| 1 | //===- InstCombineCasts.cpp -----------------------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file implements the visit functions for cast operations. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "InstCombineInternal.h" |
| 14 | #include "llvm/ADT/APInt.h" |
| 15 | #include "llvm/ADT/DenseMap.h" |
| 16 | #include "llvm/ADT/STLExtras.h" |
| 17 | #include "llvm/ADT/STLFunctionalExtras.h" |
| 18 | #include "llvm/ADT/SetVector.h" |
| 19 | #include "llvm/ADT/SmallVector.h" |
| 20 | #include "llvm/Analysis/ConstantFolding.h" |
| 21 | #include "llvm/IR/DataLayout.h" |
| 22 | #include "llvm/IR/DebugInfo.h" |
| 23 | #include "llvm/IR/Instruction.h" |
| 24 | #include "llvm/IR/PatternMatch.h" |
| 25 | #include "llvm/IR/Type.h" |
| 26 | #include "llvm/IR/Value.h" |
| 27 | #include "llvm/Support/KnownBits.h" |
| 28 | #include "llvm/Transforms/InstCombine/InstCombiner.h" |
| 29 | #include <iterator> |
| 30 | #include <optional> |
| 31 | |
| 32 | using namespace llvm; |
| 33 | using namespace PatternMatch; |
| 34 | |
| 35 | #define DEBUG_TYPE "instcombine" |
| 36 | |
| 37 | using EvaluatedMap = SmallDenseMap<Value *, Value *, 8>; |
| 38 | |
| 39 | static Value *EvaluateInDifferentTypeImpl(Value *V, Type *Ty, bool isSigned, |
| 40 | InstCombinerImpl &IC, |
| 41 | EvaluatedMap &Processed) { |
| 42 | // Since we cover transformation of instructions with multiple users, we might |
| 43 | // come to the same node via multiple paths. We should not create a |
| 44 | // replacement for every single one of them though. |
| 45 | if (Value *Result = Processed.lookup(Val: V)) |
| 46 | return Result; |
| 47 | |
| 48 | if (Constant *C = dyn_cast<Constant>(Val: V)) |
| 49 | return ConstantFoldIntegerCast(C, DestTy: Ty, IsSigned: isSigned, DL: IC.getDataLayout()); |
| 50 | |
| 51 | // Otherwise, it must be an instruction. |
| 52 | Instruction *I = cast<Instruction>(Val: V); |
| 53 | Instruction *Res = nullptr; |
| 54 | unsigned Opc = I->getOpcode(); |
| 55 | switch (Opc) { |
| 56 | case Instruction::Add: |
| 57 | case Instruction::Sub: |
| 58 | case Instruction::Mul: |
| 59 | case Instruction::And: |
| 60 | case Instruction::Or: |
| 61 | case Instruction::Xor: |
| 62 | case Instruction::AShr: |
| 63 | case Instruction::LShr: |
| 64 | case Instruction::Shl: |
| 65 | case Instruction::UDiv: |
| 66 | case Instruction::URem: { |
| 67 | Value *LHS = EvaluateInDifferentTypeImpl(V: I->getOperand(i: 0), Ty, isSigned, IC, |
| 68 | Processed); |
| 69 | Value *RHS = EvaluateInDifferentTypeImpl(V: I->getOperand(i: 1), Ty, isSigned, IC, |
| 70 | Processed); |
| 71 | Res = BinaryOperator::Create(Op: (Instruction::BinaryOps)Opc, S1: LHS, S2: RHS); |
| 72 | if (Opc == Instruction::LShr || Opc == Instruction::AShr) |
| 73 | Res->setIsExact(I->isExact()); |
| 74 | break; |
| 75 | } |
| 76 | case Instruction::Trunc: |
| 77 | case Instruction::ZExt: |
| 78 | case Instruction::SExt: |
| 79 | // If the source type of the cast is the type we're trying for then we can |
| 80 | // just return the source. There's no need to insert it because it is not |
| 81 | // new. |
| 82 | if (I->getOperand(i: 0)->getType() == Ty) |
| 83 | return I->getOperand(i: 0); |
| 84 | |
| 85 | // Otherwise, must be the same type of cast, so just reinsert a new one. |
| 86 | // This also handles the case of zext(trunc(x)) -> zext(x). |
| 87 | Res = CastInst::CreateIntegerCast(S: I->getOperand(i: 0), Ty, |
| 88 | isSigned: Opc == Instruction::SExt); |
| 89 | break; |
| 90 | case Instruction::Select: { |
| 91 | Value *True = EvaluateInDifferentTypeImpl(V: I->getOperand(i: 1), Ty, isSigned, |
| 92 | IC, Processed); |
| 93 | Value *False = EvaluateInDifferentTypeImpl(V: I->getOperand(i: 2), Ty, isSigned, |
| 94 | IC, Processed); |
| 95 | Res = SelectInst::Create(C: I->getOperand(i: 0), S1: True, S2: False); |
| 96 | break; |
| 97 | } |
| 98 | case Instruction::PHI: { |
| 99 | PHINode *OPN = cast<PHINode>(Val: I); |
| 100 | PHINode *NPN = PHINode::Create(Ty, NumReservedValues: OPN->getNumIncomingValues()); |
| 101 | for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) { |
| 102 | Value *V = EvaluateInDifferentTypeImpl(V: OPN->getIncomingValue(i), Ty, |
| 103 | isSigned, IC, Processed); |
| 104 | NPN->addIncoming(V, BB: OPN->getIncomingBlock(i)); |
| 105 | } |
| 106 | Res = NPN; |
| 107 | break; |
| 108 | } |
| 109 | case Instruction::FPToUI: |
| 110 | case Instruction::FPToSI: |
| 111 | Res = CastInst::Create(static_cast<Instruction::CastOps>(Opc), |
| 112 | S: I->getOperand(i: 0), Ty); |
| 113 | break; |
| 114 | case Instruction::Call: |
| 115 | if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Val: I)) { |
| 116 | switch (II->getIntrinsicID()) { |
| 117 | default: |
| 118 | llvm_unreachable("Unsupported call!" ); |
| 119 | case Intrinsic::vscale: { |
| 120 | Function *Fn = Intrinsic::getOrInsertDeclaration( |
| 121 | M: I->getModule(), id: Intrinsic::vscale, Tys: {Ty}); |
| 122 | Res = CallInst::Create(Ty: Fn->getFunctionType(), F: Fn); |
| 123 | break; |
| 124 | } |
| 125 | } |
| 126 | } |
| 127 | break; |
| 128 | case Instruction::ShuffleVector: { |
| 129 | auto *ScalarTy = cast<VectorType>(Val: Ty)->getElementType(); |
| 130 | auto *VTy = cast<VectorType>(Val: I->getOperand(i: 0)->getType()); |
| 131 | auto *FixedTy = VectorType::get(ElementType: ScalarTy, EC: VTy->getElementCount()); |
| 132 | Value *Op0 = EvaluateInDifferentTypeImpl(V: I->getOperand(i: 0), Ty: FixedTy, |
| 133 | isSigned, IC, Processed); |
| 134 | Value *Op1 = EvaluateInDifferentTypeImpl(V: I->getOperand(i: 1), Ty: FixedTy, |
| 135 | isSigned, IC, Processed); |
| 136 | Res = new ShuffleVectorInst(Op0, Op1, |
| 137 | cast<ShuffleVectorInst>(Val: I)->getShuffleMask()); |
| 138 | break; |
| 139 | } |
| 140 | default: |
| 141 | // TODO: Can handle more cases here. |
| 142 | llvm_unreachable("Unreachable!" ); |
| 143 | } |
| 144 | |
| 145 | Res->takeName(V: I); |
| 146 | Value *Result = IC.InsertNewInstWith(New: Res, Old: I->getIterator()); |
| 147 | // There is no need in keeping track of the old value/new value relationship |
| 148 | // when we have only one user, we came have here from that user and no-one |
| 149 | // else cares. |
| 150 | if (!V->hasOneUse()) |
| 151 | Processed[V] = Result; |
| 152 | |
| 153 | return Result; |
| 154 | } |
| 155 | |
| 156 | /// Given an expression that CanEvaluateTruncated or CanEvaluateSExtd returns |
| 157 | /// true for, actually insert the code to evaluate the expression. |
| 158 | Value *InstCombinerImpl::EvaluateInDifferentType(Value *V, Type *Ty, |
| 159 | bool isSigned) { |
| 160 | EvaluatedMap Processed; |
| 161 | return EvaluateInDifferentTypeImpl(V, Ty, isSigned, IC&: *this, Processed); |
| 162 | } |
| 163 | |
| 164 | Instruction::CastOps |
| 165 | InstCombinerImpl::isEliminableCastPair(const CastInst *CI1, |
| 166 | const CastInst *CI2) { |
| 167 | Type *SrcTy = CI1->getSrcTy(); |
| 168 | Type *MidTy = CI1->getDestTy(); |
| 169 | Type *DstTy = CI2->getDestTy(); |
| 170 | |
| 171 | Instruction::CastOps firstOp = CI1->getOpcode(); |
| 172 | Instruction::CastOps secondOp = CI2->getOpcode(); |
| 173 | Type *SrcIntPtrTy = |
| 174 | SrcTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(SrcTy) : nullptr; |
| 175 | Type *DstIntPtrTy = |
| 176 | DstTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(DstTy) : nullptr; |
| 177 | unsigned Res = CastInst::isEliminableCastPair(firstOpcode: firstOp, secondOpcode: secondOp, SrcTy, MidTy, |
| 178 | DstTy, DL: &DL); |
| 179 | |
| 180 | // We don't want to form an inttoptr or ptrtoint that converts to an integer |
| 181 | // type that differs from the pointer size. |
| 182 | if ((Res == Instruction::IntToPtr && SrcTy != DstIntPtrTy) || |
| 183 | (Res == Instruction::PtrToInt && DstTy != SrcIntPtrTy)) |
| 184 | Res = 0; |
| 185 | |
| 186 | return Instruction::CastOps(Res); |
| 187 | } |
| 188 | |
| 189 | /// Implement the transforms common to all CastInst visitors. |
| 190 | Instruction *InstCombinerImpl::commonCastTransforms(CastInst &CI) { |
| 191 | Value *Src = CI.getOperand(i_nocapture: 0); |
| 192 | Type *Ty = CI.getType(); |
| 193 | |
| 194 | if (Value *Res = |
| 195 | simplifyCastInst(CastOpc: CI.getOpcode(), Op: Src, Ty, Q: SQ.getWithInstruction(I: &CI))) |
| 196 | return replaceInstUsesWith(I&: CI, V: Res); |
| 197 | |
| 198 | // Try to eliminate a cast of a cast. |
| 199 | if (auto *CSrc = dyn_cast<CastInst>(Val: Src)) { // A->B->C cast |
| 200 | if (Instruction::CastOps NewOpc = isEliminableCastPair(CI1: CSrc, CI2: &CI)) { |
| 201 | // The first cast (CSrc) is eliminable so we need to fix up or replace |
| 202 | // the second cast (CI). CSrc will then have a good chance of being dead. |
| 203 | auto *Res = CastInst::Create(NewOpc, S: CSrc->getOperand(i_nocapture: 0), Ty); |
| 204 | // Point debug users of the dying cast to the new one. |
| 205 | if (CSrc->hasOneUse()) |
| 206 | replaceAllDbgUsesWith(From&: *CSrc, To&: *Res, DomPoint&: CI, DT); |
| 207 | return Res; |
| 208 | } |
| 209 | } |
| 210 | |
| 211 | if (auto *Sel = dyn_cast<SelectInst>(Val: Src)) { |
| 212 | // We are casting a select. Try to fold the cast into the select if the |
| 213 | // select does not have a compare instruction with matching operand types |
| 214 | // or the select is likely better done in a narrow type. |
| 215 | // Creating a select with operands that are different sizes than its |
| 216 | // condition may inhibit other folds and lead to worse codegen. |
| 217 | auto *Cmp = dyn_cast<CmpInst>(Val: Sel->getCondition()); |
| 218 | if (!Cmp || Cmp->getOperand(i_nocapture: 0)->getType() != Sel->getType() || |
| 219 | (CI.getOpcode() == Instruction::Trunc && |
| 220 | shouldChangeType(From: CI.getSrcTy(), To: CI.getType()))) { |
| 221 | |
| 222 | // If it's a bitcast involving vectors, make sure it has the same number |
| 223 | // of elements on both sides. |
| 224 | if (CI.getOpcode() != Instruction::BitCast || |
| 225 | match(V: &CI, P: m_ElementWiseBitCast(Op: m_Value()))) { |
| 226 | if (Instruction *NV = FoldOpIntoSelect(Op&: CI, SI: Sel)) { |
| 227 | replaceAllDbgUsesWith(From&: *Sel, To&: *NV, DomPoint&: CI, DT); |
| 228 | return NV; |
| 229 | } |
| 230 | } |
| 231 | } |
| 232 | } |
| 233 | |
| 234 | // If we are casting a PHI, then fold the cast into the PHI. |
| 235 | if (auto *PN = dyn_cast<PHINode>(Val: Src)) { |
| 236 | // Don't do this if it would create a PHI node with an illegal type from a |
| 237 | // legal type. |
| 238 | if (!Src->getType()->isIntegerTy() || !CI.getType()->isIntegerTy() || |
| 239 | shouldChangeType(From: CI.getSrcTy(), To: CI.getType())) |
| 240 | if (Instruction *NV = foldOpIntoPhi(I&: CI, PN)) |
| 241 | return NV; |
| 242 | } |
| 243 | |
| 244 | // Canonicalize a unary shuffle after the cast if neither operation changes |
| 245 | // the size or element size of the input vector. |
| 246 | // TODO: We could allow size-changing ops if that doesn't harm codegen. |
| 247 | // cast (shuffle X, Mask) --> shuffle (cast X), Mask |
| 248 | Value *X; |
| 249 | ArrayRef<int> Mask; |
| 250 | if (match(V: Src, P: m_OneUse(SubPattern: m_Shuffle(v1: m_Value(V&: X), v2: m_Undef(), mask: m_Mask(Mask))))) { |
| 251 | // TODO: Allow scalable vectors? |
| 252 | auto *SrcTy = dyn_cast<FixedVectorType>(Val: X->getType()); |
| 253 | auto *DestTy = dyn_cast<FixedVectorType>(Val: Ty); |
| 254 | if (SrcTy && DestTy && |
| 255 | SrcTy->getNumElements() == DestTy->getNumElements() && |
| 256 | SrcTy->getPrimitiveSizeInBits() == DestTy->getPrimitiveSizeInBits()) { |
| 257 | Value *CastX = Builder.CreateCast(Op: CI.getOpcode(), V: X, DestTy); |
| 258 | return new ShuffleVectorInst(CastX, Mask); |
| 259 | } |
| 260 | } |
| 261 | |
| 262 | return nullptr; |
| 263 | } |
| 264 | |
| 265 | namespace { |
| 266 | |
| 267 | /// Helper class for evaluating whether a value can be computed in a different |
| 268 | /// type without changing its value. Used by cast simplification transforms. |
| 269 | class TypeEvaluationHelper { |
| 270 | public: |
| 271 | /// Return true if we can evaluate the specified expression tree as type Ty |
| 272 | /// instead of its larger type, and arrive with the same value. |
| 273 | /// This is used by code that tries to eliminate truncates. |
| 274 | [[nodiscard]] static bool canEvaluateTruncated(Value *V, Type *Ty, |
| 275 | InstCombinerImpl &IC, |
| 276 | Instruction *CxtI); |
| 277 | |
| 278 | /// Determine if the specified value can be computed in the specified wider |
| 279 | /// type and produce the same low bits. If not, return false. |
| 280 | [[nodiscard]] static bool canEvaluateZExtd(Value *V, Type *Ty, |
| 281 | unsigned &BitsToClear, |
| 282 | InstCombinerImpl &IC, |
| 283 | Instruction *CxtI); |
| 284 | |
| 285 | /// Return true if we can take the specified value and return it as type Ty |
| 286 | /// without inserting any new casts and without changing the value of the |
| 287 | /// common low bits. |
| 288 | [[nodiscard]] static bool canEvaluateSExtd(Value *V, Type *Ty); |
| 289 | |
| 290 | private: |
| 291 | /// Constants and extensions/truncates from the destination type are always |
| 292 | /// free to be evaluated in that type. |
| 293 | [[nodiscard]] static bool canAlwaysEvaluateInType(Value *V, Type *Ty); |
| 294 | |
| 295 | /// Check if we traversed all the users of the multi-use values we've seen. |
| 296 | [[nodiscard]] bool allPendingVisited() const { |
| 297 | return llvm::all_of(Range: Pending, |
| 298 | P: [this](Value *V) { return Visited.contains(Val: V); }); |
| 299 | } |
| 300 | |
| 301 | /// A generic wrapper for canEvaluate* recursions to inject visitation |
| 302 | /// tracking and enforce correct multi-use value evaluations. |
| 303 | [[nodiscard]] bool |
| 304 | canEvaluate(Value *V, Type *Ty, |
| 305 | llvm::function_ref<bool(Value *, Type *Type)> Pred) { |
| 306 | if (canAlwaysEvaluateInType(V, Ty)) |
| 307 | return true; |
| 308 | |
| 309 | auto *I = dyn_cast<Instruction>(Val: V); |
| 310 | |
| 311 | if (I == nullptr) |
| 312 | return false; |
| 313 | |
| 314 | // We insert false by default to return false when we encounter user loops. |
| 315 | const auto [It, Inserted] = Visited.insert(KV: {V, false}); |
| 316 | |
| 317 | // There are three possible cases for us having information on this value |
| 318 | // in the Visited map: |
| 319 | // 1. We properly checked it and concluded that we can evaluate it (true) |
| 320 | // 2. We properly checked it and concluded that we can't (false) |
| 321 | // 3. We started to check it, but during the recursive traversal we came |
| 322 | // back to it. |
| 323 | // |
| 324 | // For cases 1 and 2, we can safely return the stored result. For case 3, we |
| 325 | // can potentially have a situation where we can evaluate recursive user |
| 326 | // chains, but that can be quite tricky to do properly and isntead, we |
| 327 | // return false. |
| 328 | // |
| 329 | // In any case, we should return whatever was there in the map to begin |
| 330 | // with. |
| 331 | if (!Inserted) |
| 332 | return It->getSecond(); |
| 333 | |
| 334 | // We can easily make a decision about single-user values whether they can |
| 335 | // be evaluated in a different type or not, we came from that user. This is |
| 336 | // not as simple for multi-user values. |
| 337 | // |
| 338 | // In general, we have the following case (inverted control-flow, users are |
| 339 | // at the top): |
| 340 | // |
| 341 | // Cast %A |
| 342 | // ____| |
| 343 | // / |
| 344 | // %A = Use %B, %C |
| 345 | // ________| | |
| 346 | // / | |
| 347 | // %B = Use %D | |
| 348 | // ________| | |
| 349 | // / | |
| 350 | // %D = Use %C | |
| 351 | // ________|___| |
| 352 | // / |
| 353 | // %C = ... |
| 354 | // |
| 355 | // In this case, when we check %A, %B and %D, we are confident that we can |
| 356 | // make the decision here and now, since we came from their only users. |
| 357 | // |
| 358 | // For %C, it is harder. We come there twice, and when we come the first |
| 359 | // time, it's hard to tell if we will visit the second user (technically |
| 360 | // it's not hard, but we might need a lot of repetitive checks with non-zero |
| 361 | // cost). |
| 362 | // |
| 363 | // In the case above, we are allowed to evaluate %C in different type |
| 364 | // because all of it users were part of the traversal. |
| 365 | // |
| 366 | // In the following case, however, we can't make this conclusion: |
| 367 | // |
| 368 | // Cast %A |
| 369 | // ____| |
| 370 | // / |
| 371 | // %A = Use %B, %C |
| 372 | // ________| | |
| 373 | // / | |
| 374 | // %B = Use %D | |
| 375 | // ________| | |
| 376 | // / | |
| 377 | // %D = Use %C | |
| 378 | // | | |
| 379 | // foo(%C) | | <- never traversing foo(%C) |
| 380 | // ________|___| |
| 381 | // / |
| 382 | // %C = ... |
| 383 | // |
| 384 | // In this case, we still can evaluate %C in a different type, but we'd need |
| 385 | // to create a copy of the original %C to be used in foo(%C). Such |
| 386 | // duplication might be not profitable. |
| 387 | // |
| 388 | // For this reason, we collect all users of the mult-user values and mark |
| 389 | // them as "pending" and defer this decision to the very end. When we are |
| 390 | // done and and ready to have a positive verdict, we should double-check all |
| 391 | // of the pending users and ensure that we visited them. allPendingVisited |
| 392 | // predicate checks exactly that. |
| 393 | if (!I->hasOneUse()) |
| 394 | llvm::append_range(C&: Pending, R: I->users()); |
| 395 | |
| 396 | const bool Result = Pred(V, Ty); |
| 397 | // We have to set result this way and not via It because Pred is recursive |
| 398 | // and it is very likely that we grew Visited and invalidated It. |
| 399 | Visited[V] = Result; |
| 400 | return Result; |
| 401 | } |
| 402 | |
| 403 | /// Filter out values that we can not evaluate in the destination type for |
| 404 | /// free. |
| 405 | [[nodiscard]] bool canNotEvaluateInType(Value *V, Type *Ty); |
| 406 | |
| 407 | [[nodiscard]] bool canEvaluateTruncatedImpl(Value *V, Type *Ty, |
| 408 | InstCombinerImpl &IC, |
| 409 | Instruction *CxtI); |
| 410 | [[nodiscard]] bool canEvaluateTruncatedPred(Value *V, Type *Ty, |
| 411 | InstCombinerImpl &IC, |
| 412 | Instruction *CxtI); |
| 413 | [[nodiscard]] bool canEvaluateZExtdImpl(Value *V, Type *Ty, |
| 414 | unsigned &BitsToClear, |
| 415 | InstCombinerImpl &IC, |
| 416 | Instruction *CxtI); |
| 417 | [[nodiscard]] bool canEvaluateSExtdImpl(Value *V, Type *Ty); |
| 418 | [[nodiscard]] bool canEvaluateSExtdPred(Value *V, Type *Ty); |
| 419 | |
| 420 | /// A bookkeeping map to memorize an already made decision for a traversed |
| 421 | /// value. |
| 422 | SmallDenseMap<Value *, bool, 8> Visited; |
| 423 | |
| 424 | /// A list of pending values to check in the end. |
| 425 | SmallVector<Value *, 8> Pending; |
| 426 | }; |
| 427 | |
| 428 | } // anonymous namespace |
| 429 | |
| 430 | /// Constants and extensions/truncates from the destination type are always |
| 431 | /// free to be evaluated in that type. This is a helper for canEvaluate*. |
| 432 | bool TypeEvaluationHelper::canAlwaysEvaluateInType(Value *V, Type *Ty) { |
| 433 | if (isa<Constant>(Val: V)) |
| 434 | return match(V, P: m_ImmConstant()); |
| 435 | |
| 436 | Value *X; |
| 437 | if ((match(V, P: m_ZExtOrSExt(Op: m_Value(V&: X))) || match(V, P: m_Trunc(Op: m_Value(V&: X)))) && |
| 438 | X->getType() == Ty) |
| 439 | return true; |
| 440 | |
| 441 | return false; |
| 442 | } |
| 443 | |
| 444 | /// Filter out values that we can not evaluate in the destination type for free. |
| 445 | /// This is a helper for canEvaluate*. |
| 446 | bool TypeEvaluationHelper::canNotEvaluateInType(Value *V, Type *Ty) { |
| 447 | if (!isa<Instruction>(Val: V)) |
| 448 | return true; |
| 449 | // We don't extend or shrink something that has multiple uses -- doing so |
| 450 | // would require duplicating the instruction which isn't profitable. |
| 451 | if (!V->hasOneUse()) |
| 452 | return true; |
| 453 | |
| 454 | return false; |
| 455 | } |
| 456 | |
| 457 | /// Return true if we can evaluate the specified expression tree as type Ty |
| 458 | /// instead of its larger type, and arrive with the same value. |
| 459 | /// This is used by code that tries to eliminate truncates. |
| 460 | /// |
| 461 | /// Ty will always be a type smaller than V. We should return true if trunc(V) |
| 462 | /// can be computed by computing V in the smaller type. If V is an instruction, |
| 463 | /// then trunc(inst(x,y)) can be computed as inst(trunc(x),trunc(y)), which only |
| 464 | /// makes sense if x and y can be efficiently truncated. |
| 465 | /// |
| 466 | /// This function works on both vectors and scalars. |
| 467 | /// |
| 468 | bool TypeEvaluationHelper::canEvaluateTruncated(Value *V, Type *Ty, |
| 469 | InstCombinerImpl &IC, |
| 470 | Instruction *CxtI) { |
| 471 | TypeEvaluationHelper TYH; |
| 472 | return TYH.canEvaluateTruncatedImpl(V, Ty, IC, CxtI) && |
| 473 | // We need to check whether we visited all users of multi-user values, |
| 474 | // and we have to do it at the very end, outside of the recursion. |
| 475 | TYH.allPendingVisited(); |
| 476 | } |
| 477 | |
| 478 | bool TypeEvaluationHelper::canEvaluateTruncatedImpl(Value *V, Type *Ty, |
| 479 | InstCombinerImpl &IC, |
| 480 | Instruction *CxtI) { |
| 481 | return canEvaluate(V, Ty, Pred: [this, &IC, CxtI](Value *V, Type *Ty) { |
| 482 | return canEvaluateTruncatedPred(V, Ty, IC, CxtI); |
| 483 | }); |
| 484 | } |
| 485 | |
| 486 | bool TypeEvaluationHelper::canEvaluateTruncatedPred(Value *V, Type *Ty, |
| 487 | InstCombinerImpl &IC, |
| 488 | Instruction *CxtI) { |
| 489 | auto *I = cast<Instruction>(Val: V); |
| 490 | Type *OrigTy = V->getType(); |
| 491 | switch (I->getOpcode()) { |
| 492 | case Instruction::Add: |
| 493 | case Instruction::Sub: |
| 494 | case Instruction::Mul: |
| 495 | case Instruction::And: |
| 496 | case Instruction::Or: |
| 497 | case Instruction::Xor: |
| 498 | // These operators can all arbitrarily be extended or truncated. |
| 499 | return canEvaluateTruncatedImpl(V: I->getOperand(i: 0), Ty, IC, CxtI) && |
| 500 | canEvaluateTruncatedImpl(V: I->getOperand(i: 1), Ty, IC, CxtI); |
| 501 | |
| 502 | case Instruction::UDiv: |
| 503 | case Instruction::URem: { |
| 504 | // UDiv and URem can be truncated if all the truncated bits are zero. |
| 505 | uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits(); |
| 506 | uint32_t BitWidth = Ty->getScalarSizeInBits(); |
| 507 | assert(BitWidth < OrigBitWidth && "Unexpected bitwidths!" ); |
| 508 | APInt Mask = APInt::getBitsSetFrom(numBits: OrigBitWidth, loBit: BitWidth); |
| 509 | // Do not preserve the original context instruction. Simplifying div/rem |
| 510 | // based on later context may introduce a trap. |
| 511 | if (IC.MaskedValueIsZero(V: I->getOperand(i: 0), Mask, CxtI: I) && |
| 512 | IC.MaskedValueIsZero(V: I->getOperand(i: 1), Mask, CxtI: I)) { |
| 513 | return canEvaluateTruncatedImpl(V: I->getOperand(i: 0), Ty, IC, CxtI) && |
| 514 | canEvaluateTruncatedImpl(V: I->getOperand(i: 1), Ty, IC, CxtI); |
| 515 | } |
| 516 | break; |
| 517 | } |
| 518 | case Instruction::Shl: { |
| 519 | // If we are truncating the result of this SHL, and if it's a shift of an |
| 520 | // inrange amount, we can always perform a SHL in a smaller type. |
| 521 | uint32_t BitWidth = Ty->getScalarSizeInBits(); |
| 522 | KnownBits AmtKnownBits = |
| 523 | llvm::computeKnownBits(V: I->getOperand(i: 1), DL: IC.getDataLayout()); |
| 524 | if (AmtKnownBits.getMaxValue().ult(RHS: BitWidth)) |
| 525 | return canEvaluateTruncatedImpl(V: I->getOperand(i: 0), Ty, IC, CxtI) && |
| 526 | canEvaluateTruncatedImpl(V: I->getOperand(i: 1), Ty, IC, CxtI); |
| 527 | break; |
| 528 | } |
| 529 | case Instruction::LShr: { |
| 530 | // If this is a truncate of a logical shr, we can truncate it to a smaller |
| 531 | // lshr iff we know that the bits we would otherwise be shifting in are |
| 532 | // already zeros. |
| 533 | // TODO: It is enough to check that the bits we would be shifting in are |
| 534 | // zero - use AmtKnownBits.getMaxValue(). |
| 535 | uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits(); |
| 536 | uint32_t BitWidth = Ty->getScalarSizeInBits(); |
| 537 | KnownBits AmtKnownBits = IC.computeKnownBits(V: I->getOperand(i: 1), CxtI); |
| 538 | APInt MaxShiftAmt = AmtKnownBits.getMaxValue(); |
| 539 | APInt ShiftedBits = APInt::getBitsSetFrom(numBits: OrigBitWidth, loBit: BitWidth); |
| 540 | if (MaxShiftAmt.ult(RHS: BitWidth)) { |
| 541 | // If the only user is a trunc then we can narrow the shift if any new |
| 542 | // MSBs are not going to be used. |
| 543 | if (auto *Trunc = dyn_cast<TruncInst>(Val: V->user_back())) { |
| 544 | auto DemandedBits = Trunc->getType()->getScalarSizeInBits(); |
| 545 | if ((MaxShiftAmt + DemandedBits).ule(RHS: BitWidth)) |
| 546 | return canEvaluateTruncatedImpl(V: I->getOperand(i: 0), Ty, IC, CxtI) && |
| 547 | canEvaluateTruncatedImpl(V: I->getOperand(i: 1), Ty, IC, CxtI); |
| 548 | } |
| 549 | if (IC.MaskedValueIsZero(V: I->getOperand(i: 0), Mask: ShiftedBits, CxtI)) |
| 550 | return canEvaluateTruncatedImpl(V: I->getOperand(i: 0), Ty, IC, CxtI) && |
| 551 | canEvaluateTruncatedImpl(V: I->getOperand(i: 1), Ty, IC, CxtI); |
| 552 | } |
| 553 | break; |
| 554 | } |
| 555 | case Instruction::AShr: { |
| 556 | // If this is a truncate of an arithmetic shr, we can truncate it to a |
| 557 | // smaller ashr iff we know that all the bits from the sign bit of the |
| 558 | // original type and the sign bit of the truncate type are similar. |
| 559 | // TODO: It is enough to check that the bits we would be shifting in are |
| 560 | // similar to sign bit of the truncate type. |
| 561 | uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits(); |
| 562 | uint32_t BitWidth = Ty->getScalarSizeInBits(); |
| 563 | KnownBits AmtKnownBits = |
| 564 | llvm::computeKnownBits(V: I->getOperand(i: 1), DL: IC.getDataLayout()); |
| 565 | unsigned ShiftedBits = OrigBitWidth - BitWidth; |
| 566 | if (AmtKnownBits.getMaxValue().ult(RHS: BitWidth) && |
| 567 | ShiftedBits < IC.ComputeNumSignBits(Op: I->getOperand(i: 0), CxtI)) |
| 568 | return canEvaluateTruncatedImpl(V: I->getOperand(i: 0), Ty, IC, CxtI) && |
| 569 | canEvaluateTruncatedImpl(V: I->getOperand(i: 1), Ty, IC, CxtI); |
| 570 | break; |
| 571 | } |
| 572 | case Instruction::Trunc: |
| 573 | // trunc(trunc(x)) -> trunc(x) |
| 574 | return true; |
| 575 | case Instruction::ZExt: |
| 576 | case Instruction::SExt: |
| 577 | // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest |
| 578 | // trunc(ext(x)) -> trunc(x) if the source type is larger than the new dest |
| 579 | return true; |
| 580 | case Instruction::Select: { |
| 581 | SelectInst *SI = cast<SelectInst>(Val: I); |
| 582 | return canEvaluateTruncatedImpl(V: SI->getTrueValue(), Ty, IC, CxtI) && |
| 583 | canEvaluateTruncatedImpl(V: SI->getFalseValue(), Ty, IC, CxtI); |
| 584 | } |
| 585 | case Instruction::PHI: { |
| 586 | // We can change a phi if we can change all operands. Note that we never |
| 587 | // get into trouble with cyclic PHIs here because canEvaluate handles use |
| 588 | // chain loops. |
| 589 | PHINode *PN = cast<PHINode>(Val: I); |
| 590 | return llvm::all_of( |
| 591 | Range: PN->incoming_values(), P: [this, Ty, &IC, CxtI](Value *IncValue) { |
| 592 | return canEvaluateTruncatedImpl(V: IncValue, Ty, IC, CxtI); |
| 593 | }); |
| 594 | } |
| 595 | case Instruction::FPToUI: |
| 596 | case Instruction::FPToSI: { |
| 597 | // If the integer type can hold the max FP value, it is safe to cast |
| 598 | // directly to that type. Otherwise, we may create poison via overflow |
| 599 | // that did not exist in the original code. |
| 600 | Type *InputTy = I->getOperand(i: 0)->getType()->getScalarType(); |
| 601 | const fltSemantics &Semantics = InputTy->getFltSemantics(); |
| 602 | uint32_t MinBitWidth = APFloatBase::semanticsIntSizeInBits( |
| 603 | Semantics, I->getOpcode() == Instruction::FPToSI); |
| 604 | return Ty->getScalarSizeInBits() >= MinBitWidth; |
| 605 | } |
| 606 | case Instruction::ShuffleVector: |
| 607 | return canEvaluateTruncatedImpl(V: I->getOperand(i: 0), Ty, IC, CxtI) && |
| 608 | canEvaluateTruncatedImpl(V: I->getOperand(i: 1), Ty, IC, CxtI); |
| 609 | |
| 610 | default: |
| 611 | // TODO: Can handle more cases here. |
| 612 | break; |
| 613 | } |
| 614 | |
| 615 | return false; |
| 616 | } |
| 617 | |
| 618 | /// Given a vector that is bitcast to an integer, optionally logically |
| 619 | /// right-shifted, and truncated, convert it to an extractelement. |
| 620 | /// Example (big endian): |
| 621 | /// trunc (lshr (bitcast <4 x i32> %X to i128), 32) to i32 |
| 622 | /// ---> |
| 623 | /// extractelement <4 x i32> %X, 1 |
| 624 | static Instruction *foldVecTruncToExtElt(TruncInst &Trunc, |
| 625 | InstCombinerImpl &IC) { |
| 626 | Value *TruncOp = Trunc.getOperand(i_nocapture: 0); |
| 627 | Type *DestType = Trunc.getType(); |
| 628 | if (!TruncOp->hasOneUse() || !isa<IntegerType>(Val: DestType)) |
| 629 | return nullptr; |
| 630 | |
| 631 | Value *VecInput = nullptr; |
| 632 | ConstantInt *ShiftVal = nullptr; |
| 633 | if (!match(V: TruncOp, P: m_CombineOr(L: m_BitCast(Op: m_Value(V&: VecInput)), |
| 634 | R: m_LShr(L: m_BitCast(Op: m_Value(V&: VecInput)), |
| 635 | R: m_ConstantInt(CI&: ShiftVal)))) || |
| 636 | !isa<VectorType>(Val: VecInput->getType())) |
| 637 | return nullptr; |
| 638 | |
| 639 | VectorType *VecType = cast<VectorType>(Val: VecInput->getType()); |
| 640 | unsigned VecWidth = VecType->getPrimitiveSizeInBits(); |
| 641 | unsigned DestWidth = DestType->getPrimitiveSizeInBits(); |
| 642 | unsigned ShiftAmount = ShiftVal ? ShiftVal->getZExtValue() : 0; |
| 643 | |
| 644 | if ((VecWidth % DestWidth != 0) || (ShiftAmount % DestWidth != 0)) |
| 645 | return nullptr; |
| 646 | |
| 647 | // If the element type of the vector doesn't match the result type, |
| 648 | // bitcast it to a vector type that we can extract from. |
| 649 | unsigned NumVecElts = VecWidth / DestWidth; |
| 650 | if (VecType->getElementType() != DestType) { |
| 651 | VecType = FixedVectorType::get(ElementType: DestType, NumElts: NumVecElts); |
| 652 | VecInput = IC.Builder.CreateBitCast(V: VecInput, DestTy: VecType, Name: "bc" ); |
| 653 | } |
| 654 | |
| 655 | unsigned Elt = ShiftAmount / DestWidth; |
| 656 | if (IC.getDataLayout().isBigEndian()) |
| 657 | Elt = NumVecElts - 1 - Elt; |
| 658 | |
| 659 | return ExtractElementInst::Create(Vec: VecInput, Idx: IC.Builder.getInt32(C: Elt)); |
| 660 | } |
| 661 | |
| 662 | /// Whenever an element is extracted from a vector, optionally shifted down, and |
| 663 | /// then truncated, canonicalize by converting it to a bitcast followed by an |
| 664 | /// extractelement. |
| 665 | /// |
| 666 | /// Examples (little endian): |
| 667 | /// trunc (extractelement <4 x i64> %X, 0) to i32 |
| 668 | /// ---> |
| 669 | /// extractelement <8 x i32> (bitcast <4 x i64> %X to <8 x i32>), i32 0 |
| 670 | /// |
| 671 | /// trunc (lshr (extractelement <4 x i32> %X, 0), 8) to i8 |
| 672 | /// ---> |
| 673 | /// extractelement <16 x i8> (bitcast <4 x i32> %X to <16 x i8>), i32 1 |
| 674 | static Instruction *foldVecExtTruncToExtElt(TruncInst &Trunc, |
| 675 | InstCombinerImpl &IC) { |
| 676 | Value *Src = Trunc.getOperand(i_nocapture: 0); |
| 677 | Type *SrcType = Src->getType(); |
| 678 | Type *DstType = Trunc.getType(); |
| 679 | |
| 680 | // Only attempt this if we have simple aliasing of the vector elements. |
| 681 | // A badly fit destination size would result in an invalid cast. |
| 682 | unsigned SrcBits = SrcType->getScalarSizeInBits(); |
| 683 | unsigned DstBits = DstType->getScalarSizeInBits(); |
| 684 | unsigned TruncRatio = SrcBits / DstBits; |
| 685 | if ((SrcBits % DstBits) != 0) |
| 686 | return nullptr; |
| 687 | |
| 688 | Value *VecOp; |
| 689 | ConstantInt *Cst; |
| 690 | const APInt *ShiftAmount = nullptr; |
| 691 | if (!match(V: Src, P: m_OneUse(SubPattern: m_ExtractElt(Val: m_Value(V&: VecOp), Idx: m_ConstantInt(CI&: Cst)))) && |
| 692 | !match(V: Src, |
| 693 | P: m_OneUse(SubPattern: m_LShr(L: m_ExtractElt(Val: m_Value(V&: VecOp), Idx: m_ConstantInt(CI&: Cst)), |
| 694 | R: m_APInt(Res&: ShiftAmount))))) |
| 695 | return nullptr; |
| 696 | |
| 697 | auto *VecOpTy = cast<VectorType>(Val: VecOp->getType()); |
| 698 | auto VecElts = VecOpTy->getElementCount(); |
| 699 | |
| 700 | uint64_t BitCastNumElts = VecElts.getKnownMinValue() * TruncRatio; |
| 701 | uint64_t VecOpIdx = Cst->getZExtValue(); |
| 702 | uint64_t NewIdx = IC.getDataLayout().isBigEndian() |
| 703 | ? (VecOpIdx + 1) * TruncRatio - 1 |
| 704 | : VecOpIdx * TruncRatio; |
| 705 | |
| 706 | // Adjust index by the whole number of truncated elements. |
| 707 | if (ShiftAmount) { |
| 708 | // Check shift amount is in range and shifts a whole number of truncated |
| 709 | // elements. |
| 710 | if (ShiftAmount->uge(RHS: SrcBits) || ShiftAmount->urem(RHS: DstBits) != 0) |
| 711 | return nullptr; |
| 712 | |
| 713 | uint64_t IdxOfs = ShiftAmount->udiv(RHS: DstBits).getZExtValue(); |
| 714 | NewIdx = IC.getDataLayout().isBigEndian() ? (NewIdx - IdxOfs) |
| 715 | : (NewIdx + IdxOfs); |
| 716 | } |
| 717 | |
| 718 | assert(BitCastNumElts <= std::numeric_limits<uint32_t>::max() && |
| 719 | NewIdx <= std::numeric_limits<uint32_t>::max() && "overflow 32-bits" ); |
| 720 | |
| 721 | auto *BitCastTo = |
| 722 | VectorType::get(ElementType: DstType, NumElements: BitCastNumElts, Scalable: VecElts.isScalable()); |
| 723 | Value *BitCast = IC.Builder.CreateBitCast(V: VecOp, DestTy: BitCastTo); |
| 724 | return ExtractElementInst::Create(Vec: BitCast, Idx: IC.Builder.getInt32(C: NewIdx)); |
| 725 | } |
| 726 | |
| 727 | /// Funnel/Rotate left/right may occur in a wider type than necessary because of |
| 728 | /// type promotion rules. Try to narrow the inputs and convert to funnel shift. |
| 729 | Instruction *InstCombinerImpl::narrowFunnelShift(TruncInst &Trunc) { |
| 730 | assert((isa<VectorType>(Trunc.getSrcTy()) || |
| 731 | shouldChangeType(Trunc.getSrcTy(), Trunc.getType())) && |
| 732 | "Don't narrow to an illegal scalar type" ); |
| 733 | |
| 734 | // Bail out on strange types. It is possible to handle some of these patterns |
| 735 | // even with non-power-of-2 sizes, but it is not a likely scenario. |
| 736 | Type *DestTy = Trunc.getType(); |
| 737 | unsigned NarrowWidth = DestTy->getScalarSizeInBits(); |
| 738 | unsigned WideWidth = Trunc.getSrcTy()->getScalarSizeInBits(); |
| 739 | if (!isPowerOf2_32(Value: NarrowWidth)) |
| 740 | return nullptr; |
| 741 | |
| 742 | // First, find an or'd pair of opposite shifts: |
| 743 | // trunc (or (lshr ShVal0, ShAmt0), (shl ShVal1, ShAmt1)) |
| 744 | BinaryOperator *Or0, *Or1; |
| 745 | if (!match(V: Trunc.getOperand(i_nocapture: 0), P: m_OneUse(SubPattern: m_Or(L: m_BinOp(I&: Or0), R: m_BinOp(I&: Or1))))) |
| 746 | return nullptr; |
| 747 | |
| 748 | Value *ShVal0, *ShVal1, *ShAmt0, *ShAmt1; |
| 749 | if (!match(V: Or0, P: m_OneUse(SubPattern: m_LogicalShift(L: m_Value(V&: ShVal0), R: m_Value(V&: ShAmt0)))) || |
| 750 | !match(V: Or1, P: m_OneUse(SubPattern: m_LogicalShift(L: m_Value(V&: ShVal1), R: m_Value(V&: ShAmt1)))) || |
| 751 | Or0->getOpcode() == Or1->getOpcode()) |
| 752 | return nullptr; |
| 753 | |
| 754 | // Canonicalize to or(shl(ShVal0, ShAmt0), lshr(ShVal1, ShAmt1)). |
| 755 | if (Or0->getOpcode() == BinaryOperator::LShr) { |
| 756 | std::swap(a&: Or0, b&: Or1); |
| 757 | std::swap(a&: ShVal0, b&: ShVal1); |
| 758 | std::swap(a&: ShAmt0, b&: ShAmt1); |
| 759 | } |
| 760 | assert(Or0->getOpcode() == BinaryOperator::Shl && |
| 761 | Or1->getOpcode() == BinaryOperator::LShr && |
| 762 | "Illegal or(shift,shift) pair" ); |
| 763 | |
| 764 | // Match the shift amount operands for a funnel/rotate pattern. This always |
| 765 | // matches a subtraction on the R operand. |
| 766 | auto matchShiftAmount = [&](Value *L, Value *R, unsigned Width) -> Value * { |
| 767 | // The shift amounts may add up to the narrow bit width: |
| 768 | // (shl ShVal0, L) | (lshr ShVal1, Width - L) |
| 769 | // If this is a funnel shift (different operands are shifted), then the |
| 770 | // shift amount can not over-shift (create poison) in the narrow type. |
| 771 | unsigned MaxShiftAmountWidth = Log2_32(Value: NarrowWidth); |
| 772 | APInt HiBitMask = ~APInt::getLowBitsSet(numBits: WideWidth, loBitsSet: MaxShiftAmountWidth); |
| 773 | if (ShVal0 == ShVal1 || MaskedValueIsZero(V: L, Mask: HiBitMask)) |
| 774 | if (match(V: R, P: m_OneUse(SubPattern: m_Sub(L: m_SpecificInt(V: Width), R: m_Specific(V: L))))) |
| 775 | return L; |
| 776 | |
| 777 | // The following patterns currently only work for rotation patterns. |
| 778 | // TODO: Add more general funnel-shift compatible patterns. |
| 779 | if (ShVal0 != ShVal1) |
| 780 | return nullptr; |
| 781 | |
| 782 | // The shift amount may be masked with negation: |
| 783 | // (shl ShVal0, (X & (Width - 1))) | (lshr ShVal1, ((-X) & (Width - 1))) |
| 784 | Value *X; |
| 785 | unsigned Mask = Width - 1; |
| 786 | if (match(V: L, P: m_And(L: m_Value(V&: X), R: m_SpecificInt(V: Mask))) && |
| 787 | match(V: R, P: m_And(L: m_Neg(V: m_Specific(V: X)), R: m_SpecificInt(V: Mask)))) |
| 788 | return X; |
| 789 | |
| 790 | // Same as above, but the shift amount may be extended after masking: |
| 791 | if (match(V: L, P: m_ZExt(Op: m_And(L: m_Value(V&: X), R: m_SpecificInt(V: Mask)))) && |
| 792 | match(V: R, P: m_ZExt(Op: m_And(L: m_Neg(V: m_Specific(V: X)), R: m_SpecificInt(V: Mask))))) |
| 793 | return X; |
| 794 | |
| 795 | return nullptr; |
| 796 | }; |
| 797 | |
| 798 | Value *ShAmt = matchShiftAmount(ShAmt0, ShAmt1, NarrowWidth); |
| 799 | bool IsFshl = true; // Sub on LSHR. |
| 800 | if (!ShAmt) { |
| 801 | ShAmt = matchShiftAmount(ShAmt1, ShAmt0, NarrowWidth); |
| 802 | IsFshl = false; // Sub on SHL. |
| 803 | } |
| 804 | if (!ShAmt) |
| 805 | return nullptr; |
| 806 | |
| 807 | // The right-shifted value must have high zeros in the wide type (for example |
| 808 | // from 'zext', 'and' or 'shift'). High bits of the left-shifted value are |
| 809 | // truncated, so those do not matter. |
| 810 | APInt HiBitMask = APInt::getHighBitsSet(numBits: WideWidth, hiBitsSet: WideWidth - NarrowWidth); |
| 811 | if (!MaskedValueIsZero(V: ShVal1, Mask: HiBitMask, CxtI: &Trunc)) |
| 812 | return nullptr; |
| 813 | |
| 814 | // Adjust the width of ShAmt for narrowed funnel shift operation: |
| 815 | // - Zero-extend if ShAmt is narrower than the destination type. |
| 816 | // - Truncate if ShAmt is wider, discarding non-significant high-order bits. |
| 817 | // This prepares ShAmt for llvm.fshl.i8(trunc(ShVal), trunc(ShVal), |
| 818 | // zext/trunc(ShAmt)). |
| 819 | Value *NarrowShAmt = Builder.CreateZExtOrTrunc(V: ShAmt, DestTy); |
| 820 | |
| 821 | Value *X, *Y; |
| 822 | X = Y = Builder.CreateTrunc(V: ShVal0, DestTy); |
| 823 | if (ShVal0 != ShVal1) |
| 824 | Y = Builder.CreateTrunc(V: ShVal1, DestTy); |
| 825 | Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr; |
| 826 | Function *F = |
| 827 | Intrinsic::getOrInsertDeclaration(M: Trunc.getModule(), id: IID, Tys: DestTy); |
| 828 | return CallInst::Create(Func: F, Args: {X, Y, NarrowShAmt}); |
| 829 | } |
| 830 | |
| 831 | /// Try to narrow the width of math or bitwise logic instructions by pulling a |
| 832 | /// truncate ahead of binary operators. |
| 833 | Instruction *InstCombinerImpl::narrowBinOp(TruncInst &Trunc) { |
| 834 | Type *SrcTy = Trunc.getSrcTy(); |
| 835 | Type *DestTy = Trunc.getType(); |
| 836 | unsigned SrcWidth = SrcTy->getScalarSizeInBits(); |
| 837 | unsigned DestWidth = DestTy->getScalarSizeInBits(); |
| 838 | |
| 839 | if (!isa<VectorType>(Val: SrcTy) && !shouldChangeType(From: SrcTy, To: DestTy)) |
| 840 | return nullptr; |
| 841 | |
| 842 | BinaryOperator *BinOp; |
| 843 | if (!match(V: Trunc.getOperand(i_nocapture: 0), P: m_OneUse(SubPattern: m_BinOp(I&: BinOp)))) |
| 844 | return nullptr; |
| 845 | |
| 846 | Value *BinOp0 = BinOp->getOperand(i_nocapture: 0); |
| 847 | Value *BinOp1 = BinOp->getOperand(i_nocapture: 1); |
| 848 | switch (BinOp->getOpcode()) { |
| 849 | case Instruction::And: |
| 850 | case Instruction::Or: |
| 851 | case Instruction::Xor: |
| 852 | case Instruction::Add: |
| 853 | case Instruction::Sub: |
| 854 | case Instruction::Mul: { |
| 855 | Constant *C; |
| 856 | if (match(V: BinOp0, P: m_Constant(C))) { |
| 857 | // trunc (binop C, X) --> binop (trunc C', X) |
| 858 | Constant *NarrowC = ConstantExpr::getTrunc(C, Ty: DestTy); |
| 859 | Value *TruncX = Builder.CreateTrunc(V: BinOp1, DestTy); |
| 860 | return BinaryOperator::Create(Op: BinOp->getOpcode(), S1: NarrowC, S2: TruncX); |
| 861 | } |
| 862 | if (match(V: BinOp1, P: m_Constant(C))) { |
| 863 | // trunc (binop X, C) --> binop (trunc X, C') |
| 864 | Constant *NarrowC = ConstantExpr::getTrunc(C, Ty: DestTy); |
| 865 | Value *TruncX = Builder.CreateTrunc(V: BinOp0, DestTy); |
| 866 | return BinaryOperator::Create(Op: BinOp->getOpcode(), S1: TruncX, S2: NarrowC); |
| 867 | } |
| 868 | Value *X; |
| 869 | if (match(V: BinOp0, P: m_ZExtOrSExt(Op: m_Value(V&: X))) && X->getType() == DestTy) { |
| 870 | // trunc (binop (ext X), Y) --> binop X, (trunc Y) |
| 871 | Value *NarrowOp1 = Builder.CreateTrunc(V: BinOp1, DestTy); |
| 872 | return BinaryOperator::Create(Op: BinOp->getOpcode(), S1: X, S2: NarrowOp1); |
| 873 | } |
| 874 | if (match(V: BinOp1, P: m_ZExtOrSExt(Op: m_Value(V&: X))) && X->getType() == DestTy) { |
| 875 | // trunc (binop Y, (ext X)) --> binop (trunc Y), X |
| 876 | Value *NarrowOp0 = Builder.CreateTrunc(V: BinOp0, DestTy); |
| 877 | return BinaryOperator::Create(Op: BinOp->getOpcode(), S1: NarrowOp0, S2: X); |
| 878 | } |
| 879 | break; |
| 880 | } |
| 881 | case Instruction::LShr: |
| 882 | case Instruction::AShr: { |
| 883 | // trunc (*shr (trunc A), C) --> trunc(*shr A, C) |
| 884 | Value *A; |
| 885 | Constant *C; |
| 886 | if (match(V: BinOp0, P: m_Trunc(Op: m_Value(V&: A))) && match(V: BinOp1, P: m_Constant(C))) { |
| 887 | unsigned MaxShiftAmt = SrcWidth - DestWidth; |
| 888 | // If the shift is small enough, all zero/sign bits created by the shift |
| 889 | // are removed by the trunc. |
| 890 | if (match(V: C, P: m_SpecificInt_ICMP(Predicate: ICmpInst::ICMP_ULE, |
| 891 | Threshold: APInt(SrcWidth, MaxShiftAmt)))) { |
| 892 | auto *OldShift = cast<Instruction>(Val: Trunc.getOperand(i_nocapture: 0)); |
| 893 | bool IsExact = OldShift->isExact(); |
| 894 | if (Constant *ShAmt = ConstantFoldIntegerCast(C, DestTy: A->getType(), |
| 895 | /*IsSigned*/ true, DL)) { |
| 896 | ShAmt = Constant::mergeUndefsWith(C: ShAmt, Other: C); |
| 897 | Value *Shift = |
| 898 | OldShift->getOpcode() == Instruction::AShr |
| 899 | ? Builder.CreateAShr(LHS: A, RHS: ShAmt, Name: OldShift->getName(), isExact: IsExact) |
| 900 | : Builder.CreateLShr(LHS: A, RHS: ShAmt, Name: OldShift->getName(), isExact: IsExact); |
| 901 | return CastInst::CreateTruncOrBitCast(S: Shift, Ty: DestTy); |
| 902 | } |
| 903 | } |
| 904 | } |
| 905 | break; |
| 906 | } |
| 907 | default: break; |
| 908 | } |
| 909 | |
| 910 | if (Instruction *NarrowOr = narrowFunnelShift(Trunc)) |
| 911 | return NarrowOr; |
| 912 | |
| 913 | return nullptr; |
| 914 | } |
| 915 | |
| 916 | /// Try to narrow the width of a splat shuffle. This could be generalized to any |
| 917 | /// shuffle with a constant operand, but we limit the transform to avoid |
| 918 | /// creating a shuffle type that targets may not be able to lower effectively. |
| 919 | static Instruction *shrinkSplatShuffle(TruncInst &Trunc, |
| 920 | InstCombiner::BuilderTy &Builder) { |
| 921 | auto *Shuf = dyn_cast<ShuffleVectorInst>(Val: Trunc.getOperand(i_nocapture: 0)); |
| 922 | if (Shuf && Shuf->hasOneUse() && match(V: Shuf->getOperand(i_nocapture: 1), P: m_Undef()) && |
| 923 | all_equal(Range: Shuf->getShuffleMask()) && |
| 924 | ElementCount::isKnownGE(LHS: Shuf->getType()->getElementCount(), |
| 925 | RHS: cast<VectorType>(Val: Shuf->getOperand(i_nocapture: 0)->getType()) |
| 926 | ->getElementCount())) { |
| 927 | // trunc (shuf X, Undef, SplatMask) --> shuf (trunc X), Poison, SplatMask |
| 928 | // trunc (shuf X, Poison, SplatMask) --> shuf (trunc X), Poison, SplatMask |
| 929 | Type *NewTruncTy = Shuf->getOperand(i_nocapture: 0)->getType()->getWithNewType( |
| 930 | EltTy: Trunc.getType()->getScalarType()); |
| 931 | Value *NarrowOp = Builder.CreateTrunc(V: Shuf->getOperand(i_nocapture: 0), DestTy: NewTruncTy); |
| 932 | return new ShuffleVectorInst(NarrowOp, Shuf->getShuffleMask()); |
| 933 | } |
| 934 | |
| 935 | return nullptr; |
| 936 | } |
| 937 | |
| 938 | /// Try to narrow the width of an insert element. This could be generalized for |
| 939 | /// any vector constant, but we limit the transform to insertion into undef to |
| 940 | /// avoid potential backend problems from unsupported insertion widths. This |
| 941 | /// could also be extended to handle the case of inserting a scalar constant |
| 942 | /// into a vector variable. |
| 943 | static Instruction *shrinkInsertElt(CastInst &Trunc, |
| 944 | InstCombiner::BuilderTy &Builder) { |
| 945 | Instruction::CastOps Opcode = Trunc.getOpcode(); |
| 946 | assert((Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) && |
| 947 | "Unexpected instruction for shrinking" ); |
| 948 | |
| 949 | auto *InsElt = dyn_cast<InsertElementInst>(Val: Trunc.getOperand(i_nocapture: 0)); |
| 950 | if (!InsElt || !InsElt->hasOneUse()) |
| 951 | return nullptr; |
| 952 | |
| 953 | Type *DestTy = Trunc.getType(); |
| 954 | Type *DestScalarTy = DestTy->getScalarType(); |
| 955 | Value *VecOp = InsElt->getOperand(i_nocapture: 0); |
| 956 | Value *ScalarOp = InsElt->getOperand(i_nocapture: 1); |
| 957 | Value *Index = InsElt->getOperand(i_nocapture: 2); |
| 958 | |
| 959 | if (match(V: VecOp, P: m_Undef())) { |
| 960 | // trunc (inselt undef, X, Index) --> inselt undef, (trunc X), Index |
| 961 | // fptrunc (inselt undef, X, Index) --> inselt undef, (fptrunc X), Index |
| 962 | UndefValue *NarrowUndef = UndefValue::get(T: DestTy); |
| 963 | Value *NarrowOp = Builder.CreateCast(Op: Opcode, V: ScalarOp, DestTy: DestScalarTy); |
| 964 | return InsertElementInst::Create(Vec: NarrowUndef, NewElt: NarrowOp, Idx: Index); |
| 965 | } |
| 966 | |
| 967 | return nullptr; |
| 968 | } |
| 969 | |
| 970 | Instruction *InstCombinerImpl::visitTrunc(TruncInst &Trunc) { |
| 971 | if (Instruction *Result = commonCastTransforms(CI&: Trunc)) |
| 972 | return Result; |
| 973 | |
| 974 | Value *Src = Trunc.getOperand(i_nocapture: 0); |
| 975 | Type *DestTy = Trunc.getType(), *SrcTy = Src->getType(); |
| 976 | unsigned DestWidth = DestTy->getScalarSizeInBits(); |
| 977 | unsigned SrcWidth = SrcTy->getScalarSizeInBits(); |
| 978 | |
| 979 | // Attempt to truncate the entire input expression tree to the destination |
| 980 | // type. Only do this if the dest type is a simple type, don't convert the |
| 981 | // expression tree to something weird like i93 unless the source is also |
| 982 | // strange. |
| 983 | if ((DestTy->isVectorTy() || shouldChangeType(From: SrcTy, To: DestTy)) && |
| 984 | TypeEvaluationHelper::canEvaluateTruncated(V: Src, Ty: DestTy, IC&: *this, CxtI: &Trunc)) { |
| 985 | |
| 986 | // If this cast is a truncate, evaluting in a different type always |
| 987 | // eliminates the cast, so it is always a win. |
| 988 | LLVM_DEBUG( |
| 989 | dbgs() << "ICE: EvaluateInDifferentType converting expression type" |
| 990 | " to avoid cast: " |
| 991 | << Trunc << '\n'); |
| 992 | Value *Res = EvaluateInDifferentType(V: Src, Ty: DestTy, isSigned: false); |
| 993 | assert(Res->getType() == DestTy); |
| 994 | return replaceInstUsesWith(I&: Trunc, V: Res); |
| 995 | } |
| 996 | |
| 997 | // For integer types, check if we can shorten the entire input expression to |
| 998 | // DestWidth * 2, which won't allow removing the truncate, but reducing the |
| 999 | // width may enable further optimizations, e.g. allowing for larger |
| 1000 | // vectorization factors. |
| 1001 | if (auto *DestITy = dyn_cast<IntegerType>(Val: DestTy)) { |
| 1002 | if (DestWidth * 2 < SrcWidth) { |
| 1003 | auto *NewDestTy = DestITy->getExtendedType(); |
| 1004 | if (shouldChangeType(From: SrcTy, To: NewDestTy) && |
| 1005 | TypeEvaluationHelper::canEvaluateTruncated(V: Src, Ty: NewDestTy, IC&: *this, |
| 1006 | CxtI: &Trunc)) { |
| 1007 | LLVM_DEBUG( |
| 1008 | dbgs() << "ICE: EvaluateInDifferentType converting expression type" |
| 1009 | " to reduce the width of operand of" |
| 1010 | << Trunc << '\n'); |
| 1011 | Value *Res = EvaluateInDifferentType(V: Src, Ty: NewDestTy, isSigned: false); |
| 1012 | return new TruncInst(Res, DestTy); |
| 1013 | } |
| 1014 | } |
| 1015 | } |
| 1016 | |
| 1017 | // See if we can simplify any instructions used by the input whose sole |
| 1018 | // purpose is to compute bits we don't care about. |
| 1019 | if (SimplifyDemandedInstructionBits(Inst&: Trunc)) |
| 1020 | return &Trunc; |
| 1021 | |
| 1022 | if (DestWidth == 1) { |
| 1023 | Value *Zero = Constant::getNullValue(Ty: SrcTy); |
| 1024 | |
| 1025 | Value *X; |
| 1026 | const APInt *C1; |
| 1027 | Constant *C2; |
| 1028 | if (match(V: Src, P: m_OneUse(SubPattern: m_Shr(L: m_Shl(L: m_Power2(V&: C1), R: m_Value(V&: X)), |
| 1029 | R: m_ImmConstant(C&: C2))))) { |
| 1030 | // trunc ((C1 << X) >> C2) to i1 --> X == (C2-cttz(C1)), where C1 is pow2 |
| 1031 | Constant *Log2C1 = ConstantInt::get(Ty: SrcTy, V: C1->exactLogBase2()); |
| 1032 | Constant *CmpC = ConstantExpr::getSub(C1: C2, C2: Log2C1); |
| 1033 | return new ICmpInst(ICmpInst::ICMP_EQ, X, CmpC); |
| 1034 | } |
| 1035 | |
| 1036 | if (match(V: Src, P: m_Shr(L: m_Value(V&: X), R: m_SpecificInt(V: SrcWidth - 1)))) { |
| 1037 | // trunc (ashr X, BW-1) to i1 --> icmp slt X, 0 |
| 1038 | // trunc (lshr X, BW-1) to i1 --> icmp slt X, 0 |
| 1039 | return new ICmpInst(ICmpInst::ICMP_SLT, X, Zero); |
| 1040 | } |
| 1041 | |
| 1042 | Constant *C; |
| 1043 | if (match(V: Src, P: m_OneUse(SubPattern: m_LShr(L: m_Value(V&: X), R: m_ImmConstant(C))))) { |
| 1044 | // trunc (lshr X, C) to i1 --> icmp ne (and X, C'), 0 |
| 1045 | Constant *One = ConstantInt::get(Ty: SrcTy, V: APInt(SrcWidth, 1)); |
| 1046 | Value *MaskC = Builder.CreateShl(LHS: One, RHS: C); |
| 1047 | Value *And = Builder.CreateAnd(LHS: X, RHS: MaskC); |
| 1048 | return new ICmpInst(ICmpInst::ICMP_NE, And, Zero); |
| 1049 | } |
| 1050 | if (match(V: Src, P: m_OneUse(SubPattern: m_c_Or(L: m_LShr(L: m_Value(V&: X), R: m_ImmConstant(C)), |
| 1051 | R: m_Deferred(V: X))))) { |
| 1052 | // trunc (or (lshr X, C), X) to i1 --> icmp ne (and X, C'), 0 |
| 1053 | Constant *One = ConstantInt::get(Ty: SrcTy, V: APInt(SrcWidth, 1)); |
| 1054 | Value *MaskC = Builder.CreateShl(LHS: One, RHS: C); |
| 1055 | Value *And = Builder.CreateAnd(LHS: X, RHS: Builder.CreateOr(LHS: MaskC, RHS: One)); |
| 1056 | return new ICmpInst(ICmpInst::ICMP_NE, And, Zero); |
| 1057 | } |
| 1058 | |
| 1059 | { |
| 1060 | const APInt *C; |
| 1061 | if (match(V: Src, P: m_Shl(L: m_APInt(Res&: C), R: m_Value(V&: X))) && (*C)[0] == 1) { |
| 1062 | // trunc (C << X) to i1 --> X == 0, where C is odd |
| 1063 | return new ICmpInst(ICmpInst::Predicate::ICMP_EQ, X, Zero); |
| 1064 | } |
| 1065 | } |
| 1066 | |
| 1067 | if (Trunc.hasNoUnsignedWrap() || Trunc.hasNoSignedWrap()) { |
| 1068 | Value *X, *Y; |
| 1069 | if (match(V: Src, P: m_Xor(L: m_Value(V&: X), R: m_Value(V&: Y)))) |
| 1070 | return new ICmpInst(ICmpInst::ICMP_NE, X, Y); |
| 1071 | } |
| 1072 | } |
| 1073 | |
| 1074 | Value *A, *B; |
| 1075 | Constant *C; |
| 1076 | if (match(V: Src, P: m_LShr(L: m_SExt(Op: m_Value(V&: A)), R: m_Constant(C)))) { |
| 1077 | unsigned AWidth = A->getType()->getScalarSizeInBits(); |
| 1078 | unsigned MaxShiftAmt = SrcWidth - std::max(a: DestWidth, b: AWidth); |
| 1079 | auto *OldSh = cast<Instruction>(Val: Src); |
| 1080 | bool IsExact = OldSh->isExact(); |
| 1081 | |
| 1082 | // If the shift is small enough, all zero bits created by the shift are |
| 1083 | // removed by the trunc. |
| 1084 | if (match(V: C, P: m_SpecificInt_ICMP(Predicate: ICmpInst::ICMP_ULE, |
| 1085 | Threshold: APInt(SrcWidth, MaxShiftAmt)))) { |
| 1086 | auto GetNewShAmt = [&](unsigned Width) { |
| 1087 | Constant *MaxAmt = ConstantInt::get(Ty: SrcTy, V: Width - 1, IsSigned: false); |
| 1088 | Constant *Cmp = |
| 1089 | ConstantFoldCompareInstOperands(Predicate: ICmpInst::ICMP_ULT, LHS: C, RHS: MaxAmt, DL); |
| 1090 | Constant *ShAmt = ConstantFoldSelectInstruction(Cond: Cmp, V1: C, V2: MaxAmt); |
| 1091 | return ConstantFoldCastOperand(Opcode: Instruction::Trunc, C: ShAmt, DestTy: A->getType(), |
| 1092 | DL); |
| 1093 | }; |
| 1094 | |
| 1095 | // trunc (lshr (sext A), C) --> ashr A, C |
| 1096 | if (A->getType() == DestTy) { |
| 1097 | Constant *ShAmt = GetNewShAmt(DestWidth); |
| 1098 | ShAmt = Constant::mergeUndefsWith(C: ShAmt, Other: C); |
| 1099 | return IsExact ? BinaryOperator::CreateExactAShr(V1: A, V2: ShAmt) |
| 1100 | : BinaryOperator::CreateAShr(V1: A, V2: ShAmt); |
| 1101 | } |
| 1102 | // The types are mismatched, so create a cast after shifting: |
| 1103 | // trunc (lshr (sext A), C) --> sext/trunc (ashr A, C) |
| 1104 | if (Src->hasOneUse()) { |
| 1105 | Constant *ShAmt = GetNewShAmt(AWidth); |
| 1106 | Value *Shift = Builder.CreateAShr(LHS: A, RHS: ShAmt, Name: "" , isExact: IsExact); |
| 1107 | return CastInst::CreateIntegerCast(S: Shift, Ty: DestTy, isSigned: true); |
| 1108 | } |
| 1109 | } |
| 1110 | // TODO: Mask high bits with 'and'. |
| 1111 | } |
| 1112 | |
| 1113 | if (Instruction *I = narrowBinOp(Trunc)) |
| 1114 | return I; |
| 1115 | |
| 1116 | if (Instruction *I = shrinkSplatShuffle(Trunc, Builder)) |
| 1117 | return I; |
| 1118 | |
| 1119 | if (Instruction *I = shrinkInsertElt(Trunc, Builder)) |
| 1120 | return I; |
| 1121 | |
| 1122 | if (Src->hasOneUse() && |
| 1123 | (isa<VectorType>(Val: SrcTy) || shouldChangeType(From: SrcTy, To: DestTy))) { |
| 1124 | // Transform "trunc (shl X, cst)" -> "shl (trunc X), cst" so long as the |
| 1125 | // dest type is native and cst < dest size. |
| 1126 | if (match(V: Src, P: m_Shl(L: m_Value(V&: A), R: m_Constant(C))) && |
| 1127 | !match(V: A, P: m_Shr(L: m_Value(), R: m_Constant()))) { |
| 1128 | // Skip shifts of shift by constants. It undoes a combine in |
| 1129 | // FoldShiftByConstant and is the extend in reg pattern. |
| 1130 | APInt Threshold = APInt(C->getType()->getScalarSizeInBits(), DestWidth); |
| 1131 | if (match(V: C, P: m_SpecificInt_ICMP(Predicate: ICmpInst::ICMP_ULT, Threshold))) { |
| 1132 | Value *NewTrunc = Builder.CreateTrunc(V: A, DestTy, Name: A->getName() + ".tr" ); |
| 1133 | return BinaryOperator::Create(Op: Instruction::Shl, S1: NewTrunc, |
| 1134 | S2: ConstantExpr::getTrunc(C, Ty: DestTy)); |
| 1135 | } |
| 1136 | } |
| 1137 | } |
| 1138 | |
| 1139 | if (Instruction *I = foldVecTruncToExtElt(Trunc, IC&: *this)) |
| 1140 | return I; |
| 1141 | |
| 1142 | if (Instruction *I = foldVecExtTruncToExtElt(Trunc, IC&: *this)) |
| 1143 | return I; |
| 1144 | |
| 1145 | // trunc (ctlz_i32(zext(A), B) --> add(ctlz_i16(A, B), C) |
| 1146 | if (match(V: Src, P: m_OneUse(SubPattern: m_Intrinsic<Intrinsic::ctlz>(Op0: m_ZExt(Op: m_Value(V&: A)), |
| 1147 | Op1: m_Value(V&: B))))) { |
| 1148 | unsigned AWidth = A->getType()->getScalarSizeInBits(); |
| 1149 | if (AWidth == DestWidth && AWidth > Log2_32(Value: SrcWidth)) { |
| 1150 | Value *WidthDiff = ConstantInt::get(Ty: A->getType(), V: SrcWidth - AWidth); |
| 1151 | Value *NarrowCtlz = |
| 1152 | Builder.CreateIntrinsic(ID: Intrinsic::ctlz, Types: {Trunc.getType()}, Args: {A, B}); |
| 1153 | return BinaryOperator::CreateAdd(V1: NarrowCtlz, V2: WidthDiff); |
| 1154 | } |
| 1155 | } |
| 1156 | |
| 1157 | if (match(V: Src, P: m_VScale())) { |
| 1158 | if (Trunc.getFunction() && |
| 1159 | Trunc.getFunction()->hasFnAttribute(Kind: Attribute::VScaleRange)) { |
| 1160 | Attribute Attr = |
| 1161 | Trunc.getFunction()->getFnAttribute(Kind: Attribute::VScaleRange); |
| 1162 | if (std::optional<unsigned> MaxVScale = Attr.getVScaleRangeMax()) |
| 1163 | if (Log2_32(Value: *MaxVScale) < DestWidth) |
| 1164 | return replaceInstUsesWith(I&: Trunc, V: Builder.CreateVScale(Ty: DestTy)); |
| 1165 | } |
| 1166 | } |
| 1167 | |
| 1168 | if (DestWidth == 1 && |
| 1169 | (Trunc.hasNoUnsignedWrap() || Trunc.hasNoSignedWrap()) && |
| 1170 | isKnownNonZero(V: Src, Q: SQ.getWithInstruction(I: &Trunc))) |
| 1171 | return replaceInstUsesWith(I&: Trunc, V: ConstantInt::getTrue(Ty: DestTy)); |
| 1172 | |
| 1173 | bool Changed = false; |
| 1174 | if (!Trunc.hasNoSignedWrap() && |
| 1175 | ComputeMaxSignificantBits(Op: Src, CxtI: &Trunc) <= DestWidth) { |
| 1176 | Trunc.setHasNoSignedWrap(true); |
| 1177 | Changed = true; |
| 1178 | } |
| 1179 | if (!Trunc.hasNoUnsignedWrap() && |
| 1180 | MaskedValueIsZero(V: Src, Mask: APInt::getBitsSetFrom(numBits: SrcWidth, loBit: DestWidth), |
| 1181 | CxtI: &Trunc)) { |
| 1182 | Trunc.setHasNoUnsignedWrap(true); |
| 1183 | Changed = true; |
| 1184 | } |
| 1185 | |
| 1186 | const APInt *C1; |
| 1187 | Value *V1; |
| 1188 | // OP = { lshr, ashr } |
| 1189 | // trunc ( OP i8 C1, V1) to i1 -> icmp eq V1, log_2(C1) iff C1 is power of 2 |
| 1190 | if (DestWidth == 1 && match(V: Src, P: m_Shr(L: m_Power2(V&: C1), R: m_Value(V&: V1)))) { |
| 1191 | Value *Right = ConstantInt::get(Ty: V1->getType(), V: C1->countr_zero()); |
| 1192 | return new ICmpInst(ICmpInst::ICMP_EQ, V1, Right); |
| 1193 | } |
| 1194 | |
| 1195 | // OP = { lshr, ashr } |
| 1196 | // trunc ( OP i8 C1, V1) to i1 -> icmp ult V1, log_2(C1 + 1) iff (C1 + 1) is |
| 1197 | // power of 2 |
| 1198 | if (DestWidth == 1 && match(V: Src, P: m_Shr(L: m_LowBitMask(V&: C1), R: m_Value(V&: V1)))) { |
| 1199 | Value *Right = ConstantInt::get(Ty: V1->getType(), V: C1->countr_one()); |
| 1200 | return new ICmpInst(ICmpInst::ICMP_ULT, V1, Right); |
| 1201 | } |
| 1202 | |
| 1203 | // OP = { lshr, ashr } |
| 1204 | // trunc ( OP i8 C1, V1) to i1 -> icmp ugt V1, cttz(C1) - 1 iff (C1) is |
| 1205 | // negative power of 2 |
| 1206 | if (DestWidth == 1 && match(V: Src, P: m_Shr(L: m_NegatedPower2(V&: C1), R: m_Value(V&: V1)))) { |
| 1207 | Value *Right = ConstantInt::get(Ty: V1->getType(), V: C1->countr_zero()); |
| 1208 | return new ICmpInst(ICmpInst::ICMP_UGE, V1, Right); |
| 1209 | } |
| 1210 | |
| 1211 | return Changed ? &Trunc : nullptr; |
| 1212 | } |
| 1213 | |
| 1214 | Instruction *InstCombinerImpl::transformZExtICmp(ICmpInst *Cmp, |
| 1215 | ZExtInst &Zext) { |
| 1216 | // If we are just checking for a icmp eq of a single bit and zext'ing it |
| 1217 | // to an integer, then shift the bit to the appropriate place and then |
| 1218 | // cast to integer to avoid the comparison. |
| 1219 | |
| 1220 | // FIXME: This set of transforms does not check for extra uses and/or creates |
| 1221 | // an extra instruction (an optional final cast is not included |
| 1222 | // in the transform comments). We may also want to favor icmp over |
| 1223 | // shifts in cases of equal instructions because icmp has better |
| 1224 | // analysis in general (invert the transform). |
| 1225 | |
| 1226 | const APInt *Op1CV; |
| 1227 | if (match(V: Cmp->getOperand(i_nocapture: 1), P: m_APInt(Res&: Op1CV))) { |
| 1228 | |
| 1229 | // zext (x <s 0) to i32 --> x>>u31 true if signbit set. |
| 1230 | if (Cmp->getPredicate() == ICmpInst::ICMP_SLT && Op1CV->isZero()) { |
| 1231 | Value *In = Cmp->getOperand(i_nocapture: 0); |
| 1232 | Value *Sh = ConstantInt::get(Ty: In->getType(), |
| 1233 | V: In->getType()->getScalarSizeInBits() - 1); |
| 1234 | In = Builder.CreateLShr(LHS: In, RHS: Sh, Name: In->getName() + ".lobit" ); |
| 1235 | if (In->getType() != Zext.getType()) |
| 1236 | In = Builder.CreateIntCast(V: In, DestTy: Zext.getType(), isSigned: false /*ZExt*/); |
| 1237 | |
| 1238 | return replaceInstUsesWith(I&: Zext, V: In); |
| 1239 | } |
| 1240 | |
| 1241 | // zext (X == 0) to i32 --> X^1 iff X has only the low bit set. |
| 1242 | // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set. |
| 1243 | // zext (X != 0) to i32 --> X iff X has only the low bit set. |
| 1244 | // zext (X != 0) to i32 --> X>>1 iff X has only the 2nd bit set. |
| 1245 | |
| 1246 | if (Op1CV->isZero() && Cmp->isEquality()) { |
| 1247 | // Exactly 1 possible 1? But not the high-bit because that is |
| 1248 | // canonicalized to this form. |
| 1249 | KnownBits Known = computeKnownBits(V: Cmp->getOperand(i_nocapture: 0), CxtI: &Zext); |
| 1250 | APInt KnownZeroMask(~Known.Zero); |
| 1251 | uint32_t ShAmt = KnownZeroMask.logBase2(); |
| 1252 | bool IsExpectShAmt = KnownZeroMask.isPowerOf2() && |
| 1253 | (Zext.getType()->getScalarSizeInBits() != ShAmt + 1); |
| 1254 | if (IsExpectShAmt && |
| 1255 | (Cmp->getOperand(i_nocapture: 0)->getType() == Zext.getType() || |
| 1256 | Cmp->getPredicate() == ICmpInst::ICMP_NE || ShAmt == 0)) { |
| 1257 | Value *In = Cmp->getOperand(i_nocapture: 0); |
| 1258 | if (ShAmt) { |
| 1259 | // Perform a logical shr by shiftamt. |
| 1260 | // Insert the shift to put the result in the low bit. |
| 1261 | In = Builder.CreateLShr(LHS: In, RHS: ConstantInt::get(Ty: In->getType(), V: ShAmt), |
| 1262 | Name: In->getName() + ".lobit" ); |
| 1263 | } |
| 1264 | |
| 1265 | // Toggle the low bit for "X == 0". |
| 1266 | if (Cmp->getPredicate() == ICmpInst::ICMP_EQ) |
| 1267 | In = Builder.CreateXor(LHS: In, RHS: ConstantInt::get(Ty: In->getType(), V: 1)); |
| 1268 | |
| 1269 | if (Zext.getType() == In->getType()) |
| 1270 | return replaceInstUsesWith(I&: Zext, V: In); |
| 1271 | |
| 1272 | Value *IntCast = Builder.CreateIntCast(V: In, DestTy: Zext.getType(), isSigned: false); |
| 1273 | return replaceInstUsesWith(I&: Zext, V: IntCast); |
| 1274 | } |
| 1275 | } |
| 1276 | } |
| 1277 | |
| 1278 | if (Cmp->isEquality()) { |
| 1279 | // Test if a bit is clear/set using a shifted-one mask: |
| 1280 | // zext (icmp eq (and X, (1 << ShAmt)), 0) --> and (lshr (not X), ShAmt), 1 |
| 1281 | // zext (icmp ne (and X, (1 << ShAmt)), 0) --> and (lshr X, ShAmt), 1 |
| 1282 | Value *X, *ShAmt; |
| 1283 | if (Cmp->hasOneUse() && match(V: Cmp->getOperand(i_nocapture: 1), P: m_ZeroInt()) && |
| 1284 | match(V: Cmp->getOperand(i_nocapture: 0), |
| 1285 | P: m_OneUse(SubPattern: m_c_And(L: m_Shl(L: m_One(), R: m_Value(V&: ShAmt)), R: m_Value(V&: X))))) { |
| 1286 | auto *And = cast<BinaryOperator>(Val: Cmp->getOperand(i_nocapture: 0)); |
| 1287 | Value *Shift = And->getOperand(i_nocapture: X == And->getOperand(i_nocapture: 0) ? 1 : 0); |
| 1288 | if (Zext.getType() == And->getType() || |
| 1289 | Cmp->getPredicate() != ICmpInst::ICMP_EQ || Shift->hasOneUse()) { |
| 1290 | if (Cmp->getPredicate() == ICmpInst::ICMP_EQ) |
| 1291 | X = Builder.CreateNot(V: X); |
| 1292 | Value *Lshr = Builder.CreateLShr(LHS: X, RHS: ShAmt); |
| 1293 | Value *And1 = |
| 1294 | Builder.CreateAnd(LHS: Lshr, RHS: ConstantInt::get(Ty: X->getType(), V: 1)); |
| 1295 | return replaceInstUsesWith( |
| 1296 | I&: Zext, V: Builder.CreateZExtOrTrunc(V: And1, DestTy: Zext.getType())); |
| 1297 | } |
| 1298 | } |
| 1299 | } |
| 1300 | |
| 1301 | return nullptr; |
| 1302 | } |
| 1303 | |
| 1304 | /// Determine if the specified value can be computed in the specified wider type |
| 1305 | /// and produce the same low bits. If not, return false. |
| 1306 | /// |
| 1307 | /// If this function returns true, it can also return a non-zero number of bits |
| 1308 | /// (in BitsToClear) which indicates that the value it computes is correct for |
| 1309 | /// the zero extend, but that the additional BitsToClear bits need to be zero'd |
| 1310 | /// out. For example, to promote something like: |
| 1311 | /// |
| 1312 | /// %B = trunc i64 %A to i32 |
| 1313 | /// %C = lshr i32 %B, 8 |
| 1314 | /// %E = zext i32 %C to i64 |
| 1315 | /// |
| 1316 | /// CanEvaluateZExtd for the 'lshr' will return true, and BitsToClear will be |
| 1317 | /// set to 8 to indicate that the promoted value needs to have bits 24-31 |
| 1318 | /// cleared in addition to bits 32-63. Since an 'and' will be generated to |
| 1319 | /// clear the top bits anyway, doing this has no extra cost. |
| 1320 | /// |
| 1321 | /// This function works on both vectors and scalars. |
| 1322 | bool TypeEvaluationHelper::canEvaluateZExtd(Value *V, Type *Ty, |
| 1323 | unsigned &BitsToClear, |
| 1324 | InstCombinerImpl &IC, |
| 1325 | Instruction *CxtI) { |
| 1326 | TypeEvaluationHelper TYH; |
| 1327 | return TYH.canEvaluateZExtdImpl(V, Ty, BitsToClear, IC, CxtI); |
| 1328 | } |
| 1329 | bool TypeEvaluationHelper::canEvaluateZExtdImpl(Value *V, Type *Ty, |
| 1330 | unsigned &BitsToClear, |
| 1331 | InstCombinerImpl &IC, |
| 1332 | Instruction *CxtI) { |
| 1333 | BitsToClear = 0; |
| 1334 | if (canAlwaysEvaluateInType(V, Ty)) |
| 1335 | return true; |
| 1336 | // We stick to the one-user limit for the ZExt transform due to the fact |
| 1337 | // that this predicate returns two values: predicate result and BitsToClear. |
| 1338 | if (canNotEvaluateInType(V, Ty)) |
| 1339 | return false; |
| 1340 | |
| 1341 | auto *I = cast<Instruction>(Val: V); |
| 1342 | unsigned Tmp; |
| 1343 | switch (I->getOpcode()) { |
| 1344 | case Instruction::ZExt: // zext(zext(x)) -> zext(x). |
| 1345 | case Instruction::SExt: // zext(sext(x)) -> sext(x). |
| 1346 | case Instruction::Trunc: // zext(trunc(x)) -> trunc(x) or zext(x) |
| 1347 | return true; |
| 1348 | case Instruction::And: |
| 1349 | case Instruction::Or: |
| 1350 | case Instruction::Xor: |
| 1351 | case Instruction::Add: |
| 1352 | case Instruction::Sub: |
| 1353 | case Instruction::Mul: |
| 1354 | if (!canEvaluateZExtdImpl(V: I->getOperand(i: 0), Ty, BitsToClear, IC, CxtI) || |
| 1355 | !canEvaluateZExtdImpl(V: I->getOperand(i: 1), Ty, BitsToClear&: Tmp, IC, CxtI)) |
| 1356 | return false; |
| 1357 | // These can all be promoted if neither operand has 'bits to clear'. |
| 1358 | if (BitsToClear == 0 && Tmp == 0) |
| 1359 | return true; |
| 1360 | |
| 1361 | // If the operation is an AND/OR/XOR and the bits to clear are zero in the |
| 1362 | // other side, BitsToClear is ok. |
| 1363 | if (Tmp == 0 && I->isBitwiseLogicOp()) { |
| 1364 | // We use MaskedValueIsZero here for generality, but the case we care |
| 1365 | // about the most is constant RHS. |
| 1366 | unsigned VSize = V->getType()->getScalarSizeInBits(); |
| 1367 | if (IC.MaskedValueIsZero(V: I->getOperand(i: 1), |
| 1368 | Mask: APInt::getHighBitsSet(numBits: VSize, hiBitsSet: BitsToClear), |
| 1369 | CxtI)) { |
| 1370 | // If this is an And instruction and all of the BitsToClear are |
| 1371 | // known to be zero we can reset BitsToClear. |
| 1372 | if (I->getOpcode() == Instruction::And) |
| 1373 | BitsToClear = 0; |
| 1374 | return true; |
| 1375 | } |
| 1376 | } |
| 1377 | |
| 1378 | // Otherwise, we don't know how to analyze this BitsToClear case yet. |
| 1379 | return false; |
| 1380 | |
| 1381 | case Instruction::Shl: { |
| 1382 | // We can promote shl(x, cst) if we can promote x. Since shl overwrites the |
| 1383 | // upper bits we can reduce BitsToClear by the shift amount. |
| 1384 | uint64_t ShiftAmt; |
| 1385 | if (match(V: I->getOperand(i: 1), P: m_ConstantInt(V&: ShiftAmt))) { |
| 1386 | if (!canEvaluateZExtdImpl(V: I->getOperand(i: 0), Ty, BitsToClear, IC, CxtI)) |
| 1387 | return false; |
| 1388 | BitsToClear = ShiftAmt < BitsToClear ? BitsToClear - ShiftAmt : 0; |
| 1389 | return true; |
| 1390 | } |
| 1391 | return false; |
| 1392 | } |
| 1393 | case Instruction::LShr: { |
| 1394 | // We can promote lshr(x, cst) if we can promote x. This requires the |
| 1395 | // ultimate 'and' to clear out the high zero bits we're clearing out though. |
| 1396 | uint64_t ShiftAmt; |
| 1397 | if (match(V: I->getOperand(i: 1), P: m_ConstantInt(V&: ShiftAmt))) { |
| 1398 | if (!canEvaluateZExtdImpl(V: I->getOperand(i: 0), Ty, BitsToClear, IC, CxtI)) |
| 1399 | return false; |
| 1400 | BitsToClear += ShiftAmt; |
| 1401 | if (BitsToClear > V->getType()->getScalarSizeInBits()) |
| 1402 | BitsToClear = V->getType()->getScalarSizeInBits(); |
| 1403 | return true; |
| 1404 | } |
| 1405 | // Cannot promote variable LSHR. |
| 1406 | return false; |
| 1407 | } |
| 1408 | case Instruction::Select: |
| 1409 | if (!canEvaluateZExtdImpl(V: I->getOperand(i: 1), Ty, BitsToClear&: Tmp, IC, CxtI) || |
| 1410 | !canEvaluateZExtdImpl(V: I->getOperand(i: 2), Ty, BitsToClear, IC, CxtI) || |
| 1411 | // TODO: If important, we could handle the case when the BitsToClear are |
| 1412 | // known zero in the disagreeing side. |
| 1413 | Tmp != BitsToClear) |
| 1414 | return false; |
| 1415 | return true; |
| 1416 | |
| 1417 | case Instruction::PHI: { |
| 1418 | // We can change a phi if we can change all operands. Note that we never |
| 1419 | // get into trouble with cyclic PHIs here because we only consider |
| 1420 | // instructions with a single use. |
| 1421 | PHINode *PN = cast<PHINode>(Val: I); |
| 1422 | if (!canEvaluateZExtdImpl(V: PN->getIncomingValue(i: 0), Ty, BitsToClear, IC, |
| 1423 | CxtI)) |
| 1424 | return false; |
| 1425 | for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) |
| 1426 | if (!canEvaluateZExtdImpl(V: PN->getIncomingValue(i), Ty, BitsToClear&: Tmp, IC, CxtI) || |
| 1427 | // TODO: If important, we could handle the case when the BitsToClear |
| 1428 | // are known zero in the disagreeing input. |
| 1429 | Tmp != BitsToClear) |
| 1430 | return false; |
| 1431 | return true; |
| 1432 | } |
| 1433 | case Instruction::Call: |
| 1434 | // llvm.vscale() can always be executed in larger type, because the |
| 1435 | // value is automatically zero-extended. |
| 1436 | if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Val: I)) |
| 1437 | if (II->getIntrinsicID() == Intrinsic::vscale) |
| 1438 | return true; |
| 1439 | return false; |
| 1440 | default: |
| 1441 | // TODO: Can handle more cases here. |
| 1442 | return false; |
| 1443 | } |
| 1444 | } |
| 1445 | |
| 1446 | Instruction *InstCombinerImpl::visitZExt(ZExtInst &Zext) { |
| 1447 | // If this zero extend is only used by a truncate, let the truncate be |
| 1448 | // eliminated before we try to optimize this zext. |
| 1449 | if (Zext.hasOneUse() && isa<TruncInst>(Val: Zext.user_back()) && |
| 1450 | !isa<Constant>(Val: Zext.getOperand(i_nocapture: 0))) |
| 1451 | return nullptr; |
| 1452 | |
| 1453 | // If one of the common conversion will work, do it. |
| 1454 | if (Instruction *Result = commonCastTransforms(CI&: Zext)) |
| 1455 | return Result; |
| 1456 | |
| 1457 | Value *Src = Zext.getOperand(i_nocapture: 0); |
| 1458 | Type *SrcTy = Src->getType(), *DestTy = Zext.getType(); |
| 1459 | |
| 1460 | // zext nneg bool x -> 0 |
| 1461 | if (SrcTy->isIntOrIntVectorTy(BitWidth: 1) && Zext.hasNonNeg()) |
| 1462 | return replaceInstUsesWith(I&: Zext, V: Constant::getNullValue(Ty: Zext.getType())); |
| 1463 | |
| 1464 | // Try to extend the entire expression tree to the wide destination type. |
| 1465 | unsigned BitsToClear; |
| 1466 | if (shouldChangeType(From: SrcTy, To: DestTy) && |
| 1467 | TypeEvaluationHelper::canEvaluateZExtd(V: Src, Ty: DestTy, BitsToClear, IC&: *this, |
| 1468 | CxtI: &Zext)) { |
| 1469 | assert(BitsToClear <= SrcTy->getScalarSizeInBits() && |
| 1470 | "Can't clear more bits than in SrcTy" ); |
| 1471 | |
| 1472 | // Okay, we can transform this! Insert the new expression now. |
| 1473 | LLVM_DEBUG( |
| 1474 | dbgs() << "ICE: EvaluateInDifferentType converting expression type" |
| 1475 | " to avoid zero extend: " |
| 1476 | << Zext << '\n'); |
| 1477 | Value *Res = EvaluateInDifferentType(V: Src, Ty: DestTy, isSigned: false); |
| 1478 | assert(Res->getType() == DestTy); |
| 1479 | |
| 1480 | // Preserve debug values referring to Src if the zext is its last use. |
| 1481 | if (auto *SrcOp = dyn_cast<Instruction>(Val: Src)) |
| 1482 | if (SrcOp->hasOneUse()) |
| 1483 | replaceAllDbgUsesWith(From&: *SrcOp, To&: *Res, DomPoint&: Zext, DT); |
| 1484 | |
| 1485 | uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits() - BitsToClear; |
| 1486 | uint32_t DestBitSize = DestTy->getScalarSizeInBits(); |
| 1487 | |
| 1488 | // If the high bits are already filled with zeros, just replace this |
| 1489 | // cast with the result. |
| 1490 | if (MaskedValueIsZero( |
| 1491 | V: Res, Mask: APInt::getHighBitsSet(numBits: DestBitSize, hiBitsSet: DestBitSize - SrcBitsKept), |
| 1492 | CxtI: &Zext)) |
| 1493 | return replaceInstUsesWith(I&: Zext, V: Res); |
| 1494 | |
| 1495 | // We need to emit an AND to clear the high bits. |
| 1496 | Constant *C = ConstantInt::get(Ty: Res->getType(), |
| 1497 | V: APInt::getLowBitsSet(numBits: DestBitSize, loBitsSet: SrcBitsKept)); |
| 1498 | return BinaryOperator::CreateAnd(V1: Res, V2: C); |
| 1499 | } |
| 1500 | |
| 1501 | // If this is a TRUNC followed by a ZEXT then we are dealing with integral |
| 1502 | // types and if the sizes are just right we can convert this into a logical |
| 1503 | // 'and' which will be much cheaper than the pair of casts. |
| 1504 | if (auto *CSrc = dyn_cast<TruncInst>(Val: Src)) { // A->B->C cast |
| 1505 | // TODO: Subsume this into EvaluateInDifferentType. |
| 1506 | |
| 1507 | // Get the sizes of the types involved. We know that the intermediate type |
| 1508 | // will be smaller than A or C, but don't know the relation between A and C. |
| 1509 | Value *A = CSrc->getOperand(i_nocapture: 0); |
| 1510 | unsigned SrcSize = A->getType()->getScalarSizeInBits(); |
| 1511 | unsigned MidSize = CSrc->getType()->getScalarSizeInBits(); |
| 1512 | unsigned DstSize = DestTy->getScalarSizeInBits(); |
| 1513 | // If we're actually extending zero bits, then if |
| 1514 | // SrcSize < DstSize: zext(a & mask) |
| 1515 | // SrcSize == DstSize: a & mask |
| 1516 | // SrcSize > DstSize: trunc(a) & mask |
| 1517 | if (SrcSize < DstSize) { |
| 1518 | APInt AndValue(APInt::getLowBitsSet(numBits: SrcSize, loBitsSet: MidSize)); |
| 1519 | Constant *AndConst = ConstantInt::get(Ty: A->getType(), V: AndValue); |
| 1520 | Value *And = Builder.CreateAnd(LHS: A, RHS: AndConst, Name: CSrc->getName() + ".mask" ); |
| 1521 | return new ZExtInst(And, DestTy); |
| 1522 | } |
| 1523 | |
| 1524 | if (SrcSize == DstSize) { |
| 1525 | APInt AndValue(APInt::getLowBitsSet(numBits: SrcSize, loBitsSet: MidSize)); |
| 1526 | return BinaryOperator::CreateAnd(V1: A, V2: ConstantInt::get(Ty: A->getType(), |
| 1527 | V: AndValue)); |
| 1528 | } |
| 1529 | if (SrcSize > DstSize) { |
| 1530 | Value *Trunc = Builder.CreateTrunc(V: A, DestTy); |
| 1531 | APInt AndValue(APInt::getLowBitsSet(numBits: DstSize, loBitsSet: MidSize)); |
| 1532 | return BinaryOperator::CreateAnd(V1: Trunc, |
| 1533 | V2: ConstantInt::get(Ty: Trunc->getType(), |
| 1534 | V: AndValue)); |
| 1535 | } |
| 1536 | } |
| 1537 | |
| 1538 | if (auto *Cmp = dyn_cast<ICmpInst>(Val: Src)) |
| 1539 | return transformZExtICmp(Cmp, Zext); |
| 1540 | |
| 1541 | // zext(trunc(X) & C) -> (X & zext(C)). |
| 1542 | Constant *C; |
| 1543 | Value *X; |
| 1544 | if (match(V: Src, P: m_OneUse(SubPattern: m_And(L: m_Trunc(Op: m_Value(V&: X)), R: m_Constant(C)))) && |
| 1545 | X->getType() == DestTy) |
| 1546 | return BinaryOperator::CreateAnd(V1: X, V2: Builder.CreateZExt(V: C, DestTy)); |
| 1547 | |
| 1548 | // zext((trunc(X) & C) ^ C) -> ((X & zext(C)) ^ zext(C)). |
| 1549 | Value *And; |
| 1550 | if (match(V: Src, P: m_OneUse(SubPattern: m_Xor(L: m_Value(V&: And), R: m_Constant(C)))) && |
| 1551 | match(V: And, P: m_OneUse(SubPattern: m_And(L: m_Trunc(Op: m_Value(V&: X)), R: m_Specific(V: C)))) && |
| 1552 | X->getType() == DestTy) { |
| 1553 | Value *ZC = Builder.CreateZExt(V: C, DestTy); |
| 1554 | return BinaryOperator::CreateXor(V1: Builder.CreateAnd(LHS: X, RHS: ZC), V2: ZC); |
| 1555 | } |
| 1556 | |
| 1557 | // If we are truncating, masking, and then zexting back to the original type, |
| 1558 | // that's just a mask. This is not handled by canEvaluateZextd if the |
| 1559 | // intermediate values have extra uses. This could be generalized further for |
| 1560 | // a non-constant mask operand. |
| 1561 | // zext (and (trunc X), C) --> and X, (zext C) |
| 1562 | if (match(V: Src, P: m_And(L: m_Trunc(Op: m_Value(V&: X)), R: m_Constant(C))) && |
| 1563 | X->getType() == DestTy) { |
| 1564 | Value *ZextC = Builder.CreateZExt(V: C, DestTy); |
| 1565 | return BinaryOperator::CreateAnd(V1: X, V2: ZextC); |
| 1566 | } |
| 1567 | |
| 1568 | if (match(V: Src, P: m_VScale())) { |
| 1569 | if (Zext.getFunction() && |
| 1570 | Zext.getFunction()->hasFnAttribute(Kind: Attribute::VScaleRange)) { |
| 1571 | Attribute Attr = |
| 1572 | Zext.getFunction()->getFnAttribute(Kind: Attribute::VScaleRange); |
| 1573 | if (std::optional<unsigned> MaxVScale = Attr.getVScaleRangeMax()) { |
| 1574 | unsigned TypeWidth = Src->getType()->getScalarSizeInBits(); |
| 1575 | if (Log2_32(Value: *MaxVScale) < TypeWidth) |
| 1576 | return replaceInstUsesWith(I&: Zext, V: Builder.CreateVScale(Ty: DestTy)); |
| 1577 | } |
| 1578 | } |
| 1579 | } |
| 1580 | |
| 1581 | if (!Zext.hasNonNeg()) { |
| 1582 | // If this zero extend is only used by a shift, add nneg flag. |
| 1583 | if (Zext.hasOneUse() && |
| 1584 | SrcTy->getScalarSizeInBits() > |
| 1585 | Log2_64_Ceil(Value: DestTy->getScalarSizeInBits()) && |
| 1586 | match(V: Zext.user_back(), P: m_Shift(L: m_Value(), R: m_Specific(V: &Zext)))) { |
| 1587 | Zext.setNonNeg(); |
| 1588 | return &Zext; |
| 1589 | } |
| 1590 | |
| 1591 | if (isKnownNonNegative(V: Src, SQ: SQ.getWithInstruction(I: &Zext))) { |
| 1592 | Zext.setNonNeg(); |
| 1593 | return &Zext; |
| 1594 | } |
| 1595 | } |
| 1596 | |
| 1597 | return nullptr; |
| 1598 | } |
| 1599 | |
| 1600 | /// Transform (sext icmp) to bitwise / integer operations to eliminate the icmp. |
| 1601 | Instruction *InstCombinerImpl::transformSExtICmp(ICmpInst *Cmp, |
| 1602 | SExtInst &Sext) { |
| 1603 | Value *Op0 = Cmp->getOperand(i_nocapture: 0), *Op1 = Cmp->getOperand(i_nocapture: 1); |
| 1604 | ICmpInst::Predicate Pred = Cmp->getPredicate(); |
| 1605 | |
| 1606 | // Don't bother if Op1 isn't of vector or integer type. |
| 1607 | if (!Op1->getType()->isIntOrIntVectorTy()) |
| 1608 | return nullptr; |
| 1609 | |
| 1610 | if (Pred == ICmpInst::ICMP_SLT && match(V: Op1, P: m_ZeroInt())) { |
| 1611 | // sext (x <s 0) --> ashr x, 31 (all ones if negative) |
| 1612 | Value *Sh = ConstantInt::get(Ty: Op0->getType(), |
| 1613 | V: Op0->getType()->getScalarSizeInBits() - 1); |
| 1614 | Value *In = Builder.CreateAShr(LHS: Op0, RHS: Sh, Name: Op0->getName() + ".lobit" ); |
| 1615 | if (In->getType() != Sext.getType()) |
| 1616 | In = Builder.CreateIntCast(V: In, DestTy: Sext.getType(), isSigned: true /*SExt*/); |
| 1617 | |
| 1618 | return replaceInstUsesWith(I&: Sext, V: In); |
| 1619 | } |
| 1620 | |
| 1621 | if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Val: Op1)) { |
| 1622 | // If we know that only one bit of the LHS of the icmp can be set and we |
| 1623 | // have an equality comparison with zero or a power of 2, we can transform |
| 1624 | // the icmp and sext into bitwise/integer operations. |
| 1625 | if (Cmp->hasOneUse() && |
| 1626 | Cmp->isEquality() && (Op1C->isZero() || Op1C->getValue().isPowerOf2())){ |
| 1627 | KnownBits Known = computeKnownBits(V: Op0, CxtI: &Sext); |
| 1628 | |
| 1629 | APInt KnownZeroMask(~Known.Zero); |
| 1630 | if (KnownZeroMask.isPowerOf2()) { |
| 1631 | Value *In = Cmp->getOperand(i_nocapture: 0); |
| 1632 | |
| 1633 | // If the icmp tests for a known zero bit we can constant fold it. |
| 1634 | if (!Op1C->isZero() && Op1C->getValue() != KnownZeroMask) { |
| 1635 | Value *V = Pred == ICmpInst::ICMP_NE ? |
| 1636 | ConstantInt::getAllOnesValue(Ty: Sext.getType()) : |
| 1637 | ConstantInt::getNullValue(Ty: Sext.getType()); |
| 1638 | return replaceInstUsesWith(I&: Sext, V); |
| 1639 | } |
| 1640 | |
| 1641 | if (!Op1C->isZero() == (Pred == ICmpInst::ICMP_NE)) { |
| 1642 | // sext ((x & 2^n) == 0) -> (x >> n) - 1 |
| 1643 | // sext ((x & 2^n) != 2^n) -> (x >> n) - 1 |
| 1644 | unsigned ShiftAmt = KnownZeroMask.countr_zero(); |
| 1645 | // Perform a right shift to place the desired bit in the LSB. |
| 1646 | if (ShiftAmt) |
| 1647 | In = Builder.CreateLShr(LHS: In, |
| 1648 | RHS: ConstantInt::get(Ty: In->getType(), V: ShiftAmt)); |
| 1649 | |
| 1650 | // At this point "In" is either 1 or 0. Subtract 1 to turn |
| 1651 | // {1, 0} -> {0, -1}. |
| 1652 | In = Builder.CreateAdd(LHS: In, |
| 1653 | RHS: ConstantInt::getAllOnesValue(Ty: In->getType()), |
| 1654 | Name: "sext" ); |
| 1655 | } else { |
| 1656 | // sext ((x & 2^n) != 0) -> (x << bitwidth-n) a>> bitwidth-1 |
| 1657 | // sext ((x & 2^n) == 2^n) -> (x << bitwidth-n) a>> bitwidth-1 |
| 1658 | unsigned ShiftAmt = KnownZeroMask.countl_zero(); |
| 1659 | // Perform a left shift to place the desired bit in the MSB. |
| 1660 | if (ShiftAmt) |
| 1661 | In = Builder.CreateShl(LHS: In, |
| 1662 | RHS: ConstantInt::get(Ty: In->getType(), V: ShiftAmt)); |
| 1663 | |
| 1664 | // Distribute the bit over the whole bit width. |
| 1665 | In = Builder.CreateAShr(LHS: In, RHS: ConstantInt::get(Ty: In->getType(), |
| 1666 | V: KnownZeroMask.getBitWidth() - 1), Name: "sext" ); |
| 1667 | } |
| 1668 | |
| 1669 | if (Sext.getType() == In->getType()) |
| 1670 | return replaceInstUsesWith(I&: Sext, V: In); |
| 1671 | return CastInst::CreateIntegerCast(S: In, Ty: Sext.getType(), isSigned: true/*SExt*/); |
| 1672 | } |
| 1673 | } |
| 1674 | } |
| 1675 | |
| 1676 | return nullptr; |
| 1677 | } |
| 1678 | |
| 1679 | /// Return true if we can take the specified value and return it as type Ty |
| 1680 | /// without inserting any new casts and without changing the value of the common |
| 1681 | /// low bits. This is used by code that tries to promote integer operations to |
| 1682 | /// a wider types will allow us to eliminate the extension. |
| 1683 | /// |
| 1684 | /// This function works on both vectors and scalars. |
| 1685 | /// |
| 1686 | bool TypeEvaluationHelper::canEvaluateSExtd(Value *V, Type *Ty) { |
| 1687 | TypeEvaluationHelper TYH; |
| 1688 | return TYH.canEvaluateSExtdImpl(V, Ty) && TYH.allPendingVisited(); |
| 1689 | } |
| 1690 | |
| 1691 | bool TypeEvaluationHelper::canEvaluateSExtdImpl(Value *V, Type *Ty) { |
| 1692 | return canEvaluate(V, Ty, Pred: [this](Value *V, Type *Ty) { |
| 1693 | return canEvaluateSExtdPred(V, Ty); |
| 1694 | }); |
| 1695 | } |
| 1696 | |
| 1697 | bool TypeEvaluationHelper::canEvaluateSExtdPred(Value *V, Type *Ty) { |
| 1698 | assert(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits() && |
| 1699 | "Can't sign extend type to a smaller type" ); |
| 1700 | |
| 1701 | auto *I = cast<Instruction>(Val: V); |
| 1702 | switch (I->getOpcode()) { |
| 1703 | case Instruction::SExt: // sext(sext(x)) -> sext(x) |
| 1704 | case Instruction::ZExt: // sext(zext(x)) -> zext(x) |
| 1705 | case Instruction::Trunc: // sext(trunc(x)) -> trunc(x) or sext(x) |
| 1706 | return true; |
| 1707 | case Instruction::And: |
| 1708 | case Instruction::Or: |
| 1709 | case Instruction::Xor: |
| 1710 | case Instruction::Add: |
| 1711 | case Instruction::Sub: |
| 1712 | case Instruction::Mul: |
| 1713 | // These operators can all arbitrarily be extended if their inputs can. |
| 1714 | return canEvaluateSExtdImpl(V: I->getOperand(i: 0), Ty) && |
| 1715 | canEvaluateSExtdImpl(V: I->getOperand(i: 1), Ty); |
| 1716 | |
| 1717 | // case Instruction::Shl: TODO |
| 1718 | // case Instruction::LShr: TODO |
| 1719 | |
| 1720 | case Instruction::Select: |
| 1721 | return canEvaluateSExtdImpl(V: I->getOperand(i: 1), Ty) && |
| 1722 | canEvaluateSExtdImpl(V: I->getOperand(i: 2), Ty); |
| 1723 | |
| 1724 | case Instruction::PHI: { |
| 1725 | // We can change a phi if we can change all operands. Note that we never |
| 1726 | // get into trouble with cyclic PHIs here because canEvaluate handles use |
| 1727 | // chain loops. |
| 1728 | PHINode *PN = cast<PHINode>(Val: I); |
| 1729 | for (Value *IncValue : PN->incoming_values()) |
| 1730 | if (!canEvaluateSExtdImpl(V: IncValue, Ty)) |
| 1731 | return false; |
| 1732 | return true; |
| 1733 | } |
| 1734 | default: |
| 1735 | // TODO: Can handle more cases here. |
| 1736 | break; |
| 1737 | } |
| 1738 | |
| 1739 | return false; |
| 1740 | } |
| 1741 | |
| 1742 | Instruction *InstCombinerImpl::visitSExt(SExtInst &Sext) { |
| 1743 | // If this sign extend is only used by a truncate, let the truncate be |
| 1744 | // eliminated before we try to optimize this sext. |
| 1745 | if (Sext.hasOneUse() && isa<TruncInst>(Val: Sext.user_back())) |
| 1746 | return nullptr; |
| 1747 | |
| 1748 | if (Instruction *I = commonCastTransforms(CI&: Sext)) |
| 1749 | return I; |
| 1750 | |
| 1751 | Value *Src = Sext.getOperand(i_nocapture: 0); |
| 1752 | Type *SrcTy = Src->getType(), *DestTy = Sext.getType(); |
| 1753 | unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); |
| 1754 | unsigned DestBitSize = DestTy->getScalarSizeInBits(); |
| 1755 | |
| 1756 | // If the value being extended is zero or positive, use a zext instead. |
| 1757 | if (isKnownNonNegative(V: Src, SQ: SQ.getWithInstruction(I: &Sext))) { |
| 1758 | auto CI = CastInst::Create(Instruction::ZExt, S: Src, Ty: DestTy); |
| 1759 | CI->setNonNeg(true); |
| 1760 | return CI; |
| 1761 | } |
| 1762 | |
| 1763 | // Try to extend the entire expression tree to the wide destination type. |
| 1764 | bool ShouldExtendExpression = true; |
| 1765 | Value *TruncSrc = nullptr; |
| 1766 | // It is not desirable to extend expression in the trunc + sext pattern when |
| 1767 | // destination type is narrower than original (pre-trunc) type. |
| 1768 | if (match(V: Src, P: m_Trunc(Op: m_Value(V&: TruncSrc)))) |
| 1769 | if (TruncSrc->getType()->getScalarSizeInBits() > DestBitSize) |
| 1770 | ShouldExtendExpression = false; |
| 1771 | if (ShouldExtendExpression && shouldChangeType(From: SrcTy, To: DestTy) && |
| 1772 | TypeEvaluationHelper::canEvaluateSExtd(V: Src, Ty: DestTy)) { |
| 1773 | // Okay, we can transform this! Insert the new expression now. |
| 1774 | LLVM_DEBUG( |
| 1775 | dbgs() << "ICE: EvaluateInDifferentType converting expression type" |
| 1776 | " to avoid sign extend: " |
| 1777 | << Sext << '\n'); |
| 1778 | Value *Res = EvaluateInDifferentType(V: Src, Ty: DestTy, isSigned: true); |
| 1779 | assert(Res->getType() == DestTy); |
| 1780 | |
| 1781 | // If the high bits are already filled with sign bit, just replace this |
| 1782 | // cast with the result. |
| 1783 | if (ComputeNumSignBits(Op: Res, CxtI: &Sext) > DestBitSize - SrcBitSize) |
| 1784 | return replaceInstUsesWith(I&: Sext, V: Res); |
| 1785 | |
| 1786 | // We need to emit a shl + ashr to do the sign extend. |
| 1787 | Value *ShAmt = ConstantInt::get(Ty: DestTy, V: DestBitSize - SrcBitSize); |
| 1788 | return BinaryOperator::CreateAShr(V1: Builder.CreateShl(LHS: Res, RHS: ShAmt, Name: "sext" ), |
| 1789 | V2: ShAmt); |
| 1790 | } |
| 1791 | |
| 1792 | Value *X = TruncSrc; |
| 1793 | if (X) { |
| 1794 | // If the input has more sign bits than bits truncated, then convert |
| 1795 | // directly to final type. |
| 1796 | unsigned XBitSize = X->getType()->getScalarSizeInBits(); |
| 1797 | bool HasNSW = cast<TruncInst>(Val: Src)->hasNoSignedWrap(); |
| 1798 | if (HasNSW || (ComputeNumSignBits(Op: X, CxtI: &Sext) > XBitSize - SrcBitSize)) { |
| 1799 | auto *Res = CastInst::CreateIntegerCast(S: X, Ty: DestTy, /* isSigned */ true); |
| 1800 | if (auto *ResTrunc = dyn_cast<TruncInst>(Val: Res); ResTrunc && HasNSW) |
| 1801 | ResTrunc->setHasNoSignedWrap(true); |
| 1802 | return Res; |
| 1803 | } |
| 1804 | |
| 1805 | // If input is a trunc from the destination type, then convert into shifts. |
| 1806 | if (Src->hasOneUse() && X->getType() == DestTy) { |
| 1807 | // sext (trunc X) --> ashr (shl X, C), C |
| 1808 | Constant *ShAmt = ConstantInt::get(Ty: DestTy, V: DestBitSize - SrcBitSize); |
| 1809 | return BinaryOperator::CreateAShr(V1: Builder.CreateShl(LHS: X, RHS: ShAmt), V2: ShAmt); |
| 1810 | } |
| 1811 | |
| 1812 | // If we are replacing shifted-in high zero bits with sign bits, convert |
| 1813 | // the logic shift to arithmetic shift and eliminate the cast to |
| 1814 | // intermediate type: |
| 1815 | // sext (trunc (lshr Y, C)) --> sext/trunc (ashr Y, C) |
| 1816 | Value *Y; |
| 1817 | if (Src->hasOneUse() && |
| 1818 | match(V: X, P: m_LShr(L: m_Value(V&: Y), |
| 1819 | R: m_SpecificIntAllowPoison(V: XBitSize - SrcBitSize)))) { |
| 1820 | Value *Ashr = Builder.CreateAShr(LHS: Y, RHS: XBitSize - SrcBitSize); |
| 1821 | return CastInst::CreateIntegerCast(S: Ashr, Ty: DestTy, /* isSigned */ true); |
| 1822 | } |
| 1823 | } |
| 1824 | |
| 1825 | if (auto *Cmp = dyn_cast<ICmpInst>(Val: Src)) |
| 1826 | return transformSExtICmp(Cmp, Sext); |
| 1827 | |
| 1828 | // If the input is a shl/ashr pair of a same constant, then this is a sign |
| 1829 | // extension from a smaller value. If we could trust arbitrary bitwidth |
| 1830 | // integers, we could turn this into a truncate to the smaller bit and then |
| 1831 | // use a sext for the whole extension. Since we don't, look deeper and check |
| 1832 | // for a truncate. If the source and dest are the same type, eliminate the |
| 1833 | // trunc and extend and just do shifts. For example, turn: |
| 1834 | // %a = trunc i32 %i to i8 |
| 1835 | // %b = shl i8 %a, C |
| 1836 | // %c = ashr i8 %b, C |
| 1837 | // %d = sext i8 %c to i32 |
| 1838 | // into: |
| 1839 | // %a = shl i32 %i, 32-(8-C) |
| 1840 | // %d = ashr i32 %a, 32-(8-C) |
| 1841 | Value *A = nullptr; |
| 1842 | // TODO: Eventually this could be subsumed by EvaluateInDifferentType. |
| 1843 | Constant *BA = nullptr, *CA = nullptr; |
| 1844 | if (match(V: Src, P: m_AShr(L: m_Shl(L: m_Trunc(Op: m_Value(V&: A)), R: m_Constant(C&: BA)), |
| 1845 | R: m_ImmConstant(C&: CA))) && |
| 1846 | BA->isElementWiseEqual(Y: CA) && A->getType() == DestTy) { |
| 1847 | Constant *WideCurrShAmt = |
| 1848 | ConstantFoldCastOperand(Opcode: Instruction::SExt, C: CA, DestTy, DL); |
| 1849 | assert(WideCurrShAmt && "Constant folding of ImmConstant cannot fail" ); |
| 1850 | Constant *NumLowbitsLeft = ConstantExpr::getSub( |
| 1851 | C1: ConstantInt::get(Ty: DestTy, V: SrcTy->getScalarSizeInBits()), C2: WideCurrShAmt); |
| 1852 | Constant *NewShAmt = ConstantExpr::getSub( |
| 1853 | C1: ConstantInt::get(Ty: DestTy, V: DestTy->getScalarSizeInBits()), |
| 1854 | C2: NumLowbitsLeft); |
| 1855 | NewShAmt = |
| 1856 | Constant::mergeUndefsWith(C: Constant::mergeUndefsWith(C: NewShAmt, Other: BA), Other: CA); |
| 1857 | A = Builder.CreateShl(LHS: A, RHS: NewShAmt, Name: Sext.getName()); |
| 1858 | return BinaryOperator::CreateAShr(V1: A, V2: NewShAmt); |
| 1859 | } |
| 1860 | |
| 1861 | // Splatting a bit of constant-index across a value: |
| 1862 | // sext (ashr (trunc iN X to iM), M-1) to iN --> ashr (shl X, N-M), N-1 |
| 1863 | // If the dest type is different, use a cast (adjust use check). |
| 1864 | if (match(V: Src, P: m_OneUse(SubPattern: m_AShr(L: m_Trunc(Op: m_Value(V&: X)), |
| 1865 | R: m_SpecificInt(V: SrcBitSize - 1))))) { |
| 1866 | Type *XTy = X->getType(); |
| 1867 | unsigned XBitSize = XTy->getScalarSizeInBits(); |
| 1868 | Constant *ShlAmtC = ConstantInt::get(Ty: XTy, V: XBitSize - SrcBitSize); |
| 1869 | Constant *AshrAmtC = ConstantInt::get(Ty: XTy, V: XBitSize - 1); |
| 1870 | if (XTy == DestTy) |
| 1871 | return BinaryOperator::CreateAShr(V1: Builder.CreateShl(LHS: X, RHS: ShlAmtC), |
| 1872 | V2: AshrAmtC); |
| 1873 | if (cast<BinaryOperator>(Val: Src)->getOperand(i_nocapture: 0)->hasOneUse()) { |
| 1874 | Value *Ashr = Builder.CreateAShr(LHS: Builder.CreateShl(LHS: X, RHS: ShlAmtC), RHS: AshrAmtC); |
| 1875 | return CastInst::CreateIntegerCast(S: Ashr, Ty: DestTy, /* isSigned */ true); |
| 1876 | } |
| 1877 | } |
| 1878 | |
| 1879 | if (match(V: Src, P: m_VScale())) { |
| 1880 | if (Sext.getFunction() && |
| 1881 | Sext.getFunction()->hasFnAttribute(Kind: Attribute::VScaleRange)) { |
| 1882 | Attribute Attr = |
| 1883 | Sext.getFunction()->getFnAttribute(Kind: Attribute::VScaleRange); |
| 1884 | if (std::optional<unsigned> MaxVScale = Attr.getVScaleRangeMax()) |
| 1885 | if (Log2_32(Value: *MaxVScale) < (SrcBitSize - 1)) |
| 1886 | return replaceInstUsesWith(I&: Sext, V: Builder.CreateVScale(Ty: DestTy)); |
| 1887 | } |
| 1888 | } |
| 1889 | |
| 1890 | return nullptr; |
| 1891 | } |
| 1892 | |
| 1893 | /// Return a Constant* for the specified floating-point constant if it fits |
| 1894 | /// in the specified FP type without changing its value. |
| 1895 | static bool fitsInFPType(APFloat F, const fltSemantics &Sem) { |
| 1896 | bool losesInfo; |
| 1897 | (void)F.convert(ToSemantics: Sem, RM: APFloat::rmNearestTiesToEven, losesInfo: &losesInfo); |
| 1898 | return !losesInfo; |
| 1899 | } |
| 1900 | |
| 1901 | static Type *shrinkFPConstant(LLVMContext &Ctx, const APFloat &F, |
| 1902 | bool PreferBFloat) { |
| 1903 | // See if the value can be truncated to bfloat and then reextended. |
| 1904 | if (PreferBFloat && fitsInFPType(F, Sem: APFloat::BFloat())) |
| 1905 | return Type::getBFloatTy(C&: Ctx); |
| 1906 | // See if the value can be truncated to half and then reextended. |
| 1907 | if (!PreferBFloat && fitsInFPType(F, Sem: APFloat::IEEEhalf())) |
| 1908 | return Type::getHalfTy(C&: Ctx); |
| 1909 | // See if the value can be truncated to float and then reextended. |
| 1910 | if (fitsInFPType(F, Sem: APFloat::IEEEsingle())) |
| 1911 | return Type::getFloatTy(C&: Ctx); |
| 1912 | if (&F.getSemantics() == &APFloat::IEEEdouble()) |
| 1913 | return nullptr; // Won't shrink. |
| 1914 | // See if the value can be truncated to double and then reextended. |
| 1915 | if (fitsInFPType(F, Sem: APFloat::IEEEdouble())) |
| 1916 | return Type::getDoubleTy(C&: Ctx); |
| 1917 | // Don't try to shrink to various long double types. |
| 1918 | return nullptr; |
| 1919 | } |
| 1920 | |
| 1921 | static Type *shrinkFPConstant(ConstantFP *CFP, bool PreferBFloat) { |
| 1922 | Type *Ty = CFP->getType(); |
| 1923 | if (Ty->getScalarType()->isPPC_FP128Ty()) |
| 1924 | return nullptr; // No constant folding of this. |
| 1925 | |
| 1926 | Type *ShrinkTy = |
| 1927 | shrinkFPConstant(Ctx&: CFP->getContext(), F: CFP->getValueAPF(), PreferBFloat); |
| 1928 | if (ShrinkTy) |
| 1929 | if (auto *VecTy = dyn_cast<VectorType>(Val: Ty)) |
| 1930 | ShrinkTy = VectorType::get(ElementType: ShrinkTy, Other: VecTy); |
| 1931 | |
| 1932 | return ShrinkTy; |
| 1933 | } |
| 1934 | |
| 1935 | // Determine if this is a vector of ConstantFPs and if so, return the minimal |
| 1936 | // type we can safely truncate all elements to. |
| 1937 | static Type *shrinkFPConstantVector(Value *V, bool PreferBFloat) { |
| 1938 | auto *CV = dyn_cast<Constant>(Val: V); |
| 1939 | auto *CVVTy = dyn_cast<FixedVectorType>(Val: V->getType()); |
| 1940 | if (!CV || !CVVTy) |
| 1941 | return nullptr; |
| 1942 | |
| 1943 | Type *MinType = nullptr; |
| 1944 | |
| 1945 | unsigned NumElts = CVVTy->getNumElements(); |
| 1946 | |
| 1947 | // For fixed-width vectors we find the minimal type by looking |
| 1948 | // through the constant values of the vector. |
| 1949 | for (unsigned i = 0; i != NumElts; ++i) { |
| 1950 | if (isa<UndefValue>(Val: CV->getAggregateElement(Elt: i))) |
| 1951 | continue; |
| 1952 | |
| 1953 | auto *CFP = dyn_cast_or_null<ConstantFP>(Val: CV->getAggregateElement(Elt: i)); |
| 1954 | if (!CFP) |
| 1955 | return nullptr; |
| 1956 | |
| 1957 | Type *T = shrinkFPConstant(CFP, PreferBFloat); |
| 1958 | if (!T) |
| 1959 | return nullptr; |
| 1960 | |
| 1961 | // If we haven't found a type yet or this type has a larger mantissa than |
| 1962 | // our previous type, this is our new minimal type. |
| 1963 | if (!MinType || T->getFPMantissaWidth() > MinType->getFPMantissaWidth()) |
| 1964 | MinType = T; |
| 1965 | } |
| 1966 | |
| 1967 | // Make a vector type from the minimal type. |
| 1968 | return MinType ? FixedVectorType::get(ElementType: MinType, NumElts) : nullptr; |
| 1969 | } |
| 1970 | |
| 1971 | /// Find the minimum FP type we can safely truncate to. |
| 1972 | static Type *getMinimumFPType(Value *V, bool PreferBFloat) { |
| 1973 | if (auto *FPExt = dyn_cast<FPExtInst>(Val: V)) |
| 1974 | return FPExt->getOperand(i_nocapture: 0)->getType(); |
| 1975 | |
| 1976 | // If this value is a constant, return the constant in the smallest FP type |
| 1977 | // that can accurately represent it. This allows us to turn |
| 1978 | // (float)((double)X+2.0) into x+2.0f. |
| 1979 | if (auto *CFP = dyn_cast<ConstantFP>(Val: V)) |
| 1980 | if (Type *T = shrinkFPConstant(CFP, PreferBFloat)) |
| 1981 | return T; |
| 1982 | |
| 1983 | // Try to shrink scalable and fixed splat vectors. |
| 1984 | if (auto *FPC = dyn_cast<Constant>(Val: V)) |
| 1985 | if (auto *VTy = dyn_cast<VectorType>(Val: V->getType())) |
| 1986 | if (auto *Splat = dyn_cast_or_null<ConstantFP>(Val: FPC->getSplatValue())) |
| 1987 | if (Type *T = shrinkFPConstant(CFP: Splat, PreferBFloat)) |
| 1988 | return VectorType::get(ElementType: T, Other: VTy); |
| 1989 | |
| 1990 | // Try to shrink a vector of FP constants. This returns nullptr on scalable |
| 1991 | // vectors |
| 1992 | if (Type *T = shrinkFPConstantVector(V, PreferBFloat)) |
| 1993 | return T; |
| 1994 | |
| 1995 | return V->getType(); |
| 1996 | } |
| 1997 | |
| 1998 | /// Return true if the cast from integer to FP can be proven to be exact for all |
| 1999 | /// possible inputs (the conversion does not lose any precision). |
| 2000 | static bool isKnownExactCastIntToFP(CastInst &I, InstCombinerImpl &IC) { |
| 2001 | CastInst::CastOps Opcode = I.getOpcode(); |
| 2002 | assert((Opcode == CastInst::SIToFP || Opcode == CastInst::UIToFP) && |
| 2003 | "Unexpected cast" ); |
| 2004 | Value *Src = I.getOperand(i_nocapture: 0); |
| 2005 | Type *SrcTy = Src->getType(); |
| 2006 | Type *FPTy = I.getType(); |
| 2007 | bool IsSigned = Opcode == Instruction::SIToFP; |
| 2008 | int SrcSize = (int)SrcTy->getScalarSizeInBits() - IsSigned; |
| 2009 | |
| 2010 | // Easy case - if the source integer type has less bits than the FP mantissa, |
| 2011 | // then the cast must be exact. |
| 2012 | int DestNumSigBits = FPTy->getFPMantissaWidth(); |
| 2013 | if (SrcSize <= DestNumSigBits) |
| 2014 | return true; |
| 2015 | |
| 2016 | // Cast from FP to integer and back to FP is independent of the intermediate |
| 2017 | // integer width because of poison on overflow. |
| 2018 | Value *F; |
| 2019 | if (match(V: Src, P: m_FPToSI(Op: m_Value(V&: F))) || match(V: Src, P: m_FPToUI(Op: m_Value(V&: F)))) { |
| 2020 | // If this is uitofp (fptosi F), the source needs an extra bit to avoid |
| 2021 | // potential rounding of negative FP input values. |
| 2022 | int SrcNumSigBits = F->getType()->getFPMantissaWidth(); |
| 2023 | if (!IsSigned && match(V: Src, P: m_FPToSI(Op: m_Value()))) |
| 2024 | SrcNumSigBits++; |
| 2025 | |
| 2026 | // [su]itofp (fpto[su]i F) --> exact if the source type has less or equal |
| 2027 | // significant bits than the destination (and make sure neither type is |
| 2028 | // weird -- ppc_fp128). |
| 2029 | if (SrcNumSigBits > 0 && DestNumSigBits > 0 && |
| 2030 | SrcNumSigBits <= DestNumSigBits) |
| 2031 | return true; |
| 2032 | } |
| 2033 | |
| 2034 | // TODO: |
| 2035 | // Try harder to find if the source integer type has less significant bits. |
| 2036 | // For example, compute number of sign bits. |
| 2037 | KnownBits SrcKnown = IC.computeKnownBits(V: Src, CxtI: &I); |
| 2038 | int SigBits = (int)SrcTy->getScalarSizeInBits() - |
| 2039 | SrcKnown.countMinLeadingZeros() - |
| 2040 | SrcKnown.countMinTrailingZeros(); |
| 2041 | if (SigBits <= DestNumSigBits) |
| 2042 | return true; |
| 2043 | |
| 2044 | return false; |
| 2045 | } |
| 2046 | |
| 2047 | Instruction *InstCombinerImpl::visitFPTrunc(FPTruncInst &FPT) { |
| 2048 | if (Instruction *I = commonCastTransforms(CI&: FPT)) |
| 2049 | return I; |
| 2050 | |
| 2051 | // If we have fptrunc(OpI (fpextend x), (fpextend y)), we would like to |
| 2052 | // simplify this expression to avoid one or more of the trunc/extend |
| 2053 | // operations if we can do so without changing the numerical results. |
| 2054 | // |
| 2055 | // The exact manner in which the widths of the operands interact to limit |
| 2056 | // what we can and cannot do safely varies from operation to operation, and |
| 2057 | // is explained below in the various case statements. |
| 2058 | Type *Ty = FPT.getType(); |
| 2059 | auto *BO = dyn_cast<BinaryOperator>(Val: FPT.getOperand(i_nocapture: 0)); |
| 2060 | if (BO && BO->hasOneUse()) { |
| 2061 | bool PreferBFloat = Ty->getScalarType()->isBFloatTy(); |
| 2062 | Type *LHSMinType = getMinimumFPType(V: BO->getOperand(i_nocapture: 0), PreferBFloat); |
| 2063 | Type *RHSMinType = getMinimumFPType(V: BO->getOperand(i_nocapture: 1), PreferBFloat); |
| 2064 | unsigned OpWidth = BO->getType()->getFPMantissaWidth(); |
| 2065 | unsigned LHSWidth = LHSMinType->getFPMantissaWidth(); |
| 2066 | unsigned RHSWidth = RHSMinType->getFPMantissaWidth(); |
| 2067 | unsigned SrcWidth = std::max(a: LHSWidth, b: RHSWidth); |
| 2068 | unsigned DstWidth = Ty->getFPMantissaWidth(); |
| 2069 | switch (BO->getOpcode()) { |
| 2070 | default: break; |
| 2071 | case Instruction::FAdd: |
| 2072 | case Instruction::FSub: |
| 2073 | // For addition and subtraction, the infinitely precise result can |
| 2074 | // essentially be arbitrarily wide; proving that double rounding |
| 2075 | // will not occur because the result of OpI is exact (as we will for |
| 2076 | // FMul, for example) is hopeless. However, we *can* nonetheless |
| 2077 | // frequently know that double rounding cannot occur (or that it is |
| 2078 | // innocuous) by taking advantage of the specific structure of |
| 2079 | // infinitely-precise results that admit double rounding. |
| 2080 | // |
| 2081 | // Specifically, if OpWidth >= 2*DstWdith+1 and DstWidth is sufficient |
| 2082 | // to represent both sources, we can guarantee that the double |
| 2083 | // rounding is innocuous (See p50 of Figueroa's 2000 PhD thesis, |
| 2084 | // "A Rigorous Framework for Fully Supporting the IEEE Standard ..." |
| 2085 | // for proof of this fact). |
| 2086 | // |
| 2087 | // Note: Figueroa does not consider the case where DstFormat != |
| 2088 | // SrcFormat. It's possible (likely even!) that this analysis |
| 2089 | // could be tightened for those cases, but they are rare (the main |
| 2090 | // case of interest here is (float)((double)float + float)). |
| 2091 | if (OpWidth >= 2*DstWidth+1 && DstWidth >= SrcWidth) { |
| 2092 | Value *LHS = Builder.CreateFPTrunc(V: BO->getOperand(i_nocapture: 0), DestTy: Ty); |
| 2093 | Value *RHS = Builder.CreateFPTrunc(V: BO->getOperand(i_nocapture: 1), DestTy: Ty); |
| 2094 | Instruction *RI = BinaryOperator::Create(Op: BO->getOpcode(), S1: LHS, S2: RHS); |
| 2095 | RI->copyFastMathFlags(I: BO); |
| 2096 | return RI; |
| 2097 | } |
| 2098 | break; |
| 2099 | case Instruction::FMul: |
| 2100 | // For multiplication, the infinitely precise result has at most |
| 2101 | // LHSWidth + RHSWidth significant bits; if OpWidth is sufficient |
| 2102 | // that such a value can be exactly represented, then no double |
| 2103 | // rounding can possibly occur; we can safely perform the operation |
| 2104 | // in the destination format if it can represent both sources. |
| 2105 | if (OpWidth >= LHSWidth + RHSWidth && DstWidth >= SrcWidth) { |
| 2106 | Value *LHS = Builder.CreateFPTrunc(V: BO->getOperand(i_nocapture: 0), DestTy: Ty); |
| 2107 | Value *RHS = Builder.CreateFPTrunc(V: BO->getOperand(i_nocapture: 1), DestTy: Ty); |
| 2108 | return BinaryOperator::CreateFMulFMF(V1: LHS, V2: RHS, FMFSource: BO); |
| 2109 | } |
| 2110 | break; |
| 2111 | case Instruction::FDiv: |
| 2112 | // For division, we use again use the bound from Figueroa's |
| 2113 | // dissertation. I am entirely certain that this bound can be |
| 2114 | // tightened in the unbalanced operand case by an analysis based on |
| 2115 | // the diophantine rational approximation bound, but the well-known |
| 2116 | // condition used here is a good conservative first pass. |
| 2117 | // TODO: Tighten bound via rigorous analysis of the unbalanced case. |
| 2118 | if (OpWidth >= 2*DstWidth && DstWidth >= SrcWidth) { |
| 2119 | Value *LHS = Builder.CreateFPTrunc(V: BO->getOperand(i_nocapture: 0), DestTy: Ty); |
| 2120 | Value *RHS = Builder.CreateFPTrunc(V: BO->getOperand(i_nocapture: 1), DestTy: Ty); |
| 2121 | return BinaryOperator::CreateFDivFMF(V1: LHS, V2: RHS, FMFSource: BO); |
| 2122 | } |
| 2123 | break; |
| 2124 | case Instruction::FRem: { |
| 2125 | // Remainder is straightforward. Remainder is always exact, so the |
| 2126 | // type of OpI doesn't enter into things at all. We simply evaluate |
| 2127 | // in whichever source type is larger, then convert to the |
| 2128 | // destination type. |
| 2129 | if (SrcWidth == OpWidth) |
| 2130 | break; |
| 2131 | Value *LHS, *RHS; |
| 2132 | if (LHSWidth == SrcWidth) { |
| 2133 | LHS = Builder.CreateFPTrunc(V: BO->getOperand(i_nocapture: 0), DestTy: LHSMinType); |
| 2134 | RHS = Builder.CreateFPTrunc(V: BO->getOperand(i_nocapture: 1), DestTy: LHSMinType); |
| 2135 | } else { |
| 2136 | LHS = Builder.CreateFPTrunc(V: BO->getOperand(i_nocapture: 0), DestTy: RHSMinType); |
| 2137 | RHS = Builder.CreateFPTrunc(V: BO->getOperand(i_nocapture: 1), DestTy: RHSMinType); |
| 2138 | } |
| 2139 | |
| 2140 | Value *ExactResult = Builder.CreateFRemFMF(L: LHS, R: RHS, FMFSource: BO); |
| 2141 | return CastInst::CreateFPCast(S: ExactResult, Ty); |
| 2142 | } |
| 2143 | } |
| 2144 | } |
| 2145 | |
| 2146 | // (fptrunc (fneg x)) -> (fneg (fptrunc x)) |
| 2147 | Value *X; |
| 2148 | Instruction *Op = dyn_cast<Instruction>(Val: FPT.getOperand(i_nocapture: 0)); |
| 2149 | if (Op && Op->hasOneUse()) { |
| 2150 | FastMathFlags FMF = FPT.getFastMathFlags(); |
| 2151 | if (auto *FPMO = dyn_cast<FPMathOperator>(Val: Op)) |
| 2152 | FMF &= FPMO->getFastMathFlags(); |
| 2153 | |
| 2154 | if (match(V: Op, P: m_FNeg(X: m_Value(V&: X)))) { |
| 2155 | Value *InnerTrunc = Builder.CreateFPTruncFMF(V: X, DestTy: Ty, FMFSource: FMF); |
| 2156 | Value *Neg = Builder.CreateFNegFMF(V: InnerTrunc, FMFSource: FMF); |
| 2157 | return replaceInstUsesWith(I&: FPT, V: Neg); |
| 2158 | } |
| 2159 | |
| 2160 | // If we are truncating a select that has an extended operand, we can |
| 2161 | // narrow the other operand and do the select as a narrow op. |
| 2162 | Value *Cond, *X, *Y; |
| 2163 | if (match(V: Op, P: m_Select(C: m_Value(V&: Cond), L: m_FPExt(Op: m_Value(V&: X)), R: m_Value(V&: Y))) && |
| 2164 | X->getType() == Ty) { |
| 2165 | // fptrunc (select Cond, (fpext X), Y --> select Cond, X, (fptrunc Y) |
| 2166 | Value *NarrowY = Builder.CreateFPTruncFMF(V: Y, DestTy: Ty, FMFSource: FMF); |
| 2167 | Value *Sel = |
| 2168 | Builder.CreateSelectFMF(C: Cond, True: X, False: NarrowY, FMFSource: FMF, Name: "narrow.sel" , MDFrom: Op); |
| 2169 | return replaceInstUsesWith(I&: FPT, V: Sel); |
| 2170 | } |
| 2171 | if (match(V: Op, P: m_Select(C: m_Value(V&: Cond), L: m_Value(V&: Y), R: m_FPExt(Op: m_Value(V&: X)))) && |
| 2172 | X->getType() == Ty) { |
| 2173 | // fptrunc (select Cond, Y, (fpext X) --> select Cond, (fptrunc Y), X |
| 2174 | Value *NarrowY = Builder.CreateFPTruncFMF(V: Y, DestTy: Ty, FMFSource: FMF); |
| 2175 | Value *Sel = |
| 2176 | Builder.CreateSelectFMF(C: Cond, True: NarrowY, False: X, FMFSource: FMF, Name: "narrow.sel" , MDFrom: Op); |
| 2177 | return replaceInstUsesWith(I&: FPT, V: Sel); |
| 2178 | } |
| 2179 | } |
| 2180 | |
| 2181 | if (auto *II = dyn_cast<IntrinsicInst>(Val: FPT.getOperand(i_nocapture: 0))) { |
| 2182 | switch (II->getIntrinsicID()) { |
| 2183 | default: break; |
| 2184 | case Intrinsic::ceil: |
| 2185 | case Intrinsic::fabs: |
| 2186 | case Intrinsic::floor: |
| 2187 | case Intrinsic::nearbyint: |
| 2188 | case Intrinsic::rint: |
| 2189 | case Intrinsic::round: |
| 2190 | case Intrinsic::roundeven: |
| 2191 | case Intrinsic::trunc: { |
| 2192 | Value *Src = II->getArgOperand(i: 0); |
| 2193 | if (!Src->hasOneUse()) |
| 2194 | break; |
| 2195 | |
| 2196 | // Except for fabs, this transformation requires the input of the unary FP |
| 2197 | // operation to be itself an fpext from the type to which we're |
| 2198 | // truncating. |
| 2199 | if (II->getIntrinsicID() != Intrinsic::fabs) { |
| 2200 | FPExtInst *FPExtSrc = dyn_cast<FPExtInst>(Val: Src); |
| 2201 | if (!FPExtSrc || FPExtSrc->getSrcTy() != Ty) |
| 2202 | break; |
| 2203 | } |
| 2204 | |
| 2205 | // Do unary FP operation on smaller type. |
| 2206 | // (fptrunc (fabs x)) -> (fabs (fptrunc x)) |
| 2207 | Value *InnerTrunc = Builder.CreateFPTrunc(V: Src, DestTy: Ty); |
| 2208 | Function *Overload = Intrinsic::getOrInsertDeclaration( |
| 2209 | M: FPT.getModule(), id: II->getIntrinsicID(), Tys: Ty); |
| 2210 | SmallVector<OperandBundleDef, 1> OpBundles; |
| 2211 | II->getOperandBundlesAsDefs(Defs&: OpBundles); |
| 2212 | CallInst *NewCI = |
| 2213 | CallInst::Create(Func: Overload, Args: {InnerTrunc}, Bundles: OpBundles, NameStr: II->getName()); |
| 2214 | // A normal value may be converted to an infinity. It means that we cannot |
| 2215 | // propagate ninf from the intrinsic. So we propagate FMF from fptrunc. |
| 2216 | NewCI->copyFastMathFlags(I: &FPT); |
| 2217 | return NewCI; |
| 2218 | } |
| 2219 | } |
| 2220 | } |
| 2221 | |
| 2222 | if (Instruction *I = shrinkInsertElt(Trunc&: FPT, Builder)) |
| 2223 | return I; |
| 2224 | |
| 2225 | Value *Src = FPT.getOperand(i_nocapture: 0); |
| 2226 | if (isa<SIToFPInst>(Val: Src) || isa<UIToFPInst>(Val: Src)) { |
| 2227 | auto *FPCast = cast<CastInst>(Val: Src); |
| 2228 | if (isKnownExactCastIntToFP(I&: *FPCast, IC&: *this)) |
| 2229 | return CastInst::Create(FPCast->getOpcode(), S: FPCast->getOperand(i_nocapture: 0), Ty); |
| 2230 | } |
| 2231 | |
| 2232 | return nullptr; |
| 2233 | } |
| 2234 | |
| 2235 | Instruction *InstCombinerImpl::visitFPExt(CastInst &FPExt) { |
| 2236 | // If the source operand is a cast from integer to FP and known exact, then |
| 2237 | // cast the integer operand directly to the destination type. |
| 2238 | Type *Ty = FPExt.getType(); |
| 2239 | Value *Src = FPExt.getOperand(i_nocapture: 0); |
| 2240 | if (isa<SIToFPInst>(Val: Src) || isa<UIToFPInst>(Val: Src)) { |
| 2241 | auto *FPCast = cast<CastInst>(Val: Src); |
| 2242 | if (isKnownExactCastIntToFP(I&: *FPCast, IC&: *this)) |
| 2243 | return CastInst::Create(FPCast->getOpcode(), S: FPCast->getOperand(i_nocapture: 0), Ty); |
| 2244 | } |
| 2245 | |
| 2246 | return commonCastTransforms(CI&: FPExt); |
| 2247 | } |
| 2248 | |
| 2249 | /// fpto{s/u}i({u/s}itofp(X)) --> X or zext(X) or sext(X) or trunc(X) |
| 2250 | /// This is safe if the intermediate type has enough bits in its mantissa to |
| 2251 | /// accurately represent all values of X. For example, this won't work with |
| 2252 | /// i64 -> float -> i64. |
| 2253 | Instruction *InstCombinerImpl::foldItoFPtoI(CastInst &FI) { |
| 2254 | if (!isa<UIToFPInst>(Val: FI.getOperand(i_nocapture: 0)) && !isa<SIToFPInst>(Val: FI.getOperand(i_nocapture: 0))) |
| 2255 | return nullptr; |
| 2256 | |
| 2257 | auto *OpI = cast<CastInst>(Val: FI.getOperand(i_nocapture: 0)); |
| 2258 | Value *X = OpI->getOperand(i_nocapture: 0); |
| 2259 | Type *XType = X->getType(); |
| 2260 | Type *DestType = FI.getType(); |
| 2261 | bool IsOutputSigned = isa<FPToSIInst>(Val: FI); |
| 2262 | |
| 2263 | // Since we can assume the conversion won't overflow, our decision as to |
| 2264 | // whether the input will fit in the float should depend on the minimum |
| 2265 | // of the input range and output range. |
| 2266 | |
| 2267 | // This means this is also safe for a signed input and unsigned output, since |
| 2268 | // a negative input would lead to undefined behavior. |
| 2269 | if (!isKnownExactCastIntToFP(I&: *OpI, IC&: *this)) { |
| 2270 | // The first cast may not round exactly based on the source integer width |
| 2271 | // and FP width, but the overflow UB rules can still allow this to fold. |
| 2272 | // If the destination type is narrow, that means the intermediate FP value |
| 2273 | // must be large enough to hold the source value exactly. |
| 2274 | // For example, (uint8_t)((float)(uint32_t 16777217) is undefined behavior. |
| 2275 | int OutputSize = (int)DestType->getScalarSizeInBits(); |
| 2276 | if (OutputSize > OpI->getType()->getFPMantissaWidth()) |
| 2277 | return nullptr; |
| 2278 | } |
| 2279 | |
| 2280 | if (DestType->getScalarSizeInBits() > XType->getScalarSizeInBits()) { |
| 2281 | bool IsInputSigned = isa<SIToFPInst>(Val: OpI); |
| 2282 | if (IsInputSigned && IsOutputSigned) |
| 2283 | return new SExtInst(X, DestType); |
| 2284 | return new ZExtInst(X, DestType); |
| 2285 | } |
| 2286 | if (DestType->getScalarSizeInBits() < XType->getScalarSizeInBits()) |
| 2287 | return new TruncInst(X, DestType); |
| 2288 | |
| 2289 | assert(XType == DestType && "Unexpected types for int to FP to int casts" ); |
| 2290 | return replaceInstUsesWith(I&: FI, V: X); |
| 2291 | } |
| 2292 | |
| 2293 | static Instruction *foldFPtoI(Instruction &FI, InstCombiner &IC) { |
| 2294 | // fpto{u/s}i non-norm --> 0 |
| 2295 | FPClassTest Mask = |
| 2296 | FI.getOpcode() == Instruction::FPToUI ? fcPosNormal : fcNormal; |
| 2297 | KnownFPClass FPClass = computeKnownFPClass( |
| 2298 | V: FI.getOperand(i: 0), InterestedClasses: Mask, SQ: IC.getSimplifyQuery().getWithInstruction(I: &FI)); |
| 2299 | if (FPClass.isKnownNever(Mask)) |
| 2300 | return IC.replaceInstUsesWith(I&: FI, V: ConstantInt::getNullValue(Ty: FI.getType())); |
| 2301 | |
| 2302 | return nullptr; |
| 2303 | } |
| 2304 | |
| 2305 | Instruction *InstCombinerImpl::visitFPToUI(FPToUIInst &FI) { |
| 2306 | if (Instruction *I = foldItoFPtoI(FI)) |
| 2307 | return I; |
| 2308 | |
| 2309 | if (Instruction *I = foldFPtoI(FI, IC&: *this)) |
| 2310 | return I; |
| 2311 | |
| 2312 | return commonCastTransforms(CI&: FI); |
| 2313 | } |
| 2314 | |
| 2315 | Instruction *InstCombinerImpl::visitFPToSI(FPToSIInst &FI) { |
| 2316 | if (Instruction *I = foldItoFPtoI(FI)) |
| 2317 | return I; |
| 2318 | |
| 2319 | if (Instruction *I = foldFPtoI(FI, IC&: *this)) |
| 2320 | return I; |
| 2321 | |
| 2322 | return commonCastTransforms(CI&: FI); |
| 2323 | } |
| 2324 | |
| 2325 | Instruction *InstCombinerImpl::visitUIToFP(CastInst &CI) { |
| 2326 | if (Instruction *R = commonCastTransforms(CI)) |
| 2327 | return R; |
| 2328 | if (!CI.hasNonNeg() && isKnownNonNegative(V: CI.getOperand(i_nocapture: 0), SQ)) { |
| 2329 | CI.setNonNeg(); |
| 2330 | return &CI; |
| 2331 | } |
| 2332 | return nullptr; |
| 2333 | } |
| 2334 | |
| 2335 | Instruction *InstCombinerImpl::visitSIToFP(CastInst &CI) { |
| 2336 | if (Instruction *R = commonCastTransforms(CI)) |
| 2337 | return R; |
| 2338 | if (isKnownNonNegative(V: CI.getOperand(i_nocapture: 0), SQ)) { |
| 2339 | auto *UI = |
| 2340 | CastInst::Create(Instruction::UIToFP, S: CI.getOperand(i_nocapture: 0), Ty: CI.getType()); |
| 2341 | UI->setNonNeg(true); |
| 2342 | return UI; |
| 2343 | } |
| 2344 | return nullptr; |
| 2345 | } |
| 2346 | |
| 2347 | Instruction *InstCombinerImpl::visitIntToPtr(IntToPtrInst &CI) { |
| 2348 | // If the source integer type is not the intptr_t type for this target, do a |
| 2349 | // trunc or zext to the intptr_t type, then inttoptr of it. This allows the |
| 2350 | // cast to be exposed to other transforms. |
| 2351 | unsigned AS = CI.getAddressSpace(); |
| 2352 | if (CI.getOperand(i_nocapture: 0)->getType()->getScalarSizeInBits() != |
| 2353 | DL.getPointerSizeInBits(AS)) { |
| 2354 | Type *Ty = CI.getOperand(i_nocapture: 0)->getType()->getWithNewType( |
| 2355 | EltTy: DL.getIntPtrType(C&: CI.getContext(), AddressSpace: AS)); |
| 2356 | Value *P = Builder.CreateZExtOrTrunc(V: CI.getOperand(i_nocapture: 0), DestTy: Ty); |
| 2357 | return new IntToPtrInst(P, CI.getType()); |
| 2358 | } |
| 2359 | |
| 2360 | // Replace (inttoptr (add (ptrtoint %Base), %Offset)) with |
| 2361 | // (getelementptr i8, %Base, %Offset) if the pointer is only used as integer |
| 2362 | // value. |
| 2363 | Value *Base; |
| 2364 | Value *Offset; |
| 2365 | auto UsesPointerAsInt = [](User *U) { |
| 2366 | if (isa<ICmpInst, PtrToIntInst>(Val: U)) |
| 2367 | return true; |
| 2368 | if (auto *P = dyn_cast<PHINode>(Val: U)) |
| 2369 | return P->hasOneUse() && isa<ICmpInst, PtrToIntInst>(Val: *P->user_begin()); |
| 2370 | return false; |
| 2371 | }; |
| 2372 | if (match(V: CI.getOperand(i_nocapture: 0), |
| 2373 | P: m_OneUse(SubPattern: m_c_Add(L: m_PtrToIntSameSize(DL, Op: m_Value(V&: Base)), |
| 2374 | R: m_Value(V&: Offset)))) && |
| 2375 | CI.getType()->getPointerAddressSpace() == |
| 2376 | Base->getType()->getPointerAddressSpace() && |
| 2377 | all_of(Range: CI.users(), P: UsesPointerAsInt)) { |
| 2378 | return GetElementPtrInst::Create(PointeeType: Builder.getInt8Ty(), Ptr: Base, IdxList: Offset); |
| 2379 | } |
| 2380 | |
| 2381 | if (Instruction *I = commonCastTransforms(CI)) |
| 2382 | return I; |
| 2383 | |
| 2384 | return nullptr; |
| 2385 | } |
| 2386 | |
| 2387 | Value *InstCombinerImpl::foldPtrToIntOrAddrOfGEP(Type *IntTy, Value *Ptr) { |
| 2388 | // Look through chain of one-use GEPs. |
| 2389 | Type *PtrTy = Ptr->getType(); |
| 2390 | SmallVector<GEPOperator *> GEPs; |
| 2391 | while (true) { |
| 2392 | auto *GEP = dyn_cast<GEPOperator>(Val: Ptr); |
| 2393 | if (!GEP || !GEP->hasOneUse()) |
| 2394 | break; |
| 2395 | GEPs.push_back(Elt: GEP); |
| 2396 | Ptr = GEP->getPointerOperand(); |
| 2397 | } |
| 2398 | |
| 2399 | // Don't handle case where GEP converts from pointer to vector. |
| 2400 | if (GEPs.empty() || PtrTy != Ptr->getType()) |
| 2401 | return nullptr; |
| 2402 | |
| 2403 | // Check whether we know the integer value of the base pointer. |
| 2404 | Value *Res; |
| 2405 | Type *IdxTy = DL.getIndexType(PtrTy); |
| 2406 | if (match(V: Ptr, P: m_OneUse(SubPattern: m_IntToPtr(Op: m_Value(V&: Res)))) && |
| 2407 | Res->getType() == IntTy && IntTy == IdxTy) { |
| 2408 | // pass |
| 2409 | } else if (isa<ConstantPointerNull>(Val: Ptr)) { |
| 2410 | Res = Constant::getNullValue(Ty: IdxTy); |
| 2411 | } else { |
| 2412 | return nullptr; |
| 2413 | } |
| 2414 | |
| 2415 | // Perform the entire operation on integers instead. |
| 2416 | for (GEPOperator *GEP : reverse(C&: GEPs)) { |
| 2417 | Value *Offset = EmitGEPOffset(GEP); |
| 2418 | Res = Builder.CreateAdd(LHS: Res, RHS: Offset, Name: "" , HasNUW: GEP->hasNoUnsignedWrap()); |
| 2419 | } |
| 2420 | return Builder.CreateZExtOrTrunc(V: Res, DestTy: IntTy); |
| 2421 | } |
| 2422 | |
| 2423 | Instruction *InstCombinerImpl::visitPtrToInt(PtrToIntInst &CI) { |
| 2424 | // If the destination integer type is not the intptr_t type for this target, |
| 2425 | // do a ptrtoint to intptr_t then do a trunc or zext. This allows the cast |
| 2426 | // to be exposed to other transforms. |
| 2427 | Value *SrcOp = CI.getPointerOperand(); |
| 2428 | Type *SrcTy = SrcOp->getType(); |
| 2429 | Type *Ty = CI.getType(); |
| 2430 | unsigned AS = CI.getPointerAddressSpace(); |
| 2431 | unsigned TySize = Ty->getScalarSizeInBits(); |
| 2432 | unsigned PtrSize = DL.getPointerSizeInBits(AS); |
| 2433 | if (TySize != PtrSize) { |
| 2434 | Type *IntPtrTy = |
| 2435 | SrcTy->getWithNewType(EltTy: DL.getIntPtrType(C&: CI.getContext(), AddressSpace: AS)); |
| 2436 | Value *P = Builder.CreatePtrToInt(V: SrcOp, DestTy: IntPtrTy); |
| 2437 | return CastInst::CreateIntegerCast(S: P, Ty, /*isSigned=*/false); |
| 2438 | } |
| 2439 | |
| 2440 | // (ptrtoint (ptrmask P, M)) |
| 2441 | // -> (and (ptrtoint P), M) |
| 2442 | // This is generally beneficial as `and` is better supported than `ptrmask`. |
| 2443 | Value *Ptr, *Mask; |
| 2444 | if (match(V: SrcOp, P: m_OneUse(SubPattern: m_Intrinsic<Intrinsic::ptrmask>(Op0: m_Value(V&: Ptr), |
| 2445 | Op1: m_Value(V&: Mask)))) && |
| 2446 | Mask->getType() == Ty) |
| 2447 | return BinaryOperator::CreateAnd(V1: Builder.CreatePtrToInt(V: Ptr, DestTy: Ty), V2: Mask); |
| 2448 | |
| 2449 | if (Value *V = foldPtrToIntOrAddrOfGEP(IntTy: Ty, Ptr: SrcOp)) |
| 2450 | return replaceInstUsesWith(I&: CI, V); |
| 2451 | |
| 2452 | Value *Vec, *Scalar, *Index; |
| 2453 | if (match(V: SrcOp, P: m_OneUse(SubPattern: m_InsertElt(Val: m_IntToPtr(Op: m_Value(V&: Vec)), |
| 2454 | Elt: m_Value(V&: Scalar), Idx: m_Value(V&: Index)))) && |
| 2455 | Vec->getType() == Ty) { |
| 2456 | assert(Vec->getType()->getScalarSizeInBits() == PtrSize && "Wrong type" ); |
| 2457 | // Convert the scalar to int followed by insert to eliminate one cast: |
| 2458 | // p2i (ins (i2p Vec), Scalar, Index --> ins Vec, (p2i Scalar), Index |
| 2459 | Value *NewCast = Builder.CreatePtrToInt(V: Scalar, DestTy: Ty->getScalarType()); |
| 2460 | return InsertElementInst::Create(Vec, NewElt: NewCast, Idx: Index); |
| 2461 | } |
| 2462 | |
| 2463 | return commonCastTransforms(CI); |
| 2464 | } |
| 2465 | |
| 2466 | Instruction *InstCombinerImpl::visitPtrToAddr(PtrToAddrInst &CI) { |
| 2467 | Value *SrcOp = CI.getPointerOperand(); |
| 2468 | Type *Ty = CI.getType(); |
| 2469 | |
| 2470 | // (ptrtoaddr (ptrmask P, M)) |
| 2471 | // -> (and (ptrtoaddr P), M) |
| 2472 | // This is generally beneficial as `and` is better supported than `ptrmask`. |
| 2473 | Value *Ptr, *Mask; |
| 2474 | if (match(V: SrcOp, P: m_OneUse(SubPattern: m_Intrinsic<Intrinsic::ptrmask>(Op0: m_Value(V&: Ptr), |
| 2475 | Op1: m_Value(V&: Mask)))) && |
| 2476 | Mask->getType() == Ty) |
| 2477 | return BinaryOperator::CreateAnd(V1: Builder.CreatePtrToAddr(V: Ptr), V2: Mask); |
| 2478 | |
| 2479 | if (Value *V = foldPtrToIntOrAddrOfGEP(IntTy: Ty, Ptr: SrcOp)) |
| 2480 | return replaceInstUsesWith(I&: CI, V); |
| 2481 | |
| 2482 | // FIXME: Implement variants of ptrtoint folds. |
| 2483 | return commonCastTransforms(CI); |
| 2484 | } |
| 2485 | |
| 2486 | /// This input value (which is known to have vector type) is being zero extended |
| 2487 | /// or truncated to the specified vector type. Since the zext/trunc is done |
| 2488 | /// using an integer type, we have a (bitcast(cast(bitcast))) pattern, |
| 2489 | /// endianness will impact which end of the vector that is extended or |
| 2490 | /// truncated. |
| 2491 | /// |
| 2492 | /// A vector is always stored with index 0 at the lowest address, which |
| 2493 | /// corresponds to the most significant bits for a big endian stored integer and |
| 2494 | /// the least significant bits for little endian. A trunc/zext of an integer |
| 2495 | /// impacts the big end of the integer. Thus, we need to add/remove elements at |
| 2496 | /// the front of the vector for big endian targets, and the back of the vector |
| 2497 | /// for little endian targets. |
| 2498 | /// |
| 2499 | /// Try to replace it with a shuffle (and vector/vector bitcast) if possible. |
| 2500 | /// |
| 2501 | /// The source and destination vector types may have different element types. |
| 2502 | static Instruction * |
| 2503 | optimizeVectorResizeWithIntegerBitCasts(Value *InVal, VectorType *DestTy, |
| 2504 | InstCombinerImpl &IC) { |
| 2505 | // We can only do this optimization if the output is a multiple of the input |
| 2506 | // element size, or the input is a multiple of the output element size. |
| 2507 | // Convert the input type to have the same element type as the output. |
| 2508 | VectorType *SrcTy = cast<VectorType>(Val: InVal->getType()); |
| 2509 | |
| 2510 | if (SrcTy->getElementType() != DestTy->getElementType()) { |
| 2511 | // The input types don't need to be identical, but for now they must be the |
| 2512 | // same size. There is no specific reason we couldn't handle things like |
| 2513 | // <4 x i16> -> <4 x i32> by bitcasting to <2 x i32> but haven't gotten |
| 2514 | // there yet. |
| 2515 | if (SrcTy->getElementType()->getPrimitiveSizeInBits() != |
| 2516 | DestTy->getElementType()->getPrimitiveSizeInBits()) |
| 2517 | return nullptr; |
| 2518 | |
| 2519 | SrcTy = |
| 2520 | FixedVectorType::get(ElementType: DestTy->getElementType(), |
| 2521 | NumElts: cast<FixedVectorType>(Val: SrcTy)->getNumElements()); |
| 2522 | InVal = IC.Builder.CreateBitCast(V: InVal, DestTy: SrcTy); |
| 2523 | } |
| 2524 | |
| 2525 | bool IsBigEndian = IC.getDataLayout().isBigEndian(); |
| 2526 | unsigned SrcElts = cast<FixedVectorType>(Val: SrcTy)->getNumElements(); |
| 2527 | unsigned DestElts = cast<FixedVectorType>(Val: DestTy)->getNumElements(); |
| 2528 | |
| 2529 | assert(SrcElts != DestElts && "Element counts should be different." ); |
| 2530 | |
| 2531 | // Now that the element types match, get the shuffle mask and RHS of the |
| 2532 | // shuffle to use, which depends on whether we're increasing or decreasing the |
| 2533 | // size of the input. |
| 2534 | auto ShuffleMaskStorage = llvm::to_vector<16>(Range: llvm::seq<int>(Begin: 0, End: SrcElts)); |
| 2535 | ArrayRef<int> ShuffleMask; |
| 2536 | Value *V2; |
| 2537 | |
| 2538 | if (SrcElts > DestElts) { |
| 2539 | // If we're shrinking the number of elements (rewriting an integer |
| 2540 | // truncate), just shuffle in the elements corresponding to the least |
| 2541 | // significant bits from the input and use poison as the second shuffle |
| 2542 | // input. |
| 2543 | V2 = PoisonValue::get(T: SrcTy); |
| 2544 | // Make sure the shuffle mask selects the "least significant bits" by |
| 2545 | // keeping elements from back of the src vector for big endian, and from the |
| 2546 | // front for little endian. |
| 2547 | ShuffleMask = ShuffleMaskStorage; |
| 2548 | if (IsBigEndian) |
| 2549 | ShuffleMask = ShuffleMask.take_back(N: DestElts); |
| 2550 | else |
| 2551 | ShuffleMask = ShuffleMask.take_front(N: DestElts); |
| 2552 | } else { |
| 2553 | // If we're increasing the number of elements (rewriting an integer zext), |
| 2554 | // shuffle in all of the elements from InVal. Fill the rest of the result |
| 2555 | // elements with zeros from a constant zero. |
| 2556 | V2 = Constant::getNullValue(Ty: SrcTy); |
| 2557 | // Use first elt from V2 when indicating zero in the shuffle mask. |
| 2558 | uint32_t NullElt = SrcElts; |
| 2559 | // Extend with null values in the "most significant bits" by adding elements |
| 2560 | // in front of the src vector for big endian, and at the back for little |
| 2561 | // endian. |
| 2562 | unsigned DeltaElts = DestElts - SrcElts; |
| 2563 | if (IsBigEndian) |
| 2564 | ShuffleMaskStorage.insert(I: ShuffleMaskStorage.begin(), NumToInsert: DeltaElts, Elt: NullElt); |
| 2565 | else |
| 2566 | ShuffleMaskStorage.append(NumInputs: DeltaElts, Elt: NullElt); |
| 2567 | ShuffleMask = ShuffleMaskStorage; |
| 2568 | } |
| 2569 | |
| 2570 | return new ShuffleVectorInst(InVal, V2, ShuffleMask); |
| 2571 | } |
| 2572 | |
| 2573 | static bool isMultipleOfTypeSize(unsigned Value, Type *Ty) { |
| 2574 | return Value % Ty->getPrimitiveSizeInBits() == 0; |
| 2575 | } |
| 2576 | |
| 2577 | static unsigned getTypeSizeIndex(unsigned Value, Type *Ty) { |
| 2578 | return Value / Ty->getPrimitiveSizeInBits(); |
| 2579 | } |
| 2580 | |
| 2581 | /// V is a value which is inserted into a vector of VecEltTy. |
| 2582 | /// Look through the value to see if we can decompose it into |
| 2583 | /// insertions into the vector. See the example in the comment for |
| 2584 | /// OptimizeIntegerToVectorInsertions for the pattern this handles. |
| 2585 | /// The type of V is always a non-zero multiple of VecEltTy's size. |
| 2586 | /// Shift is the number of bits between the lsb of V and the lsb of |
| 2587 | /// the vector. |
| 2588 | /// |
| 2589 | /// This returns false if the pattern can't be matched or true if it can, |
| 2590 | /// filling in Elements with the elements found here. |
| 2591 | static bool collectInsertionElements(Value *V, unsigned Shift, |
| 2592 | SmallVectorImpl<Value *> &Elements, |
| 2593 | Type *VecEltTy, bool isBigEndian) { |
| 2594 | assert(isMultipleOfTypeSize(Shift, VecEltTy) && |
| 2595 | "Shift should be a multiple of the element type size" ); |
| 2596 | |
| 2597 | // Undef values never contribute useful bits to the result. |
| 2598 | if (isa<UndefValue>(Val: V)) return true; |
| 2599 | |
| 2600 | // If we got down to a value of the right type, we win, try inserting into the |
| 2601 | // right element. |
| 2602 | if (V->getType() == VecEltTy) { |
| 2603 | // Inserting null doesn't actually insert any elements. |
| 2604 | if (Constant *C = dyn_cast<Constant>(Val: V)) |
| 2605 | if (C->isNullValue()) |
| 2606 | return true; |
| 2607 | |
| 2608 | unsigned ElementIndex = getTypeSizeIndex(Value: Shift, Ty: VecEltTy); |
| 2609 | if (isBigEndian) |
| 2610 | ElementIndex = Elements.size() - ElementIndex - 1; |
| 2611 | |
| 2612 | // Fail if multiple elements are inserted into this slot. |
| 2613 | if (Elements[ElementIndex]) |
| 2614 | return false; |
| 2615 | |
| 2616 | Elements[ElementIndex] = V; |
| 2617 | return true; |
| 2618 | } |
| 2619 | |
| 2620 | if (Constant *C = dyn_cast<Constant>(Val: V)) { |
| 2621 | // Figure out the # elements this provides, and bitcast it or slice it up |
| 2622 | // as required. |
| 2623 | unsigned NumElts = getTypeSizeIndex(Value: C->getType()->getPrimitiveSizeInBits(), |
| 2624 | Ty: VecEltTy); |
| 2625 | // If the constant is the size of a vector element, we just need to bitcast |
| 2626 | // it to the right type so it gets properly inserted. |
| 2627 | if (NumElts == 1) |
| 2628 | return collectInsertionElements(V: ConstantExpr::getBitCast(C, Ty: VecEltTy), |
| 2629 | Shift, Elements, VecEltTy, isBigEndian); |
| 2630 | |
| 2631 | // Okay, this is a constant that covers multiple elements. Slice it up into |
| 2632 | // pieces and insert each element-sized piece into the vector. |
| 2633 | if (!isa<IntegerType>(Val: C->getType())) |
| 2634 | C = ConstantExpr::getBitCast(C, Ty: IntegerType::get(C&: V->getContext(), |
| 2635 | NumBits: C->getType()->getPrimitiveSizeInBits())); |
| 2636 | unsigned ElementSize = VecEltTy->getPrimitiveSizeInBits(); |
| 2637 | Type *ElementIntTy = IntegerType::get(C&: C->getContext(), NumBits: ElementSize); |
| 2638 | |
| 2639 | for (unsigned i = 0; i != NumElts; ++i) { |
| 2640 | unsigned ShiftI = i * ElementSize; |
| 2641 | Constant *Piece = ConstantFoldBinaryInstruction( |
| 2642 | Opcode: Instruction::LShr, V1: C, V2: ConstantInt::get(Ty: C->getType(), V: ShiftI)); |
| 2643 | if (!Piece) |
| 2644 | return false; |
| 2645 | |
| 2646 | Piece = ConstantExpr::getTrunc(C: Piece, Ty: ElementIntTy); |
| 2647 | if (!collectInsertionElements(V: Piece, Shift: ShiftI + Shift, Elements, VecEltTy, |
| 2648 | isBigEndian)) |
| 2649 | return false; |
| 2650 | } |
| 2651 | return true; |
| 2652 | } |
| 2653 | |
| 2654 | if (!V->hasOneUse()) return false; |
| 2655 | |
| 2656 | Instruction *I = dyn_cast<Instruction>(Val: V); |
| 2657 | if (!I) return false; |
| 2658 | switch (I->getOpcode()) { |
| 2659 | default: return false; // Unhandled case. |
| 2660 | case Instruction::BitCast: |
| 2661 | if (I->getOperand(i: 0)->getType()->isVectorTy()) |
| 2662 | return false; |
| 2663 | return collectInsertionElements(V: I->getOperand(i: 0), Shift, Elements, VecEltTy, |
| 2664 | isBigEndian); |
| 2665 | case Instruction::ZExt: |
| 2666 | if (!isMultipleOfTypeSize( |
| 2667 | Value: I->getOperand(i: 0)->getType()->getPrimitiveSizeInBits(), |
| 2668 | Ty: VecEltTy)) |
| 2669 | return false; |
| 2670 | return collectInsertionElements(V: I->getOperand(i: 0), Shift, Elements, VecEltTy, |
| 2671 | isBigEndian); |
| 2672 | case Instruction::Or: |
| 2673 | return collectInsertionElements(V: I->getOperand(i: 0), Shift, Elements, VecEltTy, |
| 2674 | isBigEndian) && |
| 2675 | collectInsertionElements(V: I->getOperand(i: 1), Shift, Elements, VecEltTy, |
| 2676 | isBigEndian); |
| 2677 | case Instruction::Shl: { |
| 2678 | // Must be shifting by a constant that is a multiple of the element size. |
| 2679 | ConstantInt *CI = dyn_cast<ConstantInt>(Val: I->getOperand(i: 1)); |
| 2680 | if (!CI) return false; |
| 2681 | Shift += CI->getZExtValue(); |
| 2682 | if (!isMultipleOfTypeSize(Value: Shift, Ty: VecEltTy)) return false; |
| 2683 | return collectInsertionElements(V: I->getOperand(i: 0), Shift, Elements, VecEltTy, |
| 2684 | isBigEndian); |
| 2685 | } |
| 2686 | |
| 2687 | } |
| 2688 | } |
| 2689 | |
| 2690 | |
| 2691 | /// If the input is an 'or' instruction, we may be doing shifts and ors to |
| 2692 | /// assemble the elements of the vector manually. |
| 2693 | /// Try to rip the code out and replace it with insertelements. This is to |
| 2694 | /// optimize code like this: |
| 2695 | /// |
| 2696 | /// %tmp37 = bitcast float %inc to i32 |
| 2697 | /// %tmp38 = zext i32 %tmp37 to i64 |
| 2698 | /// %tmp31 = bitcast float %inc5 to i32 |
| 2699 | /// %tmp32 = zext i32 %tmp31 to i64 |
| 2700 | /// %tmp33 = shl i64 %tmp32, 32 |
| 2701 | /// %ins35 = or i64 %tmp33, %tmp38 |
| 2702 | /// %tmp43 = bitcast i64 %ins35 to <2 x float> |
| 2703 | /// |
| 2704 | /// Into two insertelements that do "buildvector{%inc, %inc5}". |
| 2705 | static Value *optimizeIntegerToVectorInsertions(BitCastInst &CI, |
| 2706 | InstCombinerImpl &IC) { |
| 2707 | auto *DestVecTy = cast<FixedVectorType>(Val: CI.getType()); |
| 2708 | Value *IntInput = CI.getOperand(i_nocapture: 0); |
| 2709 | |
| 2710 | // if the int input is just an undef value do not try to optimize to vector |
| 2711 | // insertions as it will prevent undef propagation |
| 2712 | if (isa<UndefValue>(Val: IntInput)) |
| 2713 | return nullptr; |
| 2714 | |
| 2715 | SmallVector<Value*, 8> Elements(DestVecTy->getNumElements()); |
| 2716 | if (!collectInsertionElements(V: IntInput, Shift: 0, Elements, |
| 2717 | VecEltTy: DestVecTy->getElementType(), |
| 2718 | isBigEndian: IC.getDataLayout().isBigEndian())) |
| 2719 | return nullptr; |
| 2720 | |
| 2721 | // If we succeeded, we know that all of the element are specified by Elements |
| 2722 | // or are zero if Elements has a null entry. Recast this as a set of |
| 2723 | // insertions. |
| 2724 | Value *Result = Constant::getNullValue(Ty: CI.getType()); |
| 2725 | for (unsigned i = 0, e = Elements.size(); i != e; ++i) { |
| 2726 | if (!Elements[i]) continue; // Unset element. |
| 2727 | |
| 2728 | Result = IC.Builder.CreateInsertElement(Vec: Result, NewElt: Elements[i], |
| 2729 | Idx: IC.Builder.getInt32(C: i)); |
| 2730 | } |
| 2731 | |
| 2732 | return Result; |
| 2733 | } |
| 2734 | |
| 2735 | /// Canonicalize scalar bitcasts of extracted elements into a bitcast of the |
| 2736 | /// vector followed by extract element. The backend tends to handle bitcasts of |
| 2737 | /// vectors better than bitcasts of scalars because vector registers are |
| 2738 | /// usually not type-specific like scalar integer or scalar floating-point. |
| 2739 | static Instruction *canonicalizeBitCastExtElt(BitCastInst &BitCast, |
| 2740 | InstCombinerImpl &IC) { |
| 2741 | Value *VecOp, *Index; |
| 2742 | if (!match(V: BitCast.getOperand(i_nocapture: 0), |
| 2743 | P: m_OneUse(SubPattern: m_ExtractElt(Val: m_Value(V&: VecOp), Idx: m_Value(V&: Index))))) |
| 2744 | return nullptr; |
| 2745 | |
| 2746 | // The bitcast must be to a vectorizable type, otherwise we can't make a new |
| 2747 | // type to extract from. |
| 2748 | Type *DestType = BitCast.getType(); |
| 2749 | VectorType *VecType = cast<VectorType>(Val: VecOp->getType()); |
| 2750 | if (VectorType::isValidElementType(ElemTy: DestType)) { |
| 2751 | auto *NewVecType = VectorType::get(ElementType: DestType, Other: VecType); |
| 2752 | auto *NewBC = IC.Builder.CreateBitCast(V: VecOp, DestTy: NewVecType, Name: "bc" ); |
| 2753 | return ExtractElementInst::Create(Vec: NewBC, Idx: Index); |
| 2754 | } |
| 2755 | |
| 2756 | // Only solve DestType is vector to avoid inverse transform in visitBitCast. |
| 2757 | // bitcast (extractelement <1 x elt>, dest) -> bitcast(<1 x elt>, dest) |
| 2758 | auto *FixedVType = dyn_cast<FixedVectorType>(Val: VecType); |
| 2759 | if (DestType->isVectorTy() && FixedVType && FixedVType->getNumElements() == 1) |
| 2760 | return CastInst::Create(Instruction::BitCast, S: VecOp, Ty: DestType); |
| 2761 | |
| 2762 | return nullptr; |
| 2763 | } |
| 2764 | |
| 2765 | /// Change the type of a bitwise logic operation if we can eliminate a bitcast. |
| 2766 | static Instruction *foldBitCastBitwiseLogic(BitCastInst &BitCast, |
| 2767 | InstCombiner::BuilderTy &Builder) { |
| 2768 | Type *DestTy = BitCast.getType(); |
| 2769 | BinaryOperator *BO; |
| 2770 | |
| 2771 | if (!match(V: BitCast.getOperand(i_nocapture: 0), P: m_OneUse(SubPattern: m_BinOp(I&: BO))) || |
| 2772 | !BO->isBitwiseLogicOp()) |
| 2773 | return nullptr; |
| 2774 | |
| 2775 | // FIXME: This transform is restricted to vector types to avoid backend |
| 2776 | // problems caused by creating potentially illegal operations. If a fix-up is |
| 2777 | // added to handle that situation, we can remove this check. |
| 2778 | if (!DestTy->isVectorTy() || !BO->getType()->isVectorTy()) |
| 2779 | return nullptr; |
| 2780 | |
| 2781 | if (DestTy->isFPOrFPVectorTy()) { |
| 2782 | Value *X, *Y; |
| 2783 | // bitcast(logic(bitcast(X), bitcast(Y))) -> bitcast'(logic(bitcast'(X), Y)) |
| 2784 | if (match(V: BO->getOperand(i_nocapture: 0), P: m_OneUse(SubPattern: m_BitCast(Op: m_Value(V&: X)))) && |
| 2785 | match(V: BO->getOperand(i_nocapture: 1), P: m_OneUse(SubPattern: m_BitCast(Op: m_Value(V&: Y))))) { |
| 2786 | if (X->getType()->isFPOrFPVectorTy() && |
| 2787 | Y->getType()->isIntOrIntVectorTy()) { |
| 2788 | Value *CastedOp = |
| 2789 | Builder.CreateBitCast(V: BO->getOperand(i_nocapture: 0), DestTy: Y->getType()); |
| 2790 | Value *NewBO = Builder.CreateBinOp(Opc: BO->getOpcode(), LHS: CastedOp, RHS: Y); |
| 2791 | return CastInst::CreateBitOrPointerCast(S: NewBO, Ty: DestTy); |
| 2792 | } |
| 2793 | if (X->getType()->isIntOrIntVectorTy() && |
| 2794 | Y->getType()->isFPOrFPVectorTy()) { |
| 2795 | Value *CastedOp = |
| 2796 | Builder.CreateBitCast(V: BO->getOperand(i_nocapture: 1), DestTy: X->getType()); |
| 2797 | Value *NewBO = Builder.CreateBinOp(Opc: BO->getOpcode(), LHS: CastedOp, RHS: X); |
| 2798 | return CastInst::CreateBitOrPointerCast(S: NewBO, Ty: DestTy); |
| 2799 | } |
| 2800 | } |
| 2801 | return nullptr; |
| 2802 | } |
| 2803 | |
| 2804 | if (!DestTy->isIntOrIntVectorTy()) |
| 2805 | return nullptr; |
| 2806 | |
| 2807 | Value *X; |
| 2808 | if (match(V: BO->getOperand(i_nocapture: 0), P: m_OneUse(SubPattern: m_BitCast(Op: m_Value(V&: X)))) && |
| 2809 | X->getType() == DestTy && !isa<Constant>(Val: X)) { |
| 2810 | // bitcast(logic(bitcast(X), Y)) --> logic'(X, bitcast(Y)) |
| 2811 | Value *CastedOp1 = Builder.CreateBitCast(V: BO->getOperand(i_nocapture: 1), DestTy); |
| 2812 | return BinaryOperator::Create(Op: BO->getOpcode(), S1: X, S2: CastedOp1); |
| 2813 | } |
| 2814 | |
| 2815 | if (match(V: BO->getOperand(i_nocapture: 1), P: m_OneUse(SubPattern: m_BitCast(Op: m_Value(V&: X)))) && |
| 2816 | X->getType() == DestTy && !isa<Constant>(Val: X)) { |
| 2817 | // bitcast(logic(Y, bitcast(X))) --> logic'(bitcast(Y), X) |
| 2818 | Value *CastedOp0 = Builder.CreateBitCast(V: BO->getOperand(i_nocapture: 0), DestTy); |
| 2819 | return BinaryOperator::Create(Op: BO->getOpcode(), S1: CastedOp0, S2: X); |
| 2820 | } |
| 2821 | |
| 2822 | // Canonicalize vector bitcasts to come before vector bitwise logic with a |
| 2823 | // constant. This eases recognition of special constants for later ops. |
| 2824 | // Example: |
| 2825 | // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b |
| 2826 | Constant *C; |
| 2827 | if (match(V: BO->getOperand(i_nocapture: 1), P: m_Constant(C))) { |
| 2828 | // bitcast (logic X, C) --> logic (bitcast X, C') |
| 2829 | Value *CastedOp0 = Builder.CreateBitCast(V: BO->getOperand(i_nocapture: 0), DestTy); |
| 2830 | Value *CastedC = Builder.CreateBitCast(V: C, DestTy); |
| 2831 | return BinaryOperator::Create(Op: BO->getOpcode(), S1: CastedOp0, S2: CastedC); |
| 2832 | } |
| 2833 | |
| 2834 | return nullptr; |
| 2835 | } |
| 2836 | |
| 2837 | /// Change the type of a select if we can eliminate a bitcast. |
| 2838 | static Instruction *foldBitCastSelect(BitCastInst &BitCast, |
| 2839 | InstCombiner::BuilderTy &Builder) { |
| 2840 | Value *Cond, *TVal, *FVal; |
| 2841 | if (!match(V: BitCast.getOperand(i_nocapture: 0), |
| 2842 | P: m_OneUse(SubPattern: m_Select(C: m_Value(V&: Cond), L: m_Value(V&: TVal), R: m_Value(V&: FVal))))) |
| 2843 | return nullptr; |
| 2844 | |
| 2845 | // A vector select must maintain the same number of elements in its operands. |
| 2846 | Type *CondTy = Cond->getType(); |
| 2847 | Type *DestTy = BitCast.getType(); |
| 2848 | if (auto *CondVTy = dyn_cast<VectorType>(Val: CondTy)) |
| 2849 | if (!DestTy->isVectorTy() || |
| 2850 | CondVTy->getElementCount() != |
| 2851 | cast<VectorType>(Val: DestTy)->getElementCount()) |
| 2852 | return nullptr; |
| 2853 | |
| 2854 | // FIXME: This transform is restricted from changing the select between |
| 2855 | // scalars and vectors to avoid backend problems caused by creating |
| 2856 | // potentially illegal operations. If a fix-up is added to handle that |
| 2857 | // situation, we can remove this check. |
| 2858 | if (DestTy->isVectorTy() != TVal->getType()->isVectorTy()) |
| 2859 | return nullptr; |
| 2860 | |
| 2861 | auto *Sel = cast<Instruction>(Val: BitCast.getOperand(i_nocapture: 0)); |
| 2862 | Value *X; |
| 2863 | if (match(V: TVal, P: m_OneUse(SubPattern: m_BitCast(Op: m_Value(V&: X)))) && X->getType() == DestTy && |
| 2864 | !isa<Constant>(Val: X)) { |
| 2865 | // bitcast(select(Cond, bitcast(X), Y)) --> select'(Cond, X, bitcast(Y)) |
| 2866 | Value *CastedVal = Builder.CreateBitCast(V: FVal, DestTy); |
| 2867 | return SelectInst::Create(C: Cond, S1: X, S2: CastedVal, NameStr: "" , InsertBefore: nullptr, MDFrom: Sel); |
| 2868 | } |
| 2869 | |
| 2870 | if (match(V: FVal, P: m_OneUse(SubPattern: m_BitCast(Op: m_Value(V&: X)))) && X->getType() == DestTy && |
| 2871 | !isa<Constant>(Val: X)) { |
| 2872 | // bitcast(select(Cond, Y, bitcast(X))) --> select'(Cond, bitcast(Y), X) |
| 2873 | Value *CastedVal = Builder.CreateBitCast(V: TVal, DestTy); |
| 2874 | return SelectInst::Create(C: Cond, S1: CastedVal, S2: X, NameStr: "" , InsertBefore: nullptr, MDFrom: Sel); |
| 2875 | } |
| 2876 | |
| 2877 | return nullptr; |
| 2878 | } |
| 2879 | |
| 2880 | /// Check if all users of CI are StoreInsts. |
| 2881 | static bool hasStoreUsersOnly(CastInst &CI) { |
| 2882 | for (User *U : CI.users()) { |
| 2883 | if (!isa<StoreInst>(Val: U)) |
| 2884 | return false; |
| 2885 | } |
| 2886 | return true; |
| 2887 | } |
| 2888 | |
| 2889 | /// This function handles following case |
| 2890 | /// |
| 2891 | /// A -> B cast |
| 2892 | /// PHI |
| 2893 | /// B -> A cast |
| 2894 | /// |
| 2895 | /// All the related PHI nodes can be replaced by new PHI nodes with type A. |
| 2896 | /// The uses of \p CI can be changed to the new PHI node corresponding to \p PN. |
| 2897 | Instruction *InstCombinerImpl::optimizeBitCastFromPhi(CastInst &CI, |
| 2898 | PHINode *PN) { |
| 2899 | // BitCast used by Store can be handled in InstCombineLoadStoreAlloca.cpp. |
| 2900 | if (hasStoreUsersOnly(CI)) |
| 2901 | return nullptr; |
| 2902 | |
| 2903 | Value *Src = CI.getOperand(i_nocapture: 0); |
| 2904 | Type *SrcTy = Src->getType(); // Type B |
| 2905 | Type *DestTy = CI.getType(); // Type A |
| 2906 | |
| 2907 | SmallVector<PHINode *, 4> PhiWorklist; |
| 2908 | SmallSetVector<PHINode *, 4> OldPhiNodes; |
| 2909 | |
| 2910 | // Find all of the A->B casts and PHI nodes. |
| 2911 | // We need to inspect all related PHI nodes, but PHIs can be cyclic, so |
| 2912 | // OldPhiNodes is used to track all known PHI nodes, before adding a new |
| 2913 | // PHI to PhiWorklist, it is checked against and added to OldPhiNodes first. |
| 2914 | PhiWorklist.push_back(Elt: PN); |
| 2915 | OldPhiNodes.insert(X: PN); |
| 2916 | while (!PhiWorklist.empty()) { |
| 2917 | auto *OldPN = PhiWorklist.pop_back_val(); |
| 2918 | for (Value *IncValue : OldPN->incoming_values()) { |
| 2919 | if (isa<Constant>(Val: IncValue)) |
| 2920 | continue; |
| 2921 | |
| 2922 | if (auto *LI = dyn_cast<LoadInst>(Val: IncValue)) { |
| 2923 | // If there is a sequence of one or more load instructions, each loaded |
| 2924 | // value is used as address of later load instruction, bitcast is |
| 2925 | // necessary to change the value type, don't optimize it. For |
| 2926 | // simplicity we give up if the load address comes from another load. |
| 2927 | Value *Addr = LI->getOperand(i_nocapture: 0); |
| 2928 | if (Addr == &CI || isa<LoadInst>(Val: Addr)) |
| 2929 | return nullptr; |
| 2930 | // Don't tranform "load <256 x i32>, <256 x i32>*" to |
| 2931 | // "load x86_amx, x86_amx*", because x86_amx* is invalid. |
| 2932 | // TODO: Remove this check when bitcast between vector and x86_amx |
| 2933 | // is replaced with a specific intrinsic. |
| 2934 | if (DestTy->isX86_AMXTy()) |
| 2935 | return nullptr; |
| 2936 | if (LI->hasOneUse() && LI->isSimple()) |
| 2937 | continue; |
| 2938 | // If a LoadInst has more than one use, changing the type of loaded |
| 2939 | // value may create another bitcast. |
| 2940 | return nullptr; |
| 2941 | } |
| 2942 | |
| 2943 | if (auto *PNode = dyn_cast<PHINode>(Val: IncValue)) { |
| 2944 | if (OldPhiNodes.insert(X: PNode)) |
| 2945 | PhiWorklist.push_back(Elt: PNode); |
| 2946 | continue; |
| 2947 | } |
| 2948 | |
| 2949 | auto *BCI = dyn_cast<BitCastInst>(Val: IncValue); |
| 2950 | // We can't handle other instructions. |
| 2951 | if (!BCI) |
| 2952 | return nullptr; |
| 2953 | |
| 2954 | // Verify it's a A->B cast. |
| 2955 | Type *TyA = BCI->getOperand(i_nocapture: 0)->getType(); |
| 2956 | Type *TyB = BCI->getType(); |
| 2957 | if (TyA != DestTy || TyB != SrcTy) |
| 2958 | return nullptr; |
| 2959 | } |
| 2960 | } |
| 2961 | |
| 2962 | // Check that each user of each old PHI node is something that we can |
| 2963 | // rewrite, so that all of the old PHI nodes can be cleaned up afterwards. |
| 2964 | for (auto *OldPN : OldPhiNodes) { |
| 2965 | for (User *V : OldPN->users()) { |
| 2966 | if (auto *SI = dyn_cast<StoreInst>(Val: V)) { |
| 2967 | if (!SI->isSimple() || SI->getOperand(i_nocapture: 0) != OldPN) |
| 2968 | return nullptr; |
| 2969 | } else if (auto *BCI = dyn_cast<BitCastInst>(Val: V)) { |
| 2970 | // Verify it's a B->A cast. |
| 2971 | Type *TyB = BCI->getOperand(i_nocapture: 0)->getType(); |
| 2972 | Type *TyA = BCI->getType(); |
| 2973 | if (TyA != DestTy || TyB != SrcTy) |
| 2974 | return nullptr; |
| 2975 | } else if (auto *PHI = dyn_cast<PHINode>(Val: V)) { |
| 2976 | // As long as the user is another old PHI node, then even if we don't |
| 2977 | // rewrite it, the PHI web we're considering won't have any users |
| 2978 | // outside itself, so it'll be dead. |
| 2979 | if (!OldPhiNodes.contains(key: PHI)) |
| 2980 | return nullptr; |
| 2981 | } else { |
| 2982 | return nullptr; |
| 2983 | } |
| 2984 | } |
| 2985 | } |
| 2986 | |
| 2987 | // For each old PHI node, create a corresponding new PHI node with a type A. |
| 2988 | SmallDenseMap<PHINode *, PHINode *> NewPNodes; |
| 2989 | for (auto *OldPN : OldPhiNodes) { |
| 2990 | Builder.SetInsertPoint(OldPN); |
| 2991 | PHINode *NewPN = Builder.CreatePHI(Ty: DestTy, NumReservedValues: OldPN->getNumOperands()); |
| 2992 | NewPNodes[OldPN] = NewPN; |
| 2993 | } |
| 2994 | |
| 2995 | // Fill in the operands of new PHI nodes. |
| 2996 | for (auto *OldPN : OldPhiNodes) { |
| 2997 | PHINode *NewPN = NewPNodes[OldPN]; |
| 2998 | for (unsigned j = 0, e = OldPN->getNumOperands(); j != e; ++j) { |
| 2999 | Value *V = OldPN->getOperand(i_nocapture: j); |
| 3000 | Value *NewV = nullptr; |
| 3001 | if (auto *C = dyn_cast<Constant>(Val: V)) { |
| 3002 | NewV = ConstantExpr::getBitCast(C, Ty: DestTy); |
| 3003 | } else if (auto *LI = dyn_cast<LoadInst>(Val: V)) { |
| 3004 | // Explicitly perform load combine to make sure no opposing transform |
| 3005 | // can remove the bitcast in the meantime and trigger an infinite loop. |
| 3006 | Builder.SetInsertPoint(LI); |
| 3007 | NewV = combineLoadToNewType(LI&: *LI, NewTy: DestTy); |
| 3008 | // Remove the old load and its use in the old phi, which itself becomes |
| 3009 | // dead once the whole transform finishes. |
| 3010 | replaceInstUsesWith(I&: *LI, V: PoisonValue::get(T: LI->getType())); |
| 3011 | eraseInstFromFunction(I&: *LI); |
| 3012 | } else if (auto *BCI = dyn_cast<BitCastInst>(Val: V)) { |
| 3013 | NewV = BCI->getOperand(i_nocapture: 0); |
| 3014 | } else if (auto *PrevPN = dyn_cast<PHINode>(Val: V)) { |
| 3015 | NewV = NewPNodes[PrevPN]; |
| 3016 | } |
| 3017 | assert(NewV); |
| 3018 | NewPN->addIncoming(V: NewV, BB: OldPN->getIncomingBlock(i: j)); |
| 3019 | } |
| 3020 | } |
| 3021 | |
| 3022 | // Traverse all accumulated PHI nodes and process its users, |
| 3023 | // which are Stores and BitcCasts. Without this processing |
| 3024 | // NewPHI nodes could be replicated and could lead to extra |
| 3025 | // moves generated after DeSSA. |
| 3026 | // If there is a store with type B, change it to type A. |
| 3027 | |
| 3028 | |
| 3029 | // Replace users of BitCast B->A with NewPHI. These will help |
| 3030 | // later to get rid off a closure formed by OldPHI nodes. |
| 3031 | Instruction *RetVal = nullptr; |
| 3032 | for (auto *OldPN : OldPhiNodes) { |
| 3033 | PHINode *NewPN = NewPNodes[OldPN]; |
| 3034 | for (User *V : make_early_inc_range(Range: OldPN->users())) { |
| 3035 | if (auto *SI = dyn_cast<StoreInst>(Val: V)) { |
| 3036 | assert(SI->isSimple() && SI->getOperand(0) == OldPN); |
| 3037 | Builder.SetInsertPoint(SI); |
| 3038 | auto *NewBC = |
| 3039 | cast<BitCastInst>(Val: Builder.CreateBitCast(V: NewPN, DestTy: SrcTy)); |
| 3040 | SI->setOperand(i_nocapture: 0, Val_nocapture: NewBC); |
| 3041 | Worklist.push(I: SI); |
| 3042 | assert(hasStoreUsersOnly(*NewBC)); |
| 3043 | } |
| 3044 | else if (auto *BCI = dyn_cast<BitCastInst>(Val: V)) { |
| 3045 | Type *TyB = BCI->getOperand(i_nocapture: 0)->getType(); |
| 3046 | Type *TyA = BCI->getType(); |
| 3047 | assert(TyA == DestTy && TyB == SrcTy); |
| 3048 | (void) TyA; |
| 3049 | (void) TyB; |
| 3050 | Instruction *I = replaceInstUsesWith(I&: *BCI, V: NewPN); |
| 3051 | if (BCI == &CI) |
| 3052 | RetVal = I; |
| 3053 | } else if (auto *PHI = dyn_cast<PHINode>(Val: V)) { |
| 3054 | assert(OldPhiNodes.contains(PHI)); |
| 3055 | (void) PHI; |
| 3056 | } else { |
| 3057 | llvm_unreachable("all uses should be handled" ); |
| 3058 | } |
| 3059 | } |
| 3060 | } |
| 3061 | |
| 3062 | return RetVal; |
| 3063 | } |
| 3064 | |
| 3065 | /// Fold (bitcast (or (and (bitcast X to int), signmask), nneg Y) to fp) to |
| 3066 | /// copysign((bitcast Y to fp), X) |
| 3067 | static Value *foldCopySignIdioms(BitCastInst &CI, |
| 3068 | InstCombiner::BuilderTy &Builder, |
| 3069 | const SimplifyQuery &SQ) { |
| 3070 | Value *X, *Y; |
| 3071 | Type *FTy = CI.getType(); |
| 3072 | if (!FTy->isFPOrFPVectorTy()) |
| 3073 | return nullptr; |
| 3074 | if (!match(V: &CI, P: m_ElementWiseBitCast(Op: m_c_Or( |
| 3075 | L: m_And(L: m_ElementWiseBitCast(Op: m_Value(V&: X)), R: m_SignMask()), |
| 3076 | R: m_Value(V&: Y))))) |
| 3077 | return nullptr; |
| 3078 | if (X->getType() != FTy) |
| 3079 | return nullptr; |
| 3080 | if (!isKnownNonNegative(V: Y, SQ)) |
| 3081 | return nullptr; |
| 3082 | |
| 3083 | return Builder.CreateCopySign(LHS: Builder.CreateBitCast(V: Y, DestTy: FTy), RHS: X); |
| 3084 | } |
| 3085 | |
| 3086 | Instruction *InstCombinerImpl::visitBitCast(BitCastInst &CI) { |
| 3087 | // If the operands are integer typed then apply the integer transforms, |
| 3088 | // otherwise just apply the common ones. |
| 3089 | Value *Src = CI.getOperand(i_nocapture: 0); |
| 3090 | Type *SrcTy = Src->getType(); |
| 3091 | Type *DestTy = CI.getType(); |
| 3092 | |
| 3093 | // Get rid of casts from one type to the same type. These are useless and can |
| 3094 | // be replaced by the operand. |
| 3095 | if (DestTy == Src->getType()) |
| 3096 | return replaceInstUsesWith(I&: CI, V: Src); |
| 3097 | |
| 3098 | if (isa<FixedVectorType>(Val: DestTy)) { |
| 3099 | if (isa<IntegerType>(Val: SrcTy)) { |
| 3100 | // If this is a cast from an integer to vector, check to see if the input |
| 3101 | // is a trunc or zext of a bitcast from vector. If so, we can replace all |
| 3102 | // the casts with a shuffle and (potentially) a bitcast. |
| 3103 | if (isa<TruncInst>(Val: Src) || isa<ZExtInst>(Val: Src)) { |
| 3104 | CastInst *SrcCast = cast<CastInst>(Val: Src); |
| 3105 | if (BitCastInst *BCIn = dyn_cast<BitCastInst>(Val: SrcCast->getOperand(i_nocapture: 0))) |
| 3106 | if (isa<VectorType>(Val: BCIn->getOperand(i_nocapture: 0)->getType())) |
| 3107 | if (Instruction *I = optimizeVectorResizeWithIntegerBitCasts( |
| 3108 | InVal: BCIn->getOperand(i_nocapture: 0), DestTy: cast<VectorType>(Val: DestTy), IC&: *this)) |
| 3109 | return I; |
| 3110 | } |
| 3111 | |
| 3112 | // If the input is an 'or' instruction, we may be doing shifts and ors to |
| 3113 | // assemble the elements of the vector manually. Try to rip the code out |
| 3114 | // and replace it with insertelements. |
| 3115 | if (Value *V = optimizeIntegerToVectorInsertions(CI, IC&: *this)) |
| 3116 | return replaceInstUsesWith(I&: CI, V); |
| 3117 | } |
| 3118 | } |
| 3119 | |
| 3120 | if (FixedVectorType *SrcVTy = dyn_cast<FixedVectorType>(Val: SrcTy)) { |
| 3121 | if (SrcVTy->getNumElements() == 1) { |
| 3122 | // If our destination is not a vector, then make this a straight |
| 3123 | // scalar-scalar cast. |
| 3124 | if (!DestTy->isVectorTy()) { |
| 3125 | Value *Elem = |
| 3126 | Builder.CreateExtractElement(Vec: Src, |
| 3127 | Idx: Constant::getNullValue(Ty: Type::getInt32Ty(C&: CI.getContext()))); |
| 3128 | return CastInst::Create(Instruction::BitCast, S: Elem, Ty: DestTy); |
| 3129 | } |
| 3130 | |
| 3131 | // Otherwise, see if our source is an insert. If so, then use the scalar |
| 3132 | // component directly: |
| 3133 | // bitcast (inselt <1 x elt> V, X, 0) to <n x m> --> bitcast X to <n x m> |
| 3134 | if (auto *InsElt = dyn_cast<InsertElementInst>(Val: Src)) |
| 3135 | return new BitCastInst(InsElt->getOperand(i_nocapture: 1), DestTy); |
| 3136 | } |
| 3137 | |
| 3138 | // Convert an artificial vector insert into more analyzable bitwise logic. |
| 3139 | unsigned BitWidth = DestTy->getScalarSizeInBits(); |
| 3140 | Value *X, *Y; |
| 3141 | uint64_t IndexC; |
| 3142 | if (match(V: Src, P: m_OneUse(SubPattern: m_InsertElt(Val: m_OneUse(SubPattern: m_BitCast(Op: m_Value(V&: X))), |
| 3143 | Elt: m_Value(V&: Y), Idx: m_ConstantInt(V&: IndexC)))) && |
| 3144 | DestTy->isIntegerTy() && X->getType() == DestTy && |
| 3145 | Y->getType()->isIntegerTy() && isDesirableIntType(BitWidth)) { |
| 3146 | // Adjust for big endian - the LSBs are at the high index. |
| 3147 | if (DL.isBigEndian()) |
| 3148 | IndexC = SrcVTy->getNumElements() - 1 - IndexC; |
| 3149 | |
| 3150 | // We only handle (endian-normalized) insert to index 0. Any other insert |
| 3151 | // would require a left-shift, so that is an extra instruction. |
| 3152 | if (IndexC == 0) { |
| 3153 | // bitcast (inselt (bitcast X), Y, 0) --> or (and X, MaskC), (zext Y) |
| 3154 | unsigned EltWidth = Y->getType()->getScalarSizeInBits(); |
| 3155 | APInt MaskC = APInt::getHighBitsSet(numBits: BitWidth, hiBitsSet: BitWidth - EltWidth); |
| 3156 | Value *AndX = Builder.CreateAnd(LHS: X, RHS: MaskC); |
| 3157 | Value *ZextY = Builder.CreateZExt(V: Y, DestTy); |
| 3158 | return BinaryOperator::CreateOr(V1: AndX, V2: ZextY); |
| 3159 | } |
| 3160 | } |
| 3161 | } |
| 3162 | |
| 3163 | if (auto *Shuf = dyn_cast<ShuffleVectorInst>(Val: Src)) { |
| 3164 | // Okay, we have (bitcast (shuffle ..)). Check to see if this is |
| 3165 | // a bitcast to a vector with the same # elts. |
| 3166 | Value *ShufOp0 = Shuf->getOperand(i_nocapture: 0); |
| 3167 | Value *ShufOp1 = Shuf->getOperand(i_nocapture: 1); |
| 3168 | auto ShufElts = cast<VectorType>(Val: Shuf->getType())->getElementCount(); |
| 3169 | auto SrcVecElts = cast<VectorType>(Val: ShufOp0->getType())->getElementCount(); |
| 3170 | if (Shuf->hasOneUse() && DestTy->isVectorTy() && |
| 3171 | cast<VectorType>(Val: DestTy)->getElementCount() == ShufElts && |
| 3172 | ShufElts == SrcVecElts) { |
| 3173 | BitCastInst *Tmp; |
| 3174 | // If either of the operands is a cast from CI.getType(), then |
| 3175 | // evaluating the shuffle in the casted destination's type will allow |
| 3176 | // us to eliminate at least one cast. |
| 3177 | if (((Tmp = dyn_cast<BitCastInst>(Val: ShufOp0)) && |
| 3178 | Tmp->getOperand(i_nocapture: 0)->getType() == DestTy) || |
| 3179 | ((Tmp = dyn_cast<BitCastInst>(Val: ShufOp1)) && |
| 3180 | Tmp->getOperand(i_nocapture: 0)->getType() == DestTy)) { |
| 3181 | Value *LHS = Builder.CreateBitCast(V: ShufOp0, DestTy); |
| 3182 | Value *RHS = Builder.CreateBitCast(V: ShufOp1, DestTy); |
| 3183 | // Return a new shuffle vector. Use the same element ID's, as we |
| 3184 | // know the vector types match #elts. |
| 3185 | return new ShuffleVectorInst(LHS, RHS, Shuf->getShuffleMask()); |
| 3186 | } |
| 3187 | } |
| 3188 | |
| 3189 | // A bitcasted-to-scalar and byte/bit reversing shuffle is better recognized |
| 3190 | // as a byte/bit swap: |
| 3191 | // bitcast <N x i8> (shuf X, undef, <N, N-1,...0>) -> bswap (bitcast X) |
| 3192 | // bitcast <N x i1> (shuf X, undef, <N, N-1,...0>) -> bitreverse (bitcast X) |
| 3193 | if (DestTy->isIntegerTy() && ShufElts.getKnownMinValue() % 2 == 0 && |
| 3194 | Shuf->hasOneUse() && Shuf->isReverse()) { |
| 3195 | unsigned IntrinsicNum = 0; |
| 3196 | if (DL.isLegalInteger(Width: DestTy->getScalarSizeInBits()) && |
| 3197 | SrcTy->getScalarSizeInBits() == 8) { |
| 3198 | IntrinsicNum = Intrinsic::bswap; |
| 3199 | } else if (SrcTy->getScalarSizeInBits() == 1) { |
| 3200 | IntrinsicNum = Intrinsic::bitreverse; |
| 3201 | } |
| 3202 | if (IntrinsicNum != 0) { |
| 3203 | assert(ShufOp0->getType() == SrcTy && "Unexpected shuffle mask" ); |
| 3204 | assert(match(ShufOp1, m_Undef()) && "Unexpected shuffle op" ); |
| 3205 | Function *BswapOrBitreverse = Intrinsic::getOrInsertDeclaration( |
| 3206 | M: CI.getModule(), id: IntrinsicNum, Tys: DestTy); |
| 3207 | Value *ScalarX = Builder.CreateBitCast(V: ShufOp0, DestTy); |
| 3208 | return CallInst::Create(Func: BswapOrBitreverse, Args: {ScalarX}); |
| 3209 | } |
| 3210 | } |
| 3211 | } |
| 3212 | |
| 3213 | // Handle the A->B->A cast, and there is an intervening PHI node. |
| 3214 | if (PHINode *PN = dyn_cast<PHINode>(Val: Src)) |
| 3215 | if (Instruction *I = optimizeBitCastFromPhi(CI, PN)) |
| 3216 | return I; |
| 3217 | |
| 3218 | if (Instruction *I = canonicalizeBitCastExtElt(BitCast&: CI, IC&: *this)) |
| 3219 | return I; |
| 3220 | |
| 3221 | if (Instruction *I = foldBitCastBitwiseLogic(BitCast&: CI, Builder)) |
| 3222 | return I; |
| 3223 | |
| 3224 | if (Instruction *I = foldBitCastSelect(BitCast&: CI, Builder)) |
| 3225 | return I; |
| 3226 | |
| 3227 | if (Value *V = foldCopySignIdioms(CI, Builder, SQ: SQ.getWithInstruction(I: &CI))) |
| 3228 | return replaceInstUsesWith(I&: CI, V); |
| 3229 | |
| 3230 | return commonCastTransforms(CI); |
| 3231 | } |
| 3232 | |
| 3233 | Instruction *InstCombinerImpl::visitAddrSpaceCast(AddrSpaceCastInst &CI) { |
| 3234 | return commonCastTransforms(CI); |
| 3235 | } |
| 3236 | |