NRegs, MRegs)); |
| 226 | |
| 227 | return D.contains(V: IKey(MRegs, NRegs)); |
| 228 | } |
| 229 | |
| 230 | void setDisjointAllowedRegs(const PBQPRAGraph &G, PBQPRAGraph::NodeId NId, |
| 231 | PBQPRAGraph::NodeId MId, |
| 232 | DisjointAllowedRegsCache &D) { |
| 233 | const auto *NRegs = &G.getNodeMetadata(NId).getAllowedRegs(); |
| 234 | const auto *MRegs = &G.getNodeMetadata(NId: MId).getAllowedRegs(); |
| 235 | |
| 236 | assert(NRegs != MRegs && "AllowedRegs can not be disjoint with itself" ); |
| 237 | |
| 238 | if (NRegs < MRegs) |
| 239 | D.insert(V: IKey(NRegs, MRegs)); |
| 240 | else |
| 241 | D.insert(V: IKey(MRegs, NRegs)); |
| 242 | } |
| 243 | |
| 244 | // Holds (Interval, CurrentSegmentID, and NodeId). The first two are required |
| 245 | // for the fast interference graph construction algorithm. The last is there |
| 246 | // to save us from looking up node ids via the VRegToNode map in the graph |
| 247 | // metadata. |
| 248 | using IntervalInfo = |
| 249 | std::tuple<LiveInterval*, size_t, PBQP::GraphBase::NodeId>; |
| 250 | |
| 251 | static SlotIndex getStartPoint(const IntervalInfo &I) { |
| 252 | return std::get<0>(t: I)->segments[std::get<1>(t: I)].start; |
| 253 | } |
| 254 | |
| 255 | static SlotIndex getEndPoint(const IntervalInfo &I) { |
| 256 | return std::get<0>(t: I)->segments[std::get<1>(t: I)].end; |
| 257 | } |
| 258 | |
| 259 | static PBQP::GraphBase::NodeId getNodeId(const IntervalInfo &I) { |
| 260 | return std::get<2>(t: I); |
| 261 | } |
| 262 | |
| 263 | static bool lowestStartPoint(const IntervalInfo &I1, |
| 264 | const IntervalInfo &I2) { |
| 265 | // Condition reversed because priority queue has the *highest* element at |
| 266 | // the front, rather than the lowest. |
| 267 | return getStartPoint(I: I1) > getStartPoint(I: I2); |
| 268 | } |
| 269 | |
| 270 | static bool lowestEndPoint(const IntervalInfo &I1, |
| 271 | const IntervalInfo &I2) { |
| 272 | SlotIndex E1 = getEndPoint(I: I1); |
| 273 | SlotIndex E2 = getEndPoint(I: I2); |
| 274 | |
| 275 | if (E1 < E2) |
| 276 | return true; |
| 277 | |
| 278 | if (E1 > E2) |
| 279 | return false; |
| 280 | |
| 281 | // If two intervals end at the same point, we need a way to break the tie or |
| 282 | // the set will assume they're actually equal and refuse to insert a |
| 283 | // "duplicate". Just compare the vregs - fast and guaranteed unique. |
| 284 | return std::get<0>(t: I1)->reg() < std::get<0>(t: I2)->reg(); |
| 285 | } |
| 286 | |
| 287 | static bool isAtLastSegment(const IntervalInfo &I) { |
| 288 | return std::get<1>(t: I) == std::get<0>(t: I)->size() - 1; |
| 289 | } |
| 290 | |
| 291 | static IntervalInfo nextSegment(const IntervalInfo &I) { |
| 292 | return std::make_tuple(args: std::get<0>(t: I), args: std::get<1>(t: I) + 1, args: std::get<2>(t: I)); |
| 293 | } |
| 294 | |
| 295 | public: |
| 296 | void apply(PBQPRAGraph &G) override { |
| 297 | // The following is loosely based on the linear scan algorithm introduced in |
| 298 | // "Linear Scan Register Allocation" by Poletto and Sarkar. This version |
| 299 | // isn't linear, because the size of the active set isn't bound by the |
| 300 | // number of registers, but rather the size of the largest clique in the |
| 301 | // graph. Still, we expect this to be better than N^2. |
| 302 | LiveIntervals &LIS = G.getMetadata().LIS; |
| 303 | |
| 304 | // Interferenc matrices are incredibly regular - they're only a function of |
| 305 | // the allowed sets, so we cache them to avoid the overhead of constructing |
| 306 | // and uniquing them. |
| 307 | IMatrixCache C; |
| 308 | |
| 309 | // Finding an edge is expensive in the worst case (O(max_clique(G))). So |
| 310 | // cache locally edges we have already seen. |
| 311 | IEdgeCache EC; |
| 312 | |
| 313 | // Cache known disjoint allowed registers pairs |
| 314 | DisjointAllowedRegsCache D; |
| 315 | |
| 316 | using IntervalSet = std::set<IntervalInfo, decltype(&lowestEndPoint)>; |
| 317 | using IntervalQueue = |
| 318 | std::priority_queue<IntervalInfo, std::vector<IntervalInfo>, |
| 319 | decltype(&lowestStartPoint)>; |
| 320 | IntervalSet Active(lowestEndPoint); |
| 321 | IntervalQueue Inactive(lowestStartPoint); |
| 322 | |
| 323 | // Start by building the inactive set. |
| 324 | for (auto NId : G.nodeIds()) { |
| 325 | Register VReg = G.getNodeMetadata(NId).getVReg(); |
| 326 | LiveInterval &LI = LIS.getInterval(Reg: VReg); |
| 327 | assert(!LI.empty() && "PBQP graph contains node for empty interval" ); |
| 328 | Inactive.push(x: std::make_tuple(args: &LI, args: 0, args&: NId)); |
| 329 | } |
| 330 | |
| 331 | while (!Inactive.empty()) { |
| 332 | // Tentatively grab the "next" interval - this choice may be overriden |
| 333 | // below. |
| 334 | IntervalInfo Cur = Inactive.top(); |
| 335 | |
| 336 | // Retire any active intervals that end before Cur starts. |
| 337 | IntervalSet::iterator RetireItr = Active.begin(); |
| 338 | while (RetireItr != Active.end() && |
| 339 | (getEndPoint(I: *RetireItr) <= getStartPoint(I: Cur))) { |
| 340 | // If this interval has subsequent segments, add the next one to the |
| 341 | // inactive list. |
| 342 | if (!isAtLastSegment(I: *RetireItr)) |
| 343 | Inactive.push(x: nextSegment(I: *RetireItr)); |
| 344 | |
| 345 | ++RetireItr; |
| 346 | } |
| 347 | Active.erase(first: Active.begin(), last: RetireItr); |
| 348 | |
| 349 | // One of the newly retired segments may actually start before the |
| 350 | // Cur segment, so re-grab the front of the inactive list. |
| 351 | Cur = Inactive.top(); |
| 352 | Inactive.pop(); |
| 353 | |
| 354 | // At this point we know that Cur overlaps all active intervals. Add the |
| 355 | // interference edges. |
| 356 | PBQP::GraphBase::NodeId NId = getNodeId(I: Cur); |
| 357 | for (const auto &A : Active) { |
| 358 | PBQP::GraphBase::NodeId MId = getNodeId(I: A); |
| 359 | |
| 360 | // Do not add an edge when the nodes' allowed registers do not |
| 361 | // intersect: there is obviously no interference. |
| 362 | if (haveDisjointAllowedRegs(G, NId, MId, D)) |
| 363 | continue; |
| 364 | |
| 365 | // Check that we haven't already added this edge |
| 366 | IEdgeKey EK(std::min(a: NId, b: MId), std::max(a: NId, b: MId)); |
| 367 | if (EC.count(V: EK)) |
| 368 | continue; |
| 369 | |
| 370 | // This is a new edge - add it to the graph. |
| 371 | if (!createInterferenceEdge(G, NId, MId, C)) |
| 372 | setDisjointAllowedRegs(G, NId, MId, D); |
| 373 | else |
| 374 | EC.insert(V: EK); |
| 375 | } |
| 376 | |
| 377 | // Finally, add Cur to the Active set. |
| 378 | Active.insert(x: Cur); |
| 379 | } |
| 380 | } |
| 381 | |
| 382 | private: |
| 383 | // Create an Interference edge and add it to the graph, unless it is |
| 384 | // a null matrix, meaning the nodes' allowed registers do not have any |
| 385 | // interference. This case occurs frequently between integer and floating |
| 386 | // point registers for example. |
| 387 | // return true iff both nodes interferes. |
| 388 | bool createInterferenceEdge(PBQPRAGraph &G, |
| 389 | PBQPRAGraph::NodeId NId, PBQPRAGraph::NodeId MId, |
| 390 | IMatrixCache &C) { |
| 391 | const TargetRegisterInfo &TRI = |
| 392 | *G.getMetadata().MF.getSubtarget().getRegisterInfo(); |
| 393 | const auto &NRegs = G.getNodeMetadata(NId).getAllowedRegs(); |
| 394 | const auto &MRegs = G.getNodeMetadata(NId: MId).getAllowedRegs(); |
| 395 | |
| 396 | // Try looking the edge costs up in the IMatrixCache first. |
| 397 | IKey K(&NRegs, &MRegs); |
| 398 | IMatrixCache::iterator I = C.find(Val: K); |
| 399 | if (I != C.end()) { |
| 400 | G.addEdgeBypassingCostAllocator(N1Id: NId, N2Id: MId, Costs: I->second); |
| 401 | return true; |
| 402 | } |
| 403 | |
| 404 | PBQPRAGraph::RawMatrix M(NRegs.size() + 1, MRegs.size() + 1, 0); |
| 405 | bool NodesInterfere = false; |
| 406 | for (unsigned I = 0; I != NRegs.size(); ++I) { |
| 407 | MCRegister PRegN = NRegs[I]; |
| 408 | for (unsigned J = 0; J != MRegs.size(); ++J) { |
| 409 | MCRegister PRegM = MRegs[J]; |
| 410 | if (TRI.regsOverlap(RegA: PRegN, RegB: PRegM)) { |
| 411 | M[I + 1][J + 1] = std::numeric_limits<PBQP::PBQPNum>::infinity(); |
| 412 | NodesInterfere = true; |
| 413 | } |
| 414 | } |
| 415 | } |
| 416 | |
| 417 | if (!NodesInterfere) |
| 418 | return false; |
| 419 | |
| 420 | PBQPRAGraph::EdgeId EId = G.addEdge(N1Id: NId, N2Id: MId, Costs: std::move(M)); |
| 421 | C[K] = G.getEdgeCostsPtr(EId); |
| 422 | |
| 423 | return true; |
| 424 | } |
| 425 | }; |
| 426 | |
| 427 | class Coalescing : public PBQPRAConstraint { |
| 428 | public: |
| 429 | void apply(PBQPRAGraph &G) override { |
| 430 | MachineFunction &MF = G.getMetadata().MF; |
| 431 | MachineBlockFrequencyInfo &MBFI = G.getMetadata().MBFI; |
| 432 | CoalescerPair CP(*MF.getSubtarget().getRegisterInfo()); |
| 433 | |
| 434 | // Scan the machine function and add a coalescing cost whenever CoalescerPair |
| 435 | // gives the Ok. |
| 436 | for (const auto &MBB : MF) { |
| 437 | for (const auto &MI : MBB) { |
| 438 | // Skip not-coalescable or already coalesced copies. |
| 439 | if (!CP.setRegisters(&MI) || CP.getSrcReg() == CP.getDstReg()) |
| 440 | continue; |
| 441 | |
| 442 | Register DstReg = CP.getDstReg(); |
| 443 | Register SrcReg = CP.getSrcReg(); |
| 444 | |
| 445 | PBQP::PBQPNum CBenefit = MBFI.getBlockFreqRelativeToEntryBlock(MBB: &MBB); |
| 446 | |
| 447 | if (CP.isPhys()) { |
| 448 | if (!MF.getRegInfo().isAllocatable(PhysReg: DstReg)) |
| 449 | continue; |
| 450 | |
| 451 | PBQPRAGraph::NodeId NId = G.getMetadata().getNodeIdForVReg(VReg: SrcReg); |
| 452 | |
| 453 | const PBQPRAGraph::NodeMetadata::AllowedRegVector &Allowed = |
| 454 | G.getNodeMetadata(NId).getAllowedRegs(); |
| 455 | |
| 456 | unsigned PRegOpt = 0; |
| 457 | while (PRegOpt < Allowed.size() && Allowed[PRegOpt].id() != DstReg) |
| 458 | ++PRegOpt; |
| 459 | |
| 460 | if (PRegOpt < Allowed.size()) { |
| 461 | PBQPRAGraph::RawVector NewCosts(G.getNodeCosts(NId)); |
| 462 | NewCosts[PRegOpt + 1] -= CBenefit; |
| 463 | G.setNodeCosts(NId, Costs: std::move(NewCosts)); |
| 464 | } |
| 465 | } else { |
| 466 | PBQPRAGraph::NodeId N1Id = G.getMetadata().getNodeIdForVReg(VReg: DstReg); |
| 467 | PBQPRAGraph::NodeId N2Id = G.getMetadata().getNodeIdForVReg(VReg: SrcReg); |
| 468 | const PBQPRAGraph::NodeMetadata::AllowedRegVector *Allowed1 = |
| 469 | &G.getNodeMetadata(NId: N1Id).getAllowedRegs(); |
| 470 | const PBQPRAGraph::NodeMetadata::AllowedRegVector *Allowed2 = |
| 471 | &G.getNodeMetadata(NId: N2Id).getAllowedRegs(); |
| 472 | |
| 473 | PBQPRAGraph::EdgeId EId = G.findEdge(N1Id, N2Id); |
| 474 | if (EId == G.invalidEdgeId()) { |
| 475 | PBQPRAGraph::RawMatrix Costs(Allowed1->size() + 1, |
| 476 | Allowed2->size() + 1, 0); |
| 477 | addVirtRegCoalesce(CostMat&: Costs, Allowed1: *Allowed1, Allowed2: *Allowed2, Benefit: CBenefit); |
| 478 | G.addEdge(N1Id, N2Id, Costs: std::move(Costs)); |
| 479 | } else { |
| 480 | if (G.getEdgeNode1Id(EId) == N2Id) { |
| 481 | std::swap(a&: N1Id, b&: N2Id); |
| 482 | std::swap(a&: Allowed1, b&: Allowed2); |
| 483 | } |
| 484 | PBQPRAGraph::RawMatrix Costs(G.getEdgeCosts(EId)); |
| 485 | addVirtRegCoalesce(CostMat&: Costs, Allowed1: *Allowed1, Allowed2: *Allowed2, Benefit: CBenefit); |
| 486 | G.updateEdgeCosts(EId, Costs: std::move(Costs)); |
| 487 | } |
| 488 | } |
| 489 | } |
| 490 | } |
| 491 | } |
| 492 | |
| 493 | private: |
| 494 | void addVirtRegCoalesce( |
| 495 | PBQPRAGraph::RawMatrix &CostMat, |
| 496 | const PBQPRAGraph::NodeMetadata::AllowedRegVector &Allowed1, |
| 497 | const PBQPRAGraph::NodeMetadata::AllowedRegVector &Allowed2, |
| 498 | PBQP::PBQPNum Benefit) { |
| 499 | assert(CostMat.getRows() == Allowed1.size() + 1 && "Size mismatch." ); |
| 500 | assert(CostMat.getCols() == Allowed2.size() + 1 && "Size mismatch." ); |
| 501 | for (unsigned I = 0; I != Allowed1.size(); ++I) { |
| 502 | MCRegister PReg1 = Allowed1[I]; |
| 503 | for (unsigned J = 0; J != Allowed2.size(); ++J) { |
| 504 | MCRegister PReg2 = Allowed2[J]; |
| 505 | if (PReg1 == PReg2) |
| 506 | CostMat[I + 1][J + 1] -= Benefit; |
| 507 | } |
| 508 | } |
| 509 | } |
| 510 | }; |
| 511 | |
| 512 | /// PBQP-specific implementation of weight normalization. |
| 513 | class PBQPVirtRegAuxInfo final : public VirtRegAuxInfo { |
| 514 | float normalize(float UseDefFreq, unsigned Size, unsigned NumInstr) override { |
| 515 | // All intervals have a spill weight that is mostly proportional to the |
| 516 | // number of uses, with uses in loops having a bigger weight. |
| 517 | return NumInstr * VirtRegAuxInfo::normalize(UseDefFreq, Size, NumInstr: 1); |
| 518 | } |
| 519 | |
| 520 | public: |
| 521 | PBQPVirtRegAuxInfo(MachineFunction &MF, LiveIntervals &LIS, VirtRegMap &VRM, |
| 522 | const MachineLoopInfo &Loops, |
| 523 | const MachineBlockFrequencyInfo &MBFI) |
| 524 | : VirtRegAuxInfo(MF, LIS, VRM, Loops, MBFI) {} |
| 525 | }; |
| 526 | } // end anonymous namespace |
| 527 | |
| 528 | // Out-of-line destructor/anchor for PBQPRAConstraint. |
| 529 | PBQPRAConstraint::~PBQPRAConstraint() = default; |
| 530 | |
| 531 | void PBQPRAConstraint::anchor() {} |
| 532 | |
| 533 | void PBQPRAConstraintList::anchor() {} |
| 534 | |
| 535 | void RegAllocPBQP::getAnalysisUsage(AnalysisUsage &au) const { |
| 536 | au.setPreservesCFG(); |
| 537 | au.addRequired<AAResultsWrapperPass>(); |
| 538 | au.addPreserved<AAResultsWrapperPass>(); |
| 539 | au.addRequired<SlotIndexesWrapperPass>(); |
| 540 | au.addPreserved<SlotIndexesWrapperPass>(); |
| 541 | au.addRequired<LiveIntervalsWrapperPass>(); |
| 542 | au.addPreserved<LiveIntervalsWrapperPass>(); |
| 543 | //au.addRequiredID(SplitCriticalEdgesID); |
| 544 | if (customPassID) |
| 545 | au.addRequiredID(ID&: *customPassID); |
| 546 | au.addRequired<LiveStacksWrapperLegacy>(); |
| 547 | au.addPreserved<LiveStacksWrapperLegacy>(); |
| 548 | au.addRequired<MachineBlockFrequencyInfoWrapperPass>(); |
| 549 | au.addPreserved<MachineBlockFrequencyInfoWrapperPass>(); |
| 550 | au.addRequired<MachineLoopInfoWrapperPass>(); |
| 551 | au.addPreserved<MachineLoopInfoWrapperPass>(); |
| 552 | au.addRequired<MachineDominatorTreeWrapperPass>(); |
| 553 | au.addPreserved<MachineDominatorTreeWrapperPass>(); |
| 554 | au.addRequired<VirtRegMapWrapperLegacy>(); |
| 555 | au.addPreserved<VirtRegMapWrapperLegacy>(); |
| 556 | MachineFunctionPass::getAnalysisUsage(AU&: au); |
| 557 | } |
| 558 | |
| 559 | void RegAllocPBQP::findVRegIntervalsToAlloc(const MachineFunction &MF, |
| 560 | LiveIntervals &LIS) { |
| 561 | const MachineRegisterInfo &MRI = MF.getRegInfo(); |
| 562 | |
| 563 | // Iterate over all live ranges. |
| 564 | for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) { |
| 565 | Register Reg = Register::index2VirtReg(Index: I); |
| 566 | if (MRI.reg_nodbg_empty(RegNo: Reg)) |
| 567 | continue; |
| 568 | VRegsToAlloc.insert(x: Reg); |
| 569 | } |
| 570 | } |
| 571 | |
| 572 | static bool isACalleeSavedRegister(MCRegister Reg, |
| 573 | const TargetRegisterInfo &TRI, |
| 574 | const MachineFunction &MF) { |
| 575 | const MCPhysReg *CSR = MF.getRegInfo().getCalleeSavedRegs(); |
| 576 | for (unsigned i = 0; CSR[i] != 0; ++i) |
| 577 | if (TRI.regsOverlap(RegA: Reg, RegB: CSR[i])) |
| 578 | return true; |
| 579 | return false; |
| 580 | } |
| 581 | |
| 582 | void RegAllocPBQP::initializeGraph(PBQPRAGraph &G, VirtRegMap &VRM, |
| 583 | Spiller &VRegSpiller) { |
| 584 | MachineFunction &MF = G.getMetadata().MF; |
| 585 | |
| 586 | LiveIntervals &LIS = G.getMetadata().LIS; |
| 587 | const MachineRegisterInfo &MRI = G.getMetadata().MF.getRegInfo(); |
| 588 | const TargetRegisterInfo &TRI = |
| 589 | *G.getMetadata().MF.getSubtarget().getRegisterInfo(); |
| 590 | |
| 591 | std::vector<Register> Worklist(VRegsToAlloc.begin(), VRegsToAlloc.end()); |
| 592 | |
| 593 | std::map<Register, std::vector<MCRegister>> VRegAllowedMap; |
| 594 | |
| 595 | while (!Worklist.empty()) { |
| 596 | Register VReg = Worklist.back(); |
| 597 | Worklist.pop_back(); |
| 598 | |
| 599 | LiveInterval &VRegLI = LIS.getInterval(Reg: VReg); |
| 600 | |
| 601 | // If this is an empty interval move it to the EmptyIntervalVRegs set then |
| 602 | // continue. |
| 603 | if (VRegLI.empty()) { |
| 604 | EmptyIntervalVRegs.insert(x: VRegLI.reg()); |
| 605 | VRegsToAlloc.erase(x: VRegLI.reg()); |
| 606 | continue; |
| 607 | } |
| 608 | |
| 609 | const TargetRegisterClass *TRC = MRI.getRegClass(Reg: VReg); |
| 610 | |
| 611 | // Record any overlaps with regmask operands. |
| 612 | BitVector RegMaskOverlaps; |
| 613 | LIS.checkRegMaskInterference(LI: VRegLI, UsableRegs&: RegMaskOverlaps); |
| 614 | |
| 615 | // Compute an initial allowed set for the current vreg. |
| 616 | std::vector<MCRegister> VRegAllowed; |
| 617 | ArrayRef<MCPhysReg> RawPRegOrder = TRC->getRawAllocationOrder(MF); |
| 618 | for (MCPhysReg R : RawPRegOrder) { |
| 619 | MCRegister PReg(R); |
| 620 | if (MRI.isReserved(PhysReg: PReg)) |
| 621 | continue; |
| 622 | |
| 623 | // vregLI crosses a regmask operand that clobbers preg. |
| 624 | if (!RegMaskOverlaps.empty() && !RegMaskOverlaps.test(Idx: PReg)) |
| 625 | continue; |
| 626 | |
| 627 | // vregLI overlaps fixed regunit interference. |
| 628 | bool Interference = false; |
| 629 | for (MCRegUnit Unit : TRI.regunits(Reg: PReg)) { |
| 630 | if (VRegLI.overlaps(other: LIS.getRegUnit(Unit))) { |
| 631 | Interference = true; |
| 632 | break; |
| 633 | } |
| 634 | } |
| 635 | if (Interference) |
| 636 | continue; |
| 637 | |
| 638 | // preg is usable for this virtual register. |
| 639 | VRegAllowed.push_back(x: PReg); |
| 640 | } |
| 641 | |
| 642 | // Check for vregs that have no allowed registers. These should be |
| 643 | // pre-spilled and the new vregs added to the worklist. |
| 644 | if (VRegAllowed.empty()) { |
| 645 | SmallVector<Register, 8> NewVRegs; |
| 646 | spillVReg(VReg, NewIntervals&: NewVRegs, MF, LIS, VRM, VRegSpiller); |
| 647 | llvm::append_range(C&: Worklist, R&: NewVRegs); |
| 648 | continue; |
| 649 | } |
| 650 | |
| 651 | VRegAllowedMap[VReg.id()] = std::move(VRegAllowed); |
| 652 | } |
| 653 | |
| 654 | for (auto &KV : VRegAllowedMap) { |
| 655 | auto VReg = KV.first; |
| 656 | |
| 657 | // Move empty intervals to the EmptyIntervalVReg set. |
| 658 | if (LIS.getInterval(Reg: VReg).empty()) { |
| 659 | EmptyIntervalVRegs.insert(x: VReg); |
| 660 | VRegsToAlloc.erase(x: VReg); |
| 661 | continue; |
| 662 | } |
| 663 | |
| 664 | auto &VRegAllowed = KV.second; |
| 665 | |
| 666 | PBQPRAGraph::RawVector NodeCosts(VRegAllowed.size() + 1, 0); |
| 667 | |
| 668 | // Tweak cost of callee saved registers, as using then force spilling and |
| 669 | // restoring them. This would only happen in the prologue / epilogue though. |
| 670 | for (unsigned i = 0; i != VRegAllowed.size(); ++i) |
| 671 | if (isACalleeSavedRegister(Reg: VRegAllowed[i], TRI, MF)) |
| 672 | NodeCosts[1 + i] += 1.0; |
| 673 | |
| 674 | PBQPRAGraph::NodeId NId = G.addNode(Costs: std::move(NodeCosts)); |
| 675 | G.getNodeMetadata(NId).setVReg(VReg); |
| 676 | G.getNodeMetadata(NId).setAllowedRegs( |
| 677 | G.getMetadata().getAllowedRegs(Allowed: std::move(VRegAllowed))); |
| 678 | G.getMetadata().setNodeIdForVReg(VReg, NId); |
| 679 | } |
| 680 | } |
| 681 | |
| 682 | void RegAllocPBQP::spillVReg(Register VReg, |
| 683 | SmallVectorImpl<Register> &NewIntervals, |
| 684 | MachineFunction &MF, LiveIntervals &LIS, |
| 685 | VirtRegMap &VRM, Spiller &VRegSpiller) { |
| 686 | VRegsToAlloc.erase(x: VReg); |
| 687 | LiveRangeEdit LRE(&LIS.getInterval(Reg: VReg), NewIntervals, MF, LIS, &VRM, |
| 688 | nullptr, &DeadRemats); |
| 689 | VRegSpiller.spill(LRE); |
| 690 | |
| 691 | const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); |
| 692 | (void)TRI; |
| 693 | LLVM_DEBUG(dbgs() << "VREG " << printReg(VReg, &TRI) << " -> SPILLED (Cost: " |
| 694 | << LRE.getParent().weight() << ", New vregs: " ); |
| 695 | |
| 696 | // Copy any newly inserted live intervals into the list of regs to |
| 697 | // allocate. |
| 698 | for (const Register &R : LRE) { |
| 699 | const LiveInterval &LI = LIS.getInterval(Reg: R); |
| 700 | assert(!LI.empty() && "Empty spill range." ); |
| 701 | LLVM_DEBUG(dbgs() << printReg(LI.reg(), &TRI) << " " ); |
| 702 | VRegsToAlloc.insert(x: LI.reg()); |
| 703 | } |
| 704 | |
| 705 | LLVM_DEBUG(dbgs() << ")\n" ); |
| 706 | } |
| 707 | |
| 708 | bool RegAllocPBQP::mapPBQPToRegAlloc(const PBQPRAGraph &G, |
| 709 | const PBQP::Solution &Solution, |
| 710 | VirtRegMap &VRM, |
| 711 | Spiller &VRegSpiller) { |
| 712 | MachineFunction &MF = G.getMetadata().MF; |
| 713 | LiveIntervals &LIS = G.getMetadata().LIS; |
| 714 | const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); |
| 715 | (void)TRI; |
| 716 | |
| 717 | // Set to true if we have any spills |
| 718 | bool AnotherRoundNeeded = false; |
| 719 | |
| 720 | // Clear the existing allocation. |
| 721 | VRM.clearAllVirt(); |
| 722 | |
| 723 | // Iterate over the nodes mapping the PBQP solution to a register |
| 724 | // assignment. |
| 725 | for (auto NId : G.nodeIds()) { |
| 726 | Register VReg = G.getNodeMetadata(NId).getVReg(); |
| 727 | unsigned AllocOpt = Solution.getSelection(nodeId: NId); |
| 728 | |
| 729 | if (AllocOpt != PBQP::RegAlloc::getSpillOptionIdx()) { |
| 730 | MCRegister PReg = G.getNodeMetadata(NId).getAllowedRegs()[AllocOpt - 1]; |
| 731 | LLVM_DEBUG(dbgs() << "VREG " << printReg(VReg, &TRI) << " -> " |
| 732 | << TRI.getName(PReg) << "\n" ); |
| 733 | assert(PReg != 0 && "Invalid preg selected." ); |
| 734 | VRM.assignVirt2Phys(virtReg: VReg, physReg: PReg); |
| 735 | } else { |
| 736 | // Spill VReg. If this introduces new intervals we'll need another round |
| 737 | // of allocation. |
| 738 | SmallVector<Register, 8> NewVRegs; |
| 739 | spillVReg(VReg, NewIntervals&: NewVRegs, MF, LIS, VRM, VRegSpiller); |
| 740 | AnotherRoundNeeded |= !NewVRegs.empty(); |
| 741 | } |
| 742 | } |
| 743 | |
| 744 | return !AnotherRoundNeeded; |
| 745 | } |
| 746 | |
| 747 | void RegAllocPBQP::finalizeAlloc(MachineFunction &MF, |
| 748 | LiveIntervals &LIS, |
| 749 | VirtRegMap &VRM) const { |
| 750 | MachineRegisterInfo &MRI = MF.getRegInfo(); |
| 751 | |
| 752 | // First allocate registers for the empty intervals. |
| 753 | for (const Register &R : EmptyIntervalVRegs) { |
| 754 | LiveInterval &LI = LIS.getInterval(Reg: R); |
| 755 | |
| 756 | Register PReg = MRI.getSimpleHint(VReg: LI.reg()); |
| 757 | |
| 758 | if (PReg == 0) { |
| 759 | const TargetRegisterClass &RC = *MRI.getRegClass(Reg: LI.reg()); |
| 760 | const ArrayRef<MCPhysReg> RawPRegOrder = RC.getRawAllocationOrder(MF); |
| 761 | for (MCRegister CandidateReg : RawPRegOrder) { |
| 762 | if (!VRM.getRegInfo().isReserved(PhysReg: CandidateReg)) { |
| 763 | PReg = CandidateReg; |
| 764 | break; |
| 765 | } |
| 766 | } |
| 767 | assert(PReg && |
| 768 | "No un-reserved physical registers in this register class" ); |
| 769 | } |
| 770 | |
| 771 | VRM.assignVirt2Phys(virtReg: LI.reg(), physReg: PReg); |
| 772 | } |
| 773 | } |
| 774 | |
| 775 | void RegAllocPBQP::postOptimization(Spiller &VRegSpiller, LiveIntervals &LIS) { |
| 776 | VRegSpiller.postOptimization(); |
| 777 | /// Remove dead defs because of rematerialization. |
| 778 | for (auto *DeadInst : DeadRemats) { |
| 779 | LIS.RemoveMachineInstrFromMaps(MI&: *DeadInst); |
| 780 | DeadInst->eraseFromParent(); |
| 781 | } |
| 782 | DeadRemats.clear(); |
| 783 | } |
| 784 | |
| 785 | bool RegAllocPBQP::runOnMachineFunction(MachineFunction &MF) { |
| 786 | LiveIntervals &LIS = getAnalysis<LiveIntervalsWrapperPass>().getLIS(); |
| 787 | MachineBlockFrequencyInfo &MBFI = |
| 788 | getAnalysis<MachineBlockFrequencyInfoWrapperPass>().getMBFI(); |
| 789 | |
| 790 | auto &LiveStks = getAnalysis<LiveStacksWrapperLegacy>().getLS(); |
| 791 | auto &MDT = getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree(); |
| 792 | |
| 793 | VirtRegMap &VRM = getAnalysis<VirtRegMapWrapperLegacy>().getVRM(); |
| 794 | |
| 795 | PBQPVirtRegAuxInfo VRAI( |
| 796 | MF, LIS, VRM, getAnalysis<MachineLoopInfoWrapperPass>().getLI(), MBFI); |
| 797 | VRAI.calculateSpillWeightsAndHints(); |
| 798 | |
| 799 | // FIXME: we create DefaultVRAI here to match existing behavior pre-passing |
| 800 | // the VRAI through the spiller to the live range editor. However, it probably |
| 801 | // makes more sense to pass the PBQP VRAI. The existing behavior had |
| 802 | // LiveRangeEdit make its own VirtRegAuxInfo object. |
| 803 | VirtRegAuxInfo DefaultVRAI( |
| 804 | MF, LIS, VRM, getAnalysis<MachineLoopInfoWrapperPass>().getLI(), MBFI); |
| 805 | std::unique_ptr<Spiller> VRegSpiller( |
| 806 | createInlineSpiller(Analyses: {.LIS: LIS, .LSS: LiveStks, .MDT: MDT, .MBFI: MBFI}, MF, VRM, VRAI&: DefaultVRAI)); |
| 807 | |
| 808 | MF.getRegInfo().freezeReservedRegs(); |
| 809 | |
| 810 | LLVM_DEBUG(dbgs() << "PBQP Register Allocating for " << MF.getName() << "\n" ); |
| 811 | |
| 812 | // Allocator main loop: |
| 813 | // |
| 814 | // * Map current regalloc problem to a PBQP problem |
| 815 | // * Solve the PBQP problem |
| 816 | // * Map the solution back to a register allocation |
| 817 | // * Spill if necessary |
| 818 | // |
| 819 | // This process is continued till no more spills are generated. |
| 820 | |
| 821 | // Find the vreg intervals in need of allocation. |
| 822 | findVRegIntervalsToAlloc(MF, LIS); |
| 823 | |
| 824 | #ifndef NDEBUG |
| 825 | const Function &F = MF.getFunction(); |
| 826 | std::string FullyQualifiedName = |
| 827 | F.getParent()->getModuleIdentifier() + "." + F.getName().str(); |
| 828 | #endif |
| 829 | |
| 830 | // If there are non-empty intervals allocate them using pbqp. |
| 831 | if (!VRegsToAlloc.empty()) { |
| 832 | const TargetSubtargetInfo &Subtarget = MF.getSubtarget(); |
| 833 | std::unique_ptr<PBQPRAConstraintList> ConstraintsRoot = |
| 834 | std::make_unique<PBQPRAConstraintList>(); |
| 835 | ConstraintsRoot->addConstraint(C: std::make_unique<SpillCosts>()); |
| 836 | ConstraintsRoot->addConstraint(C: std::make_unique<Interference>()); |
| 837 | if (PBQPCoalescing) |
| 838 | ConstraintsRoot->addConstraint(C: std::make_unique<Coalescing>()); |
| 839 | ConstraintsRoot->addConstraint(C: Subtarget.getCustomPBQPConstraints()); |
| 840 | |
| 841 | bool PBQPAllocComplete = false; |
| 842 | unsigned Round = 0; |
| 843 | |
| 844 | while (!PBQPAllocComplete) { |
| 845 | LLVM_DEBUG(dbgs() << " PBQP Regalloc round " << Round << ":\n" ); |
| 846 | (void) Round; |
| 847 | |
| 848 | PBQPRAGraph G(PBQPRAGraph::GraphMetadata(MF, LIS, MBFI)); |
| 849 | initializeGraph(G, VRM, VRegSpiller&: *VRegSpiller); |
| 850 | ConstraintsRoot->apply(G); |
| 851 | |
| 852 | #ifndef NDEBUG |
| 853 | if (PBQPDumpGraphs) { |
| 854 | std::ostringstream RS; |
| 855 | RS << Round; |
| 856 | std::string GraphFileName = FullyQualifiedName + "." + RS.str() + |
| 857 | ".pbqpgraph" ; |
| 858 | std::error_code EC; |
| 859 | raw_fd_ostream OS(GraphFileName, EC, sys::fs::OF_TextWithCRLF); |
| 860 | LLVM_DEBUG(dbgs() << "Dumping graph for round " << Round << " to \"" |
| 861 | << GraphFileName << "\"\n" ); |
| 862 | G.dump(OS); |
| 863 | } |
| 864 | #endif |
| 865 | |
| 866 | PBQP::Solution Solution = PBQP::RegAlloc::solve(G); |
| 867 | PBQPAllocComplete = mapPBQPToRegAlloc(G, Solution, VRM, VRegSpiller&: *VRegSpiller); |
| 868 | ++Round; |
| 869 | } |
| 870 | } |
| 871 | |
| 872 | // Finalise allocation, allocate empty ranges. |
| 873 | finalizeAlloc(MF, LIS, VRM); |
| 874 | postOptimization(VRegSpiller&: *VRegSpiller, LIS); |
| 875 | VRegsToAlloc.clear(); |
| 876 | EmptyIntervalVRegs.clear(); |
| 877 | |
| 878 | LLVM_DEBUG(dbgs() << "Post alloc VirtRegMap:\n" << VRM << "\n" ); |
| 879 | |
| 880 | return true; |
| 881 | } |
| 882 | |
| 883 | /// Create Printable object for node and register info. |
| 884 | static Printable PrintNodeInfo(PBQP::RegAlloc::PBQPRAGraph::NodeId NId, |
| 885 | const PBQP::RegAlloc::PBQPRAGraph &G) { |
| 886 | return Printable([NId, &G](raw_ostream &OS) { |
| 887 | const MachineRegisterInfo &MRI = G.getMetadata().MF.getRegInfo(); |
| 888 | const TargetRegisterInfo *TRI = MRI.getTargetRegisterInfo(); |
| 889 | Register VReg = G.getNodeMetadata(NId).getVReg(); |
| 890 | const char *RegClassName = TRI->getRegClassName(Class: MRI.getRegClass(Reg: VReg)); |
| 891 | OS << NId << " (" << RegClassName << ':' << printReg(Reg: VReg, TRI) << ')'; |
| 892 | }); |
| 893 | } |
| 894 | |
| 895 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 896 | LLVM_DUMP_METHOD void PBQP::RegAlloc::PBQPRAGraph::dump(raw_ostream &OS) const { |
| 897 | for (auto NId : nodeIds()) { |
| 898 | const Vector &Costs = getNodeCosts(NId); |
| 899 | assert(Costs.getLength() != 0 && "Empty vector in graph." ); |
| 900 | OS << PrintNodeInfo(NId, *this) << ": " << Costs << '\n'; |
| 901 | } |
| 902 | OS << '\n'; |
| 903 | |
| 904 | for (auto EId : edgeIds()) { |
| 905 | NodeId N1Id = getEdgeNode1Id(EId); |
| 906 | NodeId N2Id = getEdgeNode2Id(EId); |
| 907 | assert(N1Id != N2Id && "PBQP graphs should not have self-edges." ); |
| 908 | const Matrix &M = getEdgeCosts(EId); |
| 909 | assert(M.getRows() != 0 && "No rows in matrix." ); |
| 910 | assert(M.getCols() != 0 && "No cols in matrix." ); |
| 911 | OS << PrintNodeInfo(N1Id, *this) << ' ' << M.getRows() << " rows / " ; |
| 912 | OS << PrintNodeInfo(N2Id, *this) << ' ' << M.getCols() << " cols:\n" ; |
| 913 | OS << M << '\n'; |
| 914 | } |
| 915 | } |
| 916 | |
| 917 | LLVM_DUMP_METHOD void PBQP::RegAlloc::PBQPRAGraph::dump() const { |
| 918 | dump(dbgs()); |
| 919 | } |
| 920 | #endif |
| 921 | |
| 922 | void PBQP::RegAlloc::PBQPRAGraph::printDot(raw_ostream &OS) const { |
| 923 | OS << "graph {\n" ; |
| 924 | for (auto NId : nodeIds()) { |
| 925 | OS << " node" << NId << " [ label=\"" |
| 926 | << PrintNodeInfo(NId, G: *this) << "\\n" |
| 927 | << getNodeCosts(NId) << "\" ]\n" ; |
| 928 | } |
| 929 | |
| 930 | OS << " edge [ len=" << nodeIds().size() << " ]\n" ; |
| 931 | for (auto EId : edgeIds()) { |
| 932 | OS << " node" << getEdgeNode1Id(EId) |
| 933 | << " -- node" << getEdgeNode2Id(EId) |
| 934 | << " [ label=\"" ; |
| 935 | const Matrix &EdgeCosts = getEdgeCosts(EId); |
| 936 | for (unsigned i = 0; i < EdgeCosts.getRows(); ++i) { |
| 937 | OS << EdgeCosts.getRowAsVector(R: i) << "\\n" ; |
| 938 | } |
| 939 | OS << "\" ]\n" ; |
| 940 | } |
| 941 | OS << "}\n" ; |
| 942 | } |
| 943 | |
| 944 | FunctionPass *llvm::createPBQPRegisterAllocator(char *customPassID) { |
| 945 | return new RegAllocPBQP(customPassID); |
| 946 | } |
| 947 | |
| 948 | FunctionPass* llvm::createDefaultPBQPRegisterAllocator() { |
| 949 | return createPBQPRegisterAllocator(); |
| 950 | } |
| 951 | |