| 1 | //===- Attributor.cpp - Module-wide attribute deduction -------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file implements an interprocedural pass that deduces and/or propagates |
| 10 | // attributes. This is done in an abstract interpretation style fixpoint |
| 11 | // iteration. See the Attributor.h file comment and the class descriptions in |
| 12 | // that file for more information. |
| 13 | // |
| 14 | //===----------------------------------------------------------------------===// |
| 15 | |
| 16 | #include "llvm/Transforms/IPO/Attributor.h" |
| 17 | |
| 18 | #include "llvm/ADT/ArrayRef.h" |
| 19 | #include "llvm/ADT/PointerIntPair.h" |
| 20 | #include "llvm/ADT/STLExtras.h" |
| 21 | #include "llvm/ADT/SmallPtrSet.h" |
| 22 | #include "llvm/ADT/Statistic.h" |
| 23 | #include "llvm/Analysis/AliasAnalysis.h" |
| 24 | #include "llvm/Analysis/CallGraph.h" |
| 25 | #include "llvm/Analysis/InlineCost.h" |
| 26 | #include "llvm/Analysis/MemoryBuiltins.h" |
| 27 | #include "llvm/Analysis/MustExecute.h" |
| 28 | #include "llvm/IR/AttributeMask.h" |
| 29 | #include "llvm/IR/Attributes.h" |
| 30 | #include "llvm/IR/Constant.h" |
| 31 | #include "llvm/IR/ConstantFold.h" |
| 32 | #include "llvm/IR/Constants.h" |
| 33 | #include "llvm/IR/DataLayout.h" |
| 34 | #include "llvm/IR/GlobalValue.h" |
| 35 | #include "llvm/IR/GlobalVariable.h" |
| 36 | #include "llvm/IR/Instruction.h" |
| 37 | #include "llvm/IR/Instructions.h" |
| 38 | #include "llvm/IR/IntrinsicInst.h" |
| 39 | #include "llvm/IR/LLVMContext.h" |
| 40 | #include "llvm/IR/ValueHandle.h" |
| 41 | #include "llvm/Support/Casting.h" |
| 42 | #include "llvm/Support/CommandLine.h" |
| 43 | #include "llvm/Support/Debug.h" |
| 44 | #include "llvm/Support/DebugCounter.h" |
| 45 | #include "llvm/Support/FileSystem.h" |
| 46 | #include "llvm/Support/GraphWriter.h" |
| 47 | #include "llvm/Support/ModRef.h" |
| 48 | #include "llvm/Support/raw_ostream.h" |
| 49 | #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| 50 | #include "llvm/Transforms/Utils/Cloning.h" |
| 51 | #include "llvm/Transforms/Utils/Local.h" |
| 52 | #include <cstdint> |
| 53 | #include <memory> |
| 54 | |
| 55 | #ifdef EXPENSIVE_CHECKS |
| 56 | #include "llvm/IR/Verifier.h" |
| 57 | #endif |
| 58 | |
| 59 | #include <cassert> |
| 60 | #include <optional> |
| 61 | #include <string> |
| 62 | |
| 63 | using namespace llvm; |
| 64 | |
| 65 | #define DEBUG_TYPE "attributor" |
| 66 | #define VERBOSE_DEBUG_TYPE DEBUG_TYPE "-verbose" |
| 67 | |
| 68 | DEBUG_COUNTER(ManifestDBGCounter, "attributor-manifest" , |
| 69 | "Determine what attributes are manifested in the IR" ); |
| 70 | |
| 71 | STATISTIC(NumFnDeleted, "Number of function deleted" ); |
| 72 | STATISTIC(NumFnWithExactDefinition, |
| 73 | "Number of functions with exact definitions" ); |
| 74 | STATISTIC(NumFnWithoutExactDefinition, |
| 75 | "Number of functions without exact definitions" ); |
| 76 | STATISTIC(NumFnShallowWrappersCreated, "Number of shallow wrappers created" ); |
| 77 | STATISTIC(NumAttributesTimedOut, |
| 78 | "Number of abstract attributes timed out before fixpoint" ); |
| 79 | STATISTIC(NumAttributesValidFixpoint, |
| 80 | "Number of abstract attributes in a valid fixpoint state" ); |
| 81 | STATISTIC(NumAttributesManifested, |
| 82 | "Number of abstract attributes manifested in IR" ); |
| 83 | |
| 84 | // TODO: Determine a good default value. |
| 85 | // |
| 86 | // In the LLVM-TS and SPEC2006, 32 seems to not induce compile time overheads |
| 87 | // (when run with the first 5 abstract attributes). The results also indicate |
| 88 | // that we never reach 32 iterations but always find a fixpoint sooner. |
| 89 | // |
| 90 | // This will become more evolved once we perform two interleaved fixpoint |
| 91 | // iterations: bottom-up and top-down. |
| 92 | static cl::opt<unsigned> |
| 93 | SetFixpointIterations("attributor-max-iterations" , cl::Hidden, |
| 94 | cl::desc("Maximal number of fixpoint iterations." ), |
| 95 | cl::init(Val: 32)); |
| 96 | |
| 97 | static cl::opt<unsigned> |
| 98 | MaxSpecializationPerCB("attributor-max-specializations-per-call-base" , |
| 99 | cl::Hidden, |
| 100 | cl::desc("Maximal number of callees specialized for " |
| 101 | "a call base" ), |
| 102 | cl::init(UINT32_MAX)); |
| 103 | |
| 104 | static cl::opt<unsigned, true> MaxInitializationChainLengthX( |
| 105 | "attributor-max-initialization-chain-length" , cl::Hidden, |
| 106 | cl::desc( |
| 107 | "Maximal number of chained initializations (to avoid stack overflows)" ), |
| 108 | cl::location(L&: MaxInitializationChainLength), cl::init(Val: 1024)); |
| 109 | unsigned llvm::MaxInitializationChainLength; |
| 110 | |
| 111 | static cl::opt<bool> AnnotateDeclarationCallSites( |
| 112 | "attributor-annotate-decl-cs" , cl::Hidden, |
| 113 | cl::desc("Annotate call sites of function declarations." ), cl::init(Val: false)); |
| 114 | |
| 115 | static cl::opt<bool> EnableHeapToStack("enable-heap-to-stack-conversion" , |
| 116 | cl::init(Val: true), cl::Hidden); |
| 117 | |
| 118 | static cl::opt<bool> |
| 119 | AllowShallowWrappers("attributor-allow-shallow-wrappers" , cl::Hidden, |
| 120 | cl::desc("Allow the Attributor to create shallow " |
| 121 | "wrappers for non-exact definitions." ), |
| 122 | cl::init(Val: false)); |
| 123 | |
| 124 | static cl::opt<bool> |
| 125 | AllowDeepWrapper("attributor-allow-deep-wrappers" , cl::Hidden, |
| 126 | cl::desc("Allow the Attributor to use IP information " |
| 127 | "derived from non-exact functions via cloning" ), |
| 128 | cl::init(Val: false)); |
| 129 | |
| 130 | // These options can only used for debug builds. |
| 131 | #ifndef NDEBUG |
| 132 | static cl::list<std::string> |
| 133 | SeedAllowList("attributor-seed-allow-list" , cl::Hidden, |
| 134 | cl::desc("Comma separated list of attribute names that are " |
| 135 | "allowed to be seeded." ), |
| 136 | cl::CommaSeparated); |
| 137 | |
| 138 | static cl::list<std::string> FunctionSeedAllowList( |
| 139 | "attributor-function-seed-allow-list" , cl::Hidden, |
| 140 | cl::desc("Comma separated list of function names that are " |
| 141 | "allowed to be seeded." ), |
| 142 | cl::CommaSeparated); |
| 143 | #endif |
| 144 | |
| 145 | static cl::opt<bool> |
| 146 | DumpDepGraph("attributor-dump-dep-graph" , cl::Hidden, |
| 147 | cl::desc("Dump the dependency graph to dot files." ), |
| 148 | cl::init(Val: false)); |
| 149 | |
| 150 | static cl::opt<std::string> DepGraphDotFileNamePrefix( |
| 151 | "attributor-depgraph-dot-filename-prefix" , cl::Hidden, |
| 152 | cl::desc("The prefix used for the CallGraph dot file names." )); |
| 153 | |
| 154 | static cl::opt<bool> ViewDepGraph("attributor-view-dep-graph" , cl::Hidden, |
| 155 | cl::desc("View the dependency graph." ), |
| 156 | cl::init(Val: false)); |
| 157 | |
| 158 | static cl::opt<bool> PrintDependencies("attributor-print-dep" , cl::Hidden, |
| 159 | cl::desc("Print attribute dependencies" ), |
| 160 | cl::init(Val: false)); |
| 161 | |
| 162 | static cl::opt<bool> EnableCallSiteSpecific( |
| 163 | "attributor-enable-call-site-specific-deduction" , cl::Hidden, |
| 164 | cl::desc("Allow the Attributor to do call site specific analysis" ), |
| 165 | cl::init(Val: false)); |
| 166 | |
| 167 | static cl::opt<bool> |
| 168 | PrintCallGraph("attributor-print-call-graph" , cl::Hidden, |
| 169 | cl::desc("Print Attributor's internal call graph" ), |
| 170 | cl::init(Val: false)); |
| 171 | |
| 172 | static cl::opt<bool> SimplifyAllLoads("attributor-simplify-all-loads" , |
| 173 | cl::Hidden, |
| 174 | cl::desc("Try to simplify all loads." ), |
| 175 | cl::init(Val: true)); |
| 176 | |
| 177 | static cl::opt<bool> CloseWorldAssumption( |
| 178 | "attributor-assume-closed-world" , cl::Hidden, |
| 179 | cl::desc("Should a closed world be assumed, or not. Default if not set." )); |
| 180 | |
| 181 | /// Logic operators for the change status enum class. |
| 182 | /// |
| 183 | ///{ |
| 184 | ChangeStatus llvm::operator|(ChangeStatus L, ChangeStatus R) { |
| 185 | return L == ChangeStatus::CHANGED ? L : R; |
| 186 | } |
| 187 | ChangeStatus &llvm::operator|=(ChangeStatus &L, ChangeStatus R) { |
| 188 | L = L | R; |
| 189 | return L; |
| 190 | } |
| 191 | ChangeStatus llvm::operator&(ChangeStatus L, ChangeStatus R) { |
| 192 | return L == ChangeStatus::UNCHANGED ? L : R; |
| 193 | } |
| 194 | ChangeStatus &llvm::operator&=(ChangeStatus &L, ChangeStatus R) { |
| 195 | L = L & R; |
| 196 | return L; |
| 197 | } |
| 198 | ///} |
| 199 | |
| 200 | bool AA::isGPU(const Module &M) { |
| 201 | Triple T(M.getTargetTriple()); |
| 202 | return T.isGPU(); |
| 203 | } |
| 204 | |
| 205 | bool AA::isNoSyncInst(Attributor &A, const Instruction &I, |
| 206 | const AbstractAttribute &QueryingAA) { |
| 207 | // We are looking for volatile instructions or non-relaxed atomics. |
| 208 | if (const auto *CB = dyn_cast<CallBase>(Val: &I)) { |
| 209 | if (CB->hasFnAttr(Kind: Attribute::NoSync)) |
| 210 | return true; |
| 211 | |
| 212 | // Non-convergent and readnone imply nosync. |
| 213 | if (!CB->isConvergent() && !CB->mayReadOrWriteMemory()) |
| 214 | return true; |
| 215 | |
| 216 | if (AANoSync::isNoSyncIntrinsic(I: &I)) |
| 217 | return true; |
| 218 | |
| 219 | bool IsKnownNoSync; |
| 220 | return AA::hasAssumedIRAttr<Attribute::NoSync>( |
| 221 | A, QueryingAA: &QueryingAA, IRP: IRPosition::callsite_function(CB: *CB), |
| 222 | DepClass: DepClassTy::OPTIONAL, IsKnown&: IsKnownNoSync); |
| 223 | } |
| 224 | |
| 225 | if (!I.mayReadOrWriteMemory()) |
| 226 | return true; |
| 227 | |
| 228 | return !I.isVolatile() && !AANoSync::isNonRelaxedAtomic(I: &I); |
| 229 | } |
| 230 | |
| 231 | bool AA::isDynamicallyUnique(Attributor &A, const AbstractAttribute &QueryingAA, |
| 232 | const Value &V, bool ForAnalysisOnly) { |
| 233 | // TODO: See the AAInstanceInfo class comment. |
| 234 | if (!ForAnalysisOnly) |
| 235 | return false; |
| 236 | auto *InstanceInfoAA = A.getAAFor<AAInstanceInfo>( |
| 237 | QueryingAA, IRP: IRPosition::value(V), DepClass: DepClassTy::OPTIONAL); |
| 238 | return InstanceInfoAA && InstanceInfoAA->isAssumedUniqueForAnalysis(); |
| 239 | } |
| 240 | |
| 241 | Constant * |
| 242 | AA::getInitialValueForObj(Attributor &A, const AbstractAttribute &QueryingAA, |
| 243 | Value &Obj, Type &Ty, const TargetLibraryInfo *TLI, |
| 244 | const DataLayout &DL, AA::RangeTy *RangePtr) { |
| 245 | if (Constant *Init = getInitialValueOfAllocation(V: &Obj, TLI, Ty: &Ty)) |
| 246 | return Init; |
| 247 | auto *GV = dyn_cast<GlobalVariable>(Val: &Obj); |
| 248 | if (!GV) |
| 249 | return nullptr; |
| 250 | |
| 251 | bool UsedAssumedInformation = false; |
| 252 | Constant *Initializer = nullptr; |
| 253 | if (A.hasGlobalVariableSimplificationCallback(GV: *GV)) { |
| 254 | auto AssumedGV = A.getAssumedInitializerFromCallBack( |
| 255 | GV: *GV, AA: &QueryingAA, UsedAssumedInformation); |
| 256 | Initializer = *AssumedGV; |
| 257 | if (!Initializer) |
| 258 | return nullptr; |
| 259 | } else { |
| 260 | if (!GV->hasLocalLinkage()) { |
| 261 | // Externally visible global that's either non-constant, |
| 262 | // or a constant with an uncertain initializer. |
| 263 | if (!GV->hasDefinitiveInitializer() || !GV->isConstant()) |
| 264 | return nullptr; |
| 265 | } |
| 266 | |
| 267 | // Globals with local linkage are always initialized. |
| 268 | assert(!GV->hasLocalLinkage() || GV->hasInitializer()); |
| 269 | |
| 270 | if (!Initializer) |
| 271 | Initializer = GV->getInitializer(); |
| 272 | } |
| 273 | |
| 274 | if (RangePtr && !RangePtr->offsetOrSizeAreUnknown()) { |
| 275 | int64_t StorageSize = DL.getTypeStoreSize(Ty: &Ty); |
| 276 | if (StorageSize != RangePtr->Size) |
| 277 | return nullptr; |
| 278 | APInt Offset = APInt(64, RangePtr->Offset); |
| 279 | return ConstantFoldLoadFromConst(C: Initializer, Ty: &Ty, Offset, DL); |
| 280 | } |
| 281 | |
| 282 | return ConstantFoldLoadFromUniformValue(C: Initializer, Ty: &Ty, DL); |
| 283 | } |
| 284 | |
| 285 | bool AA::isValidInScope(const Value &V, const Function *Scope) { |
| 286 | if (isa<Constant>(Val: V)) |
| 287 | return true; |
| 288 | if (auto *I = dyn_cast<Instruction>(Val: &V)) |
| 289 | return I->getFunction() == Scope; |
| 290 | if (auto *A = dyn_cast<Argument>(Val: &V)) |
| 291 | return A->getParent() == Scope; |
| 292 | return false; |
| 293 | } |
| 294 | |
| 295 | bool AA::isValidAtPosition(const AA::ValueAndContext &VAC, |
| 296 | InformationCache &InfoCache) { |
| 297 | if (isa<Constant>(Val: VAC.getValue()) || VAC.getValue() == VAC.getCtxI()) |
| 298 | return true; |
| 299 | const Function *Scope = nullptr; |
| 300 | const Instruction *CtxI = VAC.getCtxI(); |
| 301 | if (CtxI) |
| 302 | Scope = CtxI->getFunction(); |
| 303 | if (auto *A = dyn_cast<Argument>(Val: VAC.getValue())) |
| 304 | return A->getParent() == Scope; |
| 305 | if (auto *I = dyn_cast<Instruction>(Val: VAC.getValue())) { |
| 306 | if (I->getFunction() == Scope) { |
| 307 | if (const DominatorTree *DT = |
| 308 | InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>( |
| 309 | F: *Scope)) |
| 310 | return DT->dominates(Def: I, User: CtxI); |
| 311 | // Local dominance check mostly for the old PM passes. |
| 312 | if (CtxI && I->getParent() == CtxI->getParent()) |
| 313 | return llvm::any_of( |
| 314 | Range: make_range(x: I->getIterator(), y: I->getParent()->end()), |
| 315 | P: [&](const Instruction &AfterI) { return &AfterI == CtxI; }); |
| 316 | } |
| 317 | } |
| 318 | return false; |
| 319 | } |
| 320 | |
| 321 | Value *AA::getWithType(Value &V, Type &Ty) { |
| 322 | if (V.getType() == &Ty) |
| 323 | return &V; |
| 324 | if (isa<PoisonValue>(Val: V)) |
| 325 | return PoisonValue::get(T: &Ty); |
| 326 | if (isa<UndefValue>(Val: V)) |
| 327 | return UndefValue::get(T: &Ty); |
| 328 | if (auto *C = dyn_cast<Constant>(Val: &V)) { |
| 329 | if (C->isNullValue() && !Ty.isPtrOrPtrVectorTy()) |
| 330 | return Constant::getNullValue(Ty: &Ty); |
| 331 | if (C->getType()->isPointerTy() && Ty.isPointerTy()) |
| 332 | return ConstantExpr::getPointerCast(C, Ty: &Ty); |
| 333 | if (C->getType()->getPrimitiveSizeInBits() >= Ty.getPrimitiveSizeInBits()) { |
| 334 | if (C->getType()->isIntegerTy() && Ty.isIntegerTy()) |
| 335 | return ConstantExpr::getTrunc(C, Ty: &Ty, /* OnlyIfReduced */ true); |
| 336 | if (C->getType()->isFloatingPointTy() && Ty.isFloatingPointTy()) |
| 337 | return ConstantFoldCastInstruction(opcode: Instruction::FPTrunc, V: C, DestTy: &Ty); |
| 338 | } |
| 339 | } |
| 340 | return nullptr; |
| 341 | } |
| 342 | |
| 343 | std::optional<Value *> |
| 344 | AA::combineOptionalValuesInAAValueLatice(const std::optional<Value *> &A, |
| 345 | const std::optional<Value *> &B, |
| 346 | Type *Ty) { |
| 347 | if (A == B) |
| 348 | return A; |
| 349 | if (!B) |
| 350 | return A; |
| 351 | if (*B == nullptr) |
| 352 | return nullptr; |
| 353 | if (!A) |
| 354 | return Ty ? getWithType(V&: **B, Ty&: *Ty) : nullptr; |
| 355 | if (*A == nullptr) |
| 356 | return nullptr; |
| 357 | if (!Ty) |
| 358 | Ty = (*A)->getType(); |
| 359 | if (isa_and_nonnull<UndefValue>(Val: *A)) |
| 360 | return getWithType(V&: **B, Ty&: *Ty); |
| 361 | if (isa<UndefValue>(Val: *B)) |
| 362 | return A; |
| 363 | if (*A && *B && *A == getWithType(V&: **B, Ty&: *Ty)) |
| 364 | return A; |
| 365 | return nullptr; |
| 366 | } |
| 367 | |
| 368 | template <bool IsLoad, typename Ty> |
| 369 | static bool getPotentialCopiesOfMemoryValue( |
| 370 | Attributor &A, Ty &I, SmallSetVector<Value *, 4> &PotentialCopies, |
| 371 | SmallSetVector<Instruction *, 4> *PotentialValueOrigins, |
| 372 | const AbstractAttribute &QueryingAA, bool &UsedAssumedInformation, |
| 373 | bool OnlyExact) { |
| 374 | LLVM_DEBUG(dbgs() << "Trying to determine the potential copies of " << I |
| 375 | << " (only exact: " << OnlyExact << ")\n" ;); |
| 376 | |
| 377 | Value &Ptr = *I.getPointerOperand(); |
| 378 | // Containers to remember the pointer infos and new copies while we are not |
| 379 | // sure that we can find all of them. If we abort we want to avoid spurious |
| 380 | // dependences and potential copies in the provided container. |
| 381 | SmallVector<const AAPointerInfo *> PIs; |
| 382 | SmallSetVector<Value *, 8> NewCopies; |
| 383 | SmallSetVector<Instruction *, 8> NewCopyOrigins; |
| 384 | |
| 385 | const auto *TLI = |
| 386 | A.getInfoCache().getTargetLibraryInfoForFunction(F: *I.getFunction()); |
| 387 | |
| 388 | auto Pred = [&](Value &Obj) { |
| 389 | LLVM_DEBUG(dbgs() << "Visit underlying object " << Obj << "\n" ); |
| 390 | if (isa<UndefValue>(Val: &Obj)) |
| 391 | return true; |
| 392 | if (isa<ConstantPointerNull>(Val: &Obj)) { |
| 393 | // A null pointer access can be undefined but any offset from null may |
| 394 | // be OK. We do not try to optimize the latter. |
| 395 | if (!NullPointerIsDefined(I.getFunction(), |
| 396 | Ptr.getType()->getPointerAddressSpace()) && |
| 397 | A.getAssumedSimplified(V: Ptr, AA: QueryingAA, UsedAssumedInformation, |
| 398 | S: AA::Interprocedural) == &Obj) |
| 399 | return true; |
| 400 | LLVM_DEBUG( |
| 401 | dbgs() << "Underlying object is a valid nullptr, giving up.\n" ;); |
| 402 | return false; |
| 403 | } |
| 404 | // TODO: Use assumed noalias return. |
| 405 | if (!isa<AllocaInst>(Val: &Obj) && !isa<GlobalVariable>(Val: &Obj) && |
| 406 | !(IsLoad ? isAllocationFn(&Obj, TLI) : isNoAliasCall(V: &Obj))) { |
| 407 | LLVM_DEBUG(dbgs() << "Underlying object is not supported yet: " << Obj |
| 408 | << "\n" ;); |
| 409 | return false; |
| 410 | } |
| 411 | if (auto *GV = dyn_cast<GlobalVariable>(Val: &Obj)) |
| 412 | if (!GV->hasLocalLinkage() && |
| 413 | !(GV->isConstant() && GV->hasInitializer())) { |
| 414 | LLVM_DEBUG(dbgs() << "Underlying object is global with external " |
| 415 | "linkage, not supported yet: " |
| 416 | << Obj << "\n" ;); |
| 417 | return false; |
| 418 | } |
| 419 | |
| 420 | bool NullOnly = true; |
| 421 | bool NullRequired = false; |
| 422 | auto CheckForNullOnlyAndUndef = [&](std::optional<Value *> V, |
| 423 | bool IsExact) { |
| 424 | if (!V || *V == nullptr) |
| 425 | NullOnly = false; |
| 426 | else if (isa<UndefValue>(Val: *V)) |
| 427 | /* No op */; |
| 428 | else if (isa<Constant>(Val: *V) && cast<Constant>(Val: *V)->isNullValue()) |
| 429 | NullRequired = !IsExact; |
| 430 | else |
| 431 | NullOnly = false; |
| 432 | }; |
| 433 | |
| 434 | auto AdjustWrittenValueType = [&](const AAPointerInfo::Access &Acc, |
| 435 | Value &V) { |
| 436 | Value *AdjV = AA::getWithType(V, Ty&: *I.getType()); |
| 437 | if (!AdjV) { |
| 438 | LLVM_DEBUG(dbgs() << "Underlying object written but stored value " |
| 439 | "cannot be converted to read type: " |
| 440 | << *Acc.getRemoteInst() << " : " << *I.getType() |
| 441 | << "\n" ;); |
| 442 | } |
| 443 | return AdjV; |
| 444 | }; |
| 445 | |
| 446 | auto SkipCB = [&](const AAPointerInfo::Access &Acc) { |
| 447 | if ((IsLoad && !Acc.isWriteOrAssumption()) || (!IsLoad && !Acc.isRead())) |
| 448 | return true; |
| 449 | if (IsLoad) { |
| 450 | if (Acc.isWrittenValueYetUndetermined()) |
| 451 | return true; |
| 452 | if (PotentialValueOrigins && !isa<AssumeInst>(Val: Acc.getRemoteInst())) |
| 453 | return false; |
| 454 | if (!Acc.isWrittenValueUnknown()) |
| 455 | if (Value *V = AdjustWrittenValueType(Acc, *Acc.getWrittenValue())) |
| 456 | if (NewCopies.count(key: V)) { |
| 457 | NewCopyOrigins.insert(X: Acc.getRemoteInst()); |
| 458 | return true; |
| 459 | } |
| 460 | if (auto *SI = dyn_cast<StoreInst>(Val: Acc.getRemoteInst())) |
| 461 | if (Value *V = AdjustWrittenValueType(Acc, *SI->getValueOperand())) |
| 462 | if (NewCopies.count(key: V)) { |
| 463 | NewCopyOrigins.insert(X: Acc.getRemoteInst()); |
| 464 | return true; |
| 465 | } |
| 466 | } |
| 467 | return false; |
| 468 | }; |
| 469 | |
| 470 | auto CheckAccess = [&](const AAPointerInfo::Access &Acc, bool IsExact) { |
| 471 | if ((IsLoad && !Acc.isWriteOrAssumption()) || (!IsLoad && !Acc.isRead())) |
| 472 | return true; |
| 473 | if (IsLoad && Acc.isWrittenValueYetUndetermined()) |
| 474 | return true; |
| 475 | CheckForNullOnlyAndUndef(Acc.getContent(), IsExact); |
| 476 | if (OnlyExact && !IsExact && !NullOnly && |
| 477 | !isa_and_nonnull<UndefValue>(Val: Acc.getWrittenValue())) { |
| 478 | LLVM_DEBUG(dbgs() << "Non exact access " << *Acc.getRemoteInst() |
| 479 | << ", abort!\n" ); |
| 480 | return false; |
| 481 | } |
| 482 | if (NullRequired && !NullOnly) { |
| 483 | LLVM_DEBUG(dbgs() << "Required all `null` accesses due to non exact " |
| 484 | "one, however found non-null one: " |
| 485 | << *Acc.getRemoteInst() << ", abort!\n" ); |
| 486 | return false; |
| 487 | } |
| 488 | if (IsLoad) { |
| 489 | assert(isa<LoadInst>(I) && "Expected load or store instruction only!" ); |
| 490 | if (!Acc.isWrittenValueUnknown()) { |
| 491 | Value *V = AdjustWrittenValueType(Acc, *Acc.getWrittenValue()); |
| 492 | if (!V) |
| 493 | return false; |
| 494 | NewCopies.insert(X: V); |
| 495 | if (PotentialValueOrigins) |
| 496 | NewCopyOrigins.insert(X: Acc.getRemoteInst()); |
| 497 | return true; |
| 498 | } |
| 499 | auto *SI = dyn_cast<StoreInst>(Val: Acc.getRemoteInst()); |
| 500 | if (!SI) { |
| 501 | LLVM_DEBUG(dbgs() << "Underlying object written through a non-store " |
| 502 | "instruction not supported yet: " |
| 503 | << *Acc.getRemoteInst() << "\n" ;); |
| 504 | return false; |
| 505 | } |
| 506 | Value *V = AdjustWrittenValueType(Acc, *SI->getValueOperand()); |
| 507 | if (!V) |
| 508 | return false; |
| 509 | NewCopies.insert(X: V); |
| 510 | if (PotentialValueOrigins) |
| 511 | NewCopyOrigins.insert(X: SI); |
| 512 | } else { |
| 513 | assert(isa<StoreInst>(I) && "Expected load or store instruction only!" ); |
| 514 | auto *LI = dyn_cast<LoadInst>(Val: Acc.getRemoteInst()); |
| 515 | if (!LI && OnlyExact) { |
| 516 | LLVM_DEBUG(dbgs() << "Underlying object read through a non-load " |
| 517 | "instruction not supported yet: " |
| 518 | << *Acc.getRemoteInst() << "\n" ;); |
| 519 | return false; |
| 520 | } |
| 521 | NewCopies.insert(X: Acc.getRemoteInst()); |
| 522 | } |
| 523 | return true; |
| 524 | }; |
| 525 | |
| 526 | // If the value has been written to we don't need the initial value of the |
| 527 | // object. |
| 528 | bool HasBeenWrittenTo = false; |
| 529 | |
| 530 | AA::RangeTy Range; |
| 531 | auto *PI = A.getAAFor<AAPointerInfo>(QueryingAA, IRP: IRPosition::value(V: Obj), |
| 532 | DepClass: DepClassTy::NONE); |
| 533 | if (!PI || !PI->forallInterferingAccesses( |
| 534 | A, QueryingAA, I, |
| 535 | /* FindInterferingWrites */ IsLoad, |
| 536 | /* FindInterferingReads */ !IsLoad, CheckAccess, |
| 537 | HasBeenWrittenTo, Range, SkipCB)) { |
| 538 | LLVM_DEBUG( |
| 539 | dbgs() |
| 540 | << "Failed to verify all interfering accesses for underlying object: " |
| 541 | << Obj << "\n" ); |
| 542 | return false; |
| 543 | } |
| 544 | |
| 545 | if (IsLoad && !HasBeenWrittenTo && !Range.isUnassigned()) { |
| 546 | const DataLayout &DL = A.getDataLayout(); |
| 547 | Value *InitialValue = AA::getInitialValueForObj( |
| 548 | A, QueryingAA, Obj, Ty&: *I.getType(), TLI, DL, RangePtr: &Range); |
| 549 | if (!InitialValue) { |
| 550 | LLVM_DEBUG(dbgs() << "Could not determine required initial value of " |
| 551 | "underlying object, abort!\n" ); |
| 552 | return false; |
| 553 | } |
| 554 | CheckForNullOnlyAndUndef(InitialValue, /* IsExact */ true); |
| 555 | if (NullRequired && !NullOnly) { |
| 556 | LLVM_DEBUG(dbgs() << "Non exact access but initial value that is not " |
| 557 | "null or undef, abort!\n" ); |
| 558 | return false; |
| 559 | } |
| 560 | |
| 561 | NewCopies.insert(X: InitialValue); |
| 562 | if (PotentialValueOrigins) |
| 563 | NewCopyOrigins.insert(X: nullptr); |
| 564 | } |
| 565 | |
| 566 | PIs.push_back(Elt: PI); |
| 567 | |
| 568 | return true; |
| 569 | }; |
| 570 | |
| 571 | const auto *AAUO = A.getAAFor<AAUnderlyingObjects>( |
| 572 | QueryingAA, IRP: IRPosition::value(V: Ptr), DepClass: DepClassTy::OPTIONAL); |
| 573 | if (!AAUO || !AAUO->forallUnderlyingObjects(Pred)) { |
| 574 | LLVM_DEBUG( |
| 575 | dbgs() << "Underlying objects stored into could not be determined\n" ;); |
| 576 | return false; |
| 577 | } |
| 578 | |
| 579 | // Only if we were successful collection all potential copies we record |
| 580 | // dependences (on non-fix AAPointerInfo AAs). We also only then modify the |
| 581 | // given PotentialCopies container. |
| 582 | for (const auto *PI : PIs) { |
| 583 | if (!PI->getState().isAtFixpoint()) |
| 584 | UsedAssumedInformation = true; |
| 585 | A.recordDependence(FromAA: *PI, ToAA: QueryingAA, DepClass: DepClassTy::OPTIONAL); |
| 586 | } |
| 587 | PotentialCopies.insert_range(R&: NewCopies); |
| 588 | if (PotentialValueOrigins) |
| 589 | PotentialValueOrigins->insert_range(R&: NewCopyOrigins); |
| 590 | |
| 591 | return true; |
| 592 | } |
| 593 | |
| 594 | bool AA::getPotentiallyLoadedValues( |
| 595 | Attributor &A, LoadInst &LI, SmallSetVector<Value *, 4> &PotentialValues, |
| 596 | SmallSetVector<Instruction *, 4> &PotentialValueOrigins, |
| 597 | const AbstractAttribute &QueryingAA, bool &UsedAssumedInformation, |
| 598 | bool OnlyExact) { |
| 599 | return getPotentialCopiesOfMemoryValue</* IsLoad */ true>( |
| 600 | A, I&: LI, PotentialCopies&: PotentialValues, PotentialValueOrigins: &PotentialValueOrigins, QueryingAA, |
| 601 | UsedAssumedInformation, OnlyExact); |
| 602 | } |
| 603 | |
| 604 | bool AA::getPotentialCopiesOfStoredValue( |
| 605 | Attributor &A, StoreInst &SI, SmallSetVector<Value *, 4> &PotentialCopies, |
| 606 | const AbstractAttribute &QueryingAA, bool &UsedAssumedInformation, |
| 607 | bool OnlyExact) { |
| 608 | return getPotentialCopiesOfMemoryValue</* IsLoad */ false>( |
| 609 | A, I&: SI, PotentialCopies, PotentialValueOrigins: nullptr, QueryingAA, UsedAssumedInformation, |
| 610 | OnlyExact); |
| 611 | } |
| 612 | |
| 613 | static bool isAssumedReadOnlyOrReadNone(Attributor &A, const IRPosition &IRP, |
| 614 | const AbstractAttribute &QueryingAA, |
| 615 | bool RequireReadNone, bool &IsKnown) { |
| 616 | if (RequireReadNone) { |
| 617 | if (AA::hasAssumedIRAttr<Attribute::ReadNone>( |
| 618 | A, QueryingAA: &QueryingAA, IRP, DepClass: DepClassTy::OPTIONAL, IsKnown, |
| 619 | /* IgnoreSubsumingPositions */ true)) |
| 620 | return true; |
| 621 | } else if (AA::hasAssumedIRAttr<Attribute::ReadOnly>( |
| 622 | A, QueryingAA: &QueryingAA, IRP, DepClass: DepClassTy::OPTIONAL, IsKnown, |
| 623 | /* IgnoreSubsumingPositions */ true)) |
| 624 | return true; |
| 625 | |
| 626 | IRPosition::Kind Kind = IRP.getPositionKind(); |
| 627 | if (Kind == IRPosition::IRP_FUNCTION || Kind == IRPosition::IRP_CALL_SITE) { |
| 628 | const auto *MemLocAA = |
| 629 | A.getAAFor<AAMemoryLocation>(QueryingAA, IRP, DepClass: DepClassTy::NONE); |
| 630 | if (MemLocAA && MemLocAA->isAssumedReadNone()) { |
| 631 | IsKnown = MemLocAA->isKnownReadNone(); |
| 632 | if (!IsKnown) |
| 633 | A.recordDependence(FromAA: *MemLocAA, ToAA: QueryingAA, DepClass: DepClassTy::OPTIONAL); |
| 634 | return true; |
| 635 | } |
| 636 | } |
| 637 | |
| 638 | const auto *MemBehaviorAA = |
| 639 | A.getAAFor<AAMemoryBehavior>(QueryingAA, IRP, DepClass: DepClassTy::NONE); |
| 640 | if (MemBehaviorAA && |
| 641 | (MemBehaviorAA->isAssumedReadNone() || |
| 642 | (!RequireReadNone && MemBehaviorAA->isAssumedReadOnly()))) { |
| 643 | IsKnown = RequireReadNone ? MemBehaviorAA->isKnownReadNone() |
| 644 | : MemBehaviorAA->isKnownReadOnly(); |
| 645 | if (!IsKnown) |
| 646 | A.recordDependence(FromAA: *MemBehaviorAA, ToAA: QueryingAA, DepClass: DepClassTy::OPTIONAL); |
| 647 | return true; |
| 648 | } |
| 649 | |
| 650 | return false; |
| 651 | } |
| 652 | |
| 653 | bool AA::isAssumedReadOnly(Attributor &A, const IRPosition &IRP, |
| 654 | const AbstractAttribute &QueryingAA, bool &IsKnown) { |
| 655 | return isAssumedReadOnlyOrReadNone(A, IRP, QueryingAA, |
| 656 | /* RequireReadNone */ false, IsKnown); |
| 657 | } |
| 658 | bool AA::isAssumedReadNone(Attributor &A, const IRPosition &IRP, |
| 659 | const AbstractAttribute &QueryingAA, bool &IsKnown) { |
| 660 | return isAssumedReadOnlyOrReadNone(A, IRP, QueryingAA, |
| 661 | /* RequireReadNone */ true, IsKnown); |
| 662 | } |
| 663 | |
| 664 | static bool |
| 665 | isPotentiallyReachable(Attributor &A, const Instruction &FromI, |
| 666 | const Instruction *ToI, const Function &ToFn, |
| 667 | const AbstractAttribute &QueryingAA, |
| 668 | const AA::InstExclusionSetTy *ExclusionSet, |
| 669 | std::function<bool(const Function &F)> GoBackwardsCB) { |
| 670 | DEBUG_WITH_TYPE(VERBOSE_DEBUG_TYPE, { |
| 671 | dbgs() << "[AA] isPotentiallyReachable @" << ToFn.getName() << " from " |
| 672 | << FromI << " [GBCB: " << bool(GoBackwardsCB) << "][#ExS: " |
| 673 | << (ExclusionSet ? std::to_string(ExclusionSet->size()) : "none" ) |
| 674 | << "]\n" ; |
| 675 | if (ExclusionSet) |
| 676 | for (auto *ES : *ExclusionSet) |
| 677 | dbgs() << *ES << "\n" ; |
| 678 | }); |
| 679 | |
| 680 | // We know kernels (generally) cannot be called from within the module. Thus, |
| 681 | // for reachability we would need to step back from a kernel which would allow |
| 682 | // us to reach anything anyway. Even if a kernel is invoked from another |
| 683 | // kernel, values like allocas and shared memory are not accessible. We |
| 684 | // implicitly check for this situation to avoid costly lookups. |
| 685 | if (GoBackwardsCB && &ToFn != FromI.getFunction() && |
| 686 | !GoBackwardsCB(*FromI.getFunction()) && A.getInfoCache().isKernel(F: ToFn) && |
| 687 | A.getInfoCache().isKernel(F: *FromI.getFunction())) { |
| 688 | LLVM_DEBUG(dbgs() << "[AA] assume kernel cannot be reached from within the " |
| 689 | "module; success\n" ;); |
| 690 | return false; |
| 691 | } |
| 692 | |
| 693 | // If we can go arbitrarily backwards we will eventually reach an entry point |
| 694 | // that can reach ToI. Only if a set of blocks through which we cannot go is |
| 695 | // provided, or once we track internal functions not accessible from the |
| 696 | // outside, it makes sense to perform backwards analysis in the absence of a |
| 697 | // GoBackwardsCB. |
| 698 | if (!GoBackwardsCB && !ExclusionSet) { |
| 699 | LLVM_DEBUG(dbgs() << "[AA] check @" << ToFn.getName() << " from " << FromI |
| 700 | << " is not checked backwards and does not have an " |
| 701 | "exclusion set, abort\n" ); |
| 702 | return true; |
| 703 | } |
| 704 | |
| 705 | SmallPtrSet<const Instruction *, 8> Visited; |
| 706 | SmallVector<const Instruction *> Worklist; |
| 707 | Worklist.push_back(Elt: &FromI); |
| 708 | |
| 709 | while (!Worklist.empty()) { |
| 710 | const Instruction *CurFromI = Worklist.pop_back_val(); |
| 711 | if (!Visited.insert(Ptr: CurFromI).second) |
| 712 | continue; |
| 713 | |
| 714 | const Function *FromFn = CurFromI->getFunction(); |
| 715 | if (FromFn == &ToFn) { |
| 716 | if (!ToI) |
| 717 | return true; |
| 718 | LLVM_DEBUG(dbgs() << "[AA] check " << *ToI << " from " << *CurFromI |
| 719 | << " intraprocedurally\n" ); |
| 720 | const auto *ReachabilityAA = A.getAAFor<AAIntraFnReachability>( |
| 721 | QueryingAA, IRP: IRPosition::function(F: ToFn), DepClass: DepClassTy::OPTIONAL); |
| 722 | bool Result = !ReachabilityAA || ReachabilityAA->isAssumedReachable( |
| 723 | A, From: *CurFromI, To: *ToI, ExclusionSet); |
| 724 | LLVM_DEBUG(dbgs() << "[AA] " << *CurFromI << " " |
| 725 | << (Result ? "can potentially " : "cannot " ) << "reach " |
| 726 | << *ToI << " [Intra]\n" ); |
| 727 | if (Result) |
| 728 | return true; |
| 729 | } |
| 730 | |
| 731 | bool Result = true; |
| 732 | if (!ToFn.isDeclaration() && ToI) { |
| 733 | const auto *ToReachabilityAA = A.getAAFor<AAIntraFnReachability>( |
| 734 | QueryingAA, IRP: IRPosition::function(F: ToFn), DepClass: DepClassTy::OPTIONAL); |
| 735 | const Instruction &EntryI = ToFn.getEntryBlock().front(); |
| 736 | Result = !ToReachabilityAA || ToReachabilityAA->isAssumedReachable( |
| 737 | A, From: EntryI, To: *ToI, ExclusionSet); |
| 738 | LLVM_DEBUG(dbgs() << "[AA] Entry " << EntryI << " of @" << ToFn.getName() |
| 739 | << " " << (Result ? "can potentially " : "cannot " ) |
| 740 | << "reach @" << *ToI << " [ToFn]\n" ); |
| 741 | } |
| 742 | |
| 743 | if (Result) { |
| 744 | // The entry of the ToFn can reach the instruction ToI. If the current |
| 745 | // instruction is already known to reach the ToFn. |
| 746 | const auto *FnReachabilityAA = A.getAAFor<AAInterFnReachability>( |
| 747 | QueryingAA, IRP: IRPosition::function(F: *FromFn), DepClass: DepClassTy::OPTIONAL); |
| 748 | Result = !FnReachabilityAA || FnReachabilityAA->instructionCanReach( |
| 749 | A, Inst: *CurFromI, Fn: ToFn, ExclusionSet); |
| 750 | LLVM_DEBUG(dbgs() << "[AA] " << *CurFromI << " in @" << FromFn->getName() |
| 751 | << " " << (Result ? "can potentially " : "cannot " ) |
| 752 | << "reach @" << ToFn.getName() << " [FromFn]\n" ); |
| 753 | if (Result) |
| 754 | return true; |
| 755 | } |
| 756 | |
| 757 | // TODO: Check assumed nounwind. |
| 758 | const auto *ReachabilityAA = A.getAAFor<AAIntraFnReachability>( |
| 759 | QueryingAA, IRP: IRPosition::function(F: *FromFn), DepClass: DepClassTy::OPTIONAL); |
| 760 | auto ReturnInstCB = [&](Instruction &Ret) { |
| 761 | bool Result = !ReachabilityAA || ReachabilityAA->isAssumedReachable( |
| 762 | A, From: *CurFromI, To: Ret, ExclusionSet); |
| 763 | LLVM_DEBUG(dbgs() << "[AA][Ret] " << *CurFromI << " " |
| 764 | << (Result ? "can potentially " : "cannot " ) << "reach " |
| 765 | << Ret << " [Intra]\n" ); |
| 766 | return !Result; |
| 767 | }; |
| 768 | |
| 769 | // Check if we can reach returns. |
| 770 | bool UsedAssumedInformation = false; |
| 771 | if (A.checkForAllInstructions(Pred: ReturnInstCB, Fn: FromFn, QueryingAA: &QueryingAA, |
| 772 | Opcodes: {Instruction::Ret}, UsedAssumedInformation)) { |
| 773 | LLVM_DEBUG(dbgs() << "[AA] No return is reachable, done\n" ); |
| 774 | continue; |
| 775 | } |
| 776 | |
| 777 | if (!GoBackwardsCB) { |
| 778 | LLVM_DEBUG(dbgs() << "[AA] check @" << ToFn.getName() << " from " << FromI |
| 779 | << " is not checked backwards, abort\n" ); |
| 780 | return true; |
| 781 | } |
| 782 | |
| 783 | // If we do not go backwards from the FromFn we are done here and so far we |
| 784 | // could not find a way to reach ToFn/ToI. |
| 785 | if (!GoBackwardsCB(*FromFn)) |
| 786 | continue; |
| 787 | |
| 788 | LLVM_DEBUG(dbgs() << "Stepping backwards to the call sites of @" |
| 789 | << FromFn->getName() << "\n" ); |
| 790 | |
| 791 | auto CheckCallSite = [&](AbstractCallSite ACS) { |
| 792 | CallBase *CB = ACS.getInstruction(); |
| 793 | if (!CB) |
| 794 | return false; |
| 795 | |
| 796 | if (isa<InvokeInst>(Val: CB)) |
| 797 | return false; |
| 798 | |
| 799 | Instruction *Inst = CB->getNextNode(); |
| 800 | Worklist.push_back(Elt: Inst); |
| 801 | return true; |
| 802 | }; |
| 803 | |
| 804 | Result = !A.checkForAllCallSites(Pred: CheckCallSite, Fn: *FromFn, |
| 805 | /* RequireAllCallSites */ true, |
| 806 | QueryingAA: &QueryingAA, UsedAssumedInformation); |
| 807 | if (Result) { |
| 808 | LLVM_DEBUG(dbgs() << "[AA] stepping back to call sites from " << *CurFromI |
| 809 | << " in @" << FromFn->getName() |
| 810 | << " failed, give up\n" ); |
| 811 | return true; |
| 812 | } |
| 813 | |
| 814 | LLVM_DEBUG(dbgs() << "[AA] stepped back to call sites from " << *CurFromI |
| 815 | << " in @" << FromFn->getName() |
| 816 | << " worklist size is: " << Worklist.size() << "\n" ); |
| 817 | } |
| 818 | return false; |
| 819 | } |
| 820 | |
| 821 | bool AA::isPotentiallyReachable( |
| 822 | Attributor &A, const Instruction &FromI, const Instruction &ToI, |
| 823 | const AbstractAttribute &QueryingAA, |
| 824 | const AA::InstExclusionSetTy *ExclusionSet, |
| 825 | std::function<bool(const Function &F)> GoBackwardsCB) { |
| 826 | const Function *ToFn = ToI.getFunction(); |
| 827 | return ::isPotentiallyReachable(A, FromI, ToI: &ToI, ToFn: *ToFn, QueryingAA, |
| 828 | ExclusionSet, GoBackwardsCB); |
| 829 | } |
| 830 | |
| 831 | bool AA::isPotentiallyReachable( |
| 832 | Attributor &A, const Instruction &FromI, const Function &ToFn, |
| 833 | const AbstractAttribute &QueryingAA, |
| 834 | const AA::InstExclusionSetTy *ExclusionSet, |
| 835 | std::function<bool(const Function &F)> GoBackwardsCB) { |
| 836 | return ::isPotentiallyReachable(A, FromI, /* ToI */ nullptr, ToFn, QueryingAA, |
| 837 | ExclusionSet, GoBackwardsCB); |
| 838 | } |
| 839 | |
| 840 | bool AA::isAssumedThreadLocalObject(Attributor &A, Value &Obj, |
| 841 | const AbstractAttribute &QueryingAA) { |
| 842 | if (isa<UndefValue>(Val: Obj)) |
| 843 | return true; |
| 844 | if (isa<AllocaInst>(Val: Obj)) { |
| 845 | InformationCache &InfoCache = A.getInfoCache(); |
| 846 | if (!InfoCache.stackIsAccessibleByOtherThreads()) { |
| 847 | LLVM_DEBUG( |
| 848 | dbgs() << "[AA] Object '" << Obj |
| 849 | << "' is thread local; stack objects are thread local.\n" ); |
| 850 | return true; |
| 851 | } |
| 852 | bool IsKnownNoCapture; |
| 853 | bool IsAssumedNoCapture = AA::hasAssumedIRAttr<Attribute::Captures>( |
| 854 | A, QueryingAA: &QueryingAA, IRP: IRPosition::value(V: Obj), DepClass: DepClassTy::OPTIONAL, |
| 855 | IsKnown&: IsKnownNoCapture); |
| 856 | LLVM_DEBUG(dbgs() << "[AA] Object '" << Obj << "' is " |
| 857 | << (IsAssumedNoCapture ? "" : "not" ) << " thread local; " |
| 858 | << (IsAssumedNoCapture ? "non-" : "" ) |
| 859 | << "captured stack object.\n" ); |
| 860 | return IsAssumedNoCapture; |
| 861 | } |
| 862 | if (auto *GV = dyn_cast<GlobalVariable>(Val: &Obj)) { |
| 863 | if (GV->isConstant()) { |
| 864 | LLVM_DEBUG(dbgs() << "[AA] Object '" << Obj |
| 865 | << "' is thread local; constant global\n" ); |
| 866 | return true; |
| 867 | } |
| 868 | if (GV->isThreadLocal()) { |
| 869 | LLVM_DEBUG(dbgs() << "[AA] Object '" << Obj |
| 870 | << "' is thread local; thread local global\n" ); |
| 871 | return true; |
| 872 | } |
| 873 | } |
| 874 | |
| 875 | if (A.getInfoCache().targetIsGPU()) { |
| 876 | if (Obj.getType()->getPointerAddressSpace() == |
| 877 | (int)AA::GPUAddressSpace::Local) { |
| 878 | LLVM_DEBUG(dbgs() << "[AA] Object '" << Obj |
| 879 | << "' is thread local; GPU local memory\n" ); |
| 880 | return true; |
| 881 | } |
| 882 | if (Obj.getType()->getPointerAddressSpace() == |
| 883 | (int)AA::GPUAddressSpace::Constant) { |
| 884 | LLVM_DEBUG(dbgs() << "[AA] Object '" << Obj |
| 885 | << "' is thread local; GPU constant memory\n" ); |
| 886 | return true; |
| 887 | } |
| 888 | } |
| 889 | |
| 890 | LLVM_DEBUG(dbgs() << "[AA] Object '" << Obj << "' is not thread local\n" ); |
| 891 | return false; |
| 892 | } |
| 893 | |
| 894 | bool AA::isPotentiallyAffectedByBarrier(Attributor &A, const Instruction &I, |
| 895 | const AbstractAttribute &QueryingAA) { |
| 896 | if (!I.mayHaveSideEffects() && !I.mayReadFromMemory()) |
| 897 | return false; |
| 898 | |
| 899 | SmallSetVector<const Value *, 8> Ptrs; |
| 900 | |
| 901 | auto AddLocationPtr = [&](std::optional<MemoryLocation> Loc) { |
| 902 | if (!Loc || !Loc->Ptr) { |
| 903 | LLVM_DEBUG( |
| 904 | dbgs() << "[AA] Access to unknown location; -> requires barriers\n" ); |
| 905 | return false; |
| 906 | } |
| 907 | Ptrs.insert(X: Loc->Ptr); |
| 908 | return true; |
| 909 | }; |
| 910 | |
| 911 | if (const MemIntrinsic *MI = dyn_cast<MemIntrinsic>(Val: &I)) { |
| 912 | if (!AddLocationPtr(MemoryLocation::getForDest(MI))) |
| 913 | return true; |
| 914 | if (const MemTransferInst *MTI = dyn_cast<MemTransferInst>(Val: &I)) |
| 915 | if (!AddLocationPtr(MemoryLocation::getForSource(MTI))) |
| 916 | return true; |
| 917 | } else if (!AddLocationPtr(MemoryLocation::getOrNone(Inst: &I))) |
| 918 | return true; |
| 919 | |
| 920 | return isPotentiallyAffectedByBarrier(A, Ptrs: Ptrs.getArrayRef(), QueryingAA, CtxI: &I); |
| 921 | } |
| 922 | |
| 923 | bool AA::isPotentiallyAffectedByBarrier(Attributor &A, |
| 924 | ArrayRef<const Value *> Ptrs, |
| 925 | const AbstractAttribute &QueryingAA, |
| 926 | const Instruction *CtxI) { |
| 927 | for (const Value *Ptr : Ptrs) { |
| 928 | if (!Ptr) { |
| 929 | LLVM_DEBUG(dbgs() << "[AA] nullptr; -> requires barriers\n" ); |
| 930 | return true; |
| 931 | } |
| 932 | |
| 933 | auto Pred = [&](Value &Obj) { |
| 934 | if (AA::isAssumedThreadLocalObject(A, Obj, QueryingAA)) |
| 935 | return true; |
| 936 | LLVM_DEBUG(dbgs() << "[AA] Access to '" << Obj << "' via '" << *Ptr |
| 937 | << "'; -> requires barrier\n" ); |
| 938 | return false; |
| 939 | }; |
| 940 | |
| 941 | const auto *UnderlyingObjsAA = A.getAAFor<AAUnderlyingObjects>( |
| 942 | QueryingAA, IRP: IRPosition::value(V: *Ptr), DepClass: DepClassTy::OPTIONAL); |
| 943 | if (!UnderlyingObjsAA || !UnderlyingObjsAA->forallUnderlyingObjects(Pred)) |
| 944 | return true; |
| 945 | } |
| 946 | return false; |
| 947 | } |
| 948 | |
| 949 | /// Return true if \p New is equal or worse than \p Old. |
| 950 | static bool isEqualOrWorse(const Attribute &New, const Attribute &Old) { |
| 951 | if (!Old.isIntAttribute()) |
| 952 | return true; |
| 953 | |
| 954 | return Old.getValueAsInt() >= New.getValueAsInt(); |
| 955 | } |
| 956 | |
| 957 | /// Return true if the information provided by \p Attr was added to the |
| 958 | /// attribute set \p AttrSet. This is only the case if it was not already |
| 959 | /// present in \p AttrSet. |
| 960 | static bool addIfNotExistent(LLVMContext &Ctx, const Attribute &Attr, |
| 961 | AttributeSet AttrSet, bool ForceReplace, |
| 962 | AttrBuilder &AB) { |
| 963 | |
| 964 | if (Attr.isEnumAttribute()) { |
| 965 | Attribute::AttrKind Kind = Attr.getKindAsEnum(); |
| 966 | if (AttrSet.hasAttribute(Kind)) |
| 967 | return false; |
| 968 | AB.addAttribute(Val: Kind); |
| 969 | return true; |
| 970 | } |
| 971 | if (Attr.isStringAttribute()) { |
| 972 | StringRef Kind = Attr.getKindAsString(); |
| 973 | if (AttrSet.hasAttribute(Kind)) { |
| 974 | if (!ForceReplace) |
| 975 | return false; |
| 976 | } |
| 977 | AB.addAttribute(A: Kind, V: Attr.getValueAsString()); |
| 978 | return true; |
| 979 | } |
| 980 | if (Attr.isIntAttribute()) { |
| 981 | Attribute::AttrKind Kind = Attr.getKindAsEnum(); |
| 982 | if (!ForceReplace && Kind == Attribute::Memory) { |
| 983 | MemoryEffects ME = Attr.getMemoryEffects() & AttrSet.getMemoryEffects(); |
| 984 | if (ME == AttrSet.getMemoryEffects()) |
| 985 | return false; |
| 986 | AB.addMemoryAttr(ME); |
| 987 | return true; |
| 988 | } |
| 989 | if (AttrSet.hasAttribute(Kind)) { |
| 990 | if (!ForceReplace && isEqualOrWorse(New: Attr, Old: AttrSet.getAttribute(Kind))) |
| 991 | return false; |
| 992 | } |
| 993 | AB.addAttribute(A: Attr); |
| 994 | return true; |
| 995 | } |
| 996 | if (Attr.isConstantRangeAttribute()) { |
| 997 | Attribute::AttrKind Kind = Attr.getKindAsEnum(); |
| 998 | if (!ForceReplace && AttrSet.hasAttribute(Kind)) |
| 999 | return false; |
| 1000 | AB.addAttribute(A: Attr); |
| 1001 | return true; |
| 1002 | } |
| 1003 | |
| 1004 | llvm_unreachable("Expected enum or string attribute!" ); |
| 1005 | } |
| 1006 | |
| 1007 | Argument *IRPosition::getAssociatedArgument() const { |
| 1008 | if (getPositionKind() == IRP_ARGUMENT) |
| 1009 | return cast<Argument>(Val: &getAnchorValue()); |
| 1010 | |
| 1011 | // Not an Argument and no argument number means this is not a call site |
| 1012 | // argument, thus we cannot find a callback argument to return. |
| 1013 | int ArgNo = getCallSiteArgNo(); |
| 1014 | if (ArgNo < 0) |
| 1015 | return nullptr; |
| 1016 | |
| 1017 | // Use abstract call sites to make the connection between the call site |
| 1018 | // values and the ones in callbacks. If a callback was found that makes use |
| 1019 | // of the underlying call site operand, we want the corresponding callback |
| 1020 | // callee argument and not the direct callee argument. |
| 1021 | std::optional<Argument *> CBCandidateArg; |
| 1022 | SmallVector<const Use *, 4> CallbackUses; |
| 1023 | const auto &CB = cast<CallBase>(Val&: getAnchorValue()); |
| 1024 | AbstractCallSite::getCallbackUses(CB, CallbackUses); |
| 1025 | for (const Use *U : CallbackUses) { |
| 1026 | AbstractCallSite ACS(U); |
| 1027 | assert(ACS && ACS.isCallbackCall()); |
| 1028 | if (!ACS.getCalledFunction()) |
| 1029 | continue; |
| 1030 | |
| 1031 | for (unsigned u = 0, e = ACS.getNumArgOperands(); u < e; u++) { |
| 1032 | |
| 1033 | // Test if the underlying call site operand is argument number u of the |
| 1034 | // callback callee. |
| 1035 | if (ACS.getCallArgOperandNo(ArgNo: u) != ArgNo) |
| 1036 | continue; |
| 1037 | |
| 1038 | assert(ACS.getCalledFunction()->arg_size() > u && |
| 1039 | "ACS mapped into var-args arguments!" ); |
| 1040 | if (CBCandidateArg) { |
| 1041 | CBCandidateArg = nullptr; |
| 1042 | break; |
| 1043 | } |
| 1044 | CBCandidateArg = ACS.getCalledFunction()->getArg(i: u); |
| 1045 | } |
| 1046 | } |
| 1047 | |
| 1048 | // If we found a unique callback candidate argument, return it. |
| 1049 | if (CBCandidateArg && *CBCandidateArg) |
| 1050 | return *CBCandidateArg; |
| 1051 | |
| 1052 | // If no callbacks were found, or none used the underlying call site operand |
| 1053 | // exclusively, use the direct callee argument if available. |
| 1054 | auto *Callee = dyn_cast_if_present<Function>(Val: CB.getCalledOperand()); |
| 1055 | if (Callee && Callee->arg_size() > unsigned(ArgNo)) |
| 1056 | return Callee->getArg(i: ArgNo); |
| 1057 | |
| 1058 | return nullptr; |
| 1059 | } |
| 1060 | |
| 1061 | ChangeStatus AbstractAttribute::update(Attributor &A) { |
| 1062 | ChangeStatus HasChanged = ChangeStatus::UNCHANGED; |
| 1063 | if (getState().isAtFixpoint()) |
| 1064 | return HasChanged; |
| 1065 | |
| 1066 | LLVM_DEBUG(dbgs() << "[Attributor] Update: " << *this << "\n" ); |
| 1067 | |
| 1068 | HasChanged = updateImpl(A); |
| 1069 | |
| 1070 | LLVM_DEBUG(dbgs() << "[Attributor] Update " << HasChanged << " " << *this |
| 1071 | << "\n" ); |
| 1072 | |
| 1073 | return HasChanged; |
| 1074 | } |
| 1075 | |
| 1076 | Attributor::Attributor(SetVector<Function *> &Functions, |
| 1077 | InformationCache &InfoCache, |
| 1078 | AttributorConfig Configuration) |
| 1079 | : Allocator(InfoCache.Allocator), Functions(Functions), |
| 1080 | InfoCache(InfoCache), Configuration(Configuration) { |
| 1081 | if (!isClosedWorldModule()) |
| 1082 | return; |
| 1083 | for (Function *Fn : Functions) |
| 1084 | if (Fn->hasAddressTaken(/*PutOffender=*/nullptr, |
| 1085 | /*IgnoreCallbackUses=*/false, |
| 1086 | /*IgnoreAssumeLikeCalls=*/true, |
| 1087 | /*IgnoreLLVMUsed=*/IngoreLLVMUsed: true, |
| 1088 | /*IgnoreARCAttachedCall=*/false, |
| 1089 | /*IgnoreCastedDirectCall=*/true)) |
| 1090 | InfoCache.IndirectlyCallableFunctions.push_back(Elt: Fn); |
| 1091 | } |
| 1092 | |
| 1093 | bool Attributor::getAttrsFromAssumes(const IRPosition &IRP, |
| 1094 | Attribute::AttrKind AK, |
| 1095 | SmallVectorImpl<Attribute> &Attrs) { |
| 1096 | assert(IRP.getPositionKind() != IRPosition::IRP_INVALID && |
| 1097 | "Did expect a valid position!" ); |
| 1098 | MustBeExecutedContextExplorer *Explorer = |
| 1099 | getInfoCache().getMustBeExecutedContextExplorer(); |
| 1100 | if (!Explorer) |
| 1101 | return false; |
| 1102 | |
| 1103 | Value &AssociatedValue = IRP.getAssociatedValue(); |
| 1104 | |
| 1105 | const Assume2KnowledgeMap &A2K = |
| 1106 | getInfoCache().getKnowledgeMap().lookup(Val: {&AssociatedValue, AK}); |
| 1107 | |
| 1108 | // Check if we found any potential assume use, if not we don't need to create |
| 1109 | // explorer iterators. |
| 1110 | if (A2K.empty()) |
| 1111 | return false; |
| 1112 | |
| 1113 | LLVMContext &Ctx = AssociatedValue.getContext(); |
| 1114 | unsigned = Attrs.size(); |
| 1115 | auto EIt = Explorer->begin(PP: IRP.getCtxI()), |
| 1116 | EEnd = Explorer->end(IRP.getCtxI()); |
| 1117 | for (const auto &It : A2K) |
| 1118 | if (Explorer->findInContextOf(I: It.first, EIt, EEnd)) |
| 1119 | Attrs.push_back(Elt: Attribute::get(Context&: Ctx, Kind: AK, Val: It.second.Max)); |
| 1120 | return AttrsSize != Attrs.size(); |
| 1121 | } |
| 1122 | |
| 1123 | template <typename DescTy> |
| 1124 | ChangeStatus |
| 1125 | Attributor::updateAttrMap(const IRPosition &IRP, ArrayRef<DescTy> AttrDescs, |
| 1126 | function_ref<bool(const DescTy &, AttributeSet, |
| 1127 | AttributeMask &, AttrBuilder &)> |
| 1128 | CB) { |
| 1129 | if (AttrDescs.empty()) |
| 1130 | return ChangeStatus::UNCHANGED; |
| 1131 | switch (IRP.getPositionKind()) { |
| 1132 | case IRPosition::IRP_FLOAT: |
| 1133 | case IRPosition::IRP_INVALID: |
| 1134 | return ChangeStatus::UNCHANGED; |
| 1135 | default: |
| 1136 | break; |
| 1137 | }; |
| 1138 | |
| 1139 | AttributeList AL; |
| 1140 | Value *AttrListAnchor = IRP.getAttrListAnchor(); |
| 1141 | auto It = AttrsMap.find(Val: AttrListAnchor); |
| 1142 | if (It == AttrsMap.end()) |
| 1143 | AL = IRP.getAttrList(); |
| 1144 | else |
| 1145 | AL = It->getSecond(); |
| 1146 | |
| 1147 | LLVMContext &Ctx = IRP.getAnchorValue().getContext(); |
| 1148 | auto AttrIdx = IRP.getAttrIdx(); |
| 1149 | AttributeSet AS = AL.getAttributes(Index: AttrIdx); |
| 1150 | AttributeMask AM; |
| 1151 | AttrBuilder AB(Ctx); |
| 1152 | |
| 1153 | ChangeStatus HasChanged = ChangeStatus::UNCHANGED; |
| 1154 | for (const DescTy &AttrDesc : AttrDescs) |
| 1155 | if (CB(AttrDesc, AS, AM, AB)) |
| 1156 | HasChanged = ChangeStatus::CHANGED; |
| 1157 | |
| 1158 | if (HasChanged == ChangeStatus::UNCHANGED) |
| 1159 | return ChangeStatus::UNCHANGED; |
| 1160 | |
| 1161 | AL = AL.removeAttributesAtIndex(C&: Ctx, Index: AttrIdx, AttrsToRemove: AM); |
| 1162 | AL = AL.addAttributesAtIndex(C&: Ctx, Index: AttrIdx, B: AB); |
| 1163 | AttrsMap[AttrListAnchor] = AL; |
| 1164 | return ChangeStatus::CHANGED; |
| 1165 | } |
| 1166 | |
| 1167 | bool Attributor::hasAttr(const IRPosition &IRP, |
| 1168 | ArrayRef<Attribute::AttrKind> AttrKinds, |
| 1169 | bool IgnoreSubsumingPositions, |
| 1170 | Attribute::AttrKind ImpliedAttributeKind) { |
| 1171 | bool Implied = false; |
| 1172 | bool HasAttr = false; |
| 1173 | auto HasAttrCB = [&](const Attribute::AttrKind &Kind, AttributeSet AttrSet, |
| 1174 | AttributeMask &, AttrBuilder &) { |
| 1175 | if (AttrSet.hasAttribute(Kind)) { |
| 1176 | Implied |= Kind != ImpliedAttributeKind; |
| 1177 | HasAttr = true; |
| 1178 | } |
| 1179 | return false; |
| 1180 | }; |
| 1181 | for (const IRPosition &EquivIRP : SubsumingPositionIterator(IRP)) { |
| 1182 | updateAttrMap<Attribute::AttrKind>(IRP: EquivIRP, AttrDescs: AttrKinds, CB: HasAttrCB); |
| 1183 | if (HasAttr) |
| 1184 | break; |
| 1185 | // The first position returned by the SubsumingPositionIterator is |
| 1186 | // always the position itself. If we ignore subsuming positions we |
| 1187 | // are done after the first iteration. |
| 1188 | if (IgnoreSubsumingPositions) |
| 1189 | break; |
| 1190 | Implied = true; |
| 1191 | } |
| 1192 | if (!HasAttr) { |
| 1193 | Implied = true; |
| 1194 | SmallVector<Attribute> Attrs; |
| 1195 | for (Attribute::AttrKind AK : AttrKinds) |
| 1196 | if (getAttrsFromAssumes(IRP, AK, Attrs)) { |
| 1197 | HasAttr = true; |
| 1198 | break; |
| 1199 | } |
| 1200 | } |
| 1201 | |
| 1202 | // Check if we should manifest the implied attribute kind at the IRP. |
| 1203 | if (ImpliedAttributeKind != Attribute::None && HasAttr && Implied) |
| 1204 | manifestAttrs(IRP, DeducedAttrs: {Attribute::get(Context&: IRP.getAnchorValue().getContext(), |
| 1205 | Kind: ImpliedAttributeKind)}); |
| 1206 | return HasAttr; |
| 1207 | } |
| 1208 | |
| 1209 | void Attributor::getAttrs(const IRPosition &IRP, |
| 1210 | ArrayRef<Attribute::AttrKind> AttrKinds, |
| 1211 | SmallVectorImpl<Attribute> &Attrs, |
| 1212 | bool IgnoreSubsumingPositions) { |
| 1213 | auto CollectAttrCB = [&](const Attribute::AttrKind &Kind, |
| 1214 | AttributeSet AttrSet, AttributeMask &, |
| 1215 | AttrBuilder &) { |
| 1216 | if (AttrSet.hasAttribute(Kind)) |
| 1217 | Attrs.push_back(Elt: AttrSet.getAttribute(Kind)); |
| 1218 | return false; |
| 1219 | }; |
| 1220 | for (const IRPosition &EquivIRP : SubsumingPositionIterator(IRP)) { |
| 1221 | updateAttrMap<Attribute::AttrKind>(IRP: EquivIRP, AttrDescs: AttrKinds, CB: CollectAttrCB); |
| 1222 | // The first position returned by the SubsumingPositionIterator is |
| 1223 | // always the position itself. If we ignore subsuming positions we |
| 1224 | // are done after the first iteration. |
| 1225 | if (IgnoreSubsumingPositions) |
| 1226 | break; |
| 1227 | } |
| 1228 | for (Attribute::AttrKind AK : AttrKinds) |
| 1229 | getAttrsFromAssumes(IRP, AK, Attrs); |
| 1230 | } |
| 1231 | |
| 1232 | ChangeStatus Attributor::removeAttrs(const IRPosition &IRP, |
| 1233 | ArrayRef<Attribute::AttrKind> AttrKinds) { |
| 1234 | auto RemoveAttrCB = [&](const Attribute::AttrKind &Kind, AttributeSet AttrSet, |
| 1235 | AttributeMask &AM, AttrBuilder &) { |
| 1236 | if (!AttrSet.hasAttribute(Kind)) |
| 1237 | return false; |
| 1238 | AM.addAttribute(Val: Kind); |
| 1239 | return true; |
| 1240 | }; |
| 1241 | return updateAttrMap<Attribute::AttrKind>(IRP, AttrDescs: AttrKinds, CB: RemoveAttrCB); |
| 1242 | } |
| 1243 | |
| 1244 | ChangeStatus Attributor::removeAttrs(const IRPosition &IRP, |
| 1245 | ArrayRef<StringRef> Attrs) { |
| 1246 | auto RemoveAttrCB = [&](StringRef Attr, AttributeSet AttrSet, |
| 1247 | AttributeMask &AM, AttrBuilder &) -> bool { |
| 1248 | if (!AttrSet.hasAttribute(Kind: Attr)) |
| 1249 | return false; |
| 1250 | AM.addAttribute(A: Attr); |
| 1251 | return true; |
| 1252 | }; |
| 1253 | |
| 1254 | return updateAttrMap<StringRef>(IRP, AttrDescs: Attrs, CB: RemoveAttrCB); |
| 1255 | } |
| 1256 | |
| 1257 | ChangeStatus Attributor::manifestAttrs(const IRPosition &IRP, |
| 1258 | ArrayRef<Attribute> Attrs, |
| 1259 | bool ForceReplace) { |
| 1260 | LLVMContext &Ctx = IRP.getAnchorValue().getContext(); |
| 1261 | auto AddAttrCB = [&](const Attribute &Attr, AttributeSet AttrSet, |
| 1262 | AttributeMask &, AttrBuilder &AB) { |
| 1263 | return addIfNotExistent(Ctx, Attr, AttrSet, ForceReplace, AB); |
| 1264 | }; |
| 1265 | return updateAttrMap<Attribute>(IRP, AttrDescs: Attrs, CB: AddAttrCB); |
| 1266 | } |
| 1267 | |
| 1268 | const IRPosition IRPosition::EmptyKey(DenseMapInfo<void *>::getEmptyKey()); |
| 1269 | const IRPosition |
| 1270 | IRPosition::TombstoneKey(DenseMapInfo<void *>::getTombstoneKey()); |
| 1271 | |
| 1272 | SubsumingPositionIterator::SubsumingPositionIterator(const IRPosition &IRP) { |
| 1273 | IRPositions.emplace_back(Args: IRP); |
| 1274 | |
| 1275 | // Helper to determine if operand bundles on a call site are benign or |
| 1276 | // potentially problematic. We handle only llvm.assume for now. |
| 1277 | auto CanIgnoreOperandBundles = [](const CallBase &CB) { |
| 1278 | return (isa<IntrinsicInst>(Val: CB) && |
| 1279 | cast<IntrinsicInst>(Val: CB).getIntrinsicID() == Intrinsic ::assume); |
| 1280 | }; |
| 1281 | |
| 1282 | const auto *CB = dyn_cast<CallBase>(Val: &IRP.getAnchorValue()); |
| 1283 | switch (IRP.getPositionKind()) { |
| 1284 | case IRPosition::IRP_INVALID: |
| 1285 | case IRPosition::IRP_FLOAT: |
| 1286 | case IRPosition::IRP_FUNCTION: |
| 1287 | return; |
| 1288 | case IRPosition::IRP_ARGUMENT: |
| 1289 | case IRPosition::IRP_RETURNED: |
| 1290 | IRPositions.emplace_back(Args: IRPosition::function(F: *IRP.getAnchorScope())); |
| 1291 | return; |
| 1292 | case IRPosition::IRP_CALL_SITE: |
| 1293 | assert(CB && "Expected call site!" ); |
| 1294 | // TODO: We need to look at the operand bundles similar to the redirection |
| 1295 | // in CallBase. |
| 1296 | if (!CB->hasOperandBundles() || CanIgnoreOperandBundles(*CB)) |
| 1297 | if (auto *Callee = dyn_cast_if_present<Function>(Val: CB->getCalledOperand())) |
| 1298 | IRPositions.emplace_back(Args: IRPosition::function(F: *Callee)); |
| 1299 | return; |
| 1300 | case IRPosition::IRP_CALL_SITE_RETURNED: |
| 1301 | assert(CB && "Expected call site!" ); |
| 1302 | // TODO: We need to look at the operand bundles similar to the redirection |
| 1303 | // in CallBase. |
| 1304 | if (!CB->hasOperandBundles() || CanIgnoreOperandBundles(*CB)) { |
| 1305 | if (auto *Callee = |
| 1306 | dyn_cast_if_present<Function>(Val: CB->getCalledOperand())) { |
| 1307 | IRPositions.emplace_back(Args: IRPosition::returned(F: *Callee)); |
| 1308 | IRPositions.emplace_back(Args: IRPosition::function(F: *Callee)); |
| 1309 | for (const Argument &Arg : Callee->args()) |
| 1310 | if (Arg.hasReturnedAttr()) { |
| 1311 | IRPositions.emplace_back( |
| 1312 | Args: IRPosition::callsite_argument(CB: *CB, ArgNo: Arg.getArgNo())); |
| 1313 | IRPositions.emplace_back( |
| 1314 | Args: IRPosition::value(V: *CB->getArgOperand(i: Arg.getArgNo()))); |
| 1315 | IRPositions.emplace_back(Args: IRPosition::argument(Arg)); |
| 1316 | } |
| 1317 | } |
| 1318 | } |
| 1319 | IRPositions.emplace_back(Args: IRPosition::callsite_function(CB: *CB)); |
| 1320 | return; |
| 1321 | case IRPosition::IRP_CALL_SITE_ARGUMENT: { |
| 1322 | assert(CB && "Expected call site!" ); |
| 1323 | // TODO: We need to look at the operand bundles similar to the redirection |
| 1324 | // in CallBase. |
| 1325 | if (!CB->hasOperandBundles() || CanIgnoreOperandBundles(*CB)) { |
| 1326 | auto *Callee = dyn_cast_if_present<Function>(Val: CB->getCalledOperand()); |
| 1327 | if (Callee) { |
| 1328 | if (Argument *Arg = IRP.getAssociatedArgument()) |
| 1329 | IRPositions.emplace_back(Args: IRPosition::argument(Arg: *Arg)); |
| 1330 | IRPositions.emplace_back(Args: IRPosition::function(F: *Callee)); |
| 1331 | } |
| 1332 | } |
| 1333 | IRPositions.emplace_back(Args: IRPosition::value(V: IRP.getAssociatedValue())); |
| 1334 | return; |
| 1335 | } |
| 1336 | } |
| 1337 | } |
| 1338 | |
| 1339 | void IRPosition::verify() { |
| 1340 | #ifdef EXPENSIVE_CHECKS |
| 1341 | switch (getPositionKind()) { |
| 1342 | case IRP_INVALID: |
| 1343 | assert((CBContext == nullptr) && |
| 1344 | "Invalid position must not have CallBaseContext!" ); |
| 1345 | assert(!Enc.getOpaqueValue() && |
| 1346 | "Expected a nullptr for an invalid position!" ); |
| 1347 | return; |
| 1348 | case IRP_FLOAT: |
| 1349 | assert((!isa<Argument>(&getAssociatedValue())) && |
| 1350 | "Expected specialized kind for argument values!" ); |
| 1351 | return; |
| 1352 | case IRP_RETURNED: |
| 1353 | assert(isa<Function>(getAsValuePtr()) && |
| 1354 | "Expected function for a 'returned' position!" ); |
| 1355 | assert(getAsValuePtr() == &getAssociatedValue() && |
| 1356 | "Associated value mismatch!" ); |
| 1357 | return; |
| 1358 | case IRP_CALL_SITE_RETURNED: |
| 1359 | assert((CBContext == nullptr) && |
| 1360 | "'call site returned' position must not have CallBaseContext!" ); |
| 1361 | assert((isa<CallBase>(getAsValuePtr())) && |
| 1362 | "Expected call base for 'call site returned' position!" ); |
| 1363 | assert(getAsValuePtr() == &getAssociatedValue() && |
| 1364 | "Associated value mismatch!" ); |
| 1365 | return; |
| 1366 | case IRP_CALL_SITE: |
| 1367 | assert((CBContext == nullptr) && |
| 1368 | "'call site function' position must not have CallBaseContext!" ); |
| 1369 | assert((isa<CallBase>(getAsValuePtr())) && |
| 1370 | "Expected call base for 'call site function' position!" ); |
| 1371 | assert(getAsValuePtr() == &getAssociatedValue() && |
| 1372 | "Associated value mismatch!" ); |
| 1373 | return; |
| 1374 | case IRP_FUNCTION: |
| 1375 | assert(isa<Function>(getAsValuePtr()) && |
| 1376 | "Expected function for a 'function' position!" ); |
| 1377 | assert(getAsValuePtr() == &getAssociatedValue() && |
| 1378 | "Associated value mismatch!" ); |
| 1379 | return; |
| 1380 | case IRP_ARGUMENT: |
| 1381 | assert(isa<Argument>(getAsValuePtr()) && |
| 1382 | "Expected argument for a 'argument' position!" ); |
| 1383 | assert(getAsValuePtr() == &getAssociatedValue() && |
| 1384 | "Associated value mismatch!" ); |
| 1385 | return; |
| 1386 | case IRP_CALL_SITE_ARGUMENT: { |
| 1387 | assert((CBContext == nullptr) && |
| 1388 | "'call site argument' position must not have CallBaseContext!" ); |
| 1389 | Use *U = getAsUsePtr(); |
| 1390 | (void)U; // Silence unused variable warning. |
| 1391 | assert(U && "Expected use for a 'call site argument' position!" ); |
| 1392 | assert(isa<CallBase>(U->getUser()) && |
| 1393 | "Expected call base user for a 'call site argument' position!" ); |
| 1394 | assert(cast<CallBase>(U->getUser())->isArgOperand(U) && |
| 1395 | "Expected call base argument operand for a 'call site argument' " |
| 1396 | "position" ); |
| 1397 | assert(cast<CallBase>(U->getUser())->getArgOperandNo(U) == |
| 1398 | unsigned(getCallSiteArgNo()) && |
| 1399 | "Argument number mismatch!" ); |
| 1400 | assert(U->get() == &getAssociatedValue() && "Associated value mismatch!" ); |
| 1401 | return; |
| 1402 | } |
| 1403 | } |
| 1404 | #endif |
| 1405 | } |
| 1406 | |
| 1407 | std::optional<Constant *> |
| 1408 | Attributor::getAssumedConstant(const IRPosition &IRP, |
| 1409 | const AbstractAttribute &AA, |
| 1410 | bool &UsedAssumedInformation) { |
| 1411 | // First check all callbacks provided by outside AAs. If any of them returns |
| 1412 | // a non-null value that is different from the associated value, or |
| 1413 | // std::nullopt, we assume it's simplified. |
| 1414 | for (auto &CB : SimplificationCallbacks.lookup(Val: IRP)) { |
| 1415 | std::optional<Value *> SimplifiedV = CB(IRP, &AA, UsedAssumedInformation); |
| 1416 | if (!SimplifiedV) |
| 1417 | return std::nullopt; |
| 1418 | if (isa_and_nonnull<Constant>(Val: *SimplifiedV)) |
| 1419 | return cast<Constant>(Val: *SimplifiedV); |
| 1420 | return nullptr; |
| 1421 | } |
| 1422 | if (auto *C = dyn_cast<Constant>(Val: &IRP.getAssociatedValue())) |
| 1423 | return C; |
| 1424 | SmallVector<AA::ValueAndContext> Values; |
| 1425 | if (getAssumedSimplifiedValues(IRP, AA: &AA, Values, |
| 1426 | S: AA::ValueScope::Interprocedural, |
| 1427 | UsedAssumedInformation)) { |
| 1428 | if (Values.empty()) |
| 1429 | return std::nullopt; |
| 1430 | if (auto *C = dyn_cast_or_null<Constant>( |
| 1431 | Val: AAPotentialValues::getSingleValue(A&: *this, AA, IRP, Values))) |
| 1432 | return C; |
| 1433 | } |
| 1434 | return nullptr; |
| 1435 | } |
| 1436 | |
| 1437 | std::optional<Value *> Attributor::getAssumedSimplified( |
| 1438 | const IRPosition &IRP, const AbstractAttribute *AA, |
| 1439 | bool &UsedAssumedInformation, AA::ValueScope S) { |
| 1440 | // First check all callbacks provided by outside AAs. If any of them returns |
| 1441 | // a non-null value that is different from the associated value, or |
| 1442 | // std::nullopt, we assume it's simplified. |
| 1443 | for (auto &CB : SimplificationCallbacks.lookup(Val: IRP)) |
| 1444 | return CB(IRP, AA, UsedAssumedInformation); |
| 1445 | |
| 1446 | SmallVector<AA::ValueAndContext> Values; |
| 1447 | if (!getAssumedSimplifiedValues(IRP, AA, Values, S, UsedAssumedInformation)) |
| 1448 | return &IRP.getAssociatedValue(); |
| 1449 | if (Values.empty()) |
| 1450 | return std::nullopt; |
| 1451 | if (AA) |
| 1452 | if (Value *V = AAPotentialValues::getSingleValue(A&: *this, AA: *AA, IRP, Values)) |
| 1453 | return V; |
| 1454 | if (IRP.getPositionKind() == IRPosition::IRP_RETURNED || |
| 1455 | IRP.getPositionKind() == IRPosition::IRP_CALL_SITE_RETURNED) |
| 1456 | return nullptr; |
| 1457 | return &IRP.getAssociatedValue(); |
| 1458 | } |
| 1459 | |
| 1460 | bool Attributor::getAssumedSimplifiedValues( |
| 1461 | const IRPosition &InitialIRP, const AbstractAttribute *AA, |
| 1462 | SmallVectorImpl<AA::ValueAndContext> &Values, AA::ValueScope S, |
| 1463 | bool &UsedAssumedInformation, bool RecurseForSelectAndPHI) { |
| 1464 | SmallPtrSet<Value *, 8> Seen; |
| 1465 | SmallVector<IRPosition, 8> Worklist; |
| 1466 | Worklist.push_back(Elt: InitialIRP); |
| 1467 | while (!Worklist.empty()) { |
| 1468 | const IRPosition &IRP = Worklist.pop_back_val(); |
| 1469 | |
| 1470 | // First check all callbacks provided by outside AAs. If any of them returns |
| 1471 | // a non-null value that is different from the associated value, or |
| 1472 | // std::nullopt, we assume it's simplified. |
| 1473 | int NV = Values.size(); |
| 1474 | const auto &SimplificationCBs = SimplificationCallbacks.lookup(Val: IRP); |
| 1475 | for (const auto &CB : SimplificationCBs) { |
| 1476 | std::optional<Value *> CBResult = CB(IRP, AA, UsedAssumedInformation); |
| 1477 | if (!CBResult.has_value()) |
| 1478 | continue; |
| 1479 | Value *V = *CBResult; |
| 1480 | if (!V) |
| 1481 | return false; |
| 1482 | if ((S & AA::ValueScope::Interprocedural) || |
| 1483 | AA::isValidInScope(V: *V, Scope: IRP.getAnchorScope())) |
| 1484 | Values.push_back(Elt: AA::ValueAndContext{*V, nullptr}); |
| 1485 | else |
| 1486 | return false; |
| 1487 | } |
| 1488 | if (SimplificationCBs.empty()) { |
| 1489 | // If no high-level/outside simplification occurred, use |
| 1490 | // AAPotentialValues. |
| 1491 | const auto *PotentialValuesAA = |
| 1492 | getOrCreateAAFor<AAPotentialValues>(IRP, QueryingAA: AA, DepClass: DepClassTy::OPTIONAL); |
| 1493 | if (PotentialValuesAA && |
| 1494 | PotentialValuesAA->getAssumedSimplifiedValues(A&: *this, Values, S)) { |
| 1495 | UsedAssumedInformation |= !PotentialValuesAA->isAtFixpoint(); |
| 1496 | } else if (IRP.getPositionKind() != IRPosition::IRP_RETURNED) { |
| 1497 | Values.push_back(Elt: {IRP.getAssociatedValue(), IRP.getCtxI()}); |
| 1498 | } else { |
| 1499 | // TODO: We could visit all returns and add the operands. |
| 1500 | return false; |
| 1501 | } |
| 1502 | } |
| 1503 | |
| 1504 | if (!RecurseForSelectAndPHI) |
| 1505 | break; |
| 1506 | |
| 1507 | for (int I = NV, E = Values.size(); I < E; ++I) { |
| 1508 | Value *V = Values[I].getValue(); |
| 1509 | if (!isa<PHINode>(Val: V) && !isa<SelectInst>(Val: V)) |
| 1510 | continue; |
| 1511 | if (!Seen.insert(Ptr: V).second) |
| 1512 | continue; |
| 1513 | // Move the last element to this slot. |
| 1514 | Values[I] = Values[E - 1]; |
| 1515 | // Eliminate the last slot, adjust the indices. |
| 1516 | Values.pop_back(); |
| 1517 | --E; |
| 1518 | --I; |
| 1519 | // Add a new value (select or phi) to the worklist. |
| 1520 | Worklist.push_back(Elt: IRPosition::value(V: *V)); |
| 1521 | } |
| 1522 | } |
| 1523 | return true; |
| 1524 | } |
| 1525 | |
| 1526 | std::optional<Value *> Attributor::translateArgumentToCallSiteContent( |
| 1527 | std::optional<Value *> V, CallBase &CB, const AbstractAttribute &AA, |
| 1528 | bool &UsedAssumedInformation) { |
| 1529 | if (!V) |
| 1530 | return V; |
| 1531 | if (*V == nullptr || isa<Constant>(Val: *V)) |
| 1532 | return V; |
| 1533 | if (auto *Arg = dyn_cast<Argument>(Val: *V)) |
| 1534 | if (CB.getCalledOperand() == Arg->getParent() && |
| 1535 | CB.arg_size() > Arg->getArgNo()) |
| 1536 | if (!Arg->hasPointeeInMemoryValueAttr()) |
| 1537 | return getAssumedSimplified( |
| 1538 | IRP: IRPosition::callsite_argument(CB, ArgNo: Arg->getArgNo()), AA, |
| 1539 | UsedAssumedInformation, S: AA::Intraprocedural); |
| 1540 | return nullptr; |
| 1541 | } |
| 1542 | |
| 1543 | Attributor::~Attributor() { |
| 1544 | // The abstract attributes are allocated via the BumpPtrAllocator Allocator, |
| 1545 | // thus we cannot delete them. We can, and want to, destruct them though. |
| 1546 | for (auto &It : AAMap) { |
| 1547 | AbstractAttribute *AA = It.getSecond(); |
| 1548 | AA->~AbstractAttribute(); |
| 1549 | } |
| 1550 | } |
| 1551 | |
| 1552 | bool Attributor::isAssumedDead(const AbstractAttribute &AA, |
| 1553 | const AAIsDead *FnLivenessAA, |
| 1554 | bool &UsedAssumedInformation, |
| 1555 | bool CheckBBLivenessOnly, DepClassTy DepClass) { |
| 1556 | if (!Configuration.UseLiveness) |
| 1557 | return false; |
| 1558 | const IRPosition &IRP = AA.getIRPosition(); |
| 1559 | if (!Functions.count(key: IRP.getAnchorScope())) |
| 1560 | return false; |
| 1561 | return isAssumedDead(IRP, QueryingAA: &AA, FnLivenessAA, UsedAssumedInformation, |
| 1562 | CheckBBLivenessOnly, DepClass); |
| 1563 | } |
| 1564 | |
| 1565 | bool Attributor::isAssumedDead(const Use &U, |
| 1566 | const AbstractAttribute *QueryingAA, |
| 1567 | const AAIsDead *FnLivenessAA, |
| 1568 | bool &UsedAssumedInformation, |
| 1569 | bool CheckBBLivenessOnly, DepClassTy DepClass) { |
| 1570 | if (!Configuration.UseLiveness) |
| 1571 | return false; |
| 1572 | Instruction *UserI = dyn_cast<Instruction>(Val: U.getUser()); |
| 1573 | if (!UserI) |
| 1574 | return isAssumedDead(IRP: IRPosition::value(V: *U.get()), QueryingAA, FnLivenessAA, |
| 1575 | UsedAssumedInformation, CheckBBLivenessOnly, DepClass); |
| 1576 | |
| 1577 | if (auto *CB = dyn_cast<CallBase>(Val: UserI)) { |
| 1578 | // For call site argument uses we can check if the argument is |
| 1579 | // unused/dead. |
| 1580 | if (CB->isArgOperand(U: &U)) { |
| 1581 | const IRPosition &CSArgPos = |
| 1582 | IRPosition::callsite_argument(CB: *CB, ArgNo: CB->getArgOperandNo(U: &U)); |
| 1583 | return isAssumedDead(IRP: CSArgPos, QueryingAA, FnLivenessAA, |
| 1584 | UsedAssumedInformation, CheckBBLivenessOnly, |
| 1585 | DepClass); |
| 1586 | } |
| 1587 | } else if (ReturnInst *RI = dyn_cast<ReturnInst>(Val: UserI)) { |
| 1588 | const IRPosition &RetPos = IRPosition::returned(F: *RI->getFunction()); |
| 1589 | return isAssumedDead(IRP: RetPos, QueryingAA, FnLivenessAA, |
| 1590 | UsedAssumedInformation, CheckBBLivenessOnly, DepClass); |
| 1591 | } else if (PHINode *PHI = dyn_cast<PHINode>(Val: UserI)) { |
| 1592 | BasicBlock *IncomingBB = PHI->getIncomingBlock(U); |
| 1593 | return isAssumedDead(I: *IncomingBB->getTerminator(), QueryingAA, LivenessAA: FnLivenessAA, |
| 1594 | UsedAssumedInformation, CheckBBLivenessOnly, DepClass); |
| 1595 | } else if (StoreInst *SI = dyn_cast<StoreInst>(Val: UserI)) { |
| 1596 | if (!CheckBBLivenessOnly && SI->getPointerOperand() != U.get()) { |
| 1597 | const IRPosition IRP = IRPosition::inst(I: *SI); |
| 1598 | const AAIsDead *IsDeadAA = |
| 1599 | getOrCreateAAFor<AAIsDead>(IRP, QueryingAA, DepClass: DepClassTy::NONE); |
| 1600 | if (IsDeadAA && IsDeadAA->isRemovableStore()) { |
| 1601 | if (QueryingAA) |
| 1602 | recordDependence(FromAA: *IsDeadAA, ToAA: *QueryingAA, DepClass); |
| 1603 | if (!IsDeadAA->isKnown(BitsEncoding: AAIsDead::IS_REMOVABLE)) |
| 1604 | UsedAssumedInformation = true; |
| 1605 | return true; |
| 1606 | } |
| 1607 | } |
| 1608 | } |
| 1609 | |
| 1610 | return isAssumedDead(IRP: IRPosition::inst(I: *UserI), QueryingAA, FnLivenessAA, |
| 1611 | UsedAssumedInformation, CheckBBLivenessOnly, DepClass); |
| 1612 | } |
| 1613 | |
| 1614 | bool Attributor::isAssumedDead(const Instruction &I, |
| 1615 | const AbstractAttribute *QueryingAA, |
| 1616 | const AAIsDead *FnLivenessAA, |
| 1617 | bool &UsedAssumedInformation, |
| 1618 | bool CheckBBLivenessOnly, DepClassTy DepClass, |
| 1619 | bool CheckForDeadStore) { |
| 1620 | if (!Configuration.UseLiveness) |
| 1621 | return false; |
| 1622 | const IRPosition::CallBaseContext *CBCtx = |
| 1623 | QueryingAA ? QueryingAA->getCallBaseContext() : nullptr; |
| 1624 | |
| 1625 | if (ManifestAddedBlocks.contains(Ptr: I.getParent())) |
| 1626 | return false; |
| 1627 | |
| 1628 | const Function &F = *I.getFunction(); |
| 1629 | if (!FnLivenessAA || FnLivenessAA->getAnchorScope() != &F) |
| 1630 | FnLivenessAA = getOrCreateAAFor<AAIsDead>(IRP: IRPosition::function(F, CBContext: CBCtx), |
| 1631 | QueryingAA, DepClass: DepClassTy::NONE); |
| 1632 | |
| 1633 | // Don't use recursive reasoning. |
| 1634 | if (!FnLivenessAA || QueryingAA == FnLivenessAA) |
| 1635 | return false; |
| 1636 | |
| 1637 | // If we have a context instruction and a liveness AA we use it. |
| 1638 | if (CheckBBLivenessOnly ? FnLivenessAA->isAssumedDead(BB: I.getParent()) |
| 1639 | : FnLivenessAA->isAssumedDead(I: &I)) { |
| 1640 | if (QueryingAA) |
| 1641 | recordDependence(FromAA: *FnLivenessAA, ToAA: *QueryingAA, DepClass); |
| 1642 | if (!FnLivenessAA->isKnownDead(I: &I)) |
| 1643 | UsedAssumedInformation = true; |
| 1644 | return true; |
| 1645 | } |
| 1646 | |
| 1647 | if (CheckBBLivenessOnly) |
| 1648 | return false; |
| 1649 | |
| 1650 | const IRPosition IRP = IRPosition::inst(I, CBContext: CBCtx); |
| 1651 | const AAIsDead *IsDeadAA = |
| 1652 | getOrCreateAAFor<AAIsDead>(IRP, QueryingAA, DepClass: DepClassTy::NONE); |
| 1653 | |
| 1654 | // Don't use recursive reasoning. |
| 1655 | if (!IsDeadAA || QueryingAA == IsDeadAA) |
| 1656 | return false; |
| 1657 | |
| 1658 | if (IsDeadAA->isAssumedDead()) { |
| 1659 | if (QueryingAA) |
| 1660 | recordDependence(FromAA: *IsDeadAA, ToAA: *QueryingAA, DepClass); |
| 1661 | if (!IsDeadAA->isKnownDead()) |
| 1662 | UsedAssumedInformation = true; |
| 1663 | return true; |
| 1664 | } |
| 1665 | |
| 1666 | if (CheckForDeadStore && isa<StoreInst>(Val: I) && IsDeadAA->isRemovableStore()) { |
| 1667 | if (QueryingAA) |
| 1668 | recordDependence(FromAA: *IsDeadAA, ToAA: *QueryingAA, DepClass); |
| 1669 | if (!IsDeadAA->isKnownDead()) |
| 1670 | UsedAssumedInformation = true; |
| 1671 | return true; |
| 1672 | } |
| 1673 | |
| 1674 | return false; |
| 1675 | } |
| 1676 | |
| 1677 | bool Attributor::isAssumedDead(const IRPosition &IRP, |
| 1678 | const AbstractAttribute *QueryingAA, |
| 1679 | const AAIsDead *FnLivenessAA, |
| 1680 | bool &UsedAssumedInformation, |
| 1681 | bool CheckBBLivenessOnly, DepClassTy DepClass) { |
| 1682 | if (!Configuration.UseLiveness) |
| 1683 | return false; |
| 1684 | // Don't check liveness for constants, e.g. functions, used as (floating) |
| 1685 | // values since the context instruction and such is here meaningless. |
| 1686 | if (IRP.getPositionKind() == IRPosition::IRP_FLOAT && |
| 1687 | isa<Constant>(Val: IRP.getAssociatedValue())) { |
| 1688 | return false; |
| 1689 | } |
| 1690 | |
| 1691 | Instruction *CtxI = IRP.getCtxI(); |
| 1692 | if (CtxI && |
| 1693 | isAssumedDead(I: *CtxI, QueryingAA, FnLivenessAA, UsedAssumedInformation, |
| 1694 | /* CheckBBLivenessOnly */ true, |
| 1695 | DepClass: CheckBBLivenessOnly ? DepClass : DepClassTy::OPTIONAL)) |
| 1696 | return true; |
| 1697 | |
| 1698 | if (CheckBBLivenessOnly) |
| 1699 | return false; |
| 1700 | |
| 1701 | // If we haven't succeeded we query the specific liveness info for the IRP. |
| 1702 | const AAIsDead *IsDeadAA; |
| 1703 | if (IRP.getPositionKind() == IRPosition::IRP_CALL_SITE) |
| 1704 | IsDeadAA = getOrCreateAAFor<AAIsDead>( |
| 1705 | IRP: IRPosition::callsite_returned(CB: cast<CallBase>(Val&: IRP.getAssociatedValue())), |
| 1706 | QueryingAA, DepClass: DepClassTy::NONE); |
| 1707 | else |
| 1708 | IsDeadAA = getOrCreateAAFor<AAIsDead>(IRP, QueryingAA, DepClass: DepClassTy::NONE); |
| 1709 | |
| 1710 | // Don't use recursive reasoning. |
| 1711 | if (!IsDeadAA || QueryingAA == IsDeadAA) |
| 1712 | return false; |
| 1713 | |
| 1714 | if (IsDeadAA->isAssumedDead()) { |
| 1715 | if (QueryingAA) |
| 1716 | recordDependence(FromAA: *IsDeadAA, ToAA: *QueryingAA, DepClass); |
| 1717 | if (!IsDeadAA->isKnownDead()) |
| 1718 | UsedAssumedInformation = true; |
| 1719 | return true; |
| 1720 | } |
| 1721 | |
| 1722 | return false; |
| 1723 | } |
| 1724 | |
| 1725 | bool Attributor::isAssumedDead(const BasicBlock &BB, |
| 1726 | const AbstractAttribute *QueryingAA, |
| 1727 | const AAIsDead *FnLivenessAA, |
| 1728 | DepClassTy DepClass) { |
| 1729 | if (!Configuration.UseLiveness) |
| 1730 | return false; |
| 1731 | const Function &F = *BB.getParent(); |
| 1732 | if (!FnLivenessAA || FnLivenessAA->getAnchorScope() != &F) |
| 1733 | FnLivenessAA = getOrCreateAAFor<AAIsDead>(IRP: IRPosition::function(F), |
| 1734 | QueryingAA, DepClass: DepClassTy::NONE); |
| 1735 | |
| 1736 | // Don't use recursive reasoning. |
| 1737 | if (!FnLivenessAA || QueryingAA == FnLivenessAA) |
| 1738 | return false; |
| 1739 | |
| 1740 | if (FnLivenessAA->isAssumedDead(BB: &BB)) { |
| 1741 | if (QueryingAA) |
| 1742 | recordDependence(FromAA: *FnLivenessAA, ToAA: *QueryingAA, DepClass); |
| 1743 | return true; |
| 1744 | } |
| 1745 | |
| 1746 | return false; |
| 1747 | } |
| 1748 | |
| 1749 | bool Attributor::checkForAllCallees( |
| 1750 | function_ref<bool(ArrayRef<const Function *>)> Pred, |
| 1751 | const AbstractAttribute &QueryingAA, const CallBase &CB) { |
| 1752 | if (const Function *Callee = dyn_cast<Function>(Val: CB.getCalledOperand())) |
| 1753 | return Pred(Callee); |
| 1754 | |
| 1755 | const auto *CallEdgesAA = getAAFor<AACallEdges>( |
| 1756 | QueryingAA, IRP: IRPosition::callsite_function(CB), DepClass: DepClassTy::OPTIONAL); |
| 1757 | if (!CallEdgesAA || CallEdgesAA->hasUnknownCallee()) |
| 1758 | return false; |
| 1759 | |
| 1760 | const auto &Callees = CallEdgesAA->getOptimisticEdges(); |
| 1761 | return Pred(Callees.getArrayRef()); |
| 1762 | } |
| 1763 | |
| 1764 | bool canMarkAsVisited(const User *Usr) { |
| 1765 | return isa<PHINode>(Val: Usr) || !isa<Instruction>(Val: Usr); |
| 1766 | } |
| 1767 | |
| 1768 | bool Attributor::checkForAllUses( |
| 1769 | function_ref<bool(const Use &, bool &)> Pred, |
| 1770 | const AbstractAttribute &QueryingAA, const Value &V, |
| 1771 | bool CheckBBLivenessOnly, DepClassTy LivenessDepClass, |
| 1772 | bool IgnoreDroppableUses, |
| 1773 | function_ref<bool(const Use &OldU, const Use &NewU)> EquivalentUseCB) { |
| 1774 | |
| 1775 | // Check virtual uses first. |
| 1776 | for (VirtualUseCallbackTy &CB : VirtualUseCallbacks.lookup(Val: &V)) |
| 1777 | if (!CB(*this, &QueryingAA)) |
| 1778 | return false; |
| 1779 | |
| 1780 | if (isa<ConstantData>(Val: V)) |
| 1781 | return false; |
| 1782 | |
| 1783 | // Check the trivial case first as it catches void values. |
| 1784 | if (V.use_empty()) |
| 1785 | return true; |
| 1786 | |
| 1787 | const IRPosition &IRP = QueryingAA.getIRPosition(); |
| 1788 | SmallVector<const Use *, 16> Worklist; |
| 1789 | SmallPtrSet<const Use *, 16> Visited; |
| 1790 | |
| 1791 | auto AddUsers = [&](const Value &V, const Use *OldUse) { |
| 1792 | for (const Use &UU : V.uses()) { |
| 1793 | if (OldUse && EquivalentUseCB && !EquivalentUseCB(*OldUse, UU)) { |
| 1794 | LLVM_DEBUG(dbgs() << "[Attributor] Potential copy was " |
| 1795 | "rejected by the equivalence call back: " |
| 1796 | << *UU << "!\n" ); |
| 1797 | return false; |
| 1798 | } |
| 1799 | |
| 1800 | Worklist.push_back(Elt: &UU); |
| 1801 | } |
| 1802 | return true; |
| 1803 | }; |
| 1804 | |
| 1805 | AddUsers(V, /* OldUse */ nullptr); |
| 1806 | |
| 1807 | LLVM_DEBUG(dbgs() << "[Attributor] Got " << Worklist.size() |
| 1808 | << " initial uses to check\n" ); |
| 1809 | |
| 1810 | const Function *ScopeFn = IRP.getAnchorScope(); |
| 1811 | const auto *LivenessAA = |
| 1812 | ScopeFn ? getAAFor<AAIsDead>(QueryingAA, IRP: IRPosition::function(F: *ScopeFn), |
| 1813 | DepClass: DepClassTy::NONE) |
| 1814 | : nullptr; |
| 1815 | |
| 1816 | while (!Worklist.empty()) { |
| 1817 | const Use *U = Worklist.pop_back_val(); |
| 1818 | if (canMarkAsVisited(Usr: U->getUser()) && !Visited.insert(Ptr: U).second) |
| 1819 | continue; |
| 1820 | DEBUG_WITH_TYPE(VERBOSE_DEBUG_TYPE, { |
| 1821 | if (auto *Fn = dyn_cast<Function>(U->getUser())) |
| 1822 | dbgs() << "[Attributor] Check use: " << **U << " in " << Fn->getName() |
| 1823 | << "\n" ; |
| 1824 | else |
| 1825 | dbgs() << "[Attributor] Check use: " << **U << " in " << *U->getUser() |
| 1826 | << "\n" ; |
| 1827 | }); |
| 1828 | bool UsedAssumedInformation = false; |
| 1829 | if (isAssumedDead(U: *U, QueryingAA: &QueryingAA, FnLivenessAA: LivenessAA, UsedAssumedInformation, |
| 1830 | CheckBBLivenessOnly, DepClass: LivenessDepClass)) { |
| 1831 | DEBUG_WITH_TYPE(VERBOSE_DEBUG_TYPE, |
| 1832 | dbgs() << "[Attributor] Dead use, skip!\n" ); |
| 1833 | continue; |
| 1834 | } |
| 1835 | if (IgnoreDroppableUses && U->getUser()->isDroppable()) { |
| 1836 | DEBUG_WITH_TYPE(VERBOSE_DEBUG_TYPE, |
| 1837 | dbgs() << "[Attributor] Droppable user, skip!\n" ); |
| 1838 | continue; |
| 1839 | } |
| 1840 | |
| 1841 | if (auto *SI = dyn_cast<StoreInst>(Val: U->getUser())) { |
| 1842 | if (&SI->getOperandUse(i: 0) == U) { |
| 1843 | if (!Visited.insert(Ptr: U).second) |
| 1844 | continue; |
| 1845 | SmallSetVector<Value *, 4> PotentialCopies; |
| 1846 | if (AA::getPotentialCopiesOfStoredValue( |
| 1847 | A&: *this, SI&: *SI, PotentialCopies, QueryingAA, UsedAssumedInformation, |
| 1848 | /* OnlyExact */ true)) { |
| 1849 | DEBUG_WITH_TYPE(VERBOSE_DEBUG_TYPE, |
| 1850 | dbgs() |
| 1851 | << "[Attributor] Value is stored, continue with " |
| 1852 | << PotentialCopies.size() |
| 1853 | << " potential copies instead!\n" ); |
| 1854 | for (Value *PotentialCopy : PotentialCopies) |
| 1855 | if (!AddUsers(*PotentialCopy, U)) |
| 1856 | return false; |
| 1857 | continue; |
| 1858 | } |
| 1859 | } |
| 1860 | } |
| 1861 | |
| 1862 | bool Follow = false; |
| 1863 | if (!Pred(*U, Follow)) |
| 1864 | return false; |
| 1865 | if (!Follow) |
| 1866 | continue; |
| 1867 | |
| 1868 | User &Usr = *U->getUser(); |
| 1869 | AddUsers(Usr, /* OldUse */ nullptr); |
| 1870 | } |
| 1871 | |
| 1872 | return true; |
| 1873 | } |
| 1874 | |
| 1875 | bool Attributor::checkForAllCallSites(function_ref<bool(AbstractCallSite)> Pred, |
| 1876 | const AbstractAttribute &QueryingAA, |
| 1877 | bool RequireAllCallSites, |
| 1878 | bool &UsedAssumedInformation) { |
| 1879 | // We can try to determine information from |
| 1880 | // the call sites. However, this is only possible all call sites are known, |
| 1881 | // hence the function has internal linkage. |
| 1882 | const IRPosition &IRP = QueryingAA.getIRPosition(); |
| 1883 | const Function *AssociatedFunction = IRP.getAssociatedFunction(); |
| 1884 | if (!AssociatedFunction) { |
| 1885 | LLVM_DEBUG(dbgs() << "[Attributor] No function associated with " << IRP |
| 1886 | << "\n" ); |
| 1887 | return false; |
| 1888 | } |
| 1889 | |
| 1890 | return checkForAllCallSites(Pred, Fn: *AssociatedFunction, RequireAllCallSites, |
| 1891 | QueryingAA: &QueryingAA, UsedAssumedInformation); |
| 1892 | } |
| 1893 | |
| 1894 | bool Attributor::checkForAllCallSites(function_ref<bool(AbstractCallSite)> Pred, |
| 1895 | const Function &Fn, |
| 1896 | bool RequireAllCallSites, |
| 1897 | const AbstractAttribute *QueryingAA, |
| 1898 | bool &UsedAssumedInformation, |
| 1899 | bool CheckPotentiallyDead) { |
| 1900 | if (RequireAllCallSites && !Fn.hasLocalLinkage()) { |
| 1901 | LLVM_DEBUG( |
| 1902 | dbgs() |
| 1903 | << "[Attributor] Function " << Fn.getName() |
| 1904 | << " has no internal linkage, hence not all call sites are known\n" ); |
| 1905 | return false; |
| 1906 | } |
| 1907 | // Check virtual uses first. |
| 1908 | for (VirtualUseCallbackTy &CB : VirtualUseCallbacks.lookup(Val: &Fn)) |
| 1909 | if (!CB(*this, QueryingAA)) |
| 1910 | return false; |
| 1911 | |
| 1912 | SmallVector<const Use *, 8> Uses(make_pointer_range(Range: Fn.uses())); |
| 1913 | for (unsigned u = 0; u < Uses.size(); ++u) { |
| 1914 | const Use &U = *Uses[u]; |
| 1915 | DEBUG_WITH_TYPE(VERBOSE_DEBUG_TYPE, { |
| 1916 | if (auto *Fn = dyn_cast<Function>(U)) |
| 1917 | dbgs() << "[Attributor] Check use: " << Fn->getName() << " in " |
| 1918 | << *U.getUser() << "\n" ; |
| 1919 | else |
| 1920 | dbgs() << "[Attributor] Check use: " << *U << " in " << *U.getUser() |
| 1921 | << "\n" ; |
| 1922 | }); |
| 1923 | if (!CheckPotentiallyDead && |
| 1924 | isAssumedDead(U, QueryingAA, FnLivenessAA: nullptr, UsedAssumedInformation, |
| 1925 | /* CheckBBLivenessOnly */ true)) { |
| 1926 | DEBUG_WITH_TYPE(VERBOSE_DEBUG_TYPE, |
| 1927 | dbgs() << "[Attributor] Dead use, skip!\n" ); |
| 1928 | continue; |
| 1929 | } |
| 1930 | if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Val: U.getUser())) { |
| 1931 | if (CE->isCast() && CE->getType()->isPointerTy()) { |
| 1932 | DEBUG_WITH_TYPE(VERBOSE_DEBUG_TYPE, { |
| 1933 | dbgs() << "[Attributor] Use, is constant cast expression, add " |
| 1934 | << CE->getNumUses() << " uses of that expression instead!\n" ; |
| 1935 | }); |
| 1936 | for (const Use &CEU : CE->uses()) |
| 1937 | Uses.push_back(Elt: &CEU); |
| 1938 | continue; |
| 1939 | } |
| 1940 | } |
| 1941 | |
| 1942 | AbstractCallSite ACS(&U); |
| 1943 | if (!ACS) { |
| 1944 | LLVM_DEBUG(dbgs() << "[Attributor] Function " << Fn.getName() |
| 1945 | << " has non call site use " << *U.get() << " in " |
| 1946 | << *U.getUser() << "\n" ); |
| 1947 | return false; |
| 1948 | } |
| 1949 | |
| 1950 | const Use *EffectiveUse = |
| 1951 | ACS.isCallbackCall() ? &ACS.getCalleeUseForCallback() : &U; |
| 1952 | if (!ACS.isCallee(U: EffectiveUse)) { |
| 1953 | if (!RequireAllCallSites) { |
| 1954 | LLVM_DEBUG(dbgs() << "[Attributor] User " << *EffectiveUse->getUser() |
| 1955 | << " is not a call of " << Fn.getName() |
| 1956 | << ", skip use\n" ); |
| 1957 | continue; |
| 1958 | } |
| 1959 | LLVM_DEBUG(dbgs() << "[Attributor] User " << *EffectiveUse->getUser() |
| 1960 | << " is an invalid use of " << Fn.getName() << "\n" ); |
| 1961 | return false; |
| 1962 | } |
| 1963 | |
| 1964 | // Make sure the arguments that can be matched between the call site and the |
| 1965 | // callee argee on their type. It is unlikely they do not and it doesn't |
| 1966 | // make sense for all attributes to know/care about this. |
| 1967 | assert(&Fn == ACS.getCalledFunction() && "Expected known callee" ); |
| 1968 | unsigned MinArgsParams = |
| 1969 | std::min(a: size_t(ACS.getNumArgOperands()), b: Fn.arg_size()); |
| 1970 | for (unsigned u = 0; u < MinArgsParams; ++u) { |
| 1971 | Value *CSArgOp = ACS.getCallArgOperand(ArgNo: u); |
| 1972 | if (CSArgOp && Fn.getArg(i: u)->getType() != CSArgOp->getType()) { |
| 1973 | LLVM_DEBUG( |
| 1974 | dbgs() << "[Attributor] Call site / callee argument type mismatch [" |
| 1975 | << u << "@" << Fn.getName() << ": " |
| 1976 | << *Fn.getArg(u)->getType() << " vs. " |
| 1977 | << *ACS.getCallArgOperand(u)->getType() << "\n" ); |
| 1978 | return false; |
| 1979 | } |
| 1980 | } |
| 1981 | |
| 1982 | if (Pred(ACS)) |
| 1983 | continue; |
| 1984 | |
| 1985 | LLVM_DEBUG(dbgs() << "[Attributor] Call site callback failed for " |
| 1986 | << *ACS.getInstruction() << "\n" ); |
| 1987 | return false; |
| 1988 | } |
| 1989 | |
| 1990 | return true; |
| 1991 | } |
| 1992 | |
| 1993 | bool Attributor::shouldPropagateCallBaseContext(const IRPosition &IRP) { |
| 1994 | // TODO: Maintain a cache of Values that are |
| 1995 | // on the pathway from a Argument to a Instruction that would effect the |
| 1996 | // liveness/return state etc. |
| 1997 | return EnableCallSiteSpecific; |
| 1998 | } |
| 1999 | |
| 2000 | bool Attributor::checkForAllReturnedValues(function_ref<bool(Value &)> Pred, |
| 2001 | const AbstractAttribute &QueryingAA, |
| 2002 | AA::ValueScope S, |
| 2003 | bool RecurseForSelectAndPHI) { |
| 2004 | |
| 2005 | const IRPosition &IRP = QueryingAA.getIRPosition(); |
| 2006 | const Function *AssociatedFunction = IRP.getAssociatedFunction(); |
| 2007 | if (!AssociatedFunction) |
| 2008 | return false; |
| 2009 | |
| 2010 | bool UsedAssumedInformation = false; |
| 2011 | SmallVector<AA::ValueAndContext> Values; |
| 2012 | if (!getAssumedSimplifiedValues( |
| 2013 | InitialIRP: IRPosition::returned(F: *AssociatedFunction), AA: &QueryingAA, Values, S, |
| 2014 | UsedAssumedInformation, RecurseForSelectAndPHI)) |
| 2015 | return false; |
| 2016 | |
| 2017 | return llvm::all_of(Range&: Values, P: [&](const AA::ValueAndContext &VAC) { |
| 2018 | return Pred(*VAC.getValue()); |
| 2019 | }); |
| 2020 | } |
| 2021 | |
| 2022 | static bool checkForAllInstructionsImpl( |
| 2023 | Attributor *A, InformationCache::OpcodeInstMapTy &OpcodeInstMap, |
| 2024 | function_ref<bool(Instruction &)> Pred, const AbstractAttribute *QueryingAA, |
| 2025 | const AAIsDead *LivenessAA, ArrayRef<unsigned> Opcodes, |
| 2026 | bool &UsedAssumedInformation, bool CheckBBLivenessOnly = false, |
| 2027 | bool CheckPotentiallyDead = false) { |
| 2028 | for (unsigned Opcode : Opcodes) { |
| 2029 | // Check if we have instructions with this opcode at all first. |
| 2030 | auto *Insts = OpcodeInstMap.lookup(Val: Opcode); |
| 2031 | if (!Insts) |
| 2032 | continue; |
| 2033 | |
| 2034 | for (Instruction *I : *Insts) { |
| 2035 | // Skip dead instructions. |
| 2036 | if (A && !CheckPotentiallyDead && |
| 2037 | A->isAssumedDead(IRP: IRPosition::inst(I: *I), QueryingAA, FnLivenessAA: LivenessAA, |
| 2038 | UsedAssumedInformation, CheckBBLivenessOnly)) { |
| 2039 | DEBUG_WITH_TYPE(VERBOSE_DEBUG_TYPE, |
| 2040 | dbgs() << "[Attributor] Instruction " << *I |
| 2041 | << " is potentially dead, skip!\n" ;); |
| 2042 | continue; |
| 2043 | } |
| 2044 | |
| 2045 | if (!Pred(*I)) |
| 2046 | return false; |
| 2047 | } |
| 2048 | } |
| 2049 | return true; |
| 2050 | } |
| 2051 | |
| 2052 | bool Attributor::checkForAllInstructions(function_ref<bool(Instruction &)> Pred, |
| 2053 | const Function *Fn, |
| 2054 | const AbstractAttribute *QueryingAA, |
| 2055 | ArrayRef<unsigned> Opcodes, |
| 2056 | bool &UsedAssumedInformation, |
| 2057 | bool CheckBBLivenessOnly, |
| 2058 | bool CheckPotentiallyDead) { |
| 2059 | // Since we need to provide instructions we have to have an exact definition. |
| 2060 | if (!Fn || Fn->isDeclaration()) |
| 2061 | return false; |
| 2062 | |
| 2063 | const IRPosition &QueryIRP = IRPosition::function(F: *Fn); |
| 2064 | const auto *LivenessAA = |
| 2065 | CheckPotentiallyDead && QueryingAA |
| 2066 | ? (getAAFor<AAIsDead>(QueryingAA: *QueryingAA, IRP: QueryIRP, DepClass: DepClassTy::NONE)) |
| 2067 | : nullptr; |
| 2068 | |
| 2069 | auto &OpcodeInstMap = InfoCache.getOpcodeInstMapForFunction(F: *Fn); |
| 2070 | if (!checkForAllInstructionsImpl(A: this, OpcodeInstMap, Pred, QueryingAA, |
| 2071 | LivenessAA, Opcodes, UsedAssumedInformation, |
| 2072 | CheckBBLivenessOnly, CheckPotentiallyDead)) |
| 2073 | return false; |
| 2074 | |
| 2075 | return true; |
| 2076 | } |
| 2077 | |
| 2078 | bool Attributor::checkForAllInstructions(function_ref<bool(Instruction &)> Pred, |
| 2079 | const AbstractAttribute &QueryingAA, |
| 2080 | ArrayRef<unsigned> Opcodes, |
| 2081 | bool &UsedAssumedInformation, |
| 2082 | bool CheckBBLivenessOnly, |
| 2083 | bool CheckPotentiallyDead) { |
| 2084 | const IRPosition &IRP = QueryingAA.getIRPosition(); |
| 2085 | const Function *AssociatedFunction = IRP.getAssociatedFunction(); |
| 2086 | return checkForAllInstructions(Pred, Fn: AssociatedFunction, QueryingAA: &QueryingAA, Opcodes, |
| 2087 | UsedAssumedInformation, CheckBBLivenessOnly, |
| 2088 | CheckPotentiallyDead); |
| 2089 | } |
| 2090 | |
| 2091 | bool Attributor::checkForAllReadWriteInstructions( |
| 2092 | function_ref<bool(Instruction &)> Pred, AbstractAttribute &QueryingAA, |
| 2093 | bool &UsedAssumedInformation) { |
| 2094 | TimeTraceScope TS("checkForAllReadWriteInstructions" ); |
| 2095 | |
| 2096 | const Function *AssociatedFunction = |
| 2097 | QueryingAA.getIRPosition().getAssociatedFunction(); |
| 2098 | if (!AssociatedFunction) |
| 2099 | return false; |
| 2100 | |
| 2101 | const IRPosition &QueryIRP = IRPosition::function(F: *AssociatedFunction); |
| 2102 | const auto *LivenessAA = |
| 2103 | getAAFor<AAIsDead>(QueryingAA, IRP: QueryIRP, DepClass: DepClassTy::NONE); |
| 2104 | |
| 2105 | for (Instruction *I : |
| 2106 | InfoCache.getReadOrWriteInstsForFunction(F: *AssociatedFunction)) { |
| 2107 | // Skip dead instructions. |
| 2108 | if (isAssumedDead(IRP: IRPosition::inst(I: *I), QueryingAA: &QueryingAA, FnLivenessAA: LivenessAA, |
| 2109 | UsedAssumedInformation)) |
| 2110 | continue; |
| 2111 | |
| 2112 | if (!Pred(*I)) |
| 2113 | return false; |
| 2114 | } |
| 2115 | |
| 2116 | return true; |
| 2117 | } |
| 2118 | |
| 2119 | void Attributor::runTillFixpoint() { |
| 2120 | TimeTraceScope TimeScope("Attributor::runTillFixpoint" ); |
| 2121 | LLVM_DEBUG(dbgs() << "[Attributor] Identified and initialized " |
| 2122 | << DG.SyntheticRoot.Deps.size() |
| 2123 | << " abstract attributes.\n" ); |
| 2124 | |
| 2125 | // Now that all abstract attributes are collected and initialized we start |
| 2126 | // the abstract analysis. |
| 2127 | |
| 2128 | unsigned IterationCounter = 1; |
| 2129 | unsigned MaxIterations = |
| 2130 | Configuration.MaxFixpointIterations.value_or(u&: SetFixpointIterations); |
| 2131 | |
| 2132 | SmallVector<AbstractAttribute *, 32> ChangedAAs; |
| 2133 | SetVector<AbstractAttribute *> Worklist, InvalidAAs; |
| 2134 | Worklist.insert_range(R&: DG.SyntheticRoot); |
| 2135 | |
| 2136 | do { |
| 2137 | // Remember the size to determine new attributes. |
| 2138 | size_t NumAAs = DG.SyntheticRoot.Deps.size(); |
| 2139 | LLVM_DEBUG(dbgs() << "\n\n[Attributor] #Iteration: " << IterationCounter |
| 2140 | << ", Worklist size: " << Worklist.size() << "\n" ); |
| 2141 | |
| 2142 | // For invalid AAs we can fix dependent AAs that have a required dependence, |
| 2143 | // thereby folding long dependence chains in a single step without the need |
| 2144 | // to run updates. |
| 2145 | for (unsigned u = 0; u < InvalidAAs.size(); ++u) { |
| 2146 | AbstractAttribute *InvalidAA = InvalidAAs[u]; |
| 2147 | |
| 2148 | // Check the dependences to fast track invalidation. |
| 2149 | DEBUG_WITH_TYPE(VERBOSE_DEBUG_TYPE, |
| 2150 | dbgs() << "[Attributor] InvalidAA: " << *InvalidAA |
| 2151 | << " has " << InvalidAA->Deps.size() |
| 2152 | << " required & optional dependences\n" ); |
| 2153 | for (auto &DepIt : InvalidAA->Deps) { |
| 2154 | AbstractAttribute *DepAA = cast<AbstractAttribute>(Val: DepIt.getPointer()); |
| 2155 | if (DepIt.getInt() == unsigned(DepClassTy::OPTIONAL)) { |
| 2156 | DEBUG_WITH_TYPE(VERBOSE_DEBUG_TYPE, |
| 2157 | dbgs() << " - recompute: " << *DepAA); |
| 2158 | Worklist.insert(X: DepAA); |
| 2159 | continue; |
| 2160 | } |
| 2161 | DEBUG_WITH_TYPE(VERBOSE_DEBUG_TYPE, dbgs() |
| 2162 | << " - invalidate: " << *DepAA); |
| 2163 | DepAA->getState().indicatePessimisticFixpoint(); |
| 2164 | assert(DepAA->getState().isAtFixpoint() && "Expected fixpoint state!" ); |
| 2165 | if (!DepAA->getState().isValidState()) |
| 2166 | InvalidAAs.insert(X: DepAA); |
| 2167 | else |
| 2168 | ChangedAAs.push_back(Elt: DepAA); |
| 2169 | } |
| 2170 | InvalidAA->Deps.clear(); |
| 2171 | } |
| 2172 | |
| 2173 | // Add all abstract attributes that are potentially dependent on one that |
| 2174 | // changed to the work list. |
| 2175 | for (AbstractAttribute *ChangedAA : ChangedAAs) { |
| 2176 | for (auto &DepIt : ChangedAA->Deps) |
| 2177 | Worklist.insert(X: cast<AbstractAttribute>(Val: DepIt.getPointer())); |
| 2178 | ChangedAA->Deps.clear(); |
| 2179 | } |
| 2180 | |
| 2181 | LLVM_DEBUG(dbgs() << "[Attributor] #Iteration: " << IterationCounter |
| 2182 | << ", Worklist+Dependent size: " << Worklist.size() |
| 2183 | << "\n" ); |
| 2184 | |
| 2185 | // Reset the changed and invalid set. |
| 2186 | ChangedAAs.clear(); |
| 2187 | InvalidAAs.clear(); |
| 2188 | |
| 2189 | // Update all abstract attribute in the work list and record the ones that |
| 2190 | // changed. |
| 2191 | for (AbstractAttribute *AA : Worklist) { |
| 2192 | const auto &AAState = AA->getState(); |
| 2193 | if (!AAState.isAtFixpoint()) |
| 2194 | if (updateAA(AA&: *AA) == ChangeStatus::CHANGED) |
| 2195 | ChangedAAs.push_back(Elt: AA); |
| 2196 | |
| 2197 | // Use the InvalidAAs vector to propagate invalid states fast transitively |
| 2198 | // without requiring updates. |
| 2199 | if (!AAState.isValidState()) |
| 2200 | InvalidAAs.insert(X: AA); |
| 2201 | } |
| 2202 | |
| 2203 | // Add attributes to the changed set if they have been created in the last |
| 2204 | // iteration. |
| 2205 | ChangedAAs.append(in_start: DG.SyntheticRoot.begin() + NumAAs, |
| 2206 | in_end: DG.SyntheticRoot.end()); |
| 2207 | |
| 2208 | // Reset the work list and repopulate with the changed abstract attributes. |
| 2209 | // Note that dependent ones are added above. |
| 2210 | Worklist.clear(); |
| 2211 | Worklist.insert_range(R&: ChangedAAs); |
| 2212 | Worklist.insert_range(R&: QueryAAsAwaitingUpdate); |
| 2213 | QueryAAsAwaitingUpdate.clear(); |
| 2214 | |
| 2215 | } while (!Worklist.empty() && (IterationCounter++ < MaxIterations)); |
| 2216 | |
| 2217 | if (IterationCounter > MaxIterations && !Functions.empty()) { |
| 2218 | auto = [&](OptimizationRemarkMissed ORM) { |
| 2219 | return ORM << "Attributor did not reach a fixpoint after " |
| 2220 | << ore::NV("Iterations" , MaxIterations) << " iterations." ; |
| 2221 | }; |
| 2222 | Function *F = Functions.front(); |
| 2223 | emitRemark<OptimizationRemarkMissed>(F, RemarkName: "FixedPoint" , RemarkCB&: Remark); |
| 2224 | } |
| 2225 | |
| 2226 | LLVM_DEBUG(dbgs() << "\n[Attributor] Fixpoint iteration done after: " |
| 2227 | << IterationCounter << "/" << MaxIterations |
| 2228 | << " iterations\n" ); |
| 2229 | |
| 2230 | // Reset abstract arguments not settled in a sound fixpoint by now. This |
| 2231 | // happens when we stopped the fixpoint iteration early. Note that only the |
| 2232 | // ones marked as "changed" *and* the ones transitively depending on them |
| 2233 | // need to be reverted to a pessimistic state. Others might not be in a |
| 2234 | // fixpoint state but we can use the optimistic results for them anyway. |
| 2235 | SmallPtrSet<AbstractAttribute *, 32> Visited; |
| 2236 | for (unsigned u = 0; u < ChangedAAs.size(); u++) { |
| 2237 | AbstractAttribute *ChangedAA = ChangedAAs[u]; |
| 2238 | if (!Visited.insert(Ptr: ChangedAA).second) |
| 2239 | continue; |
| 2240 | |
| 2241 | AbstractState &State = ChangedAA->getState(); |
| 2242 | if (!State.isAtFixpoint()) { |
| 2243 | State.indicatePessimisticFixpoint(); |
| 2244 | |
| 2245 | NumAttributesTimedOut++; |
| 2246 | } |
| 2247 | |
| 2248 | for (auto &DepIt : ChangedAA->Deps) |
| 2249 | ChangedAAs.push_back(Elt: cast<AbstractAttribute>(Val: DepIt.getPointer())); |
| 2250 | ChangedAA->Deps.clear(); |
| 2251 | } |
| 2252 | |
| 2253 | LLVM_DEBUG({ |
| 2254 | if (!Visited.empty()) |
| 2255 | dbgs() << "\n[Attributor] Finalized " << Visited.size() |
| 2256 | << " abstract attributes.\n" ; |
| 2257 | }); |
| 2258 | } |
| 2259 | |
| 2260 | void Attributor::registerForUpdate(AbstractAttribute &AA) { |
| 2261 | assert(AA.isQueryAA() && |
| 2262 | "Non-query AAs should not be required to register for updates!" ); |
| 2263 | QueryAAsAwaitingUpdate.insert(X: &AA); |
| 2264 | } |
| 2265 | |
| 2266 | ChangeStatus Attributor::manifestAttributes() { |
| 2267 | TimeTraceScope TimeScope("Attributor::manifestAttributes" ); |
| 2268 | size_t NumFinalAAs = DG.SyntheticRoot.Deps.size(); |
| 2269 | |
| 2270 | unsigned NumManifested = 0; |
| 2271 | unsigned NumAtFixpoint = 0; |
| 2272 | ChangeStatus ManifestChange = ChangeStatus::UNCHANGED; |
| 2273 | for (auto &DepAA : DG.SyntheticRoot.Deps) { |
| 2274 | AbstractAttribute *AA = cast<AbstractAttribute>(Val: DepAA.getPointer()); |
| 2275 | AbstractState &State = AA->getState(); |
| 2276 | |
| 2277 | // If there is not already a fixpoint reached, we can now take the |
| 2278 | // optimistic state. This is correct because we enforced a pessimistic one |
| 2279 | // on abstract attributes that were transitively dependent on a changed one |
| 2280 | // already above. |
| 2281 | if (!State.isAtFixpoint()) |
| 2282 | State.indicateOptimisticFixpoint(); |
| 2283 | |
| 2284 | // We must not manifest Attributes that use Callbase info. |
| 2285 | if (AA->hasCallBaseContext()) |
| 2286 | continue; |
| 2287 | // If the state is invalid, we do not try to manifest it. |
| 2288 | if (!State.isValidState()) |
| 2289 | continue; |
| 2290 | |
| 2291 | if (AA->getCtxI() && !isRunOn(Fn&: *AA->getAnchorScope())) |
| 2292 | continue; |
| 2293 | |
| 2294 | // Skip dead code. |
| 2295 | bool UsedAssumedInformation = false; |
| 2296 | if (isAssumedDead(AA: *AA, FnLivenessAA: nullptr, UsedAssumedInformation, |
| 2297 | /* CheckBBLivenessOnly */ true)) |
| 2298 | continue; |
| 2299 | // Check if the manifest debug counter that allows skipping manifestation of |
| 2300 | // AAs |
| 2301 | if (!DebugCounter::shouldExecute(Counter&: ManifestDBGCounter)) |
| 2302 | continue; |
| 2303 | // Manifest the state and record if we changed the IR. |
| 2304 | ChangeStatus LocalChange = AA->manifest(A&: *this); |
| 2305 | if (LocalChange == ChangeStatus::CHANGED && AreStatisticsEnabled()) |
| 2306 | AA->trackStatistics(); |
| 2307 | LLVM_DEBUG(dbgs() << "[Attributor] Manifest " << LocalChange << " : " << *AA |
| 2308 | << "\n" ); |
| 2309 | |
| 2310 | ManifestChange = ManifestChange | LocalChange; |
| 2311 | |
| 2312 | NumAtFixpoint++; |
| 2313 | NumManifested += (LocalChange == ChangeStatus::CHANGED); |
| 2314 | } |
| 2315 | |
| 2316 | (void)NumManifested; |
| 2317 | (void)NumAtFixpoint; |
| 2318 | LLVM_DEBUG(dbgs() << "\n[Attributor] Manifested " << NumManifested |
| 2319 | << " arguments while " << NumAtFixpoint |
| 2320 | << " were in a valid fixpoint state\n" ); |
| 2321 | |
| 2322 | NumAttributesManifested += NumManifested; |
| 2323 | NumAttributesValidFixpoint += NumAtFixpoint; |
| 2324 | |
| 2325 | (void)NumFinalAAs; |
| 2326 | if (NumFinalAAs != DG.SyntheticRoot.Deps.size()) { |
| 2327 | auto DepIt = DG.SyntheticRoot.Deps.begin(); |
| 2328 | for (unsigned u = 0; u < NumFinalAAs; ++u) |
| 2329 | ++DepIt; |
| 2330 | for (unsigned u = NumFinalAAs; u < DG.SyntheticRoot.Deps.size(); |
| 2331 | ++u, ++DepIt) { |
| 2332 | errs() << "Unexpected abstract attribute: " |
| 2333 | << cast<AbstractAttribute>(Val: DepIt->getPointer()) << " :: " |
| 2334 | << cast<AbstractAttribute>(Val: DepIt->getPointer()) |
| 2335 | ->getIRPosition() |
| 2336 | .getAssociatedValue() |
| 2337 | << "\n" ; |
| 2338 | } |
| 2339 | llvm_unreachable("Expected the final number of abstract attributes to " |
| 2340 | "remain unchanged!" ); |
| 2341 | } |
| 2342 | |
| 2343 | for (auto &It : AttrsMap) { |
| 2344 | AttributeList &AL = It.getSecond(); |
| 2345 | const IRPosition &IRP = |
| 2346 | isa<Function>(Val: It.getFirst()) |
| 2347 | ? IRPosition::function(F: *cast<Function>(Val: It.getFirst())) |
| 2348 | : IRPosition::callsite_function(CB: *cast<CallBase>(Val: It.getFirst())); |
| 2349 | IRP.setAttrList(AL); |
| 2350 | } |
| 2351 | |
| 2352 | return ManifestChange; |
| 2353 | } |
| 2354 | |
| 2355 | void Attributor::identifyDeadInternalFunctions() { |
| 2356 | // Early exit if we don't intend to delete functions. |
| 2357 | if (!Configuration.DeleteFns) |
| 2358 | return; |
| 2359 | |
| 2360 | // To avoid triggering an assertion in the lazy call graph we will not delete |
| 2361 | // any internal library functions. We should modify the assertion though and |
| 2362 | // allow internals to be deleted. |
| 2363 | const auto *TLI = |
| 2364 | isModulePass() |
| 2365 | ? nullptr |
| 2366 | : getInfoCache().getTargetLibraryInfoForFunction(F: *Functions.back()); |
| 2367 | LibFunc LF; |
| 2368 | |
| 2369 | // Identify dead internal functions and delete them. This happens outside |
| 2370 | // the other fixpoint analysis as we might treat potentially dead functions |
| 2371 | // as live to lower the number of iterations. If they happen to be dead, the |
| 2372 | // below fixpoint loop will identify and eliminate them. |
| 2373 | |
| 2374 | SmallVector<Function *, 8> InternalFns; |
| 2375 | for (Function *F : Functions) |
| 2376 | if (F->hasLocalLinkage() && (isModulePass() || !TLI->getLibFunc(FDecl: *F, F&: LF))) |
| 2377 | InternalFns.push_back(Elt: F); |
| 2378 | |
| 2379 | SmallPtrSet<Function *, 8> LiveInternalFns; |
| 2380 | bool FoundLiveInternal = true; |
| 2381 | while (FoundLiveInternal) { |
| 2382 | FoundLiveInternal = false; |
| 2383 | for (Function *&F : InternalFns) { |
| 2384 | if (!F) |
| 2385 | continue; |
| 2386 | |
| 2387 | bool UsedAssumedInformation = false; |
| 2388 | if (checkForAllCallSites( |
| 2389 | Pred: [&](AbstractCallSite ACS) { |
| 2390 | Function *Callee = ACS.getInstruction()->getFunction(); |
| 2391 | return ToBeDeletedFunctions.count(key: Callee) || |
| 2392 | (Functions.count(key: Callee) && Callee->hasLocalLinkage() && |
| 2393 | !LiveInternalFns.count(Ptr: Callee)); |
| 2394 | }, |
| 2395 | Fn: *F, RequireAllCallSites: true, QueryingAA: nullptr, UsedAssumedInformation)) { |
| 2396 | continue; |
| 2397 | } |
| 2398 | |
| 2399 | LiveInternalFns.insert(Ptr: F); |
| 2400 | F = nullptr; |
| 2401 | FoundLiveInternal = true; |
| 2402 | } |
| 2403 | } |
| 2404 | |
| 2405 | for (Function *F : InternalFns) |
| 2406 | if (F) |
| 2407 | ToBeDeletedFunctions.insert(X: F); |
| 2408 | } |
| 2409 | |
| 2410 | ChangeStatus Attributor::cleanupIR() { |
| 2411 | TimeTraceScope TimeScope("Attributor::cleanupIR" ); |
| 2412 | // Delete stuff at the end to avoid invalid references and a nice order. |
| 2413 | LLVM_DEBUG(dbgs() << "\n[Attributor] Delete/replace at least " |
| 2414 | << ToBeDeletedFunctions.size() << " functions and " |
| 2415 | << ToBeDeletedBlocks.size() << " blocks and " |
| 2416 | << ToBeDeletedInsts.size() << " instructions and " |
| 2417 | << ToBeChangedValues.size() << " values and " |
| 2418 | << ToBeChangedUses.size() << " uses. To insert " |
| 2419 | << ToBeChangedToUnreachableInsts.size() |
| 2420 | << " unreachables.\n" |
| 2421 | << "Preserve manifest added " << ManifestAddedBlocks.size() |
| 2422 | << " blocks\n" ); |
| 2423 | |
| 2424 | SmallVector<WeakTrackingVH, 32> DeadInsts; |
| 2425 | SmallVector<Instruction *, 32> TerminatorsToFold; |
| 2426 | |
| 2427 | auto ReplaceUse = [&](Use *U, Value *NewV) { |
| 2428 | Value *OldV = U->get(); |
| 2429 | |
| 2430 | // If we plan to replace NewV we need to update it at this point. |
| 2431 | do { |
| 2432 | const auto &Entry = ToBeChangedValues.lookup(Key: NewV); |
| 2433 | if (!get<0>(Pair: Entry)) |
| 2434 | break; |
| 2435 | NewV = get<0>(Pair: Entry); |
| 2436 | } while (true); |
| 2437 | |
| 2438 | Instruction *I = dyn_cast<Instruction>(Val: U->getUser()); |
| 2439 | assert((!I || isRunOn(*I->getFunction())) && |
| 2440 | "Cannot replace an instruction outside the current SCC!" ); |
| 2441 | |
| 2442 | // Do not replace uses in returns if the value is a must-tail call we will |
| 2443 | // not delete. |
| 2444 | if (auto *RI = dyn_cast_or_null<ReturnInst>(Val: I)) { |
| 2445 | if (auto *CI = dyn_cast<CallInst>(Val: OldV->stripPointerCasts())) |
| 2446 | if (CI->isMustTailCall() && !ToBeDeletedInsts.count(key: CI)) |
| 2447 | return; |
| 2448 | // If we rewrite a return and the new value is not an argument, strip the |
| 2449 | // `returned` attribute as it is wrong now. |
| 2450 | if (!isa<Argument>(Val: NewV)) |
| 2451 | for (auto &Arg : RI->getFunction()->args()) |
| 2452 | Arg.removeAttr(Kind: Attribute::Returned); |
| 2453 | } |
| 2454 | |
| 2455 | LLVM_DEBUG(dbgs() << "Use " << *NewV << " in " << *U->getUser() |
| 2456 | << " instead of " << *OldV << "\n" ); |
| 2457 | U->set(NewV); |
| 2458 | |
| 2459 | if (Instruction *I = dyn_cast<Instruction>(Val: OldV)) { |
| 2460 | CGModifiedFunctions.insert(X: I->getFunction()); |
| 2461 | if (!isa<PHINode>(Val: I) && !ToBeDeletedInsts.count(key: I) && |
| 2462 | isInstructionTriviallyDead(I)) |
| 2463 | DeadInsts.push_back(Elt: I); |
| 2464 | } |
| 2465 | if (isa<UndefValue>(Val: NewV) && isa<CallBase>(Val: U->getUser())) { |
| 2466 | auto *CB = cast<CallBase>(Val: U->getUser()); |
| 2467 | if (CB->isArgOperand(U)) { |
| 2468 | unsigned Idx = CB->getArgOperandNo(U); |
| 2469 | CB->removeParamAttr(ArgNo: Idx, Kind: Attribute::NoUndef); |
| 2470 | auto *Callee = dyn_cast_if_present<Function>(Val: CB->getCalledOperand()); |
| 2471 | if (Callee && Callee->arg_size() > Idx) |
| 2472 | Callee->removeParamAttr(ArgNo: Idx, Kind: Attribute::NoUndef); |
| 2473 | } |
| 2474 | } |
| 2475 | if (isa<Constant>(Val: NewV) && isa<BranchInst>(Val: U->getUser())) { |
| 2476 | Instruction *UserI = cast<Instruction>(Val: U->getUser()); |
| 2477 | if (isa<UndefValue>(Val: NewV)) { |
| 2478 | ToBeChangedToUnreachableInsts.insert(X: UserI); |
| 2479 | } else { |
| 2480 | TerminatorsToFold.push_back(Elt: UserI); |
| 2481 | } |
| 2482 | } |
| 2483 | }; |
| 2484 | |
| 2485 | for (auto &It : ToBeChangedUses) { |
| 2486 | Use *U = It.first; |
| 2487 | Value *NewV = It.second; |
| 2488 | ReplaceUse(U, NewV); |
| 2489 | } |
| 2490 | |
| 2491 | SmallVector<Use *, 4> Uses; |
| 2492 | for (auto &It : ToBeChangedValues) { |
| 2493 | Value *OldV = It.first; |
| 2494 | auto [NewV, Done] = It.second; |
| 2495 | Uses.clear(); |
| 2496 | for (auto &U : OldV->uses()) |
| 2497 | if (Done || !U.getUser()->isDroppable()) |
| 2498 | Uses.push_back(Elt: &U); |
| 2499 | for (Use *U : Uses) { |
| 2500 | if (auto *I = dyn_cast<Instruction>(Val: U->getUser())) |
| 2501 | if (!isRunOn(Fn&: *I->getFunction())) |
| 2502 | continue; |
| 2503 | ReplaceUse(U, NewV); |
| 2504 | } |
| 2505 | } |
| 2506 | |
| 2507 | for (const auto &V : InvokeWithDeadSuccessor) |
| 2508 | if (InvokeInst *II = dyn_cast_or_null<InvokeInst>(Val: V)) { |
| 2509 | assert(isRunOn(*II->getFunction()) && |
| 2510 | "Cannot replace an invoke outside the current SCC!" ); |
| 2511 | bool UnwindBBIsDead = II->hasFnAttr(Kind: Attribute::NoUnwind); |
| 2512 | bool NormalBBIsDead = II->hasFnAttr(Kind: Attribute::NoReturn); |
| 2513 | bool Invoke2CallAllowed = |
| 2514 | !AAIsDead::mayCatchAsynchronousExceptions(F: *II->getFunction()); |
| 2515 | assert((UnwindBBIsDead || NormalBBIsDead) && |
| 2516 | "Invoke does not have dead successors!" ); |
| 2517 | BasicBlock *BB = II->getParent(); |
| 2518 | BasicBlock *NormalDestBB = II->getNormalDest(); |
| 2519 | if (UnwindBBIsDead) { |
| 2520 | Instruction *NormalNextIP = &NormalDestBB->front(); |
| 2521 | if (Invoke2CallAllowed) { |
| 2522 | changeToCall(II); |
| 2523 | NormalNextIP = BB->getTerminator(); |
| 2524 | } |
| 2525 | if (NormalBBIsDead) |
| 2526 | ToBeChangedToUnreachableInsts.insert(X: NormalNextIP); |
| 2527 | } else { |
| 2528 | assert(NormalBBIsDead && "Broken invariant!" ); |
| 2529 | if (!NormalDestBB->getUniquePredecessor()) |
| 2530 | NormalDestBB = SplitBlockPredecessors(BB: NormalDestBB, Preds: {BB}, Suffix: ".dead" ); |
| 2531 | ToBeChangedToUnreachableInsts.insert(X: &NormalDestBB->front()); |
| 2532 | } |
| 2533 | } |
| 2534 | for (Instruction *I : TerminatorsToFold) { |
| 2535 | assert(isRunOn(*I->getFunction()) && |
| 2536 | "Cannot replace a terminator outside the current SCC!" ); |
| 2537 | CGModifiedFunctions.insert(X: I->getFunction()); |
| 2538 | ConstantFoldTerminator(BB: I->getParent()); |
| 2539 | } |
| 2540 | for (const auto &V : ToBeChangedToUnreachableInsts) |
| 2541 | if (Instruction *I = dyn_cast_or_null<Instruction>(Val: V)) { |
| 2542 | LLVM_DEBUG(dbgs() << "[Attributor] Change to unreachable: " << *I |
| 2543 | << "\n" ); |
| 2544 | assert(isRunOn(*I->getFunction()) && |
| 2545 | "Cannot replace an instruction outside the current SCC!" ); |
| 2546 | CGModifiedFunctions.insert(X: I->getFunction()); |
| 2547 | changeToUnreachable(I); |
| 2548 | } |
| 2549 | |
| 2550 | for (const auto &V : ToBeDeletedInsts) { |
| 2551 | if (Instruction *I = dyn_cast_or_null<Instruction>(Val: V)) { |
| 2552 | assert((!isa<CallBase>(I) || isa<IntrinsicInst>(I) || |
| 2553 | isRunOn(*I->getFunction())) && |
| 2554 | "Cannot delete an instruction outside the current SCC!" ); |
| 2555 | I->dropDroppableUses(); |
| 2556 | CGModifiedFunctions.insert(X: I->getFunction()); |
| 2557 | if (!I->getType()->isVoidTy()) |
| 2558 | I->replaceAllUsesWith(V: UndefValue::get(T: I->getType())); |
| 2559 | if (!isa<PHINode>(Val: I) && isInstructionTriviallyDead(I)) |
| 2560 | DeadInsts.push_back(Elt: I); |
| 2561 | else |
| 2562 | I->eraseFromParent(); |
| 2563 | } |
| 2564 | } |
| 2565 | |
| 2566 | llvm::erase_if(C&: DeadInsts, P: [&](WeakTrackingVH I) { return !I; }); |
| 2567 | |
| 2568 | LLVM_DEBUG({ |
| 2569 | dbgs() << "[Attributor] DeadInsts size: " << DeadInsts.size() << "\n" ; |
| 2570 | for (auto &I : DeadInsts) |
| 2571 | if (I) |
| 2572 | dbgs() << " - " << *I << "\n" ; |
| 2573 | }); |
| 2574 | |
| 2575 | RecursivelyDeleteTriviallyDeadInstructions(DeadInsts); |
| 2576 | |
| 2577 | if (unsigned NumDeadBlocks = ToBeDeletedBlocks.size()) { |
| 2578 | SmallVector<BasicBlock *, 8> ToBeDeletedBBs; |
| 2579 | ToBeDeletedBBs.reserve(N: NumDeadBlocks); |
| 2580 | for (BasicBlock *BB : ToBeDeletedBlocks) { |
| 2581 | assert(isRunOn(*BB->getParent()) && |
| 2582 | "Cannot delete a block outside the current SCC!" ); |
| 2583 | CGModifiedFunctions.insert(X: BB->getParent()); |
| 2584 | // Do not delete BBs added during manifests of AAs. |
| 2585 | if (ManifestAddedBlocks.contains(Ptr: BB)) |
| 2586 | continue; |
| 2587 | ToBeDeletedBBs.push_back(Elt: BB); |
| 2588 | } |
| 2589 | // Actually we do not delete the blocks but squash them into a single |
| 2590 | // unreachable but untangling branches that jump here is something we need |
| 2591 | // to do in a more generic way. |
| 2592 | detachDeadBlocks(BBs: ToBeDeletedBBs, Updates: nullptr); |
| 2593 | } |
| 2594 | |
| 2595 | identifyDeadInternalFunctions(); |
| 2596 | |
| 2597 | // Rewrite the functions as requested during manifest. |
| 2598 | ChangeStatus ManifestChange = rewriteFunctionSignatures(ModifiedFns&: CGModifiedFunctions); |
| 2599 | |
| 2600 | for (Function *Fn : CGModifiedFunctions) |
| 2601 | if (!ToBeDeletedFunctions.count(key: Fn) && Functions.count(key: Fn)) |
| 2602 | Configuration.CGUpdater.reanalyzeFunction(Fn&: *Fn); |
| 2603 | |
| 2604 | for (Function *Fn : ToBeDeletedFunctions) { |
| 2605 | if (!Functions.count(key: Fn)) |
| 2606 | continue; |
| 2607 | Configuration.CGUpdater.removeFunction(Fn&: *Fn); |
| 2608 | } |
| 2609 | |
| 2610 | if (!ToBeChangedUses.empty()) |
| 2611 | ManifestChange = ChangeStatus::CHANGED; |
| 2612 | |
| 2613 | if (!ToBeChangedToUnreachableInsts.empty()) |
| 2614 | ManifestChange = ChangeStatus::CHANGED; |
| 2615 | |
| 2616 | if (!ToBeDeletedFunctions.empty()) |
| 2617 | ManifestChange = ChangeStatus::CHANGED; |
| 2618 | |
| 2619 | if (!ToBeDeletedBlocks.empty()) |
| 2620 | ManifestChange = ChangeStatus::CHANGED; |
| 2621 | |
| 2622 | if (!ToBeDeletedInsts.empty()) |
| 2623 | ManifestChange = ChangeStatus::CHANGED; |
| 2624 | |
| 2625 | if (!InvokeWithDeadSuccessor.empty()) |
| 2626 | ManifestChange = ChangeStatus::CHANGED; |
| 2627 | |
| 2628 | if (!DeadInsts.empty()) |
| 2629 | ManifestChange = ChangeStatus::CHANGED; |
| 2630 | |
| 2631 | NumFnDeleted += ToBeDeletedFunctions.size(); |
| 2632 | |
| 2633 | LLVM_DEBUG(dbgs() << "[Attributor] Deleted " << ToBeDeletedFunctions.size() |
| 2634 | << " functions after manifest.\n" ); |
| 2635 | |
| 2636 | #ifdef EXPENSIVE_CHECKS |
| 2637 | for (Function *F : Functions) { |
| 2638 | if (ToBeDeletedFunctions.count(F)) |
| 2639 | continue; |
| 2640 | assert(!verifyFunction(*F, &errs()) && "Module verification failed!" ); |
| 2641 | } |
| 2642 | #endif |
| 2643 | |
| 2644 | return ManifestChange; |
| 2645 | } |
| 2646 | |
| 2647 | ChangeStatus Attributor::run() { |
| 2648 | TimeTraceScope TimeScope("Attributor::run" ); |
| 2649 | AttributorCallGraph ACallGraph(*this); |
| 2650 | |
| 2651 | if (PrintCallGraph) |
| 2652 | ACallGraph.populateAll(); |
| 2653 | |
| 2654 | Phase = AttributorPhase::UPDATE; |
| 2655 | runTillFixpoint(); |
| 2656 | |
| 2657 | // dump graphs on demand |
| 2658 | if (DumpDepGraph) |
| 2659 | DG.dumpGraph(); |
| 2660 | |
| 2661 | if (ViewDepGraph) |
| 2662 | DG.viewGraph(); |
| 2663 | |
| 2664 | if (PrintDependencies) |
| 2665 | DG.print(); |
| 2666 | |
| 2667 | Phase = AttributorPhase::MANIFEST; |
| 2668 | ChangeStatus ManifestChange = manifestAttributes(); |
| 2669 | |
| 2670 | Phase = AttributorPhase::CLEANUP; |
| 2671 | ChangeStatus CleanupChange = cleanupIR(); |
| 2672 | |
| 2673 | if (PrintCallGraph) |
| 2674 | ACallGraph.print(); |
| 2675 | |
| 2676 | return ManifestChange | CleanupChange; |
| 2677 | } |
| 2678 | |
| 2679 | ChangeStatus Attributor::updateAA(AbstractAttribute &AA) { |
| 2680 | TimeTraceScope TimeScope("updateAA" , [&]() { |
| 2681 | return AA.getName().str() + |
| 2682 | std::to_string(val: AA.getIRPosition().getPositionKind()); |
| 2683 | }); |
| 2684 | assert(Phase == AttributorPhase::UPDATE && |
| 2685 | "We can update AA only in the update stage!" ); |
| 2686 | |
| 2687 | // Use a new dependence vector for this update. |
| 2688 | DependenceVector DV; |
| 2689 | DependenceStack.push_back(Elt: &DV); |
| 2690 | |
| 2691 | auto &AAState = AA.getState(); |
| 2692 | ChangeStatus CS = ChangeStatus::UNCHANGED; |
| 2693 | bool UsedAssumedInformation = false; |
| 2694 | if (!isAssumedDead(AA, FnLivenessAA: nullptr, UsedAssumedInformation, |
| 2695 | /* CheckBBLivenessOnly */ true)) |
| 2696 | CS = AA.update(A&: *this); |
| 2697 | |
| 2698 | if (!AA.isQueryAA() && DV.empty() && !AA.getState().isAtFixpoint()) { |
| 2699 | // If the AA did not rely on outside information but changed, we run it |
| 2700 | // again to see if it found a fixpoint. Most AAs do but we don't require |
| 2701 | // them to. Hence, it might take the AA multiple iterations to get to a |
| 2702 | // fixpoint even if it does not rely on outside information, which is fine. |
| 2703 | ChangeStatus RerunCS = ChangeStatus::UNCHANGED; |
| 2704 | if (CS == ChangeStatus::CHANGED) |
| 2705 | RerunCS = AA.update(A&: *this); |
| 2706 | |
| 2707 | // If the attribute did not change during the run or rerun, and it still did |
| 2708 | // not query any non-fix information, the state will not change and we can |
| 2709 | // indicate that right at this point. |
| 2710 | if (RerunCS == ChangeStatus::UNCHANGED && !AA.isQueryAA() && DV.empty()) |
| 2711 | AAState.indicateOptimisticFixpoint(); |
| 2712 | } |
| 2713 | |
| 2714 | if (!AAState.isAtFixpoint()) |
| 2715 | rememberDependences(); |
| 2716 | |
| 2717 | // Verify the stack was used properly, that is we pop the dependence vector we |
| 2718 | // put there earlier. |
| 2719 | DependenceVector *PoppedDV = DependenceStack.pop_back_val(); |
| 2720 | (void)PoppedDV; |
| 2721 | assert(PoppedDV == &DV && "Inconsistent usage of the dependence stack!" ); |
| 2722 | |
| 2723 | return CS; |
| 2724 | } |
| 2725 | |
| 2726 | void Attributor::createShallowWrapper(Function &F) { |
| 2727 | assert(!F.isDeclaration() && "Cannot create a wrapper around a declaration!" ); |
| 2728 | |
| 2729 | Module &M = *F.getParent(); |
| 2730 | LLVMContext &Ctx = M.getContext(); |
| 2731 | FunctionType *FnTy = F.getFunctionType(); |
| 2732 | |
| 2733 | Function *Wrapper = |
| 2734 | Function::Create(Ty: FnTy, Linkage: F.getLinkage(), AddrSpace: F.getAddressSpace(), N: F.getName()); |
| 2735 | F.setName("" ); // set the inside function anonymous |
| 2736 | M.getFunctionList().insert(where: F.getIterator(), New: Wrapper); |
| 2737 | |
| 2738 | F.setLinkage(GlobalValue::InternalLinkage); |
| 2739 | |
| 2740 | F.replaceAllUsesWith(V: Wrapper); |
| 2741 | assert(F.use_empty() && "Uses remained after wrapper was created!" ); |
| 2742 | |
| 2743 | // Move the COMDAT section to the wrapper. |
| 2744 | // TODO: Check if we need to keep it for F as well. |
| 2745 | Wrapper->setComdat(F.getComdat()); |
| 2746 | F.setComdat(nullptr); |
| 2747 | |
| 2748 | // Copy all metadata and attributes but keep them on F as well. |
| 2749 | SmallVector<std::pair<unsigned, MDNode *>, 1> MDs; |
| 2750 | F.getAllMetadata(MDs); |
| 2751 | for (auto MDIt : MDs) |
| 2752 | Wrapper->addMetadata(KindID: MDIt.first, MD&: *MDIt.second); |
| 2753 | Wrapper->setAttributes(F.getAttributes()); |
| 2754 | |
| 2755 | // Create the call in the wrapper. |
| 2756 | BasicBlock *EntryBB = BasicBlock::Create(Context&: Ctx, Name: "entry" , Parent: Wrapper); |
| 2757 | |
| 2758 | SmallVector<Value *, 8> Args; |
| 2759 | Argument *FArgIt = F.arg_begin(); |
| 2760 | for (Argument &Arg : Wrapper->args()) { |
| 2761 | Args.push_back(Elt: &Arg); |
| 2762 | Arg.setName((FArgIt++)->getName()); |
| 2763 | } |
| 2764 | |
| 2765 | CallInst *CI = CallInst::Create(Func: &F, Args, NameStr: "" , InsertBefore: EntryBB); |
| 2766 | CI->setTailCall(true); |
| 2767 | CI->addFnAttr(Kind: Attribute::NoInline); |
| 2768 | ReturnInst::Create(C&: Ctx, retVal: CI->getType()->isVoidTy() ? nullptr : CI, InsertBefore: EntryBB); |
| 2769 | |
| 2770 | NumFnShallowWrappersCreated++; |
| 2771 | } |
| 2772 | |
| 2773 | bool Attributor::isInternalizable(Function &F) { |
| 2774 | if (F.isDeclaration() || F.hasLocalLinkage() || |
| 2775 | GlobalValue::isInterposableLinkage(Linkage: F.getLinkage())) |
| 2776 | return false; |
| 2777 | return true; |
| 2778 | } |
| 2779 | |
| 2780 | Function *Attributor::internalizeFunction(Function &F, bool Force) { |
| 2781 | if (!AllowDeepWrapper && !Force) |
| 2782 | return nullptr; |
| 2783 | if (!isInternalizable(F)) |
| 2784 | return nullptr; |
| 2785 | |
| 2786 | SmallPtrSet<Function *, 2> FnSet = {&F}; |
| 2787 | DenseMap<Function *, Function *> InternalizedFns; |
| 2788 | internalizeFunctions(FnSet, FnMap&: InternalizedFns); |
| 2789 | |
| 2790 | return InternalizedFns[&F]; |
| 2791 | } |
| 2792 | |
| 2793 | bool Attributor::internalizeFunctions(SmallPtrSetImpl<Function *> &FnSet, |
| 2794 | DenseMap<Function *, Function *> &FnMap) { |
| 2795 | for (Function *F : FnSet) |
| 2796 | if (!Attributor::isInternalizable(F&: *F)) |
| 2797 | return false; |
| 2798 | |
| 2799 | FnMap.clear(); |
| 2800 | // Generate the internalized version of each function. |
| 2801 | for (Function *F : FnSet) { |
| 2802 | Module &M = *F->getParent(); |
| 2803 | FunctionType *FnTy = F->getFunctionType(); |
| 2804 | |
| 2805 | // Create a copy of the current function |
| 2806 | Function *Copied = |
| 2807 | Function::Create(Ty: FnTy, Linkage: F->getLinkage(), AddrSpace: F->getAddressSpace(), |
| 2808 | N: F->getName() + ".internalized" ); |
| 2809 | ValueToValueMapTy VMap; |
| 2810 | auto *NewFArgIt = Copied->arg_begin(); |
| 2811 | for (auto &Arg : F->args()) { |
| 2812 | auto ArgName = Arg.getName(); |
| 2813 | NewFArgIt->setName(ArgName); |
| 2814 | VMap[&Arg] = &(*NewFArgIt++); |
| 2815 | } |
| 2816 | SmallVector<ReturnInst *, 8> Returns; |
| 2817 | |
| 2818 | // Copy the body of the original function to the new one |
| 2819 | CloneFunctionInto(NewFunc: Copied, OldFunc: F, VMap, |
| 2820 | Changes: CloneFunctionChangeType::LocalChangesOnly, Returns); |
| 2821 | |
| 2822 | // Set the linakage and visibility late as CloneFunctionInto has some |
| 2823 | // implicit requirements. |
| 2824 | Copied->setVisibility(GlobalValue::DefaultVisibility); |
| 2825 | Copied->setLinkage(GlobalValue::PrivateLinkage); |
| 2826 | |
| 2827 | // Copy metadata |
| 2828 | SmallVector<std::pair<unsigned, MDNode *>, 1> MDs; |
| 2829 | F->getAllMetadata(MDs); |
| 2830 | for (auto MDIt : MDs) |
| 2831 | if (!Copied->hasMetadata()) |
| 2832 | Copied->addMetadata(KindID: MDIt.first, MD&: *MDIt.second); |
| 2833 | |
| 2834 | M.getFunctionList().insert(where: F->getIterator(), New: Copied); |
| 2835 | Copied->setDSOLocal(true); |
| 2836 | FnMap[F] = Copied; |
| 2837 | } |
| 2838 | |
| 2839 | // Replace all uses of the old function with the new internalized function |
| 2840 | // unless the caller is a function that was just internalized. |
| 2841 | for (Function *F : FnSet) { |
| 2842 | auto &InternalizedFn = FnMap[F]; |
| 2843 | auto IsNotInternalized = [&](Use &U) -> bool { |
| 2844 | if (auto *CB = dyn_cast<CallBase>(Val: U.getUser())) |
| 2845 | return !FnMap.lookup(Val: CB->getCaller()); |
| 2846 | return false; |
| 2847 | }; |
| 2848 | F->replaceUsesWithIf(New: InternalizedFn, ShouldReplace: IsNotInternalized); |
| 2849 | } |
| 2850 | |
| 2851 | return true; |
| 2852 | } |
| 2853 | |
| 2854 | bool Attributor::isValidFunctionSignatureRewrite( |
| 2855 | Argument &Arg, ArrayRef<Type *> ReplacementTypes) { |
| 2856 | |
| 2857 | if (!Configuration.RewriteSignatures) |
| 2858 | return false; |
| 2859 | |
| 2860 | Function *Fn = Arg.getParent(); |
| 2861 | auto CallSiteCanBeChanged = [Fn](AbstractCallSite ACS) { |
| 2862 | // Forbid the call site to cast the function return type. If we need to |
| 2863 | // rewrite these functions we need to re-create a cast for the new call site |
| 2864 | // (if the old had uses). |
| 2865 | if (!ACS.getCalledFunction() || |
| 2866 | ACS.getInstruction()->getType() != |
| 2867 | ACS.getCalledFunction()->getReturnType()) |
| 2868 | return false; |
| 2869 | if (cast<CallBase>(Val: ACS.getInstruction())->getCalledOperand()->getType() != |
| 2870 | Fn->getType()) |
| 2871 | return false; |
| 2872 | if (ACS.getNumArgOperands() != Fn->arg_size()) |
| 2873 | return false; |
| 2874 | // Forbid must-tail calls for now. |
| 2875 | return !ACS.isCallbackCall() && !ACS.getInstruction()->isMustTailCall(); |
| 2876 | }; |
| 2877 | |
| 2878 | // Avoid var-arg functions for now. |
| 2879 | if (Fn->isVarArg()) { |
| 2880 | LLVM_DEBUG(dbgs() << "[Attributor] Cannot rewrite var-args functions\n" ); |
| 2881 | return false; |
| 2882 | } |
| 2883 | |
| 2884 | // Avoid functions with complicated argument passing semantics. |
| 2885 | AttributeList FnAttributeList = Fn->getAttributes(); |
| 2886 | if (FnAttributeList.hasAttrSomewhere(Kind: Attribute::Nest) || |
| 2887 | FnAttributeList.hasAttrSomewhere(Kind: Attribute::StructRet) || |
| 2888 | FnAttributeList.hasAttrSomewhere(Kind: Attribute::InAlloca) || |
| 2889 | FnAttributeList.hasAttrSomewhere(Kind: Attribute::Preallocated)) { |
| 2890 | LLVM_DEBUG( |
| 2891 | dbgs() << "[Attributor] Cannot rewrite due to complex attribute\n" ); |
| 2892 | return false; |
| 2893 | } |
| 2894 | |
| 2895 | // Avoid callbacks for now. |
| 2896 | bool UsedAssumedInformation = false; |
| 2897 | if (!checkForAllCallSites(Pred: CallSiteCanBeChanged, Fn: *Fn, RequireAllCallSites: true, QueryingAA: nullptr, |
| 2898 | UsedAssumedInformation, |
| 2899 | /* CheckPotentiallyDead */ true)) { |
| 2900 | LLVM_DEBUG(dbgs() << "[Attributor] Cannot rewrite all call sites\n" ); |
| 2901 | return false; |
| 2902 | } |
| 2903 | |
| 2904 | auto InstPred = [](Instruction &I) { |
| 2905 | if (auto *CI = dyn_cast<CallInst>(Val: &I)) |
| 2906 | return !CI->isMustTailCall(); |
| 2907 | return true; |
| 2908 | }; |
| 2909 | |
| 2910 | // Forbid must-tail calls for now. |
| 2911 | // TODO: |
| 2912 | auto &OpcodeInstMap = InfoCache.getOpcodeInstMapForFunction(F: *Fn); |
| 2913 | if (!checkForAllInstructionsImpl(A: nullptr, OpcodeInstMap, Pred: InstPred, QueryingAA: nullptr, |
| 2914 | LivenessAA: nullptr, Opcodes: {Instruction::Call}, |
| 2915 | UsedAssumedInformation)) { |
| 2916 | LLVM_DEBUG(dbgs() << "[Attributor] Cannot rewrite due to instructions\n" ); |
| 2917 | return false; |
| 2918 | } |
| 2919 | |
| 2920 | return true; |
| 2921 | } |
| 2922 | |
| 2923 | bool Attributor::registerFunctionSignatureRewrite( |
| 2924 | Argument &Arg, ArrayRef<Type *> ReplacementTypes, |
| 2925 | ArgumentReplacementInfo::CalleeRepairCBTy &&CalleeRepairCB, |
| 2926 | ArgumentReplacementInfo::ACSRepairCBTy &&ACSRepairCB) { |
| 2927 | LLVM_DEBUG(dbgs() << "[Attributor] Register new rewrite of " << Arg << " in " |
| 2928 | << Arg.getParent()->getName() << " with " |
| 2929 | << ReplacementTypes.size() << " replacements\n" ); |
| 2930 | assert(isValidFunctionSignatureRewrite(Arg, ReplacementTypes) && |
| 2931 | "Cannot register an invalid rewrite" ); |
| 2932 | |
| 2933 | Function *Fn = Arg.getParent(); |
| 2934 | SmallVectorImpl<std::unique_ptr<ArgumentReplacementInfo>> &ARIs = |
| 2935 | ArgumentReplacementMap[Fn]; |
| 2936 | if (ARIs.empty()) |
| 2937 | ARIs.resize(N: Fn->arg_size()); |
| 2938 | |
| 2939 | // If we have a replacement already with less than or equal new arguments, |
| 2940 | // ignore this request. |
| 2941 | std::unique_ptr<ArgumentReplacementInfo> &ARI = ARIs[Arg.getArgNo()]; |
| 2942 | if (ARI && ARI->getNumReplacementArgs() <= ReplacementTypes.size()) { |
| 2943 | LLVM_DEBUG(dbgs() << "[Attributor] Existing rewrite is preferred\n" ); |
| 2944 | return false; |
| 2945 | } |
| 2946 | |
| 2947 | // If we have a replacement already but we like the new one better, delete |
| 2948 | // the old. |
| 2949 | ARI.reset(); |
| 2950 | |
| 2951 | LLVM_DEBUG(dbgs() << "[Attributor] Register new rewrite of " << Arg << " in " |
| 2952 | << Arg.getParent()->getName() << " with " |
| 2953 | << ReplacementTypes.size() << " replacements\n" ); |
| 2954 | |
| 2955 | // Remember the replacement. |
| 2956 | ARI.reset(p: new ArgumentReplacementInfo(*this, Arg, ReplacementTypes, |
| 2957 | std::move(CalleeRepairCB), |
| 2958 | std::move(ACSRepairCB))); |
| 2959 | |
| 2960 | return true; |
| 2961 | } |
| 2962 | |
| 2963 | bool Attributor::shouldSeedAttribute(AbstractAttribute &AA) { |
| 2964 | bool Result = true; |
| 2965 | #ifndef NDEBUG |
| 2966 | if (SeedAllowList.size() != 0) |
| 2967 | Result = llvm::is_contained(SeedAllowList, AA.getName()); |
| 2968 | Function *Fn = AA.getAnchorScope(); |
| 2969 | if (FunctionSeedAllowList.size() != 0 && Fn) |
| 2970 | Result &= llvm::is_contained(FunctionSeedAllowList, Fn->getName()); |
| 2971 | #endif |
| 2972 | return Result; |
| 2973 | } |
| 2974 | |
| 2975 | ChangeStatus Attributor::rewriteFunctionSignatures( |
| 2976 | SmallSetVector<Function *, 8> &ModifiedFns) { |
| 2977 | ChangeStatus Changed = ChangeStatus::UNCHANGED; |
| 2978 | |
| 2979 | for (auto &It : ArgumentReplacementMap) { |
| 2980 | Function *OldFn = It.getFirst(); |
| 2981 | |
| 2982 | // Deleted functions do not require rewrites. |
| 2983 | if (!Functions.count(key: OldFn) || ToBeDeletedFunctions.count(key: OldFn)) |
| 2984 | continue; |
| 2985 | |
| 2986 | const SmallVectorImpl<std::unique_ptr<ArgumentReplacementInfo>> &ARIs = |
| 2987 | It.getSecond(); |
| 2988 | assert(ARIs.size() == OldFn->arg_size() && "Inconsistent state!" ); |
| 2989 | |
| 2990 | SmallVector<Type *, 16> NewArgumentTypes; |
| 2991 | SmallVector<AttributeSet, 16> NewArgumentAttributes; |
| 2992 | |
| 2993 | // Collect replacement argument types and copy over existing attributes. |
| 2994 | AttributeList OldFnAttributeList = OldFn->getAttributes(); |
| 2995 | for (Argument &Arg : OldFn->args()) { |
| 2996 | if (const std::unique_ptr<ArgumentReplacementInfo> &ARI = |
| 2997 | ARIs[Arg.getArgNo()]) { |
| 2998 | NewArgumentTypes.append(in_start: ARI->ReplacementTypes.begin(), |
| 2999 | in_end: ARI->ReplacementTypes.end()); |
| 3000 | NewArgumentAttributes.append(NumInputs: ARI->getNumReplacementArgs(), |
| 3001 | Elt: AttributeSet()); |
| 3002 | } else { |
| 3003 | NewArgumentTypes.push_back(Elt: Arg.getType()); |
| 3004 | NewArgumentAttributes.push_back( |
| 3005 | Elt: OldFnAttributeList.getParamAttrs(ArgNo: Arg.getArgNo())); |
| 3006 | } |
| 3007 | } |
| 3008 | |
| 3009 | uint64_t LargestVectorWidth = 0; |
| 3010 | for (auto *I : NewArgumentTypes) |
| 3011 | if (auto *VT = dyn_cast<llvm::VectorType>(Val: I)) |
| 3012 | LargestVectorWidth = |
| 3013 | std::max(a: LargestVectorWidth, |
| 3014 | b: VT->getPrimitiveSizeInBits().getKnownMinValue()); |
| 3015 | |
| 3016 | FunctionType *OldFnTy = OldFn->getFunctionType(); |
| 3017 | Type *RetTy = OldFnTy->getReturnType(); |
| 3018 | |
| 3019 | // Construct the new function type using the new arguments types. |
| 3020 | FunctionType *NewFnTy = |
| 3021 | FunctionType::get(Result: RetTy, Params: NewArgumentTypes, isVarArg: OldFnTy->isVarArg()); |
| 3022 | |
| 3023 | LLVM_DEBUG(dbgs() << "[Attributor] Function rewrite '" << OldFn->getName() |
| 3024 | << "' from " << *OldFn->getFunctionType() << " to " |
| 3025 | << *NewFnTy << "\n" ); |
| 3026 | |
| 3027 | // Create the new function body and insert it into the module. |
| 3028 | Function *NewFn = Function::Create(Ty: NewFnTy, Linkage: OldFn->getLinkage(), |
| 3029 | AddrSpace: OldFn->getAddressSpace(), N: "" ); |
| 3030 | Functions.insert(X: NewFn); |
| 3031 | OldFn->getParent()->getFunctionList().insert(where: OldFn->getIterator(), New: NewFn); |
| 3032 | NewFn->takeName(V: OldFn); |
| 3033 | NewFn->copyAttributesFrom(Src: OldFn); |
| 3034 | |
| 3035 | // Patch the pointer to LLVM function in debug info descriptor. |
| 3036 | NewFn->setSubprogram(OldFn->getSubprogram()); |
| 3037 | OldFn->setSubprogram(nullptr); |
| 3038 | |
| 3039 | // Recompute the parameter attributes list based on the new arguments for |
| 3040 | // the function. |
| 3041 | LLVMContext &Ctx = OldFn->getContext(); |
| 3042 | NewFn->setAttributes(AttributeList::get( |
| 3043 | C&: Ctx, FnAttrs: OldFnAttributeList.getFnAttrs(), RetAttrs: OldFnAttributeList.getRetAttrs(), |
| 3044 | ArgAttrs: NewArgumentAttributes)); |
| 3045 | AttributeFuncs::updateMinLegalVectorWidthAttr(Fn&: *NewFn, Width: LargestVectorWidth); |
| 3046 | |
| 3047 | // Remove argmem from the memory effects if we have no more pointer |
| 3048 | // arguments, or they are readnone. |
| 3049 | MemoryEffects ME = NewFn->getMemoryEffects(); |
| 3050 | int ArgNo = -1; |
| 3051 | if (ME.doesAccessArgPointees() && all_of(Range&: NewArgumentTypes, P: [&](Type *T) { |
| 3052 | ++ArgNo; |
| 3053 | return !T->isPtrOrPtrVectorTy() || |
| 3054 | NewFn->hasParamAttribute(ArgNo, Kind: Attribute::ReadNone); |
| 3055 | })) { |
| 3056 | NewFn->setMemoryEffects(ME - MemoryEffects::argMemOnly()); |
| 3057 | } |
| 3058 | |
| 3059 | // Since we have now created the new function, splice the body of the old |
| 3060 | // function right into the new function, leaving the old rotting hulk of the |
| 3061 | // function empty. |
| 3062 | NewFn->splice(ToIt: NewFn->begin(), FromF: OldFn); |
| 3063 | |
| 3064 | // Set of all "call-like" instructions that invoke the old function mapped |
| 3065 | // to their new replacements. |
| 3066 | SmallVector<std::pair<CallBase *, CallBase *>, 8> CallSitePairs; |
| 3067 | |
| 3068 | // Callback to create a new "call-like" instruction for a given one. |
| 3069 | auto CallSiteReplacementCreator = [&](AbstractCallSite ACS) { |
| 3070 | CallBase *OldCB = cast<CallBase>(Val: ACS.getInstruction()); |
| 3071 | const AttributeList &OldCallAttributeList = OldCB->getAttributes(); |
| 3072 | |
| 3073 | // Collect the new argument operands for the replacement call site. |
| 3074 | SmallVector<Value *, 16> NewArgOperands; |
| 3075 | SmallVector<AttributeSet, 16> NewArgOperandAttributes; |
| 3076 | for (unsigned OldArgNum = 0; OldArgNum < ARIs.size(); ++OldArgNum) { |
| 3077 | unsigned NewFirstArgNum = NewArgOperands.size(); |
| 3078 | (void)NewFirstArgNum; // only used inside assert. |
| 3079 | if (const std::unique_ptr<ArgumentReplacementInfo> &ARI = |
| 3080 | ARIs[OldArgNum]) { |
| 3081 | if (ARI->ACSRepairCB) |
| 3082 | ARI->ACSRepairCB(*ARI, ACS, NewArgOperands); |
| 3083 | assert(ARI->getNumReplacementArgs() + NewFirstArgNum == |
| 3084 | NewArgOperands.size() && |
| 3085 | "ACS repair callback did not provide as many operand as new " |
| 3086 | "types were registered!" ); |
| 3087 | // TODO: Exose the attribute set to the ACS repair callback |
| 3088 | NewArgOperandAttributes.append(NumInputs: ARI->ReplacementTypes.size(), |
| 3089 | Elt: AttributeSet()); |
| 3090 | } else { |
| 3091 | NewArgOperands.push_back(Elt: ACS.getCallArgOperand(ArgNo: OldArgNum)); |
| 3092 | NewArgOperandAttributes.push_back( |
| 3093 | Elt: OldCallAttributeList.getParamAttrs(ArgNo: OldArgNum)); |
| 3094 | } |
| 3095 | } |
| 3096 | |
| 3097 | assert(NewArgOperands.size() == NewArgOperandAttributes.size() && |
| 3098 | "Mismatch # argument operands vs. # argument operand attributes!" ); |
| 3099 | assert(NewArgOperands.size() == NewFn->arg_size() && |
| 3100 | "Mismatch # argument operands vs. # function arguments!" ); |
| 3101 | |
| 3102 | SmallVector<OperandBundleDef, 4> OperandBundleDefs; |
| 3103 | OldCB->getOperandBundlesAsDefs(Defs&: OperandBundleDefs); |
| 3104 | |
| 3105 | // Create a new call or invoke instruction to replace the old one. |
| 3106 | CallBase *NewCB; |
| 3107 | if (InvokeInst *II = dyn_cast<InvokeInst>(Val: OldCB)) { |
| 3108 | NewCB = InvokeInst::Create(Func: NewFn, IfNormal: II->getNormalDest(), |
| 3109 | IfException: II->getUnwindDest(), Args: NewArgOperands, |
| 3110 | Bundles: OperandBundleDefs, NameStr: "" , InsertBefore: OldCB->getIterator()); |
| 3111 | } else { |
| 3112 | auto *NewCI = CallInst::Create(Func: NewFn, Args: NewArgOperands, Bundles: OperandBundleDefs, |
| 3113 | NameStr: "" , InsertBefore: OldCB->getIterator()); |
| 3114 | NewCI->setTailCallKind(cast<CallInst>(Val: OldCB)->getTailCallKind()); |
| 3115 | NewCB = NewCI; |
| 3116 | } |
| 3117 | |
| 3118 | // Copy over various properties and the new attributes. |
| 3119 | NewCB->copyMetadata(SrcInst: *OldCB, WL: {LLVMContext::MD_prof, LLVMContext::MD_dbg}); |
| 3120 | NewCB->setCallingConv(OldCB->getCallingConv()); |
| 3121 | NewCB->takeName(V: OldCB); |
| 3122 | NewCB->setAttributes(AttributeList::get( |
| 3123 | C&: Ctx, FnAttrs: OldCallAttributeList.getFnAttrs(), |
| 3124 | RetAttrs: OldCallAttributeList.getRetAttrs(), ArgAttrs: NewArgOperandAttributes)); |
| 3125 | |
| 3126 | AttributeFuncs::updateMinLegalVectorWidthAttr(Fn&: *NewCB->getCaller(), |
| 3127 | Width: LargestVectorWidth); |
| 3128 | |
| 3129 | CallSitePairs.push_back(Elt: {OldCB, NewCB}); |
| 3130 | return true; |
| 3131 | }; |
| 3132 | |
| 3133 | // Use the CallSiteReplacementCreator to create replacement call sites. |
| 3134 | bool UsedAssumedInformation = false; |
| 3135 | bool Success = checkForAllCallSites(Pred: CallSiteReplacementCreator, Fn: *OldFn, |
| 3136 | RequireAllCallSites: true, QueryingAA: nullptr, UsedAssumedInformation, |
| 3137 | /* CheckPotentiallyDead */ true); |
| 3138 | (void)Success; |
| 3139 | assert(Success && "Assumed call site replacement to succeed!" ); |
| 3140 | |
| 3141 | // Rewire the arguments. |
| 3142 | Argument *OldFnArgIt = OldFn->arg_begin(); |
| 3143 | Argument *NewFnArgIt = NewFn->arg_begin(); |
| 3144 | for (unsigned OldArgNum = 0; OldArgNum < ARIs.size(); |
| 3145 | ++OldArgNum, ++OldFnArgIt) { |
| 3146 | if (const std::unique_ptr<ArgumentReplacementInfo> &ARI = |
| 3147 | ARIs[OldArgNum]) { |
| 3148 | if (ARI->CalleeRepairCB) |
| 3149 | ARI->CalleeRepairCB(*ARI, *NewFn, NewFnArgIt); |
| 3150 | if (ARI->ReplacementTypes.empty()) |
| 3151 | OldFnArgIt->replaceAllUsesWith( |
| 3152 | V: PoisonValue::get(T: OldFnArgIt->getType())); |
| 3153 | NewFnArgIt += ARI->ReplacementTypes.size(); |
| 3154 | } else { |
| 3155 | NewFnArgIt->takeName(V: &*OldFnArgIt); |
| 3156 | OldFnArgIt->replaceAllUsesWith(V: &*NewFnArgIt); |
| 3157 | ++NewFnArgIt; |
| 3158 | } |
| 3159 | } |
| 3160 | |
| 3161 | // Eliminate the instructions *after* we visited all of them. |
| 3162 | for (auto &CallSitePair : CallSitePairs) { |
| 3163 | CallBase &OldCB = *CallSitePair.first; |
| 3164 | CallBase &NewCB = *CallSitePair.second; |
| 3165 | assert(OldCB.getType() == NewCB.getType() && |
| 3166 | "Cannot handle call sites with different types!" ); |
| 3167 | ModifiedFns.insert(X: OldCB.getFunction()); |
| 3168 | OldCB.replaceAllUsesWith(V: &NewCB); |
| 3169 | OldCB.eraseFromParent(); |
| 3170 | } |
| 3171 | |
| 3172 | // Replace the function in the call graph (if any). |
| 3173 | Configuration.CGUpdater.replaceFunctionWith(OldFn&: *OldFn, NewFn&: *NewFn); |
| 3174 | |
| 3175 | // If the old function was modified and needed to be reanalyzed, the new one |
| 3176 | // does now. |
| 3177 | if (ModifiedFns.remove(X: OldFn)) |
| 3178 | ModifiedFns.insert(X: NewFn); |
| 3179 | |
| 3180 | Changed = ChangeStatus::CHANGED; |
| 3181 | } |
| 3182 | |
| 3183 | return Changed; |
| 3184 | } |
| 3185 | |
| 3186 | void InformationCache::initializeInformationCache(const Function &CF, |
| 3187 | FunctionInfo &FI) { |
| 3188 | // As we do not modify the function here we can remove the const |
| 3189 | // withouth breaking implicit assumptions. At the end of the day, we could |
| 3190 | // initialize the cache eagerly which would look the same to the users. |
| 3191 | Function &F = const_cast<Function &>(CF); |
| 3192 | |
| 3193 | FI.IsKernel = F.hasFnAttribute(Kind: "kernel" ); |
| 3194 | |
| 3195 | // Walk all instructions to find interesting instructions that might be |
| 3196 | // queried by abstract attributes during their initialization or update. |
| 3197 | // This has to happen before we create attributes. |
| 3198 | |
| 3199 | DenseMap<const Value *, std::optional<short>> AssumeUsesMap; |
| 3200 | |
| 3201 | // Add \p V to the assume uses map which track the number of uses outside of |
| 3202 | // "visited" assumes. If no outside uses are left the value is added to the |
| 3203 | // assume only use vector. |
| 3204 | auto AddToAssumeUsesMap = [&](const Value &V) -> void { |
| 3205 | SmallVector<const Instruction *> Worklist; |
| 3206 | if (auto *I = dyn_cast<Instruction>(Val: &V)) |
| 3207 | Worklist.push_back(Elt: I); |
| 3208 | while (!Worklist.empty()) { |
| 3209 | const Instruction *I = Worklist.pop_back_val(); |
| 3210 | std::optional<short> &NumUses = AssumeUsesMap[I]; |
| 3211 | if (!NumUses) |
| 3212 | NumUses = I->getNumUses(); |
| 3213 | NumUses = *NumUses - /* this assume */ 1; |
| 3214 | if (*NumUses != 0) |
| 3215 | continue; |
| 3216 | AssumeOnlyValues.insert(X: I); |
| 3217 | for (const Value *Op : I->operands()) |
| 3218 | if (auto *OpI = dyn_cast<Instruction>(Val: Op)) |
| 3219 | Worklist.push_back(Elt: OpI); |
| 3220 | } |
| 3221 | }; |
| 3222 | |
| 3223 | for (Instruction &I : instructions(F: &F)) { |
| 3224 | bool IsInterestingOpcode = false; |
| 3225 | |
| 3226 | // To allow easy access to all instructions in a function with a given |
| 3227 | // opcode we store them in the InfoCache. As not all opcodes are interesting |
| 3228 | // to concrete attributes we only cache the ones that are as identified in |
| 3229 | // the following switch. |
| 3230 | // Note: There are no concrete attributes now so this is initially empty. |
| 3231 | switch (I.getOpcode()) { |
| 3232 | default: |
| 3233 | assert(!isa<CallBase>(&I) && |
| 3234 | "New call base instruction type needs to be known in the " |
| 3235 | "Attributor." ); |
| 3236 | break; |
| 3237 | case Instruction::Call: |
| 3238 | // Calls are interesting on their own, additionally: |
| 3239 | // For `llvm.assume` calls we also fill the KnowledgeMap as we find them. |
| 3240 | // For `must-tail` calls we remember the caller and callee. |
| 3241 | if (auto *Assume = dyn_cast<AssumeInst>(Val: &I)) { |
| 3242 | AssumeOnlyValues.insert(X: Assume); |
| 3243 | fillMapFromAssume(Assume&: *Assume, Result&: KnowledgeMap); |
| 3244 | AddToAssumeUsesMap(*Assume->getArgOperand(i: 0)); |
| 3245 | } else if (cast<CallInst>(Val&: I).isMustTailCall()) { |
| 3246 | FI.ContainsMustTailCall = true; |
| 3247 | if (auto *Callee = dyn_cast_if_present<Function>( |
| 3248 | Val: cast<CallInst>(Val&: I).getCalledOperand())) |
| 3249 | getFunctionInfo(F: *Callee).CalledViaMustTail = true; |
| 3250 | } |
| 3251 | [[fallthrough]]; |
| 3252 | case Instruction::CallBr: |
| 3253 | case Instruction::Invoke: |
| 3254 | case Instruction::CleanupRet: |
| 3255 | case Instruction::CatchSwitch: |
| 3256 | case Instruction::AtomicRMW: |
| 3257 | case Instruction::AtomicCmpXchg: |
| 3258 | case Instruction::Br: |
| 3259 | case Instruction::Resume: |
| 3260 | case Instruction::Ret: |
| 3261 | case Instruction::Load: |
| 3262 | // The alignment of a pointer is interesting for loads. |
| 3263 | case Instruction::Store: |
| 3264 | // The alignment of a pointer is interesting for stores. |
| 3265 | case Instruction::Alloca: |
| 3266 | case Instruction::AddrSpaceCast: |
| 3267 | IsInterestingOpcode = true; |
| 3268 | } |
| 3269 | if (IsInterestingOpcode) { |
| 3270 | auto *&Insts = FI.OpcodeInstMap[I.getOpcode()]; |
| 3271 | if (!Insts) |
| 3272 | Insts = new (Allocator) InstructionVectorTy(); |
| 3273 | Insts->push_back(Elt: &I); |
| 3274 | } |
| 3275 | if (I.mayReadOrWriteMemory()) |
| 3276 | FI.RWInsts.push_back(Elt: &I); |
| 3277 | } |
| 3278 | |
| 3279 | if (F.hasFnAttribute(Kind: Attribute::AlwaysInline) && |
| 3280 | isInlineViable(Callee&: F).isSuccess()) |
| 3281 | InlineableFunctions.insert(Ptr: &F); |
| 3282 | } |
| 3283 | |
| 3284 | InformationCache::FunctionInfo::~FunctionInfo() { |
| 3285 | // The instruction vectors are allocated using a BumpPtrAllocator, we need to |
| 3286 | // manually destroy them. |
| 3287 | for (auto &It : OpcodeInstMap) |
| 3288 | It.getSecond()->~InstructionVectorTy(); |
| 3289 | } |
| 3290 | |
| 3291 | ArrayRef<Function *> |
| 3292 | InformationCache::getIndirectlyCallableFunctions(Attributor &A) const { |
| 3293 | assert(A.isClosedWorldModule() && "Cannot see all indirect callees!" ); |
| 3294 | return IndirectlyCallableFunctions; |
| 3295 | } |
| 3296 | |
| 3297 | std::optional<unsigned> InformationCache::getFlatAddressSpace() const { |
| 3298 | if (TargetTriple.isGPU()) |
| 3299 | return 0; |
| 3300 | return std::nullopt; |
| 3301 | } |
| 3302 | |
| 3303 | void Attributor::recordDependence(const AbstractAttribute &FromAA, |
| 3304 | const AbstractAttribute &ToAA, |
| 3305 | DepClassTy DepClass) { |
| 3306 | if (DepClass == DepClassTy::NONE) |
| 3307 | return; |
| 3308 | // If we are outside of an update, thus before the actual fixpoint iteration |
| 3309 | // started (= when we create AAs), we do not track dependences because we will |
| 3310 | // put all AAs into the initial worklist anyway. |
| 3311 | if (DependenceStack.empty()) |
| 3312 | return; |
| 3313 | if (FromAA.getState().isAtFixpoint()) |
| 3314 | return; |
| 3315 | DependenceStack.back()->push_back(Elt: {.FromAA: &FromAA, .ToAA: &ToAA, .DepClass: DepClass}); |
| 3316 | } |
| 3317 | |
| 3318 | void Attributor::rememberDependences() { |
| 3319 | assert(!DependenceStack.empty() && "No dependences to remember!" ); |
| 3320 | |
| 3321 | for (DepInfo &DI : *DependenceStack.back()) { |
| 3322 | assert((DI.DepClass == DepClassTy::REQUIRED || |
| 3323 | DI.DepClass == DepClassTy::OPTIONAL) && |
| 3324 | "Expected required or optional dependence (1 bit)!" ); |
| 3325 | auto &DepAAs = const_cast<AbstractAttribute &>(*DI.FromAA).Deps; |
| 3326 | DepAAs.insert(X: AbstractAttribute::DepTy( |
| 3327 | const_cast<AbstractAttribute *>(DI.ToAA), unsigned(DI.DepClass))); |
| 3328 | } |
| 3329 | } |
| 3330 | |
| 3331 | template <Attribute::AttrKind AK, typename AAType> |
| 3332 | void Attributor::checkAndQueryIRAttr(const IRPosition &IRP, AttributeSet Attrs, |
| 3333 | bool SkipHasAttrCheck) { |
| 3334 | bool IsKnown; |
| 3335 | if (SkipHasAttrCheck || !Attrs.hasAttribute(Kind: AK)) |
| 3336 | if (!Configuration.Allowed || Configuration.Allowed->count(V: &AAType::ID)) |
| 3337 | if (!AA::hasAssumedIRAttr<AK>(*this, nullptr, IRP, DepClassTy::NONE, |
| 3338 | IsKnown)) |
| 3339 | getOrCreateAAFor<AAType>(IRP); |
| 3340 | } |
| 3341 | |
| 3342 | void Attributor::identifyDefaultAbstractAttributes(Function &F) { |
| 3343 | if (!VisitedFunctions.insert(V: &F).second) |
| 3344 | return; |
| 3345 | if (F.isDeclaration()) |
| 3346 | return; |
| 3347 | |
| 3348 | // In non-module runs we need to look at the call sites of a function to |
| 3349 | // determine if it is part of a must-tail call edge. This will influence what |
| 3350 | // attributes we can derive. |
| 3351 | InformationCache::FunctionInfo &FI = InfoCache.getFunctionInfo(F); |
| 3352 | if (!isModulePass() && !FI.CalledViaMustTail) { |
| 3353 | for (const Use &U : F.uses()) |
| 3354 | if (const auto *CB = dyn_cast<CallBase>(Val: U.getUser())) |
| 3355 | if (CB->isCallee(U: &U) && CB->isMustTailCall()) |
| 3356 | FI.CalledViaMustTail = true; |
| 3357 | } |
| 3358 | |
| 3359 | IRPosition FPos = IRPosition::function(F); |
| 3360 | bool IsIPOAmendable = isFunctionIPOAmendable(F); |
| 3361 | auto Attrs = F.getAttributes(); |
| 3362 | auto FnAttrs = Attrs.getFnAttrs(); |
| 3363 | |
| 3364 | // Check for dead BasicBlocks in every function. |
| 3365 | // We need dead instruction detection because we do not want to deal with |
| 3366 | // broken IR in which SSA rules do not apply. |
| 3367 | getOrCreateAAFor<AAIsDead>(IRP: FPos); |
| 3368 | |
| 3369 | // Every function might contain instructions that cause "undefined |
| 3370 | // behavior". |
| 3371 | getOrCreateAAFor<AAUndefinedBehavior>(IRP: FPos); |
| 3372 | |
| 3373 | // Every function might be applicable for Heap-To-Stack conversion. |
| 3374 | if (EnableHeapToStack) |
| 3375 | getOrCreateAAFor<AAHeapToStack>(IRP: FPos); |
| 3376 | |
| 3377 | // Every function might be "must-progress". |
| 3378 | checkAndQueryIRAttr<Attribute::MustProgress, AAMustProgress>(IRP: FPos, Attrs: FnAttrs); |
| 3379 | |
| 3380 | // Every function might be "no-free". |
| 3381 | checkAndQueryIRAttr<Attribute::NoFree, AANoFree>(IRP: FPos, Attrs: FnAttrs); |
| 3382 | |
| 3383 | // Every function might be "will-return". |
| 3384 | checkAndQueryIRAttr<Attribute::WillReturn, AAWillReturn>(IRP: FPos, Attrs: FnAttrs); |
| 3385 | |
| 3386 | // Every function might be marked "nosync" |
| 3387 | checkAndQueryIRAttr<Attribute::NoSync, AANoSync>(IRP: FPos, Attrs: FnAttrs); |
| 3388 | |
| 3389 | // Everything that is visible from the outside (=function, argument, return |
| 3390 | // positions), cannot be changed if the function is not IPO amendable. We can |
| 3391 | // however analyse the code inside. |
| 3392 | if (IsIPOAmendable) { |
| 3393 | |
| 3394 | // Every function can be nounwind. |
| 3395 | checkAndQueryIRAttr<Attribute::NoUnwind, AANoUnwind>(IRP: FPos, Attrs: FnAttrs); |
| 3396 | |
| 3397 | // Every function might be "no-return". |
| 3398 | checkAndQueryIRAttr<Attribute::NoReturn, AANoReturn>(IRP: FPos, Attrs: FnAttrs); |
| 3399 | |
| 3400 | // Every function might be "no-recurse". |
| 3401 | checkAndQueryIRAttr<Attribute::NoRecurse, AANoRecurse>(IRP: FPos, Attrs: FnAttrs); |
| 3402 | |
| 3403 | // Every function can be "non-convergent". |
| 3404 | if (Attrs.hasFnAttr(Kind: Attribute::Convergent)) |
| 3405 | getOrCreateAAFor<AANonConvergent>(IRP: FPos); |
| 3406 | |
| 3407 | // Every function might be "readnone/readonly/writeonly/...". |
| 3408 | getOrCreateAAFor<AAMemoryBehavior>(IRP: FPos); |
| 3409 | |
| 3410 | // Every function can be "readnone/argmemonly/inaccessiblememonly/...". |
| 3411 | getOrCreateAAFor<AAMemoryLocation>(IRP: FPos); |
| 3412 | |
| 3413 | // Every function can track active assumptions. |
| 3414 | getOrCreateAAFor<AAAssumptionInfo>(IRP: FPos); |
| 3415 | |
| 3416 | // If we're not using a dynamic mode for float, there's nothing worthwhile |
| 3417 | // to infer. This misses the edge case denormal-fp-math="dynamic" and |
| 3418 | // denormal-fp-math-f32=something, but that likely has no real world use. |
| 3419 | DenormalMode Mode = F.getDenormalMode(FPType: APFloat::IEEEsingle()); |
| 3420 | if (Mode.Input == DenormalMode::Dynamic || |
| 3421 | Mode.Output == DenormalMode::Dynamic) |
| 3422 | getOrCreateAAFor<AADenormalFPMath>(IRP: FPos); |
| 3423 | |
| 3424 | // Return attributes are only appropriate if the return type is non void. |
| 3425 | Type *ReturnType = F.getReturnType(); |
| 3426 | if (!ReturnType->isVoidTy()) { |
| 3427 | IRPosition RetPos = IRPosition::returned(F); |
| 3428 | AttributeSet RetAttrs = Attrs.getRetAttrs(); |
| 3429 | |
| 3430 | // Every returned value might be dead. |
| 3431 | getOrCreateAAFor<AAIsDead>(IRP: RetPos); |
| 3432 | |
| 3433 | // Every function might be simplified. |
| 3434 | bool UsedAssumedInformation = false; |
| 3435 | getAssumedSimplified(IRP: RetPos, AA: nullptr, UsedAssumedInformation, |
| 3436 | S: AA::Intraprocedural); |
| 3437 | |
| 3438 | // Every returned value might be marked noundef. |
| 3439 | checkAndQueryIRAttr<Attribute::NoUndef, AANoUndef>(IRP: RetPos, Attrs: RetAttrs); |
| 3440 | |
| 3441 | if (ReturnType->isPointerTy()) { |
| 3442 | |
| 3443 | // Every function with pointer return type might be marked align. |
| 3444 | getOrCreateAAFor<AAAlign>(IRP: RetPos); |
| 3445 | |
| 3446 | // Every function with pointer return type might be marked nonnull. |
| 3447 | checkAndQueryIRAttr<Attribute::NonNull, AANonNull>(IRP: RetPos, Attrs: RetAttrs); |
| 3448 | |
| 3449 | // Every function with pointer return type might be marked noalias. |
| 3450 | checkAndQueryIRAttr<Attribute::NoAlias, AANoAlias>(IRP: RetPos, Attrs: RetAttrs); |
| 3451 | |
| 3452 | // Every function with pointer return type might be marked |
| 3453 | // dereferenceable. |
| 3454 | getOrCreateAAFor<AADereferenceable>(IRP: RetPos); |
| 3455 | } else if (AttributeFuncs::isNoFPClassCompatibleType(Ty: ReturnType)) { |
| 3456 | getOrCreateAAFor<AANoFPClass>(IRP: RetPos); |
| 3457 | } |
| 3458 | } |
| 3459 | } |
| 3460 | |
| 3461 | for (Argument &Arg : F.args()) { |
| 3462 | IRPosition ArgPos = IRPosition::argument(Arg); |
| 3463 | auto ArgNo = Arg.getArgNo(); |
| 3464 | AttributeSet ArgAttrs = Attrs.getParamAttrs(ArgNo); |
| 3465 | |
| 3466 | if (!IsIPOAmendable) { |
| 3467 | if (Arg.getType()->isPointerTy()) |
| 3468 | // Every argument with pointer type might be marked nofree. |
| 3469 | checkAndQueryIRAttr<Attribute::NoFree, AANoFree>(IRP: ArgPos, Attrs: ArgAttrs); |
| 3470 | continue; |
| 3471 | } |
| 3472 | |
| 3473 | // Every argument might be simplified. We have to go through the |
| 3474 | // Attributor interface though as outside AAs can register custom |
| 3475 | // simplification callbacks. |
| 3476 | bool UsedAssumedInformation = false; |
| 3477 | getAssumedSimplified(IRP: ArgPos, /* AA */ nullptr, UsedAssumedInformation, |
| 3478 | S: AA::Intraprocedural); |
| 3479 | |
| 3480 | // Every argument might be dead. |
| 3481 | getOrCreateAAFor<AAIsDead>(IRP: ArgPos); |
| 3482 | |
| 3483 | // Every argument might be marked noundef. |
| 3484 | checkAndQueryIRAttr<Attribute::NoUndef, AANoUndef>(IRP: ArgPos, Attrs: ArgAttrs); |
| 3485 | |
| 3486 | if (Arg.getType()->isPointerTy()) { |
| 3487 | // Every argument with pointer type might be marked nonnull. |
| 3488 | checkAndQueryIRAttr<Attribute::NonNull, AANonNull>(IRP: ArgPos, Attrs: ArgAttrs); |
| 3489 | |
| 3490 | // Every argument with pointer type might be marked noalias. |
| 3491 | checkAndQueryIRAttr<Attribute::NoAlias, AANoAlias>(IRP: ArgPos, Attrs: ArgAttrs); |
| 3492 | |
| 3493 | // Every argument with pointer type might be marked dereferenceable. |
| 3494 | getOrCreateAAFor<AADereferenceable>(IRP: ArgPos); |
| 3495 | |
| 3496 | // Every argument with pointer type might be marked align. |
| 3497 | getOrCreateAAFor<AAAlign>(IRP: ArgPos); |
| 3498 | |
| 3499 | // Every argument with pointer type might be marked nocapture. |
| 3500 | checkAndQueryIRAttr<Attribute::Captures, AANoCapture>( |
| 3501 | IRP: ArgPos, Attrs: ArgAttrs, /*SkipHasAttrCheck=*/true); |
| 3502 | |
| 3503 | // Every argument with pointer type might be marked |
| 3504 | // "readnone/readonly/writeonly/..." |
| 3505 | getOrCreateAAFor<AAMemoryBehavior>(IRP: ArgPos); |
| 3506 | |
| 3507 | // Every argument with pointer type might be marked nofree. |
| 3508 | checkAndQueryIRAttr<Attribute::NoFree, AANoFree>(IRP: ArgPos, Attrs: ArgAttrs); |
| 3509 | |
| 3510 | // Every argument with pointer type might be privatizable (or |
| 3511 | // promotable) |
| 3512 | getOrCreateAAFor<AAPrivatizablePtr>(IRP: ArgPos); |
| 3513 | } else if (AttributeFuncs::isNoFPClassCompatibleType(Ty: Arg.getType())) { |
| 3514 | getOrCreateAAFor<AANoFPClass>(IRP: ArgPos); |
| 3515 | } |
| 3516 | } |
| 3517 | |
| 3518 | auto CallSitePred = [&](Instruction &I) -> bool { |
| 3519 | auto &CB = cast<CallBase>(Val&: I); |
| 3520 | IRPosition CBInstPos = IRPosition::inst(I: CB); |
| 3521 | IRPosition CBFnPos = IRPosition::callsite_function(CB); |
| 3522 | |
| 3523 | // Call sites might be dead if they do not have side effects and no live |
| 3524 | // users. The return value might be dead if there are no live users. |
| 3525 | getOrCreateAAFor<AAIsDead>(IRP: CBInstPos); |
| 3526 | |
| 3527 | Function *Callee = dyn_cast_if_present<Function>(Val: CB.getCalledOperand()); |
| 3528 | // TODO: Even if the callee is not known now we might be able to simplify |
| 3529 | // the call/callee. |
| 3530 | if (!Callee) { |
| 3531 | getOrCreateAAFor<AAIndirectCallInfo>(IRP: CBFnPos); |
| 3532 | return true; |
| 3533 | } |
| 3534 | |
| 3535 | // Every call site can track active assumptions. |
| 3536 | getOrCreateAAFor<AAAssumptionInfo>(IRP: CBFnPos); |
| 3537 | |
| 3538 | // Skip declarations except if annotations on their call sites were |
| 3539 | // explicitly requested. |
| 3540 | if (!AnnotateDeclarationCallSites && Callee->isDeclaration() && |
| 3541 | !Callee->hasMetadata(KindID: LLVMContext::MD_callback)) |
| 3542 | return true; |
| 3543 | |
| 3544 | if (!Callee->getReturnType()->isVoidTy() && !CB.use_empty()) { |
| 3545 | IRPosition CBRetPos = IRPosition::callsite_returned(CB); |
| 3546 | bool UsedAssumedInformation = false; |
| 3547 | getAssumedSimplified(IRP: CBRetPos, AA: nullptr, UsedAssumedInformation, |
| 3548 | S: AA::Intraprocedural); |
| 3549 | |
| 3550 | if (AttributeFuncs::isNoFPClassCompatibleType(Ty: Callee->getReturnType())) |
| 3551 | getOrCreateAAFor<AANoFPClass>(IRP: CBInstPos); |
| 3552 | } |
| 3553 | |
| 3554 | const AttributeList &CBAttrs = CBFnPos.getAttrList(); |
| 3555 | for (int I = 0, E = CB.arg_size(); I < E; ++I) { |
| 3556 | |
| 3557 | IRPosition CBArgPos = IRPosition::callsite_argument(CB, ArgNo: I); |
| 3558 | AttributeSet CBArgAttrs = CBAttrs.getParamAttrs(ArgNo: I); |
| 3559 | |
| 3560 | // Every call site argument might be dead. |
| 3561 | getOrCreateAAFor<AAIsDead>(IRP: CBArgPos); |
| 3562 | |
| 3563 | // Call site argument might be simplified. We have to go through the |
| 3564 | // Attributor interface though as outside AAs can register custom |
| 3565 | // simplification callbacks. |
| 3566 | bool UsedAssumedInformation = false; |
| 3567 | getAssumedSimplified(IRP: CBArgPos, /* AA */ nullptr, UsedAssumedInformation, |
| 3568 | S: AA::Intraprocedural); |
| 3569 | |
| 3570 | // Every call site argument might be marked "noundef". |
| 3571 | checkAndQueryIRAttr<Attribute::NoUndef, AANoUndef>(IRP: CBArgPos, Attrs: CBArgAttrs); |
| 3572 | |
| 3573 | Type *ArgTy = CB.getArgOperand(i: I)->getType(); |
| 3574 | |
| 3575 | if (!ArgTy->isPointerTy()) { |
| 3576 | if (AttributeFuncs::isNoFPClassCompatibleType(Ty: ArgTy)) |
| 3577 | getOrCreateAAFor<AANoFPClass>(IRP: CBArgPos); |
| 3578 | |
| 3579 | continue; |
| 3580 | } |
| 3581 | |
| 3582 | // Call site argument attribute "non-null". |
| 3583 | checkAndQueryIRAttr<Attribute::NonNull, AANonNull>(IRP: CBArgPos, Attrs: CBArgAttrs); |
| 3584 | |
| 3585 | // Call site argument attribute "captures(none)". |
| 3586 | checkAndQueryIRAttr<Attribute::Captures, AANoCapture>( |
| 3587 | IRP: CBArgPos, Attrs: CBArgAttrs, /*SkipHasAttrCheck=*/true); |
| 3588 | |
| 3589 | // Call site argument attribute "no-alias". |
| 3590 | checkAndQueryIRAttr<Attribute::NoAlias, AANoAlias>(IRP: CBArgPos, Attrs: CBArgAttrs); |
| 3591 | |
| 3592 | // Call site argument attribute "dereferenceable". |
| 3593 | getOrCreateAAFor<AADereferenceable>(IRP: CBArgPos); |
| 3594 | |
| 3595 | // Call site argument attribute "align". |
| 3596 | getOrCreateAAFor<AAAlign>(IRP: CBArgPos); |
| 3597 | |
| 3598 | // Call site argument attribute |
| 3599 | // "readnone/readonly/writeonly/..." |
| 3600 | if (!CBAttrs.hasParamAttr(ArgNo: I, Kind: Attribute::ReadNone)) |
| 3601 | getOrCreateAAFor<AAMemoryBehavior>(IRP: CBArgPos); |
| 3602 | |
| 3603 | // Call site argument attribute "nofree". |
| 3604 | checkAndQueryIRAttr<Attribute::NoFree, AANoFree>(IRP: CBArgPos, Attrs: CBArgAttrs); |
| 3605 | } |
| 3606 | return true; |
| 3607 | }; |
| 3608 | |
| 3609 | auto &OpcodeInstMap = InfoCache.getOpcodeInstMapForFunction(F); |
| 3610 | [[maybe_unused]] bool Success; |
| 3611 | bool UsedAssumedInformation = false; |
| 3612 | Success = checkForAllInstructionsImpl( |
| 3613 | A: nullptr, OpcodeInstMap, Pred: CallSitePred, QueryingAA: nullptr, LivenessAA: nullptr, |
| 3614 | Opcodes: {(unsigned)Instruction::Invoke, (unsigned)Instruction::CallBr, |
| 3615 | (unsigned)Instruction::Call}, |
| 3616 | UsedAssumedInformation); |
| 3617 | assert(Success && "Expected the check call to be successful!" ); |
| 3618 | |
| 3619 | auto LoadStorePred = [&](Instruction &I) -> bool { |
| 3620 | if (auto *LI = dyn_cast<LoadInst>(Val: &I)) { |
| 3621 | getOrCreateAAFor<AAAlign>(IRP: IRPosition::value(V: *LI->getPointerOperand())); |
| 3622 | if (SimplifyAllLoads) |
| 3623 | getAssumedSimplified(IRP: IRPosition::value(V: I), AA: nullptr, |
| 3624 | UsedAssumedInformation, S: AA::Intraprocedural); |
| 3625 | getOrCreateAAFor<AAInvariantLoadPointer>( |
| 3626 | IRP: IRPosition::value(V: *LI->getPointerOperand())); |
| 3627 | getOrCreateAAFor<AAAddressSpace>( |
| 3628 | IRP: IRPosition::value(V: *LI->getPointerOperand())); |
| 3629 | } else { |
| 3630 | auto &SI = cast<StoreInst>(Val&: I); |
| 3631 | getOrCreateAAFor<AAIsDead>(IRP: IRPosition::inst(I)); |
| 3632 | getAssumedSimplified(IRP: IRPosition::value(V: *SI.getValueOperand()), AA: nullptr, |
| 3633 | UsedAssumedInformation, S: AA::Intraprocedural); |
| 3634 | getOrCreateAAFor<AAAlign>(IRP: IRPosition::value(V: *SI.getPointerOperand())); |
| 3635 | getOrCreateAAFor<AAAddressSpace>( |
| 3636 | IRP: IRPosition::value(V: *SI.getPointerOperand())); |
| 3637 | } |
| 3638 | return true; |
| 3639 | }; |
| 3640 | Success = checkForAllInstructionsImpl( |
| 3641 | A: nullptr, OpcodeInstMap, Pred: LoadStorePred, QueryingAA: nullptr, LivenessAA: nullptr, |
| 3642 | Opcodes: {(unsigned)Instruction::Load, (unsigned)Instruction::Store}, |
| 3643 | UsedAssumedInformation); |
| 3644 | assert(Success && "Expected the check call to be successful!" ); |
| 3645 | |
| 3646 | // AllocaInstPredicate |
| 3647 | auto AAAllocationInfoPred = [&](Instruction &I) -> bool { |
| 3648 | getOrCreateAAFor<AAAllocationInfo>(IRP: IRPosition::value(V: I)); |
| 3649 | return true; |
| 3650 | }; |
| 3651 | |
| 3652 | Success = checkForAllInstructionsImpl( |
| 3653 | A: nullptr, OpcodeInstMap, Pred: AAAllocationInfoPred, QueryingAA: nullptr, LivenessAA: nullptr, |
| 3654 | Opcodes: {(unsigned)Instruction::Alloca}, UsedAssumedInformation); |
| 3655 | assert(Success && "Expected the check call to be successful!" ); |
| 3656 | } |
| 3657 | |
| 3658 | bool Attributor::isClosedWorldModule() const { |
| 3659 | if (CloseWorldAssumption.getNumOccurrences()) |
| 3660 | return CloseWorldAssumption; |
| 3661 | return isModulePass() && Configuration.IsClosedWorldModule; |
| 3662 | } |
| 3663 | |
| 3664 | /// Helpers to ease debugging through output streams and print calls. |
| 3665 | /// |
| 3666 | ///{ |
| 3667 | raw_ostream &llvm::operator<<(raw_ostream &OS, ChangeStatus S) { |
| 3668 | return OS << (S == ChangeStatus::CHANGED ? "changed" : "unchanged" ); |
| 3669 | } |
| 3670 | |
| 3671 | raw_ostream &llvm::operator<<(raw_ostream &OS, IRPosition::Kind AP) { |
| 3672 | switch (AP) { |
| 3673 | case IRPosition::IRP_INVALID: |
| 3674 | return OS << "inv" ; |
| 3675 | case IRPosition::IRP_FLOAT: |
| 3676 | return OS << "flt" ; |
| 3677 | case IRPosition::IRP_RETURNED: |
| 3678 | return OS << "fn_ret" ; |
| 3679 | case IRPosition::IRP_CALL_SITE_RETURNED: |
| 3680 | return OS << "cs_ret" ; |
| 3681 | case IRPosition::IRP_FUNCTION: |
| 3682 | return OS << "fn" ; |
| 3683 | case IRPosition::IRP_CALL_SITE: |
| 3684 | return OS << "cs" ; |
| 3685 | case IRPosition::IRP_ARGUMENT: |
| 3686 | return OS << "arg" ; |
| 3687 | case IRPosition::IRP_CALL_SITE_ARGUMENT: |
| 3688 | return OS << "cs_arg" ; |
| 3689 | } |
| 3690 | llvm_unreachable("Unknown attribute position!" ); |
| 3691 | } |
| 3692 | |
| 3693 | raw_ostream &llvm::operator<<(raw_ostream &OS, const IRPosition &Pos) { |
| 3694 | const Value &AV = Pos.getAssociatedValue(); |
| 3695 | OS << "{" << Pos.getPositionKind() << ":" << AV.getName() << " [" |
| 3696 | << Pos.getAnchorValue().getName() << "@" << Pos.getCallSiteArgNo() << "]" ; |
| 3697 | |
| 3698 | if (Pos.hasCallBaseContext()) |
| 3699 | OS << "[cb_context:" << *Pos.getCallBaseContext() << "]" ; |
| 3700 | return OS << "}" ; |
| 3701 | } |
| 3702 | |
| 3703 | raw_ostream &llvm::operator<<(raw_ostream &OS, const IntegerRangeState &S) { |
| 3704 | OS << "range-state(" << S.getBitWidth() << ")<" ; |
| 3705 | S.getKnown().print(OS); |
| 3706 | OS << " / " ; |
| 3707 | S.getAssumed().print(OS); |
| 3708 | OS << ">" ; |
| 3709 | |
| 3710 | return OS << static_cast<const AbstractState &>(S); |
| 3711 | } |
| 3712 | |
| 3713 | raw_ostream &llvm::operator<<(raw_ostream &OS, const AbstractState &S) { |
| 3714 | return OS << (!S.isValidState() ? "top" : (S.isAtFixpoint() ? "fix" : "" )); |
| 3715 | } |
| 3716 | |
| 3717 | raw_ostream &llvm::operator<<(raw_ostream &OS, const AbstractAttribute &AA) { |
| 3718 | AA.print(OS); |
| 3719 | return OS; |
| 3720 | } |
| 3721 | |
| 3722 | raw_ostream &llvm::operator<<(raw_ostream &OS, |
| 3723 | const PotentialConstantIntValuesState &S) { |
| 3724 | OS << "set-state(< {" ; |
| 3725 | if (!S.isValidState()) |
| 3726 | OS << "full-set" ; |
| 3727 | else { |
| 3728 | for (const auto &It : S.getAssumedSet()) |
| 3729 | OS << It << ", " ; |
| 3730 | if (S.undefIsContained()) |
| 3731 | OS << "undef " ; |
| 3732 | } |
| 3733 | OS << "} >)" ; |
| 3734 | |
| 3735 | return OS; |
| 3736 | } |
| 3737 | |
| 3738 | raw_ostream &llvm::operator<<(raw_ostream &OS, |
| 3739 | const PotentialLLVMValuesState &S) { |
| 3740 | OS << "set-state(< {" ; |
| 3741 | if (!S.isValidState()) |
| 3742 | OS << "full-set" ; |
| 3743 | else { |
| 3744 | for (const auto &It : S.getAssumedSet()) { |
| 3745 | if (auto *F = dyn_cast<Function>(Val: It.first.getValue())) |
| 3746 | OS << "@" << F->getName() << "[" << int(It.second) << "], " ; |
| 3747 | else |
| 3748 | OS << *It.first.getValue() << "[" << int(It.second) << "], " ; |
| 3749 | } |
| 3750 | if (S.undefIsContained()) |
| 3751 | OS << "undef " ; |
| 3752 | } |
| 3753 | OS << "} >)" ; |
| 3754 | |
| 3755 | return OS; |
| 3756 | } |
| 3757 | |
| 3758 | void AbstractAttribute::print(Attributor *A, raw_ostream &OS) const { |
| 3759 | OS << "[" ; |
| 3760 | OS << getName(); |
| 3761 | OS << "] for CtxI " ; |
| 3762 | |
| 3763 | if (auto *I = getCtxI()) { |
| 3764 | OS << "'" ; |
| 3765 | I->print(O&: OS); |
| 3766 | OS << "'" ; |
| 3767 | } else |
| 3768 | OS << "<<null inst>>" ; |
| 3769 | |
| 3770 | OS << " at position " << getIRPosition() << " with state " << getAsStr(A) |
| 3771 | << '\n'; |
| 3772 | } |
| 3773 | |
| 3774 | void AbstractAttribute::printWithDeps(raw_ostream &OS) const { |
| 3775 | print(OS); |
| 3776 | |
| 3777 | for (const auto &DepAA : Deps) { |
| 3778 | auto *AA = DepAA.getPointer(); |
| 3779 | OS << " updates " ; |
| 3780 | AA->print(OS); |
| 3781 | } |
| 3782 | |
| 3783 | OS << '\n'; |
| 3784 | } |
| 3785 | |
| 3786 | raw_ostream &llvm::operator<<(raw_ostream &OS, |
| 3787 | const AAPointerInfo::Access &Acc) { |
| 3788 | OS << " [" << Acc.getKind() << "] " << *Acc.getRemoteInst(); |
| 3789 | if (Acc.getLocalInst() != Acc.getRemoteInst()) |
| 3790 | OS << " via " << *Acc.getLocalInst(); |
| 3791 | if (Acc.getContent()) { |
| 3792 | if (*Acc.getContent()) |
| 3793 | OS << " [" << **Acc.getContent() << "]" ; |
| 3794 | else |
| 3795 | OS << " [ <unknown> ]" ; |
| 3796 | } |
| 3797 | return OS; |
| 3798 | } |
| 3799 | ///} |
| 3800 | |
| 3801 | /// ---------------------------------------------------------------------------- |
| 3802 | /// Pass (Manager) Boilerplate |
| 3803 | /// ---------------------------------------------------------------------------- |
| 3804 | |
| 3805 | static bool runAttributorOnFunctions(InformationCache &InfoCache, |
| 3806 | SetVector<Function *> &Functions, |
| 3807 | AnalysisGetter &AG, |
| 3808 | CallGraphUpdater &CGUpdater, |
| 3809 | bool DeleteFns, bool IsModulePass) { |
| 3810 | if (Functions.empty()) |
| 3811 | return false; |
| 3812 | |
| 3813 | LLVM_DEBUG({ |
| 3814 | dbgs() << "[Attributor] Run on module with " << Functions.size() |
| 3815 | << " functions:\n" ; |
| 3816 | for (Function *Fn : Functions) |
| 3817 | dbgs() << " - " << Fn->getName() << "\n" ; |
| 3818 | }); |
| 3819 | |
| 3820 | // Create an Attributor and initially empty information cache that is filled |
| 3821 | // while we identify default attribute opportunities. |
| 3822 | AttributorConfig AC(CGUpdater); |
| 3823 | AC.IsModulePass = IsModulePass; |
| 3824 | AC.DeleteFns = DeleteFns; |
| 3825 | |
| 3826 | /// Tracking callback for specialization of indirect calls. |
| 3827 | DenseMap<CallBase *, std::unique_ptr<SmallPtrSet<Function *, 8>>> |
| 3828 | IndirectCalleeTrackingMap; |
| 3829 | if (MaxSpecializationPerCB.getNumOccurrences()) { |
| 3830 | AC.IndirectCalleeSpecializationCallback = |
| 3831 | [&](Attributor &, const AbstractAttribute &AA, CallBase &CB, |
| 3832 | Function &Callee, unsigned) { |
| 3833 | if (MaxSpecializationPerCB == 0) |
| 3834 | return false; |
| 3835 | auto &Set = IndirectCalleeTrackingMap[&CB]; |
| 3836 | if (!Set) |
| 3837 | Set = std::make_unique<SmallPtrSet<Function *, 8>>(); |
| 3838 | if (Set->size() >= MaxSpecializationPerCB) |
| 3839 | return Set->contains(Ptr: &Callee); |
| 3840 | Set->insert(Ptr: &Callee); |
| 3841 | return true; |
| 3842 | }; |
| 3843 | } |
| 3844 | |
| 3845 | Attributor A(Functions, InfoCache, AC); |
| 3846 | |
| 3847 | // Create shallow wrappers for all functions that are not IPO amendable |
| 3848 | if (AllowShallowWrappers) |
| 3849 | for (Function *F : Functions) |
| 3850 | if (!A.isFunctionIPOAmendable(F: *F)) |
| 3851 | Attributor::createShallowWrapper(F&: *F); |
| 3852 | |
| 3853 | // Internalize non-exact functions |
| 3854 | // TODO: for now we eagerly internalize functions without calculating the |
| 3855 | // cost, we need a cost interface to determine whether internalizing |
| 3856 | // a function is "beneficial" |
| 3857 | if (AllowDeepWrapper) { |
| 3858 | unsigned FunSize = Functions.size(); |
| 3859 | for (unsigned u = 0; u < FunSize; u++) { |
| 3860 | Function *F = Functions[u]; |
| 3861 | if (!F->isDeclaration() && !F->isDefinitionExact() && !F->use_empty() && |
| 3862 | !GlobalValue::isInterposableLinkage(Linkage: F->getLinkage())) { |
| 3863 | Function *NewF = Attributor::internalizeFunction(F&: *F); |
| 3864 | assert(NewF && "Could not internalize function." ); |
| 3865 | Functions.insert(X: NewF); |
| 3866 | |
| 3867 | // Update call graph |
| 3868 | CGUpdater.replaceFunctionWith(OldFn&: *F, NewFn&: *NewF); |
| 3869 | for (const Use &U : NewF->uses()) |
| 3870 | if (CallBase *CB = dyn_cast<CallBase>(Val: U.getUser())) { |
| 3871 | auto *CallerF = CB->getCaller(); |
| 3872 | CGUpdater.reanalyzeFunction(Fn&: *CallerF); |
| 3873 | } |
| 3874 | } |
| 3875 | } |
| 3876 | } |
| 3877 | |
| 3878 | for (Function *F : Functions) { |
| 3879 | if (F->hasExactDefinition()) |
| 3880 | NumFnWithExactDefinition++; |
| 3881 | else |
| 3882 | NumFnWithoutExactDefinition++; |
| 3883 | |
| 3884 | // We look at internal functions only on-demand but if any use is not a |
| 3885 | // direct call or outside the current set of analyzed functions, we have |
| 3886 | // to do it eagerly. |
| 3887 | if (F->hasLocalLinkage()) { |
| 3888 | if (llvm::all_of(Range: F->uses(), P: [&Functions](const Use &U) { |
| 3889 | const auto *CB = dyn_cast<CallBase>(Val: U.getUser()); |
| 3890 | return CB && CB->isCallee(U: &U) && |
| 3891 | Functions.count(key: const_cast<Function *>(CB->getCaller())); |
| 3892 | })) |
| 3893 | continue; |
| 3894 | } |
| 3895 | |
| 3896 | // Populate the Attributor with abstract attribute opportunities in the |
| 3897 | // function and the information cache with IR information. |
| 3898 | A.identifyDefaultAbstractAttributes(F&: *F); |
| 3899 | } |
| 3900 | |
| 3901 | ChangeStatus Changed = A.run(); |
| 3902 | |
| 3903 | LLVM_DEBUG(dbgs() << "[Attributor] Done with " << Functions.size() |
| 3904 | << " functions, result: " << Changed << ".\n" ); |
| 3905 | return Changed == ChangeStatus::CHANGED; |
| 3906 | } |
| 3907 | |
| 3908 | static bool runAttributorLightOnFunctions(InformationCache &InfoCache, |
| 3909 | SetVector<Function *> &Functions, |
| 3910 | AnalysisGetter &AG, |
| 3911 | CallGraphUpdater &CGUpdater, |
| 3912 | FunctionAnalysisManager &FAM, |
| 3913 | bool IsModulePass) { |
| 3914 | if (Functions.empty()) |
| 3915 | return false; |
| 3916 | |
| 3917 | LLVM_DEBUG({ |
| 3918 | dbgs() << "[AttributorLight] Run on module with " << Functions.size() |
| 3919 | << " functions:\n" ; |
| 3920 | for (Function *Fn : Functions) |
| 3921 | dbgs() << " - " << Fn->getName() << "\n" ; |
| 3922 | }); |
| 3923 | |
| 3924 | // Create an Attributor and initially empty information cache that is filled |
| 3925 | // while we identify default attribute opportunities. |
| 3926 | AttributorConfig AC(CGUpdater); |
| 3927 | AC.IsModulePass = IsModulePass; |
| 3928 | AC.DeleteFns = false; |
| 3929 | DenseSet<const char *> Allowed( |
| 3930 | {&AAWillReturn::ID, &AANoUnwind::ID, &AANoRecurse::ID, &AANoSync::ID, |
| 3931 | &AANoFree::ID, &AANoReturn::ID, &AAMemoryLocation::ID, |
| 3932 | &AAMemoryBehavior::ID, &AAUnderlyingObjects::ID, &AANoCapture::ID, |
| 3933 | &AAInterFnReachability::ID, &AAIntraFnReachability::ID, &AACallEdges::ID, |
| 3934 | &AANoFPClass::ID, &AAMustProgress::ID, &AANonNull::ID, |
| 3935 | &AADenormalFPMath::ID}); |
| 3936 | AC.Allowed = &Allowed; |
| 3937 | AC.UseLiveness = false; |
| 3938 | |
| 3939 | Attributor A(Functions, InfoCache, AC); |
| 3940 | |
| 3941 | for (Function *F : Functions) { |
| 3942 | if (F->hasExactDefinition()) |
| 3943 | NumFnWithExactDefinition++; |
| 3944 | else |
| 3945 | NumFnWithoutExactDefinition++; |
| 3946 | |
| 3947 | // We look at internal functions only on-demand but if any use is not a |
| 3948 | // direct call or outside the current set of analyzed functions, we have |
| 3949 | // to do it eagerly. |
| 3950 | if (AC.UseLiveness && F->hasLocalLinkage()) { |
| 3951 | if (llvm::all_of(Range: F->uses(), P: [&Functions](const Use &U) { |
| 3952 | const auto *CB = dyn_cast<CallBase>(Val: U.getUser()); |
| 3953 | return CB && CB->isCallee(U: &U) && |
| 3954 | Functions.count(key: const_cast<Function *>(CB->getCaller())); |
| 3955 | })) |
| 3956 | continue; |
| 3957 | } |
| 3958 | |
| 3959 | // Populate the Attributor with abstract attribute opportunities in the |
| 3960 | // function and the information cache with IR information. |
| 3961 | A.identifyDefaultAbstractAttributes(F&: *F); |
| 3962 | } |
| 3963 | |
| 3964 | ChangeStatus Changed = A.run(); |
| 3965 | |
| 3966 | if (Changed == ChangeStatus::CHANGED) { |
| 3967 | // Invalidate analyses for modified functions so that we don't have to |
| 3968 | // invalidate all analyses for all functions in this SCC. |
| 3969 | PreservedAnalyses FuncPA; |
| 3970 | // We haven't changed the CFG for modified functions. |
| 3971 | FuncPA.preserveSet<CFGAnalyses>(); |
| 3972 | for (Function *Changed : A.getModifiedFunctions()) { |
| 3973 | FAM.invalidate(IR&: *Changed, PA: FuncPA); |
| 3974 | // Also invalidate any direct callers of changed functions since analyses |
| 3975 | // may care about attributes of direct callees. For example, MemorySSA |
| 3976 | // cares about whether or not a call's callee modifies memory and queries |
| 3977 | // that through function attributes. |
| 3978 | for (auto *U : Changed->users()) { |
| 3979 | if (auto *Call = dyn_cast<CallBase>(Val: U)) { |
| 3980 | if (Call->getCalledFunction() == Changed) |
| 3981 | FAM.invalidate(IR&: *Call->getFunction(), PA: FuncPA); |
| 3982 | } |
| 3983 | } |
| 3984 | } |
| 3985 | } |
| 3986 | LLVM_DEBUG(dbgs() << "[Attributor] Done with " << Functions.size() |
| 3987 | << " functions, result: " << Changed << ".\n" ); |
| 3988 | return Changed == ChangeStatus::CHANGED; |
| 3989 | } |
| 3990 | |
| 3991 | void AADepGraph::viewGraph() { llvm::ViewGraph(G: this, Name: "Dependency Graph" ); } |
| 3992 | |
| 3993 | void AADepGraph::dumpGraph() { |
| 3994 | static std::atomic<int> CallTimes; |
| 3995 | std::string Prefix; |
| 3996 | |
| 3997 | if (!DepGraphDotFileNamePrefix.empty()) |
| 3998 | Prefix = DepGraphDotFileNamePrefix; |
| 3999 | else |
| 4000 | Prefix = "dep_graph" ; |
| 4001 | std::string Filename = |
| 4002 | Prefix + "_" + std::to_string(val: CallTimes.load()) + ".dot" ; |
| 4003 | |
| 4004 | outs() << "Dependency graph dump to " << Filename << ".\n" ; |
| 4005 | |
| 4006 | std::error_code EC; |
| 4007 | |
| 4008 | raw_fd_ostream File(Filename, EC, sys::fs::OF_TextWithCRLF); |
| 4009 | if (!EC) |
| 4010 | llvm::WriteGraph(O&: File, G: this); |
| 4011 | |
| 4012 | CallTimes++; |
| 4013 | } |
| 4014 | |
| 4015 | void AADepGraph::print() { |
| 4016 | for (auto DepAA : SyntheticRoot.Deps) |
| 4017 | cast<AbstractAttribute>(Val: DepAA.getPointer())->printWithDeps(OS&: outs()); |
| 4018 | } |
| 4019 | |
| 4020 | PreservedAnalyses AttributorPass::run(Module &M, ModuleAnalysisManager &AM) { |
| 4021 | FunctionAnalysisManager &FAM = |
| 4022 | AM.getResult<FunctionAnalysisManagerModuleProxy>(IR&: M).getManager(); |
| 4023 | AnalysisGetter AG(FAM); |
| 4024 | |
| 4025 | SetVector<Function *> Functions; |
| 4026 | for (Function &F : M) |
| 4027 | Functions.insert(X: &F); |
| 4028 | |
| 4029 | CallGraphUpdater CGUpdater; |
| 4030 | BumpPtrAllocator Allocator; |
| 4031 | InformationCache InfoCache(M, AG, Allocator, /* CGSCC */ nullptr); |
| 4032 | if (runAttributorOnFunctions(InfoCache, Functions, AG, CGUpdater, |
| 4033 | /* DeleteFns */ true, /* IsModulePass */ true)) { |
| 4034 | // FIXME: Think about passes we will preserve and add them here. |
| 4035 | return PreservedAnalyses::none(); |
| 4036 | } |
| 4037 | return PreservedAnalyses::all(); |
| 4038 | } |
| 4039 | |
| 4040 | PreservedAnalyses AttributorCGSCCPass::run(LazyCallGraph::SCC &C, |
| 4041 | CGSCCAnalysisManager &AM, |
| 4042 | LazyCallGraph &CG, |
| 4043 | CGSCCUpdateResult &UR) { |
| 4044 | FunctionAnalysisManager &FAM = |
| 4045 | AM.getResult<FunctionAnalysisManagerCGSCCProxy>(IR&: C, ExtraArgs&: CG).getManager(); |
| 4046 | AnalysisGetter AG(FAM); |
| 4047 | |
| 4048 | SetVector<Function *> Functions; |
| 4049 | for (LazyCallGraph::Node &N : C) |
| 4050 | Functions.insert(X: &N.getFunction()); |
| 4051 | |
| 4052 | if (Functions.empty()) |
| 4053 | return PreservedAnalyses::all(); |
| 4054 | |
| 4055 | Module &M = *Functions.back()->getParent(); |
| 4056 | CallGraphUpdater CGUpdater; |
| 4057 | CGUpdater.initialize(LCG&: CG, SCC&: C, AM, UR); |
| 4058 | BumpPtrAllocator Allocator; |
| 4059 | InformationCache InfoCache(M, AG, Allocator, /* CGSCC */ &Functions); |
| 4060 | if (runAttributorOnFunctions(InfoCache, Functions, AG, CGUpdater, |
| 4061 | /* DeleteFns */ false, |
| 4062 | /* IsModulePass */ false)) { |
| 4063 | // FIXME: Think about passes we will preserve and add them here. |
| 4064 | PreservedAnalyses PA; |
| 4065 | PA.preserve<FunctionAnalysisManagerCGSCCProxy>(); |
| 4066 | return PA; |
| 4067 | } |
| 4068 | return PreservedAnalyses::all(); |
| 4069 | } |
| 4070 | |
| 4071 | PreservedAnalyses AttributorLightPass::run(Module &M, |
| 4072 | ModuleAnalysisManager &AM) { |
| 4073 | FunctionAnalysisManager &FAM = |
| 4074 | AM.getResult<FunctionAnalysisManagerModuleProxy>(IR&: M).getManager(); |
| 4075 | AnalysisGetter AG(FAM, /* CachedOnly */ true); |
| 4076 | |
| 4077 | SetVector<Function *> Functions; |
| 4078 | for (Function &F : M) |
| 4079 | Functions.insert(X: &F); |
| 4080 | |
| 4081 | CallGraphUpdater CGUpdater; |
| 4082 | BumpPtrAllocator Allocator; |
| 4083 | InformationCache InfoCache(M, AG, Allocator, /* CGSCC */ nullptr); |
| 4084 | if (runAttributorLightOnFunctions(InfoCache, Functions, AG, CGUpdater, FAM, |
| 4085 | /* IsModulePass */ true)) { |
| 4086 | PreservedAnalyses PA; |
| 4087 | // We have not added or removed functions. |
| 4088 | PA.preserve<FunctionAnalysisManagerCGSCCProxy>(); |
| 4089 | // We already invalidated all relevant function analyses above. |
| 4090 | PA.preserveSet<AllAnalysesOn<Function>>(); |
| 4091 | return PA; |
| 4092 | } |
| 4093 | return PreservedAnalyses::all(); |
| 4094 | } |
| 4095 | |
| 4096 | PreservedAnalyses AttributorLightCGSCCPass::run(LazyCallGraph::SCC &C, |
| 4097 | CGSCCAnalysisManager &AM, |
| 4098 | LazyCallGraph &CG, |
| 4099 | CGSCCUpdateResult &UR) { |
| 4100 | FunctionAnalysisManager &FAM = |
| 4101 | AM.getResult<FunctionAnalysisManagerCGSCCProxy>(IR&: C, ExtraArgs&: CG).getManager(); |
| 4102 | AnalysisGetter AG(FAM); |
| 4103 | |
| 4104 | SetVector<Function *> Functions; |
| 4105 | for (LazyCallGraph::Node &N : C) |
| 4106 | Functions.insert(X: &N.getFunction()); |
| 4107 | |
| 4108 | if (Functions.empty()) |
| 4109 | return PreservedAnalyses::all(); |
| 4110 | |
| 4111 | Module &M = *Functions.back()->getParent(); |
| 4112 | CallGraphUpdater CGUpdater; |
| 4113 | CGUpdater.initialize(LCG&: CG, SCC&: C, AM, UR); |
| 4114 | BumpPtrAllocator Allocator; |
| 4115 | InformationCache InfoCache(M, AG, Allocator, /* CGSCC */ &Functions); |
| 4116 | if (runAttributorLightOnFunctions(InfoCache, Functions, AG, CGUpdater, FAM, |
| 4117 | /* IsModulePass */ false)) { |
| 4118 | PreservedAnalyses PA; |
| 4119 | // We have not added or removed functions. |
| 4120 | PA.preserve<FunctionAnalysisManagerCGSCCProxy>(); |
| 4121 | // We already invalidated all relevant function analyses above. |
| 4122 | PA.preserveSet<AllAnalysesOn<Function>>(); |
| 4123 | return PA; |
| 4124 | } |
| 4125 | return PreservedAnalyses::all(); |
| 4126 | } |
| 4127 | namespace llvm { |
| 4128 | |
| 4129 | template <> struct GraphTraits<AADepGraphNode *> { |
| 4130 | using NodeRef = AADepGraphNode *; |
| 4131 | using DepTy = PointerIntPair<AADepGraphNode *, 1>; |
| 4132 | using EdgeRef = PointerIntPair<AADepGraphNode *, 1>; |
| 4133 | |
| 4134 | static NodeRef getEntryNode(AADepGraphNode *DGN) { return DGN; } |
| 4135 | static NodeRef DepGetVal(const DepTy &DT) { return DT.getPointer(); } |
| 4136 | |
| 4137 | using ChildIteratorType = |
| 4138 | mapped_iterator<AADepGraphNode::DepSetTy::iterator, decltype(&DepGetVal)>; |
| 4139 | using ChildEdgeIteratorType = AADepGraphNode::DepSetTy::iterator; |
| 4140 | |
| 4141 | static ChildIteratorType child_begin(NodeRef N) { return N->child_begin(); } |
| 4142 | |
| 4143 | static ChildIteratorType child_end(NodeRef N) { return N->child_end(); } |
| 4144 | }; |
| 4145 | |
| 4146 | template <> |
| 4147 | struct GraphTraits<AADepGraph *> : public GraphTraits<AADepGraphNode *> { |
| 4148 | static NodeRef getEntryNode(AADepGraph *DG) { return DG->GetEntryNode(); } |
| 4149 | |
| 4150 | using nodes_iterator = |
| 4151 | mapped_iterator<AADepGraphNode::DepSetTy::iterator, decltype(&DepGetVal)>; |
| 4152 | |
| 4153 | static nodes_iterator nodes_begin(AADepGraph *DG) { return DG->begin(); } |
| 4154 | |
| 4155 | static nodes_iterator nodes_end(AADepGraph *DG) { return DG->end(); } |
| 4156 | }; |
| 4157 | |
| 4158 | template <> struct DOTGraphTraits<AADepGraph *> : public DefaultDOTGraphTraits { |
| 4159 | DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} |
| 4160 | |
| 4161 | static std::string getNodeLabel(const AADepGraphNode *Node, |
| 4162 | const AADepGraph *DG) { |
| 4163 | std::string AAString; |
| 4164 | raw_string_ostream O(AAString); |
| 4165 | Node->print(OS&: O); |
| 4166 | return AAString; |
| 4167 | } |
| 4168 | }; |
| 4169 | |
| 4170 | } // end namespace llvm |
| 4171 | |