| 1 | //===- SectionMemoryManager.cpp - Memory manager for MCJIT/RtDyld *- C++ -*-==// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file implements the section-based memory manager used by the MCJIT |
| 10 | // execution engine and RuntimeDyld |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #include "llvm/ExecutionEngine/SectionMemoryManager.h" |
| 15 | #include "llvm/Config/config.h" |
| 16 | #include "llvm/Support/Process.h" |
| 17 | |
| 18 | namespace llvm { |
| 19 | |
| 20 | bool SectionMemoryManager::hasSpace(const MemoryGroup &MemGroup, |
| 21 | uintptr_t Size) const { |
| 22 | for (const FreeMemBlock &FreeMB : MemGroup.FreeMem) { |
| 23 | if (FreeMB.Free.allocatedSize() >= Size) |
| 24 | return true; |
| 25 | } |
| 26 | return false; |
| 27 | } |
| 28 | |
| 29 | void SectionMemoryManager::reserveAllocationSpace( |
| 30 | uintptr_t CodeSize, Align CodeAlign, uintptr_t RODataSize, |
| 31 | Align RODataAlign, uintptr_t RWDataSize, Align RWDataAlign) { |
| 32 | if (CodeSize == 0 && RODataSize == 0 && RWDataSize == 0) |
| 33 | return; |
| 34 | |
| 35 | static const size_t PageSize = sys::Process::getPageSizeEstimate(); |
| 36 | |
| 37 | // Code alignment needs to be at least the stub alignment - however, we |
| 38 | // don't have an easy way to get that here so as a workaround, we assume |
| 39 | // it's 8, which is the largest value I observed across all platforms. |
| 40 | constexpr uint64_t StubAlign = 8; |
| 41 | CodeAlign = Align(std::max(a: CodeAlign.value(), b: StubAlign)); |
| 42 | RODataAlign = Align(std::max(a: RODataAlign.value(), b: StubAlign)); |
| 43 | RWDataAlign = Align(std::max(a: RWDataAlign.value(), b: StubAlign)); |
| 44 | |
| 45 | // Get space required for each section. Use the same calculation as |
| 46 | // allocateSection because we need to be able to satisfy it. |
| 47 | uint64_t RequiredCodeSize = alignTo(Size: CodeSize, A: CodeAlign) + CodeAlign.value(); |
| 48 | uint64_t RequiredRODataSize = |
| 49 | alignTo(Size: RODataSize, A: RODataAlign) + RODataAlign.value(); |
| 50 | uint64_t RequiredRWDataSize = |
| 51 | alignTo(Size: RWDataSize, A: RWDataAlign) + RWDataAlign.value(); |
| 52 | |
| 53 | if (hasSpace(MemGroup: CodeMem, Size: RequiredCodeSize) && |
| 54 | hasSpace(MemGroup: RODataMem, Size: RequiredRODataSize) && |
| 55 | hasSpace(MemGroup: RWDataMem, Size: RequiredRWDataSize)) { |
| 56 | // Sufficient space in contiguous block already available. |
| 57 | return; |
| 58 | } |
| 59 | |
| 60 | // MemoryManager does not have functions for releasing memory after it's |
| 61 | // allocated. Normally it tries to use any excess blocks that were allocated |
| 62 | // due to page alignment, but if we have insufficient free memory for the |
| 63 | // request this can lead to allocating disparate memory that can violate the |
| 64 | // ARM ABI. Clear free memory so only the new allocations are used, but do |
| 65 | // not release allocated memory as it may still be in-use. |
| 66 | CodeMem.FreeMem.clear(); |
| 67 | RODataMem.FreeMem.clear(); |
| 68 | RWDataMem.FreeMem.clear(); |
| 69 | |
| 70 | // Round up to the nearest page size. Blocks must be page-aligned. |
| 71 | RequiredCodeSize = alignTo(Value: RequiredCodeSize, Align: PageSize); |
| 72 | RequiredRODataSize = alignTo(Value: RequiredRODataSize, Align: PageSize); |
| 73 | RequiredRWDataSize = alignTo(Value: RequiredRWDataSize, Align: PageSize); |
| 74 | uint64_t RequiredSize = |
| 75 | RequiredCodeSize + RequiredRODataSize + RequiredRWDataSize; |
| 76 | |
| 77 | std::error_code ec; |
| 78 | sys::MemoryBlock MB = MMapper->allocateMappedMemory( |
| 79 | Purpose: AllocationPurpose::RWData, NumBytes: RequiredSize, NearBlock: nullptr, |
| 80 | Flags: sys::Memory::MF_READ | sys::Memory::MF_WRITE, EC&: ec); |
| 81 | if (ec) { |
| 82 | return; |
| 83 | } |
| 84 | // CodeMem will arbitrarily own this MemoryBlock to handle cleanup. |
| 85 | CodeMem.AllocatedMem.push_back(Elt: MB); |
| 86 | uintptr_t Addr = (uintptr_t)MB.base(); |
| 87 | FreeMemBlock FreeMB; |
| 88 | FreeMB.PendingPrefixIndex = (unsigned)-1; |
| 89 | |
| 90 | if (CodeSize > 0) { |
| 91 | assert(isAddrAligned(CodeAlign, (void *)Addr)); |
| 92 | FreeMB.Free = sys::MemoryBlock((void *)Addr, RequiredCodeSize); |
| 93 | CodeMem.FreeMem.push_back(Elt: FreeMB); |
| 94 | Addr += RequiredCodeSize; |
| 95 | } |
| 96 | |
| 97 | if (RODataSize > 0) { |
| 98 | assert(isAddrAligned(RODataAlign, (void *)Addr)); |
| 99 | FreeMB.Free = sys::MemoryBlock((void *)Addr, RequiredRODataSize); |
| 100 | RODataMem.FreeMem.push_back(Elt: FreeMB); |
| 101 | Addr += RequiredRODataSize; |
| 102 | } |
| 103 | |
| 104 | if (RWDataSize > 0) { |
| 105 | assert(isAddrAligned(RWDataAlign, (void *)Addr)); |
| 106 | FreeMB.Free = sys::MemoryBlock((void *)Addr, RequiredRWDataSize); |
| 107 | RWDataMem.FreeMem.push_back(Elt: FreeMB); |
| 108 | } |
| 109 | } |
| 110 | |
| 111 | uint8_t *SectionMemoryManager::allocateDataSection(uintptr_t Size, |
| 112 | unsigned Alignment, |
| 113 | unsigned SectionID, |
| 114 | StringRef SectionName, |
| 115 | bool IsReadOnly) { |
| 116 | if (IsReadOnly) |
| 117 | return allocateSection(Purpose: SectionMemoryManager::AllocationPurpose::ROData, |
| 118 | Size, Alignment); |
| 119 | return allocateSection(Purpose: SectionMemoryManager::AllocationPurpose::RWData, Size, |
| 120 | Alignment); |
| 121 | } |
| 122 | |
| 123 | uint8_t *SectionMemoryManager::allocateCodeSection(uintptr_t Size, |
| 124 | unsigned Alignment, |
| 125 | unsigned SectionID, |
| 126 | StringRef SectionName) { |
| 127 | return allocateSection(Purpose: SectionMemoryManager::AllocationPurpose::Code, Size, |
| 128 | Alignment); |
| 129 | } |
| 130 | |
| 131 | uint8_t *SectionMemoryManager::allocateSection( |
| 132 | SectionMemoryManager::AllocationPurpose Purpose, uintptr_t Size, |
| 133 | unsigned Alignment) { |
| 134 | if (!Alignment) |
| 135 | Alignment = 16; |
| 136 | |
| 137 | assert(!(Alignment & (Alignment - 1)) && "Alignment must be a power of two." ); |
| 138 | |
| 139 | uintptr_t RequiredSize = Alignment * ((Size + Alignment - 1) / Alignment + 1); |
| 140 | uintptr_t Addr = 0; |
| 141 | |
| 142 | MemoryGroup &MemGroup = [&]() -> MemoryGroup & { |
| 143 | switch (Purpose) { |
| 144 | case AllocationPurpose::Code: |
| 145 | return CodeMem; |
| 146 | case AllocationPurpose::ROData: |
| 147 | return RODataMem; |
| 148 | case AllocationPurpose::RWData: |
| 149 | return RWDataMem; |
| 150 | } |
| 151 | llvm_unreachable("Unknown SectionMemoryManager::AllocationPurpose" ); |
| 152 | }(); |
| 153 | |
| 154 | // Look in the list of free memory regions and use a block there if one |
| 155 | // is available. |
| 156 | for (FreeMemBlock &FreeMB : MemGroup.FreeMem) { |
| 157 | if (FreeMB.Free.allocatedSize() >= RequiredSize) { |
| 158 | Addr = (uintptr_t)FreeMB.Free.base(); |
| 159 | uintptr_t EndOfBlock = Addr + FreeMB.Free.allocatedSize(); |
| 160 | // Align the address. |
| 161 | Addr = (Addr + Alignment - 1) & ~(uintptr_t)(Alignment - 1); |
| 162 | |
| 163 | if (FreeMB.PendingPrefixIndex == (unsigned)-1) { |
| 164 | // The part of the block we're giving out to the user is now pending |
| 165 | MemGroup.PendingMem.push_back(Elt: sys::MemoryBlock((void *)Addr, Size)); |
| 166 | |
| 167 | // Remember this pending block, such that future allocations can just |
| 168 | // modify it rather than creating a new one |
| 169 | FreeMB.PendingPrefixIndex = MemGroup.PendingMem.size() - 1; |
| 170 | } else { |
| 171 | sys::MemoryBlock &PendingMB = |
| 172 | MemGroup.PendingMem[FreeMB.PendingPrefixIndex]; |
| 173 | PendingMB = sys::MemoryBlock(PendingMB.base(), |
| 174 | Addr + Size - (uintptr_t)PendingMB.base()); |
| 175 | } |
| 176 | |
| 177 | // Remember how much free space is now left in this block |
| 178 | FreeMB.Free = |
| 179 | sys::MemoryBlock((void *)(Addr + Size), EndOfBlock - Addr - Size); |
| 180 | return (uint8_t *)Addr; |
| 181 | } |
| 182 | } |
| 183 | |
| 184 | // No pre-allocated free block was large enough. Allocate a new memory region. |
| 185 | // Note that all sections get allocated as read-write. The permissions will |
| 186 | // be updated later based on memory group. |
| 187 | // |
| 188 | // FIXME: It would be useful to define a default allocation size (or add |
| 189 | // it as a constructor parameter) to minimize the number of allocations. |
| 190 | // |
| 191 | // FIXME: Initialize the Near member for each memory group to avoid |
| 192 | // interleaving. |
| 193 | std::error_code ec; |
| 194 | sys::MemoryBlock MB = MMapper->allocateMappedMemory( |
| 195 | Purpose, NumBytes: RequiredSize, NearBlock: &MemGroup.Near, |
| 196 | Flags: sys::Memory::MF_READ | sys::Memory::MF_WRITE, EC&: ec); |
| 197 | if (ec) { |
| 198 | // FIXME: Add error propagation to the interface. |
| 199 | return nullptr; |
| 200 | } |
| 201 | |
| 202 | // Save this address as the basis for our next request |
| 203 | MemGroup.Near = MB; |
| 204 | |
| 205 | // Copy the address to all the other groups, if they have not |
| 206 | // been initialized. |
| 207 | if (CodeMem.Near.base() == nullptr) |
| 208 | CodeMem.Near = MB; |
| 209 | if (RODataMem.Near.base() == nullptr) |
| 210 | RODataMem.Near = MB; |
| 211 | if (RWDataMem.Near.base() == nullptr) |
| 212 | RWDataMem.Near = MB; |
| 213 | |
| 214 | // Remember that we allocated this memory |
| 215 | MemGroup.AllocatedMem.push_back(Elt: MB); |
| 216 | Addr = (uintptr_t)MB.base(); |
| 217 | uintptr_t EndOfBlock = Addr + MB.allocatedSize(); |
| 218 | |
| 219 | // Align the address. |
| 220 | Addr = (Addr + Alignment - 1) & ~(uintptr_t)(Alignment - 1); |
| 221 | |
| 222 | // The part of the block we're giving out to the user is now pending |
| 223 | MemGroup.PendingMem.push_back(Elt: sys::MemoryBlock((void *)Addr, Size)); |
| 224 | |
| 225 | // The allocateMappedMemory may allocate much more memory than we need. In |
| 226 | // this case, we store the unused memory as a free memory block. |
| 227 | unsigned FreeSize = EndOfBlock - Addr - Size; |
| 228 | if (FreeSize > 16) { |
| 229 | FreeMemBlock FreeMB; |
| 230 | FreeMB.Free = sys::MemoryBlock((void *)(Addr + Size), FreeSize); |
| 231 | FreeMB.PendingPrefixIndex = (unsigned)-1; |
| 232 | MemGroup.FreeMem.push_back(Elt: FreeMB); |
| 233 | } |
| 234 | |
| 235 | // Return aligned address |
| 236 | return (uint8_t *)Addr; |
| 237 | } |
| 238 | |
| 239 | bool SectionMemoryManager::finalizeMemory(std::string *ErrMsg) { |
| 240 | // FIXME: Should in-progress permissions be reverted if an error occurs? |
| 241 | std::error_code ec; |
| 242 | |
| 243 | // Make code memory executable. |
| 244 | ec = applyMemoryGroupPermissions(MemGroup&: CodeMem, |
| 245 | Permissions: sys::Memory::MF_READ | sys::Memory::MF_EXEC); |
| 246 | if (ec) { |
| 247 | if (ErrMsg) { |
| 248 | *ErrMsg = ec.message(); |
| 249 | } |
| 250 | return true; |
| 251 | } |
| 252 | |
| 253 | // Make read-only data memory read-only. |
| 254 | ec = applyMemoryGroupPermissions(MemGroup&: RODataMem, Permissions: sys::Memory::MF_READ); |
| 255 | if (ec) { |
| 256 | if (ErrMsg) { |
| 257 | *ErrMsg = ec.message(); |
| 258 | } |
| 259 | return true; |
| 260 | } |
| 261 | |
| 262 | // Read-write data memory already has the correct permissions |
| 263 | |
| 264 | // Some platforms with separate data cache and instruction cache require |
| 265 | // explicit cache flush, otherwise JIT code manipulations (like resolved |
| 266 | // relocations) will get to the data cache but not to the instruction cache. |
| 267 | invalidateInstructionCache(); |
| 268 | |
| 269 | return false; |
| 270 | } |
| 271 | |
| 272 | static sys::MemoryBlock trimBlockToPageSize(sys::MemoryBlock M) { |
| 273 | static const size_t PageSize = sys::Process::getPageSizeEstimate(); |
| 274 | |
| 275 | size_t StartOverlap = |
| 276 | (PageSize - ((uintptr_t)M.base() % PageSize)) % PageSize; |
| 277 | |
| 278 | size_t TrimmedSize = M.allocatedSize(); |
| 279 | TrimmedSize -= StartOverlap; |
| 280 | TrimmedSize -= TrimmedSize % PageSize; |
| 281 | |
| 282 | sys::MemoryBlock Trimmed((void *)((uintptr_t)M.base() + StartOverlap), |
| 283 | TrimmedSize); |
| 284 | |
| 285 | assert(((uintptr_t)Trimmed.base() % PageSize) == 0); |
| 286 | assert((Trimmed.allocatedSize() % PageSize) == 0); |
| 287 | assert(M.base() <= Trimmed.base() && |
| 288 | Trimmed.allocatedSize() <= M.allocatedSize()); |
| 289 | |
| 290 | return Trimmed; |
| 291 | } |
| 292 | |
| 293 | std::error_code |
| 294 | SectionMemoryManager::applyMemoryGroupPermissions(MemoryGroup &MemGroup, |
| 295 | unsigned Permissions) { |
| 296 | for (sys::MemoryBlock &MB : MemGroup.PendingMem) |
| 297 | if (std::error_code EC = MMapper->protectMappedMemory(Block: MB, Flags: Permissions)) |
| 298 | return EC; |
| 299 | |
| 300 | MemGroup.PendingMem.clear(); |
| 301 | |
| 302 | // Now go through free blocks and trim any of them that don't span the entire |
| 303 | // page because one of the pending blocks may have overlapped it. |
| 304 | for (FreeMemBlock &FreeMB : MemGroup.FreeMem) { |
| 305 | FreeMB.Free = trimBlockToPageSize(M: FreeMB.Free); |
| 306 | // We cleared the PendingMem list, so all these pointers are now invalid |
| 307 | FreeMB.PendingPrefixIndex = (unsigned)-1; |
| 308 | } |
| 309 | |
| 310 | // Remove all blocks which are now empty |
| 311 | erase_if(C&: MemGroup.FreeMem, P: [](FreeMemBlock &FreeMB) { |
| 312 | return FreeMB.Free.allocatedSize() == 0; |
| 313 | }); |
| 314 | |
| 315 | return std::error_code(); |
| 316 | } |
| 317 | |
| 318 | void SectionMemoryManager::invalidateInstructionCache() { |
| 319 | for (sys::MemoryBlock &Block : CodeMem.PendingMem) |
| 320 | sys::Memory::InvalidateInstructionCache(Addr: Block.base(), |
| 321 | Len: Block.allocatedSize()); |
| 322 | } |
| 323 | |
| 324 | SectionMemoryManager::~SectionMemoryManager() { |
| 325 | for (MemoryGroup *Group : {&CodeMem, &RWDataMem, &RODataMem}) { |
| 326 | for (sys::MemoryBlock &Block : Group->AllocatedMem) |
| 327 | MMapper->releaseMappedMemory(M&: Block); |
| 328 | } |
| 329 | } |
| 330 | |
| 331 | SectionMemoryManager::MemoryMapper::~MemoryMapper() = default; |
| 332 | |
| 333 | void SectionMemoryManager::anchor() {} |
| 334 | |
| 335 | namespace { |
| 336 | // Trivial implementation of SectionMemoryManager::MemoryMapper that just calls |
| 337 | // into sys::Memory. |
| 338 | class DefaultMMapper final : public SectionMemoryManager::MemoryMapper { |
| 339 | public: |
| 340 | sys::MemoryBlock |
| 341 | allocateMappedMemory(SectionMemoryManager::AllocationPurpose Purpose, |
| 342 | size_t NumBytes, const sys::MemoryBlock *const NearBlock, |
| 343 | unsigned Flags, std::error_code &EC) override { |
| 344 | return sys::Memory::allocateMappedMemory(NumBytes, NearBlock, Flags, EC); |
| 345 | } |
| 346 | |
| 347 | std::error_code protectMappedMemory(const sys::MemoryBlock &Block, |
| 348 | unsigned Flags) override { |
| 349 | return sys::Memory::protectMappedMemory(Block, Flags); |
| 350 | } |
| 351 | |
| 352 | std::error_code releaseMappedMemory(sys::MemoryBlock &M) override { |
| 353 | return sys::Memory::releaseMappedMemory(Block&: M); |
| 354 | } |
| 355 | }; |
| 356 | } // namespace |
| 357 | |
| 358 | SectionMemoryManager::SectionMemoryManager(MemoryMapper *UnownedMM, |
| 359 | bool ReserveAlloc) |
| 360 | : MMapper(UnownedMM), OwnedMMapper(nullptr), |
| 361 | ReserveAllocation(ReserveAlloc) { |
| 362 | if (!MMapper) { |
| 363 | OwnedMMapper = std::make_unique<DefaultMMapper>(); |
| 364 | MMapper = OwnedMMapper.get(); |
| 365 | } |
| 366 | } |
| 367 | |
| 368 | } // namespace llvm |
| 369 | |