1//===-- Value.cpp - Implement the Value class -----------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the Value, ValueHandle, and User classes.
10//
11//===----------------------------------------------------------------------===//
12
13#include "llvm/IR/Value.h"
14#include "LLVMContextImpl.h"
15#include "llvm/ADT/DenseMap.h"
16#include "llvm/ADT/SmallString.h"
17#include "llvm/IR/Constant.h"
18#include "llvm/IR/Constants.h"
19#include "llvm/IR/DataLayout.h"
20#include "llvm/IR/DebugInfo.h"
21#include "llvm/IR/DerivedTypes.h"
22#include "llvm/IR/DerivedUser.h"
23#include "llvm/IR/GetElementPtrTypeIterator.h"
24#include "llvm/IR/InstrTypes.h"
25#include "llvm/IR/Instructions.h"
26#include "llvm/IR/IntrinsicInst.h"
27#include "llvm/IR/Module.h"
28#include "llvm/IR/Operator.h"
29#include "llvm/IR/TypedPointerType.h"
30#include "llvm/IR/ValueHandle.h"
31#include "llvm/IR/ValueSymbolTable.h"
32#include "llvm/Support/CommandLine.h"
33#include "llvm/Support/ErrorHandling.h"
34#include "llvm/Support/raw_ostream.h"
35#include <algorithm>
36
37using namespace llvm;
38
39static cl::opt<bool> UseDerefAtPointSemantics(
40 "use-dereferenceable-at-point-semantics", cl::Hidden, cl::init(Val: false),
41 cl::desc("Deref attributes and metadata infer facts at definition only"));
42
43//===----------------------------------------------------------------------===//
44// Value Class
45//===----------------------------------------------------------------------===//
46static inline Type *checkType(Type *Ty) {
47 assert(Ty && "Value defined with a null type: Error!");
48 assert(!isa<TypedPointerType>(Ty->getScalarType()) &&
49 "Cannot have values with typed pointer types");
50 return Ty;
51}
52
53Value::Value(Type *ty, unsigned scid)
54 : SubclassID(scid), HasValueHandle(0), SubclassOptionalData(0),
55 SubclassData(0), NumUserOperands(0), IsUsedByMD(false), HasName(false),
56 HasMetadata(false), VTy(checkType(Ty: ty)) {
57 static_assert(ConstantFirstVal == 0, "!(SubclassID < ConstantFirstVal)");
58 // FIXME: Why isn't this in the subclass gunk??
59 // Note, we cannot call isa<CallInst> before the CallInst has been
60 // constructed.
61 unsigned OpCode = 0;
62 if (SubclassID >= InstructionVal)
63 OpCode = SubclassID - InstructionVal;
64 if (OpCode == Instruction::Call || OpCode == Instruction::Invoke ||
65 OpCode == Instruction::CallBr)
66 assert((VTy->isFirstClassType() || VTy->isVoidTy() || VTy->isStructTy()) &&
67 "invalid CallBase type!");
68 else if (SubclassID != BasicBlockVal &&
69 (/*SubclassID < ConstantFirstVal ||*/ SubclassID > ConstantLastVal))
70 assert((VTy->isFirstClassType() || VTy->isVoidTy()) &&
71 "Cannot create non-first-class values except for constants!");
72 static_assert(sizeof(Value) == 2 * sizeof(void *) + 2 * sizeof(unsigned),
73 "Value too big");
74}
75
76Value::~Value() {
77 // Notify all ValueHandles (if present) that this value is going away.
78 if (HasValueHandle)
79 ValueHandleBase::ValueIsDeleted(V: this);
80 if (isUsedByMetadata())
81 ValueAsMetadata::handleDeletion(V: this);
82
83 // Remove associated metadata from context.
84 if (HasMetadata)
85 clearMetadata();
86
87#ifndef NDEBUG // Only in -g mode...
88 // Check to make sure that there are no uses of this value that are still
89 // around when the value is destroyed. If there are, then we have a dangling
90 // reference and something is wrong. This code is here to print out where
91 // the value is still being referenced.
92 //
93 // Note that use_empty() cannot be called here, as it eventually downcasts
94 // 'this' to GlobalValue (derived class of Value), but GlobalValue has already
95 // been destructed, so accessing it is UB.
96 //
97 if (!materialized_use_empty()) {
98 dbgs() << "While deleting: " << *VTy << " %" << getName() << "\n";
99 for (auto *U : users())
100 dbgs() << "Use still stuck around after Def is destroyed:" << *U << "\n";
101
102 llvm_unreachable("Uses remain when a value is destroyed!");
103 }
104#endif
105
106 // If this value is named, destroy the name. This should not be in a symtab
107 // at this point.
108 destroyValueName();
109}
110
111void Value::deleteValue() {
112 switch (getValueID()) {
113#define HANDLE_VALUE(Name) \
114 case Value::Name##Val: \
115 delete static_cast<Name *>(this); \
116 break;
117#define HANDLE_MEMORY_VALUE(Name) \
118 case Value::Name##Val: \
119 static_cast<DerivedUser *>(this)->DeleteValue( \
120 static_cast<DerivedUser *>(this)); \
121 break;
122#define HANDLE_CONSTANT(Name) \
123 case Value::Name##Val: \
124 llvm_unreachable("constants should be destroyed with destroyConstant"); \
125 break;
126#define HANDLE_INSTRUCTION(Name) /* nothing */
127#include "llvm/IR/Value.def"
128
129#define HANDLE_INST(N, OPC, CLASS) \
130 case Value::InstructionVal + Instruction::OPC: \
131 delete static_cast<CLASS *>(this); \
132 break;
133#define HANDLE_USER_INST(N, OPC, CLASS)
134#include "llvm/IR/Instruction.def"
135
136 default:
137 llvm_unreachable("attempting to delete unknown value kind");
138 }
139}
140
141void Value::destroyValueName() {
142 ValueName *Name = getValueName();
143 if (Name) {
144 MallocAllocator Allocator;
145 Name->Destroy(allocator&: Allocator);
146 }
147 setValueName(nullptr);
148}
149
150bool Value::hasNUses(unsigned N) const {
151 if (!UseList)
152 return N == 0;
153
154 // TODO: Disallow for ConstantData and remove !UseList check?
155 return hasNItems(Begin: use_begin(), End: use_end(), N);
156}
157
158bool Value::hasNUsesOrMore(unsigned N) const {
159 // TODO: Disallow for ConstantData and remove !UseList check?
160 if (!UseList)
161 return N == 0;
162
163 return hasNItemsOrMore(Begin: use_begin(), End: use_end(), N);
164}
165
166bool Value::hasOneUser() const {
167 if (use_empty())
168 return false;
169 if (hasOneUse())
170 return true;
171 return std::equal(first1: ++user_begin(), last1: user_end(), first2: user_begin());
172}
173
174static bool isUnDroppableUser(const User *U) { return !U->isDroppable(); }
175
176Use *Value::getSingleUndroppableUse() {
177 Use *Result = nullptr;
178 for (Use &U : uses()) {
179 if (!U.getUser()->isDroppable()) {
180 if (Result)
181 return nullptr;
182 Result = &U;
183 }
184 }
185 return Result;
186}
187
188User *Value::getUniqueUndroppableUser() {
189 User *Result = nullptr;
190 for (auto *U : users()) {
191 if (!U->isDroppable()) {
192 if (Result && Result != U)
193 return nullptr;
194 Result = U;
195 }
196 }
197 return Result;
198}
199
200bool Value::hasNUndroppableUses(unsigned int N) const {
201 return hasNItems(Begin: user_begin(), End: user_end(), N, ShouldBeCounted&: isUnDroppableUser);
202}
203
204bool Value::hasNUndroppableUsesOrMore(unsigned int N) const {
205 return hasNItemsOrMore(Begin: user_begin(), End: user_end(), N, ShouldBeCounted&: isUnDroppableUser);
206}
207
208void Value::dropDroppableUses(
209 llvm::function_ref<bool(const Use *)> ShouldDrop) {
210 SmallVector<Use *, 8> ToBeEdited;
211 for (Use &U : uses())
212 if (U.getUser()->isDroppable() && ShouldDrop(&U))
213 ToBeEdited.push_back(Elt: &U);
214 for (Use *U : ToBeEdited)
215 dropDroppableUse(U&: *U);
216}
217
218void Value::dropDroppableUsesIn(User &Usr) {
219 assert(Usr.isDroppable() && "Expected a droppable user!");
220 for (Use &UsrOp : Usr.operands()) {
221 if (UsrOp.get() == this)
222 dropDroppableUse(U&: UsrOp);
223 }
224}
225
226void Value::dropDroppableUse(Use &U) {
227 if (auto *Assume = dyn_cast<AssumeInst>(Val: U.getUser())) {
228 unsigned OpNo = U.getOperandNo();
229 if (OpNo == 0)
230 U.set(ConstantInt::getTrue(Context&: Assume->getContext()));
231 else {
232 U.set(PoisonValue::get(T: U.get()->getType()));
233 CallInst::BundleOpInfo &BOI = Assume->getBundleOpInfoForOperand(OpIdx: OpNo);
234 BOI.Tag = Assume->getContext().pImpl->getOrInsertBundleTag(Tag: "ignore");
235 }
236 return;
237 }
238
239 llvm_unreachable("unknown droppable use");
240}
241
242bool Value::isUsedInBasicBlock(const BasicBlock *BB) const {
243 assert(hasUseList() && "ConstantData has no use-list");
244
245 // This can be computed either by scanning the instructions in BB, or by
246 // scanning the use list of this Value. Both lists can be very long, but
247 // usually one is quite short.
248 //
249 // Scan both lists simultaneously until one is exhausted. This limits the
250 // search to the shorter list.
251 BasicBlock::const_iterator BI = BB->begin(), BE = BB->end();
252 const_user_iterator UI = user_begin(), UE = user_end();
253 for (; BI != BE && UI != UE; ++BI, ++UI) {
254 // Scan basic block: Check if this Value is used by the instruction at BI.
255 if (is_contained(Range: BI->operands(), Element: this))
256 return true;
257 // Scan use list: Check if the use at UI is in BB.
258 const auto *User = dyn_cast<Instruction>(Val: *UI);
259 if (User && User->getParent() == BB)
260 return true;
261 }
262 return false;
263}
264
265unsigned Value::getNumUses() const {
266 // TODO: Disallow for ConstantData and remove !UseList check?
267 if (!UseList)
268 return 0;
269 return (unsigned)std::distance(first: use_begin(), last: use_end());
270}
271
272static bool getSymTab(Value *V, ValueSymbolTable *&ST) {
273 ST = nullptr;
274 if (Instruction *I = dyn_cast<Instruction>(Val: V)) {
275 if (BasicBlock *P = I->getParent())
276 if (Function *PP = P->getParent())
277 ST = PP->getValueSymbolTable();
278 } else if (BasicBlock *BB = dyn_cast<BasicBlock>(Val: V)) {
279 if (Function *P = BB->getParent())
280 ST = P->getValueSymbolTable();
281 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Val: V)) {
282 if (Module *P = GV->getParent())
283 ST = &P->getValueSymbolTable();
284 } else if (Argument *A = dyn_cast<Argument>(Val: V)) {
285 if (Function *P = A->getParent())
286 ST = P->getValueSymbolTable();
287 } else {
288 assert(isa<Constant>(V) && "Unknown value type!");
289 return true; // no name is setable for this.
290 }
291 return false;
292}
293
294ValueName *Value::getValueName() const {
295 if (!HasName) return nullptr;
296
297 LLVMContext &Ctx = getContext();
298 auto I = Ctx.pImpl->ValueNames.find(Val: this);
299 assert(I != Ctx.pImpl->ValueNames.end() &&
300 "No name entry found!");
301
302 return I->second;
303}
304
305void Value::setValueName(ValueName *VN) {
306 LLVMContext &Ctx = getContext();
307
308 assert(HasName == Ctx.pImpl->ValueNames.count(this) &&
309 "HasName bit out of sync!");
310
311 if (!VN) {
312 if (HasName)
313 Ctx.pImpl->ValueNames.erase(Val: this);
314 HasName = false;
315 return;
316 }
317
318 HasName = true;
319 Ctx.pImpl->ValueNames[this] = VN;
320}
321
322StringRef Value::getName() const {
323 // Make sure the empty string is still a C string. For historical reasons,
324 // some clients want to call .data() on the result and expect it to be null
325 // terminated.
326 if (!hasName())
327 return StringRef("", 0);
328 return getValueName()->getKey();
329}
330
331void Value::setNameImpl(const Twine &NewName) {
332 bool NeedNewName =
333 !getContext().shouldDiscardValueNames() || isa<GlobalValue>(Val: this);
334
335 // Fast-path: LLVMContext can be set to strip out non-GlobalValue names
336 // and there is no need to delete the old name.
337 if (!NeedNewName && !hasName())
338 return;
339
340 // Fast path for common IRBuilder case of setName("") when there is no name.
341 if (NewName.isTriviallyEmpty() && !hasName())
342 return;
343
344 SmallString<256> NameData;
345 StringRef NameRef = NeedNewName ? NewName.toStringRef(Out&: NameData) : "";
346 assert(!NameRef.contains(0) && "Null bytes are not allowed in names");
347
348 // Name isn't changing?
349 if (getName() == NameRef)
350 return;
351
352 assert(!getType()->isVoidTy() && "Cannot assign a name to void values!");
353
354 // Get the symbol table to update for this object.
355 ValueSymbolTable *ST;
356 if (getSymTab(V: this, ST))
357 return; // Cannot set a name on this value (e.g. constant).
358
359 ValueName *NewValueName = nullptr;
360 if (!ST) { // No symbol table to update? Just do the change.
361 if (!NameRef.empty()) {
362 // Create the new name.
363 MallocAllocator Allocator;
364 NewValueName = ValueName::create(key: NameRef, allocator&: Allocator);
365 }
366 // NOTE: Could optimize for the case the name is shrinking to not deallocate
367 // then reallocated.
368 destroyValueName();
369
370 if (NewValueName) {
371 assert(NeedNewName);
372 setValueName(NewValueName);
373 getValueName()->setValue(this);
374 }
375 return;
376 }
377
378 if (!NameRef.empty())
379 NewValueName = ST->createValueName(Name: NameRef, V: this);
380
381 // NOTE: Could optimize for the case the name is shrinking to not deallocate
382 // then reallocated.
383 if (hasName()) {
384 // Remove old name.
385 ST->removeValueName(V: getValueName());
386 destroyValueName();
387
388 if (NameRef.empty())
389 return;
390 }
391
392 // Name is changing to something new.
393 assert(NeedNewName && NewValueName != nullptr);
394 setValueName(NewValueName);
395}
396
397void Value::setName(const Twine &NewName) {
398 setNameImpl(NewName);
399 if (Function *F = dyn_cast<Function>(Val: this))
400 F->updateAfterNameChange();
401}
402
403void Value::takeName(Value *V) {
404 assert(V != this && "Illegal call to this->takeName(this)!");
405 ValueSymbolTable *ST = nullptr;
406 // If this value has a name, drop it.
407 if (hasName()) {
408 // Get the symtab this is in.
409 if (getSymTab(V: this, ST)) {
410 // We can't set a name on this value, but we need to clear V's name if
411 // it has one.
412 if (V->hasName()) V->setName("");
413 return; // Cannot set a name on this value (e.g. constant).
414 }
415
416 // Remove old name.
417 if (ST)
418 ST->removeValueName(V: getValueName());
419 destroyValueName();
420 }
421
422 // Now we know that this has no name.
423
424 // If V has no name either, we're done.
425 if (!V->hasName()) return;
426
427 // Get this's symtab if we didn't before.
428 if (!ST) {
429 if (getSymTab(V: this, ST)) {
430 // Clear V's name.
431 V->setName("");
432 return; // Cannot set a name on this value (e.g. constant).
433 }
434 }
435
436 // Get V's ST, this should always succeed, because V has a name.
437 ValueSymbolTable *VST;
438 bool Failure = getSymTab(V, ST&: VST);
439 assert(!Failure && "V has a name, so it should have a ST!"); (void)Failure;
440
441 // If these values are both in the same symtab, we can do this very fast.
442 // This works even if both values have no symtab yet.
443 if (ST == VST) {
444 // Take the name!
445 setValueName(V->getValueName());
446 V->setValueName(nullptr);
447 getValueName()->setValue(this);
448 return;
449 }
450
451 // Otherwise, things are slightly more complex. Remove V's name from VST and
452 // then reinsert it into ST.
453
454 if (VST)
455 VST->removeValueName(V: V->getValueName());
456 setValueName(V->getValueName());
457 V->setValueName(nullptr);
458 getValueName()->setValue(this);
459
460 if (ST)
461 ST->reinsertValue(V: this);
462}
463
464std::string Value::getNameOrAsOperand() const {
465 if (!getName().empty())
466 return std::string(getName());
467
468 std::string BBName;
469 raw_string_ostream OS(BBName);
470 printAsOperand(O&: OS, PrintType: false);
471 return OS.str();
472}
473
474void Value::assertModuleIsMaterializedImpl() const {
475#ifndef NDEBUG
476 const GlobalValue *GV = dyn_cast<GlobalValue>(this);
477 if (!GV)
478 return;
479 const Module *M = GV->getParent();
480 if (!M)
481 return;
482 assert(M->isMaterialized());
483#endif
484}
485
486#ifndef NDEBUG
487static bool contains(SmallPtrSetImpl<ConstantExpr *> &Cache, ConstantExpr *Expr,
488 Constant *C) {
489 if (!Cache.insert(Expr).second)
490 return false;
491
492 for (auto &O : Expr->operands()) {
493 if (O == C)
494 return true;
495 auto *CE = dyn_cast<ConstantExpr>(O);
496 if (!CE)
497 continue;
498 if (contains(Cache, CE, C))
499 return true;
500 }
501 return false;
502}
503
504static bool contains(Value *Expr, Value *V) {
505 if (Expr == V)
506 return true;
507
508 auto *C = dyn_cast<Constant>(V);
509 if (!C)
510 return false;
511
512 auto *CE = dyn_cast<ConstantExpr>(Expr);
513 if (!CE)
514 return false;
515
516 SmallPtrSet<ConstantExpr *, 4> Cache;
517 return contains(Cache, CE, C);
518}
519#endif // NDEBUG
520
521void Value::doRAUW(Value *New, ReplaceMetadataUses ReplaceMetaUses) {
522 assert(hasUseList() && "Cannot replace constant data");
523 assert(New && "Value::replaceAllUsesWith(<null>) is invalid!");
524 assert(!contains(New, this) &&
525 "this->replaceAllUsesWith(expr(this)) is NOT valid!");
526 assert(New->getType() == getType() &&
527 "replaceAllUses of value with new value of different type!");
528
529 // Notify all ValueHandles (if present) that this value is going away.
530 if (HasValueHandle)
531 ValueHandleBase::ValueIsRAUWd(Old: this, New);
532 if (ReplaceMetaUses == ReplaceMetadataUses::Yes && isUsedByMetadata())
533 ValueAsMetadata::handleRAUW(From: this, To: New);
534
535 while (!materialized_use_empty()) {
536 Use &U = *UseList;
537 // Must handle Constants specially, we cannot call replaceUsesOfWith on a
538 // constant because they are uniqued.
539 if (auto *C = dyn_cast<Constant>(Val: U.getUser())) {
540 if (!isa<GlobalValue>(Val: C)) {
541 C->handleOperandChange(this, New);
542 continue;
543 }
544 }
545
546 U.set(New);
547 }
548
549 if (BasicBlock *BB = dyn_cast<BasicBlock>(Val: this))
550 BB->replaceSuccessorsPhiUsesWith(New: cast<BasicBlock>(Val: New));
551}
552
553void Value::replaceAllUsesWith(Value *New) {
554 doRAUW(New, ReplaceMetaUses: ReplaceMetadataUses::Yes);
555}
556
557void Value::replaceNonMetadataUsesWith(Value *New) {
558 doRAUW(New, ReplaceMetaUses: ReplaceMetadataUses::No);
559}
560
561void Value::replaceUsesWithIf(Value *New,
562 llvm::function_ref<bool(Use &U)> ShouldReplace) {
563 assert(New && "Value::replaceUsesWithIf(<null>) is invalid!");
564 assert(New->getType() == getType() &&
565 "replaceUses of value with new value of different type!");
566
567 SmallVector<TrackingVH<Constant>, 8> Consts;
568 SmallPtrSet<Constant *, 8> Visited;
569
570 for (Use &U : llvm::make_early_inc_range(Range: uses())) {
571 if (!ShouldReplace(U))
572 continue;
573 // Must handle Constants specially, we cannot call replaceUsesOfWith on a
574 // constant because they are uniqued.
575 if (auto *C = dyn_cast<Constant>(Val: U.getUser())) {
576 if (!isa<GlobalValue>(Val: C)) {
577 if (Visited.insert(Ptr: C).second)
578 Consts.push_back(Elt: TrackingVH<Constant>(C));
579 continue;
580 }
581 }
582 U.set(New);
583 }
584
585 while (!Consts.empty()) {
586 // FIXME: handleOperandChange() updates all the uses in a given Constant,
587 // not just the one passed to ShouldReplace
588 Consts.pop_back_val()->handleOperandChange(this, New);
589 }
590}
591
592/// Replace debug record uses of MetadataAsValue(ValueAsMetadata(V)) outside BB
593/// with New.
594static void replaceDbgUsesOutsideBlock(Value *V, Value *New, BasicBlock *BB) {
595 SmallVector<DbgVariableRecord *> DPUsers;
596 findDbgUsers(V, DbgVariableRecords&: DPUsers);
597 for (auto *DVR : DPUsers) {
598 DbgMarker *Marker = DVR->getMarker();
599 if (Marker->getParent() != BB)
600 DVR->replaceVariableLocationOp(OldValue: V, NewValue: New);
601 }
602}
603
604// Like replaceAllUsesWith except it does not handle constants or basic blocks.
605// This routine leaves uses within BB.
606void Value::replaceUsesOutsideBlock(Value *New, BasicBlock *BB) {
607 assert(New && "Value::replaceUsesOutsideBlock(<null>, BB) is invalid!");
608 assert(!contains(New, this) &&
609 "this->replaceUsesOutsideBlock(expr(this), BB) is NOT valid!");
610 assert(New->getType() == getType() &&
611 "replaceUses of value with new value of different type!");
612 assert(BB && "Basic block that may contain a use of 'New' must be defined\n");
613
614 replaceDbgUsesOutsideBlock(V: this, New, BB);
615 replaceUsesWithIf(New, ShouldReplace: [BB](Use &U) {
616 auto *I = dyn_cast<Instruction>(Val: U.getUser());
617 // Don't replace if it's an instruction in the BB basic block.
618 return !I || I->getParent() != BB;
619 });
620}
621
622namespace {
623// Various metrics for how much to strip off of pointers.
624enum PointerStripKind {
625 PSK_ZeroIndices,
626 PSK_ZeroIndicesAndAliases,
627 PSK_ZeroIndicesSameRepresentation,
628 PSK_ForAliasAnalysis,
629 PSK_InBoundsConstantIndices,
630 PSK_InBounds
631};
632} // end anonymous namespace
633
634template <PointerStripKind StripKind> static void NoopCallback(const Value *) {}
635
636template <PointerStripKind StripKind>
637static const Value *stripPointerCastsAndOffsets(
638 const Value *V,
639 function_ref<void(const Value *)> Func = NoopCallback<StripKind>) {
640 if (!V->getType()->isPointerTy())
641 return V;
642
643 // Even though we don't look through PHI nodes, we could be called on an
644 // instruction in an unreachable block, which may be on a cycle.
645 SmallPtrSet<const Value *, 4> Visited;
646
647 Visited.insert(Ptr: V);
648 do {
649 Func(V);
650 if (auto *GEP = dyn_cast<GEPOperator>(Val: V)) {
651 switch (StripKind) {
652 case PSK_ZeroIndices:
653 case PSK_ZeroIndicesAndAliases:
654 case PSK_ZeroIndicesSameRepresentation:
655 case PSK_ForAliasAnalysis:
656 if (!GEP->hasAllZeroIndices())
657 return V;
658 break;
659 case PSK_InBoundsConstantIndices:
660 if (!GEP->hasAllConstantIndices())
661 return V;
662 [[fallthrough]];
663 case PSK_InBounds:
664 if (!GEP->isInBounds())
665 return V;
666 break;
667 }
668 V = GEP->getPointerOperand();
669 } else if (Operator::getOpcode(V) == Instruction::BitCast) {
670 Value *NewV = cast<Operator>(Val: V)->getOperand(i: 0);
671 if (!NewV->getType()->isPointerTy())
672 return V;
673 V = NewV;
674 } else if (StripKind != PSK_ZeroIndicesSameRepresentation &&
675 Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
676 // TODO: If we know an address space cast will not change the
677 // representation we could look through it here as well.
678 V = cast<Operator>(Val: V)->getOperand(i: 0);
679 } else if (StripKind == PSK_ZeroIndicesAndAliases && isa<GlobalAlias>(Val: V)) {
680 V = cast<GlobalAlias>(Val: V)->getAliasee();
681 } else if (StripKind == PSK_ForAliasAnalysis && isa<PHINode>(Val: V) &&
682 cast<PHINode>(Val: V)->getNumIncomingValues() == 1) {
683 V = cast<PHINode>(Val: V)->getIncomingValue(i: 0);
684 } else {
685 if (const auto *Call = dyn_cast<CallBase>(Val: V)) {
686 if (const Value *RV = Call->getReturnedArgOperand()) {
687 V = RV;
688 continue;
689 }
690 // The result of launder.invariant.group must alias it's argument,
691 // but it can't be marked with returned attribute, that's why it needs
692 // special case.
693 if (StripKind == PSK_ForAliasAnalysis &&
694 (Call->getIntrinsicID() == Intrinsic::launder_invariant_group ||
695 Call->getIntrinsicID() == Intrinsic::strip_invariant_group)) {
696 V = Call->getArgOperand(i: 0);
697 continue;
698 }
699 }
700 return V;
701 }
702 assert(V->getType()->isPointerTy() && "Unexpected operand type!");
703 } while (Visited.insert(Ptr: V).second);
704
705 return V;
706}
707
708const Value *Value::stripPointerCasts() const {
709 return stripPointerCastsAndOffsets<PSK_ZeroIndices>(V: this);
710}
711
712const Value *Value::stripPointerCastsAndAliases() const {
713 return stripPointerCastsAndOffsets<PSK_ZeroIndicesAndAliases>(V: this);
714}
715
716const Value *Value::stripPointerCastsSameRepresentation() const {
717 return stripPointerCastsAndOffsets<PSK_ZeroIndicesSameRepresentation>(V: this);
718}
719
720const Value *Value::stripInBoundsConstantOffsets() const {
721 return stripPointerCastsAndOffsets<PSK_InBoundsConstantIndices>(V: this);
722}
723
724const Value *Value::stripPointerCastsForAliasAnalysis() const {
725 return stripPointerCastsAndOffsets<PSK_ForAliasAnalysis>(V: this);
726}
727
728const Value *Value::stripAndAccumulateConstantOffsets(
729 const DataLayout &DL, APInt &Offset, bool AllowNonInbounds,
730 bool AllowInvariantGroup,
731 function_ref<bool(Value &, APInt &)> ExternalAnalysis,
732 bool LookThroughIntToPtr) const {
733 if (!getType()->isPtrOrPtrVectorTy())
734 return this;
735
736 unsigned BitWidth = Offset.getBitWidth();
737 assert(BitWidth == DL.getIndexTypeSizeInBits(getType()) &&
738 "The offset bit width does not match the DL specification.");
739
740 // Even though we don't look through PHI nodes, we could be called on an
741 // instruction in an unreachable block, which may be on a cycle.
742 SmallPtrSet<const Value *, 4> Visited;
743 Visited.insert(Ptr: this);
744 const Value *V = this;
745 do {
746 if (auto *GEP = dyn_cast<GEPOperator>(Val: V)) {
747 // If in-bounds was requested, we do not strip non-in-bounds GEPs.
748 if (!AllowNonInbounds && !GEP->isInBounds())
749 return V;
750
751 // If one of the values we have visited is an addrspacecast, then
752 // the pointer type of this GEP may be different from the type
753 // of the Ptr parameter which was passed to this function. This
754 // means when we construct GEPOffset, we need to use the size
755 // of GEP's pointer type rather than the size of the original
756 // pointer type.
757 APInt GEPOffset(DL.getIndexTypeSizeInBits(Ty: V->getType()), 0);
758 if (!GEP->accumulateConstantOffset(DL, Offset&: GEPOffset, ExternalAnalysis))
759 return V;
760
761 // Stop traversal if the pointer offset wouldn't fit in the bit-width
762 // provided by the Offset argument. This can happen due to AddrSpaceCast
763 // stripping.
764 if (GEPOffset.getSignificantBits() > BitWidth)
765 return V;
766
767 // External Analysis can return a result higher/lower than the value
768 // represents. We need to detect overflow/underflow.
769 APInt GEPOffsetST = GEPOffset.sextOrTrunc(width: BitWidth);
770 if (!ExternalAnalysis) {
771 Offset += GEPOffsetST;
772 } else {
773 bool Overflow = false;
774 APInt OldOffset = Offset;
775 Offset = Offset.sadd_ov(RHS: GEPOffsetST, Overflow);
776 if (Overflow) {
777 Offset = OldOffset;
778 return V;
779 }
780 }
781 V = GEP->getPointerOperand();
782 } else if (Operator::getOpcode(V) == Instruction::BitCast ||
783 Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
784 V = cast<Operator>(Val: V)->getOperand(i: 0);
785 } else if (auto *GA = dyn_cast<GlobalAlias>(Val: V)) {
786 if (!GA->isInterposable())
787 V = GA->getAliasee();
788 } else if (const auto *Call = dyn_cast<CallBase>(Val: V)) {
789 if (const Value *RV = Call->getReturnedArgOperand())
790 V = RV;
791 if (AllowInvariantGroup && Call->isLaunderOrStripInvariantGroup())
792 V = Call->getArgOperand(i: 0);
793 } else if (auto *Int2Ptr = dyn_cast<Operator>(Val: V)) {
794 // Try to accumulate across (inttoptr (add (ptrtoint p), off)).
795 if (!AllowNonInbounds || !LookThroughIntToPtr || !Int2Ptr ||
796 Int2Ptr->getOpcode() != Instruction::IntToPtr ||
797 Int2Ptr->getOperand(i: 0)->getType()->getScalarSizeInBits() != BitWidth)
798 return V;
799
800 auto *Add = dyn_cast<AddOperator>(Val: Int2Ptr->getOperand(i: 0));
801 if (!Add)
802 return V;
803
804 auto *Ptr2Int = dyn_cast<PtrToIntOperator>(Val: Add->getOperand(i_nocapture: 0));
805 auto *CI = dyn_cast<ConstantInt>(Val: Add->getOperand(i_nocapture: 1));
806 if (!Ptr2Int || !CI)
807 return V;
808
809 Offset += CI->getValue();
810 V = Ptr2Int->getOperand(i_nocapture: 0);
811 }
812 assert(V->getType()->isPtrOrPtrVectorTy() && "Unexpected operand type!");
813 } while (Visited.insert(Ptr: V).second);
814
815 return V;
816}
817
818const Value *
819Value::stripInBoundsOffsets(function_ref<void(const Value *)> Func) const {
820 return stripPointerCastsAndOffsets<PSK_InBounds>(V: this, Func);
821}
822
823bool Value::canBeFreed() const {
824 assert(getType()->isPointerTy());
825
826 // Cases that can simply never be deallocated
827 // *) Constants aren't allocated per se, thus not deallocated either.
828 if (isa<Constant>(Val: this))
829 return false;
830
831 // Handle byval/byref/sret/inalloca/preallocated arguments. The storage
832 // lifetime is guaranteed to be longer than the callee's lifetime.
833 if (auto *A = dyn_cast<Argument>(Val: this)) {
834 if (A->hasPointeeInMemoryValueAttr())
835 return false;
836 // A pointer to an object in a function which neither frees, nor can arrange
837 // for another thread to free on its behalf, can not be freed in the scope
838 // of the function. Note that this logic is restricted to memory
839 // allocations in existance before the call; a nofree function *is* allowed
840 // to free memory it allocated.
841 const Function *F = A->getParent();
842 if (F->doesNotFreeMemory() && F->hasNoSync())
843 return false;
844 }
845
846 if (isa<IntToPtrInst>(Val: this) && getMetadata(KindID: LLVMContext::MD_nofree))
847 return false;
848
849 const Function *F = nullptr;
850 if (auto *I = dyn_cast<Instruction>(Val: this))
851 F = I->getFunction();
852 if (auto *A = dyn_cast<Argument>(Val: this))
853 F = A->getParent();
854
855 if (!F)
856 return true;
857
858 // With garbage collection, deallocation typically occurs solely at or after
859 // safepoints. If we're compiling for a collector which uses the
860 // gc.statepoint infrastructure, safepoints aren't explicitly present
861 // in the IR until after lowering from abstract to physical machine model.
862 // The collector could chose to mix explicit deallocation and gc'd objects
863 // which is why we need the explicit opt in on a per collector basis.
864 if (!F->hasGC())
865 return true;
866
867 const auto &GCName = F->getGC();
868 if (GCName == "statepoint-example") {
869 auto *PT = cast<PointerType>(Val: this->getType());
870 if (PT->getAddressSpace() != 1)
871 // For the sake of this example GC, we arbitrarily pick addrspace(1) as
872 // our GC managed heap. This must match the same check in
873 // RewriteStatepointsForGC (and probably needs better factored.)
874 return true;
875
876 // It is cheaper to scan for a declaration than to scan for a use in this
877 // function. Note that gc.statepoint is a type overloaded function so the
878 // usual trick of requesting declaration of the intrinsic from the module
879 // doesn't work.
880 for (auto &Fn : *F->getParent())
881 if (Fn.getIntrinsicID() == Intrinsic::experimental_gc_statepoint)
882 return true;
883 return false;
884 }
885 return true;
886}
887
888uint64_t Value::getPointerDereferenceableBytes(const DataLayout &DL,
889 bool &CanBeNull,
890 bool &CanBeFreed) const {
891 assert(getType()->isPointerTy() && "must be pointer");
892
893 uint64_t DerefBytes = 0;
894 CanBeNull = false;
895 CanBeFreed = UseDerefAtPointSemantics && canBeFreed();
896 if (const Argument *A = dyn_cast<Argument>(Val: this)) {
897 DerefBytes = A->getDereferenceableBytes();
898 if (DerefBytes == 0) {
899 // Handle byval/byref/inalloca/preallocated arguments
900 if (Type *ArgMemTy = A->getPointeeInMemoryValueType()) {
901 if (ArgMemTy->isSized()) {
902 // FIXME: Why isn't this the type alloc size?
903 DerefBytes = DL.getTypeStoreSize(Ty: ArgMemTy).getKnownMinValue();
904 }
905 }
906 }
907
908 if (DerefBytes == 0) {
909 DerefBytes = A->getDereferenceableOrNullBytes();
910 CanBeNull = true;
911 }
912 } else if (const auto *Call = dyn_cast<CallBase>(Val: this)) {
913 DerefBytes = Call->getRetDereferenceableBytes();
914 if (DerefBytes == 0) {
915 DerefBytes = Call->getRetDereferenceableOrNullBytes();
916 CanBeNull = true;
917 }
918 } else if (const LoadInst *LI = dyn_cast<LoadInst>(Val: this)) {
919 if (MDNode *MD = LI->getMetadata(KindID: LLVMContext::MD_dereferenceable)) {
920 ConstantInt *CI = mdconst::extract<ConstantInt>(MD: MD->getOperand(I: 0));
921 DerefBytes = CI->getLimitedValue();
922 }
923 if (DerefBytes == 0) {
924 if (MDNode *MD =
925 LI->getMetadata(KindID: LLVMContext::MD_dereferenceable_or_null)) {
926 ConstantInt *CI = mdconst::extract<ConstantInt>(MD: MD->getOperand(I: 0));
927 DerefBytes = CI->getLimitedValue();
928 }
929 CanBeNull = true;
930 }
931 } else if (auto *IP = dyn_cast<IntToPtrInst>(Val: this)) {
932 if (MDNode *MD = IP->getMetadata(KindID: LLVMContext::MD_dereferenceable)) {
933 ConstantInt *CI = mdconst::extract<ConstantInt>(MD: MD->getOperand(I: 0));
934 DerefBytes = CI->getLimitedValue();
935 }
936 if (DerefBytes == 0) {
937 if (MDNode *MD =
938 IP->getMetadata(KindID: LLVMContext::MD_dereferenceable_or_null)) {
939 ConstantInt *CI = mdconst::extract<ConstantInt>(MD: MD->getOperand(I: 0));
940 DerefBytes = CI->getLimitedValue();
941 }
942 CanBeNull = true;
943 }
944 } else if (auto *AI = dyn_cast<AllocaInst>(Val: this)) {
945 if (std::optional<TypeSize> Size = AI->getAllocationSize(DL)) {
946 DerefBytes = Size->getKnownMinValue();
947 CanBeNull = false;
948 CanBeFreed = false;
949 }
950 } else if (auto *GV = dyn_cast<GlobalVariable>(Val: this)) {
951 if (GV->getValueType()->isSized() && !GV->hasExternalWeakLinkage()) {
952 // TODO: Don't outright reject hasExternalWeakLinkage but set the
953 // CanBeNull flag.
954 DerefBytes = DL.getTypeStoreSize(Ty: GV->getValueType()).getFixedValue();
955 CanBeNull = false;
956 CanBeFreed = false;
957 }
958 }
959 return DerefBytes;
960}
961
962Align Value::getPointerAlignment(const DataLayout &DL) const {
963 assert(getType()->isPointerTy() && "must be pointer");
964 if (const Function *F = dyn_cast<Function>(Val: this)) {
965 Align FunctionPtrAlign = DL.getFunctionPtrAlign().valueOrOne();
966 switch (DL.getFunctionPtrAlignType()) {
967 case DataLayout::FunctionPtrAlignType::Independent:
968 return FunctionPtrAlign;
969 case DataLayout::FunctionPtrAlignType::MultipleOfFunctionAlign:
970 return std::max(a: FunctionPtrAlign, b: F->getAlign().valueOrOne());
971 }
972 llvm_unreachable("Unhandled FunctionPtrAlignType");
973 } else if (auto *GVar = dyn_cast<GlobalVariable>(Val: this)) {
974 const MaybeAlign Alignment(GVar->getAlign());
975 if (!Alignment) {
976 Type *ObjectType = GVar->getValueType();
977 if (ObjectType->isSized()) {
978 // If the object is defined in the current Module, we'll be giving
979 // it the preferred alignment. Otherwise, we have to assume that it
980 // may only have the minimum ABI alignment.
981 if (GVar->isStrongDefinitionForLinker())
982 return DL.getPreferredAlign(GV: GVar);
983 else
984 return DL.getABITypeAlign(Ty: ObjectType);
985 }
986 }
987 return Alignment.valueOrOne();
988 } else if (const Argument *A = dyn_cast<Argument>(Val: this)) {
989 const MaybeAlign Alignment = A->getParamAlign();
990 if (!Alignment && A->hasStructRetAttr()) {
991 // An sret parameter has at least the ABI alignment of the return type.
992 Type *EltTy = A->getParamStructRetType();
993 if (EltTy->isSized())
994 return DL.getABITypeAlign(Ty: EltTy);
995 }
996 return Alignment.valueOrOne();
997 } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(Val: this)) {
998 return AI->getAlign();
999 } else if (const auto *Call = dyn_cast<CallBase>(Val: this)) {
1000 MaybeAlign Alignment = Call->getRetAlign();
1001 if (!Alignment && Call->getCalledFunction())
1002 Alignment = Call->getCalledFunction()->getAttributes().getRetAlignment();
1003 return Alignment.valueOrOne();
1004 } else if (const LoadInst *LI = dyn_cast<LoadInst>(Val: this)) {
1005 if (MDNode *MD = LI->getMetadata(KindID: LLVMContext::MD_align)) {
1006 ConstantInt *CI = mdconst::extract<ConstantInt>(MD: MD->getOperand(I: 0));
1007 return Align(CI->getLimitedValue());
1008 }
1009 } else if (auto *CE = dyn_cast<ConstantExpr>(Val: this)) {
1010 // Determine the alignment of inttoptr(C).
1011 if (CE->getOpcode() == Instruction::IntToPtr &&
1012 isa<ConstantInt>(Val: CE->getOperand(i_nocapture: 0))) {
1013 ConstantInt *IntPtr = cast<ConstantInt>(Val: CE->getOperand(i_nocapture: 0));
1014 size_t TrailingZeros = IntPtr->getValue().countr_zero();
1015 // While the actual alignment may be large, elsewhere we have
1016 // an arbitrary upper alignmet limit, so let's clamp to it.
1017 return Align(TrailingZeros < Value::MaxAlignmentExponent
1018 ? uint64_t(1) << TrailingZeros
1019 : Value::MaximumAlignment);
1020 }
1021 }
1022 return Align(1);
1023}
1024
1025static std::optional<int64_t>
1026getOffsetFromIndex(const GEPOperator *GEP, unsigned Idx, const DataLayout &DL) {
1027 // Skip over the first indices.
1028 gep_type_iterator GTI = gep_type_begin(GEP);
1029 for (unsigned i = 1; i != Idx; ++i, ++GTI)
1030 /*skip along*/;
1031
1032 // Compute the offset implied by the rest of the indices.
1033 int64_t Offset = 0;
1034 for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) {
1035 ConstantInt *OpC = dyn_cast<ConstantInt>(Val: GEP->getOperand(i_nocapture: i));
1036 if (!OpC)
1037 return std::nullopt;
1038 if (OpC->isZero())
1039 continue; // No offset.
1040
1041 // Handle struct indices, which add their field offset to the pointer.
1042 if (StructType *STy = GTI.getStructTypeOrNull()) {
1043 Offset += DL.getStructLayout(Ty: STy)->getElementOffset(Idx: OpC->getZExtValue());
1044 continue;
1045 }
1046
1047 // Otherwise, we have a sequential type like an array or fixed-length
1048 // vector. Multiply the index by the ElementSize.
1049 TypeSize Size = GTI.getSequentialElementStride(DL);
1050 if (Size.isScalable())
1051 return std::nullopt;
1052 Offset += Size.getFixedValue() * OpC->getSExtValue();
1053 }
1054
1055 return Offset;
1056}
1057
1058std::optional<int64_t> Value::getPointerOffsetFrom(const Value *Other,
1059 const DataLayout &DL) const {
1060 const Value *Ptr1 = Other;
1061 const Value *Ptr2 = this;
1062 APInt Offset1(DL.getIndexTypeSizeInBits(Ty: Ptr1->getType()), 0);
1063 APInt Offset2(DL.getIndexTypeSizeInBits(Ty: Ptr2->getType()), 0);
1064 Ptr1 = Ptr1->stripAndAccumulateConstantOffsets(DL, Offset&: Offset1, AllowNonInbounds: true);
1065 Ptr2 = Ptr2->stripAndAccumulateConstantOffsets(DL, Offset&: Offset2, AllowNonInbounds: true);
1066
1067 // Handle the trivial case first.
1068 if (Ptr1 == Ptr2)
1069 return Offset2.getSExtValue() - Offset1.getSExtValue();
1070
1071 const GEPOperator *GEP1 = dyn_cast<GEPOperator>(Val: Ptr1);
1072 const GEPOperator *GEP2 = dyn_cast<GEPOperator>(Val: Ptr2);
1073
1074 // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical
1075 // base. After that base, they may have some number of common (and
1076 // potentially variable) indices. After that they handle some constant
1077 // offset, which determines their offset from each other. At this point, we
1078 // handle no other case.
1079 if (!GEP1 || !GEP2 || GEP1->getOperand(i_nocapture: 0) != GEP2->getOperand(i_nocapture: 0) ||
1080 GEP1->getSourceElementType() != GEP2->getSourceElementType())
1081 return std::nullopt;
1082
1083 // Skip any common indices and track the GEP types.
1084 unsigned Idx = 1;
1085 for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx)
1086 if (GEP1->getOperand(i_nocapture: Idx) != GEP2->getOperand(i_nocapture: Idx))
1087 break;
1088
1089 auto IOffset1 = getOffsetFromIndex(GEP: GEP1, Idx, DL);
1090 auto IOffset2 = getOffsetFromIndex(GEP: GEP2, Idx, DL);
1091 if (!IOffset1 || !IOffset2)
1092 return std::nullopt;
1093 return *IOffset2 - *IOffset1 + Offset2.getSExtValue() -
1094 Offset1.getSExtValue();
1095}
1096
1097const Value *Value::DoPHITranslation(const BasicBlock *CurBB,
1098 const BasicBlock *PredBB) const {
1099 auto *PN = dyn_cast<PHINode>(Val: this);
1100 if (PN && PN->getParent() == CurBB)
1101 return PN->getIncomingValueForBlock(BB: PredBB);
1102 return this;
1103}
1104
1105void Value::reverseUseList() {
1106 if (!UseList || !UseList->Next)
1107 // No need to reverse 0 or 1 uses.
1108 return;
1109
1110 Use *Head = UseList;
1111 Use *Current = UseList->Next;
1112 Head->Next = nullptr;
1113 while (Current) {
1114 Use *Next = Current->Next;
1115 Current->Next = Head;
1116 Head->Prev = &Current->Next;
1117 Head = Current;
1118 Current = Next;
1119 }
1120 UseList = Head;
1121 Head->Prev = &UseList;
1122}
1123
1124bool Value::isSwiftError() const {
1125 auto *Arg = dyn_cast<Argument>(Val: this);
1126 if (Arg)
1127 return Arg->hasSwiftErrorAttr();
1128 auto *Alloca = dyn_cast<AllocaInst>(Val: this);
1129 if (!Alloca)
1130 return false;
1131 return Alloca->isSwiftError();
1132}
1133
1134//===----------------------------------------------------------------------===//
1135// ValueHandleBase Class
1136//===----------------------------------------------------------------------===//
1137
1138void ValueHandleBase::AddToExistingUseList(ValueHandleBase **List) {
1139 assert(List && "Handle list is null?");
1140
1141 // Splice ourselves into the list.
1142 Next = *List;
1143 *List = this;
1144 setPrevPtr(List);
1145 if (Next) {
1146 Next->setPrevPtr(&Next);
1147 assert(getValPtr() == Next->getValPtr() && "Added to wrong list?");
1148 }
1149}
1150
1151void ValueHandleBase::AddToExistingUseListAfter(ValueHandleBase *List) {
1152 assert(List && "Must insert after existing node");
1153
1154 Next = List->Next;
1155 setPrevPtr(&List->Next);
1156 List->Next = this;
1157 if (Next)
1158 Next->setPrevPtr(&Next);
1159}
1160
1161void ValueHandleBase::AddToUseList() {
1162 assert(getValPtr() && "Null pointer doesn't have a use list!");
1163
1164 LLVMContextImpl *pImpl = getValPtr()->getContext().pImpl;
1165
1166 if (getValPtr()->HasValueHandle) {
1167 // If this value already has a ValueHandle, then it must be in the
1168 // ValueHandles map already.
1169 ValueHandleBase *&Entry = pImpl->ValueHandles[getValPtr()];
1170 assert(Entry && "Value doesn't have any handles?");
1171 AddToExistingUseList(List: &Entry);
1172 return;
1173 }
1174
1175 // Ok, it doesn't have any handles yet, so we must insert it into the
1176 // DenseMap. However, doing this insertion could cause the DenseMap to
1177 // reallocate itself, which would invalidate all of the PrevP pointers that
1178 // point into the old table. Handle this by checking for reallocation and
1179 // updating the stale pointers only if needed.
1180 DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles;
1181 const void *OldBucketPtr = Handles.getPointerIntoBucketsArray();
1182
1183 ValueHandleBase *&Entry = Handles[getValPtr()];
1184 assert(!Entry && "Value really did already have handles?");
1185 AddToExistingUseList(List: &Entry);
1186 getValPtr()->HasValueHandle = true;
1187
1188 // If reallocation didn't happen or if this was the first insertion, don't
1189 // walk the table.
1190 if (Handles.isPointerIntoBucketsArray(Ptr: OldBucketPtr) ||
1191 Handles.size() == 1) {
1192 return;
1193 }
1194
1195 // Okay, reallocation did happen. Fix the Prev Pointers.
1196 for (DenseMap<Value*, ValueHandleBase*>::iterator I = Handles.begin(),
1197 E = Handles.end(); I != E; ++I) {
1198 assert(I->second && I->first == I->second->getValPtr() &&
1199 "List invariant broken!");
1200 I->second->setPrevPtr(&I->second);
1201 }
1202}
1203
1204void ValueHandleBase::RemoveFromUseList() {
1205 assert(getValPtr() && getValPtr()->HasValueHandle &&
1206 "Pointer doesn't have a use list!");
1207
1208 // Unlink this from its use list.
1209 ValueHandleBase **PrevPtr = getPrevPtr();
1210 assert(*PrevPtr == this && "List invariant broken");
1211
1212 *PrevPtr = Next;
1213 if (Next) {
1214 assert(Next->getPrevPtr() == &Next && "List invariant broken");
1215 Next->setPrevPtr(PrevPtr);
1216 return;
1217 }
1218
1219 // If the Next pointer was null, then it is possible that this was the last
1220 // ValueHandle watching VP. If so, delete its entry from the ValueHandles
1221 // map.
1222 LLVMContextImpl *pImpl = getValPtr()->getContext().pImpl;
1223 DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles;
1224 if (Handles.isPointerIntoBucketsArray(Ptr: PrevPtr)) {
1225 Handles.erase(Val: getValPtr());
1226 getValPtr()->HasValueHandle = false;
1227 }
1228}
1229
1230void ValueHandleBase::ValueIsDeleted(Value *V) {
1231 assert(V->HasValueHandle && "Should only be called if ValueHandles present");
1232
1233 // Get the linked list base, which is guaranteed to exist since the
1234 // HasValueHandle flag is set.
1235 LLVMContextImpl *pImpl = V->getContext().pImpl;
1236 ValueHandleBase *Entry = pImpl->ValueHandles[V];
1237 assert(Entry && "Value bit set but no entries exist");
1238
1239 // We use a local ValueHandleBase as an iterator so that ValueHandles can add
1240 // and remove themselves from the list without breaking our iteration. This
1241 // is not really an AssertingVH; we just have to give ValueHandleBase a kind.
1242 // Note that we deliberately do not the support the case when dropping a value
1243 // handle results in a new value handle being permanently added to the list
1244 // (as might occur in theory for CallbackVH's): the new value handle will not
1245 // be processed and the checking code will mete out righteous punishment if
1246 // the handle is still present once we have finished processing all the other
1247 // value handles (it is fine to momentarily add then remove a value handle).
1248 for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) {
1249 Iterator.RemoveFromUseList();
1250 Iterator.AddToExistingUseListAfter(List: Entry);
1251 assert(Entry->Next == &Iterator && "Loop invariant broken.");
1252
1253 switch (Entry->getKind()) {
1254 case Assert:
1255 break;
1256 case Weak:
1257 case WeakTracking:
1258 // WeakTracking and Weak just go to null, which unlinks them
1259 // from the list.
1260 Entry->operator=(RHS: nullptr);
1261 break;
1262 case Callback:
1263 // Forward to the subclass's implementation.
1264 static_cast<CallbackVH*>(Entry)->deleted();
1265 break;
1266 }
1267 }
1268
1269 // All callbacks, weak references, and assertingVHs should be dropped by now.
1270 if (V->HasValueHandle) {
1271#ifndef NDEBUG // Only in +Asserts mode...
1272 dbgs() << "While deleting: " << *V->getType() << " %" << V->getName()
1273 << "\n";
1274 if (pImpl->ValueHandles[V]->getKind() == Assert)
1275 llvm_unreachable("An asserting value handle still pointed to this"
1276 " value!");
1277
1278#endif
1279 llvm_unreachable("All references to V were not removed?");
1280 }
1281}
1282
1283void ValueHandleBase::ValueIsRAUWd(Value *Old, Value *New) {
1284 assert(Old->HasValueHandle &&"Should only be called if ValueHandles present");
1285 assert(Old != New && "Changing value into itself!");
1286 assert(Old->getType() == New->getType() &&
1287 "replaceAllUses of value with new value of different type!");
1288
1289 // Get the linked list base, which is guaranteed to exist since the
1290 // HasValueHandle flag is set.
1291 LLVMContextImpl *pImpl = Old->getContext().pImpl;
1292 ValueHandleBase *Entry = pImpl->ValueHandles[Old];
1293
1294 assert(Entry && "Value bit set but no entries exist");
1295
1296 // We use a local ValueHandleBase as an iterator so that
1297 // ValueHandles can add and remove themselves from the list without
1298 // breaking our iteration. This is not really an AssertingVH; we
1299 // just have to give ValueHandleBase some kind.
1300 for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) {
1301 Iterator.RemoveFromUseList();
1302 Iterator.AddToExistingUseListAfter(List: Entry);
1303 assert(Entry->Next == &Iterator && "Loop invariant broken.");
1304
1305 switch (Entry->getKind()) {
1306 case Assert:
1307 case Weak:
1308 // Asserting and Weak handles do not follow RAUW implicitly.
1309 break;
1310 case WeakTracking:
1311 // Weak goes to the new value, which will unlink it from Old's list.
1312 Entry->operator=(RHS: New);
1313 break;
1314 case Callback:
1315 // Forward to the subclass's implementation.
1316 static_cast<CallbackVH*>(Entry)->allUsesReplacedWith(New);
1317 break;
1318 }
1319 }
1320
1321#ifndef NDEBUG
1322 // If any new weak value handles were added while processing the
1323 // list, then complain about it now.
1324 if (Old->HasValueHandle)
1325 for (Entry = pImpl->ValueHandles[Old]; Entry; Entry = Entry->Next)
1326 switch (Entry->getKind()) {
1327 case WeakTracking:
1328 dbgs() << "After RAUW from " << *Old->getType() << " %"
1329 << Old->getName() << " to " << *New->getType() << " %"
1330 << New->getName() << "\n";
1331 llvm_unreachable(
1332 "A weak tracking value handle still pointed to the old value!\n");
1333 default:
1334 break;
1335 }
1336#endif
1337}
1338
1339// Pin the vtable to this file.
1340void CallbackVH::anchor() {}
1341