| 1 | //===-- KnownBits.cpp - Stores known zeros/ones ---------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file contains a class for representing known zeros and ones used by |
| 10 | // computeKnownBits. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #include "llvm/Support/KnownBits.h" |
| 15 | #include "llvm/ADT/Sequence.h" |
| 16 | #include "llvm/Support/Debug.h" |
| 17 | #include "llvm/Support/raw_ostream.h" |
| 18 | #include <cassert> |
| 19 | |
| 20 | using namespace llvm; |
| 21 | |
| 22 | KnownBits KnownBits::flipSignBit(const KnownBits &Val) { |
| 23 | unsigned SignBitPosition = Val.getBitWidth() - 1; |
| 24 | APInt Zero = Val.Zero; |
| 25 | APInt One = Val.One; |
| 26 | Zero.setBitVal(BitPosition: SignBitPosition, BitValue: Val.One[SignBitPosition]); |
| 27 | One.setBitVal(BitPosition: SignBitPosition, BitValue: Val.Zero[SignBitPosition]); |
| 28 | return KnownBits(Zero, One); |
| 29 | } |
| 30 | |
| 31 | static KnownBits computeForAddCarry(const KnownBits &LHS, const KnownBits &RHS, |
| 32 | bool CarryZero, bool CarryOne) { |
| 33 | |
| 34 | APInt PossibleSumZero = LHS.getMaxValue() + RHS.getMaxValue() + !CarryZero; |
| 35 | APInt PossibleSumOne = LHS.getMinValue() + RHS.getMinValue() + CarryOne; |
| 36 | |
| 37 | // Compute known bits of the carry. |
| 38 | APInt CarryKnownZero = ~(PossibleSumZero ^ LHS.Zero ^ RHS.Zero); |
| 39 | APInt CarryKnownOne = PossibleSumOne ^ LHS.One ^ RHS.One; |
| 40 | |
| 41 | // Compute set of known bits (where all three relevant bits are known). |
| 42 | APInt LHSKnownUnion = LHS.Zero | LHS.One; |
| 43 | APInt RHSKnownUnion = RHS.Zero | RHS.One; |
| 44 | APInt CarryKnownUnion = std::move(CarryKnownZero) | CarryKnownOne; |
| 45 | APInt Known = std::move(LHSKnownUnion) & RHSKnownUnion & CarryKnownUnion; |
| 46 | |
| 47 | // Compute known bits of the result. |
| 48 | KnownBits KnownOut; |
| 49 | KnownOut.Zero = ~std::move(PossibleSumZero) & Known; |
| 50 | KnownOut.One = std::move(PossibleSumOne) & Known; |
| 51 | return KnownOut; |
| 52 | } |
| 53 | |
| 54 | KnownBits KnownBits::computeForAddCarry( |
| 55 | const KnownBits &LHS, const KnownBits &RHS, const KnownBits &Carry) { |
| 56 | assert(Carry.getBitWidth() == 1 && "Carry must be 1-bit" ); |
| 57 | return ::computeForAddCarry( |
| 58 | LHS, RHS, CarryZero: Carry.Zero.getBoolValue(), CarryOne: Carry.One.getBoolValue()); |
| 59 | } |
| 60 | |
| 61 | KnownBits KnownBits::computeForAddSub(bool Add, bool NSW, bool NUW, |
| 62 | const KnownBits &LHS, |
| 63 | const KnownBits &RHS) { |
| 64 | unsigned BitWidth = LHS.getBitWidth(); |
| 65 | KnownBits KnownOut(BitWidth); |
| 66 | // This can be a relatively expensive helper, so optimistically save some |
| 67 | // work. |
| 68 | if (LHS.isUnknown() && RHS.isUnknown()) |
| 69 | return KnownOut; |
| 70 | |
| 71 | if (!LHS.isUnknown() && !RHS.isUnknown()) { |
| 72 | if (Add) { |
| 73 | // Sum = LHS + RHS + 0 |
| 74 | KnownOut = ::computeForAddCarry(LHS, RHS, /*CarryZero=*/true, |
| 75 | /*CarryOne=*/false); |
| 76 | } else { |
| 77 | // Sum = LHS + ~RHS + 1 |
| 78 | KnownBits NotRHS = RHS; |
| 79 | std::swap(a&: NotRHS.Zero, b&: NotRHS.One); |
| 80 | KnownOut = ::computeForAddCarry(LHS, RHS: NotRHS, /*CarryZero=*/false, |
| 81 | /*CarryOne=*/true); |
| 82 | } |
| 83 | } |
| 84 | |
| 85 | // Handle add/sub given nsw and/or nuw. |
| 86 | if (NUW) { |
| 87 | if (Add) { |
| 88 | // (add nuw X, Y) |
| 89 | APInt MinVal = LHS.getMinValue().uadd_sat(RHS: RHS.getMinValue()); |
| 90 | // None of the adds can end up overflowing, so min consecutive highbits |
| 91 | // in minimum possible of X + Y must all remain set. |
| 92 | if (NSW) { |
| 93 | unsigned NumBits = MinVal.trunc(width: BitWidth - 1).countl_one(); |
| 94 | // If we have NSW as well, we also know we can't overflow the signbit so |
| 95 | // can start counting from 1 bit back. |
| 96 | KnownOut.One.setBits(loBit: BitWidth - 1 - NumBits, hiBit: BitWidth - 1); |
| 97 | } |
| 98 | KnownOut.One.setHighBits(MinVal.countl_one()); |
| 99 | } else { |
| 100 | // (sub nuw X, Y) |
| 101 | APInt MaxVal = LHS.getMaxValue().usub_sat(RHS: RHS.getMinValue()); |
| 102 | // None of the subs can overflow at any point, so any common high bits |
| 103 | // will subtract away and result in zeros. |
| 104 | if (NSW) { |
| 105 | // If we have NSW as well, we also know we can't overflow the signbit so |
| 106 | // can start counting from 1 bit back. |
| 107 | unsigned NumBits = MaxVal.trunc(width: BitWidth - 1).countl_zero(); |
| 108 | KnownOut.Zero.setBits(loBit: BitWidth - 1 - NumBits, hiBit: BitWidth - 1); |
| 109 | } |
| 110 | KnownOut.Zero.setHighBits(MaxVal.countl_zero()); |
| 111 | } |
| 112 | } |
| 113 | |
| 114 | if (NSW) { |
| 115 | APInt MinVal; |
| 116 | APInt MaxVal; |
| 117 | if (Add) { |
| 118 | // (add nsw X, Y) |
| 119 | MinVal = LHS.getSignedMinValue().sadd_sat(RHS: RHS.getSignedMinValue()); |
| 120 | MaxVal = LHS.getSignedMaxValue().sadd_sat(RHS: RHS.getSignedMaxValue()); |
| 121 | } else { |
| 122 | // (sub nsw X, Y) |
| 123 | MinVal = LHS.getSignedMinValue().ssub_sat(RHS: RHS.getSignedMaxValue()); |
| 124 | MaxVal = LHS.getSignedMaxValue().ssub_sat(RHS: RHS.getSignedMinValue()); |
| 125 | } |
| 126 | if (MinVal.isNonNegative()) { |
| 127 | // If min is non-negative, result will always be non-neg (can't overflow |
| 128 | // around). |
| 129 | unsigned NumBits = MinVal.trunc(width: BitWidth - 1).countl_one(); |
| 130 | KnownOut.One.setBits(loBit: BitWidth - 1 - NumBits, hiBit: BitWidth - 1); |
| 131 | KnownOut.Zero.setSignBit(); |
| 132 | } |
| 133 | if (MaxVal.isNegative()) { |
| 134 | // If max is negative, result will always be neg (can't overflow around). |
| 135 | unsigned NumBits = MaxVal.trunc(width: BitWidth - 1).countl_zero(); |
| 136 | KnownOut.Zero.setBits(loBit: BitWidth - 1 - NumBits, hiBit: BitWidth - 1); |
| 137 | KnownOut.One.setSignBit(); |
| 138 | } |
| 139 | } |
| 140 | |
| 141 | // Just return 0 if the nsw/nuw is violated and we have poison. |
| 142 | if (KnownOut.hasConflict()) |
| 143 | KnownOut.setAllZero(); |
| 144 | return KnownOut; |
| 145 | } |
| 146 | |
| 147 | KnownBits KnownBits::computeForSubBorrow(const KnownBits &LHS, KnownBits RHS, |
| 148 | const KnownBits &Borrow) { |
| 149 | assert(Borrow.getBitWidth() == 1 && "Borrow must be 1-bit" ); |
| 150 | |
| 151 | // LHS - RHS = LHS + ~RHS + 1 |
| 152 | // Carry 1 - Borrow in ::computeForAddCarry |
| 153 | std::swap(a&: RHS.Zero, b&: RHS.One); |
| 154 | return ::computeForAddCarry(LHS, RHS, |
| 155 | /*CarryZero=*/Borrow.One.getBoolValue(), |
| 156 | /*CarryOne=*/Borrow.Zero.getBoolValue()); |
| 157 | } |
| 158 | |
| 159 | KnownBits KnownBits::truncSSat(unsigned BitWidth) const { |
| 160 | unsigned InputBits = getBitWidth(); |
| 161 | APInt MinInRange = APInt::getSignedMinValue(numBits: BitWidth).sext(width: InputBits); |
| 162 | APInt MaxInRange = APInt::getSignedMaxValue(numBits: BitWidth).sext(width: InputBits); |
| 163 | APInt InputMin = getSignedMinValue(); |
| 164 | APInt InputMax = getSignedMaxValue(); |
| 165 | KnownBits Known(BitWidth); |
| 166 | |
| 167 | // Case 1: All values fit - just truncate |
| 168 | if (InputMin.sge(RHS: MinInRange) && InputMax.sle(RHS: MaxInRange)) { |
| 169 | Known = trunc(BitWidth); |
| 170 | } |
| 171 | // Case 2: All saturate to min |
| 172 | else if (InputMax.slt(RHS: MinInRange)) { |
| 173 | Known = KnownBits::makeConstant(C: APInt::getSignedMinValue(numBits: BitWidth)); |
| 174 | } |
| 175 | // Case 3: All saturate to max |
| 176 | else if (InputMin.sgt(RHS: MaxInRange)) { |
| 177 | Known = KnownBits::makeConstant(C: APInt::getSignedMaxValue(numBits: BitWidth)); |
| 178 | } |
| 179 | // Case 4: All non-negative, some fit, some saturate to max |
| 180 | else if (InputMin.isNonNegative()) { |
| 181 | // Output: truncated OR max saturation |
| 182 | // Max saturation has only sign bit as 0 |
| 183 | Known.Zero = APInt(BitWidth, 0); |
| 184 | Known.Zero.setBit(BitWidth - 1); // Sign bit always 0 |
| 185 | // Max saturation has all lower bits as 1, so preserve InputOneLower |
| 186 | Known.One = One.trunc(width: BitWidth); |
| 187 | Known.One.clearBit(BitPosition: BitWidth - 1); // Sign bit is 0, not 1 |
| 188 | } |
| 189 | // Case 5: All negative, some fit, some saturate to min |
| 190 | else if (InputMax.isNegative()) { |
| 191 | // Output: truncated OR min saturation |
| 192 | // Min saturation has all lower bits as 0, so preserve InputZeroLower |
| 193 | Known.Zero = Zero.trunc(width: BitWidth); |
| 194 | Known.Zero.clearBit(BitPosition: BitWidth - 1); // Sign bit is 1, not 0 |
| 195 | // Min saturation has only sign bit as 1 |
| 196 | Known.One = APInt(BitWidth, 0); |
| 197 | Known.One.setBit(BitWidth - 1); // Sign bit always 1 |
| 198 | } |
| 199 | // Case 6: Mixed positive and negative |
| 200 | else { |
| 201 | // Output: min saturation, truncated, or max saturation |
| 202 | APInt InputZeroLower = Zero.trunc(width: BitWidth); |
| 203 | APInt InputOneLower = One.trunc(width: BitWidth); |
| 204 | APInt MinSat = APInt::getSignedMinValue(numBits: BitWidth); |
| 205 | APInt MaxSat = APInt::getSignedMaxValue(numBits: BitWidth); |
| 206 | KnownBits MinSatKB = KnownBits::makeConstant(C: MinSat); |
| 207 | KnownBits MaxSatKB = KnownBits::makeConstant(C: MaxSat); |
| 208 | if (InputMax.sle(RHS: MaxInRange)) { |
| 209 | // Positive values fit, only negatives saturate to min |
| 210 | Known.Zero = InputZeroLower & MinSatKB.Zero; |
| 211 | Known.One = InputOneLower & MinSatKB.One; |
| 212 | } else if (InputMin.sge(RHS: MinInRange)) { |
| 213 | // Negative values fit, only positives saturate to max |
| 214 | Known.Zero = InputZeroLower & MaxSatKB.Zero; |
| 215 | Known.One = InputOneLower & MaxSatKB.One; |
| 216 | } else { |
| 217 | // Both positive and negative values might saturate |
| 218 | Known.Zero = InputZeroLower & MinSatKB.Zero & MaxSatKB.Zero; |
| 219 | Known.One = InputOneLower & MinSatKB.One & MaxSatKB.One; |
| 220 | } |
| 221 | } |
| 222 | return Known; |
| 223 | } |
| 224 | |
| 225 | KnownBits KnownBits::truncSSatU(unsigned BitWidth) const { |
| 226 | unsigned InputBits = getBitWidth(); |
| 227 | APInt MaxInRange = APInt::getAllOnes(numBits: BitWidth).zext(width: InputBits); |
| 228 | APInt InputMin = getSignedMinValue(); |
| 229 | APInt InputMax = getSignedMaxValue(); |
| 230 | KnownBits Known(BitWidth); |
| 231 | |
| 232 | if (isNegative()) { |
| 233 | Known.setAllZero(); |
| 234 | } else if (InputMin.isNonNegative() && InputMax.ule(RHS: MaxInRange)) { |
| 235 | Known = trunc(BitWidth); |
| 236 | } else if (InputMin.isNonNegative() && InputMin.ugt(RHS: MaxInRange)) { |
| 237 | Known.setAllOnes(); |
| 238 | } else if (InputMin.isNonNegative()) { |
| 239 | // All non-negative but mixed: some fit, some saturate to all-ones |
| 240 | // No common zero bits (saturation is all-ones) |
| 241 | Known.Zero = APInt(BitWidth, 0); |
| 242 | // Common one bits: bits that are 1 in input stay 1 |
| 243 | Known.One = One.trunc(width: BitWidth); |
| 244 | } else { |
| 245 | // Mixed: sign bit unknown |
| 246 | if (InputMax.ule(RHS: MaxInRange)) { |
| 247 | // Positive values all fit (no saturation to all-ones) |
| 248 | // Output: all-zeros (negatives) OR truncated (positives) |
| 249 | Known.Zero = Zero.trunc(width: BitWidth); |
| 250 | Known.One = APInt(BitWidth, 0); |
| 251 | } else { |
| 252 | // Positive values might saturate to all-ones |
| 253 | // Output: all-zeros OR truncated OR all-ones |
| 254 | // No common bits |
| 255 | Known.Zero = APInt(BitWidth, 0); |
| 256 | Known.One = APInt(BitWidth, 0); |
| 257 | } |
| 258 | } |
| 259 | return Known; |
| 260 | } |
| 261 | |
| 262 | KnownBits KnownBits::truncUSat(unsigned BitWidth) const { |
| 263 | unsigned InputBits = getBitWidth(); |
| 264 | APInt MaxInRange = APInt::getLowBitsSet(numBits: InputBits, loBitsSet: BitWidth); |
| 265 | APInt InputMax = getMaxValue(); |
| 266 | APInt InputMin = getMinValue(); |
| 267 | KnownBits Known(BitWidth); |
| 268 | |
| 269 | if (InputMax.ule(RHS: MaxInRange)) { |
| 270 | Known = trunc(BitWidth); |
| 271 | } else if (InputMin.ugt(RHS: MaxInRange)) { |
| 272 | Known.setAllOnes(); |
| 273 | } else { |
| 274 | Known.resetAll(); |
| 275 | Known.One = One.trunc(width: BitWidth); |
| 276 | } |
| 277 | return Known; |
| 278 | } |
| 279 | |
| 280 | KnownBits KnownBits::sextInReg(unsigned SrcBitWidth) const { |
| 281 | unsigned BitWidth = getBitWidth(); |
| 282 | assert(0 < SrcBitWidth && SrcBitWidth <= BitWidth && |
| 283 | "Illegal sext-in-register" ); |
| 284 | |
| 285 | if (SrcBitWidth == BitWidth) |
| 286 | return *this; |
| 287 | |
| 288 | unsigned ExtBits = BitWidth - SrcBitWidth; |
| 289 | KnownBits Result; |
| 290 | Result.One = One << ExtBits; |
| 291 | Result.Zero = Zero << ExtBits; |
| 292 | Result.One.ashrInPlace(ShiftAmt: ExtBits); |
| 293 | Result.Zero.ashrInPlace(ShiftAmt: ExtBits); |
| 294 | return Result; |
| 295 | } |
| 296 | |
| 297 | KnownBits KnownBits::makeGE(const APInt &Val) const { |
| 298 | // Count the number of leading bit positions where our underlying value is |
| 299 | // known to be less than or equal to Val. |
| 300 | unsigned N = (Zero | Val).countl_one(); |
| 301 | |
| 302 | // For each of those bit positions, if Val has a 1 in that bit then our |
| 303 | // underlying value must also have a 1. |
| 304 | APInt MaskedVal(Val); |
| 305 | MaskedVal.clearLowBits(loBits: getBitWidth() - N); |
| 306 | return KnownBits(Zero, One | MaskedVal); |
| 307 | } |
| 308 | |
| 309 | KnownBits KnownBits::umax(const KnownBits &LHS, const KnownBits &RHS) { |
| 310 | // If we can prove that LHS >= RHS then use LHS as the result. Likewise for |
| 311 | // RHS. Ideally our caller would already have spotted these cases and |
| 312 | // optimized away the umax operation, but we handle them here for |
| 313 | // completeness. |
| 314 | if (LHS.getMinValue().uge(RHS: RHS.getMaxValue())) |
| 315 | return LHS; |
| 316 | if (RHS.getMinValue().uge(RHS: LHS.getMaxValue())) |
| 317 | return RHS; |
| 318 | |
| 319 | // If the result of the umax is LHS then it must be greater than or equal to |
| 320 | // the minimum possible value of RHS. Likewise for RHS. Any known bits that |
| 321 | // are common to these two values are also known in the result. |
| 322 | KnownBits L = LHS.makeGE(Val: RHS.getMinValue()); |
| 323 | KnownBits R = RHS.makeGE(Val: LHS.getMinValue()); |
| 324 | return L.intersectWith(RHS: R); |
| 325 | } |
| 326 | |
| 327 | KnownBits KnownBits::umin(const KnownBits &LHS, const KnownBits &RHS) { |
| 328 | // Flip the range of values: [0, 0xFFFFFFFF] <-> [0xFFFFFFFF, 0] |
| 329 | auto Flip = [](const KnownBits &Val) { return KnownBits(Val.One, Val.Zero); }; |
| 330 | return Flip(umax(LHS: Flip(LHS), RHS: Flip(RHS))); |
| 331 | } |
| 332 | |
| 333 | KnownBits KnownBits::smax(const KnownBits &LHS, const KnownBits &RHS) { |
| 334 | return flipSignBit(Val: umax(LHS: flipSignBit(Val: LHS), RHS: flipSignBit(Val: RHS))); |
| 335 | } |
| 336 | |
| 337 | KnownBits KnownBits::smin(const KnownBits &LHS, const KnownBits &RHS) { |
| 338 | // Flip the range of values: [-0x80000000, 0x7FFFFFFF] <-> [0xFFFFFFFF, 0] |
| 339 | auto Flip = [](const KnownBits &Val) { |
| 340 | unsigned SignBitPosition = Val.getBitWidth() - 1; |
| 341 | APInt Zero = Val.One; |
| 342 | APInt One = Val.Zero; |
| 343 | Zero.setBitVal(BitPosition: SignBitPosition, BitValue: Val.Zero[SignBitPosition]); |
| 344 | One.setBitVal(BitPosition: SignBitPosition, BitValue: Val.One[SignBitPosition]); |
| 345 | return KnownBits(Zero, One); |
| 346 | }; |
| 347 | return Flip(umax(LHS: Flip(LHS), RHS: Flip(RHS))); |
| 348 | } |
| 349 | |
| 350 | KnownBits KnownBits::abdu(const KnownBits &LHS, const KnownBits &RHS) { |
| 351 | // If we know which argument is larger, return (sub LHS, RHS) or |
| 352 | // (sub RHS, LHS) directly. |
| 353 | if (LHS.getMinValue().uge(RHS: RHS.getMaxValue())) |
| 354 | return computeForAddSub(/*Add=*/false, /*NSW=*/false, /*NUW=*/false, LHS, |
| 355 | RHS); |
| 356 | if (RHS.getMinValue().uge(RHS: LHS.getMaxValue())) |
| 357 | return computeForAddSub(/*Add=*/false, /*NSW=*/false, /*NUW=*/false, LHS: RHS, |
| 358 | RHS: LHS); |
| 359 | |
| 360 | // By construction, the subtraction in abdu never has unsigned overflow. |
| 361 | // Find the common bits between (sub nuw LHS, RHS) and (sub nuw RHS, LHS). |
| 362 | KnownBits Diff0 = |
| 363 | computeForAddSub(/*Add=*/false, /*NSW=*/false, /*NUW=*/true, LHS, RHS); |
| 364 | KnownBits Diff1 = |
| 365 | computeForAddSub(/*Add=*/false, /*NSW=*/false, /*NUW=*/true, LHS: RHS, RHS: LHS); |
| 366 | return Diff0.intersectWith(RHS: Diff1); |
| 367 | } |
| 368 | |
| 369 | KnownBits KnownBits::abds(KnownBits LHS, KnownBits RHS) { |
| 370 | // If we know which argument is larger, return (sub LHS, RHS) or |
| 371 | // (sub RHS, LHS) directly. |
| 372 | if (LHS.getSignedMinValue().sge(RHS: RHS.getSignedMaxValue())) |
| 373 | return computeForAddSub(/*Add=*/false, /*NSW=*/false, /*NUW=*/false, LHS, |
| 374 | RHS); |
| 375 | if (RHS.getSignedMinValue().sge(RHS: LHS.getSignedMaxValue())) |
| 376 | return computeForAddSub(/*Add=*/false, /*NSW=*/false, /*NUW=*/false, LHS: RHS, |
| 377 | RHS: LHS); |
| 378 | |
| 379 | // Shift both arguments from the signed range to the unsigned range, e.g. from |
| 380 | // [-0x80, 0x7F] to [0, 0xFF]. This allows us to use "sub nuw" below just like |
| 381 | // abdu does. |
| 382 | // Note that we can't just use "sub nsw" instead because abds has signed |
| 383 | // inputs but an unsigned result, which makes the overflow conditions |
| 384 | // different. |
| 385 | unsigned SignBitPosition = LHS.getBitWidth() - 1; |
| 386 | for (auto Arg : {&LHS, &RHS}) { |
| 387 | bool Tmp = Arg->Zero[SignBitPosition]; |
| 388 | Arg->Zero.setBitVal(BitPosition: SignBitPosition, BitValue: Arg->One[SignBitPosition]); |
| 389 | Arg->One.setBitVal(BitPosition: SignBitPosition, BitValue: Tmp); |
| 390 | } |
| 391 | |
| 392 | // Find the common bits between (sub nuw LHS, RHS) and (sub nuw RHS, LHS). |
| 393 | KnownBits Diff0 = |
| 394 | computeForAddSub(/*Add=*/false, /*NSW=*/false, /*NUW=*/true, LHS, RHS); |
| 395 | KnownBits Diff1 = |
| 396 | computeForAddSub(/*Add=*/false, /*NSW=*/false, /*NUW=*/true, LHS: RHS, RHS: LHS); |
| 397 | return Diff0.intersectWith(RHS: Diff1); |
| 398 | } |
| 399 | |
| 400 | static unsigned getMaxShiftAmount(const APInt &MaxValue, unsigned BitWidth) { |
| 401 | if (isPowerOf2_32(Value: BitWidth)) |
| 402 | return MaxValue.extractBitsAsZExtValue(numBits: Log2_32(Value: BitWidth), bitPosition: 0); |
| 403 | // This is only an approximate upper bound. |
| 404 | return MaxValue.getLimitedValue(Limit: BitWidth - 1); |
| 405 | } |
| 406 | |
| 407 | KnownBits KnownBits::shl(const KnownBits &LHS, const KnownBits &RHS, bool NUW, |
| 408 | bool NSW, bool ShAmtNonZero) { |
| 409 | unsigned BitWidth = LHS.getBitWidth(); |
| 410 | auto ShiftByConst = [&](const KnownBits &LHS, unsigned ShiftAmt) { |
| 411 | KnownBits Known; |
| 412 | bool ShiftedOutZero, ShiftedOutOne; |
| 413 | Known.Zero = LHS.Zero.ushl_ov(Amt: ShiftAmt, Overflow&: ShiftedOutZero); |
| 414 | Known.Zero.setLowBits(ShiftAmt); |
| 415 | Known.One = LHS.One.ushl_ov(Amt: ShiftAmt, Overflow&: ShiftedOutOne); |
| 416 | |
| 417 | // All cases returning poison have been handled by MaxShiftAmount already. |
| 418 | if (NSW) { |
| 419 | if (NUW && ShiftAmt != 0) |
| 420 | // NUW means we can assume anything shifted out was a zero. |
| 421 | ShiftedOutZero = true; |
| 422 | |
| 423 | if (ShiftedOutZero) |
| 424 | Known.makeNonNegative(); |
| 425 | else if (ShiftedOutOne) |
| 426 | Known.makeNegative(); |
| 427 | } |
| 428 | return Known; |
| 429 | }; |
| 430 | |
| 431 | // Fast path for a common case when LHS is completely unknown. |
| 432 | KnownBits Known(BitWidth); |
| 433 | unsigned MinShiftAmount = RHS.getMinValue().getLimitedValue(Limit: BitWidth); |
| 434 | if (MinShiftAmount == 0 && ShAmtNonZero) |
| 435 | MinShiftAmount = 1; |
| 436 | if (LHS.isUnknown()) { |
| 437 | Known.Zero.setLowBits(MinShiftAmount); |
| 438 | if (NUW && NSW && MinShiftAmount != 0) |
| 439 | Known.makeNonNegative(); |
| 440 | return Known; |
| 441 | } |
| 442 | |
| 443 | // Determine maximum shift amount, taking NUW/NSW flags into account. |
| 444 | APInt MaxValue = RHS.getMaxValue(); |
| 445 | unsigned MaxShiftAmount = getMaxShiftAmount(MaxValue, BitWidth); |
| 446 | if (NUW && NSW) |
| 447 | MaxShiftAmount = std::min(a: MaxShiftAmount, b: LHS.countMaxLeadingZeros() - 1); |
| 448 | if (NUW) |
| 449 | MaxShiftAmount = std::min(a: MaxShiftAmount, b: LHS.countMaxLeadingZeros()); |
| 450 | if (NSW) |
| 451 | MaxShiftAmount = std::min( |
| 452 | a: MaxShiftAmount, |
| 453 | b: std::max(a: LHS.countMaxLeadingZeros(), b: LHS.countMaxLeadingOnes()) - 1); |
| 454 | |
| 455 | // Fast path for common case where the shift amount is unknown. |
| 456 | if (MinShiftAmount == 0 && MaxShiftAmount == BitWidth - 1 && |
| 457 | isPowerOf2_32(Value: BitWidth)) { |
| 458 | Known.Zero.setLowBits(LHS.countMinTrailingZeros()); |
| 459 | if (LHS.isAllOnes()) |
| 460 | Known.One.setSignBit(); |
| 461 | if (NSW) { |
| 462 | if (LHS.isNonNegative()) |
| 463 | Known.makeNonNegative(); |
| 464 | if (LHS.isNegative()) |
| 465 | Known.makeNegative(); |
| 466 | } |
| 467 | return Known; |
| 468 | } |
| 469 | |
| 470 | // Find the common bits from all possible shifts. |
| 471 | unsigned ShiftAmtZeroMask = RHS.Zero.zextOrTrunc(width: 32).getZExtValue(); |
| 472 | unsigned ShiftAmtOneMask = RHS.One.zextOrTrunc(width: 32).getZExtValue(); |
| 473 | Known.setAllConflict(); |
| 474 | for (unsigned ShiftAmt = MinShiftAmount; ShiftAmt <= MaxShiftAmount; |
| 475 | ++ShiftAmt) { |
| 476 | // Skip if the shift amount is impossible. |
| 477 | if ((ShiftAmtZeroMask & ShiftAmt) != 0 || |
| 478 | (ShiftAmtOneMask | ShiftAmt) != ShiftAmt) |
| 479 | continue; |
| 480 | Known = Known.intersectWith(RHS: ShiftByConst(LHS, ShiftAmt)); |
| 481 | if (Known.isUnknown()) |
| 482 | break; |
| 483 | } |
| 484 | |
| 485 | // All shift amounts may result in poison. |
| 486 | if (Known.hasConflict()) |
| 487 | Known.setAllZero(); |
| 488 | return Known; |
| 489 | } |
| 490 | |
| 491 | KnownBits KnownBits::lshr(const KnownBits &LHS, const KnownBits &RHS, |
| 492 | bool ShAmtNonZero, bool Exact) { |
| 493 | unsigned BitWidth = LHS.getBitWidth(); |
| 494 | auto ShiftByConst = [&](const KnownBits &LHS, unsigned ShiftAmt) { |
| 495 | KnownBits Known = LHS; |
| 496 | Known >>= ShiftAmt; |
| 497 | // High bits are known zero. |
| 498 | Known.Zero.setHighBits(ShiftAmt); |
| 499 | return Known; |
| 500 | }; |
| 501 | |
| 502 | // Fast path for a common case when LHS is completely unknown. |
| 503 | KnownBits Known(BitWidth); |
| 504 | unsigned MinShiftAmount = RHS.getMinValue().getLimitedValue(Limit: BitWidth); |
| 505 | if (MinShiftAmount == 0 && ShAmtNonZero) |
| 506 | MinShiftAmount = 1; |
| 507 | if (LHS.isUnknown()) { |
| 508 | Known.Zero.setHighBits(MinShiftAmount); |
| 509 | return Known; |
| 510 | } |
| 511 | |
| 512 | // Find the common bits from all possible shifts. |
| 513 | APInt MaxValue = RHS.getMaxValue(); |
| 514 | unsigned MaxShiftAmount = getMaxShiftAmount(MaxValue, BitWidth); |
| 515 | |
| 516 | // If exact, bound MaxShiftAmount to first known 1 in LHS. |
| 517 | if (Exact) { |
| 518 | unsigned FirstOne = LHS.countMaxTrailingZeros(); |
| 519 | if (FirstOne < MinShiftAmount) { |
| 520 | // Always poison. Return zero because we don't like returning conflict. |
| 521 | Known.setAllZero(); |
| 522 | return Known; |
| 523 | } |
| 524 | MaxShiftAmount = std::min(a: MaxShiftAmount, b: FirstOne); |
| 525 | } |
| 526 | |
| 527 | unsigned ShiftAmtZeroMask = RHS.Zero.zextOrTrunc(width: 32).getZExtValue(); |
| 528 | unsigned ShiftAmtOneMask = RHS.One.zextOrTrunc(width: 32).getZExtValue(); |
| 529 | Known.setAllConflict(); |
| 530 | for (unsigned ShiftAmt = MinShiftAmount; ShiftAmt <= MaxShiftAmount; |
| 531 | ++ShiftAmt) { |
| 532 | // Skip if the shift amount is impossible. |
| 533 | if ((ShiftAmtZeroMask & ShiftAmt) != 0 || |
| 534 | (ShiftAmtOneMask | ShiftAmt) != ShiftAmt) |
| 535 | continue; |
| 536 | Known = Known.intersectWith(RHS: ShiftByConst(LHS, ShiftAmt)); |
| 537 | if (Known.isUnknown()) |
| 538 | break; |
| 539 | } |
| 540 | |
| 541 | // All shift amounts may result in poison. |
| 542 | if (Known.hasConflict()) |
| 543 | Known.setAllZero(); |
| 544 | return Known; |
| 545 | } |
| 546 | |
| 547 | KnownBits KnownBits::ashr(const KnownBits &LHS, const KnownBits &RHS, |
| 548 | bool ShAmtNonZero, bool Exact) { |
| 549 | unsigned BitWidth = LHS.getBitWidth(); |
| 550 | auto ShiftByConst = [&](const KnownBits &LHS, unsigned ShiftAmt) { |
| 551 | KnownBits Known = LHS; |
| 552 | Known.Zero.ashrInPlace(ShiftAmt); |
| 553 | Known.One.ashrInPlace(ShiftAmt); |
| 554 | return Known; |
| 555 | }; |
| 556 | |
| 557 | // Fast path for a common case when LHS is completely unknown. |
| 558 | KnownBits Known(BitWidth); |
| 559 | unsigned MinShiftAmount = RHS.getMinValue().getLimitedValue(Limit: BitWidth); |
| 560 | if (MinShiftAmount == 0 && ShAmtNonZero) |
| 561 | MinShiftAmount = 1; |
| 562 | if (LHS.isUnknown()) { |
| 563 | if (MinShiftAmount == BitWidth) { |
| 564 | // Always poison. Return zero because we don't like returning conflict. |
| 565 | Known.setAllZero(); |
| 566 | return Known; |
| 567 | } |
| 568 | return Known; |
| 569 | } |
| 570 | |
| 571 | // Find the common bits from all possible shifts. |
| 572 | APInt MaxValue = RHS.getMaxValue(); |
| 573 | unsigned MaxShiftAmount = getMaxShiftAmount(MaxValue, BitWidth); |
| 574 | |
| 575 | // If exact, bound MaxShiftAmount to first known 1 in LHS. |
| 576 | if (Exact) { |
| 577 | unsigned FirstOne = LHS.countMaxTrailingZeros(); |
| 578 | if (FirstOne < MinShiftAmount) { |
| 579 | // Always poison. Return zero because we don't like returning conflict. |
| 580 | Known.setAllZero(); |
| 581 | return Known; |
| 582 | } |
| 583 | MaxShiftAmount = std::min(a: MaxShiftAmount, b: FirstOne); |
| 584 | } |
| 585 | |
| 586 | unsigned ShiftAmtZeroMask = RHS.Zero.zextOrTrunc(width: 32).getZExtValue(); |
| 587 | unsigned ShiftAmtOneMask = RHS.One.zextOrTrunc(width: 32).getZExtValue(); |
| 588 | Known.setAllConflict(); |
| 589 | for (unsigned ShiftAmt = MinShiftAmount; ShiftAmt <= MaxShiftAmount; |
| 590 | ++ShiftAmt) { |
| 591 | // Skip if the shift amount is impossible. |
| 592 | if ((ShiftAmtZeroMask & ShiftAmt) != 0 || |
| 593 | (ShiftAmtOneMask | ShiftAmt) != ShiftAmt) |
| 594 | continue; |
| 595 | Known = Known.intersectWith(RHS: ShiftByConst(LHS, ShiftAmt)); |
| 596 | if (Known.isUnknown()) |
| 597 | break; |
| 598 | } |
| 599 | |
| 600 | // All shift amounts may result in poison. |
| 601 | if (Known.hasConflict()) |
| 602 | Known.setAllZero(); |
| 603 | return Known; |
| 604 | } |
| 605 | |
| 606 | KnownBits KnownBits::clmul(const KnownBits &LHS, const KnownBits &RHS) { |
| 607 | KnownBits Res = |
| 608 | makeConstant(C: APIntOps::clmul(LHS: LHS.getMinValue(), RHS: RHS.getMinValue())); |
| 609 | |
| 610 | // This is the same operation as clmul except it accumulates the result with |
| 611 | // an OR instead of an XOR. |
| 612 | auto ClMulOr = [](const APInt &LHS, const APInt &RHS) { |
| 613 | unsigned BW = LHS.getBitWidth(); |
| 614 | assert(BW == RHS.getBitWidth() && "Operand mismatch" ); |
| 615 | APInt Result(BW, 0); |
| 616 | for (unsigned I : |
| 617 | seq(Size: std::min(a: RHS.getActiveBits(), b: BW - LHS.countr_zero()))) |
| 618 | if (RHS[I]) |
| 619 | Result |= LHS << I; |
| 620 | return Result; |
| 621 | }; |
| 622 | |
| 623 | // Bits in the result are known if, for every corresponding pair of input |
| 624 | // bits, both input bits are known or either input bit is known to be zero. |
| 625 | APInt Known = ~(ClMulOr(~LHS.Zero & ~LHS.One, ~RHS.Zero) | |
| 626 | ClMulOr(~LHS.Zero, ~RHS.Zero & ~RHS.One)); |
| 627 | Res.Zero &= Known; |
| 628 | Res.One &= Known; |
| 629 | |
| 630 | return Res; |
| 631 | } |
| 632 | |
| 633 | std::optional<bool> KnownBits::eq(const KnownBits &LHS, const KnownBits &RHS) { |
| 634 | if (LHS.isConstant() && RHS.isConstant()) |
| 635 | return std::optional<bool>(LHS.getConstant() == RHS.getConstant()); |
| 636 | if (LHS.One.intersects(RHS: RHS.Zero) || RHS.One.intersects(RHS: LHS.Zero)) |
| 637 | return std::optional<bool>(false); |
| 638 | return std::nullopt; |
| 639 | } |
| 640 | |
| 641 | std::optional<bool> KnownBits::ne(const KnownBits &LHS, const KnownBits &RHS) { |
| 642 | if (std::optional<bool> KnownEQ = eq(LHS, RHS)) |
| 643 | return std::optional<bool>(!*KnownEQ); |
| 644 | return std::nullopt; |
| 645 | } |
| 646 | |
| 647 | std::optional<bool> KnownBits::ugt(const KnownBits &LHS, const KnownBits &RHS) { |
| 648 | // LHS >u RHS -> false if umax(LHS) <= umax(RHS) |
| 649 | if (LHS.getMaxValue().ule(RHS: RHS.getMinValue())) |
| 650 | return std::optional<bool>(false); |
| 651 | // LHS >u RHS -> true if umin(LHS) > umax(RHS) |
| 652 | if (LHS.getMinValue().ugt(RHS: RHS.getMaxValue())) |
| 653 | return std::optional<bool>(true); |
| 654 | return std::nullopt; |
| 655 | } |
| 656 | |
| 657 | std::optional<bool> KnownBits::uge(const KnownBits &LHS, const KnownBits &RHS) { |
| 658 | if (std::optional<bool> IsUGT = ugt(LHS: RHS, RHS: LHS)) |
| 659 | return std::optional<bool>(!*IsUGT); |
| 660 | return std::nullopt; |
| 661 | } |
| 662 | |
| 663 | std::optional<bool> KnownBits::ult(const KnownBits &LHS, const KnownBits &RHS) { |
| 664 | return ugt(LHS: RHS, RHS: LHS); |
| 665 | } |
| 666 | |
| 667 | std::optional<bool> KnownBits::ule(const KnownBits &LHS, const KnownBits &RHS) { |
| 668 | return uge(LHS: RHS, RHS: LHS); |
| 669 | } |
| 670 | |
| 671 | std::optional<bool> KnownBits::sgt(const KnownBits &LHS, const KnownBits &RHS) { |
| 672 | // LHS >s RHS -> false if smax(LHS) <= smax(RHS) |
| 673 | if (LHS.getSignedMaxValue().sle(RHS: RHS.getSignedMinValue())) |
| 674 | return std::optional<bool>(false); |
| 675 | // LHS >s RHS -> true if smin(LHS) > smax(RHS) |
| 676 | if (LHS.getSignedMinValue().sgt(RHS: RHS.getSignedMaxValue())) |
| 677 | return std::optional<bool>(true); |
| 678 | return std::nullopt; |
| 679 | } |
| 680 | |
| 681 | std::optional<bool> KnownBits::sge(const KnownBits &LHS, const KnownBits &RHS) { |
| 682 | if (std::optional<bool> KnownSGT = sgt(LHS: RHS, RHS: LHS)) |
| 683 | return std::optional<bool>(!*KnownSGT); |
| 684 | return std::nullopt; |
| 685 | } |
| 686 | |
| 687 | std::optional<bool> KnownBits::slt(const KnownBits &LHS, const KnownBits &RHS) { |
| 688 | return sgt(LHS: RHS, RHS: LHS); |
| 689 | } |
| 690 | |
| 691 | std::optional<bool> KnownBits::sle(const KnownBits &LHS, const KnownBits &RHS) { |
| 692 | return sge(LHS: RHS, RHS: LHS); |
| 693 | } |
| 694 | |
| 695 | KnownBits KnownBits::abs(bool IntMinIsPoison) const { |
| 696 | // If the source's MSB is zero then we know the rest of the bits already. |
| 697 | if (isNonNegative()) |
| 698 | return *this; |
| 699 | |
| 700 | // Absolute value preserves trailing zero count. |
| 701 | KnownBits KnownAbs(getBitWidth()); |
| 702 | |
| 703 | // If the input is negative, then abs(x) == -x. |
| 704 | if (isNegative()) { |
| 705 | KnownBits Tmp = *this; |
| 706 | // Special case for IntMinIsPoison. We know the sign bit is set and we know |
| 707 | // all the rest of the bits except one to be zero. Since we have |
| 708 | // IntMinIsPoison, that final bit MUST be a one, as otherwise the input is |
| 709 | // INT_MIN. |
| 710 | if (IntMinIsPoison && (Zero.popcount() + 2) == getBitWidth()) |
| 711 | Tmp.One.setBit(countMinTrailingZeros()); |
| 712 | |
| 713 | KnownAbs = computeForAddSub( |
| 714 | /*Add*/ false, NSW: IntMinIsPoison, /*NUW=*/false, |
| 715 | LHS: KnownBits::makeConstant(C: APInt(getBitWidth(), 0)), RHS: Tmp); |
| 716 | |
| 717 | // One more special case for IntMinIsPoison. If we don't know any ones other |
| 718 | // than the signbit, we know for certain that all the unknowns can't be |
| 719 | // zero. So if we know high zero bits, but have unknown low bits, we know |
| 720 | // for certain those high-zero bits will end up as one. This is because, |
| 721 | // the low bits can't be all zeros, so the +1 in (~x + 1) cannot carry up |
| 722 | // to the high bits. If we know a known INT_MIN input skip this. The result |
| 723 | // is poison anyways. |
| 724 | if (IntMinIsPoison && Tmp.countMinPopulation() == 1 && |
| 725 | Tmp.countMaxPopulation() != 1) { |
| 726 | Tmp.One.clearSignBit(); |
| 727 | Tmp.Zero.setSignBit(); |
| 728 | KnownAbs.One.setBits(loBit: getBitWidth() - Tmp.countMinLeadingZeros(), |
| 729 | hiBit: getBitWidth() - 1); |
| 730 | } |
| 731 | |
| 732 | } else { |
| 733 | unsigned MaxTZ = countMaxTrailingZeros(); |
| 734 | unsigned MinTZ = countMinTrailingZeros(); |
| 735 | |
| 736 | KnownAbs.Zero.setLowBits(MinTZ); |
| 737 | // If we know the lowest set 1, then preserve it. |
| 738 | if (MaxTZ == MinTZ && MaxTZ < getBitWidth()) |
| 739 | KnownAbs.One.setBit(MaxTZ); |
| 740 | |
| 741 | // We only know that the absolute values's MSB will be zero if INT_MIN is |
| 742 | // poison, or there is a set bit that isn't the sign bit (otherwise it could |
| 743 | // be INT_MIN). |
| 744 | if (IntMinIsPoison || (!One.isZero() && !One.isMinSignedValue())) { |
| 745 | KnownAbs.One.clearSignBit(); |
| 746 | KnownAbs.Zero.setSignBit(); |
| 747 | } |
| 748 | } |
| 749 | |
| 750 | return KnownAbs; |
| 751 | } |
| 752 | |
| 753 | KnownBits KnownBits::reduceAdd(unsigned NumElts) const { |
| 754 | if (NumElts == 0) |
| 755 | return KnownBits(getBitWidth()); |
| 756 | |
| 757 | unsigned BitWidth = getBitWidth(); |
| 758 | KnownBits Result(BitWidth); |
| 759 | |
| 760 | if (isConstant()) |
| 761 | // If all elements are the same constant, we can simply compute it |
| 762 | return KnownBits::makeConstant(C: NumElts * getConstant()); |
| 763 | |
| 764 | // The main idea is as follows. |
| 765 | // |
| 766 | // If KnownBits for each element has L leading zeros then |
| 767 | // X_i < 2^(W - L) for every i from [1, N]. |
| 768 | // |
| 769 | // ADD X_i <= ADD max(X_i) = N * max(X_i) |
| 770 | // < N * 2^(W - L) |
| 771 | // < 2^(W - L + ceil(log2(N))) |
| 772 | // |
| 773 | // As the result, we can conclude that |
| 774 | // |
| 775 | // L' = L - ceil(log2(N)) |
| 776 | // |
| 777 | // Similar logic can be applied to leading ones. |
| 778 | unsigned LostBits = Log2_32_Ceil(Value: NumElts); |
| 779 | |
| 780 | if (isNonNegative()) { |
| 781 | unsigned LeadingZeros = countMinLeadingZeros(); |
| 782 | LeadingZeros = LeadingZeros > LostBits ? LeadingZeros - LostBits : 0; |
| 783 | Result.Zero.setHighBits(LeadingZeros); |
| 784 | } else if (isNegative()) { |
| 785 | unsigned LeadingOnes = countMinLeadingOnes(); |
| 786 | LeadingOnes = LeadingOnes > LostBits ? LeadingOnes - LostBits : 0; |
| 787 | Result.One.setHighBits(LeadingOnes); |
| 788 | } |
| 789 | |
| 790 | return Result; |
| 791 | } |
| 792 | |
| 793 | static KnownBits computeForSatAddSub(bool Add, bool Signed, |
| 794 | const KnownBits &LHS, |
| 795 | const KnownBits &RHS) { |
| 796 | // We don't see NSW even for sadd/ssub as we want to check if the result has |
| 797 | // signed overflow. |
| 798 | unsigned BitWidth = LHS.getBitWidth(); |
| 799 | |
| 800 | std::optional<bool> Overflow; |
| 801 | // Even if we can't entirely rule out overflow, we may be able to rule out |
| 802 | // overflow in one direction. This allows us to potentially keep some of the |
| 803 | // add/sub bits. I.e if we can't overflow in the positive direction we won't |
| 804 | // clamp to INT_MAX so we can keep low 0s from the add/sub result. |
| 805 | bool MayNegClamp = true; |
| 806 | bool MayPosClamp = true; |
| 807 | if (Signed) { |
| 808 | // Easy cases we can rule out any overflow. |
| 809 | if (Add && ((LHS.isNegative() && RHS.isNonNegative()) || |
| 810 | (LHS.isNonNegative() && RHS.isNegative()))) |
| 811 | Overflow = false; |
| 812 | else if (!Add && (((LHS.isNegative() && RHS.isNegative()) || |
| 813 | (LHS.isNonNegative() && RHS.isNonNegative())))) |
| 814 | Overflow = false; |
| 815 | else { |
| 816 | // Check if we may overflow. If we can't rule out overflow then check if |
| 817 | // we can rule out a direction at least. |
| 818 | KnownBits UnsignedLHS = LHS; |
| 819 | KnownBits UnsignedRHS = RHS; |
| 820 | // Get version of LHS/RHS with clearer signbit. This allows us to detect |
| 821 | // how the addition/subtraction might overflow into the signbit. Then |
| 822 | // using the actual known signbits of LHS/RHS, we can figure out which |
| 823 | // overflows are/aren't possible. |
| 824 | UnsignedLHS.One.clearSignBit(); |
| 825 | UnsignedLHS.Zero.setSignBit(); |
| 826 | UnsignedRHS.One.clearSignBit(); |
| 827 | UnsignedRHS.Zero.setSignBit(); |
| 828 | KnownBits Res = |
| 829 | KnownBits::computeForAddSub(Add, /*NSW=*/false, |
| 830 | /*NUW=*/false, LHS: UnsignedLHS, RHS: UnsignedRHS); |
| 831 | if (Add) { |
| 832 | if (Res.isNegative()) { |
| 833 | // Only overflow scenario is Pos + Pos. |
| 834 | MayNegClamp = false; |
| 835 | // Pos + Pos will overflow with extra signbit. |
| 836 | if (LHS.isNonNegative() && RHS.isNonNegative()) |
| 837 | Overflow = true; |
| 838 | } else if (Res.isNonNegative()) { |
| 839 | // Only overflow scenario is Neg + Neg |
| 840 | MayPosClamp = false; |
| 841 | // Neg + Neg will overflow without extra signbit. |
| 842 | if (LHS.isNegative() && RHS.isNegative()) |
| 843 | Overflow = true; |
| 844 | } |
| 845 | // We will never clamp to the opposite sign of N-bit result. |
| 846 | if (LHS.isNegative() || RHS.isNegative()) |
| 847 | MayPosClamp = false; |
| 848 | if (LHS.isNonNegative() || RHS.isNonNegative()) |
| 849 | MayNegClamp = false; |
| 850 | } else { |
| 851 | if (Res.isNegative()) { |
| 852 | // Only overflow scenario is Neg - Pos. |
| 853 | MayPosClamp = false; |
| 854 | // Neg - Pos will overflow with extra signbit. |
| 855 | if (LHS.isNegative() && RHS.isNonNegative()) |
| 856 | Overflow = true; |
| 857 | } else if (Res.isNonNegative()) { |
| 858 | // Only overflow scenario is Pos - Neg. |
| 859 | MayNegClamp = false; |
| 860 | // Pos - Neg will overflow without extra signbit. |
| 861 | if (LHS.isNonNegative() && RHS.isNegative()) |
| 862 | Overflow = true; |
| 863 | } |
| 864 | // We will never clamp to the opposite sign of N-bit result. |
| 865 | if (LHS.isNegative() || RHS.isNonNegative()) |
| 866 | MayPosClamp = false; |
| 867 | if (LHS.isNonNegative() || RHS.isNegative()) |
| 868 | MayNegClamp = false; |
| 869 | } |
| 870 | } |
| 871 | // If we have ruled out all clamping, we will never overflow. |
| 872 | if (!MayNegClamp && !MayPosClamp) |
| 873 | Overflow = false; |
| 874 | } else if (Add) { |
| 875 | // uadd.sat |
| 876 | bool Of; |
| 877 | (void)LHS.getMaxValue().uadd_ov(RHS: RHS.getMaxValue(), Overflow&: Of); |
| 878 | if (!Of) { |
| 879 | Overflow = false; |
| 880 | } else { |
| 881 | (void)LHS.getMinValue().uadd_ov(RHS: RHS.getMinValue(), Overflow&: Of); |
| 882 | if (Of) |
| 883 | Overflow = true; |
| 884 | } |
| 885 | } else { |
| 886 | // usub.sat |
| 887 | bool Of; |
| 888 | (void)LHS.getMinValue().usub_ov(RHS: RHS.getMaxValue(), Overflow&: Of); |
| 889 | if (!Of) { |
| 890 | Overflow = false; |
| 891 | } else { |
| 892 | (void)LHS.getMaxValue().usub_ov(RHS: RHS.getMinValue(), Overflow&: Of); |
| 893 | if (Of) |
| 894 | Overflow = true; |
| 895 | } |
| 896 | } |
| 897 | |
| 898 | KnownBits Res = KnownBits::computeForAddSub(Add, /*NSW=*/Signed, |
| 899 | /*NUW=*/!Signed, LHS, RHS); |
| 900 | |
| 901 | if (Overflow) { |
| 902 | // We know whether or not we overflowed. |
| 903 | if (!(*Overflow)) { |
| 904 | // No overflow. |
| 905 | return Res; |
| 906 | } |
| 907 | |
| 908 | // We overflowed |
| 909 | APInt C; |
| 910 | if (Signed) { |
| 911 | // sadd.sat / ssub.sat |
| 912 | assert(!LHS.isSignUnknown() && |
| 913 | "We somehow know overflow without knowing input sign" ); |
| 914 | C = LHS.isNegative() ? APInt::getSignedMinValue(numBits: BitWidth) |
| 915 | : APInt::getSignedMaxValue(numBits: BitWidth); |
| 916 | } else if (Add) { |
| 917 | // uadd.sat |
| 918 | C = APInt::getMaxValue(numBits: BitWidth); |
| 919 | } else { |
| 920 | // uadd.sat |
| 921 | C = APInt::getMinValue(numBits: BitWidth); |
| 922 | } |
| 923 | |
| 924 | Res.One = C; |
| 925 | Res.Zero = ~C; |
| 926 | return Res; |
| 927 | } |
| 928 | |
| 929 | // We don't know if we overflowed. |
| 930 | if (Signed) { |
| 931 | // sadd.sat/ssub.sat |
| 932 | // We can keep our information about the sign bits. |
| 933 | if (MayPosClamp) |
| 934 | Res.Zero.clearLowBits(loBits: BitWidth - 1); |
| 935 | if (MayNegClamp) |
| 936 | Res.One.clearLowBits(loBits: BitWidth - 1); |
| 937 | } else if (Add) { |
| 938 | // uadd.sat |
| 939 | // We need to clear all the known zeros as we can only use the leading ones. |
| 940 | Res.Zero.clearAllBits(); |
| 941 | } else { |
| 942 | // usub.sat |
| 943 | // We need to clear all the known ones as we can only use the leading zero. |
| 944 | Res.One.clearAllBits(); |
| 945 | } |
| 946 | |
| 947 | return Res; |
| 948 | } |
| 949 | |
| 950 | KnownBits KnownBits::sadd_sat(const KnownBits &LHS, const KnownBits &RHS) { |
| 951 | return computeForSatAddSub(/*Add*/ true, /*Signed*/ true, LHS, RHS); |
| 952 | } |
| 953 | KnownBits KnownBits::ssub_sat(const KnownBits &LHS, const KnownBits &RHS) { |
| 954 | return computeForSatAddSub(/*Add*/ false, /*Signed*/ true, LHS, RHS); |
| 955 | } |
| 956 | KnownBits KnownBits::uadd_sat(const KnownBits &LHS, const KnownBits &RHS) { |
| 957 | return computeForSatAddSub(/*Add*/ true, /*Signed*/ false, LHS, RHS); |
| 958 | } |
| 959 | KnownBits KnownBits::usub_sat(const KnownBits &LHS, const KnownBits &RHS) { |
| 960 | return computeForSatAddSub(/*Add*/ false, /*Signed*/ false, LHS, RHS); |
| 961 | } |
| 962 | |
| 963 | static KnownBits avgComputeU(KnownBits LHS, KnownBits RHS, bool IsCeil) { |
| 964 | unsigned BitWidth = LHS.getBitWidth(); |
| 965 | LHS = LHS.zext(BitWidth: BitWidth + 1); |
| 966 | RHS = RHS.zext(BitWidth: BitWidth + 1); |
| 967 | LHS = |
| 968 | computeForAddCarry(LHS, RHS, /*CarryZero*/ !IsCeil, /*CarryOne*/ IsCeil); |
| 969 | LHS = LHS.extractBits(NumBits: BitWidth, BitPosition: 1); |
| 970 | return LHS; |
| 971 | } |
| 972 | |
| 973 | KnownBits KnownBits::avgFloorS(const KnownBits &LHS, const KnownBits &RHS) { |
| 974 | return flipSignBit(Val: avgFloorU(LHS: flipSignBit(Val: LHS), RHS: flipSignBit(Val: RHS))); |
| 975 | } |
| 976 | |
| 977 | KnownBits KnownBits::avgFloorU(const KnownBits &LHS, const KnownBits &RHS) { |
| 978 | return avgComputeU(LHS, RHS, /*IsCeil=*/false); |
| 979 | } |
| 980 | |
| 981 | KnownBits KnownBits::avgCeilS(const KnownBits &LHS, const KnownBits &RHS) { |
| 982 | return flipSignBit(Val: avgCeilU(LHS: flipSignBit(Val: LHS), RHS: flipSignBit(Val: RHS))); |
| 983 | } |
| 984 | |
| 985 | KnownBits KnownBits::avgCeilU(const KnownBits &LHS, const KnownBits &RHS) { |
| 986 | return avgComputeU(LHS, RHS, /*IsCeil=*/true); |
| 987 | } |
| 988 | |
| 989 | KnownBits KnownBits::mul(const KnownBits &LHS, const KnownBits &RHS, |
| 990 | bool NoUndefSelfMultiply) { |
| 991 | unsigned BitWidth = LHS.getBitWidth(); |
| 992 | assert(BitWidth == RHS.getBitWidth() && "Operand mismatch" ); |
| 993 | assert((!NoUndefSelfMultiply || LHS == RHS) && |
| 994 | "Self multiplication knownbits mismatch" ); |
| 995 | |
| 996 | // Compute the high known-0 bits by multiplying the unsigned max of each side. |
| 997 | // Conservatively, M active bits * N active bits results in M + N bits in the |
| 998 | // result. But if we know a value is a power-of-2 for example, then this |
| 999 | // computes one more leading zero. |
| 1000 | // TODO: This could be generalized to number of sign bits (negative numbers). |
| 1001 | APInt UMaxLHS = LHS.getMaxValue(); |
| 1002 | APInt UMaxRHS = RHS.getMaxValue(); |
| 1003 | |
| 1004 | // For leading zeros in the result to be valid, the unsigned max product must |
| 1005 | // fit in the bitwidth (it must not overflow). |
| 1006 | bool HasOverflow; |
| 1007 | APInt UMaxResult = UMaxLHS.umul_ov(RHS: UMaxRHS, Overflow&: HasOverflow); |
| 1008 | unsigned LeadZ = HasOverflow ? 0 : UMaxResult.countl_zero(); |
| 1009 | |
| 1010 | // The result of the bottom bits of an integer multiply can be |
| 1011 | // inferred by looking at the bottom bits of both operands and |
| 1012 | // multiplying them together. |
| 1013 | // We can infer at least the minimum number of known trailing bits |
| 1014 | // of both operands. Depending on number of trailing zeros, we can |
| 1015 | // infer more bits, because (a*b) <=> ((a/m) * (b/n)) * (m*n) assuming |
| 1016 | // a and b are divisible by m and n respectively. |
| 1017 | // We then calculate how many of those bits are inferrable and set |
| 1018 | // the output. For example, the i8 mul: |
| 1019 | // a = XXXX1100 (12) |
| 1020 | // b = XXXX1110 (14) |
| 1021 | // We know the bottom 3 bits are zero since the first can be divided by |
| 1022 | // 4 and the second by 2, thus having ((12/4) * (14/2)) * (2*4). |
| 1023 | // Applying the multiplication to the trimmed arguments gets: |
| 1024 | // XX11 (3) |
| 1025 | // X111 (7) |
| 1026 | // ------- |
| 1027 | // XX11 |
| 1028 | // XX11 |
| 1029 | // XX11 |
| 1030 | // XX11 |
| 1031 | // ------- |
| 1032 | // XXXXX01 |
| 1033 | // Which allows us to infer the 2 LSBs. Since we're multiplying the result |
| 1034 | // by 8, the bottom 3 bits will be 0, so we can infer a total of 5 bits. |
| 1035 | // The proof for this can be described as: |
| 1036 | // Pre: (C1 >= 0) && (C1 < (1 << C5)) && (C2 >= 0) && (C2 < (1 << C6)) && |
| 1037 | // (C7 == (1 << (umin(countTrailingZeros(C1), C5) + |
| 1038 | // umin(countTrailingZeros(C2), C6) + |
| 1039 | // umin(C5 - umin(countTrailingZeros(C1), C5), |
| 1040 | // C6 - umin(countTrailingZeros(C2), C6)))) - 1) |
| 1041 | // %aa = shl i8 %a, C5 |
| 1042 | // %bb = shl i8 %b, C6 |
| 1043 | // %aaa = or i8 %aa, C1 |
| 1044 | // %bbb = or i8 %bb, C2 |
| 1045 | // %mul = mul i8 %aaa, %bbb |
| 1046 | // %mask = and i8 %mul, C7 |
| 1047 | // => |
| 1048 | // %mask = i8 ((C1*C2)&C7) |
| 1049 | // Where C5, C6 describe the known bits of %a, %b |
| 1050 | // C1, C2 describe the known bottom bits of %a, %b. |
| 1051 | // C7 describes the mask of the known bits of the result. |
| 1052 | |
| 1053 | // How many times we'd be able to divide each argument by 2 (shr by 1). |
| 1054 | // This gives us the number of trailing zeros on the multiplication result. |
| 1055 | unsigned TrailBitsKnownLHS = (LHS.Zero | LHS.One).countr_one(); |
| 1056 | unsigned TrailBitsKnownRHS = (RHS.Zero | RHS.One).countr_one(); |
| 1057 | unsigned TrailZeroLHS = LHS.countMinTrailingZeros(); |
| 1058 | unsigned TrailZeroRHS = RHS.countMinTrailingZeros(); |
| 1059 | unsigned TrailZ = TrailZeroLHS + TrailZeroRHS; |
| 1060 | |
| 1061 | // Figure out the fewest known-bits operand. |
| 1062 | unsigned SmallestOperand = std::min(a: TrailBitsKnownLHS - TrailZeroLHS, |
| 1063 | b: TrailBitsKnownRHS - TrailZeroRHS); |
| 1064 | unsigned ResultBitsKnown = std::min(a: SmallestOperand + TrailZ, b: BitWidth); |
| 1065 | |
| 1066 | // The lower ResultBitsKnown bits of this are known. |
| 1067 | APInt BottomKnown = LHS.One * RHS.One; |
| 1068 | |
| 1069 | KnownBits Res(BitWidth); |
| 1070 | Res.Zero.setHighBits(LeadZ); |
| 1071 | Res.Zero |= (~BottomKnown).getLoBits(numBits: ResultBitsKnown); |
| 1072 | Res.One = BottomKnown.getLoBits(numBits: ResultBitsKnown); |
| 1073 | |
| 1074 | if (NoUndefSelfMultiply) { |
| 1075 | // If X has at least TZ trailing zeroes, then bit (2 * TZ + 1) must be zero. |
| 1076 | unsigned TwoTZP1 = 2 * TrailZeroLHS + 1; |
| 1077 | if (TwoTZP1 < BitWidth) |
| 1078 | Res.Zero.setBit(TwoTZP1); |
| 1079 | |
| 1080 | // If X has exactly TZ trailing zeros, then bit (2 * TZ + 2) must also be |
| 1081 | // zero. |
| 1082 | if (TrailZeroLHS < BitWidth && LHS.One[TrailZeroLHS]) { |
| 1083 | unsigned TwoTZP2 = TwoTZP1 + 1; |
| 1084 | if (TwoTZP2 < BitWidth) |
| 1085 | Res.Zero.setBit(TwoTZP2); |
| 1086 | } |
| 1087 | } |
| 1088 | |
| 1089 | return Res; |
| 1090 | } |
| 1091 | |
| 1092 | KnownBits KnownBits::mulhs(const KnownBits &LHS, const KnownBits &RHS) { |
| 1093 | unsigned BitWidth = LHS.getBitWidth(); |
| 1094 | assert(BitWidth == RHS.getBitWidth() && "Operand mismatch" ); |
| 1095 | KnownBits WideLHS = LHS.sext(BitWidth: 2 * BitWidth); |
| 1096 | KnownBits WideRHS = RHS.sext(BitWidth: 2 * BitWidth); |
| 1097 | return mul(LHS: WideLHS, RHS: WideRHS).extractBits(NumBits: BitWidth, BitPosition: BitWidth); |
| 1098 | } |
| 1099 | |
| 1100 | KnownBits KnownBits::mulhu(const KnownBits &LHS, const KnownBits &RHS) { |
| 1101 | unsigned BitWidth = LHS.getBitWidth(); |
| 1102 | assert(BitWidth == RHS.getBitWidth() && "Operand mismatch" ); |
| 1103 | KnownBits WideLHS = LHS.zext(BitWidth: 2 * BitWidth); |
| 1104 | KnownBits WideRHS = RHS.zext(BitWidth: 2 * BitWidth); |
| 1105 | return mul(LHS: WideLHS, RHS: WideRHS).extractBits(NumBits: BitWidth, BitPosition: BitWidth); |
| 1106 | } |
| 1107 | |
| 1108 | static KnownBits divComputeLowBit(KnownBits Known, const KnownBits &LHS, |
| 1109 | const KnownBits &RHS, bool Exact) { |
| 1110 | |
| 1111 | if (!Exact) |
| 1112 | return Known; |
| 1113 | |
| 1114 | // If LHS is Odd, the result is Odd no matter what. |
| 1115 | // Odd / Odd -> Odd |
| 1116 | // Odd / Even -> Impossible (because its exact division) |
| 1117 | if (LHS.One[0]) |
| 1118 | Known.One.setBit(0); |
| 1119 | |
| 1120 | int MinTZ = |
| 1121 | (int)LHS.countMinTrailingZeros() - (int)RHS.countMaxTrailingZeros(); |
| 1122 | int MaxTZ = |
| 1123 | (int)LHS.countMaxTrailingZeros() - (int)RHS.countMinTrailingZeros(); |
| 1124 | if (MinTZ >= 0) { |
| 1125 | // Result has at least MinTZ trailing zeros. |
| 1126 | Known.Zero.setLowBits(MinTZ); |
| 1127 | if (MinTZ == MaxTZ) { |
| 1128 | // Result has exactly MinTZ trailing zeros. |
| 1129 | Known.One.setBit(MinTZ); |
| 1130 | } |
| 1131 | } else if (MaxTZ < 0) { |
| 1132 | // Poison Result |
| 1133 | Known.setAllZero(); |
| 1134 | } |
| 1135 | |
| 1136 | // In the KnownBits exhaustive tests, we have poison inputs for exact values |
| 1137 | // a LOT. If we have a conflict, just return all zeros. |
| 1138 | if (Known.hasConflict()) |
| 1139 | Known.setAllZero(); |
| 1140 | |
| 1141 | return Known; |
| 1142 | } |
| 1143 | |
| 1144 | KnownBits KnownBits::sdiv(const KnownBits &LHS, const KnownBits &RHS, |
| 1145 | bool Exact) { |
| 1146 | // Equivalent of `udiv`. We must have caught this before it was folded. |
| 1147 | if (LHS.isNonNegative() && RHS.isNonNegative()) |
| 1148 | return udiv(LHS, RHS, Exact); |
| 1149 | |
| 1150 | unsigned BitWidth = LHS.getBitWidth(); |
| 1151 | KnownBits Known(BitWidth); |
| 1152 | |
| 1153 | if (LHS.isZero() || RHS.isZero()) { |
| 1154 | // Result is either known Zero or UB. Return Zero either way. |
| 1155 | // Checking this earlier saves us a lot of special cases later on. |
| 1156 | Known.setAllZero(); |
| 1157 | return Known; |
| 1158 | } |
| 1159 | |
| 1160 | std::optional<APInt> Res; |
| 1161 | if (LHS.isNegative() && RHS.isNegative()) { |
| 1162 | // Result non-negative. |
| 1163 | APInt Denom = RHS.getSignedMaxValue(); |
| 1164 | APInt Num = LHS.getSignedMinValue(); |
| 1165 | // INT_MIN/-1 would be a poison result (impossible). Estimate the division |
| 1166 | // as signed max (we will only set sign bit in the result). |
| 1167 | Res = (Num.isMinSignedValue() && Denom.isAllOnes()) |
| 1168 | ? APInt::getSignedMaxValue(numBits: BitWidth) |
| 1169 | : Num.sdiv(RHS: Denom); |
| 1170 | } else if (LHS.isNegative() && RHS.isNonNegative()) { |
| 1171 | // Result is negative if Exact OR -LHS u>= RHS. |
| 1172 | if (Exact || (-LHS.getSignedMaxValue()).uge(RHS: RHS.getSignedMaxValue())) { |
| 1173 | APInt Denom = RHS.getSignedMinValue(); |
| 1174 | APInt Num = LHS.getSignedMinValue(); |
| 1175 | Res = Denom.isZero() ? Num : Num.sdiv(RHS: Denom); |
| 1176 | } |
| 1177 | } else if (LHS.isStrictlyPositive() && RHS.isNegative()) { |
| 1178 | // Result is negative if Exact OR LHS u>= -RHS. |
| 1179 | if (Exact || LHS.getSignedMinValue().uge(RHS: -RHS.getSignedMinValue())) { |
| 1180 | APInt Denom = RHS.getSignedMaxValue(); |
| 1181 | APInt Num = LHS.getSignedMaxValue(); |
| 1182 | Res = Num.sdiv(RHS: Denom); |
| 1183 | } |
| 1184 | } |
| 1185 | |
| 1186 | if (Res) { |
| 1187 | if (Res->isNonNegative()) { |
| 1188 | unsigned LeadZ = Res->countLeadingZeros(); |
| 1189 | Known.Zero.setHighBits(LeadZ); |
| 1190 | } else { |
| 1191 | unsigned LeadO = Res->countLeadingOnes(); |
| 1192 | Known.One.setHighBits(LeadO); |
| 1193 | } |
| 1194 | } |
| 1195 | |
| 1196 | Known = divComputeLowBit(Known, LHS, RHS, Exact); |
| 1197 | return Known; |
| 1198 | } |
| 1199 | |
| 1200 | KnownBits KnownBits::udiv(const KnownBits &LHS, const KnownBits &RHS, |
| 1201 | bool Exact) { |
| 1202 | unsigned BitWidth = LHS.getBitWidth(); |
| 1203 | KnownBits Known(BitWidth); |
| 1204 | |
| 1205 | if (LHS.isZero() || RHS.isZero()) { |
| 1206 | // Result is either known Zero or UB. Return Zero either way. |
| 1207 | // Checking this earlier saves us a lot of special cases later on. |
| 1208 | Known.setAllZero(); |
| 1209 | return Known; |
| 1210 | } |
| 1211 | |
| 1212 | // We can figure out the minimum number of upper zero bits by doing |
| 1213 | // MaxNumerator / MinDenominator. If the Numerator gets smaller or Denominator |
| 1214 | // gets larger, the number of upper zero bits increases. |
| 1215 | APInt MinDenom = RHS.getMinValue(); |
| 1216 | APInt MaxNum = LHS.getMaxValue(); |
| 1217 | APInt MaxRes = MinDenom.isZero() ? MaxNum : MaxNum.udiv(RHS: MinDenom); |
| 1218 | |
| 1219 | unsigned LeadZ = MaxRes.countLeadingZeros(); |
| 1220 | |
| 1221 | Known.Zero.setHighBits(LeadZ); |
| 1222 | Known = divComputeLowBit(Known, LHS, RHS, Exact); |
| 1223 | |
| 1224 | return Known; |
| 1225 | } |
| 1226 | |
| 1227 | KnownBits KnownBits::remGetLowBits(const KnownBits &LHS, const KnownBits &RHS) { |
| 1228 | unsigned BitWidth = LHS.getBitWidth(); |
| 1229 | if (!RHS.isZero() && RHS.Zero[0]) { |
| 1230 | // rem X, Y where Y[0:N] is zero will preserve X[0:N] in the result. |
| 1231 | unsigned RHSZeros = RHS.countMinTrailingZeros(); |
| 1232 | APInt Mask = APInt::getLowBitsSet(numBits: BitWidth, loBitsSet: RHSZeros); |
| 1233 | APInt OnesMask = LHS.One & Mask; |
| 1234 | APInt ZerosMask = LHS.Zero & Mask; |
| 1235 | return KnownBits(ZerosMask, OnesMask); |
| 1236 | } |
| 1237 | return KnownBits(BitWidth); |
| 1238 | } |
| 1239 | |
| 1240 | KnownBits KnownBits::urem(const KnownBits &LHS, const KnownBits &RHS) { |
| 1241 | KnownBits Known = remGetLowBits(LHS, RHS); |
| 1242 | if (RHS.isConstant() && RHS.getConstant().isPowerOf2()) { |
| 1243 | // NB: Low bits set in `remGetLowBits`. |
| 1244 | APInt HighBits = ~(RHS.getConstant() - 1); |
| 1245 | Known.Zero |= std::move(HighBits); |
| 1246 | return Known; |
| 1247 | } |
| 1248 | |
| 1249 | // Since the result is less than or equal to either operand, any leading |
| 1250 | // zero bits in either operand must also exist in the result. |
| 1251 | uint32_t Leaders = |
| 1252 | std::max(a: LHS.countMinLeadingZeros(), b: RHS.countMinLeadingZeros()); |
| 1253 | Known.Zero.setHighBits(Leaders); |
| 1254 | return Known; |
| 1255 | } |
| 1256 | |
| 1257 | KnownBits KnownBits::srem(const KnownBits &LHS, const KnownBits &RHS) { |
| 1258 | KnownBits Known = remGetLowBits(LHS, RHS); |
| 1259 | if (RHS.isConstant() && RHS.getConstant().isPowerOf2()) { |
| 1260 | // NB: Low bits are set in `remGetLowBits`. |
| 1261 | APInt LowBits = RHS.getConstant() - 1; |
| 1262 | // If the first operand is non-negative or has all low bits zero, then |
| 1263 | // the upper bits are all zero. |
| 1264 | if (LHS.isNonNegative() || LowBits.isSubsetOf(RHS: LHS.Zero)) |
| 1265 | Known.Zero |= ~LowBits; |
| 1266 | |
| 1267 | // If the first operand is negative and not all low bits are zero, then |
| 1268 | // the upper bits are all one. |
| 1269 | if (LHS.isNegative() && LowBits.intersects(RHS: LHS.One)) |
| 1270 | Known.One |= ~LowBits; |
| 1271 | return Known; |
| 1272 | } |
| 1273 | |
| 1274 | // The sign bit is the LHS's sign bit, except when the result of the |
| 1275 | // remainder is zero. The magnitude of the result should be less than or |
| 1276 | // equal to the magnitude of either operand. |
| 1277 | if (LHS.isNegative() && Known.isNonZero()) |
| 1278 | Known.One.setHighBits( |
| 1279 | std::max(a: LHS.countMinLeadingOnes(), b: RHS.countMinSignBits())); |
| 1280 | else if (LHS.isNonNegative()) |
| 1281 | Known.Zero.setHighBits( |
| 1282 | std::max(a: LHS.countMinLeadingZeros(), b: RHS.countMinSignBits())); |
| 1283 | return Known; |
| 1284 | } |
| 1285 | |
| 1286 | KnownBits &KnownBits::operator&=(const KnownBits &RHS) { |
| 1287 | // Result bit is 0 if either operand bit is 0. |
| 1288 | Zero |= RHS.Zero; |
| 1289 | // Result bit is 1 if both operand bits are 1. |
| 1290 | One &= RHS.One; |
| 1291 | return *this; |
| 1292 | } |
| 1293 | |
| 1294 | KnownBits &KnownBits::operator|=(const KnownBits &RHS) { |
| 1295 | // Result bit is 0 if both operand bits are 0. |
| 1296 | Zero &= RHS.Zero; |
| 1297 | // Result bit is 1 if either operand bit is 1. |
| 1298 | One |= RHS.One; |
| 1299 | return *this; |
| 1300 | } |
| 1301 | |
| 1302 | KnownBits &KnownBits::operator^=(const KnownBits &RHS) { |
| 1303 | // Result bit is 0 if both operand bits are 0 or both are 1. |
| 1304 | APInt Z = (Zero & RHS.Zero) | (One & RHS.One); |
| 1305 | // Result bit is 1 if one operand bit is 0 and the other is 1. |
| 1306 | One = (Zero & RHS.One) | (One & RHS.Zero); |
| 1307 | Zero = std::move(Z); |
| 1308 | return *this; |
| 1309 | } |
| 1310 | |
| 1311 | KnownBits KnownBits::blsi() const { |
| 1312 | unsigned BitWidth = getBitWidth(); |
| 1313 | KnownBits Known(Zero, APInt(BitWidth, 0)); |
| 1314 | unsigned Max = countMaxTrailingZeros(); |
| 1315 | Known.Zero.setBitsFrom(std::min(a: Max + 1, b: BitWidth)); |
| 1316 | unsigned Min = countMinTrailingZeros(); |
| 1317 | if (Max == Min && Max < BitWidth) |
| 1318 | Known.One.setBit(Max); |
| 1319 | return Known; |
| 1320 | } |
| 1321 | |
| 1322 | KnownBits KnownBits::blsmsk() const { |
| 1323 | unsigned BitWidth = getBitWidth(); |
| 1324 | KnownBits Known(BitWidth); |
| 1325 | unsigned Max = countMaxTrailingZeros(); |
| 1326 | Known.Zero.setBitsFrom(std::min(a: Max + 1, b: BitWidth)); |
| 1327 | unsigned Min = countMinTrailingZeros(); |
| 1328 | Known.One.setLowBits(std::min(a: Min + 1, b: BitWidth)); |
| 1329 | return Known; |
| 1330 | } |
| 1331 | |
| 1332 | void KnownBits::print(raw_ostream &OS) const { |
| 1333 | unsigned BitWidth = getBitWidth(); |
| 1334 | for (unsigned I = 0; I < BitWidth; ++I) { |
| 1335 | unsigned N = BitWidth - I - 1; |
| 1336 | if (Zero[N] && One[N]) |
| 1337 | OS << "!" ; |
| 1338 | else if (Zero[N]) |
| 1339 | OS << "0" ; |
| 1340 | else if (One[N]) |
| 1341 | OS << "1" ; |
| 1342 | else |
| 1343 | OS << "?" ; |
| 1344 | } |
| 1345 | } |
| 1346 | |
| 1347 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 1348 | LLVM_DUMP_METHOD void KnownBits::dump() const { |
| 1349 | print(dbgs()); |
| 1350 | dbgs() << "\n" ; |
| 1351 | } |
| 1352 | #endif |
| 1353 | |