1//===- DebugInfoMetadata.cpp - Implement debug info metadata --------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the debug info Metadata classes.
10//
11//===----------------------------------------------------------------------===//
12
13#include "llvm/IR/DebugInfoMetadata.h"
14#include "LLVMContextImpl.h"
15#include "MetadataImpl.h"
16#include "llvm/ADT/SetVector.h"
17#include "llvm/ADT/StringSwitch.h"
18#include "llvm/BinaryFormat/Dwarf.h"
19#include "llvm/IR/DebugProgramInstruction.h"
20#include "llvm/IR/Function.h"
21#include "llvm/IR/IntrinsicInst.h"
22#include "llvm/IR/Type.h"
23#include "llvm/IR/Value.h"
24#include "llvm/Support/CommandLine.h"
25#include "llvm/Support/Compiler.h"
26
27#include <numeric>
28#include <optional>
29
30using namespace llvm;
31
32namespace llvm {
33// Use FS-AFDO discriminator.
34cl::opt<bool> EnableFSDiscriminator(
35 "enable-fs-discriminator", cl::Hidden,
36 cl::desc("Enable adding flow sensitive discriminators"));
37
38// When true, preserves line and column number by picking one of the merged
39// location info in a deterministic manner to assist sample based PGO.
40LLVM_ABI cl::opt<bool> PickMergedSourceLocations(
41 "pick-merged-source-locations", cl::init(Val: false), cl::Hidden,
42 cl::desc("Preserve line and column number when merging locations."));
43} // namespace llvm
44
45uint32_t DIType::getAlignInBits() const {
46 return (getTag() == dwarf::DW_TAG_LLVM_ptrauth_type ? 0 : SubclassData32);
47}
48
49const DIExpression::FragmentInfo DebugVariable::DefaultFragment = {
50 std::numeric_limits<uint64_t>::max(), std::numeric_limits<uint64_t>::min()};
51
52DebugVariable::DebugVariable(const DbgVariableRecord *DVR)
53 : Variable(DVR->getVariable()),
54 Fragment(DVR->getExpression()->getFragmentInfo()),
55 InlinedAt(DVR->getDebugLoc().getInlinedAt()) {}
56
57DebugVariableAggregate::DebugVariableAggregate(const DbgVariableRecord *DVR)
58 : DebugVariable(DVR->getVariable(), std::nullopt,
59 DVR->getDebugLoc()->getInlinedAt()) {}
60
61DILocation::DILocation(LLVMContext &C, StorageType Storage, unsigned Line,
62 unsigned Column, uint64_t AtomGroup, uint8_t AtomRank,
63 ArrayRef<Metadata *> MDs, bool ImplicitCode)
64 : MDNode(C, DILocationKind, Storage, MDs), AtomGroup(AtomGroup),
65 AtomRank(AtomRank) {
66 assert(AtomRank <= 7 && "AtomRank number should fit in 3 bits");
67 if (AtomGroup)
68 C.updateDILocationAtomGroupWaterline(G: AtomGroup + 1);
69
70 assert((MDs.size() == 1 || MDs.size() == 2) &&
71 "Expected a scope and optional inlined-at");
72 // Set line and column.
73 assert(Column < (1u << 16) && "Expected 16-bit column");
74
75 SubclassData32 = Line;
76 SubclassData16 = Column;
77
78 setImplicitCode(ImplicitCode);
79}
80
81static void adjustColumn(unsigned &Column) {
82 // Set to unknown on overflow. We only have 16 bits to play with here.
83 if (Column >= (1u << 16))
84 Column = 0;
85}
86
87DILocation *DILocation::getImpl(LLVMContext &Context, unsigned Line,
88 unsigned Column, Metadata *Scope,
89 Metadata *InlinedAt, bool ImplicitCode,
90 uint64_t AtomGroup, uint8_t AtomRank,
91 StorageType Storage, bool ShouldCreate) {
92 // Fixup column.
93 adjustColumn(Column);
94
95 if (Storage == Uniqued) {
96 if (auto *N = getUniqued(Store&: Context.pImpl->DILocations,
97 Key: DILocationInfo::KeyTy(Line, Column, Scope,
98 InlinedAt, ImplicitCode,
99 AtomGroup, AtomRank)))
100 return N;
101 if (!ShouldCreate)
102 return nullptr;
103 } else {
104 assert(ShouldCreate && "Expected non-uniqued nodes to always be created");
105 }
106
107 SmallVector<Metadata *, 2> Ops;
108 Ops.push_back(Elt: Scope);
109 if (InlinedAt)
110 Ops.push_back(Elt: InlinedAt);
111 return storeImpl(N: new (Ops.size(), Storage)
112 DILocation(Context, Storage, Line, Column, AtomGroup,
113 AtomRank, Ops, ImplicitCode),
114 Storage, Store&: Context.pImpl->DILocations);
115}
116
117DILocation *DILocation::getMergedLocations(ArrayRef<DILocation *> Locs) {
118 if (Locs.empty())
119 return nullptr;
120 if (Locs.size() == 1)
121 return Locs[0];
122 auto *Merged = Locs[0];
123 for (DILocation *L : llvm::drop_begin(RangeOrContainer&: Locs)) {
124 Merged = getMergedLocation(LocA: Merged, LocB: L);
125 if (Merged == nullptr)
126 break;
127 }
128 return Merged;
129}
130
131static DILexicalBlockBase *cloneAndReplaceParentScope(DILexicalBlockBase *LBB,
132 DIScope *NewParent) {
133 TempMDNode ClonedScope = LBB->clone();
134 cast<DILexicalBlockBase>(Val&: *ClonedScope).replaceScope(Scope: NewParent);
135 return cast<DILexicalBlockBase>(
136 Val: MDNode::replaceWithUniqued(N: std::move(ClonedScope)));
137}
138
139using LineColumn = std::pair<unsigned /* Line */, unsigned /* Column */>;
140
141/// Returns the location of DILocalScope, if present, or a default value.
142static LineColumn getLocalScopeLocationOr(DIScope *S, LineColumn Default) {
143 assert(isa<DILocalScope>(S) && "Expected DILocalScope.");
144
145 if (isa<DILexicalBlockFile>(Val: S))
146 return Default;
147 if (auto *LB = dyn_cast<DILexicalBlock>(Val: S))
148 return {LB->getLine(), LB->getColumn()};
149 if (auto *SP = dyn_cast<DISubprogram>(Val: S))
150 return {SP->getLine(), 0u};
151
152 llvm_unreachable("Unhandled type of DILocalScope.");
153}
154
155// Returns the nearest matching scope inside a subprogram.
156template <typename MatcherT>
157static std::pair<DIScope *, LineColumn>
158getNearestMatchingScope(const DILocation *L1, const DILocation *L2) {
159 MatcherT Matcher;
160
161 DIScope *S1 = L1->getScope();
162 DIScope *S2 = L2->getScope();
163
164 LineColumn Loc1(L1->getLine(), L1->getColumn());
165 for (; S1; S1 = S1->getScope()) {
166 Loc1 = getLocalScopeLocationOr(S: S1, Default: Loc1);
167 Matcher.insert(S1, Loc1);
168 if (isa<DISubprogram>(Val: S1))
169 break;
170 }
171
172 LineColumn Loc2(L2->getLine(), L2->getColumn());
173 for (; S2; S2 = S2->getScope()) {
174 Loc2 = getLocalScopeLocationOr(S: S2, Default: Loc2);
175
176 if (DIScope *S = Matcher.match(S2, Loc2))
177 return std::make_pair(x&: S, y&: Loc2);
178
179 if (isa<DISubprogram>(Val: S2))
180 break;
181 }
182 return std::make_pair(x: nullptr, y: LineColumn(L2->getLine(), L2->getColumn()));
183}
184
185// Matches equal scopes.
186struct EqualScopesMatcher {
187 SmallPtrSet<DIScope *, 8> Scopes;
188
189 void insert(DIScope *S, LineColumn Loc) { Scopes.insert(Ptr: S); }
190
191 DIScope *match(DIScope *S, LineColumn Loc) {
192 return Scopes.contains(Ptr: S) ? S : nullptr;
193 }
194};
195
196// Matches scopes with the same location.
197struct ScopeLocationsMatcher {
198 SmallMapVector<std::pair<DIFile *, LineColumn>, SmallSetVector<DIScope *, 8>,
199 8>
200 Scopes;
201
202 void insert(DIScope *S, LineColumn Loc) {
203 Scopes[{S->getFile(), Loc}].insert(X: S);
204 }
205
206 DIScope *match(DIScope *S, LineColumn Loc) {
207 auto ScopesAtLoc = Scopes.find(Key: {S->getFile(), Loc});
208 // No scope found with the given location.
209 if (ScopesAtLoc == Scopes.end())
210 return nullptr;
211
212 // Prefer S over other scopes with the same location.
213 if (ScopesAtLoc->second.contains(key: S))
214 return S;
215
216 if (!ScopesAtLoc->second.empty())
217 return *ScopesAtLoc->second.begin();
218
219 llvm_unreachable("Scopes must not have empty entries.");
220 }
221};
222
223DILocation *DILocation::getMergedLocation(DILocation *LocA, DILocation *LocB) {
224 if (LocA == LocB)
225 return LocA;
226
227 // For some use cases (SamplePGO), it is important to retain distinct source
228 // locations. When this flag is set, we choose arbitrarily between A and B,
229 // rather than computing a merged location using line 0, which is typically
230 // not useful for PGO. If one of them is null, then try to return one which is
231 // valid.
232 if (PickMergedSourceLocations) {
233 if (!LocA || !LocB)
234 return LocA ? LocA : LocB;
235
236 auto A = std::make_tuple(args: LocA->getLine(), args: LocA->getColumn(),
237 args: LocA->getDiscriminator(), args: LocA->getFilename(),
238 args: LocA->getDirectory());
239 auto B = std::make_tuple(args: LocB->getLine(), args: LocB->getColumn(),
240 args: LocB->getDiscriminator(), args: LocB->getFilename(),
241 args: LocB->getDirectory());
242 return A < B ? LocA : LocB;
243 }
244
245 if (!LocA || !LocB)
246 return nullptr;
247
248 LLVMContext &C = LocA->getContext();
249
250 using LocVec = SmallVector<const DILocation *>;
251 LocVec ALocs;
252 LocVec BLocs;
253 SmallDenseMap<std::pair<const DISubprogram *, const DILocation *>, unsigned,
254 4>
255 ALookup;
256
257 // Walk through LocA and its inlined-at locations, populate them in ALocs and
258 // save the index for the subprogram and inlined-at pair, which we use to find
259 // a matching starting location in LocB's chain.
260 for (auto [L, I] = std::make_pair(x&: LocA, y: 0U); L; L = L->getInlinedAt(), I++) {
261 ALocs.push_back(Elt: L);
262 auto Res = ALookup.try_emplace(
263 Key: {L->getScope()->getSubprogram(), L->getInlinedAt()}, Args&: I);
264 assert(Res.second && "Multiple <SP, InlinedAt> pairs in a location chain?");
265 (void)Res;
266 }
267
268 LocVec::reverse_iterator ARIt = ALocs.rend();
269 LocVec::reverse_iterator BRIt = BLocs.rend();
270
271 // Populate BLocs and look for a matching starting location, the first
272 // location with the same subprogram and inlined-at location as in LocA's
273 // chain. Since the two locations have the same inlined-at location we do
274 // not need to look at those parts of the chains.
275 for (auto [L, I] = std::make_pair(x&: LocB, y: 0U); L; L = L->getInlinedAt(), I++) {
276 BLocs.push_back(Elt: L);
277
278 if (ARIt != ALocs.rend())
279 // We have already found a matching starting location.
280 continue;
281
282 auto IT = ALookup.find(Val: {L->getScope()->getSubprogram(), L->getInlinedAt()});
283 if (IT == ALookup.end())
284 continue;
285
286 // The + 1 is to account for the &*rev_it = &(it - 1) relationship.
287 ARIt = LocVec::reverse_iterator(ALocs.begin() + IT->second + 1);
288 BRIt = LocVec::reverse_iterator(BLocs.begin() + I + 1);
289
290 // If we have found a matching starting location we do not need to add more
291 // locations to BLocs, since we will only look at location pairs preceding
292 // the matching starting location, and adding more elements to BLocs could
293 // invalidate the iterator that we initialized here.
294 break;
295 }
296
297 // Merge the two locations if possible, using the supplied
298 // inlined-at location for the created location.
299 auto *LocAIA = LocA->getInlinedAt();
300 auto *LocBIA = LocB->getInlinedAt();
301 auto MergeLocPair = [&C, LocAIA,
302 LocBIA](const DILocation *L1, const DILocation *L2,
303 DILocation *InlinedAt) -> DILocation * {
304 if (L1 == L2)
305 return DILocation::get(Context&: C, Line: L1->getLine(), Column: L1->getColumn(), Scope: L1->getScope(),
306 InlinedAt, ImplicitCode: L1->isImplicitCode(),
307 AtomGroup: L1->getAtomGroup(), AtomRank: L1->getAtomRank());
308
309 // If the locations originate from different subprograms we can't produce
310 // a common location.
311 if (L1->getScope()->getSubprogram() != L2->getScope()->getSubprogram())
312 return nullptr;
313
314 // Find nearest common scope inside subprogram.
315 DIScope *Scope = getNearestMatchingScope<EqualScopesMatcher>(L1, L2).first;
316 assert(Scope && "No common scope in the same subprogram?");
317
318 // Try using the nearest scope with common location if files are different.
319 if (Scope->getFile() != L1->getFile() || L1->getFile() != L2->getFile()) {
320 auto [CommonLocScope, CommonLoc] =
321 getNearestMatchingScope<ScopeLocationsMatcher>(L1, L2);
322
323 // If CommonLocScope is a DILexicalBlockBase, clone it and locate
324 // a new scope inside the nearest common scope to preserve
325 // lexical blocks structure.
326 if (auto *LBB = dyn_cast<DILexicalBlockBase>(Val: CommonLocScope);
327 LBB && LBB != Scope)
328 CommonLocScope = cloneAndReplaceParentScope(LBB, NewParent: Scope);
329
330 Scope = CommonLocScope;
331
332 // If files are still different, assume that L1 and L2 were "included"
333 // from CommonLoc. Use it as merged location.
334 if (Scope->getFile() != L1->getFile() || L1->getFile() != L2->getFile())
335 return DILocation::get(Context&: C, Line: CommonLoc.first, Column: CommonLoc.second,
336 Scope: CommonLocScope, InlinedAt);
337 }
338
339 bool SameLine = L1->getLine() == L2->getLine();
340 bool SameCol = L1->getColumn() == L2->getColumn();
341 unsigned Line = SameLine ? L1->getLine() : 0;
342 unsigned Col = SameLine && SameCol ? L1->getColumn() : 0;
343 bool IsImplicitCode = L1->isImplicitCode() && L2->isImplicitCode();
344
345 // Discard source location atom if the line becomes 0. And there's nothing
346 // further to do if neither location has an atom number.
347 if (!SameLine || !(L1->getAtomGroup() || L2->getAtomGroup()))
348 return DILocation::get(Context&: C, Line, Column: Col, Scope, InlinedAt, ImplicitCode: IsImplicitCode,
349 /*AtomGroup*/ 0, /*AtomRank*/ 0);
350
351 uint64_t Group = 0;
352 uint64_t Rank = 0;
353 // If we're preserving the same matching inlined-at field we can
354 // preserve the atom.
355 if (LocBIA == LocAIA && InlinedAt == LocBIA) {
356 // Deterministically keep the lowest non-zero ranking atom group
357 // number.
358 // FIXME: It would be nice if we could track that an instruction
359 // belongs to two source atoms.
360 bool UseL1Atom = [L1, L2]() {
361 if (L1->getAtomRank() == L2->getAtomRank()) {
362 // Arbitrarily choose the lowest non-zero group number.
363 if (!L1->getAtomGroup() || !L2->getAtomGroup())
364 return !L2->getAtomGroup();
365 return L1->getAtomGroup() < L2->getAtomGroup();
366 }
367 // Choose the lowest non-zero rank.
368 if (!L1->getAtomRank() || !L2->getAtomRank())
369 return !L2->getAtomRank();
370 return L1->getAtomRank() < L2->getAtomRank();
371 }();
372 Group = UseL1Atom ? L1->getAtomGroup() : L2->getAtomGroup();
373 Rank = UseL1Atom ? L1->getAtomRank() : L2->getAtomRank();
374 } else {
375 // If either instruction is part of a source atom, reassign it a new
376 // atom group. This essentially regresses to non-key-instructions
377 // behaviour (now that it's the only instruction in its group it'll
378 // probably get is_stmt applied).
379 Group = C.incNextDILocationAtomGroup();
380 Rank = 1;
381 }
382 return DILocation::get(Context&: C, Line, Column: Col, Scope, InlinedAt, ImplicitCode: IsImplicitCode,
383 AtomGroup: Group, AtomRank: Rank);
384 };
385
386 DILocation *Result = ARIt != ALocs.rend() ? (*ARIt)->getInlinedAt() : nullptr;
387
388 // If we have found a common starting location, walk up the inlined-at chains
389 // and try to produce common locations.
390 for (; ARIt != ALocs.rend() && BRIt != BLocs.rend(); ++ARIt, ++BRIt) {
391 DILocation *Tmp = MergeLocPair(*ARIt, *BRIt, Result);
392
393 if (!Tmp)
394 // We have walked up to a point in the chains where the two locations
395 // are irreconsilable. At this point Result contains the nearest common
396 // location in the inlined-at chains of LocA and LocB, so we break here.
397 break;
398
399 Result = Tmp;
400 }
401
402 if (Result)
403 return Result;
404
405 // We ended up with LocA and LocB as irreconsilable locations. Produce a
406 // location at 0:0 with one of the locations' scope. The function has
407 // historically picked A's scope, and a nullptr inlined-at location, so that
408 // behavior is mimicked here but I am not sure if this is always the correct
409 // way to handle this.
410 // Key Instructions: it's fine to drop atom group and rank here, as line 0
411 // is a nonsensical is_stmt location.
412 return DILocation::get(Context&: C, Line: 0, Column: 0, Scope: LocA->getScope(), InlinedAt: nullptr, ImplicitCode: false,
413 /*AtomGroup*/ 0, /*AtomRank*/ 0);
414}
415
416std::optional<unsigned>
417DILocation::encodeDiscriminator(unsigned BD, unsigned DF, unsigned CI) {
418 std::array<unsigned, 3> Components = {BD, DF, CI};
419 uint64_t RemainingWork = 0U;
420 // We use RemainingWork to figure out if we have no remaining components to
421 // encode. For example: if BD != 0 but DF == 0 && CI == 0, we don't need to
422 // encode anything for the latter 2.
423 // Since any of the input components is at most 32 bits, their sum will be
424 // less than 34 bits, and thus RemainingWork won't overflow.
425 RemainingWork =
426 std::accumulate(first: Components.begin(), last: Components.end(), init: RemainingWork);
427
428 int I = 0;
429 unsigned Ret = 0;
430 unsigned NextBitInsertionIndex = 0;
431 while (RemainingWork > 0) {
432 unsigned C = Components[I++];
433 RemainingWork -= C;
434 unsigned EC = encodeComponent(C);
435 Ret |= (EC << NextBitInsertionIndex);
436 NextBitInsertionIndex += encodingBits(C);
437 }
438
439 // Encoding may be unsuccessful because of overflow. We determine success by
440 // checking equivalence of components before & after encoding. Alternatively,
441 // we could determine Success during encoding, but the current alternative is
442 // simpler.
443 unsigned TBD, TDF, TCI = 0;
444 decodeDiscriminator(D: Ret, BD&: TBD, DF&: TDF, CI&: TCI);
445 if (TBD == BD && TDF == DF && TCI == CI)
446 return Ret;
447 return std::nullopt;
448}
449
450void DILocation::decodeDiscriminator(unsigned D, unsigned &BD, unsigned &DF,
451 unsigned &CI) {
452 BD = getUnsignedFromPrefixEncoding(U: D);
453 DF = getUnsignedFromPrefixEncoding(U: getNextComponentInDiscriminator(D));
454 CI = getUnsignedFromPrefixEncoding(
455 U: getNextComponentInDiscriminator(D: getNextComponentInDiscriminator(D)));
456}
457dwarf::Tag DINode::getTag() const { return (dwarf::Tag)SubclassData16; }
458
459DINode::DIFlags DINode::getFlag(StringRef Flag) {
460 return StringSwitch<DIFlags>(Flag)
461#define HANDLE_DI_FLAG(ID, NAME) .Case("DIFlag" #NAME, Flag##NAME)
462#include "llvm/IR/DebugInfoFlags.def"
463 .Default(Value: DINode::FlagZero);
464}
465
466StringRef DINode::getFlagString(DIFlags Flag) {
467 switch (Flag) {
468#define HANDLE_DI_FLAG(ID, NAME) \
469 case Flag##NAME: \
470 return "DIFlag" #NAME;
471#include "llvm/IR/DebugInfoFlags.def"
472 }
473 return "";
474}
475
476DINode::DIFlags DINode::splitFlags(DIFlags Flags,
477 SmallVectorImpl<DIFlags> &SplitFlags) {
478 // Flags that are packed together need to be specially handled, so
479 // that, for example, we emit "DIFlagPublic" and not
480 // "DIFlagPrivate | DIFlagProtected".
481 if (DIFlags A = Flags & FlagAccessibility) {
482 if (A == FlagPrivate)
483 SplitFlags.push_back(Elt: FlagPrivate);
484 else if (A == FlagProtected)
485 SplitFlags.push_back(Elt: FlagProtected);
486 else
487 SplitFlags.push_back(Elt: FlagPublic);
488 Flags &= ~A;
489 }
490 if (DIFlags R = Flags & FlagPtrToMemberRep) {
491 if (R == FlagSingleInheritance)
492 SplitFlags.push_back(Elt: FlagSingleInheritance);
493 else if (R == FlagMultipleInheritance)
494 SplitFlags.push_back(Elt: FlagMultipleInheritance);
495 else
496 SplitFlags.push_back(Elt: FlagVirtualInheritance);
497 Flags &= ~R;
498 }
499 if ((Flags & FlagIndirectVirtualBase) == FlagIndirectVirtualBase) {
500 Flags &= ~FlagIndirectVirtualBase;
501 SplitFlags.push_back(Elt: FlagIndirectVirtualBase);
502 }
503
504#define HANDLE_DI_FLAG(ID, NAME) \
505 if (DIFlags Bit = Flags & Flag##NAME) { \
506 SplitFlags.push_back(Bit); \
507 Flags &= ~Bit; \
508 }
509#include "llvm/IR/DebugInfoFlags.def"
510 return Flags;
511}
512
513DIScope *DIScope::getScope() const {
514 if (auto *T = dyn_cast<DIType>(Val: this))
515 return T->getScope();
516
517 if (auto *SP = dyn_cast<DISubprogram>(Val: this))
518 return SP->getScope();
519
520 if (auto *LB = dyn_cast<DILexicalBlockBase>(Val: this))
521 return LB->getScope();
522
523 if (auto *NS = dyn_cast<DINamespace>(Val: this))
524 return NS->getScope();
525
526 if (auto *CB = dyn_cast<DICommonBlock>(Val: this))
527 return CB->getScope();
528
529 if (auto *M = dyn_cast<DIModule>(Val: this))
530 return M->getScope();
531
532 assert((isa<DIFile>(this) || isa<DICompileUnit>(this)) &&
533 "Unhandled type of scope.");
534 return nullptr;
535}
536
537StringRef DIScope::getName() const {
538 if (auto *T = dyn_cast<DIType>(Val: this))
539 return T->getName();
540 if (auto *SP = dyn_cast<DISubprogram>(Val: this))
541 return SP->getName();
542 if (auto *NS = dyn_cast<DINamespace>(Val: this))
543 return NS->getName();
544 if (auto *CB = dyn_cast<DICommonBlock>(Val: this))
545 return CB->getName();
546 if (auto *M = dyn_cast<DIModule>(Val: this))
547 return M->getName();
548 assert((isa<DILexicalBlockBase>(this) || isa<DIFile>(this) ||
549 isa<DICompileUnit>(this)) &&
550 "Unhandled type of scope.");
551 return "";
552}
553
554#ifndef NDEBUG
555static bool isCanonical(const MDString *S) {
556 return !S || !S->getString().empty();
557}
558#endif
559
560dwarf::Tag GenericDINode::getTag() const { return (dwarf::Tag)SubclassData16; }
561GenericDINode *GenericDINode::getImpl(LLVMContext &Context, unsigned Tag,
562 MDString *Header,
563 ArrayRef<Metadata *> DwarfOps,
564 StorageType Storage, bool ShouldCreate) {
565 unsigned Hash = 0;
566 if (Storage == Uniqued) {
567 GenericDINodeInfo::KeyTy Key(Tag, Header, DwarfOps);
568 if (auto *N = getUniqued(Store&: Context.pImpl->GenericDINodes, Key))
569 return N;
570 if (!ShouldCreate)
571 return nullptr;
572 Hash = Key.getHash();
573 } else {
574 assert(ShouldCreate && "Expected non-uniqued nodes to always be created");
575 }
576
577 // Use a nullptr for empty headers.
578 assert(isCanonical(Header) && "Expected canonical MDString");
579 Metadata *PreOps[] = {Header};
580 return storeImpl(N: new (DwarfOps.size() + 1, Storage) GenericDINode(
581 Context, Storage, Hash, Tag, PreOps, DwarfOps),
582 Storage, Store&: Context.pImpl->GenericDINodes);
583}
584
585void GenericDINode::recalculateHash() {
586 setHash(GenericDINodeInfo::KeyTy::calculateHash(N: this));
587}
588
589#define UNWRAP_ARGS_IMPL(...) __VA_ARGS__
590#define UNWRAP_ARGS(ARGS) UNWRAP_ARGS_IMPL ARGS
591#define DEFINE_GETIMPL_LOOKUP(CLASS, ARGS) \
592 do { \
593 if (Storage == Uniqued) { \
594 if (auto *N = getUniqued(Context.pImpl->CLASS##s, \
595 CLASS##Info::KeyTy(UNWRAP_ARGS(ARGS)))) \
596 return N; \
597 if (!ShouldCreate) \
598 return nullptr; \
599 } else { \
600 assert(ShouldCreate && \
601 "Expected non-uniqued nodes to always be created"); \
602 } \
603 } while (false)
604#define DEFINE_GETIMPL_STORE(CLASS, ARGS, OPS) \
605 return storeImpl(new (std::size(OPS), Storage) \
606 CLASS(Context, Storage, UNWRAP_ARGS(ARGS), OPS), \
607 Storage, Context.pImpl->CLASS##s)
608#define DEFINE_GETIMPL_STORE_NO_OPS(CLASS, ARGS) \
609 return storeImpl(new (0u, Storage) \
610 CLASS(Context, Storage, UNWRAP_ARGS(ARGS)), \
611 Storage, Context.pImpl->CLASS##s)
612#define DEFINE_GETIMPL_STORE_NO_CONSTRUCTOR_ARGS(CLASS, OPS) \
613 return storeImpl(new (std::size(OPS), Storage) CLASS(Context, Storage, OPS), \
614 Storage, Context.pImpl->CLASS##s)
615#define DEFINE_GETIMPL_STORE_N(CLASS, ARGS, OPS, NUM_OPS) \
616 return storeImpl(new (NUM_OPS, Storage) \
617 CLASS(Context, Storage, UNWRAP_ARGS(ARGS), OPS), \
618 Storage, Context.pImpl->CLASS##s)
619
620DISubrange::DISubrange(LLVMContext &C, StorageType Storage,
621 ArrayRef<Metadata *> Ops)
622 : DINode(C, DISubrangeKind, Storage, dwarf::DW_TAG_subrange_type, Ops) {}
623DISubrange *DISubrange::getImpl(LLVMContext &Context, int64_t Count, int64_t Lo,
624 StorageType Storage, bool ShouldCreate) {
625 auto *CountNode = ConstantAsMetadata::get(
626 C: ConstantInt::getSigned(Ty: Type::getInt64Ty(C&: Context), V: Count));
627 auto *LB = ConstantAsMetadata::get(
628 C: ConstantInt::getSigned(Ty: Type::getInt64Ty(C&: Context), V: Lo));
629 return getImpl(Context, CountNode, LowerBound: LB, UpperBound: nullptr, Stride: nullptr, Storage,
630 ShouldCreate);
631}
632
633DISubrange *DISubrange::getImpl(LLVMContext &Context, Metadata *CountNode,
634 int64_t Lo, StorageType Storage,
635 bool ShouldCreate) {
636 auto *LB = ConstantAsMetadata::get(
637 C: ConstantInt::getSigned(Ty: Type::getInt64Ty(C&: Context), V: Lo));
638 return getImpl(Context, CountNode, LowerBound: LB, UpperBound: nullptr, Stride: nullptr, Storage,
639 ShouldCreate);
640}
641
642DISubrange *DISubrange::getImpl(LLVMContext &Context, Metadata *CountNode,
643 Metadata *LB, Metadata *UB, Metadata *Stride,
644 StorageType Storage, bool ShouldCreate) {
645 DEFINE_GETIMPL_LOOKUP(DISubrange, (CountNode, LB, UB, Stride));
646 Metadata *Ops[] = {CountNode, LB, UB, Stride};
647 DEFINE_GETIMPL_STORE_NO_CONSTRUCTOR_ARGS(DISubrange, Ops);
648}
649
650DISubrange::BoundType DISubrange::getCount() const {
651 Metadata *CB = getRawCountNode();
652 if (!CB)
653 return BoundType();
654
655 assert((isa<ConstantAsMetadata>(CB) || isa<DIVariable>(CB) ||
656 isa<DIExpression>(CB)) &&
657 "Count must be signed constant or DIVariable or DIExpression");
658
659 if (auto *MD = dyn_cast<ConstantAsMetadata>(Val: CB))
660 return BoundType(cast<ConstantInt>(Val: MD->getValue()));
661
662 if (auto *MD = dyn_cast<DIVariable>(Val: CB))
663 return BoundType(MD);
664
665 if (auto *MD = dyn_cast<DIExpression>(Val: CB))
666 return BoundType(MD);
667
668 return BoundType();
669}
670
671DISubrange::BoundType DISubrange::getLowerBound() const {
672 Metadata *LB = getRawLowerBound();
673 if (!LB)
674 return BoundType();
675
676 assert((isa<ConstantAsMetadata>(LB) || isa<DIVariable>(LB) ||
677 isa<DIExpression>(LB)) &&
678 "LowerBound must be signed constant or DIVariable or DIExpression");
679
680 if (auto *MD = dyn_cast<ConstantAsMetadata>(Val: LB))
681 return BoundType(cast<ConstantInt>(Val: MD->getValue()));
682
683 if (auto *MD = dyn_cast<DIVariable>(Val: LB))
684 return BoundType(MD);
685
686 if (auto *MD = dyn_cast<DIExpression>(Val: LB))
687 return BoundType(MD);
688
689 return BoundType();
690}
691
692DISubrange::BoundType DISubrange::getUpperBound() const {
693 Metadata *UB = getRawUpperBound();
694 if (!UB)
695 return BoundType();
696
697 assert((isa<ConstantAsMetadata>(UB) || isa<DIVariable>(UB) ||
698 isa<DIExpression>(UB)) &&
699 "UpperBound must be signed constant or DIVariable or DIExpression");
700
701 if (auto *MD = dyn_cast<ConstantAsMetadata>(Val: UB))
702 return BoundType(cast<ConstantInt>(Val: MD->getValue()));
703
704 if (auto *MD = dyn_cast<DIVariable>(Val: UB))
705 return BoundType(MD);
706
707 if (auto *MD = dyn_cast<DIExpression>(Val: UB))
708 return BoundType(MD);
709
710 return BoundType();
711}
712
713DISubrange::BoundType DISubrange::getStride() const {
714 Metadata *ST = getRawStride();
715 if (!ST)
716 return BoundType();
717
718 assert((isa<ConstantAsMetadata>(ST) || isa<DIVariable>(ST) ||
719 isa<DIExpression>(ST)) &&
720 "Stride must be signed constant or DIVariable or DIExpression");
721
722 if (auto *MD = dyn_cast<ConstantAsMetadata>(Val: ST))
723 return BoundType(cast<ConstantInt>(Val: MD->getValue()));
724
725 if (auto *MD = dyn_cast<DIVariable>(Val: ST))
726 return BoundType(MD);
727
728 if (auto *MD = dyn_cast<DIExpression>(Val: ST))
729 return BoundType(MD);
730
731 return BoundType();
732}
733DIGenericSubrange::DIGenericSubrange(LLVMContext &C, StorageType Storage,
734 ArrayRef<Metadata *> Ops)
735 : DINode(C, DIGenericSubrangeKind, Storage, dwarf::DW_TAG_generic_subrange,
736 Ops) {}
737
738DIGenericSubrange *DIGenericSubrange::getImpl(LLVMContext &Context,
739 Metadata *CountNode, Metadata *LB,
740 Metadata *UB, Metadata *Stride,
741 StorageType Storage,
742 bool ShouldCreate) {
743 DEFINE_GETIMPL_LOOKUP(DIGenericSubrange, (CountNode, LB, UB, Stride));
744 Metadata *Ops[] = {CountNode, LB, UB, Stride};
745 DEFINE_GETIMPL_STORE_NO_CONSTRUCTOR_ARGS(DIGenericSubrange, Ops);
746}
747
748DIGenericSubrange::BoundType DIGenericSubrange::getCount() const {
749 Metadata *CB = getRawCountNode();
750 if (!CB)
751 return BoundType();
752
753 assert((isa<DIVariable>(CB) || isa<DIExpression>(CB)) &&
754 "Count must be signed constant or DIVariable or DIExpression");
755
756 if (auto *MD = dyn_cast<DIVariable>(Val: CB))
757 return BoundType(MD);
758
759 if (auto *MD = dyn_cast<DIExpression>(Val: CB))
760 return BoundType(MD);
761
762 return BoundType();
763}
764
765DIGenericSubrange::BoundType DIGenericSubrange::getLowerBound() const {
766 Metadata *LB = getRawLowerBound();
767 if (!LB)
768 return BoundType();
769
770 assert((isa<DIVariable>(LB) || isa<DIExpression>(LB)) &&
771 "LowerBound must be signed constant or DIVariable or DIExpression");
772
773 if (auto *MD = dyn_cast<DIVariable>(Val: LB))
774 return BoundType(MD);
775
776 if (auto *MD = dyn_cast<DIExpression>(Val: LB))
777 return BoundType(MD);
778
779 return BoundType();
780}
781
782DIGenericSubrange::BoundType DIGenericSubrange::getUpperBound() const {
783 Metadata *UB = getRawUpperBound();
784 if (!UB)
785 return BoundType();
786
787 assert((isa<DIVariable>(UB) || isa<DIExpression>(UB)) &&
788 "UpperBound must be signed constant or DIVariable or DIExpression");
789
790 if (auto *MD = dyn_cast<DIVariable>(Val: UB))
791 return BoundType(MD);
792
793 if (auto *MD = dyn_cast<DIExpression>(Val: UB))
794 return BoundType(MD);
795
796 return BoundType();
797}
798
799DIGenericSubrange::BoundType DIGenericSubrange::getStride() const {
800 Metadata *ST = getRawStride();
801 if (!ST)
802 return BoundType();
803
804 assert((isa<DIVariable>(ST) || isa<DIExpression>(ST)) &&
805 "Stride must be signed constant or DIVariable or DIExpression");
806
807 if (auto *MD = dyn_cast<DIVariable>(Val: ST))
808 return BoundType(MD);
809
810 if (auto *MD = dyn_cast<DIExpression>(Val: ST))
811 return BoundType(MD);
812
813 return BoundType();
814}
815
816DISubrangeType::DISubrangeType(LLVMContext &C, StorageType Storage,
817 unsigned Line, uint32_t AlignInBits,
818 DIFlags Flags, ArrayRef<Metadata *> Ops)
819 : DIType(C, DISubrangeTypeKind, Storage, dwarf::DW_TAG_subrange_type, Line,
820 AlignInBits, 0, Flags, Ops) {}
821
822DISubrangeType *DISubrangeType::getImpl(
823 LLVMContext &Context, MDString *Name, Metadata *File, unsigned Line,
824 Metadata *Scope, Metadata *SizeInBits, uint32_t AlignInBits, DIFlags Flags,
825 Metadata *BaseType, Metadata *LowerBound, Metadata *UpperBound,
826 Metadata *Stride, Metadata *Bias, StorageType Storage, bool ShouldCreate) {
827 assert(isCanonical(Name) && "Expected canonical MDString");
828 DEFINE_GETIMPL_LOOKUP(DISubrangeType, (Name, File, Line, Scope, SizeInBits,
829 AlignInBits, Flags, BaseType,
830 LowerBound, UpperBound, Stride, Bias));
831 Metadata *Ops[] = {File, Scope, Name, SizeInBits, nullptr,
832 BaseType, LowerBound, UpperBound, Stride, Bias};
833 DEFINE_GETIMPL_STORE(DISubrangeType, (Line, AlignInBits, Flags), Ops);
834}
835
836DISubrangeType::BoundType
837DISubrangeType::convertRawToBound(Metadata *IN) const {
838 if (!IN)
839 return BoundType();
840
841 assert(isa<ConstantAsMetadata>(IN) || isa<DIVariable>(IN) ||
842 isa<DIExpression>(IN) || isa<DIDerivedType>(IN));
843
844 if (auto *MD = dyn_cast<ConstantAsMetadata>(Val: IN))
845 return BoundType(cast<ConstantInt>(Val: MD->getValue()));
846
847 if (auto *MD = dyn_cast<DIVariable>(Val: IN))
848 return BoundType(MD);
849
850 if (auto *MD = dyn_cast<DIExpression>(Val: IN))
851 return BoundType(MD);
852
853 if (auto *DT = dyn_cast<DIDerivedType>(Val: IN))
854 return BoundType(DT);
855
856 return BoundType();
857}
858
859DIEnumerator::DIEnumerator(LLVMContext &C, StorageType Storage,
860 const APInt &Value, bool IsUnsigned,
861 ArrayRef<Metadata *> Ops)
862 : DINode(C, DIEnumeratorKind, Storage, dwarf::DW_TAG_enumerator, Ops),
863 Value(Value) {
864 SubclassData32 = IsUnsigned;
865}
866DIEnumerator *DIEnumerator::getImpl(LLVMContext &Context, const APInt &Value,
867 bool IsUnsigned, MDString *Name,
868 StorageType Storage, bool ShouldCreate) {
869 assert(isCanonical(Name) && "Expected canonical MDString");
870 DEFINE_GETIMPL_LOOKUP(DIEnumerator, (Value, IsUnsigned, Name));
871 Metadata *Ops[] = {Name};
872 DEFINE_GETIMPL_STORE(DIEnumerator, (Value, IsUnsigned), Ops);
873}
874
875DIBasicType *DIBasicType::getImpl(LLVMContext &Context, unsigned Tag,
876 MDString *Name, Metadata *SizeInBits,
877 uint32_t AlignInBits, unsigned Encoding,
878 uint32_t NumExtraInhabitants,
879 uint32_t DataSizeInBits, DIFlags Flags,
880 StorageType Storage, bool ShouldCreate) {
881 assert(isCanonical(Name) && "Expected canonical MDString");
882 DEFINE_GETIMPL_LOOKUP(DIBasicType,
883 (Tag, Name, SizeInBits, AlignInBits, Encoding,
884 NumExtraInhabitants, DataSizeInBits, Flags));
885 Metadata *Ops[] = {nullptr, nullptr, Name, SizeInBits, nullptr};
886 DEFINE_GETIMPL_STORE(
887 DIBasicType,
888 (Tag, AlignInBits, Encoding, NumExtraInhabitants, DataSizeInBits, Flags),
889 Ops);
890}
891
892std::optional<DIBasicType::Signedness> DIBasicType::getSignedness() const {
893 switch (getEncoding()) {
894 case dwarf::DW_ATE_signed:
895 case dwarf::DW_ATE_signed_char:
896 case dwarf::DW_ATE_signed_fixed:
897 return Signedness::Signed;
898 case dwarf::DW_ATE_unsigned:
899 case dwarf::DW_ATE_unsigned_char:
900 case dwarf::DW_ATE_unsigned_fixed:
901 return Signedness::Unsigned;
902 default:
903 return std::nullopt;
904 }
905}
906
907DIFixedPointType *
908DIFixedPointType::getImpl(LLVMContext &Context, unsigned Tag, MDString *Name,
909 Metadata *SizeInBits, uint32_t AlignInBits,
910 unsigned Encoding, DIFlags Flags, unsigned Kind,
911 int Factor, APInt Numerator, APInt Denominator,
912 StorageType Storage, bool ShouldCreate) {
913 DEFINE_GETIMPL_LOOKUP(DIFixedPointType,
914 (Tag, Name, SizeInBits, AlignInBits, Encoding, Flags,
915 Kind, Factor, Numerator, Denominator));
916 Metadata *Ops[] = {nullptr, nullptr, Name, SizeInBits, nullptr};
917 DEFINE_GETIMPL_STORE(
918 DIFixedPointType,
919 (Tag, AlignInBits, Encoding, Flags, Kind, Factor, Numerator, Denominator),
920 Ops);
921}
922
923bool DIFixedPointType::isSigned() const {
924 return getEncoding() == dwarf::DW_ATE_signed_fixed;
925}
926
927std::optional<DIFixedPointType::FixedPointKind>
928DIFixedPointType::getFixedPointKind(StringRef Str) {
929 return StringSwitch<std::optional<FixedPointKind>>(Str)
930 .Case(S: "Binary", Value: FixedPointBinary)
931 .Case(S: "Decimal", Value: FixedPointDecimal)
932 .Case(S: "Rational", Value: FixedPointRational)
933 .Default(Value: std::nullopt);
934}
935
936const char *DIFixedPointType::fixedPointKindString(FixedPointKind V) {
937 switch (V) {
938 case FixedPointBinary:
939 return "Binary";
940 case FixedPointDecimal:
941 return "Decimal";
942 case FixedPointRational:
943 return "Rational";
944 }
945 return nullptr;
946}
947
948DIStringType *DIStringType::getImpl(LLVMContext &Context, unsigned Tag,
949 MDString *Name, Metadata *StringLength,
950 Metadata *StringLengthExp,
951 Metadata *StringLocationExp,
952 Metadata *SizeInBits, uint32_t AlignInBits,
953 unsigned Encoding, StorageType Storage,
954 bool ShouldCreate) {
955 assert(isCanonical(Name) && "Expected canonical MDString");
956 DEFINE_GETIMPL_LOOKUP(DIStringType,
957 (Tag, Name, StringLength, StringLengthExp,
958 StringLocationExp, SizeInBits, AlignInBits, Encoding));
959 Metadata *Ops[] = {nullptr, nullptr, Name,
960 SizeInBits, nullptr, StringLength,
961 StringLengthExp, StringLocationExp};
962 DEFINE_GETIMPL_STORE(DIStringType, (Tag, AlignInBits, Encoding), Ops);
963}
964DIType *DIDerivedType::getClassType() const {
965 assert(getTag() == dwarf::DW_TAG_ptr_to_member_type);
966 return cast_or_null<DIType>(Val: getExtraData());
967}
968
969// Helper function to extract ConstantAsMetadata from ExtraData,
970// handling extra data MDTuple unwrapping if needed.
971static ConstantAsMetadata *extractConstantMetadata(Metadata *ExtraData) {
972 Metadata *ED = ExtraData;
973 if (auto *Tuple = dyn_cast_or_null<MDTuple>(Val: ED)) {
974 if (Tuple->getNumOperands() != 1)
975 return nullptr;
976 ED = Tuple->getOperand(I: 0);
977 }
978 return cast_or_null<ConstantAsMetadata>(Val: ED);
979}
980
981uint32_t DIDerivedType::getVBPtrOffset() const {
982 assert(getTag() == dwarf::DW_TAG_inheritance);
983 if (auto *CM = extractConstantMetadata(ExtraData: getExtraData()))
984 if (auto *CI = dyn_cast_or_null<ConstantInt>(Val: CM->getValue()))
985 return static_cast<uint32_t>(CI->getZExtValue());
986 return 0;
987}
988Constant *DIDerivedType::getStorageOffsetInBits() const {
989 assert(getTag() == dwarf::DW_TAG_member && isBitField());
990 if (auto *C = extractConstantMetadata(ExtraData: getExtraData()))
991 return C->getValue();
992 return nullptr;
993}
994
995Constant *DIDerivedType::getConstant() const {
996 assert((getTag() == dwarf::DW_TAG_member ||
997 getTag() == dwarf::DW_TAG_variable) &&
998 isStaticMember());
999 if (auto *C = extractConstantMetadata(ExtraData: getExtraData()))
1000 return C->getValue();
1001 return nullptr;
1002}
1003Constant *DIDerivedType::getDiscriminantValue() const {
1004 assert(getTag() == dwarf::DW_TAG_member && !isStaticMember());
1005 if (auto *C = extractConstantMetadata(ExtraData: getExtraData()))
1006 return C->getValue();
1007 return nullptr;
1008}
1009
1010DIDerivedType *DIDerivedType::getImpl(
1011 LLVMContext &Context, unsigned Tag, MDString *Name, Metadata *File,
1012 unsigned Line, Metadata *Scope, Metadata *BaseType, Metadata *SizeInBits,
1013 uint32_t AlignInBits, Metadata *OffsetInBits,
1014 std::optional<unsigned> DWARFAddressSpace,
1015 std::optional<PtrAuthData> PtrAuthData, DIFlags Flags, Metadata *ExtraData,
1016 Metadata *Annotations, StorageType Storage, bool ShouldCreate) {
1017 assert(isCanonical(Name) && "Expected canonical MDString");
1018 DEFINE_GETIMPL_LOOKUP(DIDerivedType,
1019 (Tag, Name, File, Line, Scope, BaseType, SizeInBits,
1020 AlignInBits, OffsetInBits, DWARFAddressSpace,
1021 PtrAuthData, Flags, ExtraData, Annotations));
1022 Metadata *Ops[] = {File, Scope, Name, SizeInBits,
1023 OffsetInBits, BaseType, ExtraData, Annotations};
1024 DEFINE_GETIMPL_STORE(
1025 DIDerivedType,
1026 (Tag, Line, AlignInBits, DWARFAddressSpace, PtrAuthData, Flags), Ops);
1027}
1028
1029std::optional<DIDerivedType::PtrAuthData>
1030DIDerivedType::getPtrAuthData() const {
1031 return getTag() == dwarf::DW_TAG_LLVM_ptrauth_type
1032 ? std::make_optional<PtrAuthData>(args: SubclassData32)
1033 : std::nullopt;
1034}
1035
1036DICompositeType *DICompositeType::getImpl(
1037 LLVMContext &Context, unsigned Tag, MDString *Name, Metadata *File,
1038 unsigned Line, Metadata *Scope, Metadata *BaseType, Metadata *SizeInBits,
1039 uint32_t AlignInBits, Metadata *OffsetInBits, DIFlags Flags,
1040 Metadata *Elements, unsigned RuntimeLang, std::optional<uint32_t> EnumKind,
1041 Metadata *VTableHolder, Metadata *TemplateParams, MDString *Identifier,
1042 Metadata *Discriminator, Metadata *DataLocation, Metadata *Associated,
1043 Metadata *Allocated, Metadata *Rank, Metadata *Annotations,
1044 Metadata *Specification, uint32_t NumExtraInhabitants, Metadata *BitStride,
1045 StorageType Storage, bool ShouldCreate) {
1046 assert(isCanonical(Name) && "Expected canonical MDString");
1047
1048 // Keep this in sync with buildODRType.
1049 DEFINE_GETIMPL_LOOKUP(
1050 DICompositeType,
1051 (Tag, Name, File, Line, Scope, BaseType, SizeInBits, AlignInBits,
1052 OffsetInBits, Flags, Elements, RuntimeLang, VTableHolder, TemplateParams,
1053 Identifier, Discriminator, DataLocation, Associated, Allocated, Rank,
1054 Annotations, Specification, NumExtraInhabitants, BitStride));
1055 Metadata *Ops[] = {File, Scope, Name, SizeInBits,
1056 OffsetInBits, BaseType, Elements, VTableHolder,
1057 TemplateParams, Identifier, Discriminator, DataLocation,
1058 Associated, Allocated, Rank, Annotations,
1059 Specification, BitStride};
1060 DEFINE_GETIMPL_STORE(DICompositeType,
1061 (Tag, Line, RuntimeLang, AlignInBits,
1062 NumExtraInhabitants, EnumKind, Flags),
1063 Ops);
1064}
1065
1066DICompositeType *DICompositeType::buildODRType(
1067 LLVMContext &Context, MDString &Identifier, unsigned Tag, MDString *Name,
1068 Metadata *File, unsigned Line, Metadata *Scope, Metadata *BaseType,
1069 Metadata *SizeInBits, uint32_t AlignInBits, Metadata *OffsetInBits,
1070 Metadata *Specification, uint32_t NumExtraInhabitants, DIFlags Flags,
1071 Metadata *Elements, unsigned RuntimeLang, std::optional<uint32_t> EnumKind,
1072 Metadata *VTableHolder, Metadata *TemplateParams, Metadata *Discriminator,
1073 Metadata *DataLocation, Metadata *Associated, Metadata *Allocated,
1074 Metadata *Rank, Metadata *Annotations, Metadata *BitStride) {
1075 assert(!Identifier.getString().empty() && "Expected valid identifier");
1076 if (!Context.isODRUniquingDebugTypes())
1077 return nullptr;
1078 auto *&CT = (*Context.pImpl->DITypeMap)[&Identifier];
1079 if (!CT)
1080 return CT = DICompositeType::getDistinct(
1081 Context, Tag, Name, File, Line, Scope, BaseType, SizeInBits,
1082 AlignInBits, OffsetInBits, Flags, Elements, RuntimeLang,
1083 EnumKind, VTableHolder, TemplateParams, Identifier: &Identifier,
1084 Discriminator, DataLocation, Associated, Allocated, Rank,
1085 Annotations, Specification, NumExtraInhabitants, BitStride);
1086 if (CT->getTag() != Tag)
1087 return nullptr;
1088
1089 // Only mutate CT if it's a forward declaration and the new operands aren't.
1090 assert(CT->getRawIdentifier() == &Identifier && "Wrong ODR identifier?");
1091 if (!CT->isForwardDecl() || (Flags & DINode::FlagFwdDecl))
1092 return CT;
1093
1094 // Mutate CT in place. Keep this in sync with getImpl.
1095 CT->mutate(Tag, Line, RuntimeLang, AlignInBits, NumExtraInhabitants, EnumKind,
1096 Flags);
1097 Metadata *Ops[] = {File, Scope, Name, SizeInBits,
1098 OffsetInBits, BaseType, Elements, VTableHolder,
1099 TemplateParams, &Identifier, Discriminator, DataLocation,
1100 Associated, Allocated, Rank, Annotations,
1101 Specification, BitStride};
1102 assert((std::end(Ops) - std::begin(Ops)) == (int)CT->getNumOperands() &&
1103 "Mismatched number of operands");
1104 for (unsigned I = 0, E = CT->getNumOperands(); I != E; ++I)
1105 if (Ops[I] != CT->getOperand(I))
1106 CT->setOperand(I, New: Ops[I]);
1107 return CT;
1108}
1109
1110DICompositeType *DICompositeType::getODRType(
1111 LLVMContext &Context, MDString &Identifier, unsigned Tag, MDString *Name,
1112 Metadata *File, unsigned Line, Metadata *Scope, Metadata *BaseType,
1113 Metadata *SizeInBits, uint32_t AlignInBits, Metadata *OffsetInBits,
1114 Metadata *Specification, uint32_t NumExtraInhabitants, DIFlags Flags,
1115 Metadata *Elements, unsigned RuntimeLang, std::optional<uint32_t> EnumKind,
1116 Metadata *VTableHolder, Metadata *TemplateParams, Metadata *Discriminator,
1117 Metadata *DataLocation, Metadata *Associated, Metadata *Allocated,
1118 Metadata *Rank, Metadata *Annotations, Metadata *BitStride) {
1119 assert(!Identifier.getString().empty() && "Expected valid identifier");
1120 if (!Context.isODRUniquingDebugTypes())
1121 return nullptr;
1122 auto *&CT = (*Context.pImpl->DITypeMap)[&Identifier];
1123 if (!CT) {
1124 CT = DICompositeType::getDistinct(
1125 Context, Tag, Name, File, Line, Scope, BaseType, SizeInBits,
1126 AlignInBits, OffsetInBits, Flags, Elements, RuntimeLang, EnumKind,
1127 VTableHolder, TemplateParams, Identifier: &Identifier, Discriminator, DataLocation,
1128 Associated, Allocated, Rank, Annotations, Specification,
1129 NumExtraInhabitants, BitStride);
1130 } else {
1131 if (CT->getTag() != Tag)
1132 return nullptr;
1133 }
1134 return CT;
1135}
1136
1137DICompositeType *DICompositeType::getODRTypeIfExists(LLVMContext &Context,
1138 MDString &Identifier) {
1139 assert(!Identifier.getString().empty() && "Expected valid identifier");
1140 if (!Context.isODRUniquingDebugTypes())
1141 return nullptr;
1142 return Context.pImpl->DITypeMap->lookup(Val: &Identifier);
1143}
1144DISubroutineType::DISubroutineType(LLVMContext &C, StorageType Storage,
1145 DIFlags Flags, uint8_t CC,
1146 ArrayRef<Metadata *> Ops)
1147 : DIType(C, DISubroutineTypeKind, Storage, dwarf::DW_TAG_subroutine_type, 0,
1148 0, 0, Flags, Ops),
1149 CC(CC) {}
1150
1151DISubroutineType *DISubroutineType::getImpl(LLVMContext &Context, DIFlags Flags,
1152 uint8_t CC, Metadata *TypeArray,
1153 StorageType Storage,
1154 bool ShouldCreate) {
1155 DEFINE_GETIMPL_LOOKUP(DISubroutineType, (Flags, CC, TypeArray));
1156 Metadata *Ops[] = {nullptr, nullptr, nullptr, nullptr, nullptr, TypeArray};
1157 DEFINE_GETIMPL_STORE(DISubroutineType, (Flags, CC), Ops);
1158}
1159
1160DIFile::DIFile(LLVMContext &C, StorageType Storage,
1161 std::optional<ChecksumInfo<MDString *>> CS, MDString *Src,
1162 ArrayRef<Metadata *> Ops)
1163 : DIScope(C, DIFileKind, Storage, dwarf::DW_TAG_file_type, Ops),
1164 Checksum(CS), Source(Src) {}
1165
1166// FIXME: Implement this string-enum correspondence with a .def file and macros,
1167// so that the association is explicit rather than implied.
1168static const char *ChecksumKindName[DIFile::CSK_Last] = {
1169 "CSK_MD5",
1170 "CSK_SHA1",
1171 "CSK_SHA256",
1172};
1173
1174StringRef DIFile::getChecksumKindAsString(ChecksumKind CSKind) {
1175 assert(CSKind <= DIFile::CSK_Last && "Invalid checksum kind");
1176 // The first space was originally the CSK_None variant, which is now
1177 // obsolete, but the space is still reserved in ChecksumKind, so we account
1178 // for it here.
1179 return ChecksumKindName[CSKind - 1];
1180}
1181
1182std::optional<DIFile::ChecksumKind>
1183DIFile::getChecksumKind(StringRef CSKindStr) {
1184 return StringSwitch<std::optional<DIFile::ChecksumKind>>(CSKindStr)
1185 .Case(S: "CSK_MD5", Value: DIFile::CSK_MD5)
1186 .Case(S: "CSK_SHA1", Value: DIFile::CSK_SHA1)
1187 .Case(S: "CSK_SHA256", Value: DIFile::CSK_SHA256)
1188 .Default(Value: std::nullopt);
1189}
1190
1191DIFile *DIFile::getImpl(LLVMContext &Context, MDString *Filename,
1192 MDString *Directory,
1193 std::optional<DIFile::ChecksumInfo<MDString *>> CS,
1194 MDString *Source, StorageType Storage,
1195 bool ShouldCreate) {
1196 assert(isCanonical(Filename) && "Expected canonical MDString");
1197 assert(isCanonical(Directory) && "Expected canonical MDString");
1198 assert((!CS || isCanonical(CS->Value)) && "Expected canonical MDString");
1199 // We do *NOT* expect Source to be a canonical MDString because nullptr
1200 // means none, so we need something to represent the empty file.
1201 DEFINE_GETIMPL_LOOKUP(DIFile, (Filename, Directory, CS, Source));
1202 Metadata *Ops[] = {Filename, Directory, CS ? CS->Value : nullptr, Source};
1203 DEFINE_GETIMPL_STORE(DIFile, (CS, Source), Ops);
1204}
1205DICompileUnit::DICompileUnit(LLVMContext &C, StorageType Storage,
1206 DISourceLanguageName SourceLanguage,
1207 bool IsOptimized, unsigned RuntimeVersion,
1208 unsigned EmissionKind, uint64_t DWOId,
1209 bool SplitDebugInlining,
1210 bool DebugInfoForProfiling, unsigned NameTableKind,
1211 bool RangesBaseAddress, ArrayRef<Metadata *> Ops)
1212 : DIScope(C, DICompileUnitKind, Storage, dwarf::DW_TAG_compile_unit, Ops),
1213 SourceLanguage(SourceLanguage), RuntimeVersion(RuntimeVersion),
1214 DWOId(DWOId), EmissionKind(EmissionKind), NameTableKind(NameTableKind),
1215 IsOptimized(IsOptimized), SplitDebugInlining(SplitDebugInlining),
1216 DebugInfoForProfiling(DebugInfoForProfiling),
1217 RangesBaseAddress(RangesBaseAddress) {
1218 assert(Storage != Uniqued);
1219}
1220
1221DICompileUnit *DICompileUnit::getImpl(
1222 LLVMContext &Context, DISourceLanguageName SourceLanguage, Metadata *File,
1223 MDString *Producer, bool IsOptimized, MDString *Flags,
1224 unsigned RuntimeVersion, MDString *SplitDebugFilename,
1225 unsigned EmissionKind, Metadata *EnumTypes, Metadata *RetainedTypes,
1226 Metadata *GlobalVariables, Metadata *ImportedEntities, Metadata *Macros,
1227 uint64_t DWOId, bool SplitDebugInlining, bool DebugInfoForProfiling,
1228 unsigned NameTableKind, bool RangesBaseAddress, MDString *SysRoot,
1229 MDString *SDK, StorageType Storage, bool ShouldCreate) {
1230 assert(Storage != Uniqued && "Cannot unique DICompileUnit");
1231 assert(isCanonical(Producer) && "Expected canonical MDString");
1232 assert(isCanonical(Flags) && "Expected canonical MDString");
1233 assert(isCanonical(SplitDebugFilename) && "Expected canonical MDString");
1234
1235 Metadata *Ops[] = {File,
1236 Producer,
1237 Flags,
1238 SplitDebugFilename,
1239 EnumTypes,
1240 RetainedTypes,
1241 GlobalVariables,
1242 ImportedEntities,
1243 Macros,
1244 SysRoot,
1245 SDK};
1246 return storeImpl(N: new (std::size(Ops), Storage) DICompileUnit(
1247 Context, Storage, SourceLanguage, IsOptimized,
1248 RuntimeVersion, EmissionKind, DWOId, SplitDebugInlining,
1249 DebugInfoForProfiling, NameTableKind, RangesBaseAddress,
1250 Ops),
1251 Storage);
1252}
1253
1254std::optional<DICompileUnit::DebugEmissionKind>
1255DICompileUnit::getEmissionKind(StringRef Str) {
1256 return StringSwitch<std::optional<DebugEmissionKind>>(Str)
1257 .Case(S: "NoDebug", Value: NoDebug)
1258 .Case(S: "FullDebug", Value: FullDebug)
1259 .Case(S: "LineTablesOnly", Value: LineTablesOnly)
1260 .Case(S: "DebugDirectivesOnly", Value: DebugDirectivesOnly)
1261 .Default(Value: std::nullopt);
1262}
1263
1264std::optional<DICompileUnit::DebugNameTableKind>
1265DICompileUnit::getNameTableKind(StringRef Str) {
1266 return StringSwitch<std::optional<DebugNameTableKind>>(Str)
1267 .Case(S: "Default", Value: DebugNameTableKind::Default)
1268 .Case(S: "GNU", Value: DebugNameTableKind::GNU)
1269 .Case(S: "Apple", Value: DebugNameTableKind::Apple)
1270 .Case(S: "None", Value: DebugNameTableKind::None)
1271 .Default(Value: std::nullopt);
1272}
1273
1274const char *DICompileUnit::emissionKindString(DebugEmissionKind EK) {
1275 switch (EK) {
1276 case NoDebug:
1277 return "NoDebug";
1278 case FullDebug:
1279 return "FullDebug";
1280 case LineTablesOnly:
1281 return "LineTablesOnly";
1282 case DebugDirectivesOnly:
1283 return "DebugDirectivesOnly";
1284 }
1285 return nullptr;
1286}
1287
1288const char *DICompileUnit::nameTableKindString(DebugNameTableKind NTK) {
1289 switch (NTK) {
1290 case DebugNameTableKind::Default:
1291 return nullptr;
1292 case DebugNameTableKind::GNU:
1293 return "GNU";
1294 case DebugNameTableKind::Apple:
1295 return "Apple";
1296 case DebugNameTableKind::None:
1297 return "None";
1298 }
1299 return nullptr;
1300}
1301DISubprogram::DISubprogram(LLVMContext &C, StorageType Storage, unsigned Line,
1302 unsigned ScopeLine, unsigned VirtualIndex,
1303 int ThisAdjustment, DIFlags Flags, DISPFlags SPFlags,
1304 bool UsesKeyInstructions, ArrayRef<Metadata *> Ops)
1305 : DILocalScope(C, DISubprogramKind, Storage, dwarf::DW_TAG_subprogram, Ops),
1306 Line(Line), ScopeLine(ScopeLine), VirtualIndex(VirtualIndex),
1307 ThisAdjustment(ThisAdjustment), Flags(Flags), SPFlags(SPFlags) {
1308 static_assert(dwarf::DW_VIRTUALITY_max < 4, "Virtuality out of range");
1309 SubclassData1 = UsesKeyInstructions;
1310}
1311DISubprogram::DISPFlags
1312DISubprogram::toSPFlags(bool IsLocalToUnit, bool IsDefinition, bool IsOptimized,
1313 unsigned Virtuality, bool IsMainSubprogram) {
1314 // We're assuming virtuality is the low-order field.
1315 static_assert(int(SPFlagVirtual) == int(dwarf::DW_VIRTUALITY_virtual) &&
1316 int(SPFlagPureVirtual) ==
1317 int(dwarf::DW_VIRTUALITY_pure_virtual),
1318 "Virtuality constant mismatch");
1319 return static_cast<DISPFlags>(
1320 (Virtuality & SPFlagVirtuality) |
1321 (IsLocalToUnit ? SPFlagLocalToUnit : SPFlagZero) |
1322 (IsDefinition ? SPFlagDefinition : SPFlagZero) |
1323 (IsOptimized ? SPFlagOptimized : SPFlagZero) |
1324 (IsMainSubprogram ? SPFlagMainSubprogram : SPFlagZero));
1325}
1326
1327DISubprogram *DILocalScope::getSubprogram() const {
1328 if (auto *Block = dyn_cast<DILexicalBlockBase>(Val: this))
1329 return Block->getScope()->getSubprogram();
1330 return const_cast<DISubprogram *>(cast<DISubprogram>(Val: this));
1331}
1332
1333DILocalScope *DILocalScope::getNonLexicalBlockFileScope() const {
1334 if (auto *File = dyn_cast<DILexicalBlockFile>(Val: this))
1335 return File->getScope()->getNonLexicalBlockFileScope();
1336 return const_cast<DILocalScope *>(this);
1337}
1338
1339DILocalScope *DILocalScope::cloneScopeForSubprogram(
1340 DILocalScope &RootScope, DISubprogram &NewSP, LLVMContext &Ctx,
1341 DenseMap<const MDNode *, MDNode *> &Cache) {
1342 SmallVector<DIScope *> ScopeChain;
1343 DIScope *CachedResult = nullptr;
1344
1345 for (DIScope *Scope = &RootScope; !isa<DISubprogram>(Val: Scope);
1346 Scope = Scope->getScope()) {
1347 if (auto It = Cache.find(Val: Scope); It != Cache.end()) {
1348 CachedResult = cast<DIScope>(Val: It->second);
1349 break;
1350 }
1351 ScopeChain.push_back(Elt: Scope);
1352 }
1353
1354 // Recreate the scope chain, bottom-up, starting at the new subprogram (or a
1355 // cached result).
1356 DIScope *UpdatedScope = CachedResult ? CachedResult : &NewSP;
1357 for (DIScope *ScopeToUpdate : reverse(C&: ScopeChain)) {
1358 UpdatedScope = cloneAndReplaceParentScope(
1359 LBB: cast<DILexicalBlockBase>(Val: ScopeToUpdate), NewParent: UpdatedScope);
1360 Cache[ScopeToUpdate] = UpdatedScope;
1361 }
1362
1363 return cast<DILocalScope>(Val: UpdatedScope);
1364}
1365
1366DISubprogram::DISPFlags DISubprogram::getFlag(StringRef Flag) {
1367 return StringSwitch<DISPFlags>(Flag)
1368#define HANDLE_DISP_FLAG(ID, NAME) .Case("DISPFlag" #NAME, SPFlag##NAME)
1369#include "llvm/IR/DebugInfoFlags.def"
1370 .Default(Value: SPFlagZero);
1371}
1372
1373StringRef DISubprogram::getFlagString(DISPFlags Flag) {
1374 switch (Flag) {
1375 // Appease a warning.
1376 case SPFlagVirtuality:
1377 return "";
1378#define HANDLE_DISP_FLAG(ID, NAME) \
1379 case SPFlag##NAME: \
1380 return "DISPFlag" #NAME;
1381#include "llvm/IR/DebugInfoFlags.def"
1382 }
1383 return "";
1384}
1385
1386DISubprogram::DISPFlags
1387DISubprogram::splitFlags(DISPFlags Flags,
1388 SmallVectorImpl<DISPFlags> &SplitFlags) {
1389 // Multi-bit fields can require special handling. In our case, however, the
1390 // only multi-bit field is virtuality, and all its values happen to be
1391 // single-bit values, so the right behavior just falls out.
1392#define HANDLE_DISP_FLAG(ID, NAME) \
1393 if (DISPFlags Bit = Flags & SPFlag##NAME) { \
1394 SplitFlags.push_back(Bit); \
1395 Flags &= ~Bit; \
1396 }
1397#include "llvm/IR/DebugInfoFlags.def"
1398 return Flags;
1399}
1400
1401DISubprogram *DISubprogram::getImpl(
1402 LLVMContext &Context, Metadata *Scope, MDString *Name,
1403 MDString *LinkageName, Metadata *File, unsigned Line, Metadata *Type,
1404 unsigned ScopeLine, Metadata *ContainingType, unsigned VirtualIndex,
1405 int ThisAdjustment, DIFlags Flags, DISPFlags SPFlags, Metadata *Unit,
1406 Metadata *TemplateParams, Metadata *Declaration, Metadata *RetainedNodes,
1407 Metadata *ThrownTypes, Metadata *Annotations, MDString *TargetFuncName,
1408 bool UsesKeyInstructions, StorageType Storage, bool ShouldCreate) {
1409 assert(isCanonical(Name) && "Expected canonical MDString");
1410 assert(isCanonical(LinkageName) && "Expected canonical MDString");
1411 assert(isCanonical(TargetFuncName) && "Expected canonical MDString");
1412 DEFINE_GETIMPL_LOOKUP(DISubprogram,
1413 (Scope, Name, LinkageName, File, Line, Type, ScopeLine,
1414 ContainingType, VirtualIndex, ThisAdjustment, Flags,
1415 SPFlags, Unit, TemplateParams, Declaration,
1416 RetainedNodes, ThrownTypes, Annotations,
1417 TargetFuncName, UsesKeyInstructions));
1418 SmallVector<Metadata *, 13> Ops = {
1419 File, Scope, Name, LinkageName,
1420 Type, Unit, Declaration, RetainedNodes,
1421 ContainingType, TemplateParams, ThrownTypes, Annotations,
1422 TargetFuncName};
1423 if (!TargetFuncName) {
1424 Ops.pop_back();
1425 if (!Annotations) {
1426 Ops.pop_back();
1427 if (!ThrownTypes) {
1428 Ops.pop_back();
1429 if (!TemplateParams) {
1430 Ops.pop_back();
1431 if (!ContainingType)
1432 Ops.pop_back();
1433 }
1434 }
1435 }
1436 }
1437 DEFINE_GETIMPL_STORE_N(DISubprogram,
1438 (Line, ScopeLine, VirtualIndex, ThisAdjustment, Flags,
1439 SPFlags, UsesKeyInstructions),
1440 Ops, Ops.size());
1441}
1442
1443bool DISubprogram::describes(const Function *F) const {
1444 assert(F && "Invalid function");
1445 return F->getSubprogram() == this;
1446}
1447
1448const DIScope *DISubprogram::getRawRetainedNodeScope(const MDNode *N) {
1449 return visitRetainedNode<DIScope *>(
1450 N, FuncLV: [](const DILocalVariable *LV) { return LV->getScope(); },
1451 FuncLabel: [](const DILabel *L) { return L->getScope(); },
1452 FuncIE: [](const DIImportedEntity *IE) { return IE->getScope(); },
1453 FuncUnknown: [](const Metadata *N) { return nullptr; });
1454}
1455
1456const DILocalScope *DISubprogram::getRetainedNodeScope(const MDNode *N) {
1457 return cast<DILocalScope>(Val: getRawRetainedNodeScope(N));
1458}
1459
1460DILexicalBlockBase::DILexicalBlockBase(LLVMContext &C, unsigned ID,
1461 StorageType Storage,
1462 ArrayRef<Metadata *> Ops)
1463 : DILocalScope(C, ID, Storage, dwarf::DW_TAG_lexical_block, Ops) {}
1464
1465DILexicalBlock *DILexicalBlock::getImpl(LLVMContext &Context, Metadata *Scope,
1466 Metadata *File, unsigned Line,
1467 unsigned Column, StorageType Storage,
1468 bool ShouldCreate) {
1469 // Fixup column.
1470 adjustColumn(Column);
1471
1472 assert(Scope && "Expected scope");
1473 DEFINE_GETIMPL_LOOKUP(DILexicalBlock, (Scope, File, Line, Column));
1474 Metadata *Ops[] = {File, Scope};
1475 DEFINE_GETIMPL_STORE(DILexicalBlock, (Line, Column), Ops);
1476}
1477
1478DILexicalBlockFile *DILexicalBlockFile::getImpl(LLVMContext &Context,
1479 Metadata *Scope, Metadata *File,
1480 unsigned Discriminator,
1481 StorageType Storage,
1482 bool ShouldCreate) {
1483 assert(Scope && "Expected scope");
1484 DEFINE_GETIMPL_LOOKUP(DILexicalBlockFile, (Scope, File, Discriminator));
1485 Metadata *Ops[] = {File, Scope};
1486 DEFINE_GETIMPL_STORE(DILexicalBlockFile, (Discriminator), Ops);
1487}
1488
1489DINamespace::DINamespace(LLVMContext &Context, StorageType Storage,
1490 bool ExportSymbols, ArrayRef<Metadata *> Ops)
1491 : DIScope(Context, DINamespaceKind, Storage, dwarf::DW_TAG_namespace, Ops) {
1492 SubclassData1 = ExportSymbols;
1493}
1494DINamespace *DINamespace::getImpl(LLVMContext &Context, Metadata *Scope,
1495 MDString *Name, bool ExportSymbols,
1496 StorageType Storage, bool ShouldCreate) {
1497 assert(isCanonical(Name) && "Expected canonical MDString");
1498 DEFINE_GETIMPL_LOOKUP(DINamespace, (Scope, Name, ExportSymbols));
1499 // The nullptr is for DIScope's File operand. This should be refactored.
1500 Metadata *Ops[] = {nullptr, Scope, Name};
1501 DEFINE_GETIMPL_STORE(DINamespace, (ExportSymbols), Ops);
1502}
1503
1504DICommonBlock::DICommonBlock(LLVMContext &Context, StorageType Storage,
1505 unsigned LineNo, ArrayRef<Metadata *> Ops)
1506 : DIScope(Context, DICommonBlockKind, Storage, dwarf::DW_TAG_common_block,
1507 Ops) {
1508 SubclassData32 = LineNo;
1509}
1510DICommonBlock *DICommonBlock::getImpl(LLVMContext &Context, Metadata *Scope,
1511 Metadata *Decl, MDString *Name,
1512 Metadata *File, unsigned LineNo,
1513 StorageType Storage, bool ShouldCreate) {
1514 assert(isCanonical(Name) && "Expected canonical MDString");
1515 DEFINE_GETIMPL_LOOKUP(DICommonBlock, (Scope, Decl, Name, File, LineNo));
1516 // The nullptr is for DIScope's File operand. This should be refactored.
1517 Metadata *Ops[] = {Scope, Decl, Name, File};
1518 DEFINE_GETIMPL_STORE(DICommonBlock, (LineNo), Ops);
1519}
1520
1521DIModule::DIModule(LLVMContext &Context, StorageType Storage, unsigned LineNo,
1522 bool IsDecl, ArrayRef<Metadata *> Ops)
1523 : DIScope(Context, DIModuleKind, Storage, dwarf::DW_TAG_module, Ops) {
1524 SubclassData1 = IsDecl;
1525 SubclassData32 = LineNo;
1526}
1527DIModule *DIModule::getImpl(LLVMContext &Context, Metadata *File,
1528 Metadata *Scope, MDString *Name,
1529 MDString *ConfigurationMacros,
1530 MDString *IncludePath, MDString *APINotesFile,
1531 unsigned LineNo, bool IsDecl, StorageType Storage,
1532 bool ShouldCreate) {
1533 assert(isCanonical(Name) && "Expected canonical MDString");
1534 DEFINE_GETIMPL_LOOKUP(DIModule, (File, Scope, Name, ConfigurationMacros,
1535 IncludePath, APINotesFile, LineNo, IsDecl));
1536 Metadata *Ops[] = {File, Scope, Name, ConfigurationMacros,
1537 IncludePath, APINotesFile};
1538 DEFINE_GETIMPL_STORE(DIModule, (LineNo, IsDecl), Ops);
1539}
1540DITemplateTypeParameter::DITemplateTypeParameter(LLVMContext &Context,
1541 StorageType Storage,
1542 bool IsDefault,
1543 ArrayRef<Metadata *> Ops)
1544 : DITemplateParameter(Context, DITemplateTypeParameterKind, Storage,
1545 dwarf::DW_TAG_template_type_parameter, IsDefault,
1546 Ops) {}
1547
1548DITemplateTypeParameter *
1549DITemplateTypeParameter::getImpl(LLVMContext &Context, MDString *Name,
1550 Metadata *Type, bool isDefault,
1551 StorageType Storage, bool ShouldCreate) {
1552 assert(isCanonical(Name) && "Expected canonical MDString");
1553 DEFINE_GETIMPL_LOOKUP(DITemplateTypeParameter, (Name, Type, isDefault));
1554 Metadata *Ops[] = {Name, Type};
1555 DEFINE_GETIMPL_STORE(DITemplateTypeParameter, (isDefault), Ops);
1556}
1557
1558DITemplateValueParameter *DITemplateValueParameter::getImpl(
1559 LLVMContext &Context, unsigned Tag, MDString *Name, Metadata *Type,
1560 bool isDefault, Metadata *Value, StorageType Storage, bool ShouldCreate) {
1561 assert(isCanonical(Name) && "Expected canonical MDString");
1562 DEFINE_GETIMPL_LOOKUP(DITemplateValueParameter,
1563 (Tag, Name, Type, isDefault, Value));
1564 Metadata *Ops[] = {Name, Type, Value};
1565 DEFINE_GETIMPL_STORE(DITemplateValueParameter, (Tag, isDefault), Ops);
1566}
1567
1568DIGlobalVariable *
1569DIGlobalVariable::getImpl(LLVMContext &Context, Metadata *Scope, MDString *Name,
1570 MDString *LinkageName, Metadata *File, unsigned Line,
1571 Metadata *Type, bool IsLocalToUnit, bool IsDefinition,
1572 Metadata *StaticDataMemberDeclaration,
1573 Metadata *TemplateParams, uint32_t AlignInBits,
1574 Metadata *Annotations, StorageType Storage,
1575 bool ShouldCreate) {
1576 assert(isCanonical(Name) && "Expected canonical MDString");
1577 assert(isCanonical(LinkageName) && "Expected canonical MDString");
1578 DEFINE_GETIMPL_LOOKUP(
1579 DIGlobalVariable,
1580 (Scope, Name, LinkageName, File, Line, Type, IsLocalToUnit, IsDefinition,
1581 StaticDataMemberDeclaration, TemplateParams, AlignInBits, Annotations));
1582 Metadata *Ops[] = {Scope,
1583 Name,
1584 File,
1585 Type,
1586 Name,
1587 LinkageName,
1588 StaticDataMemberDeclaration,
1589 TemplateParams,
1590 Annotations};
1591 DEFINE_GETIMPL_STORE(DIGlobalVariable,
1592 (Line, IsLocalToUnit, IsDefinition, AlignInBits), Ops);
1593}
1594
1595DILocalVariable *
1596DILocalVariable::getImpl(LLVMContext &Context, Metadata *Scope, MDString *Name,
1597 Metadata *File, unsigned Line, Metadata *Type,
1598 unsigned Arg, DIFlags Flags, uint32_t AlignInBits,
1599 Metadata *Annotations, StorageType Storage,
1600 bool ShouldCreate) {
1601 // 64K ought to be enough for any frontend.
1602 assert(Arg <= UINT16_MAX && "Expected argument number to fit in 16-bits");
1603
1604 assert(Scope && "Expected scope");
1605 assert(isCanonical(Name) && "Expected canonical MDString");
1606 DEFINE_GETIMPL_LOOKUP(DILocalVariable, (Scope, Name, File, Line, Type, Arg,
1607 Flags, AlignInBits, Annotations));
1608 Metadata *Ops[] = {Scope, Name, File, Type, Annotations};
1609 DEFINE_GETIMPL_STORE(DILocalVariable, (Line, Arg, Flags, AlignInBits), Ops);
1610}
1611
1612DIVariable::DIVariable(LLVMContext &C, unsigned ID, StorageType Storage,
1613 signed Line, ArrayRef<Metadata *> Ops,
1614 uint32_t AlignInBits)
1615 : DINode(C, ID, Storage, dwarf::DW_TAG_variable, Ops), Line(Line) {
1616 SubclassData32 = AlignInBits;
1617}
1618std::optional<uint64_t> DIVariable::getSizeInBits() const {
1619 // This is used by the Verifier so be mindful of broken types.
1620 const Metadata *RawType = getRawType();
1621 while (RawType) {
1622 // Try to get the size directly.
1623 if (auto *T = dyn_cast<DIType>(Val: RawType))
1624 if (uint64_t Size = T->getSizeInBits())
1625 return Size;
1626
1627 if (auto *DT = dyn_cast<DIDerivedType>(Val: RawType)) {
1628 // Look at the base type.
1629 RawType = DT->getRawBaseType();
1630 continue;
1631 }
1632
1633 // Missing type or size.
1634 break;
1635 }
1636
1637 // Fail gracefully.
1638 return std::nullopt;
1639}
1640
1641DILabel::DILabel(LLVMContext &C, StorageType Storage, unsigned Line,
1642 unsigned Column, bool IsArtificial,
1643 std::optional<unsigned> CoroSuspendIdx,
1644 ArrayRef<Metadata *> Ops)
1645 : DINode(C, DILabelKind, Storage, dwarf::DW_TAG_label, Ops) {
1646 this->SubclassData32 = Line;
1647 this->Column = Column;
1648 this->IsArtificial = IsArtificial;
1649 this->CoroSuspendIdx = CoroSuspendIdx;
1650}
1651DILabel *DILabel::getImpl(LLVMContext &Context, Metadata *Scope, MDString *Name,
1652 Metadata *File, unsigned Line, unsigned Column,
1653 bool IsArtificial,
1654 std::optional<unsigned> CoroSuspendIdx,
1655 StorageType Storage, bool ShouldCreate) {
1656 assert(Scope && "Expected scope");
1657 assert(isCanonical(Name) && "Expected canonical MDString");
1658 DEFINE_GETIMPL_LOOKUP(
1659 DILabel, (Scope, Name, File, Line, Column, IsArtificial, CoroSuspendIdx));
1660 Metadata *Ops[] = {Scope, Name, File};
1661 DEFINE_GETIMPL_STORE(DILabel, (Line, Column, IsArtificial, CoroSuspendIdx),
1662 Ops);
1663}
1664
1665DIExpression *DIExpression::getImpl(LLVMContext &Context,
1666 ArrayRef<uint64_t> Elements,
1667 StorageType Storage, bool ShouldCreate) {
1668 DEFINE_GETIMPL_LOOKUP(DIExpression, (Elements));
1669 DEFINE_GETIMPL_STORE_NO_OPS(DIExpression, (Elements));
1670}
1671bool DIExpression::isEntryValue() const {
1672 if (auto singleLocElts = getSingleLocationExpressionElements()) {
1673 return singleLocElts->size() > 0 &&
1674 (*singleLocElts)[0] == dwarf::DW_OP_LLVM_entry_value;
1675 }
1676 return false;
1677}
1678bool DIExpression::startsWithDeref() const {
1679 if (auto singleLocElts = getSingleLocationExpressionElements())
1680 return singleLocElts->size() > 0 &&
1681 (*singleLocElts)[0] == dwarf::DW_OP_deref;
1682 return false;
1683}
1684bool DIExpression::isDeref() const {
1685 if (auto singleLocElts = getSingleLocationExpressionElements())
1686 return singleLocElts->size() == 1 &&
1687 (*singleLocElts)[0] == dwarf::DW_OP_deref;
1688 return false;
1689}
1690
1691DIAssignID *DIAssignID::getImpl(LLVMContext &Context, StorageType Storage,
1692 bool ShouldCreate) {
1693 // Uniqued DIAssignID are not supported as the instance address *is* the ID.
1694 assert(Storage != StorageType::Uniqued && "uniqued DIAssignID unsupported");
1695 return storeImpl(N: new (0u, Storage) DIAssignID(Context, Storage), Storage);
1696}
1697
1698unsigned DIExpression::ExprOperand::getSize() const {
1699 uint64_t Op = getOp();
1700
1701 if (Op >= dwarf::DW_OP_breg0 && Op <= dwarf::DW_OP_breg31)
1702 return 2;
1703
1704 switch (Op) {
1705 case dwarf::DW_OP_LLVM_convert:
1706 case dwarf::DW_OP_LLVM_fragment:
1707 case dwarf::DW_OP_LLVM_extract_bits_sext:
1708 case dwarf::DW_OP_LLVM_extract_bits_zext:
1709 case dwarf::DW_OP_bregx:
1710 return 3;
1711 case dwarf::DW_OP_constu:
1712 case dwarf::DW_OP_consts:
1713 case dwarf::DW_OP_deref_size:
1714 case dwarf::DW_OP_plus_uconst:
1715 case dwarf::DW_OP_LLVM_tag_offset:
1716 case dwarf::DW_OP_LLVM_entry_value:
1717 case dwarf::DW_OP_LLVM_arg:
1718 case dwarf::DW_OP_regx:
1719 return 2;
1720 default:
1721 return 1;
1722 }
1723}
1724
1725bool DIExpression::isValid() const {
1726 for (auto I = expr_op_begin(), E = expr_op_end(); I != E; ++I) {
1727 // Check that there's space for the operand.
1728 if (I->get() + I->getSize() > E->get())
1729 return false;
1730
1731 uint64_t Op = I->getOp();
1732 if ((Op >= dwarf::DW_OP_reg0 && Op <= dwarf::DW_OP_reg31) ||
1733 (Op >= dwarf::DW_OP_breg0 && Op <= dwarf::DW_OP_breg31))
1734 return true;
1735
1736 // Check that the operand is valid.
1737 switch (Op) {
1738 default:
1739 return false;
1740 case dwarf::DW_OP_LLVM_fragment:
1741 // A fragment operator must appear at the end.
1742 return I->get() + I->getSize() == E->get();
1743 case dwarf::DW_OP_stack_value: {
1744 // Must be the last one or followed by a DW_OP_LLVM_fragment.
1745 if (I->get() + I->getSize() == E->get())
1746 break;
1747 auto J = I;
1748 if ((++J)->getOp() != dwarf::DW_OP_LLVM_fragment)
1749 return false;
1750 break;
1751 }
1752 case dwarf::DW_OP_swap: {
1753 // Must be more than one implicit element on the stack.
1754
1755 // FIXME: A better way to implement this would be to add a local variable
1756 // that keeps track of the stack depth and introduce something like a
1757 // DW_LLVM_OP_implicit_location as a placeholder for the location this
1758 // DIExpression is attached to, or else pass the number of implicit stack
1759 // elements into isValid.
1760 if (getNumElements() == 1)
1761 return false;
1762 break;
1763 }
1764 case dwarf::DW_OP_LLVM_entry_value: {
1765 // An entry value operator must appear at the beginning or immediately
1766 // following `DW_OP_LLVM_arg 0`, and the number of operations it cover can
1767 // currently only be 1, because we support only entry values of a simple
1768 // register location. One reason for this is that we currently can't
1769 // calculate the size of the resulting DWARF block for other expressions.
1770 auto FirstOp = expr_op_begin();
1771 if (FirstOp->getOp() == dwarf::DW_OP_LLVM_arg && FirstOp->getArg(I: 0) == 0)
1772 ++FirstOp;
1773 return I->get() == FirstOp->get() && I->getArg(I: 0) == 1;
1774 }
1775 case dwarf::DW_OP_LLVM_implicit_pointer:
1776 case dwarf::DW_OP_LLVM_convert:
1777 case dwarf::DW_OP_LLVM_arg:
1778 case dwarf::DW_OP_LLVM_tag_offset:
1779 case dwarf::DW_OP_LLVM_extract_bits_sext:
1780 case dwarf::DW_OP_LLVM_extract_bits_zext:
1781 case dwarf::DW_OP_constu:
1782 case dwarf::DW_OP_plus_uconst:
1783 case dwarf::DW_OP_plus:
1784 case dwarf::DW_OP_minus:
1785 case dwarf::DW_OP_mul:
1786 case dwarf::DW_OP_div:
1787 case dwarf::DW_OP_mod:
1788 case dwarf::DW_OP_or:
1789 case dwarf::DW_OP_and:
1790 case dwarf::DW_OP_xor:
1791 case dwarf::DW_OP_shl:
1792 case dwarf::DW_OP_shr:
1793 case dwarf::DW_OP_shra:
1794 case dwarf::DW_OP_deref:
1795 case dwarf::DW_OP_deref_size:
1796 case dwarf::DW_OP_xderef:
1797 case dwarf::DW_OP_lit0:
1798 case dwarf::DW_OP_not:
1799 case dwarf::DW_OP_dup:
1800 case dwarf::DW_OP_regx:
1801 case dwarf::DW_OP_bregx:
1802 case dwarf::DW_OP_push_object_address:
1803 case dwarf::DW_OP_over:
1804 case dwarf::DW_OP_rot:
1805 case dwarf::DW_OP_consts:
1806 case dwarf::DW_OP_eq:
1807 case dwarf::DW_OP_ne:
1808 case dwarf::DW_OP_gt:
1809 case dwarf::DW_OP_ge:
1810 case dwarf::DW_OP_lt:
1811 case dwarf::DW_OP_le:
1812 case dwarf::DW_OP_neg:
1813 case dwarf::DW_OP_abs:
1814 break;
1815 }
1816 }
1817 return true;
1818}
1819
1820bool DIExpression::isImplicit() const {
1821 if (!isValid())
1822 return false;
1823
1824 if (getNumElements() == 0)
1825 return false;
1826
1827 for (const auto &It : expr_ops()) {
1828 switch (It.getOp()) {
1829 default:
1830 break;
1831 case dwarf::DW_OP_stack_value:
1832 return true;
1833 }
1834 }
1835
1836 return false;
1837}
1838
1839bool DIExpression::isComplex() const {
1840 if (!isValid())
1841 return false;
1842
1843 if (getNumElements() == 0)
1844 return false;
1845
1846 // If there are any elements other than fragment or tag_offset, then some
1847 // kind of complex computation occurs.
1848 for (const auto &It : expr_ops()) {
1849 switch (It.getOp()) {
1850 case dwarf::DW_OP_LLVM_tag_offset:
1851 case dwarf::DW_OP_LLVM_fragment:
1852 case dwarf::DW_OP_LLVM_arg:
1853 continue;
1854 default:
1855 return true;
1856 }
1857 }
1858
1859 return false;
1860}
1861
1862bool DIExpression::isSingleLocationExpression() const {
1863 if (!isValid())
1864 return false;
1865
1866 if (getNumElements() == 0)
1867 return true;
1868
1869 auto ExprOpBegin = expr_ops().begin();
1870 auto ExprOpEnd = expr_ops().end();
1871 if (ExprOpBegin->getOp() == dwarf::DW_OP_LLVM_arg) {
1872 if (ExprOpBegin->getArg(I: 0) != 0)
1873 return false;
1874 ++ExprOpBegin;
1875 }
1876
1877 return !std::any_of(first: ExprOpBegin, last: ExprOpEnd, pred: [](auto Op) {
1878 return Op.getOp() == dwarf::DW_OP_LLVM_arg;
1879 });
1880}
1881
1882std::optional<ArrayRef<uint64_t>>
1883DIExpression::getSingleLocationExpressionElements() const {
1884 // Check for `isValid` covered by `isSingleLocationExpression`.
1885 if (!isSingleLocationExpression())
1886 return std::nullopt;
1887
1888 // An empty expression is already non-variadic.
1889 if (!getNumElements())
1890 return ArrayRef<uint64_t>();
1891
1892 // If Expr does not have a leading DW_OP_LLVM_arg then we don't need to do
1893 // anything.
1894 if (getElements()[0] == dwarf::DW_OP_LLVM_arg)
1895 return getElements().drop_front(N: 2);
1896 return getElements();
1897}
1898
1899const DIExpression *
1900DIExpression::convertToUndefExpression(const DIExpression *Expr) {
1901 SmallVector<uint64_t, 3> UndefOps;
1902 if (auto FragmentInfo = Expr->getFragmentInfo()) {
1903 UndefOps.append(IL: {dwarf::DW_OP_LLVM_fragment, FragmentInfo->OffsetInBits,
1904 FragmentInfo->SizeInBits});
1905 }
1906 return DIExpression::get(Context&: Expr->getContext(), Elements: UndefOps);
1907}
1908
1909const DIExpression *
1910DIExpression::convertToVariadicExpression(const DIExpression *Expr) {
1911 if (any_of(Range: Expr->expr_ops(), P: [](auto ExprOp) {
1912 return ExprOp.getOp() == dwarf::DW_OP_LLVM_arg;
1913 }))
1914 return Expr;
1915 SmallVector<uint64_t> NewOps;
1916 NewOps.reserve(N: Expr->getNumElements() + 2);
1917 NewOps.append(IL: {dwarf::DW_OP_LLVM_arg, 0});
1918 NewOps.append(in_start: Expr->elements_begin(), in_end: Expr->elements_end());
1919 return DIExpression::get(Context&: Expr->getContext(), Elements: NewOps);
1920}
1921
1922std::optional<const DIExpression *>
1923DIExpression::convertToNonVariadicExpression(const DIExpression *Expr) {
1924 if (!Expr)
1925 return std::nullopt;
1926
1927 if (auto Elts = Expr->getSingleLocationExpressionElements())
1928 return DIExpression::get(Context&: Expr->getContext(), Elements: *Elts);
1929
1930 return std::nullopt;
1931}
1932
1933void DIExpression::canonicalizeExpressionOps(SmallVectorImpl<uint64_t> &Ops,
1934 const DIExpression *Expr,
1935 bool IsIndirect) {
1936 // If Expr is not already variadic, insert the implied `DW_OP_LLVM_arg 0`
1937 // to the existing expression ops.
1938 if (none_of(Range: Expr->expr_ops(), P: [](auto ExprOp) {
1939 return ExprOp.getOp() == dwarf::DW_OP_LLVM_arg;
1940 }))
1941 Ops.append(IL: {dwarf::DW_OP_LLVM_arg, 0});
1942 // If Expr is not indirect, we only need to insert the expression elements and
1943 // we're done.
1944 if (!IsIndirect) {
1945 Ops.append(in_start: Expr->elements_begin(), in_end: Expr->elements_end());
1946 return;
1947 }
1948 // If Expr is indirect, insert the implied DW_OP_deref at the end of the
1949 // expression but before DW_OP_{stack_value, LLVM_fragment} if they are
1950 // present.
1951 for (auto Op : Expr->expr_ops()) {
1952 if (Op.getOp() == dwarf::DW_OP_stack_value ||
1953 Op.getOp() == dwarf::DW_OP_LLVM_fragment) {
1954 Ops.push_back(Elt: dwarf::DW_OP_deref);
1955 IsIndirect = false;
1956 }
1957 Op.appendToVector(V&: Ops);
1958 }
1959 if (IsIndirect)
1960 Ops.push_back(Elt: dwarf::DW_OP_deref);
1961}
1962
1963bool DIExpression::isEqualExpression(const DIExpression *FirstExpr,
1964 bool FirstIndirect,
1965 const DIExpression *SecondExpr,
1966 bool SecondIndirect) {
1967 SmallVector<uint64_t> FirstOps;
1968 DIExpression::canonicalizeExpressionOps(Ops&: FirstOps, Expr: FirstExpr, IsIndirect: FirstIndirect);
1969 SmallVector<uint64_t> SecondOps;
1970 DIExpression::canonicalizeExpressionOps(Ops&: SecondOps, Expr: SecondExpr,
1971 IsIndirect: SecondIndirect);
1972 return FirstOps == SecondOps;
1973}
1974
1975std::optional<DIExpression::FragmentInfo>
1976DIExpression::getFragmentInfo(expr_op_iterator Start, expr_op_iterator End) {
1977 for (auto I = Start; I != End; ++I)
1978 if (I->getOp() == dwarf::DW_OP_LLVM_fragment) {
1979 DIExpression::FragmentInfo Info = {I->getArg(I: 1), I->getArg(I: 0)};
1980 return Info;
1981 }
1982 return std::nullopt;
1983}
1984
1985std::optional<uint64_t> DIExpression::getActiveBits(DIVariable *Var) {
1986 std::optional<uint64_t> InitialActiveBits = Var->getSizeInBits();
1987 std::optional<uint64_t> ActiveBits = InitialActiveBits;
1988 for (auto Op : expr_ops()) {
1989 switch (Op.getOp()) {
1990 default:
1991 // We assume the worst case for anything we don't currently handle and
1992 // revert to the initial active bits.
1993 ActiveBits = InitialActiveBits;
1994 break;
1995 case dwarf::DW_OP_LLVM_extract_bits_zext:
1996 case dwarf::DW_OP_LLVM_extract_bits_sext: {
1997 // We can't handle an extract whose sign doesn't match that of the
1998 // variable.
1999 std::optional<DIBasicType::Signedness> VarSign = Var->getSignedness();
2000 bool VarSigned = (VarSign == DIBasicType::Signedness::Signed);
2001 bool OpSigned = (Op.getOp() == dwarf::DW_OP_LLVM_extract_bits_sext);
2002 if (!VarSign || VarSigned != OpSigned) {
2003 ActiveBits = InitialActiveBits;
2004 break;
2005 }
2006 [[fallthrough]];
2007 }
2008 case dwarf::DW_OP_LLVM_fragment:
2009 // Extract or fragment narrows the active bits
2010 if (ActiveBits)
2011 ActiveBits = std::min(a: *ActiveBits, b: Op.getArg(I: 1));
2012 else
2013 ActiveBits = Op.getArg(I: 1);
2014 break;
2015 }
2016 }
2017 return ActiveBits;
2018}
2019
2020void DIExpression::appendOffset(SmallVectorImpl<uint64_t> &Ops,
2021 int64_t Offset) {
2022 if (Offset > 0) {
2023 Ops.push_back(Elt: dwarf::DW_OP_plus_uconst);
2024 Ops.push_back(Elt: Offset);
2025 } else if (Offset < 0) {
2026 Ops.push_back(Elt: dwarf::DW_OP_constu);
2027 // Avoid UB when encountering LLONG_MIN, because in 2's complement
2028 // abs(LLONG_MIN) is LLONG_MAX+1.
2029 uint64_t AbsMinusOne = -(Offset+1);
2030 Ops.push_back(Elt: AbsMinusOne + 1);
2031 Ops.push_back(Elt: dwarf::DW_OP_minus);
2032 }
2033}
2034
2035bool DIExpression::extractIfOffset(int64_t &Offset) const {
2036 auto SingleLocEltsOpt = getSingleLocationExpressionElements();
2037 if (!SingleLocEltsOpt)
2038 return false;
2039 auto SingleLocElts = *SingleLocEltsOpt;
2040
2041 if (SingleLocElts.size() == 0) {
2042 Offset = 0;
2043 return true;
2044 }
2045
2046 if (SingleLocElts.size() == 2 &&
2047 SingleLocElts[0] == dwarf::DW_OP_plus_uconst) {
2048 Offset = SingleLocElts[1];
2049 return true;
2050 }
2051
2052 if (SingleLocElts.size() == 3 && SingleLocElts[0] == dwarf::DW_OP_constu) {
2053 if (SingleLocElts[2] == dwarf::DW_OP_plus) {
2054 Offset = SingleLocElts[1];
2055 return true;
2056 }
2057 if (SingleLocElts[2] == dwarf::DW_OP_minus) {
2058 Offset = -SingleLocElts[1];
2059 return true;
2060 }
2061 }
2062
2063 return false;
2064}
2065
2066bool DIExpression::extractLeadingOffset(
2067 int64_t &OffsetInBytes, SmallVectorImpl<uint64_t> &RemainingOps) const {
2068 OffsetInBytes = 0;
2069 RemainingOps.clear();
2070
2071 auto SingleLocEltsOpt = getSingleLocationExpressionElements();
2072 if (!SingleLocEltsOpt)
2073 return false;
2074
2075 auto ExprOpEnd = expr_op_iterator(SingleLocEltsOpt->end());
2076 auto ExprOpIt = expr_op_iterator(SingleLocEltsOpt->begin());
2077 while (ExprOpIt != ExprOpEnd) {
2078 uint64_t Op = ExprOpIt->getOp();
2079 if (Op == dwarf::DW_OP_deref || Op == dwarf::DW_OP_deref_size ||
2080 Op == dwarf::DW_OP_deref_type || Op == dwarf::DW_OP_LLVM_fragment ||
2081 Op == dwarf::DW_OP_LLVM_extract_bits_zext ||
2082 Op == dwarf::DW_OP_LLVM_extract_bits_sext) {
2083 break;
2084 } else if (Op == dwarf::DW_OP_plus_uconst) {
2085 OffsetInBytes += ExprOpIt->getArg(I: 0);
2086 } else if (Op == dwarf::DW_OP_constu) {
2087 uint64_t Value = ExprOpIt->getArg(I: 0);
2088 ++ExprOpIt;
2089 if (ExprOpIt->getOp() == dwarf::DW_OP_plus)
2090 OffsetInBytes += Value;
2091 else if (ExprOpIt->getOp() == dwarf::DW_OP_minus)
2092 OffsetInBytes -= Value;
2093 else
2094 return false;
2095 } else {
2096 // Not a const plus/minus operation or deref.
2097 return false;
2098 }
2099 ++ExprOpIt;
2100 }
2101 RemainingOps.append(in_start: ExprOpIt.getBase(), in_end: ExprOpEnd.getBase());
2102 return true;
2103}
2104
2105bool DIExpression::hasAllLocationOps(unsigned N) const {
2106 SmallDenseSet<uint64_t, 4> SeenOps;
2107 for (auto ExprOp : expr_ops())
2108 if (ExprOp.getOp() == dwarf::DW_OP_LLVM_arg)
2109 SeenOps.insert(V: ExprOp.getArg(I: 0));
2110 for (uint64_t Idx = 0; Idx < N; ++Idx)
2111 if (!SeenOps.contains(V: Idx))
2112 return false;
2113 return true;
2114}
2115
2116const DIExpression *DIExpression::extractAddressClass(const DIExpression *Expr,
2117 unsigned &AddrClass) {
2118 // FIXME: This seems fragile. Nothing that verifies that these elements
2119 // actually map to ops and not operands.
2120 auto SingleLocEltsOpt = Expr->getSingleLocationExpressionElements();
2121 if (!SingleLocEltsOpt)
2122 return nullptr;
2123 auto SingleLocElts = *SingleLocEltsOpt;
2124
2125 const unsigned PatternSize = 4;
2126 if (SingleLocElts.size() >= PatternSize &&
2127 SingleLocElts[PatternSize - 4] == dwarf::DW_OP_constu &&
2128 SingleLocElts[PatternSize - 2] == dwarf::DW_OP_swap &&
2129 SingleLocElts[PatternSize - 1] == dwarf::DW_OP_xderef) {
2130 AddrClass = SingleLocElts[PatternSize - 3];
2131
2132 if (SingleLocElts.size() == PatternSize)
2133 return nullptr;
2134 return DIExpression::get(
2135 Context&: Expr->getContext(),
2136 Elements: ArrayRef(&*SingleLocElts.begin(), SingleLocElts.size() - PatternSize));
2137 }
2138 return Expr;
2139}
2140
2141DIExpression *DIExpression::prepend(const DIExpression *Expr, uint8_t Flags,
2142 int64_t Offset) {
2143 SmallVector<uint64_t, 8> Ops;
2144 if (Flags & DIExpression::DerefBefore)
2145 Ops.push_back(Elt: dwarf::DW_OP_deref);
2146
2147 appendOffset(Ops, Offset);
2148 if (Flags & DIExpression::DerefAfter)
2149 Ops.push_back(Elt: dwarf::DW_OP_deref);
2150
2151 bool StackValue = Flags & DIExpression::StackValue;
2152 bool EntryValue = Flags & DIExpression::EntryValue;
2153
2154 return prependOpcodes(Expr, Ops, StackValue, EntryValue);
2155}
2156
2157DIExpression *DIExpression::appendOpsToArg(const DIExpression *Expr,
2158 ArrayRef<uint64_t> Ops,
2159 unsigned ArgNo, bool StackValue) {
2160 assert(Expr && "Can't add ops to this expression");
2161
2162 // Handle non-variadic intrinsics by prepending the opcodes.
2163 if (!any_of(Range: Expr->expr_ops(),
2164 P: [](auto Op) { return Op.getOp() == dwarf::DW_OP_LLVM_arg; })) {
2165 assert(ArgNo == 0 &&
2166 "Location Index must be 0 for a non-variadic expression.");
2167 SmallVector<uint64_t, 8> NewOps(Ops);
2168 return DIExpression::prependOpcodes(Expr, Ops&: NewOps, StackValue);
2169 }
2170
2171 SmallVector<uint64_t, 8> NewOps;
2172 for (auto Op : Expr->expr_ops()) {
2173 // A DW_OP_stack_value comes at the end, but before a DW_OP_LLVM_fragment.
2174 if (StackValue) {
2175 if (Op.getOp() == dwarf::DW_OP_stack_value)
2176 StackValue = false;
2177 else if (Op.getOp() == dwarf::DW_OP_LLVM_fragment) {
2178 NewOps.push_back(Elt: dwarf::DW_OP_stack_value);
2179 StackValue = false;
2180 }
2181 }
2182 Op.appendToVector(V&: NewOps);
2183 if (Op.getOp() == dwarf::DW_OP_LLVM_arg && Op.getArg(I: 0) == ArgNo)
2184 llvm::append_range(C&: NewOps, R&: Ops);
2185 }
2186 if (StackValue)
2187 NewOps.push_back(Elt: dwarf::DW_OP_stack_value);
2188
2189 return DIExpression::get(Context&: Expr->getContext(), Elements: NewOps);
2190}
2191
2192DIExpression *DIExpression::replaceArg(const DIExpression *Expr,
2193 uint64_t OldArg, uint64_t NewArg) {
2194 assert(Expr && "Can't replace args in this expression");
2195
2196 SmallVector<uint64_t, 8> NewOps;
2197
2198 for (auto Op : Expr->expr_ops()) {
2199 if (Op.getOp() != dwarf::DW_OP_LLVM_arg || Op.getArg(I: 0) < OldArg) {
2200 Op.appendToVector(V&: NewOps);
2201 continue;
2202 }
2203 NewOps.push_back(Elt: dwarf::DW_OP_LLVM_arg);
2204 uint64_t Arg = Op.getArg(I: 0) == OldArg ? NewArg : Op.getArg(I: 0);
2205 // OldArg has been deleted from the Op list, so decrement all indices
2206 // greater than it.
2207 if (Arg > OldArg)
2208 --Arg;
2209 NewOps.push_back(Elt: Arg);
2210 }
2211 return DIExpression::get(Context&: Expr->getContext(), Elements: NewOps);
2212}
2213
2214DIExpression *DIExpression::prependOpcodes(const DIExpression *Expr,
2215 SmallVectorImpl<uint64_t> &Ops,
2216 bool StackValue, bool EntryValue) {
2217 assert(Expr && "Can't prepend ops to this expression");
2218
2219 if (EntryValue) {
2220 Ops.push_back(Elt: dwarf::DW_OP_LLVM_entry_value);
2221 // Use a block size of 1 for the target register operand. The
2222 // DWARF backend currently cannot emit entry values with a block
2223 // size > 1.
2224 Ops.push_back(Elt: 1);
2225 }
2226
2227 // If there are no ops to prepend, do not even add the DW_OP_stack_value.
2228 if (Ops.empty())
2229 StackValue = false;
2230 for (auto Op : Expr->expr_ops()) {
2231 // A DW_OP_stack_value comes at the end, but before a DW_OP_LLVM_fragment.
2232 if (StackValue) {
2233 if (Op.getOp() == dwarf::DW_OP_stack_value)
2234 StackValue = false;
2235 else if (Op.getOp() == dwarf::DW_OP_LLVM_fragment) {
2236 Ops.push_back(Elt: dwarf::DW_OP_stack_value);
2237 StackValue = false;
2238 }
2239 }
2240 Op.appendToVector(V&: Ops);
2241 }
2242 if (StackValue)
2243 Ops.push_back(Elt: dwarf::DW_OP_stack_value);
2244 return DIExpression::get(Context&: Expr->getContext(), Elements: Ops);
2245}
2246
2247DIExpression *DIExpression::append(const DIExpression *Expr,
2248 ArrayRef<uint64_t> Ops) {
2249 assert(Expr && !Ops.empty() && "Can't append ops to this expression");
2250
2251 // Copy Expr's current op list.
2252 SmallVector<uint64_t, 16> NewOps;
2253 for (auto Op : Expr->expr_ops()) {
2254 // Append new opcodes before DW_OP_{stack_value, LLVM_fragment}.
2255 if (Op.getOp() == dwarf::DW_OP_stack_value ||
2256 Op.getOp() == dwarf::DW_OP_LLVM_fragment) {
2257 NewOps.append(in_start: Ops.begin(), in_end: Ops.end());
2258
2259 // Ensure that the new opcodes are only appended once.
2260 Ops = {};
2261 }
2262 Op.appendToVector(V&: NewOps);
2263 }
2264 NewOps.append(in_start: Ops.begin(), in_end: Ops.end());
2265 auto *result =
2266 DIExpression::get(Context&: Expr->getContext(), Elements: NewOps)->foldConstantMath();
2267 assert(result->isValid() && "concatenated expression is not valid");
2268 return result;
2269}
2270
2271DIExpression *DIExpression::appendToStack(const DIExpression *Expr,
2272 ArrayRef<uint64_t> Ops) {
2273 assert(Expr && !Ops.empty() && "Can't append ops to this expression");
2274 assert(std::none_of(expr_op_iterator(Ops.begin()),
2275 expr_op_iterator(Ops.end()),
2276 [](auto Op) {
2277 return Op.getOp() == dwarf::DW_OP_stack_value ||
2278 Op.getOp() == dwarf::DW_OP_LLVM_fragment;
2279 }) &&
2280 "Can't append this op");
2281
2282 // Append a DW_OP_deref after Expr's current op list if it's non-empty and
2283 // has no DW_OP_stack_value.
2284 //
2285 // Match .* DW_OP_stack_value (DW_OP_LLVM_fragment A B)?.
2286 std::optional<FragmentInfo> FI = Expr->getFragmentInfo();
2287 unsigned DropUntilStackValue = FI ? 3 : 0;
2288 ArrayRef<uint64_t> ExprOpsBeforeFragment =
2289 Expr->getElements().drop_back(N: DropUntilStackValue);
2290 bool NeedsDeref = (Expr->getNumElements() > DropUntilStackValue) &&
2291 (ExprOpsBeforeFragment.back() != dwarf::DW_OP_stack_value);
2292 bool NeedsStackValue = NeedsDeref || ExprOpsBeforeFragment.empty();
2293
2294 // Append a DW_OP_deref after Expr's current op list if needed, then append
2295 // the new ops, and finally ensure that a single DW_OP_stack_value is present.
2296 SmallVector<uint64_t, 16> NewOps;
2297 if (NeedsDeref)
2298 NewOps.push_back(Elt: dwarf::DW_OP_deref);
2299 NewOps.append(in_start: Ops.begin(), in_end: Ops.end());
2300 if (NeedsStackValue)
2301 NewOps.push_back(Elt: dwarf::DW_OP_stack_value);
2302 return DIExpression::append(Expr, Ops: NewOps);
2303}
2304
2305std::optional<DIExpression *> DIExpression::createFragmentExpression(
2306 const DIExpression *Expr, unsigned OffsetInBits, unsigned SizeInBits) {
2307 SmallVector<uint64_t, 8> Ops;
2308 // Track whether it's safe to split the value at the top of the DWARF stack,
2309 // assuming that it'll be used as an implicit location value.
2310 bool CanSplitValue = true;
2311 // Track whether we need to add a fragment expression to the end of Expr.
2312 bool EmitFragment = true;
2313 // Copy over the expression, but leave off any trailing DW_OP_LLVM_fragment.
2314 if (Expr) {
2315 for (auto Op : Expr->expr_ops()) {
2316 switch (Op.getOp()) {
2317 default:
2318 break;
2319 case dwarf::DW_OP_shr:
2320 case dwarf::DW_OP_shra:
2321 case dwarf::DW_OP_shl:
2322 case dwarf::DW_OP_plus:
2323 case dwarf::DW_OP_plus_uconst:
2324 case dwarf::DW_OP_minus:
2325 // We can't safely split arithmetic or shift operations into multiple
2326 // fragments because we can't express carry-over between fragments.
2327 //
2328 // FIXME: We *could* preserve the lowest fragment of a constant offset
2329 // operation if the offset fits into SizeInBits.
2330 CanSplitValue = false;
2331 break;
2332 case dwarf::DW_OP_deref:
2333 case dwarf::DW_OP_deref_size:
2334 case dwarf::DW_OP_deref_type:
2335 case dwarf::DW_OP_xderef:
2336 case dwarf::DW_OP_xderef_size:
2337 case dwarf::DW_OP_xderef_type:
2338 // Preceeding arithmetic operations have been applied to compute an
2339 // address. It's okay to split the value loaded from that address.
2340 CanSplitValue = true;
2341 break;
2342 case dwarf::DW_OP_stack_value:
2343 // Bail if this expression computes a value that cannot be split.
2344 if (!CanSplitValue)
2345 return std::nullopt;
2346 break;
2347 case dwarf::DW_OP_LLVM_fragment: {
2348 // If we've decided we don't need a fragment then give up if we see that
2349 // there's already a fragment expression.
2350 // FIXME: We could probably do better here
2351 if (!EmitFragment)
2352 return std::nullopt;
2353 // Make the new offset point into the existing fragment.
2354 uint64_t FragmentOffsetInBits = Op.getArg(I: 0);
2355 uint64_t FragmentSizeInBits = Op.getArg(I: 1);
2356 (void)FragmentSizeInBits;
2357 assert((OffsetInBits + SizeInBits <= FragmentSizeInBits) &&
2358 "new fragment outside of original fragment");
2359 OffsetInBits += FragmentOffsetInBits;
2360 continue;
2361 }
2362 case dwarf::DW_OP_LLVM_extract_bits_zext:
2363 case dwarf::DW_OP_LLVM_extract_bits_sext: {
2364 // If we're extracting bits from inside of the fragment that we're
2365 // creating then we don't have a fragment after all, and just need to
2366 // adjust the offset that we're extracting from.
2367 uint64_t ExtractOffsetInBits = Op.getArg(I: 0);
2368 uint64_t ExtractSizeInBits = Op.getArg(I: 1);
2369 if (ExtractOffsetInBits >= OffsetInBits &&
2370 ExtractOffsetInBits + ExtractSizeInBits <=
2371 OffsetInBits + SizeInBits) {
2372 Ops.push_back(Elt: Op.getOp());
2373 Ops.push_back(Elt: ExtractOffsetInBits - OffsetInBits);
2374 Ops.push_back(Elt: ExtractSizeInBits);
2375 EmitFragment = false;
2376 continue;
2377 }
2378 // If the extracted bits aren't fully contained within the fragment then
2379 // give up.
2380 // FIXME: We could probably do better here
2381 return std::nullopt;
2382 }
2383 }
2384 Op.appendToVector(V&: Ops);
2385 }
2386 }
2387 assert((!Expr->isImplicit() || CanSplitValue) && "Expr can't be split");
2388 assert(Expr && "Unknown DIExpression");
2389 if (EmitFragment) {
2390 Ops.push_back(Elt: dwarf::DW_OP_LLVM_fragment);
2391 Ops.push_back(Elt: OffsetInBits);
2392 Ops.push_back(Elt: SizeInBits);
2393 }
2394 return DIExpression::get(Context&: Expr->getContext(), Elements: Ops);
2395}
2396
2397/// See declaration for more info.
2398bool DIExpression::calculateFragmentIntersect(
2399 const DataLayout &DL, const Value *SliceStart, uint64_t SliceOffsetInBits,
2400 uint64_t SliceSizeInBits, const Value *DbgPtr, int64_t DbgPtrOffsetInBits,
2401 int64_t DbgExtractOffsetInBits, DIExpression::FragmentInfo VarFrag,
2402 std::optional<DIExpression::FragmentInfo> &Result,
2403 int64_t &OffsetFromLocationInBits) {
2404
2405 if (VarFrag.SizeInBits == 0)
2406 return false; // Variable size is unknown.
2407
2408 // Difference between mem slice start and the dbg location start.
2409 // 0 4 8 12 16 ...
2410 // | |
2411 // dbg location start
2412 // |
2413 // mem slice start
2414 // Here MemStartRelToDbgStartInBits is 8. Note this can be negative.
2415 int64_t MemStartRelToDbgStartInBits;
2416 {
2417 auto MemOffsetFromDbgInBytes = SliceStart->getPointerOffsetFrom(Other: DbgPtr, DL);
2418 if (!MemOffsetFromDbgInBytes)
2419 return false; // Can't calculate difference in addresses.
2420 // Difference between the pointers.
2421 MemStartRelToDbgStartInBits = *MemOffsetFromDbgInBytes * 8;
2422 // Add the difference of the offsets.
2423 MemStartRelToDbgStartInBits +=
2424 SliceOffsetInBits - (DbgPtrOffsetInBits + DbgExtractOffsetInBits);
2425 }
2426
2427 // Out-param. Invert offset to get offset from debug location.
2428 OffsetFromLocationInBits = -MemStartRelToDbgStartInBits;
2429
2430 // Check if the variable fragment sits outside (before) this memory slice.
2431 int64_t MemEndRelToDbgStart = MemStartRelToDbgStartInBits + SliceSizeInBits;
2432 if (MemEndRelToDbgStart < 0) {
2433 Result = {0, 0}; // Out-param.
2434 return true;
2435 }
2436
2437 // Work towards creating SliceOfVariable which is the bits of the variable
2438 // that the memory region covers.
2439 // 0 4 8 12 16 ...
2440 // | |
2441 // dbg location start with VarFrag offset=32
2442 // |
2443 // mem slice start: SliceOfVariable offset=40
2444 int64_t MemStartRelToVarInBits =
2445 MemStartRelToDbgStartInBits + VarFrag.OffsetInBits;
2446 int64_t MemEndRelToVarInBits = MemStartRelToVarInBits + SliceSizeInBits;
2447 // If the memory region starts before the debug location the fragment
2448 // offset would be negative, which we can't encode. Limit those to 0. This
2449 // is fine because those bits necessarily don't overlap with the existing
2450 // variable fragment.
2451 int64_t MemFragStart = std::max<int64_t>(a: 0, b: MemStartRelToVarInBits);
2452 int64_t MemFragSize =
2453 std::max<int64_t>(a: 0, b: MemEndRelToVarInBits - MemFragStart);
2454 DIExpression::FragmentInfo SliceOfVariable(MemFragSize, MemFragStart);
2455
2456 // Intersect the memory region fragment with the variable location fragment.
2457 DIExpression::FragmentInfo TrimmedSliceOfVariable =
2458 DIExpression::FragmentInfo::intersect(A: SliceOfVariable, B: VarFrag);
2459 if (TrimmedSliceOfVariable == VarFrag)
2460 Result = std::nullopt; // Out-param.
2461 else
2462 Result = TrimmedSliceOfVariable; // Out-param.
2463 return true;
2464}
2465
2466std::pair<DIExpression *, const ConstantInt *>
2467DIExpression::constantFold(const ConstantInt *CI) {
2468 // Copy the APInt so we can modify it.
2469 APInt NewInt = CI->getValue();
2470 SmallVector<uint64_t, 8> Ops;
2471
2472 // Fold operators only at the beginning of the expression.
2473 bool First = true;
2474 bool Changed = false;
2475 for (auto Op : expr_ops()) {
2476 switch (Op.getOp()) {
2477 default:
2478 // We fold only the leading part of the expression; if we get to a part
2479 // that we're going to copy unchanged, and haven't done any folding,
2480 // then the entire expression is unchanged and we can return early.
2481 if (!Changed)
2482 return {this, CI};
2483 First = false;
2484 break;
2485 case dwarf::DW_OP_LLVM_convert:
2486 if (!First)
2487 break;
2488 Changed = true;
2489 if (Op.getArg(I: 1) == dwarf::DW_ATE_signed)
2490 NewInt = NewInt.sextOrTrunc(width: Op.getArg(I: 0));
2491 else {
2492 assert(Op.getArg(1) == dwarf::DW_ATE_unsigned && "Unexpected operand");
2493 NewInt = NewInt.zextOrTrunc(width: Op.getArg(I: 0));
2494 }
2495 continue;
2496 }
2497 Op.appendToVector(V&: Ops);
2498 }
2499 if (!Changed)
2500 return {this, CI};
2501 return {DIExpression::get(Context&: getContext(), Elements: Ops),
2502 ConstantInt::get(Context&: getContext(), V: NewInt)};
2503}
2504
2505uint64_t DIExpression::getNumLocationOperands() const {
2506 uint64_t Result = 0;
2507 for (auto ExprOp : expr_ops())
2508 if (ExprOp.getOp() == dwarf::DW_OP_LLVM_arg)
2509 Result = std::max(a: Result, b: ExprOp.getArg(I: 0) + 1);
2510 assert(hasAllLocationOps(Result) &&
2511 "Expression is missing one or more location operands.");
2512 return Result;
2513}
2514
2515std::optional<DIExpression::SignedOrUnsignedConstant>
2516DIExpression::isConstant() const {
2517
2518 // Recognize signed and unsigned constants.
2519 // An signed constants can be represented as DW_OP_consts C DW_OP_stack_value
2520 // (DW_OP_LLVM_fragment of Len).
2521 // An unsigned constant can be represented as
2522 // DW_OP_constu C DW_OP_stack_value (DW_OP_LLVM_fragment of Len).
2523
2524 if ((getNumElements() != 2 && getNumElements() != 3 &&
2525 getNumElements() != 6) ||
2526 (getElement(I: 0) != dwarf::DW_OP_consts &&
2527 getElement(I: 0) != dwarf::DW_OP_constu))
2528 return std::nullopt;
2529
2530 if (getNumElements() == 2 && getElement(I: 0) == dwarf::DW_OP_consts)
2531 return SignedOrUnsignedConstant::SignedConstant;
2532
2533 if ((getNumElements() == 3 && getElement(I: 2) != dwarf::DW_OP_stack_value) ||
2534 (getNumElements() == 6 && (getElement(I: 2) != dwarf::DW_OP_stack_value ||
2535 getElement(I: 3) != dwarf::DW_OP_LLVM_fragment)))
2536 return std::nullopt;
2537 return getElement(I: 0) == dwarf::DW_OP_constu
2538 ? SignedOrUnsignedConstant::UnsignedConstant
2539 : SignedOrUnsignedConstant::SignedConstant;
2540}
2541
2542DIExpression::ExtOps DIExpression::getExtOps(unsigned FromSize, unsigned ToSize,
2543 bool Signed) {
2544 dwarf::TypeKind TK = Signed ? dwarf::DW_ATE_signed : dwarf::DW_ATE_unsigned;
2545 DIExpression::ExtOps Ops{._M_elems: {dwarf::DW_OP_LLVM_convert, FromSize, TK,
2546 dwarf::DW_OP_LLVM_convert, ToSize, TK}};
2547 return Ops;
2548}
2549
2550DIExpression *DIExpression::appendExt(const DIExpression *Expr,
2551 unsigned FromSize, unsigned ToSize,
2552 bool Signed) {
2553 return appendToStack(Expr, Ops: getExtOps(FromSize, ToSize, Signed));
2554}
2555
2556DIGlobalVariableExpression *
2557DIGlobalVariableExpression::getImpl(LLVMContext &Context, Metadata *Variable,
2558 Metadata *Expression, StorageType Storage,
2559 bool ShouldCreate) {
2560 DEFINE_GETIMPL_LOOKUP(DIGlobalVariableExpression, (Variable, Expression));
2561 Metadata *Ops[] = {Variable, Expression};
2562 DEFINE_GETIMPL_STORE_NO_CONSTRUCTOR_ARGS(DIGlobalVariableExpression, Ops);
2563}
2564DIObjCProperty::DIObjCProperty(LLVMContext &C, StorageType Storage,
2565 unsigned Line, unsigned Attributes,
2566 ArrayRef<Metadata *> Ops)
2567 : DINode(C, DIObjCPropertyKind, Storage, dwarf::DW_TAG_APPLE_property, Ops),
2568 Line(Line), Attributes(Attributes) {}
2569
2570DIObjCProperty *DIObjCProperty::getImpl(
2571 LLVMContext &Context, MDString *Name, Metadata *File, unsigned Line,
2572 MDString *GetterName, MDString *SetterName, unsigned Attributes,
2573 Metadata *Type, StorageType Storage, bool ShouldCreate) {
2574 assert(isCanonical(Name) && "Expected canonical MDString");
2575 assert(isCanonical(GetterName) && "Expected canonical MDString");
2576 assert(isCanonical(SetterName) && "Expected canonical MDString");
2577 DEFINE_GETIMPL_LOOKUP(DIObjCProperty, (Name, File, Line, GetterName,
2578 SetterName, Attributes, Type));
2579 Metadata *Ops[] = {Name, File, GetterName, SetterName, Type};
2580 DEFINE_GETIMPL_STORE(DIObjCProperty, (Line, Attributes), Ops);
2581}
2582
2583DIImportedEntity *DIImportedEntity::getImpl(LLVMContext &Context, unsigned Tag,
2584 Metadata *Scope, Metadata *Entity,
2585 Metadata *File, unsigned Line,
2586 MDString *Name, Metadata *Elements,
2587 StorageType Storage,
2588 bool ShouldCreate) {
2589 assert(isCanonical(Name) && "Expected canonical MDString");
2590 DEFINE_GETIMPL_LOOKUP(DIImportedEntity,
2591 (Tag, Scope, Entity, File, Line, Name, Elements));
2592 Metadata *Ops[] = {Scope, Entity, Name, File, Elements};
2593 DEFINE_GETIMPL_STORE(DIImportedEntity, (Tag, Line), Ops);
2594}
2595
2596DIMacro *DIMacro::getImpl(LLVMContext &Context, unsigned MIType, unsigned Line,
2597 MDString *Name, MDString *Value, StorageType Storage,
2598 bool ShouldCreate) {
2599 assert(isCanonical(Name) && "Expected canonical MDString");
2600 DEFINE_GETIMPL_LOOKUP(DIMacro, (MIType, Line, Name, Value));
2601 Metadata *Ops[] = {Name, Value};
2602 DEFINE_GETIMPL_STORE(DIMacro, (MIType, Line), Ops);
2603}
2604
2605DIMacroFile *DIMacroFile::getImpl(LLVMContext &Context, unsigned MIType,
2606 unsigned Line, Metadata *File,
2607 Metadata *Elements, StorageType Storage,
2608 bool ShouldCreate) {
2609 DEFINE_GETIMPL_LOOKUP(DIMacroFile, (MIType, Line, File, Elements));
2610 Metadata *Ops[] = {File, Elements};
2611 DEFINE_GETIMPL_STORE(DIMacroFile, (MIType, Line), Ops);
2612}
2613
2614DIArgList *DIArgList::get(LLVMContext &Context,
2615 ArrayRef<ValueAsMetadata *> Args) {
2616 auto ExistingIt = Context.pImpl->DIArgLists.find_as(Val: DIArgListKeyInfo(Args));
2617 if (ExistingIt != Context.pImpl->DIArgLists.end())
2618 return *ExistingIt;
2619 DIArgList *NewArgList = new DIArgList(Context, Args);
2620 Context.pImpl->DIArgLists.insert(V: NewArgList);
2621 return NewArgList;
2622}
2623
2624void DIArgList::handleChangedOperand(void *Ref, Metadata *New) {
2625 ValueAsMetadata **OldVMPtr = static_cast<ValueAsMetadata **>(Ref);
2626 assert((!New || isa<ValueAsMetadata>(New)) &&
2627 "DIArgList must be passed a ValueAsMetadata");
2628 untrack();
2629 // We need to update the set storage once the Args are updated since they
2630 // form the key to the DIArgLists store.
2631 getContext().pImpl->DIArgLists.erase(V: this);
2632 ValueAsMetadata *NewVM = cast_or_null<ValueAsMetadata>(Val: New);
2633 for (ValueAsMetadata *&VM : Args) {
2634 if (&VM == OldVMPtr) {
2635 if (NewVM)
2636 VM = NewVM;
2637 else
2638 VM = ValueAsMetadata::get(V: PoisonValue::get(T: VM->getValue()->getType()));
2639 }
2640 }
2641 // We've changed the contents of this DIArgList, and the set storage may
2642 // already contain a DIArgList with our new set of args; if it does, then we
2643 // must RAUW this with the existing DIArgList, otherwise we simply insert this
2644 // back into the set storage.
2645 DIArgList *ExistingArgList = getUniqued(Store&: getContext().pImpl->DIArgLists, Key: this);
2646 if (ExistingArgList) {
2647 replaceAllUsesWith(MD: ExistingArgList);
2648 // Clear this here so we don't try to untrack in the destructor.
2649 Args.clear();
2650 delete this;
2651 return;
2652 }
2653 getContext().pImpl->DIArgLists.insert(V: this);
2654 track();
2655}
2656void DIArgList::track() {
2657 for (ValueAsMetadata *&VAM : Args)
2658 if (VAM)
2659 MetadataTracking::track(Ref: &VAM, MD&: *VAM, Owner&: *this);
2660}
2661void DIArgList::untrack() {
2662 for (ValueAsMetadata *&VAM : Args)
2663 if (VAM)
2664 MetadataTracking::untrack(Ref: &VAM, MD&: *VAM);
2665}
2666void DIArgList::dropAllReferences(bool Untrack) {
2667 if (Untrack)
2668 untrack();
2669 Args.clear();
2670 ReplaceableMetadataImpl::resolveAllUses(/* ResolveUsers */ false);
2671}
2672