| 1 | #include "blake3_impl.h" |
| 2 | |
| 3 | #if BLAKE3_USE_NEON |
| 4 | |
| 5 | #include <arm_neon.h> |
| 6 | |
| 7 | #ifdef __ARM_BIG_ENDIAN |
| 8 | #error "This implementation only supports little-endian ARM." |
| 9 | // It might be that all we need for big-endian support here is to get the loads |
| 10 | // and stores right, but step zero would be finding a way to test it in CI. |
| 11 | #endif |
| 12 | |
| 13 | INLINE uint32x4_t loadu_128(const uint8_t src[16]) { |
| 14 | // vld1q_u32 has alignment requirements. Don't use it. |
| 15 | return vreinterpretq_u32_u8(vld1q_u8(src)); |
| 16 | } |
| 17 | |
| 18 | INLINE void storeu_128(uint32x4_t src, uint8_t dest[16]) { |
| 19 | // vst1q_u32 has alignment requirements. Don't use it. |
| 20 | vst1q_u8(dest, vreinterpretq_u8_u32(src)); |
| 21 | } |
| 22 | |
| 23 | INLINE uint32x4_t add_128(uint32x4_t a, uint32x4_t b) { |
| 24 | return vaddq_u32(a, b); |
| 25 | } |
| 26 | |
| 27 | INLINE uint32x4_t xor_128(uint32x4_t a, uint32x4_t b) { |
| 28 | return veorq_u32(a, b); |
| 29 | } |
| 30 | |
| 31 | INLINE uint32x4_t set1_128(uint32_t x) { return vld1q_dup_u32(&x); } |
| 32 | |
| 33 | INLINE uint32x4_t set4(uint32_t a, uint32_t b, uint32_t c, uint32_t d) { |
| 34 | uint32_t array[4] = {a, b, c, d}; |
| 35 | return vld1q_u32(array); |
| 36 | } |
| 37 | |
| 38 | INLINE uint32x4_t rot16_128(uint32x4_t x) { |
| 39 | // The straightforward implementation would be two shifts and an or, but that's |
| 40 | // slower on microarchitectures we've tested. See |
| 41 | // https://github.com/BLAKE3-team/BLAKE3/pull/319. |
| 42 | // return vorrq_u32(vshrq_n_u32(x, 16), vshlq_n_u32(x, 32 - 16)); |
| 43 | return vreinterpretq_u32_u16(vrev32q_u16(vreinterpretq_u16_u32(x))); |
| 44 | } |
| 45 | |
| 46 | INLINE uint32x4_t rot12_128(uint32x4_t x) { |
| 47 | // See comment in rot16_128. |
| 48 | // return vorrq_u32(vshrq_n_u32(x, 12), vshlq_n_u32(x, 32 - 12)); |
| 49 | return vsriq_n_u32(vshlq_n_u32(x, 32-12), x, 12); |
| 50 | } |
| 51 | |
| 52 | INLINE uint32x4_t rot8_128(uint32x4_t x) { |
| 53 | // See comment in rot16_128. |
| 54 | // return vorrq_u32(vshrq_n_u32(x, 8), vshlq_n_u32(x, 32 - 8)); |
| 55 | #if defined(__clang__) |
| 56 | return vreinterpretq_u32_u8(__builtin_shufflevector(vreinterpretq_u8_u32(x), vreinterpretq_u8_u32(x), 1,2,3,0,5,6,7,4,9,10,11,8,13,14,15,12)); |
| 57 | #elif defined(__GNUC__) |
| 58 | static const uint8x16_t r8 = {1,2,3,0,5,6,7,4,9,10,11,8,13,14,15,12}; |
| 59 | return vreinterpretq_u32_u8(__builtin_shuffle(vreinterpretq_u8_u32(x), vreinterpretq_u8_u32(x), r8)); |
| 60 | #else |
| 61 | return vsriq_n_u32(vshlq_n_u32(x, 32-8), x, 8); |
| 62 | #endif |
| 63 | } |
| 64 | |
| 65 | INLINE uint32x4_t rot7_128(uint32x4_t x) { |
| 66 | // See comment in rot16_128. |
| 67 | // return vorrq_u32(vshrq_n_u32(x, 7), vshlq_n_u32(x, 32 - 7)); |
| 68 | return vsriq_n_u32(vshlq_n_u32(x, 32-7), x, 7); |
| 69 | } |
| 70 | |
| 71 | // TODO: compress_neon |
| 72 | |
| 73 | // TODO: hash2_neon |
| 74 | |
| 75 | /* |
| 76 | * ---------------------------------------------------------------------------- |
| 77 | * hash4_neon |
| 78 | * ---------------------------------------------------------------------------- |
| 79 | */ |
| 80 | |
| 81 | INLINE void round_fn4(uint32x4_t v[16], uint32x4_t m[16], size_t r) { |
| 82 | v[0] = add_128(v[0], m[(size_t)MSG_SCHEDULE[r][0]]); |
| 83 | v[1] = add_128(v[1], m[(size_t)MSG_SCHEDULE[r][2]]); |
| 84 | v[2] = add_128(v[2], m[(size_t)MSG_SCHEDULE[r][4]]); |
| 85 | v[3] = add_128(v[3], m[(size_t)MSG_SCHEDULE[r][6]]); |
| 86 | v[0] = add_128(v[0], v[4]); |
| 87 | v[1] = add_128(v[1], v[5]); |
| 88 | v[2] = add_128(v[2], v[6]); |
| 89 | v[3] = add_128(v[3], v[7]); |
| 90 | v[12] = xor_128(v[12], v[0]); |
| 91 | v[13] = xor_128(v[13], v[1]); |
| 92 | v[14] = xor_128(v[14], v[2]); |
| 93 | v[15] = xor_128(v[15], v[3]); |
| 94 | v[12] = rot16_128(v[12]); |
| 95 | v[13] = rot16_128(v[13]); |
| 96 | v[14] = rot16_128(v[14]); |
| 97 | v[15] = rot16_128(v[15]); |
| 98 | v[8] = add_128(v[8], v[12]); |
| 99 | v[9] = add_128(v[9], v[13]); |
| 100 | v[10] = add_128(v[10], v[14]); |
| 101 | v[11] = add_128(v[11], v[15]); |
| 102 | v[4] = xor_128(v[4], v[8]); |
| 103 | v[5] = xor_128(v[5], v[9]); |
| 104 | v[6] = xor_128(v[6], v[10]); |
| 105 | v[7] = xor_128(v[7], v[11]); |
| 106 | v[4] = rot12_128(v[4]); |
| 107 | v[5] = rot12_128(v[5]); |
| 108 | v[6] = rot12_128(v[6]); |
| 109 | v[7] = rot12_128(v[7]); |
| 110 | v[0] = add_128(v[0], m[(size_t)MSG_SCHEDULE[r][1]]); |
| 111 | v[1] = add_128(v[1], m[(size_t)MSG_SCHEDULE[r][3]]); |
| 112 | v[2] = add_128(v[2], m[(size_t)MSG_SCHEDULE[r][5]]); |
| 113 | v[3] = add_128(v[3], m[(size_t)MSG_SCHEDULE[r][7]]); |
| 114 | v[0] = add_128(v[0], v[4]); |
| 115 | v[1] = add_128(v[1], v[5]); |
| 116 | v[2] = add_128(v[2], v[6]); |
| 117 | v[3] = add_128(v[3], v[7]); |
| 118 | v[12] = xor_128(v[12], v[0]); |
| 119 | v[13] = xor_128(v[13], v[1]); |
| 120 | v[14] = xor_128(v[14], v[2]); |
| 121 | v[15] = xor_128(v[15], v[3]); |
| 122 | v[12] = rot8_128(v[12]); |
| 123 | v[13] = rot8_128(v[13]); |
| 124 | v[14] = rot8_128(v[14]); |
| 125 | v[15] = rot8_128(v[15]); |
| 126 | v[8] = add_128(v[8], v[12]); |
| 127 | v[9] = add_128(v[9], v[13]); |
| 128 | v[10] = add_128(v[10], v[14]); |
| 129 | v[11] = add_128(v[11], v[15]); |
| 130 | v[4] = xor_128(v[4], v[8]); |
| 131 | v[5] = xor_128(v[5], v[9]); |
| 132 | v[6] = xor_128(v[6], v[10]); |
| 133 | v[7] = xor_128(v[7], v[11]); |
| 134 | v[4] = rot7_128(v[4]); |
| 135 | v[5] = rot7_128(v[5]); |
| 136 | v[6] = rot7_128(v[6]); |
| 137 | v[7] = rot7_128(v[7]); |
| 138 | |
| 139 | v[0] = add_128(v[0], m[(size_t)MSG_SCHEDULE[r][8]]); |
| 140 | v[1] = add_128(v[1], m[(size_t)MSG_SCHEDULE[r][10]]); |
| 141 | v[2] = add_128(v[2], m[(size_t)MSG_SCHEDULE[r][12]]); |
| 142 | v[3] = add_128(v[3], m[(size_t)MSG_SCHEDULE[r][14]]); |
| 143 | v[0] = add_128(v[0], v[5]); |
| 144 | v[1] = add_128(v[1], v[6]); |
| 145 | v[2] = add_128(v[2], v[7]); |
| 146 | v[3] = add_128(v[3], v[4]); |
| 147 | v[15] = xor_128(v[15], v[0]); |
| 148 | v[12] = xor_128(v[12], v[1]); |
| 149 | v[13] = xor_128(v[13], v[2]); |
| 150 | v[14] = xor_128(v[14], v[3]); |
| 151 | v[15] = rot16_128(v[15]); |
| 152 | v[12] = rot16_128(v[12]); |
| 153 | v[13] = rot16_128(v[13]); |
| 154 | v[14] = rot16_128(v[14]); |
| 155 | v[10] = add_128(v[10], v[15]); |
| 156 | v[11] = add_128(v[11], v[12]); |
| 157 | v[8] = add_128(v[8], v[13]); |
| 158 | v[9] = add_128(v[9], v[14]); |
| 159 | v[5] = xor_128(v[5], v[10]); |
| 160 | v[6] = xor_128(v[6], v[11]); |
| 161 | v[7] = xor_128(v[7], v[8]); |
| 162 | v[4] = xor_128(v[4], v[9]); |
| 163 | v[5] = rot12_128(v[5]); |
| 164 | v[6] = rot12_128(v[6]); |
| 165 | v[7] = rot12_128(v[7]); |
| 166 | v[4] = rot12_128(v[4]); |
| 167 | v[0] = add_128(v[0], m[(size_t)MSG_SCHEDULE[r][9]]); |
| 168 | v[1] = add_128(v[1], m[(size_t)MSG_SCHEDULE[r][11]]); |
| 169 | v[2] = add_128(v[2], m[(size_t)MSG_SCHEDULE[r][13]]); |
| 170 | v[3] = add_128(v[3], m[(size_t)MSG_SCHEDULE[r][15]]); |
| 171 | v[0] = add_128(v[0], v[5]); |
| 172 | v[1] = add_128(v[1], v[6]); |
| 173 | v[2] = add_128(v[2], v[7]); |
| 174 | v[3] = add_128(v[3], v[4]); |
| 175 | v[15] = xor_128(v[15], v[0]); |
| 176 | v[12] = xor_128(v[12], v[1]); |
| 177 | v[13] = xor_128(v[13], v[2]); |
| 178 | v[14] = xor_128(v[14], v[3]); |
| 179 | v[15] = rot8_128(v[15]); |
| 180 | v[12] = rot8_128(v[12]); |
| 181 | v[13] = rot8_128(v[13]); |
| 182 | v[14] = rot8_128(v[14]); |
| 183 | v[10] = add_128(v[10], v[15]); |
| 184 | v[11] = add_128(v[11], v[12]); |
| 185 | v[8] = add_128(v[8], v[13]); |
| 186 | v[9] = add_128(v[9], v[14]); |
| 187 | v[5] = xor_128(v[5], v[10]); |
| 188 | v[6] = xor_128(v[6], v[11]); |
| 189 | v[7] = xor_128(v[7], v[8]); |
| 190 | v[4] = xor_128(v[4], v[9]); |
| 191 | v[5] = rot7_128(v[5]); |
| 192 | v[6] = rot7_128(v[6]); |
| 193 | v[7] = rot7_128(v[7]); |
| 194 | v[4] = rot7_128(v[4]); |
| 195 | } |
| 196 | |
| 197 | INLINE void transpose_vecs_128(uint32x4_t vecs[4]) { |
| 198 | // Individually transpose the four 2x2 sub-matrices in each corner. |
| 199 | uint32x4x2_t rows01 = vtrnq_u32(vecs[0], vecs[1]); |
| 200 | uint32x4x2_t rows23 = vtrnq_u32(vecs[2], vecs[3]); |
| 201 | |
| 202 | // Swap the top-right and bottom-left 2x2s (which just got transposed). |
| 203 | vecs[0] = |
| 204 | vcombine_u32(vget_low_u32(rows01.val[0]), vget_low_u32(rows23.val[0])); |
| 205 | vecs[1] = |
| 206 | vcombine_u32(vget_low_u32(rows01.val[1]), vget_low_u32(rows23.val[1])); |
| 207 | vecs[2] = |
| 208 | vcombine_u32(vget_high_u32(rows01.val[0]), vget_high_u32(rows23.val[0])); |
| 209 | vecs[3] = |
| 210 | vcombine_u32(vget_high_u32(rows01.val[1]), vget_high_u32(rows23.val[1])); |
| 211 | } |
| 212 | |
| 213 | INLINE void transpose_msg_vecs4(const uint8_t *const *inputs, |
| 214 | size_t block_offset, uint32x4_t out[16]) { |
| 215 | out[0] = loadu_128(&inputs[0][block_offset + 0 * sizeof(uint32x4_t)]); |
| 216 | out[1] = loadu_128(&inputs[1][block_offset + 0 * sizeof(uint32x4_t)]); |
| 217 | out[2] = loadu_128(&inputs[2][block_offset + 0 * sizeof(uint32x4_t)]); |
| 218 | out[3] = loadu_128(&inputs[3][block_offset + 0 * sizeof(uint32x4_t)]); |
| 219 | out[4] = loadu_128(&inputs[0][block_offset + 1 * sizeof(uint32x4_t)]); |
| 220 | out[5] = loadu_128(&inputs[1][block_offset + 1 * sizeof(uint32x4_t)]); |
| 221 | out[6] = loadu_128(&inputs[2][block_offset + 1 * sizeof(uint32x4_t)]); |
| 222 | out[7] = loadu_128(&inputs[3][block_offset + 1 * sizeof(uint32x4_t)]); |
| 223 | out[8] = loadu_128(&inputs[0][block_offset + 2 * sizeof(uint32x4_t)]); |
| 224 | out[9] = loadu_128(&inputs[1][block_offset + 2 * sizeof(uint32x4_t)]); |
| 225 | out[10] = loadu_128(&inputs[2][block_offset + 2 * sizeof(uint32x4_t)]); |
| 226 | out[11] = loadu_128(&inputs[3][block_offset + 2 * sizeof(uint32x4_t)]); |
| 227 | out[12] = loadu_128(&inputs[0][block_offset + 3 * sizeof(uint32x4_t)]); |
| 228 | out[13] = loadu_128(&inputs[1][block_offset + 3 * sizeof(uint32x4_t)]); |
| 229 | out[14] = loadu_128(&inputs[2][block_offset + 3 * sizeof(uint32x4_t)]); |
| 230 | out[15] = loadu_128(&inputs[3][block_offset + 3 * sizeof(uint32x4_t)]); |
| 231 | transpose_vecs_128(&out[0]); |
| 232 | transpose_vecs_128(&out[4]); |
| 233 | transpose_vecs_128(&out[8]); |
| 234 | transpose_vecs_128(&out[12]); |
| 235 | } |
| 236 | |
| 237 | INLINE void load_counters4(uint64_t counter, bool increment_counter, |
| 238 | uint32x4_t *out_low, uint32x4_t *out_high) { |
| 239 | uint64_t mask = (increment_counter ? ~0 : 0); |
| 240 | *out_low = set4( |
| 241 | counter_low(counter + (mask & 0)), counter_low(counter + (mask & 1)), |
| 242 | counter_low(counter + (mask & 2)), counter_low(counter + (mask & 3))); |
| 243 | *out_high = set4( |
| 244 | counter_high(counter + (mask & 0)), counter_high(counter + (mask & 1)), |
| 245 | counter_high(counter + (mask & 2)), counter_high(counter + (mask & 3))); |
| 246 | } |
| 247 | |
| 248 | static void blake3_hash4_neon(const uint8_t *const *inputs, size_t blocks, |
| 249 | const uint32_t key[8], uint64_t counter, |
| 250 | bool increment_counter, uint8_t flags, |
| 251 | uint8_t flags_start, uint8_t flags_end, |
| 252 | uint8_t *out) { |
| 253 | uint32x4_t h_vecs[8] = { |
| 254 | set1_128(key[0]), set1_128(key[1]), set1_128(key[2]), set1_128(key[3]), |
| 255 | set1_128(key[4]), set1_128(key[5]), set1_128(key[6]), set1_128(key[7]), |
| 256 | }; |
| 257 | uint32x4_t counter_low_vec, counter_high_vec; |
| 258 | load_counters4(counter, increment_counter, &counter_low_vec, |
| 259 | &counter_high_vec); |
| 260 | uint8_t block_flags = flags | flags_start; |
| 261 | |
| 262 | for (size_t block = 0; block < blocks; block++) { |
| 263 | if (block + 1 == blocks) { |
| 264 | block_flags |= flags_end; |
| 265 | } |
| 266 | uint32x4_t block_len_vec = set1_128(BLAKE3_BLOCK_LEN); |
| 267 | uint32x4_t block_flags_vec = set1_128(block_flags); |
| 268 | uint32x4_t msg_vecs[16]; |
| 269 | transpose_msg_vecs4(inputs, block * BLAKE3_BLOCK_LEN, msg_vecs); |
| 270 | |
| 271 | uint32x4_t v[16] = { |
| 272 | h_vecs[0], h_vecs[1], h_vecs[2], h_vecs[3], |
| 273 | h_vecs[4], h_vecs[5], h_vecs[6], h_vecs[7], |
| 274 | set1_128(IV[0]), set1_128(IV[1]), set1_128(IV[2]), set1_128(IV[3]), |
| 275 | counter_low_vec, counter_high_vec, block_len_vec, block_flags_vec, |
| 276 | }; |
| 277 | round_fn4(v, msg_vecs, 0); |
| 278 | round_fn4(v, msg_vecs, 1); |
| 279 | round_fn4(v, msg_vecs, 2); |
| 280 | round_fn4(v, msg_vecs, 3); |
| 281 | round_fn4(v, msg_vecs, 4); |
| 282 | round_fn4(v, msg_vecs, 5); |
| 283 | round_fn4(v, msg_vecs, 6); |
| 284 | h_vecs[0] = xor_128(v[0], v[8]); |
| 285 | h_vecs[1] = xor_128(v[1], v[9]); |
| 286 | h_vecs[2] = xor_128(v[2], v[10]); |
| 287 | h_vecs[3] = xor_128(v[3], v[11]); |
| 288 | h_vecs[4] = xor_128(v[4], v[12]); |
| 289 | h_vecs[5] = xor_128(v[5], v[13]); |
| 290 | h_vecs[6] = xor_128(v[6], v[14]); |
| 291 | h_vecs[7] = xor_128(v[7], v[15]); |
| 292 | |
| 293 | block_flags = flags; |
| 294 | } |
| 295 | |
| 296 | transpose_vecs_128(&h_vecs[0]); |
| 297 | transpose_vecs_128(&h_vecs[4]); |
| 298 | // The first four vecs now contain the first half of each output, and the |
| 299 | // second four vecs contain the second half of each output. |
| 300 | storeu_128(h_vecs[0], &out[0 * sizeof(uint32x4_t)]); |
| 301 | storeu_128(h_vecs[4], &out[1 * sizeof(uint32x4_t)]); |
| 302 | storeu_128(h_vecs[1], &out[2 * sizeof(uint32x4_t)]); |
| 303 | storeu_128(h_vecs[5], &out[3 * sizeof(uint32x4_t)]); |
| 304 | storeu_128(h_vecs[2], &out[4 * sizeof(uint32x4_t)]); |
| 305 | storeu_128(h_vecs[6], &out[5 * sizeof(uint32x4_t)]); |
| 306 | storeu_128(h_vecs[3], &out[6 * sizeof(uint32x4_t)]); |
| 307 | storeu_128(h_vecs[7], &out[7 * sizeof(uint32x4_t)]); |
| 308 | } |
| 309 | |
| 310 | /* |
| 311 | * ---------------------------------------------------------------------------- |
| 312 | * hash_many_neon |
| 313 | * ---------------------------------------------------------------------------- |
| 314 | */ |
| 315 | |
| 316 | void blake3_compress_in_place_portable(uint32_t cv[8], |
| 317 | const uint8_t block[BLAKE3_BLOCK_LEN], |
| 318 | uint8_t block_len, uint64_t counter, |
| 319 | uint8_t flags); |
| 320 | |
| 321 | INLINE void hash_one_neon(const uint8_t *input, size_t blocks, |
| 322 | const uint32_t key[8], uint64_t counter, |
| 323 | uint8_t flags, uint8_t flags_start, uint8_t flags_end, |
| 324 | uint8_t out[BLAKE3_OUT_LEN]) { |
| 325 | uint32_t cv[8]; |
| 326 | memcpy(cv, key, BLAKE3_KEY_LEN); |
| 327 | uint8_t block_flags = flags | flags_start; |
| 328 | while (blocks > 0) { |
| 329 | if (blocks == 1) { |
| 330 | block_flags |= flags_end; |
| 331 | } |
| 332 | // TODO: Implement compress_neon. However note that according to |
| 333 | // https://github.com/BLAKE2/BLAKE2/commit/7965d3e6e1b4193438b8d3a656787587d2579227, |
| 334 | // compress_neon might not be any faster than compress_portable. |
| 335 | blake3_compress_in_place_portable(cv, input, BLAKE3_BLOCK_LEN, counter, |
| 336 | block_flags); |
| 337 | input = &input[BLAKE3_BLOCK_LEN]; |
| 338 | blocks -= 1; |
| 339 | block_flags = flags; |
| 340 | } |
| 341 | memcpy(out, cv, BLAKE3_OUT_LEN); |
| 342 | } |
| 343 | |
| 344 | void blake3_hash_many_neon(const uint8_t *const *inputs, size_t num_inputs, |
| 345 | size_t blocks, const uint32_t key[8], |
| 346 | uint64_t counter, bool increment_counter, |
| 347 | uint8_t flags, uint8_t flags_start, |
| 348 | uint8_t flags_end, uint8_t *out) { |
| 349 | while (num_inputs >= 4) { |
| 350 | blake3_hash4_neon(inputs, blocks, key, counter, increment_counter, flags, |
| 351 | flags_start, flags_end, out); |
| 352 | if (increment_counter) { |
| 353 | counter += 4; |
| 354 | } |
| 355 | inputs += 4; |
| 356 | num_inputs -= 4; |
| 357 | out = &out[4 * BLAKE3_OUT_LEN]; |
| 358 | } |
| 359 | while (num_inputs > 0) { |
| 360 | hash_one_neon(inputs[0], blocks, key, counter, flags, flags_start, |
| 361 | flags_end, out); |
| 362 | if (increment_counter) { |
| 363 | counter += 1; |
| 364 | } |
| 365 | inputs += 1; |
| 366 | num_inputs -= 1; |
| 367 | out = &out[BLAKE3_OUT_LEN]; |
| 368 | } |
| 369 | } |
| 370 | |
| 371 | #endif // BLAKE3_USE_NEON |
| 372 | |