| 1 | //===- CoverageMapping.cpp - Code coverage mapping support ----------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file contains support for clang's and llvm's instrumentation based |
| 10 | // code coverage. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #include "llvm/ProfileData/Coverage/CoverageMapping.h" |
| 15 | #include "llvm/ADT/ArrayRef.h" |
| 16 | #include "llvm/ADT/DenseMap.h" |
| 17 | #include "llvm/ADT/STLExtras.h" |
| 18 | #include "llvm/ADT/SmallBitVector.h" |
| 19 | #include "llvm/ADT/SmallVector.h" |
| 20 | #include "llvm/ADT/StringExtras.h" |
| 21 | #include "llvm/ADT/StringRef.h" |
| 22 | #include "llvm/Object/BuildID.h" |
| 23 | #include "llvm/ProfileData/Coverage/CoverageMappingReader.h" |
| 24 | #include "llvm/ProfileData/InstrProfReader.h" |
| 25 | #include "llvm/Support/Debug.h" |
| 26 | #include "llvm/Support/Errc.h" |
| 27 | #include "llvm/Support/Error.h" |
| 28 | #include "llvm/Support/ErrorHandling.h" |
| 29 | #include "llvm/Support/MemoryBuffer.h" |
| 30 | #include "llvm/Support/VirtualFileSystem.h" |
| 31 | #include "llvm/Support/raw_ostream.h" |
| 32 | #include <algorithm> |
| 33 | #include <cassert> |
| 34 | #include <cmath> |
| 35 | #include <cstdint> |
| 36 | #include <iterator> |
| 37 | #include <map> |
| 38 | #include <memory> |
| 39 | #include <optional> |
| 40 | #include <stack> |
| 41 | #include <string> |
| 42 | #include <system_error> |
| 43 | #include <utility> |
| 44 | #include <vector> |
| 45 | |
| 46 | using namespace llvm; |
| 47 | using namespace coverage; |
| 48 | |
| 49 | #define DEBUG_TYPE "coverage-mapping" |
| 50 | |
| 51 | Counter CounterExpressionBuilder::get(const CounterExpression &E) { |
| 52 | auto [It, Inserted] = ExpressionIndices.try_emplace(Key: E, Args: Expressions.size()); |
| 53 | if (Inserted) |
| 54 | Expressions.push_back(x: E); |
| 55 | return Counter::getExpression(ExpressionId: It->second); |
| 56 | } |
| 57 | |
| 58 | void CounterExpressionBuilder::(Counter C, int Factor, |
| 59 | SmallVectorImpl<Term> &Terms) { |
| 60 | switch (C.getKind()) { |
| 61 | case Counter::Zero: |
| 62 | break; |
| 63 | case Counter::CounterValueReference: |
| 64 | Terms.emplace_back(Args: C.getCounterID(), Args&: Factor); |
| 65 | break; |
| 66 | case Counter::Expression: |
| 67 | const auto &E = Expressions[C.getExpressionID()]; |
| 68 | extractTerms(C: E.LHS, Factor, Terms); |
| 69 | extractTerms( |
| 70 | C: E.RHS, Factor: E.Kind == CounterExpression::Subtract ? -Factor : Factor, Terms); |
| 71 | break; |
| 72 | } |
| 73 | } |
| 74 | |
| 75 | Counter CounterExpressionBuilder::simplify(Counter ExpressionTree) { |
| 76 | // Gather constant terms. |
| 77 | SmallVector<Term, 32> Terms; |
| 78 | extractTerms(C: ExpressionTree, Factor: +1, Terms); |
| 79 | |
| 80 | // If there are no terms, this is just a zero. The algorithm below assumes at |
| 81 | // least one term. |
| 82 | if (Terms.size() == 0) |
| 83 | return Counter::getZero(); |
| 84 | |
| 85 | // Group the terms by counter ID. |
| 86 | llvm::sort(C&: Terms, Comp: [](const Term &LHS, const Term &RHS) { |
| 87 | return LHS.CounterID < RHS.CounterID; |
| 88 | }); |
| 89 | |
| 90 | // Combine terms by counter ID to eliminate counters that sum to zero. |
| 91 | auto Prev = Terms.begin(); |
| 92 | for (auto I = Prev + 1, E = Terms.end(); I != E; ++I) { |
| 93 | if (I->CounterID == Prev->CounterID) { |
| 94 | Prev->Factor += I->Factor; |
| 95 | continue; |
| 96 | } |
| 97 | ++Prev; |
| 98 | *Prev = *I; |
| 99 | } |
| 100 | Terms.erase(CS: ++Prev, CE: Terms.end()); |
| 101 | |
| 102 | Counter C; |
| 103 | // Create additions. We do this before subtractions to avoid constructs like |
| 104 | // ((0 - X) + Y), as opposed to (Y - X). |
| 105 | for (auto T : Terms) { |
| 106 | if (T.Factor <= 0) |
| 107 | continue; |
| 108 | for (int I = 0; I < T.Factor; ++I) |
| 109 | if (C.isZero()) |
| 110 | C = Counter::getCounter(CounterId: T.CounterID); |
| 111 | else |
| 112 | C = get(E: CounterExpression(CounterExpression::Add, C, |
| 113 | Counter::getCounter(CounterId: T.CounterID))); |
| 114 | } |
| 115 | |
| 116 | // Create subtractions. |
| 117 | for (auto T : Terms) { |
| 118 | if (T.Factor >= 0) |
| 119 | continue; |
| 120 | for (int I = 0; I < -T.Factor; ++I) |
| 121 | C = get(E: CounterExpression(CounterExpression::Subtract, C, |
| 122 | Counter::getCounter(CounterId: T.CounterID))); |
| 123 | } |
| 124 | return C; |
| 125 | } |
| 126 | |
| 127 | Counter CounterExpressionBuilder::add(Counter LHS, Counter RHS, bool Simplify) { |
| 128 | auto Cnt = get(E: CounterExpression(CounterExpression::Add, LHS, RHS)); |
| 129 | return Simplify ? simplify(ExpressionTree: Cnt) : Cnt; |
| 130 | } |
| 131 | |
| 132 | Counter CounterExpressionBuilder::subtract(Counter LHS, Counter RHS, |
| 133 | bool Simplify) { |
| 134 | auto Cnt = get(E: CounterExpression(CounterExpression::Subtract, LHS, RHS)); |
| 135 | return Simplify ? simplify(ExpressionTree: Cnt) : Cnt; |
| 136 | } |
| 137 | |
| 138 | Counter CounterExpressionBuilder::subst(Counter C, const SubstMap &Map) { |
| 139 | // Replace C with the value found in Map even if C is Expression. |
| 140 | if (auto I = Map.find(x: C); I != Map.end()) |
| 141 | return I->second; |
| 142 | |
| 143 | if (!C.isExpression()) |
| 144 | return C; |
| 145 | |
| 146 | auto CE = Expressions[C.getExpressionID()]; |
| 147 | auto NewLHS = subst(C: CE.LHS, Map); |
| 148 | auto NewRHS = subst(C: CE.RHS, Map); |
| 149 | |
| 150 | // Reconstruct Expression with induced subexpressions. |
| 151 | switch (CE.Kind) { |
| 152 | case CounterExpression::Add: |
| 153 | C = add(LHS: NewLHS, RHS: NewRHS); |
| 154 | break; |
| 155 | case CounterExpression::Subtract: |
| 156 | C = subtract(LHS: NewLHS, RHS: NewRHS); |
| 157 | break; |
| 158 | } |
| 159 | |
| 160 | return C; |
| 161 | } |
| 162 | |
| 163 | void CounterMappingContext::dump(const Counter &C, raw_ostream &OS) const { |
| 164 | switch (C.getKind()) { |
| 165 | case Counter::Zero: |
| 166 | OS << '0'; |
| 167 | return; |
| 168 | case Counter::CounterValueReference: |
| 169 | OS << '#' << C.getCounterID(); |
| 170 | break; |
| 171 | case Counter::Expression: { |
| 172 | if (C.getExpressionID() >= Expressions.size()) |
| 173 | return; |
| 174 | const auto &E = Expressions[C.getExpressionID()]; |
| 175 | OS << '('; |
| 176 | dump(C: E.LHS, OS); |
| 177 | OS << (E.Kind == CounterExpression::Subtract ? " - " : " + " ); |
| 178 | dump(C: E.RHS, OS); |
| 179 | OS << ')'; |
| 180 | break; |
| 181 | } |
| 182 | } |
| 183 | if (CounterValues.empty()) |
| 184 | return; |
| 185 | Expected<int64_t> Value = evaluate(C); |
| 186 | if (auto E = Value.takeError()) { |
| 187 | consumeError(Err: std::move(E)); |
| 188 | return; |
| 189 | } |
| 190 | OS << '[' << *Value << ']'; |
| 191 | } |
| 192 | |
| 193 | Expected<int64_t> CounterMappingContext::evaluate(const Counter &C) const { |
| 194 | struct StackElem { |
| 195 | Counter ICounter; |
| 196 | int64_t LHS = 0; |
| 197 | enum { |
| 198 | KNeverVisited = 0, |
| 199 | KVisitedOnce = 1, |
| 200 | KVisitedTwice = 2, |
| 201 | } VisitCount = KNeverVisited; |
| 202 | }; |
| 203 | |
| 204 | std::stack<StackElem> CounterStack; |
| 205 | CounterStack.push(x: {.ICounter: C}); |
| 206 | |
| 207 | int64_t LastPoppedValue; |
| 208 | |
| 209 | while (!CounterStack.empty()) { |
| 210 | StackElem &Current = CounterStack.top(); |
| 211 | |
| 212 | switch (Current.ICounter.getKind()) { |
| 213 | case Counter::Zero: |
| 214 | LastPoppedValue = 0; |
| 215 | CounterStack.pop(); |
| 216 | break; |
| 217 | case Counter::CounterValueReference: |
| 218 | if (Current.ICounter.getCounterID() >= CounterValues.size()) |
| 219 | return errorCodeToError(EC: errc::argument_out_of_domain); |
| 220 | LastPoppedValue = CounterValues[Current.ICounter.getCounterID()]; |
| 221 | CounterStack.pop(); |
| 222 | break; |
| 223 | case Counter::Expression: { |
| 224 | if (Current.ICounter.getExpressionID() >= Expressions.size()) |
| 225 | return errorCodeToError(EC: errc::argument_out_of_domain); |
| 226 | const auto &E = Expressions[Current.ICounter.getExpressionID()]; |
| 227 | if (Current.VisitCount == StackElem::KNeverVisited) { |
| 228 | CounterStack.push(x: StackElem{.ICounter: E.LHS}); |
| 229 | Current.VisitCount = StackElem::KVisitedOnce; |
| 230 | } else if (Current.VisitCount == StackElem::KVisitedOnce) { |
| 231 | Current.LHS = LastPoppedValue; |
| 232 | CounterStack.push(x: StackElem{.ICounter: E.RHS}); |
| 233 | Current.VisitCount = StackElem::KVisitedTwice; |
| 234 | } else { |
| 235 | int64_t LHS = Current.LHS; |
| 236 | int64_t RHS = LastPoppedValue; |
| 237 | LastPoppedValue = |
| 238 | E.Kind == CounterExpression::Subtract ? LHS - RHS : LHS + RHS; |
| 239 | CounterStack.pop(); |
| 240 | } |
| 241 | break; |
| 242 | } |
| 243 | } |
| 244 | } |
| 245 | |
| 246 | return LastPoppedValue; |
| 247 | } |
| 248 | |
| 249 | // Find an independence pair for each condition: |
| 250 | // - The condition is true in one test and false in the other. |
| 251 | // - The decision outcome is true one test and false in the other. |
| 252 | // - All other conditions' values must be equal or marked as "don't care". |
| 253 | void MCDCRecord::findIndependencePairs() { |
| 254 | if (IndependencePairs) |
| 255 | return; |
| 256 | |
| 257 | IndependencePairs.emplace(); |
| 258 | |
| 259 | unsigned NumTVs = TV.size(); |
| 260 | // Will be replaced to shorter expr. |
| 261 | unsigned TVTrueIdx = std::distance( |
| 262 | first: TV.begin(), |
| 263 | last: llvm::find_if(Range&: TV, |
| 264 | P: [&](auto I) { return (I.second == MCDCRecord::MCDC_True); }) |
| 265 | |
| 266 | ); |
| 267 | for (unsigned I = TVTrueIdx; I < NumTVs; ++I) { |
| 268 | const auto &[A, ACond] = TV[I]; |
| 269 | assert(ACond == MCDCRecord::MCDC_True); |
| 270 | for (unsigned J = 0; J < TVTrueIdx; ++J) { |
| 271 | const auto &[B, BCond] = TV[J]; |
| 272 | assert(BCond == MCDCRecord::MCDC_False); |
| 273 | // If the two vectors differ in exactly one condition, ignoring DontCare |
| 274 | // conditions, we have found an independence pair. |
| 275 | auto AB = A.getDifferences(B); |
| 276 | if (AB.count() == 1) |
| 277 | IndependencePairs->insert( |
| 278 | KV: {AB.find_first(), std::make_pair(x: J + 1, y: I + 1)}); |
| 279 | } |
| 280 | } |
| 281 | } |
| 282 | |
| 283 | mcdc::TVIdxBuilder::TVIdxBuilder(const SmallVectorImpl<ConditionIDs> &NextIDs, |
| 284 | int Offset) |
| 285 | : Indices(NextIDs.size()) { |
| 286 | // Construct Nodes and set up each InCount |
| 287 | auto N = NextIDs.size(); |
| 288 | SmallVector<MCDCNode> Nodes(N); |
| 289 | for (unsigned ID = 0; ID < N; ++ID) { |
| 290 | for (unsigned C = 0; C < 2; ++C) { |
| 291 | #ifndef NDEBUG |
| 292 | Indices[ID][C] = INT_MIN; |
| 293 | #endif |
| 294 | auto NextID = NextIDs[ID][C]; |
| 295 | Nodes[ID].NextIDs[C] = NextID; |
| 296 | if (NextID >= 0) |
| 297 | ++Nodes[NextID].InCount; |
| 298 | } |
| 299 | } |
| 300 | |
| 301 | // Sort key ordered by <-Width, Ord> |
| 302 | SmallVector<std::tuple<int, /// -Width |
| 303 | unsigned, /// Ord |
| 304 | int, /// ID |
| 305 | unsigned /// Cond (0 or 1) |
| 306 | >> |
| 307 | Decisions; |
| 308 | |
| 309 | // Traverse Nodes to assign Idx |
| 310 | SmallVector<int> Q; |
| 311 | assert(Nodes[0].InCount == 0); |
| 312 | Nodes[0].Width = 1; |
| 313 | Q.push_back(Elt: 0); |
| 314 | |
| 315 | unsigned Ord = 0; |
| 316 | while (!Q.empty()) { |
| 317 | auto IID = Q.begin(); |
| 318 | int ID = *IID; |
| 319 | Q.erase(CI: IID); |
| 320 | auto &Node = Nodes[ID]; |
| 321 | assert(Node.Width > 0); |
| 322 | |
| 323 | for (unsigned I = 0; I < 2; ++I) { |
| 324 | auto NextID = Node.NextIDs[I]; |
| 325 | assert(NextID != 0 && "NextID should not point to the top" ); |
| 326 | if (NextID < 0) { |
| 327 | // Decision |
| 328 | Decisions.emplace_back(Args: -Node.Width, Args: Ord++, Args&: ID, Args&: I); |
| 329 | assert(Ord == Decisions.size()); |
| 330 | continue; |
| 331 | } |
| 332 | |
| 333 | // Inter Node |
| 334 | auto &NextNode = Nodes[NextID]; |
| 335 | assert(NextNode.InCount > 0); |
| 336 | |
| 337 | // Assign Idx |
| 338 | assert(Indices[ID][I] == INT_MIN); |
| 339 | Indices[ID][I] = NextNode.Width; |
| 340 | auto NextWidth = int64_t(NextNode.Width) + Node.Width; |
| 341 | if (NextWidth > HardMaxTVs) { |
| 342 | NumTestVectors = HardMaxTVs; // Overflow |
| 343 | return; |
| 344 | } |
| 345 | NextNode.Width = NextWidth; |
| 346 | |
| 347 | // Ready if all incomings are processed. |
| 348 | // Or NextNode.Width hasn't been confirmed yet. |
| 349 | if (--NextNode.InCount == 0) |
| 350 | Q.push_back(Elt: NextID); |
| 351 | } |
| 352 | } |
| 353 | |
| 354 | llvm::sort(C&: Decisions); |
| 355 | |
| 356 | // Assign TestVector Indices in Decision Nodes |
| 357 | int64_t CurIdx = 0; |
| 358 | for (auto [NegWidth, Ord, ID, C] : Decisions) { |
| 359 | int Width = -NegWidth; |
| 360 | assert(Nodes[ID].Width == Width); |
| 361 | assert(Nodes[ID].NextIDs[C] < 0); |
| 362 | assert(Indices[ID][C] == INT_MIN); |
| 363 | Indices[ID][C] = Offset + CurIdx; |
| 364 | CurIdx += Width; |
| 365 | if (CurIdx > HardMaxTVs) { |
| 366 | NumTestVectors = HardMaxTVs; // Overflow |
| 367 | return; |
| 368 | } |
| 369 | } |
| 370 | |
| 371 | assert(CurIdx < HardMaxTVs); |
| 372 | NumTestVectors = CurIdx; |
| 373 | |
| 374 | #ifndef NDEBUG |
| 375 | for (const auto &Idxs : Indices) |
| 376 | for (auto Idx : Idxs) |
| 377 | assert(Idx != INT_MIN); |
| 378 | SavedNodes = std::move(Nodes); |
| 379 | #endif |
| 380 | } |
| 381 | |
| 382 | namespace { |
| 383 | |
| 384 | /// Construct this->NextIDs with Branches for TVIdxBuilder to use it |
| 385 | /// before MCDCRecordProcessor(). |
| 386 | class NextIDsBuilder { |
| 387 | protected: |
| 388 | SmallVector<mcdc::ConditionIDs> NextIDs; |
| 389 | |
| 390 | public: |
| 391 | NextIDsBuilder(const ArrayRef<const CounterMappingRegion *> Branches) |
| 392 | : NextIDs(Branches.size()) { |
| 393 | #ifndef NDEBUG |
| 394 | DenseSet<mcdc::ConditionID> SeenIDs; |
| 395 | #endif |
| 396 | for (const auto *Branch : Branches) { |
| 397 | const auto &BranchParams = Branch->getBranchParams(); |
| 398 | assert(SeenIDs.insert(BranchParams.ID).second && "Duplicate CondID" ); |
| 399 | NextIDs[BranchParams.ID] = BranchParams.Conds; |
| 400 | } |
| 401 | assert(SeenIDs.size() == Branches.size()); |
| 402 | } |
| 403 | }; |
| 404 | |
| 405 | class MCDCRecordProcessor : NextIDsBuilder, mcdc::TVIdxBuilder { |
| 406 | /// A bitmap representing the executed test vectors for a boolean expression. |
| 407 | /// Each index of the bitmap corresponds to a possible test vector. An index |
| 408 | /// with a bit value of '1' indicates that the corresponding Test Vector |
| 409 | /// identified by that index was executed. |
| 410 | const BitVector &Bitmap; |
| 411 | |
| 412 | /// Decision Region to which the ExecutedTestVectorBitmap applies. |
| 413 | const CounterMappingRegion &Region; |
| 414 | const mcdc::DecisionParameters &DecisionParams; |
| 415 | |
| 416 | /// Array of branch regions corresponding each conditions in the boolean |
| 417 | /// expression. |
| 418 | ArrayRef<const CounterMappingRegion *> Branches; |
| 419 | |
| 420 | /// Total number of conditions in the boolean expression. |
| 421 | unsigned NumConditions; |
| 422 | |
| 423 | /// Vector used to track whether a condition is constant folded. |
| 424 | MCDCRecord::BoolVector Folded; |
| 425 | |
| 426 | /// Mapping of calculated MC/DC Independence Pairs for each condition. |
| 427 | MCDCRecord::TVPairMap IndependencePairs; |
| 428 | |
| 429 | /// Helper for sorting ExecVectors. |
| 430 | struct TVIdxTuple { |
| 431 | MCDCRecord::CondState MCDCCond; /// True/False |
| 432 | unsigned BIdx; /// Bitmap Index |
| 433 | unsigned Ord; /// Last position on ExecVectors |
| 434 | |
| 435 | TVIdxTuple(MCDCRecord::CondState MCDCCond, unsigned BIdx, unsigned Ord) |
| 436 | : MCDCCond(MCDCCond), BIdx(BIdx), Ord(Ord) {} |
| 437 | |
| 438 | bool operator<(const TVIdxTuple &RHS) const { |
| 439 | return (std::tie(args: this->MCDCCond, args: this->BIdx, args: this->Ord) < |
| 440 | std::tie(args: RHS.MCDCCond, args: RHS.BIdx, args: RHS.Ord)); |
| 441 | } |
| 442 | }; |
| 443 | |
| 444 | // Indices for sorted TestVectors; |
| 445 | std::vector<TVIdxTuple> ExecVectorIdxs; |
| 446 | |
| 447 | /// Actual executed Test Vectors for the boolean expression, based on |
| 448 | /// ExecutedTestVectorBitmap. |
| 449 | MCDCRecord::TestVectors ExecVectors; |
| 450 | |
| 451 | #ifndef NDEBUG |
| 452 | DenseSet<unsigned> TVIdxs; |
| 453 | #endif |
| 454 | |
| 455 | bool IsVersion11; |
| 456 | |
| 457 | public: |
| 458 | MCDCRecordProcessor(const BitVector &Bitmap, |
| 459 | const CounterMappingRegion &Region, |
| 460 | ArrayRef<const CounterMappingRegion *> Branches, |
| 461 | bool IsVersion11) |
| 462 | : NextIDsBuilder(Branches), TVIdxBuilder(this->NextIDs), Bitmap(Bitmap), |
| 463 | Region(Region), DecisionParams(Region.getDecisionParams()), |
| 464 | Branches(Branches), NumConditions(DecisionParams.NumConditions), |
| 465 | Folded{._M_elems: {BitVector(NumConditions), BitVector(NumConditions)}}, |
| 466 | IndependencePairs(NumConditions), IsVersion11(IsVersion11) {} |
| 467 | |
| 468 | private: |
| 469 | // Walk the binary decision diagram and try assigning both false and true to |
| 470 | // each node. When a terminal node (ID == 0) is reached, fill in the value in |
| 471 | // the truth table. |
| 472 | void buildTestVector(MCDCRecord::TestVector &TV, mcdc::ConditionID ID, |
| 473 | int TVIdx) { |
| 474 | for (auto MCDCCond : {MCDCRecord::MCDC_False, MCDCRecord::MCDC_True}) { |
| 475 | static_assert(MCDCRecord::MCDC_False == 0); |
| 476 | static_assert(MCDCRecord::MCDC_True == 1); |
| 477 | TV.set(I: ID, Val: MCDCCond); |
| 478 | auto NextID = NextIDs[ID][MCDCCond]; |
| 479 | auto NextTVIdx = TVIdx + Indices[ID][MCDCCond]; |
| 480 | assert(NextID == SavedNodes[ID].NextIDs[MCDCCond]); |
| 481 | if (NextID >= 0) { |
| 482 | buildTestVector(TV, ID: NextID, TVIdx: NextTVIdx); |
| 483 | continue; |
| 484 | } |
| 485 | |
| 486 | assert(TVIdx < SavedNodes[ID].Width); |
| 487 | assert(TVIdxs.insert(NextTVIdx).second && "Duplicate TVIdx" ); |
| 488 | |
| 489 | if (!Bitmap[IsVersion11 |
| 490 | ? DecisionParams.BitmapIdx * CHAR_BIT + TV.getIndex() |
| 491 | : DecisionParams.BitmapIdx - NumTestVectors + NextTVIdx]) |
| 492 | continue; |
| 493 | |
| 494 | ExecVectorIdxs.emplace_back(args&: MCDCCond, args&: NextTVIdx, args: ExecVectors.size()); |
| 495 | |
| 496 | // Copy the completed test vector to the vector of testvectors. |
| 497 | // The final value (T,F) is equal to the last non-dontcare state on the |
| 498 | // path (in a short-circuiting system). |
| 499 | ExecVectors.push_back(Elt: {TV, MCDCCond}); |
| 500 | } |
| 501 | |
| 502 | // Reset back to DontCare. |
| 503 | TV.set(I: ID, Val: MCDCRecord::MCDC_DontCare); |
| 504 | } |
| 505 | |
| 506 | /// Walk the bits in the bitmap. A bit set to '1' indicates that the test |
| 507 | /// vector at the corresponding index was executed during a test run. |
| 508 | void findExecutedTestVectors() { |
| 509 | // Walk the binary decision diagram to enumerate all possible test vectors. |
| 510 | // We start at the root node (ID == 0) with all values being DontCare. |
| 511 | // `TVIdx` starts with 0 and is in the traversal. |
| 512 | // `Index` encodes the bitmask of true values and is initially 0. |
| 513 | MCDCRecord::TestVector TV(NumConditions); |
| 514 | buildTestVector(TV, ID: 0, TVIdx: 0); |
| 515 | assert(TVIdxs.size() == unsigned(NumTestVectors) && |
| 516 | "TVIdxs wasn't fulfilled" ); |
| 517 | |
| 518 | llvm::sort(C&: ExecVectorIdxs); |
| 519 | MCDCRecord::TestVectors NewTestVectors; |
| 520 | for (const auto &IdxTuple : ExecVectorIdxs) |
| 521 | NewTestVectors.push_back(Elt: std::move(ExecVectors[IdxTuple.Ord])); |
| 522 | ExecVectors = std::move(NewTestVectors); |
| 523 | } |
| 524 | |
| 525 | public: |
| 526 | /// Process the MC/DC Record in order to produce a result for a boolean |
| 527 | /// expression. This process includes tracking the conditions that comprise |
| 528 | /// the decision region, calculating the list of all possible test vectors, |
| 529 | /// marking the executed test vectors, and then finding an Independence Pair |
| 530 | /// out of the executed test vectors for each condition in the boolean |
| 531 | /// expression. A condition is tracked to ensure that its ID can be mapped to |
| 532 | /// its ordinal position in the boolean expression. The condition's source |
| 533 | /// location is also tracked, as well as whether it is constant folded (in |
| 534 | /// which case it is excuded from the metric). |
| 535 | MCDCRecord processMCDCRecord() { |
| 536 | MCDCRecord::CondIDMap PosToID; |
| 537 | MCDCRecord::LineColPairMap CondLoc; |
| 538 | |
| 539 | // Walk the Record's BranchRegions (representing Conditions) in order to: |
| 540 | // - Hash the condition based on its corresponding ID. This will be used to |
| 541 | // calculate the test vectors. |
| 542 | // - Keep a map of the condition's ordinal position (1, 2, 3, 4) to its |
| 543 | // actual ID. This will be used to visualize the conditions in the |
| 544 | // correct order. |
| 545 | // - Keep track of the condition source location. This will be used to |
| 546 | // visualize where the condition is. |
| 547 | // - Record whether the condition is constant folded so that we exclude it |
| 548 | // from being measured. |
| 549 | for (auto [I, B] : enumerate(First&: Branches)) { |
| 550 | const auto &BranchParams = B->getBranchParams(); |
| 551 | PosToID[I] = BranchParams.ID; |
| 552 | CondLoc[I] = B->startLoc(); |
| 553 | Folded[false][I] = B->FalseCount.isZero(); |
| 554 | Folded[true][I] = B->Count.isZero(); |
| 555 | } |
| 556 | |
| 557 | // Using Profile Bitmap from runtime, mark the executed test vectors. |
| 558 | findExecutedTestVectors(); |
| 559 | |
| 560 | // Record Test vectors, executed vectors, and independence pairs. |
| 561 | return MCDCRecord(Region, std::move(ExecVectors), std::move(Folded), |
| 562 | std::move(PosToID), std::move(CondLoc)); |
| 563 | } |
| 564 | }; |
| 565 | |
| 566 | } // namespace |
| 567 | |
| 568 | Expected<MCDCRecord> CounterMappingContext::evaluateMCDCRegion( |
| 569 | const CounterMappingRegion &Region, |
| 570 | ArrayRef<const CounterMappingRegion *> Branches, bool IsVersion11) { |
| 571 | |
| 572 | MCDCRecordProcessor MCDCProcessor(Bitmap, Region, Branches, IsVersion11); |
| 573 | return MCDCProcessor.processMCDCRecord(); |
| 574 | } |
| 575 | |
| 576 | unsigned CounterMappingContext::getMaxCounterID(const Counter &C) const { |
| 577 | struct StackElem { |
| 578 | Counter ICounter; |
| 579 | int64_t LHS = 0; |
| 580 | enum { |
| 581 | KNeverVisited = 0, |
| 582 | KVisitedOnce = 1, |
| 583 | KVisitedTwice = 2, |
| 584 | } VisitCount = KNeverVisited; |
| 585 | }; |
| 586 | |
| 587 | std::stack<StackElem> CounterStack; |
| 588 | CounterStack.push(x: {.ICounter: C}); |
| 589 | |
| 590 | int64_t LastPoppedValue; |
| 591 | |
| 592 | while (!CounterStack.empty()) { |
| 593 | StackElem &Current = CounterStack.top(); |
| 594 | |
| 595 | switch (Current.ICounter.getKind()) { |
| 596 | case Counter::Zero: |
| 597 | LastPoppedValue = 0; |
| 598 | CounterStack.pop(); |
| 599 | break; |
| 600 | case Counter::CounterValueReference: |
| 601 | LastPoppedValue = Current.ICounter.getCounterID(); |
| 602 | CounterStack.pop(); |
| 603 | break; |
| 604 | case Counter::Expression: { |
| 605 | if (Current.ICounter.getExpressionID() >= Expressions.size()) { |
| 606 | LastPoppedValue = 0; |
| 607 | CounterStack.pop(); |
| 608 | } else { |
| 609 | const auto &E = Expressions[Current.ICounter.getExpressionID()]; |
| 610 | if (Current.VisitCount == StackElem::KNeverVisited) { |
| 611 | CounterStack.push(x: StackElem{.ICounter: E.LHS}); |
| 612 | Current.VisitCount = StackElem::KVisitedOnce; |
| 613 | } else if (Current.VisitCount == StackElem::KVisitedOnce) { |
| 614 | Current.LHS = LastPoppedValue; |
| 615 | CounterStack.push(x: StackElem{.ICounter: E.RHS}); |
| 616 | Current.VisitCount = StackElem::KVisitedTwice; |
| 617 | } else { |
| 618 | int64_t LHS = Current.LHS; |
| 619 | int64_t RHS = LastPoppedValue; |
| 620 | LastPoppedValue = std::max(a: LHS, b: RHS); |
| 621 | CounterStack.pop(); |
| 622 | } |
| 623 | } |
| 624 | break; |
| 625 | } |
| 626 | } |
| 627 | } |
| 628 | |
| 629 | return LastPoppedValue; |
| 630 | } |
| 631 | |
| 632 | void FunctionRecordIterator::skipOtherFiles() { |
| 633 | while (Current != Records.end() && !Filename.empty() && |
| 634 | Filename != Current->Filenames[0]) |
| 635 | advanceOne(); |
| 636 | if (Current == Records.end()) |
| 637 | *this = FunctionRecordIterator(); |
| 638 | } |
| 639 | |
| 640 | ArrayRef<unsigned> CoverageMapping::getImpreciseRecordIndicesForFilename( |
| 641 | StringRef Filename) const { |
| 642 | size_t FilenameHash = hash_value(S: Filename); |
| 643 | auto RecordIt = FilenameHash2RecordIndices.find(Val: FilenameHash); |
| 644 | if (RecordIt == FilenameHash2RecordIndices.end()) |
| 645 | return {}; |
| 646 | return RecordIt->second; |
| 647 | } |
| 648 | |
| 649 | static unsigned getMaxCounterID(const CounterMappingContext &Ctx, |
| 650 | const CoverageMappingRecord &Record) { |
| 651 | unsigned MaxCounterID = 0; |
| 652 | for (const auto &Region : Record.MappingRegions) { |
| 653 | MaxCounterID = std::max(a: MaxCounterID, b: Ctx.getMaxCounterID(C: Region.Count)); |
| 654 | if (Region.isBranch()) |
| 655 | MaxCounterID = |
| 656 | std::max(a: MaxCounterID, b: Ctx.getMaxCounterID(C: Region.FalseCount)); |
| 657 | } |
| 658 | return MaxCounterID; |
| 659 | } |
| 660 | |
| 661 | /// Returns the bit count |
| 662 | static unsigned getMaxBitmapSize(const CoverageMappingRecord &Record, |
| 663 | bool IsVersion11) { |
| 664 | unsigned MaxBitmapIdx = 0; |
| 665 | unsigned NumConditions = 0; |
| 666 | // Scan max(BitmapIdx). |
| 667 | // Note that `<=` is used insted of `<`, because `BitmapIdx == 0` is valid |
| 668 | // and `MaxBitmapIdx is `unsigned`. `BitmapIdx` is unique in the record. |
| 669 | for (const auto &Region : reverse(C: Record.MappingRegions)) { |
| 670 | if (Region.Kind != CounterMappingRegion::MCDCDecisionRegion) |
| 671 | continue; |
| 672 | const auto &DecisionParams = Region.getDecisionParams(); |
| 673 | if (MaxBitmapIdx <= DecisionParams.BitmapIdx) { |
| 674 | MaxBitmapIdx = DecisionParams.BitmapIdx; |
| 675 | NumConditions = DecisionParams.NumConditions; |
| 676 | } |
| 677 | } |
| 678 | |
| 679 | if (IsVersion11) |
| 680 | MaxBitmapIdx = MaxBitmapIdx * CHAR_BIT + |
| 681 | llvm::alignTo(Value: uint64_t(1) << NumConditions, CHAR_BIT); |
| 682 | |
| 683 | return MaxBitmapIdx; |
| 684 | } |
| 685 | |
| 686 | namespace { |
| 687 | |
| 688 | /// Walk MappingRegions along Expansions and emit CountedRegions. |
| 689 | struct CountedRegionEmitter { |
| 690 | /// A nestable Decision. |
| 691 | struct DecisionRecord { |
| 692 | const CounterMappingRegion *DecisionRegion; |
| 693 | unsigned NumConditions; ///< Copy of DecisionRegion.NumConditions |
| 694 | /// Pushed by traversal order. |
| 695 | SmallVector<const CounterMappingRegion *> MCDCBranches; |
| 696 | #ifndef NDEBUG |
| 697 | DenseSet<mcdc::ConditionID> ConditionIDs; |
| 698 | #endif |
| 699 | |
| 700 | DecisionRecord(const CounterMappingRegion &Decision) |
| 701 | : DecisionRegion(&Decision), |
| 702 | NumConditions(Decision.getDecisionParams().NumConditions) { |
| 703 | assert(Decision.Kind == CounterMappingRegion::MCDCDecisionRegion); |
| 704 | } |
| 705 | |
| 706 | bool pushBranch(const CounterMappingRegion &B) { |
| 707 | assert(B.Kind == CounterMappingRegion::MCDCBranchRegion); |
| 708 | assert(ConditionIDs.insert(B.getBranchParams().ID).second && |
| 709 | "Duplicate CondID" ); |
| 710 | MCDCBranches.push_back(Elt: &B); |
| 711 | assert(MCDCBranches.size() <= NumConditions && |
| 712 | "MCDCBranch exceeds NumConds" ); |
| 713 | return (MCDCBranches.size() == NumConditions); |
| 714 | } |
| 715 | }; |
| 716 | |
| 717 | const CoverageMappingRecord &Record; |
| 718 | CounterMappingContext &Ctx; |
| 719 | FunctionRecord &Function; |
| 720 | bool IsVersion11; |
| 721 | |
| 722 | /// Evaluated Counters. |
| 723 | std::map<Counter, uint64_t> CounterValues; |
| 724 | |
| 725 | /// Decisions are nestable. |
| 726 | SmallVector<DecisionRecord, 1> DecisionStack; |
| 727 | |
| 728 | /// A File pointed by Expansion |
| 729 | struct FileInfo { |
| 730 | /// The last index(+1) for each FileID in MappingRegions. |
| 731 | unsigned LastIndex = 0; |
| 732 | /// Mark Files pointed by Expansions. |
| 733 | /// Non-marked Files are root Files. |
| 734 | bool IsExpanded = false; |
| 735 | }; |
| 736 | |
| 737 | /// The last element is a sentinel with Index=NumRegions. |
| 738 | std::vector<FileInfo> Files; |
| 739 | #ifndef NDEBUG |
| 740 | DenseSet<unsigned> Visited; |
| 741 | #endif |
| 742 | |
| 743 | CountedRegionEmitter(const CoverageMappingRecord &Record, |
| 744 | CounterMappingContext &Ctx, FunctionRecord &Function, |
| 745 | bool IsVersion11) |
| 746 | : Record(Record), Ctx(Ctx), Function(Function), IsVersion11(IsVersion11), |
| 747 | Files(Record.Filenames.size()) { |
| 748 | // Scan MappingRegions and mark each last index by FileID. |
| 749 | for (auto [I, Region] : enumerate(First: Record.MappingRegions)) { |
| 750 | if (Region.FileID >= Files.size()) { |
| 751 | // Extend (only possible in CoverageMappingTests) |
| 752 | Files.resize(new_size: Region.FileID + 1); |
| 753 | } |
| 754 | Files[Region.FileID].LastIndex = I + 1; |
| 755 | if (Region.Kind == CounterMappingRegion::ExpansionRegion) { |
| 756 | if (Region.ExpandedFileID >= Files.size()) { |
| 757 | // Extend (only possible in CoverageMappingTests) |
| 758 | Files.resize(new_size: Region.ExpandedFileID + 1); |
| 759 | } |
| 760 | Files[Region.ExpandedFileID].IsExpanded = true; |
| 761 | } |
| 762 | } |
| 763 | } |
| 764 | |
| 765 | /// Evaluate C and store its evaluated Value into CounterValues. |
| 766 | Error evaluateAndCacheCounter(Counter C) { |
| 767 | if (CounterValues.count(x: C) > 0) |
| 768 | return Error::success(); |
| 769 | |
| 770 | auto ValueOrErr = Ctx.evaluate(C); |
| 771 | if (!ValueOrErr) |
| 772 | return ValueOrErr.takeError(); |
| 773 | CounterValues[C] = *ValueOrErr; |
| 774 | return Error::success(); |
| 775 | } |
| 776 | |
| 777 | Error walk(unsigned Idx) { |
| 778 | assert(Idx < Files.size()); |
| 779 | unsigned B = (Idx == 0 ? 0 : Files[Idx - 1].LastIndex); |
| 780 | unsigned E = Files[Idx].LastIndex; |
| 781 | assert(B != E && "Empty FileID" ); |
| 782 | assert(Visited.insert(Idx).second && "Duplicate Expansions" ); |
| 783 | for (unsigned I = B; I != E; ++I) { |
| 784 | const auto &Region = Record.MappingRegions[I]; |
| 785 | if (Region.FileID != Idx) |
| 786 | break; |
| 787 | |
| 788 | if (Region.Kind == CounterMappingRegion::ExpansionRegion) |
| 789 | if (auto E = walk(Idx: Region.ExpandedFileID)) |
| 790 | return E; |
| 791 | |
| 792 | if (auto E = evaluateAndCacheCounter(C: Region.Count)) |
| 793 | return E; |
| 794 | |
| 795 | if (Region.Kind == CounterMappingRegion::MCDCDecisionRegion) { |
| 796 | // Start the new Decision on the stack. |
| 797 | DecisionStack.emplace_back(Args: Region); |
| 798 | } else if (Region.Kind == CounterMappingRegion::MCDCBranchRegion) { |
| 799 | assert(!DecisionStack.empty() && "Orphan MCDCBranch" ); |
| 800 | auto &D = DecisionStack.back(); |
| 801 | |
| 802 | if (D.pushBranch(B: Region)) { |
| 803 | // All Branches have been found in the Decision. |
| 804 | auto RecordOrErr = Ctx.evaluateMCDCRegion( |
| 805 | Region: *D.DecisionRegion, Branches: D.MCDCBranches, IsVersion11); |
| 806 | if (!RecordOrErr) |
| 807 | return RecordOrErr.takeError(); |
| 808 | |
| 809 | // Finish the stack. |
| 810 | Function.pushMCDCRecord(Record: std::move(*RecordOrErr)); |
| 811 | DecisionStack.pop_back(); |
| 812 | } |
| 813 | } |
| 814 | |
| 815 | // Evaluate FalseCount |
| 816 | // It may have the Counter in Branches, or Zero. |
| 817 | if (auto E = evaluateAndCacheCounter(C: Region.FalseCount)) |
| 818 | return E; |
| 819 | } |
| 820 | |
| 821 | assert((Idx != 0 || DecisionStack.empty()) && "Decision wasn't closed" ); |
| 822 | |
| 823 | return Error::success(); |
| 824 | } |
| 825 | |
| 826 | Error emitCountedRegions() { |
| 827 | // Walk MappingRegions along Expansions. |
| 828 | // - Evaluate Counters |
| 829 | // - Emit MCDCRecords |
| 830 | for (auto [I, F] : enumerate(First&: Files)) { |
| 831 | if (!F.IsExpanded) |
| 832 | if (auto E = walk(Idx: I)) |
| 833 | return E; |
| 834 | } |
| 835 | assert(Visited.size() == Files.size() && "Dangling FileID" ); |
| 836 | |
| 837 | // Emit CountedRegions in the same order as MappingRegions. |
| 838 | for (const auto &Region : Record.MappingRegions) { |
| 839 | if (Region.Kind == CounterMappingRegion::MCDCDecisionRegion) |
| 840 | continue; // Don't emit. |
| 841 | // Adopt values from the CounterValues. |
| 842 | // FalseCount may be Zero unless Branches. |
| 843 | Function.pushRegion(Region, Count: CounterValues[Region.Count], |
| 844 | FalseCount: CounterValues[Region.FalseCount]); |
| 845 | } |
| 846 | |
| 847 | return Error::success(); |
| 848 | } |
| 849 | }; |
| 850 | |
| 851 | } // namespace |
| 852 | |
| 853 | Error CoverageMapping::loadFunctionRecord( |
| 854 | const CoverageMappingRecord &Record, |
| 855 | const std::optional<std::reference_wrapper<IndexedInstrProfReader>> |
| 856 | &ProfileReader) { |
| 857 | StringRef OrigFuncName = Record.FunctionName; |
| 858 | if (OrigFuncName.empty()) |
| 859 | return make_error<CoverageMapError>(Args: coveragemap_error::malformed, |
| 860 | Args: "record function name is empty" ); |
| 861 | |
| 862 | if (Record.Filenames.empty()) |
| 863 | OrigFuncName = getFuncNameWithoutPrefix(PGOFuncName: OrigFuncName); |
| 864 | else |
| 865 | OrigFuncName = getFuncNameWithoutPrefix(PGOFuncName: OrigFuncName, FileName: Record.Filenames[0]); |
| 866 | |
| 867 | CounterMappingContext Ctx(Record.Expressions); |
| 868 | |
| 869 | std::vector<uint64_t> Counts; |
| 870 | if (ProfileReader) { |
| 871 | if (Error E = ProfileReader.value().get().getFunctionCounts( |
| 872 | FuncName: Record.FunctionName, FuncHash: Record.FunctionHash, Counts)) { |
| 873 | instrprof_error IPE = std::get<0>(in: InstrProfError::take(E: std::move(E))); |
| 874 | if (IPE == instrprof_error::hash_mismatch) { |
| 875 | FuncHashMismatches.emplace_back(args: std::string(Record.FunctionName), |
| 876 | args: Record.FunctionHash); |
| 877 | return Error::success(); |
| 878 | } |
| 879 | if (IPE != instrprof_error::unknown_function) |
| 880 | return make_error<InstrProfError>(Args&: IPE); |
| 881 | Counts.assign(n: getMaxCounterID(Ctx, Record) + 1, val: 0); |
| 882 | } |
| 883 | } else { |
| 884 | Counts.assign(n: getMaxCounterID(Ctx, Record) + 1, val: 0); |
| 885 | } |
| 886 | Ctx.setCounts(Counts); |
| 887 | |
| 888 | bool IsVersion11 = |
| 889 | ProfileReader && ProfileReader.value().get().getVersion() < |
| 890 | IndexedInstrProf::ProfVersion::Version12; |
| 891 | |
| 892 | BitVector Bitmap; |
| 893 | if (ProfileReader) { |
| 894 | if (Error E = ProfileReader.value().get().getFunctionBitmap( |
| 895 | FuncName: Record.FunctionName, FuncHash: Record.FunctionHash, Bitmap)) { |
| 896 | instrprof_error IPE = std::get<0>(in: InstrProfError::take(E: std::move(E))); |
| 897 | if (IPE == instrprof_error::hash_mismatch) { |
| 898 | FuncHashMismatches.emplace_back(args: std::string(Record.FunctionName), |
| 899 | args: Record.FunctionHash); |
| 900 | return Error::success(); |
| 901 | } |
| 902 | if (IPE != instrprof_error::unknown_function) |
| 903 | return make_error<InstrProfError>(Args&: IPE); |
| 904 | Bitmap = BitVector(getMaxBitmapSize(Record, IsVersion11)); |
| 905 | } |
| 906 | } else { |
| 907 | Bitmap = BitVector(getMaxBitmapSize(Record, IsVersion11: false)); |
| 908 | } |
| 909 | Ctx.setBitmap(std::move(Bitmap)); |
| 910 | |
| 911 | assert(!Record.MappingRegions.empty() && "Function has no regions" ); |
| 912 | |
| 913 | // This coverage record is a zero region for a function that's unused in |
| 914 | // some TU, but used in a different TU. Ignore it. The coverage maps from the |
| 915 | // the other TU will either be loaded (providing full region counts) or they |
| 916 | // won't (in which case we don't unintuitively report functions as uncovered |
| 917 | // when they have non-zero counts in the profile). |
| 918 | if (Record.MappingRegions.size() == 1 && |
| 919 | Record.MappingRegions[0].Count.isZero() && Counts[0] > 0) |
| 920 | return Error::success(); |
| 921 | |
| 922 | FunctionRecord Function(OrigFuncName, Record.Filenames); |
| 923 | |
| 924 | // Emit CountedRegions into FunctionRecord. |
| 925 | if (auto E = CountedRegionEmitter(Record, Ctx, Function, IsVersion11) |
| 926 | .emitCountedRegions()) |
| 927 | return E; |
| 928 | |
| 929 | // Don't create records for (filenames, function) pairs we've already seen. |
| 930 | auto FilenamesHash = hash_combine_range(R: Record.Filenames); |
| 931 | if (!RecordProvenance[FilenamesHash].insert(V: hash_value(S: OrigFuncName)).second) |
| 932 | return Error::success(); |
| 933 | |
| 934 | Functions.push_back(x: std::move(Function)); |
| 935 | |
| 936 | // Performance optimization: keep track of the indices of the function records |
| 937 | // which correspond to each filename. This can be used to substantially speed |
| 938 | // up queries for coverage info in a file. |
| 939 | unsigned RecordIndex = Functions.size() - 1; |
| 940 | for (StringRef Filename : Record.Filenames) { |
| 941 | auto &RecordIndices = FilenameHash2RecordIndices[hash_value(S: Filename)]; |
| 942 | // Note that there may be duplicates in the filename set for a function |
| 943 | // record, because of e.g. macro expansions in the function in which both |
| 944 | // the macro and the function are defined in the same file. |
| 945 | if (RecordIndices.empty() || RecordIndices.back() != RecordIndex) |
| 946 | RecordIndices.push_back(Elt: RecordIndex); |
| 947 | } |
| 948 | |
| 949 | return Error::success(); |
| 950 | } |
| 951 | |
| 952 | // This function is for memory optimization by shortening the lifetimes |
| 953 | // of CoverageMappingReader instances. |
| 954 | Error CoverageMapping::loadFromReaders( |
| 955 | ArrayRef<std::unique_ptr<CoverageMappingReader>> CoverageReaders, |
| 956 | std::optional<std::reference_wrapper<IndexedInstrProfReader>> |
| 957 | &ProfileReader, |
| 958 | CoverageMapping &Coverage) { |
| 959 | assert(!Coverage.SingleByteCoverage || !ProfileReader || |
| 960 | *Coverage.SingleByteCoverage == |
| 961 | ProfileReader.value().get().hasSingleByteCoverage()); |
| 962 | Coverage.SingleByteCoverage = |
| 963 | !ProfileReader || ProfileReader.value().get().hasSingleByteCoverage(); |
| 964 | for (const auto &CoverageReader : CoverageReaders) { |
| 965 | for (auto RecordOrErr : *CoverageReader) { |
| 966 | if (Error E = RecordOrErr.takeError()) |
| 967 | return E; |
| 968 | const auto &Record = *RecordOrErr; |
| 969 | if (Error E = Coverage.loadFunctionRecord(Record, ProfileReader)) |
| 970 | return E; |
| 971 | } |
| 972 | } |
| 973 | return Error::success(); |
| 974 | } |
| 975 | |
| 976 | Expected<std::unique_ptr<CoverageMapping>> CoverageMapping::load( |
| 977 | ArrayRef<std::unique_ptr<CoverageMappingReader>> CoverageReaders, |
| 978 | std::optional<std::reference_wrapper<IndexedInstrProfReader>> |
| 979 | &ProfileReader) { |
| 980 | auto Coverage = std::unique_ptr<CoverageMapping>(new CoverageMapping()); |
| 981 | if (Error E = loadFromReaders(CoverageReaders, ProfileReader, Coverage&: *Coverage)) |
| 982 | return std::move(E); |
| 983 | return std::move(Coverage); |
| 984 | } |
| 985 | |
| 986 | // If E is a no_data_found error, returns success. Otherwise returns E. |
| 987 | static Error handleMaybeNoDataFoundError(Error E) { |
| 988 | return handleErrors(E: std::move(E), Hs: [](const CoverageMapError &CME) { |
| 989 | if (CME.get() == coveragemap_error::no_data_found) |
| 990 | return static_cast<Error>(Error::success()); |
| 991 | return make_error<CoverageMapError>(Args: CME.get(), Args: CME.getMessage()); |
| 992 | }); |
| 993 | } |
| 994 | |
| 995 | Error CoverageMapping::loadFromFile( |
| 996 | StringRef Filename, StringRef Arch, StringRef CompilationDir, |
| 997 | std::optional<std::reference_wrapper<IndexedInstrProfReader>> |
| 998 | &ProfileReader, |
| 999 | CoverageMapping &Coverage, bool &DataFound, |
| 1000 | SmallVectorImpl<object::BuildID> *FoundBinaryIDs) { |
| 1001 | auto CovMappingBufOrErr = MemoryBuffer::getFileOrSTDIN( |
| 1002 | Filename, /*IsText=*/false, /*RequiresNullTerminator=*/false); |
| 1003 | if (std::error_code EC = CovMappingBufOrErr.getError()) |
| 1004 | return createFileError(F: Filename, E: errorCodeToError(EC)); |
| 1005 | MemoryBufferRef CovMappingBufRef = |
| 1006 | CovMappingBufOrErr.get()->getMemBufferRef(); |
| 1007 | SmallVector<std::unique_ptr<MemoryBuffer>, 4> Buffers; |
| 1008 | |
| 1009 | SmallVector<object::BuildIDRef> BinaryIDs; |
| 1010 | auto CoverageReadersOrErr = BinaryCoverageReader::create( |
| 1011 | ObjectBuffer: CovMappingBufRef, Arch, ObjectFileBuffers&: Buffers, CompilationDir, |
| 1012 | BinaryIDs: FoundBinaryIDs ? &BinaryIDs : nullptr); |
| 1013 | if (Error E = CoverageReadersOrErr.takeError()) { |
| 1014 | E = handleMaybeNoDataFoundError(E: std::move(E)); |
| 1015 | if (E) |
| 1016 | return createFileError(F: Filename, E: std::move(E)); |
| 1017 | return E; |
| 1018 | } |
| 1019 | |
| 1020 | SmallVector<std::unique_ptr<CoverageMappingReader>, 4> Readers; |
| 1021 | for (auto &Reader : CoverageReadersOrErr.get()) |
| 1022 | Readers.push_back(Elt: std::move(Reader)); |
| 1023 | if (FoundBinaryIDs && !Readers.empty()) { |
| 1024 | llvm::append_range(C&: *FoundBinaryIDs, |
| 1025 | R: llvm::map_range(C&: BinaryIDs, F: [](object::BuildIDRef BID) { |
| 1026 | return object::BuildID(BID); |
| 1027 | })); |
| 1028 | } |
| 1029 | DataFound |= !Readers.empty(); |
| 1030 | if (Error E = loadFromReaders(CoverageReaders: Readers, ProfileReader, Coverage)) |
| 1031 | return createFileError(F: Filename, E: std::move(E)); |
| 1032 | return Error::success(); |
| 1033 | } |
| 1034 | |
| 1035 | Expected<std::unique_ptr<CoverageMapping>> CoverageMapping::load( |
| 1036 | ArrayRef<StringRef> ObjectFilenames, |
| 1037 | std::optional<StringRef> ProfileFilename, vfs::FileSystem &FS, |
| 1038 | ArrayRef<StringRef> Arches, StringRef CompilationDir, |
| 1039 | const object::BuildIDFetcher *BIDFetcher, bool CheckBinaryIDs) { |
| 1040 | std::unique_ptr<IndexedInstrProfReader> ProfileReader; |
| 1041 | if (ProfileFilename) { |
| 1042 | auto ProfileReaderOrErr = |
| 1043 | IndexedInstrProfReader::create(Path: ProfileFilename.value(), FS); |
| 1044 | if (Error E = ProfileReaderOrErr.takeError()) |
| 1045 | return createFileError(F: ProfileFilename.value(), E: std::move(E)); |
| 1046 | ProfileReader = std::move(ProfileReaderOrErr.get()); |
| 1047 | } |
| 1048 | auto ProfileReaderRef = |
| 1049 | ProfileReader |
| 1050 | ? std::optional<std::reference_wrapper<IndexedInstrProfReader>>( |
| 1051 | *ProfileReader) |
| 1052 | : std::nullopt; |
| 1053 | auto Coverage = std::unique_ptr<CoverageMapping>(new CoverageMapping()); |
| 1054 | bool DataFound = false; |
| 1055 | |
| 1056 | auto GetArch = [&](size_t Idx) { |
| 1057 | if (Arches.empty()) |
| 1058 | return StringRef(); |
| 1059 | if (Arches.size() == 1) |
| 1060 | return Arches.front(); |
| 1061 | return Arches[Idx]; |
| 1062 | }; |
| 1063 | |
| 1064 | SmallVector<object::BuildID> FoundBinaryIDs; |
| 1065 | for (const auto &File : llvm::enumerate(First&: ObjectFilenames)) { |
| 1066 | if (Error E = loadFromFile(Filename: File.value(), Arch: GetArch(File.index()), |
| 1067 | CompilationDir, ProfileReader&: ProfileReaderRef, Coverage&: *Coverage, |
| 1068 | DataFound, FoundBinaryIDs: &FoundBinaryIDs)) |
| 1069 | return std::move(E); |
| 1070 | } |
| 1071 | |
| 1072 | if (BIDFetcher) { |
| 1073 | std::vector<object::BuildID> ProfileBinaryIDs; |
| 1074 | if (ProfileReader) |
| 1075 | if (Error E = ProfileReader->readBinaryIds(BinaryIds&: ProfileBinaryIDs)) |
| 1076 | return createFileError(F: ProfileFilename.value(), E: std::move(E)); |
| 1077 | |
| 1078 | SmallVector<object::BuildIDRef> BinaryIDsToFetch; |
| 1079 | if (!ProfileBinaryIDs.empty()) { |
| 1080 | const auto &Compare = [](object::BuildIDRef A, object::BuildIDRef B) { |
| 1081 | return std::lexicographical_compare(first1: A.begin(), last1: A.end(), first2: B.begin(), |
| 1082 | last2: B.end()); |
| 1083 | }; |
| 1084 | llvm::sort(C&: FoundBinaryIDs, Comp: Compare); |
| 1085 | std::set_difference( |
| 1086 | first1: ProfileBinaryIDs.begin(), last1: ProfileBinaryIDs.end(), |
| 1087 | first2: FoundBinaryIDs.begin(), last2: FoundBinaryIDs.end(), |
| 1088 | result: std::inserter(x&: BinaryIDsToFetch, i: BinaryIDsToFetch.end()), comp: Compare); |
| 1089 | } |
| 1090 | |
| 1091 | for (object::BuildIDRef BinaryID : BinaryIDsToFetch) { |
| 1092 | std::optional<std::string> PathOpt = BIDFetcher->fetch(BuildID: BinaryID); |
| 1093 | if (PathOpt) { |
| 1094 | std::string Path = std::move(*PathOpt); |
| 1095 | StringRef Arch = Arches.size() == 1 ? Arches.front() : StringRef(); |
| 1096 | if (Error E = loadFromFile(Filename: Path, Arch, CompilationDir, ProfileReader&: ProfileReaderRef, |
| 1097 | Coverage&: *Coverage, DataFound)) |
| 1098 | return std::move(E); |
| 1099 | } else if (CheckBinaryIDs) { |
| 1100 | return createFileError( |
| 1101 | F: ProfileFilename.value(), |
| 1102 | E: createStringError(EC: errc::no_such_file_or_directory, |
| 1103 | S: "Missing binary ID: " + |
| 1104 | llvm::toHex(Input: BinaryID, /*LowerCase=*/true))); |
| 1105 | } |
| 1106 | } |
| 1107 | } |
| 1108 | |
| 1109 | if (!DataFound) |
| 1110 | return createFileError( |
| 1111 | F: join(Begin: ObjectFilenames.begin(), End: ObjectFilenames.end(), Separator: ", " ), |
| 1112 | E: make_error<CoverageMapError>(Args: coveragemap_error::no_data_found)); |
| 1113 | return std::move(Coverage); |
| 1114 | } |
| 1115 | |
| 1116 | namespace { |
| 1117 | |
| 1118 | /// Distributes functions into instantiation sets. |
| 1119 | /// |
| 1120 | /// An instantiation set is a collection of functions that have the same source |
| 1121 | /// code, ie, template functions specializations. |
| 1122 | class FunctionInstantiationSetCollector { |
| 1123 | using MapT = std::map<LineColPair, std::vector<const FunctionRecord *>>; |
| 1124 | MapT InstantiatedFunctions; |
| 1125 | |
| 1126 | public: |
| 1127 | void insert(const FunctionRecord &Function, unsigned FileID) { |
| 1128 | auto I = Function.CountedRegions.begin(), E = Function.CountedRegions.end(); |
| 1129 | while (I != E && I->FileID != FileID) |
| 1130 | ++I; |
| 1131 | assert(I != E && "function does not cover the given file" ); |
| 1132 | auto &Functions = InstantiatedFunctions[I->startLoc()]; |
| 1133 | Functions.push_back(x: &Function); |
| 1134 | } |
| 1135 | |
| 1136 | MapT::iterator begin() { return InstantiatedFunctions.begin(); } |
| 1137 | MapT::iterator end() { return InstantiatedFunctions.end(); } |
| 1138 | }; |
| 1139 | |
| 1140 | class SegmentBuilder { |
| 1141 | std::vector<CoverageSegment> &Segments; |
| 1142 | SmallVector<const CountedRegion *, 8> ActiveRegions; |
| 1143 | |
| 1144 | SegmentBuilder(std::vector<CoverageSegment> &Segments) : Segments(Segments) {} |
| 1145 | |
| 1146 | /// Emit a segment with the count from \p Region starting at \p StartLoc. |
| 1147 | // |
| 1148 | /// \p IsRegionEntry: The segment is at the start of a new non-gap region. |
| 1149 | /// \p EmitSkippedRegion: The segment must be emitted as a skipped region. |
| 1150 | void startSegment(const CountedRegion &Region, LineColPair StartLoc, |
| 1151 | bool IsRegionEntry, bool EmitSkippedRegion = false) { |
| 1152 | bool HasCount = !EmitSkippedRegion && |
| 1153 | (Region.Kind != CounterMappingRegion::SkippedRegion); |
| 1154 | |
| 1155 | // If the new segment wouldn't affect coverage rendering, skip it. |
| 1156 | if (!Segments.empty() && !IsRegionEntry && !EmitSkippedRegion) { |
| 1157 | const auto &Last = Segments.back(); |
| 1158 | if (Last.HasCount == HasCount && Last.Count == Region.ExecutionCount && |
| 1159 | !Last.IsRegionEntry) |
| 1160 | return; |
| 1161 | } |
| 1162 | |
| 1163 | if (HasCount) |
| 1164 | Segments.emplace_back(args&: StartLoc.first, args&: StartLoc.second, |
| 1165 | args: Region.ExecutionCount, args&: IsRegionEntry, |
| 1166 | args: Region.Kind == CounterMappingRegion::GapRegion); |
| 1167 | else |
| 1168 | Segments.emplace_back(args&: StartLoc.first, args&: StartLoc.second, args&: IsRegionEntry); |
| 1169 | |
| 1170 | LLVM_DEBUG({ |
| 1171 | const auto &Last = Segments.back(); |
| 1172 | dbgs() << "Segment at " << Last.Line << ":" << Last.Col |
| 1173 | << " (count = " << Last.Count << ")" |
| 1174 | << (Last.IsRegionEntry ? ", RegionEntry" : "" ) |
| 1175 | << (!Last.HasCount ? ", Skipped" : "" ) |
| 1176 | << (Last.IsGapRegion ? ", Gap" : "" ) << "\n" ; |
| 1177 | }); |
| 1178 | } |
| 1179 | |
| 1180 | /// Emit segments for active regions which end before \p Loc. |
| 1181 | /// |
| 1182 | /// \p Loc: The start location of the next region. If std::nullopt, all active |
| 1183 | /// regions are completed. |
| 1184 | /// \p FirstCompletedRegion: Index of the first completed region. |
| 1185 | void completeRegionsUntil(std::optional<LineColPair> Loc, |
| 1186 | unsigned FirstCompletedRegion) { |
| 1187 | // Sort the completed regions by end location. This makes it simple to |
| 1188 | // emit closing segments in sorted order. |
| 1189 | auto CompletedRegionsIt = ActiveRegions.begin() + FirstCompletedRegion; |
| 1190 | std::stable_sort(first: CompletedRegionsIt, last: ActiveRegions.end(), |
| 1191 | comp: [](const CountedRegion *L, const CountedRegion *R) { |
| 1192 | return L->endLoc() < R->endLoc(); |
| 1193 | }); |
| 1194 | |
| 1195 | // Emit segments for all completed regions. |
| 1196 | for (unsigned I = FirstCompletedRegion + 1, E = ActiveRegions.size(); I < E; |
| 1197 | ++I) { |
| 1198 | const auto *CompletedRegion = ActiveRegions[I]; |
| 1199 | assert((!Loc || CompletedRegion->endLoc() <= *Loc) && |
| 1200 | "Completed region ends after start of new region" ); |
| 1201 | |
| 1202 | const auto *PrevCompletedRegion = ActiveRegions[I - 1]; |
| 1203 | auto CompletedSegmentLoc = PrevCompletedRegion->endLoc(); |
| 1204 | |
| 1205 | // Don't emit any more segments if they start where the new region begins. |
| 1206 | if (Loc && CompletedSegmentLoc == *Loc) |
| 1207 | break; |
| 1208 | |
| 1209 | // Don't emit a segment if the next completed region ends at the same |
| 1210 | // location as this one. |
| 1211 | if (CompletedSegmentLoc == CompletedRegion->endLoc()) |
| 1212 | continue; |
| 1213 | |
| 1214 | // Use the count from the last completed region which ends at this loc. |
| 1215 | for (unsigned J = I + 1; J < E; ++J) |
| 1216 | if (CompletedRegion->endLoc() == ActiveRegions[J]->endLoc()) |
| 1217 | CompletedRegion = ActiveRegions[J]; |
| 1218 | |
| 1219 | startSegment(Region: *CompletedRegion, StartLoc: CompletedSegmentLoc, IsRegionEntry: false); |
| 1220 | } |
| 1221 | |
| 1222 | auto Last = ActiveRegions.back(); |
| 1223 | if (FirstCompletedRegion && Last->endLoc() != *Loc) { |
| 1224 | // If there's a gap after the end of the last completed region and the |
| 1225 | // start of the new region, use the last active region to fill the gap. |
| 1226 | startSegment(Region: *ActiveRegions[FirstCompletedRegion - 1], StartLoc: Last->endLoc(), |
| 1227 | IsRegionEntry: false); |
| 1228 | } else if (!FirstCompletedRegion && (!Loc || *Loc != Last->endLoc())) { |
| 1229 | // Emit a skipped segment if there are no more active regions. This |
| 1230 | // ensures that gaps between functions are marked correctly. |
| 1231 | startSegment(Region: *Last, StartLoc: Last->endLoc(), IsRegionEntry: false, EmitSkippedRegion: true); |
| 1232 | } |
| 1233 | |
| 1234 | // Pop the completed regions. |
| 1235 | ActiveRegions.erase(CS: CompletedRegionsIt, CE: ActiveRegions.end()); |
| 1236 | } |
| 1237 | |
| 1238 | void buildSegmentsImpl(ArrayRef<CountedRegion> Regions) { |
| 1239 | for (const auto &CR : enumerate(First&: Regions)) { |
| 1240 | auto CurStartLoc = CR.value().startLoc(); |
| 1241 | |
| 1242 | // Active regions which end before the current region need to be popped. |
| 1243 | auto CompletedRegions = |
| 1244 | std::stable_partition(first: ActiveRegions.begin(), last: ActiveRegions.end(), |
| 1245 | pred: [&](const CountedRegion *Region) { |
| 1246 | return !(Region->endLoc() <= CurStartLoc); |
| 1247 | }); |
| 1248 | if (CompletedRegions != ActiveRegions.end()) { |
| 1249 | unsigned FirstCompletedRegion = |
| 1250 | std::distance(first: ActiveRegions.begin(), last: CompletedRegions); |
| 1251 | completeRegionsUntil(Loc: CurStartLoc, FirstCompletedRegion); |
| 1252 | } |
| 1253 | |
| 1254 | bool GapRegion = CR.value().Kind == CounterMappingRegion::GapRegion; |
| 1255 | |
| 1256 | // Try to emit a segment for the current region. |
| 1257 | if (CurStartLoc == CR.value().endLoc()) { |
| 1258 | // Avoid making zero-length regions active. If it's the last region, |
| 1259 | // emit a skipped segment. Otherwise use its predecessor's count. |
| 1260 | const bool Skipped = |
| 1261 | (CR.index() + 1) == Regions.size() || |
| 1262 | CR.value().Kind == CounterMappingRegion::SkippedRegion; |
| 1263 | startSegment(Region: ActiveRegions.empty() ? CR.value() : *ActiveRegions.back(), |
| 1264 | StartLoc: CurStartLoc, IsRegionEntry: !GapRegion, EmitSkippedRegion: Skipped); |
| 1265 | // If it is skipped segment, create a segment with last pushed |
| 1266 | // regions's count at CurStartLoc. |
| 1267 | if (Skipped && !ActiveRegions.empty()) |
| 1268 | startSegment(Region: *ActiveRegions.back(), StartLoc: CurStartLoc, IsRegionEntry: false); |
| 1269 | continue; |
| 1270 | } |
| 1271 | if (CR.index() + 1 == Regions.size() || |
| 1272 | CurStartLoc != Regions[CR.index() + 1].startLoc()) { |
| 1273 | // Emit a segment if the next region doesn't start at the same location |
| 1274 | // as this one. |
| 1275 | startSegment(Region: CR.value(), StartLoc: CurStartLoc, IsRegionEntry: !GapRegion); |
| 1276 | } |
| 1277 | |
| 1278 | // This region is active (i.e not completed). |
| 1279 | ActiveRegions.push_back(Elt: &CR.value()); |
| 1280 | } |
| 1281 | |
| 1282 | // Complete any remaining active regions. |
| 1283 | if (!ActiveRegions.empty()) |
| 1284 | completeRegionsUntil(Loc: std::nullopt, FirstCompletedRegion: 0); |
| 1285 | } |
| 1286 | |
| 1287 | /// Sort a nested sequence of regions from a single file. |
| 1288 | static void sortNestedRegions(MutableArrayRef<CountedRegion> Regions) { |
| 1289 | llvm::sort(C&: Regions, Comp: [](const CountedRegion &LHS, const CountedRegion &RHS) { |
| 1290 | if (LHS.startLoc() != RHS.startLoc()) |
| 1291 | return LHS.startLoc() < RHS.startLoc(); |
| 1292 | if (LHS.endLoc() != RHS.endLoc()) |
| 1293 | // When LHS completely contains RHS, we sort LHS first. |
| 1294 | return RHS.endLoc() < LHS.endLoc(); |
| 1295 | // If LHS and RHS cover the same area, we need to sort them according |
| 1296 | // to their kinds so that the most suitable region will become "active" |
| 1297 | // in combineRegions(). Because we accumulate counter values only from |
| 1298 | // regions of the same kind as the first region of the area, prefer |
| 1299 | // CodeRegion to ExpansionRegion and ExpansionRegion to SkippedRegion. |
| 1300 | static_assert(CounterMappingRegion::CodeRegion < |
| 1301 | CounterMappingRegion::ExpansionRegion && |
| 1302 | CounterMappingRegion::ExpansionRegion < |
| 1303 | CounterMappingRegion::SkippedRegion, |
| 1304 | "Unexpected order of region kind values" ); |
| 1305 | return LHS.Kind < RHS.Kind; |
| 1306 | }); |
| 1307 | } |
| 1308 | |
| 1309 | /// Combine counts of regions which cover the same area. |
| 1310 | static ArrayRef<CountedRegion> |
| 1311 | combineRegions(MutableArrayRef<CountedRegion> Regions) { |
| 1312 | if (Regions.empty()) |
| 1313 | return Regions; |
| 1314 | auto Active = Regions.begin(); |
| 1315 | auto End = Regions.end(); |
| 1316 | for (auto I = Regions.begin() + 1; I != End; ++I) { |
| 1317 | if (Active->startLoc() != I->startLoc() || |
| 1318 | Active->endLoc() != I->endLoc()) { |
| 1319 | // Shift to the next region. |
| 1320 | ++Active; |
| 1321 | if (Active != I) |
| 1322 | *Active = *I; |
| 1323 | continue; |
| 1324 | } |
| 1325 | // Merge duplicate region. |
| 1326 | // If CodeRegions and ExpansionRegions cover the same area, it's probably |
| 1327 | // a macro which is fully expanded to another macro. In that case, we need |
| 1328 | // to accumulate counts only from CodeRegions, or else the area will be |
| 1329 | // counted twice. |
| 1330 | // On the other hand, a macro may have a nested macro in its body. If the |
| 1331 | // outer macro is used several times, the ExpansionRegion for the nested |
| 1332 | // macro will also be added several times. These ExpansionRegions cover |
| 1333 | // the same source locations and have to be combined to reach the correct |
| 1334 | // value for that area. |
| 1335 | // We add counts of the regions of the same kind as the active region |
| 1336 | // to handle the both situations. |
| 1337 | if (I->Kind == Active->Kind) |
| 1338 | Active->ExecutionCount += I->ExecutionCount; |
| 1339 | } |
| 1340 | return Regions.drop_back(N: std::distance(first: ++Active, last: End)); |
| 1341 | } |
| 1342 | |
| 1343 | public: |
| 1344 | /// Build a sorted list of CoverageSegments from a list of Regions. |
| 1345 | static std::vector<CoverageSegment> |
| 1346 | buildSegments(MutableArrayRef<CountedRegion> Regions) { |
| 1347 | std::vector<CoverageSegment> Segments; |
| 1348 | SegmentBuilder Builder(Segments); |
| 1349 | |
| 1350 | sortNestedRegions(Regions); |
| 1351 | ArrayRef<CountedRegion> CombinedRegions = combineRegions(Regions); |
| 1352 | |
| 1353 | LLVM_DEBUG({ |
| 1354 | dbgs() << "Combined regions:\n" ; |
| 1355 | for (const auto &CR : CombinedRegions) |
| 1356 | dbgs() << " " << CR.LineStart << ":" << CR.ColumnStart << " -> " |
| 1357 | << CR.LineEnd << ":" << CR.ColumnEnd |
| 1358 | << " (count=" << CR.ExecutionCount << ")\n" ; |
| 1359 | }); |
| 1360 | |
| 1361 | Builder.buildSegmentsImpl(Regions: CombinedRegions); |
| 1362 | |
| 1363 | #ifndef NDEBUG |
| 1364 | for (unsigned I = 1, E = Segments.size(); I < E; ++I) { |
| 1365 | const auto &L = Segments[I - 1]; |
| 1366 | const auto &R = Segments[I]; |
| 1367 | if (!(L.Line < R.Line) && !(L.Line == R.Line && L.Col < R.Col)) { |
| 1368 | if (L.Line == R.Line && L.Col == R.Col && !L.HasCount) |
| 1369 | continue; |
| 1370 | LLVM_DEBUG(dbgs() << " ! Segment " << L.Line << ":" << L.Col |
| 1371 | << " followed by " << R.Line << ":" << R.Col << "\n" ); |
| 1372 | assert(false && "Coverage segments not unique or sorted" ); |
| 1373 | } |
| 1374 | } |
| 1375 | #endif |
| 1376 | |
| 1377 | return Segments; |
| 1378 | } |
| 1379 | }; |
| 1380 | |
| 1381 | struct MergeableCoverageData : public CoverageData { |
| 1382 | std::vector<CountedRegion> CodeRegions; |
| 1383 | |
| 1384 | MergeableCoverageData(bool Single, StringRef Filename) |
| 1385 | : CoverageData(Single, Filename) {} |
| 1386 | |
| 1387 | void addFunctionRegions( |
| 1388 | const FunctionRecord &Function, |
| 1389 | std::function<bool(const CounterMappingRegion &CR)> shouldProcess, |
| 1390 | std::function<bool(const CountedRegion &CR)> shouldExpand) { |
| 1391 | for (const auto &CR : Function.CountedRegions) |
| 1392 | if (shouldProcess(CR)) { |
| 1393 | CodeRegions.push_back(x: CR); |
| 1394 | if (shouldExpand(CR)) |
| 1395 | Expansions.emplace_back(args: CR, args: Function); |
| 1396 | } |
| 1397 | // Capture branch regions specific to the function (excluding expansions). |
| 1398 | for (const auto &CR : Function.CountedBranchRegions) |
| 1399 | if (shouldProcess(CR)) |
| 1400 | BranchRegions.push_back(x: CR); |
| 1401 | // Capture MCDC records specific to the function. |
| 1402 | for (const auto &MR : Function.MCDCRecords) |
| 1403 | if (shouldProcess(MR.getDecisionRegion())) |
| 1404 | MCDCRecords.push_back(x: MR); |
| 1405 | } |
| 1406 | |
| 1407 | CoverageData buildSegments() { |
| 1408 | Segments = SegmentBuilder::buildSegments(Regions: CodeRegions); |
| 1409 | return CoverageData(std::move(*this)); |
| 1410 | } |
| 1411 | }; |
| 1412 | } // end anonymous namespace |
| 1413 | |
| 1414 | std::vector<StringRef> CoverageMapping::getUniqueSourceFiles() const { |
| 1415 | std::vector<StringRef> Filenames; |
| 1416 | for (const auto &Function : getCoveredFunctions()) |
| 1417 | llvm::append_range(C&: Filenames, R: Function.Filenames); |
| 1418 | llvm::sort(C&: Filenames); |
| 1419 | auto Last = llvm::unique(R&: Filenames); |
| 1420 | Filenames.erase(first: Last, last: Filenames.end()); |
| 1421 | return Filenames; |
| 1422 | } |
| 1423 | |
| 1424 | static SmallBitVector gatherFileIDs(StringRef SourceFile, |
| 1425 | const FunctionRecord &Function) { |
| 1426 | SmallBitVector FilenameEquivalence(Function.Filenames.size(), false); |
| 1427 | for (unsigned I = 0, E = Function.Filenames.size(); I < E; ++I) |
| 1428 | if (SourceFile == Function.Filenames[I]) |
| 1429 | FilenameEquivalence[I] = true; |
| 1430 | return FilenameEquivalence; |
| 1431 | } |
| 1432 | |
| 1433 | /// Return the ID of the file where the definition of the function is located. |
| 1434 | static std::optional<unsigned> |
| 1435 | findMainViewFileID(const FunctionRecord &Function) { |
| 1436 | SmallBitVector IsNotExpandedFile(Function.Filenames.size(), true); |
| 1437 | for (const auto &CR : Function.CountedRegions) |
| 1438 | if (CR.Kind == CounterMappingRegion::ExpansionRegion) |
| 1439 | IsNotExpandedFile[CR.ExpandedFileID] = false; |
| 1440 | int I = IsNotExpandedFile.find_first(); |
| 1441 | if (I == -1) |
| 1442 | return std::nullopt; |
| 1443 | return I; |
| 1444 | } |
| 1445 | |
| 1446 | /// Check if SourceFile is the file that contains the definition of |
| 1447 | /// the Function. Return the ID of the file in that case or std::nullopt |
| 1448 | /// otherwise. |
| 1449 | static std::optional<unsigned> |
| 1450 | findMainViewFileID(StringRef SourceFile, const FunctionRecord &Function) { |
| 1451 | std::optional<unsigned> I = findMainViewFileID(Function); |
| 1452 | if (I && SourceFile == Function.Filenames[*I]) |
| 1453 | return I; |
| 1454 | return std::nullopt; |
| 1455 | } |
| 1456 | |
| 1457 | static bool isExpansion(const CountedRegion &R, unsigned FileID) { |
| 1458 | return R.Kind == CounterMappingRegion::ExpansionRegion && R.FileID == FileID; |
| 1459 | } |
| 1460 | |
| 1461 | CoverageData CoverageMapping::getCoverageForFile(StringRef Filename) const { |
| 1462 | assert(SingleByteCoverage); |
| 1463 | MergeableCoverageData FileCoverage(*SingleByteCoverage, Filename); |
| 1464 | |
| 1465 | // Look up the function records in the given file. Due to hash collisions on |
| 1466 | // the filename, we may get back some records that are not in the file. |
| 1467 | ArrayRef<unsigned> RecordIndices = |
| 1468 | getImpreciseRecordIndicesForFilename(Filename); |
| 1469 | for (unsigned RecordIndex : RecordIndices) { |
| 1470 | const FunctionRecord &Function = Functions[RecordIndex]; |
| 1471 | auto MainFileID = findMainViewFileID(SourceFile: Filename, Function); |
| 1472 | auto FileIDs = gatherFileIDs(SourceFile: Filename, Function); |
| 1473 | FileCoverage.addFunctionRegions( |
| 1474 | Function, shouldProcess: [&](auto &CR) { return FileIDs.test(CR.FileID); }, |
| 1475 | shouldExpand: [&](auto &CR) { return (MainFileID && isExpansion(CR, *MainFileID)); }); |
| 1476 | } |
| 1477 | |
| 1478 | LLVM_DEBUG(dbgs() << "Emitting segments for file: " << Filename << "\n" ); |
| 1479 | |
| 1480 | return FileCoverage.buildSegments(); |
| 1481 | } |
| 1482 | |
| 1483 | std::vector<InstantiationGroup> |
| 1484 | CoverageMapping::getInstantiationGroups(StringRef Filename) const { |
| 1485 | FunctionInstantiationSetCollector InstantiationSetCollector; |
| 1486 | // Look up the function records in the given file. Due to hash collisions on |
| 1487 | // the filename, we may get back some records that are not in the file. |
| 1488 | ArrayRef<unsigned> RecordIndices = |
| 1489 | getImpreciseRecordIndicesForFilename(Filename); |
| 1490 | for (unsigned RecordIndex : RecordIndices) { |
| 1491 | const FunctionRecord &Function = Functions[RecordIndex]; |
| 1492 | auto MainFileID = findMainViewFileID(SourceFile: Filename, Function); |
| 1493 | if (!MainFileID) |
| 1494 | continue; |
| 1495 | InstantiationSetCollector.insert(Function, FileID: *MainFileID); |
| 1496 | } |
| 1497 | |
| 1498 | std::vector<InstantiationGroup> Result; |
| 1499 | for (auto &InstantiationSet : InstantiationSetCollector) { |
| 1500 | InstantiationGroup IG{InstantiationSet.first.first, |
| 1501 | InstantiationSet.first.second, |
| 1502 | std::move(InstantiationSet.second)}; |
| 1503 | Result.emplace_back(args: std::move(IG)); |
| 1504 | } |
| 1505 | return Result; |
| 1506 | } |
| 1507 | |
| 1508 | CoverageData |
| 1509 | CoverageMapping::getCoverageForFunction(const FunctionRecord &Function) const { |
| 1510 | auto MainFileID = findMainViewFileID(Function); |
| 1511 | if (!MainFileID) |
| 1512 | return CoverageData(); |
| 1513 | |
| 1514 | assert(SingleByteCoverage); |
| 1515 | MergeableCoverageData FunctionCoverage(*SingleByteCoverage, |
| 1516 | Function.Filenames[*MainFileID]); |
| 1517 | FunctionCoverage.addFunctionRegions( |
| 1518 | Function, shouldProcess: [&](auto &CR) { return (CR.FileID == *MainFileID); }, |
| 1519 | shouldExpand: [&](auto &CR) { return isExpansion(CR, *MainFileID); }); |
| 1520 | |
| 1521 | LLVM_DEBUG(dbgs() << "Emitting segments for function: " << Function.Name |
| 1522 | << "\n" ); |
| 1523 | |
| 1524 | return FunctionCoverage.buildSegments(); |
| 1525 | } |
| 1526 | |
| 1527 | CoverageData CoverageMapping::getCoverageForExpansion( |
| 1528 | const ExpansionRecord &Expansion) const { |
| 1529 | assert(SingleByteCoverage); |
| 1530 | CoverageData ExpansionCoverage( |
| 1531 | *SingleByteCoverage, Expansion.Function.Filenames[Expansion.FileID]); |
| 1532 | std::vector<CountedRegion> Regions; |
| 1533 | for (const auto &CR : Expansion.Function.CountedRegions) |
| 1534 | if (CR.FileID == Expansion.FileID) { |
| 1535 | Regions.push_back(x: CR); |
| 1536 | if (isExpansion(R: CR, FileID: Expansion.FileID)) |
| 1537 | ExpansionCoverage.Expansions.emplace_back(args: CR, args: Expansion.Function); |
| 1538 | } |
| 1539 | for (const auto &CR : Expansion.Function.CountedBranchRegions) |
| 1540 | // Capture branch regions that only pertain to the corresponding expansion. |
| 1541 | if (CR.FileID == Expansion.FileID) |
| 1542 | ExpansionCoverage.BranchRegions.push_back(x: CR); |
| 1543 | |
| 1544 | LLVM_DEBUG(dbgs() << "Emitting segments for expansion of file " |
| 1545 | << Expansion.FileID << "\n" ); |
| 1546 | ExpansionCoverage.Segments = SegmentBuilder::buildSegments(Regions); |
| 1547 | |
| 1548 | return ExpansionCoverage; |
| 1549 | } |
| 1550 | |
| 1551 | LineCoverageStats::LineCoverageStats( |
| 1552 | ArrayRef<const CoverageSegment *> LineSegments, |
| 1553 | const CoverageSegment *WrappedSegment, unsigned Line) |
| 1554 | : ExecutionCount(0), HasMultipleRegions(false), Mapped(false), Line(Line), |
| 1555 | LineSegments(LineSegments), WrappedSegment(WrappedSegment) { |
| 1556 | // Find the minimum number of regions which start in this line. |
| 1557 | unsigned MinRegionCount = 0; |
| 1558 | auto isStartOfRegion = [](const CoverageSegment *S) { |
| 1559 | return !S->IsGapRegion && S->HasCount && S->IsRegionEntry; |
| 1560 | }; |
| 1561 | for (unsigned I = 0; I < LineSegments.size() && MinRegionCount < 2; ++I) |
| 1562 | if (isStartOfRegion(LineSegments[I])) |
| 1563 | ++MinRegionCount; |
| 1564 | |
| 1565 | bool StartOfSkippedRegion = !LineSegments.empty() && |
| 1566 | !LineSegments.front()->HasCount && |
| 1567 | LineSegments.front()->IsRegionEntry; |
| 1568 | |
| 1569 | HasMultipleRegions = MinRegionCount > 1; |
| 1570 | Mapped = |
| 1571 | !StartOfSkippedRegion && |
| 1572 | ((WrappedSegment && WrappedSegment->HasCount) || (MinRegionCount > 0)); |
| 1573 | |
| 1574 | // if there is any starting segment at this line with a counter, it must be |
| 1575 | // mapped |
| 1576 | Mapped |= any_of(Range&: LineSegments, P: [](const auto *Seq) { |
| 1577 | return Seq->IsRegionEntry && Seq->HasCount; |
| 1578 | }); |
| 1579 | |
| 1580 | if (!Mapped) { |
| 1581 | return; |
| 1582 | } |
| 1583 | |
| 1584 | // Pick the max count from the non-gap, region entry segments and the |
| 1585 | // wrapped count. |
| 1586 | if (WrappedSegment) |
| 1587 | ExecutionCount = WrappedSegment->Count; |
| 1588 | if (!MinRegionCount) |
| 1589 | return; |
| 1590 | for (const auto *LS : LineSegments) |
| 1591 | if (isStartOfRegion(LS)) |
| 1592 | ExecutionCount = std::max(a: ExecutionCount, b: LS->Count); |
| 1593 | } |
| 1594 | |
| 1595 | LineCoverageIterator &LineCoverageIterator::operator++() { |
| 1596 | if (Next == CD.end()) { |
| 1597 | Stats = LineCoverageStats(); |
| 1598 | Ended = true; |
| 1599 | return *this; |
| 1600 | } |
| 1601 | if (Segments.size()) |
| 1602 | WrappedSegment = Segments.back(); |
| 1603 | Segments.clear(); |
| 1604 | while (Next != CD.end() && Next->Line == Line) |
| 1605 | Segments.push_back(Elt: &*Next++); |
| 1606 | Stats = LineCoverageStats(Segments, WrappedSegment, Line); |
| 1607 | ++Line; |
| 1608 | return *this; |
| 1609 | } |
| 1610 | |
| 1611 | static std::string getCoverageMapErrString(coveragemap_error Err, |
| 1612 | const std::string &ErrMsg = "" ) { |
| 1613 | std::string Msg; |
| 1614 | raw_string_ostream OS(Msg); |
| 1615 | |
| 1616 | switch (Err) { |
| 1617 | case coveragemap_error::success: |
| 1618 | OS << "success" ; |
| 1619 | break; |
| 1620 | case coveragemap_error::eof: |
| 1621 | OS << "end of File" ; |
| 1622 | break; |
| 1623 | case coveragemap_error::no_data_found: |
| 1624 | OS << "no coverage data found" ; |
| 1625 | break; |
| 1626 | case coveragemap_error::unsupported_version: |
| 1627 | OS << "unsupported coverage format version" ; |
| 1628 | break; |
| 1629 | case coveragemap_error::truncated: |
| 1630 | OS << "truncated coverage data" ; |
| 1631 | break; |
| 1632 | case coveragemap_error::malformed: |
| 1633 | OS << "malformed coverage data" ; |
| 1634 | break; |
| 1635 | case coveragemap_error::decompression_failed: |
| 1636 | OS << "failed to decompress coverage data (zlib)" ; |
| 1637 | break; |
| 1638 | case coveragemap_error::invalid_or_missing_arch_specifier: |
| 1639 | OS << "`-arch` specifier is invalid or missing for universal binary" ; |
| 1640 | break; |
| 1641 | } |
| 1642 | |
| 1643 | // If optional error message is not empty, append it to the message. |
| 1644 | if (!ErrMsg.empty()) |
| 1645 | OS << ": " << ErrMsg; |
| 1646 | |
| 1647 | return Msg; |
| 1648 | } |
| 1649 | |
| 1650 | namespace { |
| 1651 | |
| 1652 | // FIXME: This class is only here to support the transition to llvm::Error. It |
| 1653 | // will be removed once this transition is complete. Clients should prefer to |
| 1654 | // deal with the Error value directly, rather than converting to error_code. |
| 1655 | class CoverageMappingErrorCategoryType : public std::error_category { |
| 1656 | const char *name() const noexcept override { return "llvm.coveragemap" ; } |
| 1657 | std::string message(int IE) const override { |
| 1658 | return getCoverageMapErrString(Err: static_cast<coveragemap_error>(IE)); |
| 1659 | } |
| 1660 | }; |
| 1661 | |
| 1662 | } // end anonymous namespace |
| 1663 | |
| 1664 | std::string CoverageMapError::message() const { |
| 1665 | return getCoverageMapErrString(Err, ErrMsg: Msg); |
| 1666 | } |
| 1667 | |
| 1668 | const std::error_category &llvm::coverage::coveragemap_category() { |
| 1669 | static CoverageMappingErrorCategoryType ErrorCategory; |
| 1670 | return ErrorCategory; |
| 1671 | } |
| 1672 | |
| 1673 | char CoverageMapError::ID = 0; |
| 1674 | |