| 1 | //==- TargetRegisterInfo.cpp - Target Register Information Implementation --==// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file implements the TargetRegisterInfo interface. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "llvm/CodeGen/TargetRegisterInfo.h" |
| 14 | #include "llvm/ADT/ArrayRef.h" |
| 15 | #include "llvm/ADT/BitVector.h" |
| 16 | #include "llvm/ADT/STLExtras.h" |
| 17 | #include "llvm/ADT/SmallSet.h" |
| 18 | #include "llvm/ADT/StringExtras.h" |
| 19 | #include "llvm/BinaryFormat/Dwarf.h" |
| 20 | #include "llvm/CodeGen/LiveInterval.h" |
| 21 | #include "llvm/CodeGen/MachineFrameInfo.h" |
| 22 | #include "llvm/CodeGen/MachineFunction.h" |
| 23 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
| 24 | #include "llvm/CodeGen/TargetFrameLowering.h" |
| 25 | #include "llvm/CodeGen/TargetInstrInfo.h" |
| 26 | #include "llvm/CodeGen/TargetSubtargetInfo.h" |
| 27 | #include "llvm/CodeGen/VirtRegMap.h" |
| 28 | #include "llvm/CodeGenTypes/MachineValueType.h" |
| 29 | #include "llvm/Config/llvm-config.h" |
| 30 | #include "llvm/IR/Attributes.h" |
| 31 | #include "llvm/IR/DebugInfoMetadata.h" |
| 32 | #include "llvm/IR/Function.h" |
| 33 | #include "llvm/MC/MCRegisterInfo.h" |
| 34 | #include "llvm/Support/CommandLine.h" |
| 35 | #include "llvm/Support/Compiler.h" |
| 36 | #include "llvm/Support/Debug.h" |
| 37 | #include "llvm/Support/Printable.h" |
| 38 | #include "llvm/Support/raw_ostream.h" |
| 39 | #include <cassert> |
| 40 | #include <utility> |
| 41 | |
| 42 | #define DEBUG_TYPE "target-reg-info" |
| 43 | |
| 44 | using namespace llvm; |
| 45 | |
| 46 | static cl::opt<unsigned> |
| 47 | HugeSizeForSplit("huge-size-for-split" , cl::Hidden, |
| 48 | cl::desc("A threshold of live range size which may cause " |
| 49 | "high compile time cost in global splitting." ), |
| 50 | cl::init(Val: 5000)); |
| 51 | |
| 52 | TargetRegisterInfo::TargetRegisterInfo( |
| 53 | const TargetRegisterInfoDesc *ID, regclass_iterator RCB, |
| 54 | regclass_iterator RCE, const char *const *SRINames, |
| 55 | const SubRegCoveredBits *SubIdxRanges, const LaneBitmask *SRILaneMasks, |
| 56 | LaneBitmask SRICoveringLanes, const RegClassInfo *const RCIs, |
| 57 | const MVT::SimpleValueType *const RCVTLists, unsigned Mode) |
| 58 | : InfoDesc(ID), SubRegIndexNames(SRINames), SubRegIdxRanges(SubIdxRanges), |
| 59 | SubRegIndexLaneMasks(SRILaneMasks), RegClassBegin(RCB), RegClassEnd(RCE), |
| 60 | CoveringLanes(SRICoveringLanes), RCInfos(RCIs), RCVTLists(RCVTLists), |
| 61 | HwMode(Mode) {} |
| 62 | |
| 63 | TargetRegisterInfo::~TargetRegisterInfo() = default; |
| 64 | |
| 65 | bool TargetRegisterInfo::shouldRegionSplitForVirtReg( |
| 66 | const MachineFunction &MF, const LiveInterval &VirtReg) const { |
| 67 | const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); |
| 68 | const MachineRegisterInfo &MRI = MF.getRegInfo(); |
| 69 | MachineInstr *MI = MRI.getUniqueVRegDef(Reg: VirtReg.reg()); |
| 70 | if (MI && TII->isTriviallyReMaterializable(MI: *MI) && |
| 71 | VirtReg.size() > HugeSizeForSplit) |
| 72 | return false; |
| 73 | return true; |
| 74 | } |
| 75 | |
| 76 | void TargetRegisterInfo::markSuperRegs(BitVector &RegisterSet, |
| 77 | MCRegister Reg) const { |
| 78 | for (MCPhysReg SR : superregs_inclusive(Reg)) |
| 79 | RegisterSet.set(SR); |
| 80 | } |
| 81 | |
| 82 | bool TargetRegisterInfo::checkAllSuperRegsMarked(const BitVector &RegisterSet, |
| 83 | ArrayRef<MCPhysReg> Exceptions) const { |
| 84 | // Check that all super registers of reserved regs are reserved as well. |
| 85 | BitVector Checked(getNumRegs()); |
| 86 | for (unsigned Reg : RegisterSet.set_bits()) { |
| 87 | if (Checked[Reg]) |
| 88 | continue; |
| 89 | for (MCPhysReg SR : superregs(Reg)) { |
| 90 | if (!RegisterSet[SR] && !is_contained(Range&: Exceptions, Element: Reg)) { |
| 91 | dbgs() << "Error: Super register " << printReg(Reg: SR, TRI: this) |
| 92 | << " of reserved register " << printReg(Reg, TRI: this) |
| 93 | << " is not reserved.\n" ; |
| 94 | return false; |
| 95 | } |
| 96 | |
| 97 | // We transitively check superregs. So we can remember this for later |
| 98 | // to avoid compiletime explosion in deep register hierarchies. |
| 99 | Checked.set(SR); |
| 100 | } |
| 101 | } |
| 102 | return true; |
| 103 | } |
| 104 | |
| 105 | Printable llvm::printReg(Register Reg, const TargetRegisterInfo *TRI, |
| 106 | unsigned SubIdx, const MachineRegisterInfo *MRI) { |
| 107 | return Printable([Reg, TRI, SubIdx, MRI](raw_ostream &OS) { |
| 108 | if (!Reg) |
| 109 | OS << "$noreg" ; |
| 110 | else if (Reg.isStack()) |
| 111 | OS << "SS#" << Reg.stackSlotIndex(); |
| 112 | else if (Reg.isVirtual()) { |
| 113 | StringRef Name = MRI ? MRI->getVRegName(Reg) : "" ; |
| 114 | if (Name != "" ) { |
| 115 | OS << '%' << Name; |
| 116 | } else { |
| 117 | OS << '%' << Reg.virtRegIndex(); |
| 118 | } |
| 119 | } else if (!TRI) |
| 120 | OS << '$' << "physreg" << Reg.id(); |
| 121 | else if (Reg < TRI->getNumRegs()) { |
| 122 | OS << '$'; |
| 123 | printLowerCase(String: TRI->getName(RegNo: Reg), Out&: OS); |
| 124 | } else |
| 125 | llvm_unreachable("Register kind is unsupported." ); |
| 126 | |
| 127 | if (SubIdx) { |
| 128 | if (TRI) |
| 129 | OS << ':' << TRI->getSubRegIndexName(SubIdx); |
| 130 | else |
| 131 | OS << ":sub(" << SubIdx << ')'; |
| 132 | } |
| 133 | }); |
| 134 | } |
| 135 | |
| 136 | Printable llvm::printRegUnit(MCRegUnit Unit, const TargetRegisterInfo *TRI) { |
| 137 | return Printable([Unit, TRI](raw_ostream &OS) { |
| 138 | // Generic printout when TRI is missing. |
| 139 | if (!TRI) { |
| 140 | OS << "Unit~" << static_cast<unsigned>(Unit); |
| 141 | return; |
| 142 | } |
| 143 | |
| 144 | // Check for invalid register units. |
| 145 | if (static_cast<unsigned>(Unit) >= TRI->getNumRegUnits()) { |
| 146 | OS << "BadUnit~" << static_cast<unsigned>(Unit); |
| 147 | return; |
| 148 | } |
| 149 | |
| 150 | // Normal units have at least one root. |
| 151 | MCRegUnitRootIterator Roots(Unit, TRI); |
| 152 | assert(Roots.isValid() && "Unit has no roots." ); |
| 153 | OS << TRI->getName(RegNo: *Roots); |
| 154 | for (++Roots; Roots.isValid(); ++Roots) |
| 155 | OS << '~' << TRI->getName(RegNo: *Roots); |
| 156 | }); |
| 157 | } |
| 158 | |
| 159 | Printable llvm::printVRegOrUnit(VirtRegOrUnit VRegOrUnit, |
| 160 | const TargetRegisterInfo *TRI) { |
| 161 | return Printable([VRegOrUnit, TRI](raw_ostream &OS) { |
| 162 | if (VRegOrUnit.isVirtualReg()) { |
| 163 | OS << '%' << VRegOrUnit.asVirtualReg().virtRegIndex(); |
| 164 | } else { |
| 165 | OS << printRegUnit(Unit: VRegOrUnit.asMCRegUnit(), TRI); |
| 166 | } |
| 167 | }); |
| 168 | } |
| 169 | |
| 170 | Printable llvm::printRegClassOrBank(Register Reg, |
| 171 | const MachineRegisterInfo &RegInfo, |
| 172 | const TargetRegisterInfo *TRI) { |
| 173 | return Printable([Reg, &RegInfo, TRI](raw_ostream &OS) { |
| 174 | if (RegInfo.getRegClassOrNull(Reg)) |
| 175 | OS << StringRef(TRI->getRegClassName(Class: RegInfo.getRegClass(Reg))).lower(); |
| 176 | else if (RegInfo.getRegBankOrNull(Reg)) |
| 177 | OS << StringRef(RegInfo.getRegBankOrNull(Reg)->getName()).lower(); |
| 178 | else { |
| 179 | OS << "_" ; |
| 180 | assert((RegInfo.def_empty(Reg) || RegInfo.getType(Reg).isValid()) && |
| 181 | "Generic registers must have a valid type" ); |
| 182 | } |
| 183 | }); |
| 184 | } |
| 185 | |
| 186 | /// getAllocatableClass - Return the maximal subclass of the given register |
| 187 | /// class that is alloctable, or NULL. |
| 188 | const TargetRegisterClass * |
| 189 | TargetRegisterInfo::getAllocatableClass(const TargetRegisterClass *RC) const { |
| 190 | if (!RC || RC->isAllocatable()) |
| 191 | return RC; |
| 192 | |
| 193 | for (BitMaskClassIterator It(RC->getSubClassMask(), *this); It.isValid(); |
| 194 | ++It) { |
| 195 | const TargetRegisterClass *SubRC = getRegClass(i: It.getID()); |
| 196 | if (SubRC->isAllocatable()) |
| 197 | return SubRC; |
| 198 | } |
| 199 | return nullptr; |
| 200 | } |
| 201 | |
| 202 | template <typename TypeT> |
| 203 | static const TargetRegisterClass * |
| 204 | getMinimalPhysRegClass(const TargetRegisterInfo *TRI, MCRegister Reg, |
| 205 | TypeT Ty) { |
| 206 | static_assert(std::is_same_v<TypeT, MVT> || std::is_same_v<TypeT, LLT>); |
| 207 | assert(Reg.isPhysical() && "reg must be a physical register" ); |
| 208 | |
| 209 | bool IsDefault = [&]() { |
| 210 | if constexpr (std::is_same_v<TypeT, MVT>) |
| 211 | return Ty == MVT::Other; |
| 212 | else |
| 213 | return !Ty.isValid(); |
| 214 | }(); |
| 215 | |
| 216 | // Pick the most sub register class of the right type that contains |
| 217 | // this physreg. |
| 218 | const TargetRegisterClass *BestRC = nullptr; |
| 219 | for (const TargetRegisterClass *RC : TRI->regclasses()) { |
| 220 | if ((IsDefault || TRI->isTypeLegalForClass(*RC, Ty)) && RC->contains(Reg) && |
| 221 | (!BestRC || BestRC->hasSubClass(RC))) |
| 222 | BestRC = RC; |
| 223 | } |
| 224 | |
| 225 | if constexpr (std::is_same_v<TypeT, MVT>) |
| 226 | assert(BestRC && "Couldn't find the register class" ); |
| 227 | return BestRC; |
| 228 | } |
| 229 | |
| 230 | template <typename TypeT> |
| 231 | static const TargetRegisterClass * |
| 232 | getCommonMinimalPhysRegClass(const TargetRegisterInfo *TRI, MCRegister Reg1, |
| 233 | MCRegister Reg2, TypeT Ty) { |
| 234 | static_assert(std::is_same_v<TypeT, MVT> || std::is_same_v<TypeT, LLT>); |
| 235 | assert(Reg1.isPhysical() && Reg2.isPhysical() && |
| 236 | "Reg1/Reg2 must be a physical register" ); |
| 237 | |
| 238 | bool IsDefault = [&]() { |
| 239 | if constexpr (std::is_same_v<TypeT, MVT>) |
| 240 | return Ty == MVT::Other; |
| 241 | else |
| 242 | return !Ty.isValid(); |
| 243 | }(); |
| 244 | |
| 245 | // Pick the most sub register class of the right type that contains |
| 246 | // this physreg. |
| 247 | const TargetRegisterClass *BestRC = nullptr; |
| 248 | for (const TargetRegisterClass *RC : TRI->regclasses()) { |
| 249 | if ((IsDefault || TRI->isTypeLegalForClass(*RC, Ty)) && |
| 250 | RC->contains(Reg1, Reg2) && (!BestRC || BestRC->hasSubClass(RC))) |
| 251 | BestRC = RC; |
| 252 | } |
| 253 | |
| 254 | if constexpr (std::is_same_v<TypeT, MVT>) |
| 255 | assert(BestRC && "Couldn't find the register class" ); |
| 256 | return BestRC; |
| 257 | } |
| 258 | |
| 259 | const TargetRegisterClass * |
| 260 | TargetRegisterInfo::getMinimalPhysRegClass(MCRegister Reg, MVT VT) const { |
| 261 | return ::getMinimalPhysRegClass(TRI: this, Reg, Ty: VT); |
| 262 | } |
| 263 | |
| 264 | const TargetRegisterClass *TargetRegisterInfo::getCommonMinimalPhysRegClass( |
| 265 | MCRegister Reg1, MCRegister Reg2, MVT VT) const { |
| 266 | return ::getCommonMinimalPhysRegClass(TRI: this, Reg1, Reg2, Ty: VT); |
| 267 | } |
| 268 | |
| 269 | const TargetRegisterClass * |
| 270 | TargetRegisterInfo::getMinimalPhysRegClassLLT(MCRegister Reg, LLT Ty) const { |
| 271 | return ::getMinimalPhysRegClass(TRI: this, Reg, Ty); |
| 272 | } |
| 273 | |
| 274 | const TargetRegisterClass *TargetRegisterInfo::getCommonMinimalPhysRegClassLLT( |
| 275 | MCRegister Reg1, MCRegister Reg2, LLT Ty) const { |
| 276 | return ::getCommonMinimalPhysRegClass(TRI: this, Reg1, Reg2, Ty); |
| 277 | } |
| 278 | |
| 279 | /// getAllocatableSetForRC - Toggle the bits that represent allocatable |
| 280 | /// registers for the specific register class. |
| 281 | static void getAllocatableSetForRC(const MachineFunction &MF, |
| 282 | const TargetRegisterClass *RC, BitVector &R){ |
| 283 | assert(RC->isAllocatable() && "invalid for nonallocatable sets" ); |
| 284 | ArrayRef<MCPhysReg> Order = RC->getRawAllocationOrder(MF); |
| 285 | for (MCPhysReg PR : Order) |
| 286 | R.set(PR); |
| 287 | } |
| 288 | |
| 289 | BitVector TargetRegisterInfo::getAllocatableSet(const MachineFunction &MF, |
| 290 | const TargetRegisterClass *RC) const { |
| 291 | BitVector Allocatable(getNumRegs()); |
| 292 | if (RC) { |
| 293 | // A register class with no allocatable subclass returns an empty set. |
| 294 | const TargetRegisterClass *SubClass = getAllocatableClass(RC); |
| 295 | if (SubClass) |
| 296 | getAllocatableSetForRC(MF, RC: SubClass, R&: Allocatable); |
| 297 | } else { |
| 298 | for (const TargetRegisterClass *C : regclasses()) |
| 299 | if (C->isAllocatable()) |
| 300 | getAllocatableSetForRC(MF, RC: C, R&: Allocatable); |
| 301 | } |
| 302 | |
| 303 | // Mask out the reserved registers |
| 304 | const MachineRegisterInfo &MRI = MF.getRegInfo(); |
| 305 | const BitVector &Reserved = MRI.getReservedRegs(); |
| 306 | Allocatable.reset(RHS: Reserved); |
| 307 | |
| 308 | return Allocatable; |
| 309 | } |
| 310 | |
| 311 | static inline |
| 312 | const TargetRegisterClass *firstCommonClass(const uint32_t *A, |
| 313 | const uint32_t *B, |
| 314 | const TargetRegisterInfo *TRI) { |
| 315 | for (unsigned I = 0, E = TRI->getNumRegClasses(); I < E; I += 32) |
| 316 | if (unsigned Common = *A++ & *B++) |
| 317 | return TRI->getRegClass(i: I + llvm::countr_zero(Val: Common)); |
| 318 | return nullptr; |
| 319 | } |
| 320 | |
| 321 | const TargetRegisterClass * |
| 322 | TargetRegisterInfo::getCommonSubClass(const TargetRegisterClass *A, |
| 323 | const TargetRegisterClass *B) const { |
| 324 | // First take care of the trivial cases. |
| 325 | if (A == B) |
| 326 | return A; |
| 327 | if (!A || !B) |
| 328 | return nullptr; |
| 329 | |
| 330 | // Register classes are ordered topologically, so the largest common |
| 331 | // sub-class it the common sub-class with the smallest ID. |
| 332 | return firstCommonClass(A: A->getSubClassMask(), B: B->getSubClassMask(), TRI: this); |
| 333 | } |
| 334 | |
| 335 | const TargetRegisterClass * |
| 336 | TargetRegisterInfo::getMatchingSuperRegClass(const TargetRegisterClass *A, |
| 337 | const TargetRegisterClass *B, |
| 338 | unsigned Idx) const { |
| 339 | assert(A && B && "Missing register class" ); |
| 340 | assert(Idx && "Bad sub-register index" ); |
| 341 | |
| 342 | // Find Idx in the list of super-register indices. |
| 343 | for (SuperRegClassIterator RCI(B, this); RCI.isValid(); ++RCI) |
| 344 | if (RCI.getSubReg() == Idx) |
| 345 | // The bit mask contains all register classes that are projected into B |
| 346 | // by Idx. Find a class that is also a sub-class of A. |
| 347 | return firstCommonClass(A: RCI.getMask(), B: A->getSubClassMask(), TRI: this); |
| 348 | return nullptr; |
| 349 | } |
| 350 | |
| 351 | const TargetRegisterClass *TargetRegisterInfo:: |
| 352 | getCommonSuperRegClass(const TargetRegisterClass *RCA, unsigned SubA, |
| 353 | const TargetRegisterClass *RCB, unsigned SubB, |
| 354 | unsigned &PreA, unsigned &PreB) const { |
| 355 | assert(RCA && SubA && RCB && SubB && "Invalid arguments" ); |
| 356 | |
| 357 | // Search all pairs of sub-register indices that project into RCA and RCB |
| 358 | // respectively. This is quadratic, but usually the sets are very small. On |
| 359 | // most targets like X86, there will only be a single sub-register index |
| 360 | // (e.g., sub_16bit projecting into GR16). |
| 361 | // |
| 362 | // The worst case is a register class like DPR on ARM. |
| 363 | // We have indices dsub_0..dsub_7 projecting into that class. |
| 364 | // |
| 365 | // It is very common that one register class is a sub-register of the other. |
| 366 | // Arrange for RCA to be the larger register so the answer will be found in |
| 367 | // the first iteration. This makes the search linear for the most common |
| 368 | // case. |
| 369 | const TargetRegisterClass *BestRC = nullptr; |
| 370 | unsigned *BestPreA = &PreA; |
| 371 | unsigned *BestPreB = &PreB; |
| 372 | if (getRegSizeInBits(RC: *RCA) < getRegSizeInBits(RC: *RCB)) { |
| 373 | std::swap(a&: RCA, b&: RCB); |
| 374 | std::swap(a&: SubA, b&: SubB); |
| 375 | std::swap(a&: BestPreA, b&: BestPreB); |
| 376 | } |
| 377 | |
| 378 | // Also terminate the search one we have found a register class as small as |
| 379 | // RCA. |
| 380 | unsigned MinSize = getRegSizeInBits(RC: *RCA); |
| 381 | |
| 382 | for (SuperRegClassIterator IA(RCA, this, true); IA.isValid(); ++IA) { |
| 383 | unsigned FinalA = composeSubRegIndices(a: IA.getSubReg(), b: SubA); |
| 384 | for (SuperRegClassIterator IB(RCB, this, true); IB.isValid(); ++IB) { |
| 385 | // Check if a common super-register class exists for this index pair. |
| 386 | const TargetRegisterClass *RC = |
| 387 | firstCommonClass(A: IA.getMask(), B: IB.getMask(), TRI: this); |
| 388 | if (!RC || getRegSizeInBits(RC: *RC) < MinSize) |
| 389 | continue; |
| 390 | |
| 391 | // The indexes must compose identically: PreA+SubA == PreB+SubB. |
| 392 | unsigned FinalB = composeSubRegIndices(a: IB.getSubReg(), b: SubB); |
| 393 | if (FinalA != FinalB) |
| 394 | continue; |
| 395 | |
| 396 | // Is RC a better candidate than BestRC? |
| 397 | if (BestRC && getRegSizeInBits(RC: *RC) >= getRegSizeInBits(RC: *BestRC)) |
| 398 | continue; |
| 399 | |
| 400 | // Yes, RC is the smallest super-register seen so far. |
| 401 | BestRC = RC; |
| 402 | *BestPreA = IA.getSubReg(); |
| 403 | *BestPreB = IB.getSubReg(); |
| 404 | |
| 405 | // Bail early if we reached MinSize. We won't find a better candidate. |
| 406 | if (getRegSizeInBits(RC: *BestRC) == MinSize) |
| 407 | return BestRC; |
| 408 | } |
| 409 | } |
| 410 | return BestRC; |
| 411 | } |
| 412 | |
| 413 | const TargetRegisterClass *TargetRegisterInfo::findCommonRegClass( |
| 414 | const TargetRegisterClass *DefRC, unsigned DefSubReg, |
| 415 | const TargetRegisterClass *SrcRC, unsigned SrcSubReg) const { |
| 416 | // Same register class. |
| 417 | // |
| 418 | // When processing uncoalescable copies / bitcasts, it is possible we reach |
| 419 | // here with the same register class, but mismatched subregister indices. |
| 420 | if (DefRC == SrcRC && DefSubReg == SrcSubReg) |
| 421 | return DefRC; |
| 422 | |
| 423 | // Both operands are sub registers. Check if they share a register class. |
| 424 | unsigned SrcIdx, DefIdx; |
| 425 | if (SrcSubReg && DefSubReg) { |
| 426 | return getCommonSuperRegClass(RCA: SrcRC, SubA: SrcSubReg, RCB: DefRC, SubB: DefSubReg, PreA&: SrcIdx, |
| 427 | PreB&: DefIdx); |
| 428 | } |
| 429 | |
| 430 | // At most one of the register is a sub register, make it Src to avoid |
| 431 | // duplicating the test. |
| 432 | if (!SrcSubReg) { |
| 433 | std::swap(a&: DefSubReg, b&: SrcSubReg); |
| 434 | std::swap(a&: DefRC, b&: SrcRC); |
| 435 | } |
| 436 | |
| 437 | // One of the register is a sub register, check if we can get a superclass. |
| 438 | if (SrcSubReg) |
| 439 | return getMatchingSuperRegClass(A: SrcRC, B: DefRC, Idx: SrcSubReg); |
| 440 | |
| 441 | // Plain copy. |
| 442 | return getCommonSubClass(A: DefRC, B: SrcRC); |
| 443 | } |
| 444 | |
| 445 | float TargetRegisterInfo::getSpillWeightScaleFactor( |
| 446 | const TargetRegisterClass *RC) const { |
| 447 | return 1.0; |
| 448 | } |
| 449 | |
| 450 | // Compute target-independent register allocator hints to help eliminate copies. |
| 451 | bool TargetRegisterInfo::getRegAllocationHints( |
| 452 | Register VirtReg, ArrayRef<MCPhysReg> Order, |
| 453 | SmallVectorImpl<MCPhysReg> &Hints, const MachineFunction &MF, |
| 454 | const VirtRegMap *VRM, const LiveRegMatrix *Matrix) const { |
| 455 | const MachineRegisterInfo &MRI = MF.getRegInfo(); |
| 456 | const std::pair<unsigned, SmallVector<Register, 4>> *Hints_MRI = |
| 457 | MRI.getRegAllocationHints(VReg: VirtReg); |
| 458 | |
| 459 | if (!Hints_MRI) |
| 460 | return false; |
| 461 | |
| 462 | SmallSet<Register, 32> HintedRegs; |
| 463 | // First hint may be a target hint. |
| 464 | bool Skip = (Hints_MRI->first != 0); |
| 465 | for (auto Reg : Hints_MRI->second) { |
| 466 | if (Skip) { |
| 467 | Skip = false; |
| 468 | continue; |
| 469 | } |
| 470 | |
| 471 | // Target-independent hints are either a physical or a virtual register. |
| 472 | Register Phys = Reg; |
| 473 | if (VRM && Phys.isVirtual()) |
| 474 | Phys = VRM->getPhys(virtReg: Phys); |
| 475 | |
| 476 | // Don't add the same reg twice (Hints_MRI may contain multiple virtual |
| 477 | // registers allocated to the same physreg). |
| 478 | if (!HintedRegs.insert(V: Phys).second) |
| 479 | continue; |
| 480 | // Check that Phys is a valid hint in VirtReg's register class. |
| 481 | if (!Phys.isPhysical()) |
| 482 | continue; |
| 483 | if (MRI.isReserved(PhysReg: Phys)) |
| 484 | continue; |
| 485 | // Check that Phys is in the allocation order. We shouldn't heed hints |
| 486 | // from VirtReg's register class if they aren't in the allocation order. The |
| 487 | // target probably has a reason for removing the register. |
| 488 | if (!is_contained(Range&: Order, Element: Phys)) |
| 489 | continue; |
| 490 | |
| 491 | // All clear, tell the register allocator to prefer this register. |
| 492 | Hints.push_back(Elt: Phys.id()); |
| 493 | } |
| 494 | return false; |
| 495 | } |
| 496 | |
| 497 | bool TargetRegisterInfo::isCalleeSavedPhysReg( |
| 498 | MCRegister PhysReg, const MachineFunction &MF) const { |
| 499 | if (!PhysReg) |
| 500 | return false; |
| 501 | const uint32_t *callerPreservedRegs = |
| 502 | getCallPreservedMask(MF, MF.getFunction().getCallingConv()); |
| 503 | if (callerPreservedRegs) { |
| 504 | assert(PhysReg.isPhysical() && "Expected physical register" ); |
| 505 | return (callerPreservedRegs[PhysReg.id() / 32] >> PhysReg.id() % 32) & 1; |
| 506 | } |
| 507 | return false; |
| 508 | } |
| 509 | |
| 510 | bool TargetRegisterInfo::canRealignStack(const MachineFunction &MF) const { |
| 511 | return MF.getFrameInfo().isStackRealignable(); |
| 512 | } |
| 513 | |
| 514 | bool TargetRegisterInfo::shouldRealignStack(const MachineFunction &MF) const { |
| 515 | return MF.getFrameInfo().shouldRealignStack(); |
| 516 | } |
| 517 | |
| 518 | bool TargetRegisterInfo::regmaskSubsetEqual(const uint32_t *mask0, |
| 519 | const uint32_t *mask1) const { |
| 520 | unsigned N = (getNumRegs()+31) / 32; |
| 521 | for (unsigned I = 0; I < N; ++I) |
| 522 | if ((mask0[I] & mask1[I]) != mask0[I]) |
| 523 | return false; |
| 524 | return true; |
| 525 | } |
| 526 | |
| 527 | TypeSize |
| 528 | TargetRegisterInfo::getRegSizeInBits(Register Reg, |
| 529 | const MachineRegisterInfo &MRI) const { |
| 530 | const TargetRegisterClass *RC{}; |
| 531 | if (Reg.isPhysical()) { |
| 532 | // The size is not directly available for physical registers. |
| 533 | // Instead, we need to access a register class that contains Reg and |
| 534 | // get the size of that register class. |
| 535 | RC = getMinimalPhysRegClass(Reg); |
| 536 | assert(RC && "Unable to deduce the register class" ); |
| 537 | return getRegSizeInBits(RC: *RC); |
| 538 | } |
| 539 | LLT Ty = MRI.getType(Reg); |
| 540 | if (Ty.isValid()) |
| 541 | return Ty.getSizeInBits(); |
| 542 | |
| 543 | // Since Reg is not a generic register, it may have a register class. |
| 544 | RC = MRI.getRegClass(Reg); |
| 545 | assert(RC && "Unable to deduce the register class" ); |
| 546 | return getRegSizeInBits(RC: *RC); |
| 547 | } |
| 548 | |
| 549 | bool TargetRegisterInfo::getCoveringSubRegIndexes( |
| 550 | const TargetRegisterClass *RC, LaneBitmask LaneMask, |
| 551 | SmallVectorImpl<unsigned> &NeededIndexes) const { |
| 552 | SmallVector<unsigned, 8> PossibleIndexes; |
| 553 | unsigned BestIdx = 0; |
| 554 | unsigned BestCover = 0; |
| 555 | |
| 556 | for (unsigned Idx = 1, E = getNumSubRegIndices(); Idx < E; ++Idx) { |
| 557 | // Is this index even compatible with the given class? |
| 558 | if (getSubClassWithSubReg(RC, Idx) != RC) |
| 559 | continue; |
| 560 | LaneBitmask SubRegMask = getSubRegIndexLaneMask(SubIdx: Idx); |
| 561 | // Early exit if we found a perfect match. |
| 562 | if (SubRegMask == LaneMask) { |
| 563 | BestIdx = Idx; |
| 564 | break; |
| 565 | } |
| 566 | |
| 567 | // The index must not cover any lanes outside \p LaneMask. |
| 568 | if ((SubRegMask & ~LaneMask).any()) |
| 569 | continue; |
| 570 | |
| 571 | unsigned PopCount = SubRegMask.getNumLanes(); |
| 572 | PossibleIndexes.push_back(Elt: Idx); |
| 573 | if (PopCount > BestCover) { |
| 574 | BestCover = PopCount; |
| 575 | BestIdx = Idx; |
| 576 | } |
| 577 | } |
| 578 | |
| 579 | // Abort if we cannot possibly implement the COPY with the given indexes. |
| 580 | if (BestIdx == 0) |
| 581 | return false; |
| 582 | |
| 583 | NeededIndexes.push_back(Elt: BestIdx); |
| 584 | |
| 585 | // Greedy heuristic: Keep iterating keeping the best covering subreg index |
| 586 | // each time. |
| 587 | LaneBitmask LanesLeft = LaneMask & ~getSubRegIndexLaneMask(SubIdx: BestIdx); |
| 588 | while (LanesLeft.any()) { |
| 589 | unsigned BestIdx = 0; |
| 590 | int BestCover = std::numeric_limits<int>::min(); |
| 591 | for (unsigned Idx : PossibleIndexes) { |
| 592 | LaneBitmask SubRegMask = getSubRegIndexLaneMask(SubIdx: Idx); |
| 593 | // Early exit if we found a perfect match. |
| 594 | if (SubRegMask == LanesLeft) { |
| 595 | BestIdx = Idx; |
| 596 | break; |
| 597 | } |
| 598 | |
| 599 | // Do not cover already-covered lanes to avoid creating cycles |
| 600 | // in copy bundles (= bundle contains copies that write to the |
| 601 | // registers). |
| 602 | if ((SubRegMask & ~LanesLeft).any()) |
| 603 | continue; |
| 604 | |
| 605 | // Try to cover as many of the remaining lanes as possible. |
| 606 | const int Cover = (SubRegMask & LanesLeft).getNumLanes(); |
| 607 | if (Cover > BestCover) { |
| 608 | BestCover = Cover; |
| 609 | BestIdx = Idx; |
| 610 | } |
| 611 | } |
| 612 | |
| 613 | if (BestIdx == 0) |
| 614 | return false; // Impossible to handle |
| 615 | |
| 616 | NeededIndexes.push_back(Elt: BestIdx); |
| 617 | |
| 618 | LanesLeft &= ~getSubRegIndexLaneMask(SubIdx: BestIdx); |
| 619 | } |
| 620 | |
| 621 | return BestIdx; |
| 622 | } |
| 623 | |
| 624 | unsigned TargetRegisterInfo::getSubRegIdxSize(unsigned Idx) const { |
| 625 | assert(Idx && Idx < getNumSubRegIndices() && |
| 626 | "This is not a subregister index" ); |
| 627 | return SubRegIdxRanges[HwMode * getNumSubRegIndices() + Idx].Size; |
| 628 | } |
| 629 | |
| 630 | unsigned TargetRegisterInfo::getSubRegIdxOffset(unsigned Idx) const { |
| 631 | assert(Idx && Idx < getNumSubRegIndices() && |
| 632 | "This is not a subregister index" ); |
| 633 | return SubRegIdxRanges[HwMode * getNumSubRegIndices() + Idx].Offset; |
| 634 | } |
| 635 | |
| 636 | Register |
| 637 | TargetRegisterInfo::lookThruCopyLike(Register SrcReg, |
| 638 | const MachineRegisterInfo *MRI) const { |
| 639 | while (true) { |
| 640 | const MachineInstr *MI = MRI->getVRegDef(Reg: SrcReg); |
| 641 | if (!MI->isCopyLike()) |
| 642 | return SrcReg; |
| 643 | |
| 644 | Register CopySrcReg; |
| 645 | if (MI->isCopy()) |
| 646 | CopySrcReg = MI->getOperand(i: 1).getReg(); |
| 647 | else { |
| 648 | assert(MI->isSubregToReg() && "Bad opcode for lookThruCopyLike" ); |
| 649 | CopySrcReg = MI->getOperand(i: 2).getReg(); |
| 650 | } |
| 651 | |
| 652 | if (!CopySrcReg.isVirtual()) |
| 653 | return CopySrcReg; |
| 654 | |
| 655 | SrcReg = CopySrcReg; |
| 656 | } |
| 657 | } |
| 658 | |
| 659 | Register TargetRegisterInfo::lookThruSingleUseCopyChain( |
| 660 | Register SrcReg, const MachineRegisterInfo *MRI) const { |
| 661 | while (true) { |
| 662 | const MachineInstr *MI = MRI->getVRegDef(Reg: SrcReg); |
| 663 | // Found the real definition, return it if it has a single use. |
| 664 | if (!MI->isCopyLike()) |
| 665 | return MRI->hasOneNonDBGUse(RegNo: SrcReg) ? SrcReg : Register(); |
| 666 | |
| 667 | Register CopySrcReg; |
| 668 | if (MI->isCopy()) |
| 669 | CopySrcReg = MI->getOperand(i: 1).getReg(); |
| 670 | else { |
| 671 | assert(MI->isSubregToReg() && "Bad opcode for lookThruCopyLike" ); |
| 672 | CopySrcReg = MI->getOperand(i: 2).getReg(); |
| 673 | } |
| 674 | |
| 675 | // Continue only if the next definition in the chain is for a virtual |
| 676 | // register that has a single use. |
| 677 | if (!CopySrcReg.isVirtual() || !MRI->hasOneNonDBGUse(RegNo: CopySrcReg)) |
| 678 | return Register(); |
| 679 | |
| 680 | SrcReg = CopySrcReg; |
| 681 | } |
| 682 | } |
| 683 | |
| 684 | void TargetRegisterInfo::getOffsetOpcodes( |
| 685 | const StackOffset &Offset, SmallVectorImpl<uint64_t> &Ops) const { |
| 686 | assert(!Offset.getScalable() && "Scalable offsets are not handled" ); |
| 687 | DIExpression::appendOffset(Ops, Offset: Offset.getFixed()); |
| 688 | } |
| 689 | |
| 690 | DIExpression * |
| 691 | TargetRegisterInfo::prependOffsetExpression(const DIExpression *Expr, |
| 692 | unsigned PrependFlags, |
| 693 | const StackOffset &Offset) const { |
| 694 | assert((PrependFlags & |
| 695 | ~(DIExpression::DerefBefore | DIExpression::DerefAfter | |
| 696 | DIExpression::StackValue | DIExpression::EntryValue)) == 0 && |
| 697 | "Unsupported prepend flag" ); |
| 698 | SmallVector<uint64_t, 16> OffsetExpr; |
| 699 | if (PrependFlags & DIExpression::DerefBefore) |
| 700 | OffsetExpr.push_back(Elt: dwarf::DW_OP_deref); |
| 701 | getOffsetOpcodes(Offset, Ops&: OffsetExpr); |
| 702 | if (PrependFlags & DIExpression::DerefAfter) |
| 703 | OffsetExpr.push_back(Elt: dwarf::DW_OP_deref); |
| 704 | return DIExpression::prependOpcodes(Expr, Ops&: OffsetExpr, |
| 705 | StackValue: PrependFlags & DIExpression::StackValue, |
| 706 | EntryValue: PrependFlags & DIExpression::EntryValue); |
| 707 | } |
| 708 | |
| 709 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 710 | LLVM_DUMP_METHOD |
| 711 | void TargetRegisterInfo::dumpReg(Register Reg, unsigned SubRegIndex, |
| 712 | const TargetRegisterInfo *TRI) { |
| 713 | dbgs() << printReg(Reg, TRI, SubRegIndex) << "\n" ; |
| 714 | } |
| 715 | #endif |
| 716 | |