| 1 | //===- InstCombineCompares.cpp --------------------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file implements the visitICmp and visitFCmp functions. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "InstCombineInternal.h" |
| 14 | #include "llvm/ADT/APFloat.h" |
| 15 | #include "llvm/ADT/APSInt.h" |
| 16 | #include "llvm/ADT/SetVector.h" |
| 17 | #include "llvm/ADT/Statistic.h" |
| 18 | #include "llvm/Analysis/CaptureTracking.h" |
| 19 | #include "llvm/Analysis/CmpInstAnalysis.h" |
| 20 | #include "llvm/Analysis/ConstantFolding.h" |
| 21 | #include "llvm/Analysis/InstructionSimplify.h" |
| 22 | #include "llvm/Analysis/Loads.h" |
| 23 | #include "llvm/Analysis/Utils/Local.h" |
| 24 | #include "llvm/Analysis/VectorUtils.h" |
| 25 | #include "llvm/IR/ConstantRange.h" |
| 26 | #include "llvm/IR/Constants.h" |
| 27 | #include "llvm/IR/DataLayout.h" |
| 28 | #include "llvm/IR/InstrTypes.h" |
| 29 | #include "llvm/IR/Instructions.h" |
| 30 | #include "llvm/IR/IntrinsicInst.h" |
| 31 | #include "llvm/IR/PatternMatch.h" |
| 32 | #include "llvm/Support/KnownBits.h" |
| 33 | #include "llvm/Transforms/InstCombine/InstCombiner.h" |
| 34 | #include <bitset> |
| 35 | |
| 36 | using namespace llvm; |
| 37 | using namespace PatternMatch; |
| 38 | |
| 39 | #define DEBUG_TYPE "instcombine" |
| 40 | |
| 41 | // How many times is a select replaced by one of its operands? |
| 42 | STATISTIC(NumSel, "Number of select opts" ); |
| 43 | |
| 44 | namespace llvm { |
| 45 | extern cl::opt<bool> ProfcheckDisableMetadataFixes; |
| 46 | } |
| 47 | |
| 48 | /// Compute Result = In1+In2, returning true if the result overflowed for this |
| 49 | /// type. |
| 50 | static bool addWithOverflow(APInt &Result, const APInt &In1, const APInt &In2, |
| 51 | bool IsSigned = false) { |
| 52 | bool Overflow; |
| 53 | if (IsSigned) |
| 54 | Result = In1.sadd_ov(RHS: In2, Overflow); |
| 55 | else |
| 56 | Result = In1.uadd_ov(RHS: In2, Overflow); |
| 57 | |
| 58 | return Overflow; |
| 59 | } |
| 60 | |
| 61 | /// Compute Result = In1-In2, returning true if the result overflowed for this |
| 62 | /// type. |
| 63 | static bool subWithOverflow(APInt &Result, const APInt &In1, const APInt &In2, |
| 64 | bool IsSigned = false) { |
| 65 | bool Overflow; |
| 66 | if (IsSigned) |
| 67 | Result = In1.ssub_ov(RHS: In2, Overflow); |
| 68 | else |
| 69 | Result = In1.usub_ov(RHS: In2, Overflow); |
| 70 | |
| 71 | return Overflow; |
| 72 | } |
| 73 | |
| 74 | /// Given an icmp instruction, return true if any use of this comparison is a |
| 75 | /// branch on sign bit comparison. |
| 76 | static bool hasBranchUse(ICmpInst &I) { |
| 77 | for (auto *U : I.users()) |
| 78 | if (isa<BranchInst>(Val: U)) |
| 79 | return true; |
| 80 | return false; |
| 81 | } |
| 82 | |
| 83 | /// Returns true if the exploded icmp can be expressed as a signed comparison |
| 84 | /// to zero and updates the predicate accordingly. |
| 85 | /// The signedness of the comparison is preserved. |
| 86 | /// TODO: Refactor with decomposeBitTestICmp()? |
| 87 | static bool isSignTest(ICmpInst::Predicate &Pred, const APInt &C) { |
| 88 | if (!ICmpInst::isSigned(predicate: Pred)) |
| 89 | return false; |
| 90 | |
| 91 | if (C.isZero()) |
| 92 | return ICmpInst::isRelational(P: Pred); |
| 93 | |
| 94 | if (C.isOne()) { |
| 95 | if (Pred == ICmpInst::ICMP_SLT) { |
| 96 | Pred = ICmpInst::ICMP_SLE; |
| 97 | return true; |
| 98 | } |
| 99 | } else if (C.isAllOnes()) { |
| 100 | if (Pred == ICmpInst::ICMP_SGT) { |
| 101 | Pred = ICmpInst::ICMP_SGE; |
| 102 | return true; |
| 103 | } |
| 104 | } |
| 105 | |
| 106 | return false; |
| 107 | } |
| 108 | |
| 109 | /// This is called when we see this pattern: |
| 110 | /// cmp pred (load (gep GV, ...)), cmpcst |
| 111 | /// where GV is a global variable with a constant initializer. Try to simplify |
| 112 | /// this into some simple computation that does not need the load. For example |
| 113 | /// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3". |
| 114 | /// |
| 115 | /// If AndCst is non-null, then the loaded value is masked with that constant |
| 116 | /// before doing the comparison. This handles cases like "A[i]&4 == 0". |
| 117 | Instruction *InstCombinerImpl::foldCmpLoadFromIndexedGlobal( |
| 118 | LoadInst *LI, GetElementPtrInst *GEP, CmpInst &ICI, ConstantInt *AndCst) { |
| 119 | auto *GV = dyn_cast<GlobalVariable>(Val: getUnderlyingObject(V: GEP)); |
| 120 | if (LI->isVolatile() || !GV || !GV->isConstant() || |
| 121 | !GV->hasDefinitiveInitializer()) |
| 122 | return nullptr; |
| 123 | |
| 124 | Type *EltTy = LI->getType(); |
| 125 | TypeSize EltSize = DL.getTypeStoreSize(Ty: EltTy); |
| 126 | if (EltSize.isScalable()) |
| 127 | return nullptr; |
| 128 | |
| 129 | LinearExpression Expr = decomposeLinearExpression(DL, Ptr: GEP); |
| 130 | if (!Expr.Index || Expr.BasePtr != GV || Expr.Offset.getBitWidth() > 64) |
| 131 | return nullptr; |
| 132 | |
| 133 | Constant *Init = GV->getInitializer(); |
| 134 | TypeSize GlobalSize = DL.getTypeAllocSize(Ty: Init->getType()); |
| 135 | |
| 136 | Value *Idx = Expr.Index; |
| 137 | const APInt &Stride = Expr.Scale; |
| 138 | const APInt &ConstOffset = Expr.Offset; |
| 139 | |
| 140 | // Allow an additional context offset, but only within the stride. |
| 141 | if (!ConstOffset.ult(RHS: Stride)) |
| 142 | return nullptr; |
| 143 | |
| 144 | // Don't handle overlapping loads for now. |
| 145 | if (!Stride.uge(RHS: EltSize.getFixedValue())) |
| 146 | return nullptr; |
| 147 | |
| 148 | // Don't blow up on huge arrays. |
| 149 | uint64_t ArrayElementCount = |
| 150 | divideCeil(Numerator: (GlobalSize.getFixedValue() - ConstOffset.getZExtValue()), |
| 151 | Denominator: Stride.getZExtValue()); |
| 152 | if (ArrayElementCount > MaxArraySizeForCombine) |
| 153 | return nullptr; |
| 154 | |
| 155 | enum { Overdefined = -3, Undefined = -2 }; |
| 156 | |
| 157 | // Variables for our state machines. |
| 158 | |
| 159 | // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form |
| 160 | // "i == 47 | i == 87", where 47 is the first index the condition is true for, |
| 161 | // and 87 is the second (and last) index. FirstTrueElement is -2 when |
| 162 | // undefined, otherwise set to the first true element. SecondTrueElement is |
| 163 | // -2 when undefined, -3 when overdefined and >= 0 when that index is true. |
| 164 | int FirstTrueElement = Undefined, SecondTrueElement = Undefined; |
| 165 | |
| 166 | // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the |
| 167 | // form "i != 47 & i != 87". Same state transitions as for true elements. |
| 168 | int FirstFalseElement = Undefined, SecondFalseElement = Undefined; |
| 169 | |
| 170 | /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these |
| 171 | /// define a state machine that triggers for ranges of values that the index |
| 172 | /// is true or false for. This triggers on things like "abbbbc"[i] == 'b'. |
| 173 | /// This is -2 when undefined, -3 when overdefined, and otherwise the last |
| 174 | /// index in the range (inclusive). We use -2 for undefined here because we |
| 175 | /// use relative comparisons and don't want 0-1 to match -1. |
| 176 | int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined; |
| 177 | |
| 178 | // MagicBitvector - This is a magic bitvector where we set a bit if the |
| 179 | // comparison is true for element 'i'. If there are 64 elements or less in |
| 180 | // the array, this will fully represent all the comparison results. |
| 181 | uint64_t MagicBitvector = 0; |
| 182 | |
| 183 | // Scan the array and see if one of our patterns matches. |
| 184 | Constant *CompareRHS = cast<Constant>(Val: ICI.getOperand(i_nocapture: 1)); |
| 185 | APInt Offset = ConstOffset; |
| 186 | for (unsigned i = 0, e = ArrayElementCount; i != e; ++i, Offset += Stride) { |
| 187 | Constant *Elt = ConstantFoldLoadFromConst(C: Init, Ty: EltTy, Offset, DL); |
| 188 | if (!Elt) |
| 189 | return nullptr; |
| 190 | |
| 191 | // If the element is masked, handle it. |
| 192 | if (AndCst) { |
| 193 | Elt = ConstantFoldBinaryOpOperands(Opcode: Instruction::And, LHS: Elt, RHS: AndCst, DL); |
| 194 | if (!Elt) |
| 195 | return nullptr; |
| 196 | } |
| 197 | |
| 198 | // Find out if the comparison would be true or false for the i'th element. |
| 199 | Constant *C = ConstantFoldCompareInstOperands(Predicate: ICI.getPredicate(), LHS: Elt, |
| 200 | RHS: CompareRHS, DL, TLI: &TLI); |
| 201 | if (!C) |
| 202 | return nullptr; |
| 203 | |
| 204 | // If the result is undef for this element, ignore it. |
| 205 | if (isa<UndefValue>(Val: C)) { |
| 206 | // Extend range state machines to cover this element in case there is an |
| 207 | // undef in the middle of the range. |
| 208 | if (TrueRangeEnd == (int)i - 1) |
| 209 | TrueRangeEnd = i; |
| 210 | if (FalseRangeEnd == (int)i - 1) |
| 211 | FalseRangeEnd = i; |
| 212 | continue; |
| 213 | } |
| 214 | |
| 215 | // If we can't compute the result for any of the elements, we have to give |
| 216 | // up evaluating the entire conditional. |
| 217 | if (!isa<ConstantInt>(Val: C)) |
| 218 | return nullptr; |
| 219 | |
| 220 | // Otherwise, we know if the comparison is true or false for this element, |
| 221 | // update our state machines. |
| 222 | bool IsTrueForElt = !cast<ConstantInt>(Val: C)->isZero(); |
| 223 | |
| 224 | // State machine for single/double/range index comparison. |
| 225 | if (IsTrueForElt) { |
| 226 | // Update the TrueElement state machine. |
| 227 | if (FirstTrueElement == Undefined) |
| 228 | FirstTrueElement = TrueRangeEnd = i; // First true element. |
| 229 | else { |
| 230 | // Update double-compare state machine. |
| 231 | if (SecondTrueElement == Undefined) |
| 232 | SecondTrueElement = i; |
| 233 | else |
| 234 | SecondTrueElement = Overdefined; |
| 235 | |
| 236 | // Update range state machine. |
| 237 | if (TrueRangeEnd == (int)i - 1) |
| 238 | TrueRangeEnd = i; |
| 239 | else |
| 240 | TrueRangeEnd = Overdefined; |
| 241 | } |
| 242 | } else { |
| 243 | // Update the FalseElement state machine. |
| 244 | if (FirstFalseElement == Undefined) |
| 245 | FirstFalseElement = FalseRangeEnd = i; // First false element. |
| 246 | else { |
| 247 | // Update double-compare state machine. |
| 248 | if (SecondFalseElement == Undefined) |
| 249 | SecondFalseElement = i; |
| 250 | else |
| 251 | SecondFalseElement = Overdefined; |
| 252 | |
| 253 | // Update range state machine. |
| 254 | if (FalseRangeEnd == (int)i - 1) |
| 255 | FalseRangeEnd = i; |
| 256 | else |
| 257 | FalseRangeEnd = Overdefined; |
| 258 | } |
| 259 | } |
| 260 | |
| 261 | // If this element is in range, update our magic bitvector. |
| 262 | if (i < 64 && IsTrueForElt) |
| 263 | MagicBitvector |= 1ULL << i; |
| 264 | |
| 265 | // If all of our states become overdefined, bail out early. Since the |
| 266 | // predicate is expensive, only check it every 8 elements. This is only |
| 267 | // really useful for really huge arrays. |
| 268 | if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined && |
| 269 | SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined && |
| 270 | FalseRangeEnd == Overdefined) |
| 271 | return nullptr; |
| 272 | } |
| 273 | |
| 274 | // Now that we've scanned the entire array, emit our new comparison(s). We |
| 275 | // order the state machines in complexity of the generated code. |
| 276 | |
| 277 | // If inbounds keyword is not present, Idx * Stride can overflow. |
| 278 | // Let's assume that Stride is 2 and the wanted value is at offset 0. |
| 279 | // Then, there are two possible values for Idx to match offset 0: |
| 280 | // 0x00..00, 0x80..00. |
| 281 | // Emitting 'icmp eq Idx, 0' isn't correct in this case because the |
| 282 | // comparison is false if Idx was 0x80..00. |
| 283 | // We need to erase the highest countTrailingZeros(ElementSize) bits of Idx. |
| 284 | auto MaskIdx = [&](Value *Idx) { |
| 285 | if (!Expr.Flags.isInBounds() && Stride.countr_zero() != 0) { |
| 286 | Value *Mask = Constant::getAllOnesValue(Ty: Idx->getType()); |
| 287 | Mask = Builder.CreateLShr(LHS: Mask, RHS: Stride.countr_zero()); |
| 288 | Idx = Builder.CreateAnd(LHS: Idx, RHS: Mask); |
| 289 | } |
| 290 | return Idx; |
| 291 | }; |
| 292 | |
| 293 | // If the comparison is only true for one or two elements, emit direct |
| 294 | // comparisons. |
| 295 | if (SecondTrueElement != Overdefined) { |
| 296 | Idx = MaskIdx(Idx); |
| 297 | // None true -> false. |
| 298 | if (FirstTrueElement == Undefined) |
| 299 | return replaceInstUsesWith(I&: ICI, V: Builder.getFalse()); |
| 300 | |
| 301 | Value *FirstTrueIdx = ConstantInt::get(Ty: Idx->getType(), V: FirstTrueElement); |
| 302 | |
| 303 | // True for one element -> 'i == 47'. |
| 304 | if (SecondTrueElement == Undefined) |
| 305 | return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx); |
| 306 | |
| 307 | // True for two elements -> 'i == 47 | i == 72'. |
| 308 | Value *C1 = Builder.CreateICmpEQ(LHS: Idx, RHS: FirstTrueIdx); |
| 309 | Value *SecondTrueIdx = ConstantInt::get(Ty: Idx->getType(), V: SecondTrueElement); |
| 310 | Value *C2 = Builder.CreateICmpEQ(LHS: Idx, RHS: SecondTrueIdx); |
| 311 | return BinaryOperator::CreateOr(V1: C1, V2: C2); |
| 312 | } |
| 313 | |
| 314 | // If the comparison is only false for one or two elements, emit direct |
| 315 | // comparisons. |
| 316 | if (SecondFalseElement != Overdefined) { |
| 317 | Idx = MaskIdx(Idx); |
| 318 | // None false -> true. |
| 319 | if (FirstFalseElement == Undefined) |
| 320 | return replaceInstUsesWith(I&: ICI, V: Builder.getTrue()); |
| 321 | |
| 322 | Value *FirstFalseIdx = ConstantInt::get(Ty: Idx->getType(), V: FirstFalseElement); |
| 323 | |
| 324 | // False for one element -> 'i != 47'. |
| 325 | if (SecondFalseElement == Undefined) |
| 326 | return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx); |
| 327 | |
| 328 | // False for two elements -> 'i != 47 & i != 72'. |
| 329 | Value *C1 = Builder.CreateICmpNE(LHS: Idx, RHS: FirstFalseIdx); |
| 330 | Value *SecondFalseIdx = |
| 331 | ConstantInt::get(Ty: Idx->getType(), V: SecondFalseElement); |
| 332 | Value *C2 = Builder.CreateICmpNE(LHS: Idx, RHS: SecondFalseIdx); |
| 333 | return BinaryOperator::CreateAnd(V1: C1, V2: C2); |
| 334 | } |
| 335 | |
| 336 | // If the comparison can be replaced with a range comparison for the elements |
| 337 | // where it is true, emit the range check. |
| 338 | if (TrueRangeEnd != Overdefined) { |
| 339 | assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare" ); |
| 340 | Idx = MaskIdx(Idx); |
| 341 | |
| 342 | // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1). |
| 343 | if (FirstTrueElement) { |
| 344 | Value *Offs = ConstantInt::getSigned(Ty: Idx->getType(), V: -FirstTrueElement); |
| 345 | Idx = Builder.CreateAdd(LHS: Idx, RHS: Offs); |
| 346 | } |
| 347 | |
| 348 | Value *End = |
| 349 | ConstantInt::get(Ty: Idx->getType(), V: TrueRangeEnd - FirstTrueElement + 1); |
| 350 | return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End); |
| 351 | } |
| 352 | |
| 353 | // False range check. |
| 354 | if (FalseRangeEnd != Overdefined) { |
| 355 | assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare" ); |
| 356 | Idx = MaskIdx(Idx); |
| 357 | // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse). |
| 358 | if (FirstFalseElement) { |
| 359 | Value *Offs = ConstantInt::getSigned(Ty: Idx->getType(), V: -FirstFalseElement); |
| 360 | Idx = Builder.CreateAdd(LHS: Idx, RHS: Offs); |
| 361 | } |
| 362 | |
| 363 | Value *End = |
| 364 | ConstantInt::get(Ty: Idx->getType(), V: FalseRangeEnd - FirstFalseElement); |
| 365 | return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End); |
| 366 | } |
| 367 | |
| 368 | // If a magic bitvector captures the entire comparison state |
| 369 | // of this load, replace it with computation that does: |
| 370 | // ((magic_cst >> i) & 1) != 0 |
| 371 | { |
| 372 | Type *Ty = nullptr; |
| 373 | |
| 374 | // Look for an appropriate type: |
| 375 | // - The type of Idx if the magic fits |
| 376 | // - The smallest fitting legal type |
| 377 | if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth()) |
| 378 | Ty = Idx->getType(); |
| 379 | else |
| 380 | Ty = DL.getSmallestLegalIntType(C&: Init->getContext(), Width: ArrayElementCount); |
| 381 | |
| 382 | if (Ty) { |
| 383 | Idx = MaskIdx(Idx); |
| 384 | Value *V = Builder.CreateIntCast(V: Idx, DestTy: Ty, isSigned: false); |
| 385 | V = Builder.CreateLShr(LHS: ConstantInt::get(Ty, V: MagicBitvector), RHS: V); |
| 386 | V = Builder.CreateAnd(LHS: ConstantInt::get(Ty, V: 1), RHS: V); |
| 387 | return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, V: 0)); |
| 388 | } |
| 389 | } |
| 390 | |
| 391 | return nullptr; |
| 392 | } |
| 393 | |
| 394 | /// Returns true if we can rewrite Start as a GEP with pointer Base |
| 395 | /// and some integer offset. The nodes that need to be re-written |
| 396 | /// for this transformation will be added to Explored. |
| 397 | static bool canRewriteGEPAsOffset(Value *Start, Value *Base, GEPNoWrapFlags &NW, |
| 398 | const DataLayout &DL, |
| 399 | SetVector<Value *> &Explored) { |
| 400 | SmallVector<Value *, 16> WorkList(1, Start); |
| 401 | Explored.insert(X: Base); |
| 402 | |
| 403 | // The following traversal gives us an order which can be used |
| 404 | // when doing the final transformation. Since in the final |
| 405 | // transformation we create the PHI replacement instructions first, |
| 406 | // we don't have to get them in any particular order. |
| 407 | // |
| 408 | // However, for other instructions we will have to traverse the |
| 409 | // operands of an instruction first, which means that we have to |
| 410 | // do a post-order traversal. |
| 411 | while (!WorkList.empty()) { |
| 412 | SetVector<PHINode *> PHIs; |
| 413 | |
| 414 | while (!WorkList.empty()) { |
| 415 | if (Explored.size() >= 100) |
| 416 | return false; |
| 417 | |
| 418 | Value *V = WorkList.back(); |
| 419 | |
| 420 | if (Explored.contains(key: V)) { |
| 421 | WorkList.pop_back(); |
| 422 | continue; |
| 423 | } |
| 424 | |
| 425 | if (!isa<GetElementPtrInst>(Val: V) && !isa<PHINode>(Val: V)) |
| 426 | // We've found some value that we can't explore which is different from |
| 427 | // the base. Therefore we can't do this transformation. |
| 428 | return false; |
| 429 | |
| 430 | if (auto *GEP = dyn_cast<GEPOperator>(Val: V)) { |
| 431 | // Only allow inbounds GEPs with at most one variable offset. |
| 432 | auto IsNonConst = [](Value *V) { return !isa<ConstantInt>(Val: V); }; |
| 433 | if (!GEP->isInBounds() || count_if(Range: GEP->indices(), P: IsNonConst) > 1) |
| 434 | return false; |
| 435 | |
| 436 | NW = NW.intersectForOffsetAdd(Other: GEP->getNoWrapFlags()); |
| 437 | if (!Explored.contains(key: GEP->getOperand(i_nocapture: 0))) |
| 438 | WorkList.push_back(Elt: GEP->getOperand(i_nocapture: 0)); |
| 439 | } |
| 440 | |
| 441 | if (WorkList.back() == V) { |
| 442 | WorkList.pop_back(); |
| 443 | // We've finished visiting this node, mark it as such. |
| 444 | Explored.insert(X: V); |
| 445 | } |
| 446 | |
| 447 | if (auto *PN = dyn_cast<PHINode>(Val: V)) { |
| 448 | // We cannot transform PHIs on unsplittable basic blocks. |
| 449 | if (isa<CatchSwitchInst>(Val: PN->getParent()->getTerminator())) |
| 450 | return false; |
| 451 | Explored.insert(X: PN); |
| 452 | PHIs.insert(X: PN); |
| 453 | } |
| 454 | } |
| 455 | |
| 456 | // Explore the PHI nodes further. |
| 457 | for (auto *PN : PHIs) |
| 458 | for (Value *Op : PN->incoming_values()) |
| 459 | if (!Explored.contains(key: Op)) |
| 460 | WorkList.push_back(Elt: Op); |
| 461 | } |
| 462 | |
| 463 | // Make sure that we can do this. Since we can't insert GEPs in a basic |
| 464 | // block before a PHI node, we can't easily do this transformation if |
| 465 | // we have PHI node users of transformed instructions. |
| 466 | for (Value *Val : Explored) { |
| 467 | for (Value *Use : Val->uses()) { |
| 468 | |
| 469 | auto *PHI = dyn_cast<PHINode>(Val: Use); |
| 470 | auto *Inst = dyn_cast<Instruction>(Val); |
| 471 | |
| 472 | if (Inst == Base || Inst == PHI || !Inst || !PHI || |
| 473 | !Explored.contains(key: PHI)) |
| 474 | continue; |
| 475 | |
| 476 | if (PHI->getParent() == Inst->getParent()) |
| 477 | return false; |
| 478 | } |
| 479 | } |
| 480 | return true; |
| 481 | } |
| 482 | |
| 483 | // Sets the appropriate insert point on Builder where we can add |
| 484 | // a replacement Instruction for V (if that is possible). |
| 485 | static void setInsertionPoint(IRBuilder<> &Builder, Value *V, |
| 486 | bool Before = true) { |
| 487 | if (auto *PHI = dyn_cast<PHINode>(Val: V)) { |
| 488 | BasicBlock *Parent = PHI->getParent(); |
| 489 | Builder.SetInsertPoint(TheBB: Parent, IP: Parent->getFirstInsertionPt()); |
| 490 | return; |
| 491 | } |
| 492 | if (auto *I = dyn_cast<Instruction>(Val: V)) { |
| 493 | if (!Before) |
| 494 | I = &*std::next(x: I->getIterator()); |
| 495 | Builder.SetInsertPoint(I); |
| 496 | return; |
| 497 | } |
| 498 | if (auto *A = dyn_cast<Argument>(Val: V)) { |
| 499 | // Set the insertion point in the entry block. |
| 500 | BasicBlock &Entry = A->getParent()->getEntryBlock(); |
| 501 | Builder.SetInsertPoint(TheBB: &Entry, IP: Entry.getFirstInsertionPt()); |
| 502 | return; |
| 503 | } |
| 504 | // Otherwise, this is a constant and we don't need to set a new |
| 505 | // insertion point. |
| 506 | assert(isa<Constant>(V) && "Setting insertion point for unknown value!" ); |
| 507 | } |
| 508 | |
| 509 | /// Returns a re-written value of Start as an indexed GEP using Base as a |
| 510 | /// pointer. |
| 511 | static Value *rewriteGEPAsOffset(Value *Start, Value *Base, GEPNoWrapFlags NW, |
| 512 | const DataLayout &DL, |
| 513 | SetVector<Value *> &Explored, |
| 514 | InstCombiner &IC) { |
| 515 | // Perform all the substitutions. This is a bit tricky because we can |
| 516 | // have cycles in our use-def chains. |
| 517 | // 1. Create the PHI nodes without any incoming values. |
| 518 | // 2. Create all the other values. |
| 519 | // 3. Add the edges for the PHI nodes. |
| 520 | // 4. Emit GEPs to get the original pointers. |
| 521 | // 5. Remove the original instructions. |
| 522 | Type *IndexType = IntegerType::get( |
| 523 | C&: Base->getContext(), NumBits: DL.getIndexTypeSizeInBits(Ty: Start->getType())); |
| 524 | |
| 525 | DenseMap<Value *, Value *> NewInsts; |
| 526 | NewInsts[Base] = ConstantInt::getNullValue(Ty: IndexType); |
| 527 | |
| 528 | // Create the new PHI nodes, without adding any incoming values. |
| 529 | for (Value *Val : Explored) { |
| 530 | if (Val == Base) |
| 531 | continue; |
| 532 | // Create empty phi nodes. This avoids cyclic dependencies when creating |
| 533 | // the remaining instructions. |
| 534 | if (auto *PHI = dyn_cast<PHINode>(Val)) |
| 535 | NewInsts[PHI] = |
| 536 | PHINode::Create(Ty: IndexType, NumReservedValues: PHI->getNumIncomingValues(), |
| 537 | NameStr: PHI->getName() + ".idx" , InsertBefore: PHI->getIterator()); |
| 538 | } |
| 539 | IRBuilder<> Builder(Base->getContext()); |
| 540 | |
| 541 | // Create all the other instructions. |
| 542 | for (Value *Val : Explored) { |
| 543 | if (NewInsts.contains(Val)) |
| 544 | continue; |
| 545 | |
| 546 | if (auto *GEP = dyn_cast<GEPOperator>(Val)) { |
| 547 | setInsertionPoint(Builder, V: GEP); |
| 548 | Value *Op = NewInsts[GEP->getOperand(i_nocapture: 0)]; |
| 549 | Value *OffsetV = emitGEPOffset(Builder: &Builder, DL, GEP); |
| 550 | if (isa<ConstantInt>(Val: Op) && cast<ConstantInt>(Val: Op)->isZero()) |
| 551 | NewInsts[GEP] = OffsetV; |
| 552 | else |
| 553 | NewInsts[GEP] = Builder.CreateAdd( |
| 554 | LHS: Op, RHS: OffsetV, Name: GEP->getOperand(i_nocapture: 0)->getName() + ".add" , |
| 555 | /*NUW=*/HasNUW: NW.hasNoUnsignedWrap(), |
| 556 | /*NSW=*/HasNSW: NW.hasNoUnsignedSignedWrap()); |
| 557 | continue; |
| 558 | } |
| 559 | if (isa<PHINode>(Val)) |
| 560 | continue; |
| 561 | |
| 562 | llvm_unreachable("Unexpected instruction type" ); |
| 563 | } |
| 564 | |
| 565 | // Add the incoming values to the PHI nodes. |
| 566 | for (Value *Val : Explored) { |
| 567 | if (Val == Base) |
| 568 | continue; |
| 569 | // All the instructions have been created, we can now add edges to the |
| 570 | // phi nodes. |
| 571 | if (auto *PHI = dyn_cast<PHINode>(Val)) { |
| 572 | PHINode *NewPhi = static_cast<PHINode *>(NewInsts[PHI]); |
| 573 | for (unsigned I = 0, E = PHI->getNumIncomingValues(); I < E; ++I) { |
| 574 | Value *NewIncoming = PHI->getIncomingValue(i: I); |
| 575 | |
| 576 | auto It = NewInsts.find(Val: NewIncoming); |
| 577 | if (It != NewInsts.end()) |
| 578 | NewIncoming = It->second; |
| 579 | |
| 580 | NewPhi->addIncoming(V: NewIncoming, BB: PHI->getIncomingBlock(i: I)); |
| 581 | } |
| 582 | } |
| 583 | } |
| 584 | |
| 585 | for (Value *Val : Explored) { |
| 586 | if (Val == Base) |
| 587 | continue; |
| 588 | |
| 589 | setInsertionPoint(Builder, V: Val, Before: false); |
| 590 | // Create GEP for external users. |
| 591 | Value *NewVal = Builder.CreateGEP(Ty: Builder.getInt8Ty(), Ptr: Base, IdxList: NewInsts[Val], |
| 592 | Name: Val->getName() + ".ptr" , NW); |
| 593 | IC.replaceInstUsesWith(I&: *cast<Instruction>(Val), V: NewVal); |
| 594 | // Add old instruction to worklist for DCE. We don't directly remove it |
| 595 | // here because the original compare is one of the users. |
| 596 | IC.addToWorklist(I: cast<Instruction>(Val)); |
| 597 | } |
| 598 | |
| 599 | return NewInsts[Start]; |
| 600 | } |
| 601 | |
| 602 | /// Converts (CMP GEPLHS, RHS) if this change would make RHS a constant. |
| 603 | /// We can look through PHIs, GEPs and casts in order to determine a common base |
| 604 | /// between GEPLHS and RHS. |
| 605 | static Instruction *transformToIndexedCompare(GEPOperator *GEPLHS, Value *RHS, |
| 606 | CmpPredicate Cond, |
| 607 | const DataLayout &DL, |
| 608 | InstCombiner &IC) { |
| 609 | // FIXME: Support vector of pointers. |
| 610 | if (GEPLHS->getType()->isVectorTy()) |
| 611 | return nullptr; |
| 612 | |
| 613 | if (!GEPLHS->hasAllConstantIndices()) |
| 614 | return nullptr; |
| 615 | |
| 616 | APInt Offset(DL.getIndexTypeSizeInBits(Ty: GEPLHS->getType()), 0); |
| 617 | Value *PtrBase = |
| 618 | GEPLHS->stripAndAccumulateConstantOffsets(DL, Offset, |
| 619 | /*AllowNonInbounds*/ false); |
| 620 | |
| 621 | // Bail if we looked through addrspacecast. |
| 622 | if (PtrBase->getType() != GEPLHS->getType()) |
| 623 | return nullptr; |
| 624 | |
| 625 | // The set of nodes that will take part in this transformation. |
| 626 | SetVector<Value *> Nodes; |
| 627 | GEPNoWrapFlags NW = GEPLHS->getNoWrapFlags(); |
| 628 | if (!canRewriteGEPAsOffset(Start: RHS, Base: PtrBase, NW, DL, Explored&: Nodes)) |
| 629 | return nullptr; |
| 630 | |
| 631 | // We know we can re-write this as |
| 632 | // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) |
| 633 | // Since we've only looked through inbouds GEPs we know that we |
| 634 | // can't have overflow on either side. We can therefore re-write |
| 635 | // this as: |
| 636 | // OFFSET1 cmp OFFSET2 |
| 637 | Value *NewRHS = rewriteGEPAsOffset(Start: RHS, Base: PtrBase, NW, DL, Explored&: Nodes, IC); |
| 638 | |
| 639 | // RewriteGEPAsOffset has replaced RHS and all of its uses with a re-written |
| 640 | // GEP having PtrBase as the pointer base, and has returned in NewRHS the |
| 641 | // offset. Since Index is the offset of LHS to the base pointer, we will now |
| 642 | // compare the offsets instead of comparing the pointers. |
| 643 | return new ICmpInst(ICmpInst::getSignedPredicate(Pred: Cond), |
| 644 | IC.Builder.getInt(AI: Offset), NewRHS); |
| 645 | } |
| 646 | |
| 647 | /// Fold comparisons between a GEP instruction and something else. At this point |
| 648 | /// we know that the GEP is on the LHS of the comparison. |
| 649 | Instruction *InstCombinerImpl::foldGEPICmp(GEPOperator *GEPLHS, Value *RHS, |
| 650 | CmpPredicate Cond, Instruction &I) { |
| 651 | // Don't transform signed compares of GEPs into index compares. Even if the |
| 652 | // GEP is inbounds, the final add of the base pointer can have signed overflow |
| 653 | // and would change the result of the icmp. |
| 654 | // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be |
| 655 | // the maximum signed value for the pointer type. |
| 656 | if (ICmpInst::isSigned(predicate: Cond)) |
| 657 | return nullptr; |
| 658 | |
| 659 | // Look through bitcasts and addrspacecasts. We do not however want to remove |
| 660 | // 0 GEPs. |
| 661 | if (!isa<GetElementPtrInst>(Val: RHS)) |
| 662 | RHS = RHS->stripPointerCasts(); |
| 663 | |
| 664 | auto CanFold = [Cond](GEPNoWrapFlags NW) { |
| 665 | if (ICmpInst::isEquality(P: Cond)) |
| 666 | return true; |
| 667 | |
| 668 | // Unsigned predicates can be folded if the GEPs have *any* nowrap flags. |
| 669 | assert(ICmpInst::isUnsigned(Cond)); |
| 670 | return NW != GEPNoWrapFlags::none(); |
| 671 | }; |
| 672 | |
| 673 | auto NewICmp = [Cond](GEPNoWrapFlags NW, Value *Op1, Value *Op2) { |
| 674 | if (!NW.hasNoUnsignedWrap()) { |
| 675 | // Convert signed to unsigned comparison. |
| 676 | return new ICmpInst(ICmpInst::getSignedPredicate(Pred: Cond), Op1, Op2); |
| 677 | } |
| 678 | |
| 679 | auto *I = new ICmpInst(Cond, Op1, Op2); |
| 680 | I->setSameSign(NW.hasNoUnsignedSignedWrap()); |
| 681 | return I; |
| 682 | }; |
| 683 | |
| 684 | CommonPointerBase Base = CommonPointerBase::compute(LHS: GEPLHS, RHS); |
| 685 | if (Base.Ptr == RHS && CanFold(Base.LHSNW) && !Base.isExpensive()) { |
| 686 | // ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0). |
| 687 | Type *IdxTy = DL.getIndexType(PtrTy: GEPLHS->getType()); |
| 688 | Value *Offset = |
| 689 | EmitGEPOffsets(GEPs: Base.LHSGEPs, NW: Base.LHSNW, IdxTy, /*RewriteGEPs=*/true); |
| 690 | return NewICmp(Base.LHSNW, Offset, |
| 691 | Constant::getNullValue(Ty: Offset->getType())); |
| 692 | } |
| 693 | |
| 694 | if (GEPLHS->isInBounds() && ICmpInst::isEquality(P: Cond) && |
| 695 | isa<Constant>(Val: RHS) && cast<Constant>(Val: RHS)->isNullValue() && |
| 696 | !NullPointerIsDefined(F: I.getFunction(), |
| 697 | AS: RHS->getType()->getPointerAddressSpace())) { |
| 698 | // For most address spaces, an allocation can't be placed at null, but null |
| 699 | // itself is treated as a 0 size allocation in the in bounds rules. Thus, |
| 700 | // the only valid inbounds address derived from null, is null itself. |
| 701 | // Thus, we have four cases to consider: |
| 702 | // 1) Base == nullptr, Offset == 0 -> inbounds, null |
| 703 | // 2) Base == nullptr, Offset != 0 -> poison as the result is out of bounds |
| 704 | // 3) Base != nullptr, Offset == (-base) -> poison (crossing allocations) |
| 705 | // 4) Base != nullptr, Offset != (-base) -> nonnull (and possibly poison) |
| 706 | // |
| 707 | // (Note if we're indexing a type of size 0, that simply collapses into one |
| 708 | // of the buckets above.) |
| 709 | // |
| 710 | // In general, we're allowed to make values less poison (i.e. remove |
| 711 | // sources of full UB), so in this case, we just select between the two |
| 712 | // non-poison cases (1 and 4 above). |
| 713 | // |
| 714 | // For vectors, we apply the same reasoning on a per-lane basis. |
| 715 | auto *Base = GEPLHS->getPointerOperand(); |
| 716 | if (GEPLHS->getType()->isVectorTy() && Base->getType()->isPointerTy()) { |
| 717 | auto EC = cast<VectorType>(Val: GEPLHS->getType())->getElementCount(); |
| 718 | Base = Builder.CreateVectorSplat(EC, V: Base); |
| 719 | } |
| 720 | return new ICmpInst(Cond, Base, |
| 721 | ConstantExpr::getPointerBitCastOrAddrSpaceCast( |
| 722 | C: cast<Constant>(Val: RHS), Ty: Base->getType())); |
| 723 | } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(Val: RHS)) { |
| 724 | GEPNoWrapFlags NW = GEPLHS->getNoWrapFlags() & GEPRHS->getNoWrapFlags(); |
| 725 | |
| 726 | // If the base pointers are different, but the indices are the same, just |
| 727 | // compare the base pointer. |
| 728 | if (GEPLHS->getOperand(i_nocapture: 0) != GEPRHS->getOperand(i_nocapture: 0)) { |
| 729 | bool IndicesTheSame = |
| 730 | GEPLHS->getNumOperands() == GEPRHS->getNumOperands() && |
| 731 | GEPLHS->getPointerOperand()->getType() == |
| 732 | GEPRHS->getPointerOperand()->getType() && |
| 733 | GEPLHS->getSourceElementType() == GEPRHS->getSourceElementType(); |
| 734 | if (IndicesTheSame) |
| 735 | for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i) |
| 736 | if (GEPLHS->getOperand(i_nocapture: i) != GEPRHS->getOperand(i_nocapture: i)) { |
| 737 | IndicesTheSame = false; |
| 738 | break; |
| 739 | } |
| 740 | |
| 741 | // If all indices are the same, just compare the base pointers. |
| 742 | Type *BaseType = GEPLHS->getOperand(i_nocapture: 0)->getType(); |
| 743 | if (IndicesTheSame && |
| 744 | CmpInst::makeCmpResultType(opnd_type: BaseType) == I.getType() && CanFold(NW)) |
| 745 | return new ICmpInst(Cond, GEPLHS->getOperand(i_nocapture: 0), GEPRHS->getOperand(i_nocapture: 0)); |
| 746 | |
| 747 | // If we're comparing GEPs with two base pointers that only differ in type |
| 748 | // and both GEPs have only constant indices or just one use, then fold |
| 749 | // the compare with the adjusted indices. |
| 750 | // FIXME: Support vector of pointers. |
| 751 | if (GEPLHS->isInBounds() && GEPRHS->isInBounds() && |
| 752 | (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) && |
| 753 | (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) && |
| 754 | GEPLHS->getOperand(i_nocapture: 0)->stripPointerCasts() == |
| 755 | GEPRHS->getOperand(i_nocapture: 0)->stripPointerCasts() && |
| 756 | !GEPLHS->getType()->isVectorTy()) { |
| 757 | Value *LOffset = EmitGEPOffset(GEP: GEPLHS); |
| 758 | Value *ROffset = EmitGEPOffset(GEP: GEPRHS); |
| 759 | |
| 760 | // If we looked through an addrspacecast between different sized address |
| 761 | // spaces, the LHS and RHS pointers are different sized |
| 762 | // integers. Truncate to the smaller one. |
| 763 | Type *LHSIndexTy = LOffset->getType(); |
| 764 | Type *RHSIndexTy = ROffset->getType(); |
| 765 | if (LHSIndexTy != RHSIndexTy) { |
| 766 | if (LHSIndexTy->getPrimitiveSizeInBits().getFixedValue() < |
| 767 | RHSIndexTy->getPrimitiveSizeInBits().getFixedValue()) { |
| 768 | ROffset = Builder.CreateTrunc(V: ROffset, DestTy: LHSIndexTy); |
| 769 | } else |
| 770 | LOffset = Builder.CreateTrunc(V: LOffset, DestTy: RHSIndexTy); |
| 771 | } |
| 772 | |
| 773 | Value *Cmp = Builder.CreateICmp(P: ICmpInst::getSignedPredicate(Pred: Cond), |
| 774 | LHS: LOffset, RHS: ROffset); |
| 775 | return replaceInstUsesWith(I, V: Cmp); |
| 776 | } |
| 777 | } |
| 778 | |
| 779 | if (GEPLHS->getOperand(i_nocapture: 0) == GEPRHS->getOperand(i_nocapture: 0) && |
| 780 | GEPLHS->getNumOperands() == GEPRHS->getNumOperands() && |
| 781 | GEPLHS->getSourceElementType() == GEPRHS->getSourceElementType()) { |
| 782 | // If the GEPs only differ by one index, compare it. |
| 783 | unsigned NumDifferences = 0; // Keep track of # differences. |
| 784 | unsigned DiffOperand = 0; // The operand that differs. |
| 785 | for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i) |
| 786 | if (GEPLHS->getOperand(i_nocapture: i) != GEPRHS->getOperand(i_nocapture: i)) { |
| 787 | Type *LHSType = GEPLHS->getOperand(i_nocapture: i)->getType(); |
| 788 | Type *RHSType = GEPRHS->getOperand(i_nocapture: i)->getType(); |
| 789 | // FIXME: Better support for vector of pointers. |
| 790 | if (LHSType->getPrimitiveSizeInBits() != |
| 791 | RHSType->getPrimitiveSizeInBits() || |
| 792 | (GEPLHS->getType()->isVectorTy() && |
| 793 | (!LHSType->isVectorTy() || !RHSType->isVectorTy()))) { |
| 794 | // Irreconcilable differences. |
| 795 | NumDifferences = 2; |
| 796 | break; |
| 797 | } |
| 798 | |
| 799 | if (NumDifferences++) |
| 800 | break; |
| 801 | DiffOperand = i; |
| 802 | } |
| 803 | |
| 804 | if (NumDifferences == 0) // SAME GEP? |
| 805 | return replaceInstUsesWith( |
| 806 | I, // No comparison is needed here. |
| 807 | V: ConstantInt::get(Ty: I.getType(), V: ICmpInst::isTrueWhenEqual(predicate: Cond))); |
| 808 | // If two GEPs only differ by an index, compare them. |
| 809 | // Note that nowrap flags are always needed when comparing two indices. |
| 810 | else if (NumDifferences == 1 && NW != GEPNoWrapFlags::none()) { |
| 811 | Value *LHSV = GEPLHS->getOperand(i_nocapture: DiffOperand); |
| 812 | Value *RHSV = GEPRHS->getOperand(i_nocapture: DiffOperand); |
| 813 | return NewICmp(NW, LHSV, RHSV); |
| 814 | } |
| 815 | } |
| 816 | |
| 817 | if (Base.Ptr && CanFold(Base.LHSNW & Base.RHSNW) && !Base.isExpensive()) { |
| 818 | // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2) |
| 819 | Type *IdxTy = DL.getIndexType(PtrTy: GEPLHS->getType()); |
| 820 | Value *L = |
| 821 | EmitGEPOffsets(GEPs: Base.LHSGEPs, NW: Base.LHSNW, IdxTy, /*RewriteGEP=*/RewriteGEPs: true); |
| 822 | Value *R = |
| 823 | EmitGEPOffsets(GEPs: Base.RHSGEPs, NW: Base.RHSNW, IdxTy, /*RewriteGEP=*/RewriteGEPs: true); |
| 824 | return NewICmp(Base.LHSNW & Base.RHSNW, L, R); |
| 825 | } |
| 826 | } |
| 827 | |
| 828 | // Try convert this to an indexed compare by looking through PHIs/casts as a |
| 829 | // last resort. |
| 830 | return transformToIndexedCompare(GEPLHS, RHS, Cond, DL, IC&: *this); |
| 831 | } |
| 832 | |
| 833 | bool InstCombinerImpl::foldAllocaCmp(AllocaInst *Alloca) { |
| 834 | // It would be tempting to fold away comparisons between allocas and any |
| 835 | // pointer not based on that alloca (e.g. an argument). However, even |
| 836 | // though such pointers cannot alias, they can still compare equal. |
| 837 | // |
| 838 | // But LLVM doesn't specify where allocas get their memory, so if the alloca |
| 839 | // doesn't escape we can argue that it's impossible to guess its value, and we |
| 840 | // can therefore act as if any such guesses are wrong. |
| 841 | // |
| 842 | // However, we need to ensure that this folding is consistent: We can't fold |
| 843 | // one comparison to false, and then leave a different comparison against the |
| 844 | // same value alone (as it might evaluate to true at runtime, leading to a |
| 845 | // contradiction). As such, this code ensures that all comparisons are folded |
| 846 | // at the same time, and there are no other escapes. |
| 847 | |
| 848 | struct CmpCaptureTracker : public CaptureTracker { |
| 849 | AllocaInst *Alloca; |
| 850 | bool Captured = false; |
| 851 | /// The value of the map is a bit mask of which icmp operands the alloca is |
| 852 | /// used in. |
| 853 | SmallMapVector<ICmpInst *, unsigned, 4> ICmps; |
| 854 | |
| 855 | CmpCaptureTracker(AllocaInst *Alloca) : Alloca(Alloca) {} |
| 856 | |
| 857 | void tooManyUses() override { Captured = true; } |
| 858 | |
| 859 | Action captured(const Use *U, UseCaptureInfo CI) override { |
| 860 | // TODO(captures): Use UseCaptureInfo. |
| 861 | auto *ICmp = dyn_cast<ICmpInst>(Val: U->getUser()); |
| 862 | // We need to check that U is based *only* on the alloca, and doesn't |
| 863 | // have other contributions from a select/phi operand. |
| 864 | // TODO: We could check whether getUnderlyingObjects() reduces to one |
| 865 | // object, which would allow looking through phi nodes. |
| 866 | if (ICmp && ICmp->isEquality() && getUnderlyingObject(V: *U) == Alloca) { |
| 867 | // Collect equality icmps of the alloca, and don't treat them as |
| 868 | // captures. |
| 869 | ICmps[ICmp] |= 1u << U->getOperandNo(); |
| 870 | return Continue; |
| 871 | } |
| 872 | |
| 873 | Captured = true; |
| 874 | return Stop; |
| 875 | } |
| 876 | }; |
| 877 | |
| 878 | CmpCaptureTracker Tracker(Alloca); |
| 879 | PointerMayBeCaptured(V: Alloca, Tracker: &Tracker); |
| 880 | if (Tracker.Captured) |
| 881 | return false; |
| 882 | |
| 883 | bool Changed = false; |
| 884 | for (auto [ICmp, Operands] : Tracker.ICmps) { |
| 885 | switch (Operands) { |
| 886 | case 1: |
| 887 | case 2: { |
| 888 | // The alloca is only used in one icmp operand. Assume that the |
| 889 | // equality is false. |
| 890 | auto *Res = ConstantInt::get(Ty: ICmp->getType(), |
| 891 | V: ICmp->getPredicate() == ICmpInst::ICMP_NE); |
| 892 | replaceInstUsesWith(I&: *ICmp, V: Res); |
| 893 | eraseInstFromFunction(I&: *ICmp); |
| 894 | Changed = true; |
| 895 | break; |
| 896 | } |
| 897 | case 3: |
| 898 | // Both icmp operands are based on the alloca, so this is comparing |
| 899 | // pointer offsets, without leaking any information about the address |
| 900 | // of the alloca. Ignore such comparisons. |
| 901 | break; |
| 902 | default: |
| 903 | llvm_unreachable("Cannot happen" ); |
| 904 | } |
| 905 | } |
| 906 | |
| 907 | return Changed; |
| 908 | } |
| 909 | |
| 910 | /// Fold "icmp pred (X+C), X". |
| 911 | Instruction *InstCombinerImpl::foldICmpAddOpConst(Value *X, const APInt &C, |
| 912 | CmpPredicate Pred) { |
| 913 | // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0, |
| 914 | // so the values can never be equal. Similarly for all other "or equals" |
| 915 | // operators. |
| 916 | assert(!!C && "C should not be zero!" ); |
| 917 | |
| 918 | // (X+1) <u X --> X >u (MAXUINT-1) --> X == 255 |
| 919 | // (X+2) <u X --> X >u (MAXUINT-2) --> X > 253 |
| 920 | // (X+MAXUINT) <u X --> X >u (MAXUINT-MAXUINT) --> X != 0 |
| 921 | if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { |
| 922 | Constant *R = |
| 923 | ConstantInt::get(Ty: X->getType(), V: APInt::getMaxValue(numBits: C.getBitWidth()) - C); |
| 924 | return new ICmpInst(ICmpInst::ICMP_UGT, X, R); |
| 925 | } |
| 926 | |
| 927 | // (X+1) >u X --> X <u (0-1) --> X != 255 |
| 928 | // (X+2) >u X --> X <u (0-2) --> X <u 254 |
| 929 | // (X+MAXUINT) >u X --> X <u (0-MAXUINT) --> X <u 1 --> X == 0 |
| 930 | if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) |
| 931 | return new ICmpInst(ICmpInst::ICMP_ULT, X, |
| 932 | ConstantInt::get(Ty: X->getType(), V: -C)); |
| 933 | |
| 934 | APInt SMax = APInt::getSignedMaxValue(numBits: C.getBitWidth()); |
| 935 | |
| 936 | // (X+ 1) <s X --> X >s (MAXSINT-1) --> X == 127 |
| 937 | // (X+ 2) <s X --> X >s (MAXSINT-2) --> X >s 125 |
| 938 | // (X+MAXSINT) <s X --> X >s (MAXSINT-MAXSINT) --> X >s 0 |
| 939 | // (X+MINSINT) <s X --> X >s (MAXSINT-MINSINT) --> X >s -1 |
| 940 | // (X+ -2) <s X --> X >s (MAXSINT- -2) --> X >s 126 |
| 941 | // (X+ -1) <s X --> X >s (MAXSINT- -1) --> X != 127 |
| 942 | if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) |
| 943 | return new ICmpInst(ICmpInst::ICMP_SGT, X, |
| 944 | ConstantInt::get(Ty: X->getType(), V: SMax - C)); |
| 945 | |
| 946 | // (X+ 1) >s X --> X <s (MAXSINT-(1-1)) --> X != 127 |
| 947 | // (X+ 2) >s X --> X <s (MAXSINT-(2-1)) --> X <s 126 |
| 948 | // (X+MAXSINT) >s X --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1 |
| 949 | // (X+MINSINT) >s X --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2 |
| 950 | // (X+ -2) >s X --> X <s (MAXSINT-(-2-1)) --> X <s -126 |
| 951 | // (X+ -1) >s X --> X <s (MAXSINT-(-1-1)) --> X == -128 |
| 952 | |
| 953 | assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE); |
| 954 | return new ICmpInst(ICmpInst::ICMP_SLT, X, |
| 955 | ConstantInt::get(Ty: X->getType(), V: SMax - (C - 1))); |
| 956 | } |
| 957 | |
| 958 | /// Handle "(icmp eq/ne (ashr/lshr AP2, A), AP1)" -> |
| 959 | /// (icmp eq/ne A, Log2(AP2/AP1)) -> |
| 960 | /// (icmp eq/ne A, Log2(AP2) - Log2(AP1)). |
| 961 | Instruction *InstCombinerImpl::foldICmpShrConstConst(ICmpInst &I, Value *A, |
| 962 | const APInt &AP1, |
| 963 | const APInt &AP2) { |
| 964 | assert(I.isEquality() && "Cannot fold icmp gt/lt" ); |
| 965 | |
| 966 | auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) { |
| 967 | if (I.getPredicate() == I.ICMP_NE) |
| 968 | Pred = CmpInst::getInversePredicate(pred: Pred); |
| 969 | return new ICmpInst(Pred, LHS, RHS); |
| 970 | }; |
| 971 | |
| 972 | // Don't bother doing any work for cases which InstSimplify handles. |
| 973 | if (AP2.isZero()) |
| 974 | return nullptr; |
| 975 | |
| 976 | bool IsAShr = isa<AShrOperator>(Val: I.getOperand(i_nocapture: 0)); |
| 977 | if (IsAShr) { |
| 978 | if (AP2.isAllOnes()) |
| 979 | return nullptr; |
| 980 | if (AP2.isNegative() != AP1.isNegative()) |
| 981 | return nullptr; |
| 982 | if (AP2.sgt(RHS: AP1)) |
| 983 | return nullptr; |
| 984 | } |
| 985 | |
| 986 | if (!AP1) |
| 987 | // 'A' must be large enough to shift out the highest set bit. |
| 988 | return getICmp(I.ICMP_UGT, A, |
| 989 | ConstantInt::get(Ty: A->getType(), V: AP2.logBase2())); |
| 990 | |
| 991 | if (AP1 == AP2) |
| 992 | return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(Ty: A->getType())); |
| 993 | |
| 994 | int Shift; |
| 995 | if (IsAShr && AP1.isNegative()) |
| 996 | Shift = AP1.countl_one() - AP2.countl_one(); |
| 997 | else |
| 998 | Shift = AP1.countl_zero() - AP2.countl_zero(); |
| 999 | |
| 1000 | if (Shift > 0) { |
| 1001 | if (IsAShr && AP1 == AP2.ashr(ShiftAmt: Shift)) { |
| 1002 | // There are multiple solutions if we are comparing against -1 and the LHS |
| 1003 | // of the ashr is not a power of two. |
| 1004 | if (AP1.isAllOnes() && !AP2.isPowerOf2()) |
| 1005 | return getICmp(I.ICMP_UGE, A, ConstantInt::get(Ty: A->getType(), V: Shift)); |
| 1006 | return getICmp(I.ICMP_EQ, A, ConstantInt::get(Ty: A->getType(), V: Shift)); |
| 1007 | } else if (AP1 == AP2.lshr(shiftAmt: Shift)) { |
| 1008 | return getICmp(I.ICMP_EQ, A, ConstantInt::get(Ty: A->getType(), V: Shift)); |
| 1009 | } |
| 1010 | } |
| 1011 | |
| 1012 | // Shifting const2 will never be equal to const1. |
| 1013 | // FIXME: This should always be handled by InstSimplify? |
| 1014 | auto *TorF = ConstantInt::get(Ty: I.getType(), V: I.getPredicate() == I.ICMP_NE); |
| 1015 | return replaceInstUsesWith(I, V: TorF); |
| 1016 | } |
| 1017 | |
| 1018 | /// Handle "(icmp eq/ne (shl AP2, A), AP1)" -> |
| 1019 | /// (icmp eq/ne A, TrailingZeros(AP1) - TrailingZeros(AP2)). |
| 1020 | Instruction *InstCombinerImpl::foldICmpShlConstConst(ICmpInst &I, Value *A, |
| 1021 | const APInt &AP1, |
| 1022 | const APInt &AP2) { |
| 1023 | assert(I.isEquality() && "Cannot fold icmp gt/lt" ); |
| 1024 | |
| 1025 | auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) { |
| 1026 | if (I.getPredicate() == I.ICMP_NE) |
| 1027 | Pred = CmpInst::getInversePredicate(pred: Pred); |
| 1028 | return new ICmpInst(Pred, LHS, RHS); |
| 1029 | }; |
| 1030 | |
| 1031 | // Don't bother doing any work for cases which InstSimplify handles. |
| 1032 | if (AP2.isZero()) |
| 1033 | return nullptr; |
| 1034 | |
| 1035 | unsigned AP2TrailingZeros = AP2.countr_zero(); |
| 1036 | |
| 1037 | if (!AP1 && AP2TrailingZeros != 0) |
| 1038 | return getICmp( |
| 1039 | I.ICMP_UGE, A, |
| 1040 | ConstantInt::get(Ty: A->getType(), V: AP2.getBitWidth() - AP2TrailingZeros)); |
| 1041 | |
| 1042 | if (AP1 == AP2) |
| 1043 | return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(Ty: A->getType())); |
| 1044 | |
| 1045 | // Get the distance between the lowest bits that are set. |
| 1046 | int Shift = AP1.countr_zero() - AP2TrailingZeros; |
| 1047 | |
| 1048 | if (Shift > 0 && AP2.shl(shiftAmt: Shift) == AP1) |
| 1049 | return getICmp(I.ICMP_EQ, A, ConstantInt::get(Ty: A->getType(), V: Shift)); |
| 1050 | |
| 1051 | // Shifting const2 will never be equal to const1. |
| 1052 | // FIXME: This should always be handled by InstSimplify? |
| 1053 | auto *TorF = ConstantInt::get(Ty: I.getType(), V: I.getPredicate() == I.ICMP_NE); |
| 1054 | return replaceInstUsesWith(I, V: TorF); |
| 1055 | } |
| 1056 | |
| 1057 | /// The caller has matched a pattern of the form: |
| 1058 | /// I = icmp ugt (add (add A, B), CI2), CI1 |
| 1059 | /// If this is of the form: |
| 1060 | /// sum = a + b |
| 1061 | /// if (sum+128 >u 255) |
| 1062 | /// Then replace it with llvm.sadd.with.overflow.i8. |
| 1063 | /// |
| 1064 | static Instruction *processUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B, |
| 1065 | ConstantInt *CI2, ConstantInt *CI1, |
| 1066 | InstCombinerImpl &IC) { |
| 1067 | // The transformation we're trying to do here is to transform this into an |
| 1068 | // llvm.sadd.with.overflow. To do this, we have to replace the original add |
| 1069 | // with a narrower add, and discard the add-with-constant that is part of the |
| 1070 | // range check (if we can't eliminate it, this isn't profitable). |
| 1071 | |
| 1072 | // In order to eliminate the add-with-constant, the compare can be its only |
| 1073 | // use. |
| 1074 | Instruction *AddWithCst = cast<Instruction>(Val: I.getOperand(i_nocapture: 0)); |
| 1075 | if (!AddWithCst->hasOneUse()) |
| 1076 | return nullptr; |
| 1077 | |
| 1078 | // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow. |
| 1079 | if (!CI2->getValue().isPowerOf2()) |
| 1080 | return nullptr; |
| 1081 | unsigned NewWidth = CI2->getValue().countr_zero(); |
| 1082 | if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31) |
| 1083 | return nullptr; |
| 1084 | |
| 1085 | // The width of the new add formed is 1 more than the bias. |
| 1086 | ++NewWidth; |
| 1087 | |
| 1088 | // Check to see that CI1 is an all-ones value with NewWidth bits. |
| 1089 | if (CI1->getBitWidth() == NewWidth || |
| 1090 | CI1->getValue() != APInt::getLowBitsSet(numBits: CI1->getBitWidth(), loBitsSet: NewWidth)) |
| 1091 | return nullptr; |
| 1092 | |
| 1093 | // This is only really a signed overflow check if the inputs have been |
| 1094 | // sign-extended; check for that condition. For example, if CI2 is 2^31 and |
| 1095 | // the operands of the add are 64 bits wide, we need at least 33 sign bits. |
| 1096 | if (IC.ComputeMaxSignificantBits(Op: A, CxtI: &I) > NewWidth || |
| 1097 | IC.ComputeMaxSignificantBits(Op: B, CxtI: &I) > NewWidth) |
| 1098 | return nullptr; |
| 1099 | |
| 1100 | // In order to replace the original add with a narrower |
| 1101 | // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant |
| 1102 | // and truncates that discard the high bits of the add. Verify that this is |
| 1103 | // the case. |
| 1104 | Instruction *OrigAdd = cast<Instruction>(Val: AddWithCst->getOperand(i: 0)); |
| 1105 | for (User *U : OrigAdd->users()) { |
| 1106 | if (U == AddWithCst) |
| 1107 | continue; |
| 1108 | |
| 1109 | // Only accept truncates for now. We would really like a nice recursive |
| 1110 | // predicate like SimplifyDemandedBits, but which goes downwards the use-def |
| 1111 | // chain to see which bits of a value are actually demanded. If the |
| 1112 | // original add had another add which was then immediately truncated, we |
| 1113 | // could still do the transformation. |
| 1114 | TruncInst *TI = dyn_cast<TruncInst>(Val: U); |
| 1115 | if (!TI || TI->getType()->getPrimitiveSizeInBits() > NewWidth) |
| 1116 | return nullptr; |
| 1117 | } |
| 1118 | |
| 1119 | // If the pattern matches, truncate the inputs to the narrower type and |
| 1120 | // use the sadd_with_overflow intrinsic to efficiently compute both the |
| 1121 | // result and the overflow bit. |
| 1122 | Type *NewType = IntegerType::get(C&: OrigAdd->getContext(), NumBits: NewWidth); |
| 1123 | Function *F = Intrinsic::getOrInsertDeclaration( |
| 1124 | M: I.getModule(), id: Intrinsic::sadd_with_overflow, Tys: NewType); |
| 1125 | |
| 1126 | InstCombiner::BuilderTy &Builder = IC.Builder; |
| 1127 | |
| 1128 | // Put the new code above the original add, in case there are any uses of the |
| 1129 | // add between the add and the compare. |
| 1130 | Builder.SetInsertPoint(OrigAdd); |
| 1131 | |
| 1132 | Value *TruncA = Builder.CreateTrunc(V: A, DestTy: NewType, Name: A->getName() + ".trunc" ); |
| 1133 | Value *TruncB = Builder.CreateTrunc(V: B, DestTy: NewType, Name: B->getName() + ".trunc" ); |
| 1134 | CallInst *Call = Builder.CreateCall(Callee: F, Args: {TruncA, TruncB}, Name: "sadd" ); |
| 1135 | Value *Add = Builder.CreateExtractValue(Agg: Call, Idxs: 0, Name: "sadd.result" ); |
| 1136 | Value *ZExt = Builder.CreateZExt(V: Add, DestTy: OrigAdd->getType()); |
| 1137 | |
| 1138 | // The inner add was the result of the narrow add, zero extended to the |
| 1139 | // wider type. Replace it with the result computed by the intrinsic. |
| 1140 | IC.replaceInstUsesWith(I&: *OrigAdd, V: ZExt); |
| 1141 | IC.eraseInstFromFunction(I&: *OrigAdd); |
| 1142 | |
| 1143 | // The original icmp gets replaced with the overflow value. |
| 1144 | return ExtractValueInst::Create(Agg: Call, Idxs: 1, NameStr: "sadd.overflow" ); |
| 1145 | } |
| 1146 | |
| 1147 | /// If we have: |
| 1148 | /// icmp eq/ne (urem/srem %x, %y), 0 |
| 1149 | /// iff %y is a power-of-two, we can replace this with a bit test: |
| 1150 | /// icmp eq/ne (and %x, (add %y, -1)), 0 |
| 1151 | Instruction *InstCombinerImpl::foldIRemByPowerOfTwoToBitTest(ICmpInst &I) { |
| 1152 | // This fold is only valid for equality predicates. |
| 1153 | if (!I.isEquality()) |
| 1154 | return nullptr; |
| 1155 | CmpPredicate Pred; |
| 1156 | Value *X, *Y, *Zero; |
| 1157 | if (!match(V: &I, P: m_ICmp(Pred, L: m_OneUse(SubPattern: m_IRem(L: m_Value(V&: X), R: m_Value(V&: Y))), |
| 1158 | R: m_CombineAnd(L: m_Zero(), R: m_Value(V&: Zero))))) |
| 1159 | return nullptr; |
| 1160 | if (!isKnownToBeAPowerOfTwo(V: Y, /*OrZero*/ true, CxtI: &I)) |
| 1161 | return nullptr; |
| 1162 | // This may increase instruction count, we don't enforce that Y is a constant. |
| 1163 | Value *Mask = Builder.CreateAdd(LHS: Y, RHS: Constant::getAllOnesValue(Ty: Y->getType())); |
| 1164 | Value *Masked = Builder.CreateAnd(LHS: X, RHS: Mask); |
| 1165 | return ICmpInst::Create(Op: Instruction::ICmp, Pred, S1: Masked, S2: Zero); |
| 1166 | } |
| 1167 | |
| 1168 | /// Fold equality-comparison between zero and any (maybe truncated) right-shift |
| 1169 | /// by one-less-than-bitwidth into a sign test on the original value. |
| 1170 | Instruction *InstCombinerImpl::foldSignBitTest(ICmpInst &I) { |
| 1171 | Instruction *Val; |
| 1172 | CmpPredicate Pred; |
| 1173 | if (!I.isEquality() || !match(V: &I, P: m_ICmp(Pred, L: m_Instruction(I&: Val), R: m_Zero()))) |
| 1174 | return nullptr; |
| 1175 | |
| 1176 | Value *X; |
| 1177 | Type *XTy; |
| 1178 | |
| 1179 | Constant *C; |
| 1180 | if (match(V: Val, P: m_TruncOrSelf(Op: m_Shr(L: m_Value(V&: X), R: m_Constant(C))))) { |
| 1181 | XTy = X->getType(); |
| 1182 | unsigned XBitWidth = XTy->getScalarSizeInBits(); |
| 1183 | if (!match(V: C, P: m_SpecificInt_ICMP(Predicate: ICmpInst::Predicate::ICMP_EQ, |
| 1184 | Threshold: APInt(XBitWidth, XBitWidth - 1)))) |
| 1185 | return nullptr; |
| 1186 | } else if (isa<BinaryOperator>(Val) && |
| 1187 | (X = reassociateShiftAmtsOfTwoSameDirectionShifts( |
| 1188 | Sh0: cast<BinaryOperator>(Val), SQ: SQ.getWithInstruction(I: Val), |
| 1189 | /*AnalyzeForSignBitExtraction=*/true))) { |
| 1190 | XTy = X->getType(); |
| 1191 | } else |
| 1192 | return nullptr; |
| 1193 | |
| 1194 | return ICmpInst::Create(Op: Instruction::ICmp, |
| 1195 | Pred: Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_SGE |
| 1196 | : ICmpInst::ICMP_SLT, |
| 1197 | S1: X, S2: ConstantInt::getNullValue(Ty: XTy)); |
| 1198 | } |
| 1199 | |
| 1200 | // Handle icmp pred X, 0 |
| 1201 | Instruction *InstCombinerImpl::foldICmpWithZero(ICmpInst &Cmp) { |
| 1202 | CmpInst::Predicate Pred = Cmp.getPredicate(); |
| 1203 | if (!match(V: Cmp.getOperand(i_nocapture: 1), P: m_Zero())) |
| 1204 | return nullptr; |
| 1205 | |
| 1206 | // (icmp sgt smin(PosA, B) 0) -> (icmp sgt B 0) |
| 1207 | if (Pred == ICmpInst::ICMP_SGT) { |
| 1208 | Value *A, *B; |
| 1209 | if (match(V: Cmp.getOperand(i_nocapture: 0), P: m_SMin(L: m_Value(V&: A), R: m_Value(V&: B)))) { |
| 1210 | if (isKnownPositive(V: A, SQ: SQ.getWithInstruction(I: &Cmp))) |
| 1211 | return new ICmpInst(Pred, B, Cmp.getOperand(i_nocapture: 1)); |
| 1212 | if (isKnownPositive(V: B, SQ: SQ.getWithInstruction(I: &Cmp))) |
| 1213 | return new ICmpInst(Pred, A, Cmp.getOperand(i_nocapture: 1)); |
| 1214 | } |
| 1215 | } |
| 1216 | |
| 1217 | if (Instruction *New = foldIRemByPowerOfTwoToBitTest(I&: Cmp)) |
| 1218 | return New; |
| 1219 | |
| 1220 | // Given: |
| 1221 | // icmp eq/ne (urem %x, %y), 0 |
| 1222 | // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem': |
| 1223 | // icmp eq/ne %x, 0 |
| 1224 | Value *X, *Y; |
| 1225 | if (match(V: Cmp.getOperand(i_nocapture: 0), P: m_URem(L: m_Value(V&: X), R: m_Value(V&: Y))) && |
| 1226 | ICmpInst::isEquality(P: Pred)) { |
| 1227 | KnownBits XKnown = computeKnownBits(V: X, CxtI: &Cmp); |
| 1228 | KnownBits YKnown = computeKnownBits(V: Y, CxtI: &Cmp); |
| 1229 | if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2) |
| 1230 | return new ICmpInst(Pred, X, Cmp.getOperand(i_nocapture: 1)); |
| 1231 | } |
| 1232 | |
| 1233 | // (icmp eq/ne (mul X Y)) -> (icmp eq/ne X/Y) if we know about whether X/Y are |
| 1234 | // odd/non-zero/there is no overflow. |
| 1235 | if (match(V: Cmp.getOperand(i_nocapture: 0), P: m_Mul(L: m_Value(V&: X), R: m_Value(V&: Y))) && |
| 1236 | ICmpInst::isEquality(P: Pred)) { |
| 1237 | |
| 1238 | KnownBits XKnown = computeKnownBits(V: X, CxtI: &Cmp); |
| 1239 | // if X % 2 != 0 |
| 1240 | // (icmp eq/ne Y) |
| 1241 | if (XKnown.countMaxTrailingZeros() == 0) |
| 1242 | return new ICmpInst(Pred, Y, Cmp.getOperand(i_nocapture: 1)); |
| 1243 | |
| 1244 | KnownBits YKnown = computeKnownBits(V: Y, CxtI: &Cmp); |
| 1245 | // if Y % 2 != 0 |
| 1246 | // (icmp eq/ne X) |
| 1247 | if (YKnown.countMaxTrailingZeros() == 0) |
| 1248 | return new ICmpInst(Pred, X, Cmp.getOperand(i_nocapture: 1)); |
| 1249 | |
| 1250 | auto *BO0 = cast<OverflowingBinaryOperator>(Val: Cmp.getOperand(i_nocapture: 0)); |
| 1251 | if (BO0->hasNoUnsignedWrap() || BO0->hasNoSignedWrap()) { |
| 1252 | const SimplifyQuery Q = SQ.getWithInstruction(I: &Cmp); |
| 1253 | // `isKnownNonZero` does more analysis than just `!KnownBits.One.isZero()` |
| 1254 | // but to avoid unnecessary work, first just if this is an obvious case. |
| 1255 | |
| 1256 | // if X non-zero and NoOverflow(X * Y) |
| 1257 | // (icmp eq/ne Y) |
| 1258 | if (!XKnown.One.isZero() || isKnownNonZero(V: X, Q)) |
| 1259 | return new ICmpInst(Pred, Y, Cmp.getOperand(i_nocapture: 1)); |
| 1260 | |
| 1261 | // if Y non-zero and NoOverflow(X * Y) |
| 1262 | // (icmp eq/ne X) |
| 1263 | if (!YKnown.One.isZero() || isKnownNonZero(V: Y, Q)) |
| 1264 | return new ICmpInst(Pred, X, Cmp.getOperand(i_nocapture: 1)); |
| 1265 | } |
| 1266 | // Note, we are skipping cases: |
| 1267 | // if Y % 2 != 0 AND X % 2 != 0 |
| 1268 | // (false/true) |
| 1269 | // if X non-zero and Y non-zero and NoOverflow(X * Y) |
| 1270 | // (false/true) |
| 1271 | // Those can be simplified later as we would have already replaced the (icmp |
| 1272 | // eq/ne (mul X, Y)) with (icmp eq/ne X/Y) and if X/Y is known non-zero that |
| 1273 | // will fold to a constant elsewhere. |
| 1274 | } |
| 1275 | |
| 1276 | // (icmp eq/ne f(X), 0) -> (icmp eq/ne X, 0) |
| 1277 | // where f(X) == 0 if and only if X == 0 |
| 1278 | if (ICmpInst::isEquality(P: Pred)) |
| 1279 | if (Value *Stripped = stripNullTest(V: Cmp.getOperand(i_nocapture: 0))) |
| 1280 | return new ICmpInst(Pred, Stripped, |
| 1281 | Constant::getNullValue(Ty: Stripped->getType())); |
| 1282 | |
| 1283 | return nullptr; |
| 1284 | } |
| 1285 | |
| 1286 | /// Fold icmp eq (num + mask) & ~mask, num |
| 1287 | /// to |
| 1288 | /// icmp eq (and num, mask), 0 |
| 1289 | /// Where mask is a low bit mask. |
| 1290 | Instruction *InstCombinerImpl::foldIsMultipleOfAPowerOfTwo(ICmpInst &Cmp) { |
| 1291 | Value *Num; |
| 1292 | CmpPredicate Pred; |
| 1293 | const APInt *Mask, *Neg; |
| 1294 | |
| 1295 | if (!match(V: &Cmp, |
| 1296 | P: m_c_ICmp(Pred, L: m_Value(V&: Num), |
| 1297 | R: m_OneUse(SubPattern: m_c_And(L: m_OneUse(SubPattern: m_c_Add(L: m_Deferred(V: Num), |
| 1298 | R: m_LowBitMask(V&: Mask))), |
| 1299 | R: m_APInt(Res&: Neg)))))) |
| 1300 | return nullptr; |
| 1301 | |
| 1302 | if (*Neg != ~*Mask) |
| 1303 | return nullptr; |
| 1304 | |
| 1305 | if (!ICmpInst::isEquality(P: Pred)) |
| 1306 | return nullptr; |
| 1307 | |
| 1308 | // Create new icmp eq (num & mask), 0 |
| 1309 | auto *NewAnd = Builder.CreateAnd(LHS: Num, RHS: *Mask); |
| 1310 | auto *Zero = Constant::getNullValue(Ty: Num->getType()); |
| 1311 | |
| 1312 | return new ICmpInst(Pred, NewAnd, Zero); |
| 1313 | } |
| 1314 | |
| 1315 | /// Fold icmp Pred X, C. |
| 1316 | /// TODO: This code structure does not make sense. The saturating add fold |
| 1317 | /// should be moved to some other helper and extended as noted below (it is also |
| 1318 | /// possible that code has been made unnecessary - do we canonicalize IR to |
| 1319 | /// overflow/saturating intrinsics or not?). |
| 1320 | Instruction *InstCombinerImpl::foldICmpWithConstant(ICmpInst &Cmp) { |
| 1321 | // Match the following pattern, which is a common idiom when writing |
| 1322 | // overflow-safe integer arithmetic functions. The source performs an addition |
| 1323 | // in wider type and explicitly checks for overflow using comparisons against |
| 1324 | // INT_MIN and INT_MAX. Simplify by using the sadd_with_overflow intrinsic. |
| 1325 | // |
| 1326 | // TODO: This could probably be generalized to handle other overflow-safe |
| 1327 | // operations if we worked out the formulas to compute the appropriate magic |
| 1328 | // constants. |
| 1329 | // |
| 1330 | // sum = a + b |
| 1331 | // if (sum+128 >u 255) ... -> llvm.sadd.with.overflow.i8 |
| 1332 | CmpInst::Predicate Pred = Cmp.getPredicate(); |
| 1333 | Value *Op0 = Cmp.getOperand(i_nocapture: 0), *Op1 = Cmp.getOperand(i_nocapture: 1); |
| 1334 | Value *A, *B; |
| 1335 | ConstantInt *CI, *CI2; // I = icmp ugt (add (add A, B), CI2), CI |
| 1336 | if (Pred == ICmpInst::ICMP_UGT && match(V: Op1, P: m_ConstantInt(CI)) && |
| 1337 | match(V: Op0, P: m_Add(L: m_Add(L: m_Value(V&: A), R: m_Value(V&: B)), R: m_ConstantInt(CI&: CI2)))) |
| 1338 | if (Instruction *Res = processUGT_ADDCST_ADD(I&: Cmp, A, B, CI2, CI1: CI, IC&: *this)) |
| 1339 | return Res; |
| 1340 | |
| 1341 | // icmp(phi(C1, C2, ...), C) -> phi(icmp(C1, C), icmp(C2, C), ...). |
| 1342 | Constant *C = dyn_cast<Constant>(Val: Op1); |
| 1343 | if (!C) |
| 1344 | return nullptr; |
| 1345 | |
| 1346 | if (auto *Phi = dyn_cast<PHINode>(Val: Op0)) |
| 1347 | if (all_of(Range: Phi->operands(), P: IsaPred<Constant>)) { |
| 1348 | SmallVector<Constant *> Ops; |
| 1349 | for (Value *V : Phi->incoming_values()) { |
| 1350 | Constant *Res = |
| 1351 | ConstantFoldCompareInstOperands(Predicate: Pred, LHS: cast<Constant>(Val: V), RHS: C, DL); |
| 1352 | if (!Res) |
| 1353 | return nullptr; |
| 1354 | Ops.push_back(Elt: Res); |
| 1355 | } |
| 1356 | Builder.SetInsertPoint(Phi); |
| 1357 | PHINode *NewPhi = Builder.CreatePHI(Ty: Cmp.getType(), NumReservedValues: Phi->getNumOperands()); |
| 1358 | for (auto [V, Pred] : zip(t&: Ops, u: Phi->blocks())) |
| 1359 | NewPhi->addIncoming(V, BB: Pred); |
| 1360 | return replaceInstUsesWith(I&: Cmp, V: NewPhi); |
| 1361 | } |
| 1362 | |
| 1363 | if (Instruction *R = tryFoldInstWithCtpopWithNot(I: &Cmp)) |
| 1364 | return R; |
| 1365 | |
| 1366 | return nullptr; |
| 1367 | } |
| 1368 | |
| 1369 | /// Canonicalize icmp instructions based on dominating conditions. |
| 1370 | Instruction *InstCombinerImpl::foldICmpWithDominatingICmp(ICmpInst &Cmp) { |
| 1371 | // We already checked simple implication in InstSimplify, only handle complex |
| 1372 | // cases here. |
| 1373 | Value *X = Cmp.getOperand(i_nocapture: 0), *Y = Cmp.getOperand(i_nocapture: 1); |
| 1374 | const APInt *C; |
| 1375 | if (!match(V: Y, P: m_APInt(Res&: C))) |
| 1376 | return nullptr; |
| 1377 | |
| 1378 | CmpInst::Predicate Pred = Cmp.getPredicate(); |
| 1379 | ConstantRange CR = ConstantRange::makeExactICmpRegion(Pred, Other: *C); |
| 1380 | |
| 1381 | auto handleDomCond = [&](ICmpInst::Predicate DomPred, |
| 1382 | const APInt *DomC) -> Instruction * { |
| 1383 | // We have 2 compares of a variable with constants. Calculate the constant |
| 1384 | // ranges of those compares to see if we can transform the 2nd compare: |
| 1385 | // DomBB: |
| 1386 | // DomCond = icmp DomPred X, DomC |
| 1387 | // br DomCond, CmpBB, FalseBB |
| 1388 | // CmpBB: |
| 1389 | // Cmp = icmp Pred X, C |
| 1390 | ConstantRange DominatingCR = |
| 1391 | ConstantRange::makeExactICmpRegion(Pred: DomPred, Other: *DomC); |
| 1392 | ConstantRange Intersection = DominatingCR.intersectWith(CR); |
| 1393 | ConstantRange Difference = DominatingCR.difference(CR); |
| 1394 | if (Intersection.isEmptySet()) |
| 1395 | return replaceInstUsesWith(I&: Cmp, V: Builder.getFalse()); |
| 1396 | if (Difference.isEmptySet()) |
| 1397 | return replaceInstUsesWith(I&: Cmp, V: Builder.getTrue()); |
| 1398 | |
| 1399 | // Canonicalizing a sign bit comparison that gets used in a branch, |
| 1400 | // pessimizes codegen by generating branch on zero instruction instead |
| 1401 | // of a test and branch. So we avoid canonicalizing in such situations |
| 1402 | // because test and branch instruction has better branch displacement |
| 1403 | // than compare and branch instruction. |
| 1404 | bool UnusedBit; |
| 1405 | bool IsSignBit = isSignBitCheck(Pred, RHS: *C, TrueIfSigned&: UnusedBit); |
| 1406 | if (Cmp.isEquality() || (IsSignBit && hasBranchUse(I&: Cmp))) |
| 1407 | return nullptr; |
| 1408 | |
| 1409 | // Avoid an infinite loop with min/max canonicalization. |
| 1410 | // TODO: This will be unnecessary if we canonicalize to min/max intrinsics. |
| 1411 | if (Cmp.hasOneUse() && |
| 1412 | match(V: Cmp.user_back(), P: m_MaxOrMin(L: m_Value(), R: m_Value()))) |
| 1413 | return nullptr; |
| 1414 | |
| 1415 | if (const APInt *EqC = Intersection.getSingleElement()) |
| 1416 | return new ICmpInst(ICmpInst::ICMP_EQ, X, Builder.getInt(AI: *EqC)); |
| 1417 | if (const APInt *NeC = Difference.getSingleElement()) |
| 1418 | return new ICmpInst(ICmpInst::ICMP_NE, X, Builder.getInt(AI: *NeC)); |
| 1419 | return nullptr; |
| 1420 | }; |
| 1421 | |
| 1422 | for (BranchInst *BI : DC.conditionsFor(V: X)) { |
| 1423 | CmpPredicate DomPred; |
| 1424 | const APInt *DomC; |
| 1425 | if (!match(V: BI->getCondition(), |
| 1426 | P: m_ICmp(Pred&: DomPred, L: m_Specific(V: X), R: m_APInt(Res&: DomC)))) |
| 1427 | continue; |
| 1428 | |
| 1429 | BasicBlockEdge Edge0(BI->getParent(), BI->getSuccessor(i: 0)); |
| 1430 | if (DT.dominates(BBE: Edge0, BB: Cmp.getParent())) { |
| 1431 | if (auto *V = handleDomCond(DomPred, DomC)) |
| 1432 | return V; |
| 1433 | } else { |
| 1434 | BasicBlockEdge Edge1(BI->getParent(), BI->getSuccessor(i: 1)); |
| 1435 | if (DT.dominates(BBE: Edge1, BB: Cmp.getParent())) |
| 1436 | if (auto *V = |
| 1437 | handleDomCond(CmpInst::getInversePredicate(pred: DomPred), DomC)) |
| 1438 | return V; |
| 1439 | } |
| 1440 | } |
| 1441 | |
| 1442 | return nullptr; |
| 1443 | } |
| 1444 | |
| 1445 | /// Fold icmp (trunc X), C. |
| 1446 | Instruction *InstCombinerImpl::foldICmpTruncConstant(ICmpInst &Cmp, |
| 1447 | TruncInst *Trunc, |
| 1448 | const APInt &C) { |
| 1449 | ICmpInst::Predicate Pred = Cmp.getPredicate(); |
| 1450 | Value *X = Trunc->getOperand(i_nocapture: 0); |
| 1451 | Type *SrcTy = X->getType(); |
| 1452 | unsigned DstBits = Trunc->getType()->getScalarSizeInBits(), |
| 1453 | SrcBits = SrcTy->getScalarSizeInBits(); |
| 1454 | |
| 1455 | // Match (icmp pred (trunc nuw/nsw X), C) |
| 1456 | // Which we can convert to (icmp pred X, (sext/zext C)) |
| 1457 | if (shouldChangeType(From: Trunc->getType(), To: SrcTy)) { |
| 1458 | if (Trunc->hasNoSignedWrap()) |
| 1459 | return new ICmpInst(Pred, X, ConstantInt::get(Ty: SrcTy, V: C.sext(width: SrcBits))); |
| 1460 | if (!Cmp.isSigned() && Trunc->hasNoUnsignedWrap()) |
| 1461 | return new ICmpInst(Pred, X, ConstantInt::get(Ty: SrcTy, V: C.zext(width: SrcBits))); |
| 1462 | } |
| 1463 | |
| 1464 | if (C.isOne() && C.getBitWidth() > 1) { |
| 1465 | // icmp slt trunc(signum(V)) 1 --> icmp slt V, 1 |
| 1466 | Value *V = nullptr; |
| 1467 | if (Pred == ICmpInst::ICMP_SLT && match(V: X, P: m_Signum(V: m_Value(V)))) |
| 1468 | return new ICmpInst(ICmpInst::ICMP_SLT, V, |
| 1469 | ConstantInt::get(Ty: V->getType(), V: 1)); |
| 1470 | } |
| 1471 | |
| 1472 | // TODO: Handle non-equality predicates. |
| 1473 | Value *Y; |
| 1474 | const APInt *Pow2; |
| 1475 | if (Cmp.isEquality() && match(V: X, P: m_Shl(L: m_Power2(V&: Pow2), R: m_Value(V&: Y))) && |
| 1476 | DstBits > Pow2->logBase2()) { |
| 1477 | // (trunc (Pow2 << Y) to iN) == 0 --> Y u>= N - log2(Pow2) |
| 1478 | // (trunc (Pow2 << Y) to iN) != 0 --> Y u< N - log2(Pow2) |
| 1479 | // iff N > log2(Pow2) |
| 1480 | if (C.isZero()) { |
| 1481 | auto NewPred = (Pred == Cmp.ICMP_EQ) ? Cmp.ICMP_UGE : Cmp.ICMP_ULT; |
| 1482 | return new ICmpInst(NewPred, Y, |
| 1483 | ConstantInt::get(Ty: SrcTy, V: DstBits - Pow2->logBase2())); |
| 1484 | } |
| 1485 | // (trunc (Pow2 << Y) to iN) == 2**C --> Y == C - log2(Pow2) |
| 1486 | // (trunc (Pow2 << Y) to iN) != 2**C --> Y != C - log2(Pow2) |
| 1487 | if (C.isPowerOf2()) |
| 1488 | return new ICmpInst( |
| 1489 | Pred, Y, ConstantInt::get(Ty: SrcTy, V: C.logBase2() - Pow2->logBase2())); |
| 1490 | } |
| 1491 | |
| 1492 | if (Cmp.isEquality() && (Trunc->hasOneUse() || Trunc->hasNoUnsignedWrap())) { |
| 1493 | // Canonicalize to a mask and wider compare if the wide type is suitable: |
| 1494 | // (trunc X to i8) == C --> (X & 0xff) == (zext C) |
| 1495 | if (!SrcTy->isVectorTy() && shouldChangeType(FromBitWidth: DstBits, ToBitWidth: SrcBits)) { |
| 1496 | Constant *Mask = |
| 1497 | ConstantInt::get(Ty: SrcTy, V: APInt::getLowBitsSet(numBits: SrcBits, loBitsSet: DstBits)); |
| 1498 | Value *And = Trunc->hasNoUnsignedWrap() ? X : Builder.CreateAnd(LHS: X, RHS: Mask); |
| 1499 | Constant *WideC = ConstantInt::get(Ty: SrcTy, V: C.zext(width: SrcBits)); |
| 1500 | return new ICmpInst(Pred, And, WideC); |
| 1501 | } |
| 1502 | |
| 1503 | // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all |
| 1504 | // of the high bits truncated out of x are known. |
| 1505 | KnownBits Known = computeKnownBits(V: X, CxtI: &Cmp); |
| 1506 | |
| 1507 | // If all the high bits are known, we can do this xform. |
| 1508 | if ((Known.Zero | Known.One).countl_one() >= SrcBits - DstBits) { |
| 1509 | // Pull in the high bits from known-ones set. |
| 1510 | APInt NewRHS = C.zext(width: SrcBits); |
| 1511 | NewRHS |= Known.One & APInt::getHighBitsSet(numBits: SrcBits, hiBitsSet: SrcBits - DstBits); |
| 1512 | return new ICmpInst(Pred, X, ConstantInt::get(Ty: SrcTy, V: NewRHS)); |
| 1513 | } |
| 1514 | } |
| 1515 | |
| 1516 | // Look through truncated right-shift of the sign-bit for a sign-bit check: |
| 1517 | // trunc iN (ShOp >> ShAmtC) to i[N - ShAmtC] < 0 --> ShOp < 0 |
| 1518 | // trunc iN (ShOp >> ShAmtC) to i[N - ShAmtC] > -1 --> ShOp > -1 |
| 1519 | Value *ShOp; |
| 1520 | uint64_t ShAmt; |
| 1521 | bool TrueIfSigned; |
| 1522 | if (isSignBitCheck(Pred, RHS: C, TrueIfSigned) && |
| 1523 | match(V: X, P: m_Shr(L: m_Value(V&: ShOp), R: m_ConstantInt(V&: ShAmt))) && |
| 1524 | DstBits == SrcBits - ShAmt) { |
| 1525 | return TrueIfSigned ? new ICmpInst(ICmpInst::ICMP_SLT, ShOp, |
| 1526 | ConstantInt::getNullValue(Ty: SrcTy)) |
| 1527 | : new ICmpInst(ICmpInst::ICMP_SGT, ShOp, |
| 1528 | ConstantInt::getAllOnesValue(Ty: SrcTy)); |
| 1529 | } |
| 1530 | |
| 1531 | return nullptr; |
| 1532 | } |
| 1533 | |
| 1534 | /// Fold icmp (trunc nuw/nsw X), (trunc nuw/nsw Y). |
| 1535 | /// Fold icmp (trunc nuw/nsw X), (zext/sext Y). |
| 1536 | Instruction * |
| 1537 | InstCombinerImpl::foldICmpTruncWithTruncOrExt(ICmpInst &Cmp, |
| 1538 | const SimplifyQuery &Q) { |
| 1539 | Value *X, *Y; |
| 1540 | CmpPredicate Pred; |
| 1541 | bool YIsSExt = false; |
| 1542 | // Try to match icmp (trunc X), (trunc Y) |
| 1543 | if (match(V: &Cmp, P: m_ICmp(Pred, L: m_Trunc(Op: m_Value(V&: X)), R: m_Trunc(Op: m_Value(V&: Y))))) { |
| 1544 | unsigned NoWrapFlags = cast<TruncInst>(Val: Cmp.getOperand(i_nocapture: 0))->getNoWrapKind() & |
| 1545 | cast<TruncInst>(Val: Cmp.getOperand(i_nocapture: 1))->getNoWrapKind(); |
| 1546 | if (Cmp.isSigned()) { |
| 1547 | // For signed comparisons, both truncs must be nsw. |
| 1548 | if (!(NoWrapFlags & TruncInst::NoSignedWrap)) |
| 1549 | return nullptr; |
| 1550 | } else { |
| 1551 | // For unsigned and equality comparisons, either both must be nuw or |
| 1552 | // both must be nsw, we don't care which. |
| 1553 | if (!NoWrapFlags) |
| 1554 | return nullptr; |
| 1555 | } |
| 1556 | |
| 1557 | if (X->getType() != Y->getType() && |
| 1558 | (!Cmp.getOperand(i_nocapture: 0)->hasOneUse() || !Cmp.getOperand(i_nocapture: 1)->hasOneUse())) |
| 1559 | return nullptr; |
| 1560 | if (!isDesirableIntType(BitWidth: X->getType()->getScalarSizeInBits()) && |
| 1561 | isDesirableIntType(BitWidth: Y->getType()->getScalarSizeInBits())) { |
| 1562 | std::swap(a&: X, b&: Y); |
| 1563 | Pred = Cmp.getSwappedPredicate(pred: Pred); |
| 1564 | } |
| 1565 | YIsSExt = !(NoWrapFlags & TruncInst::NoUnsignedWrap); |
| 1566 | } |
| 1567 | // Try to match icmp (trunc nuw X), (zext Y) |
| 1568 | else if (!Cmp.isSigned() && |
| 1569 | match(V: &Cmp, P: m_c_ICmp(Pred, L: m_NUWTrunc(Op: m_Value(V&: X)), |
| 1570 | R: m_OneUse(SubPattern: m_ZExt(Op: m_Value(V&: Y)))))) { |
| 1571 | // Can fold trunc nuw + zext for unsigned and equality predicates. |
| 1572 | } |
| 1573 | // Try to match icmp (trunc nsw X), (sext Y) |
| 1574 | else if (match(V: &Cmp, P: m_c_ICmp(Pred, L: m_NSWTrunc(Op: m_Value(V&: X)), |
| 1575 | R: m_OneUse(SubPattern: m_ZExtOrSExt(Op: m_Value(V&: Y)))))) { |
| 1576 | // Can fold trunc nsw + zext/sext for all predicates. |
| 1577 | YIsSExt = |
| 1578 | isa<SExtInst>(Val: Cmp.getOperand(i_nocapture: 0)) || isa<SExtInst>(Val: Cmp.getOperand(i_nocapture: 1)); |
| 1579 | } else |
| 1580 | return nullptr; |
| 1581 | |
| 1582 | Type *TruncTy = Cmp.getOperand(i_nocapture: 0)->getType(); |
| 1583 | unsigned TruncBits = TruncTy->getScalarSizeInBits(); |
| 1584 | |
| 1585 | // If this transform will end up changing from desirable types -> undesirable |
| 1586 | // types skip it. |
| 1587 | if (isDesirableIntType(BitWidth: TruncBits) && |
| 1588 | !isDesirableIntType(BitWidth: X->getType()->getScalarSizeInBits())) |
| 1589 | return nullptr; |
| 1590 | |
| 1591 | Value *NewY = Builder.CreateIntCast(V: Y, DestTy: X->getType(), isSigned: YIsSExt); |
| 1592 | return new ICmpInst(Pred, X, NewY); |
| 1593 | } |
| 1594 | |
| 1595 | /// Fold icmp (xor X, Y), C. |
| 1596 | Instruction *InstCombinerImpl::foldICmpXorConstant(ICmpInst &Cmp, |
| 1597 | BinaryOperator *Xor, |
| 1598 | const APInt &C) { |
| 1599 | if (Instruction *I = foldICmpXorShiftConst(Cmp, Xor, C)) |
| 1600 | return I; |
| 1601 | |
| 1602 | Value *X = Xor->getOperand(i_nocapture: 0); |
| 1603 | Value *Y = Xor->getOperand(i_nocapture: 1); |
| 1604 | const APInt *XorC; |
| 1605 | if (!match(V: Y, P: m_APInt(Res&: XorC))) |
| 1606 | return nullptr; |
| 1607 | |
| 1608 | // If this is a comparison that tests the signbit (X < 0) or (x > -1), |
| 1609 | // fold the xor. |
| 1610 | ICmpInst::Predicate Pred = Cmp.getPredicate(); |
| 1611 | bool TrueIfSigned = false; |
| 1612 | if (isSignBitCheck(Pred: Cmp.getPredicate(), RHS: C, TrueIfSigned)) { |
| 1613 | |
| 1614 | // If the sign bit of the XorCst is not set, there is no change to |
| 1615 | // the operation, just stop using the Xor. |
| 1616 | if (!XorC->isNegative()) |
| 1617 | return replaceOperand(I&: Cmp, OpNum: 0, V: X); |
| 1618 | |
| 1619 | // Emit the opposite comparison. |
| 1620 | if (TrueIfSigned) |
| 1621 | return new ICmpInst(ICmpInst::ICMP_SGT, X, |
| 1622 | ConstantInt::getAllOnesValue(Ty: X->getType())); |
| 1623 | else |
| 1624 | return new ICmpInst(ICmpInst::ICMP_SLT, X, |
| 1625 | ConstantInt::getNullValue(Ty: X->getType())); |
| 1626 | } |
| 1627 | |
| 1628 | if (Xor->hasOneUse()) { |
| 1629 | // (icmp u/s (xor X SignMask), C) -> (icmp s/u X, (xor C SignMask)) |
| 1630 | if (!Cmp.isEquality() && XorC->isSignMask()) { |
| 1631 | Pred = Cmp.getFlippedSignednessPredicate(); |
| 1632 | return new ICmpInst(Pred, X, ConstantInt::get(Ty: X->getType(), V: C ^ *XorC)); |
| 1633 | } |
| 1634 | |
| 1635 | // (icmp u/s (xor X ~SignMask), C) -> (icmp s/u X, (xor C ~SignMask)) |
| 1636 | if (!Cmp.isEquality() && XorC->isMaxSignedValue()) { |
| 1637 | Pred = Cmp.getFlippedSignednessPredicate(); |
| 1638 | Pred = Cmp.getSwappedPredicate(pred: Pred); |
| 1639 | return new ICmpInst(Pred, X, ConstantInt::get(Ty: X->getType(), V: C ^ *XorC)); |
| 1640 | } |
| 1641 | } |
| 1642 | |
| 1643 | // Mask constant magic can eliminate an 'xor' with unsigned compares. |
| 1644 | if (Pred == ICmpInst::ICMP_UGT) { |
| 1645 | // (xor X, ~C) >u C --> X <u ~C (when C+1 is a power of 2) |
| 1646 | if (*XorC == ~C && (C + 1).isPowerOf2()) |
| 1647 | return new ICmpInst(ICmpInst::ICMP_ULT, X, Y); |
| 1648 | // (xor X, C) >u C --> X >u C (when C+1 is a power of 2) |
| 1649 | if (*XorC == C && (C + 1).isPowerOf2()) |
| 1650 | return new ICmpInst(ICmpInst::ICMP_UGT, X, Y); |
| 1651 | } |
| 1652 | if (Pred == ICmpInst::ICMP_ULT) { |
| 1653 | // (xor X, -C) <u C --> X >u ~C (when C is a power of 2) |
| 1654 | if (*XorC == -C && C.isPowerOf2()) |
| 1655 | return new ICmpInst(ICmpInst::ICMP_UGT, X, |
| 1656 | ConstantInt::get(Ty: X->getType(), V: ~C)); |
| 1657 | // (xor X, C) <u C --> X >u ~C (when -C is a power of 2) |
| 1658 | if (*XorC == C && (-C).isPowerOf2()) |
| 1659 | return new ICmpInst(ICmpInst::ICMP_UGT, X, |
| 1660 | ConstantInt::get(Ty: X->getType(), V: ~C)); |
| 1661 | } |
| 1662 | return nullptr; |
| 1663 | } |
| 1664 | |
| 1665 | /// For power-of-2 C: |
| 1666 | /// ((X s>> ShiftC) ^ X) u< C --> (X + C) u< (C << 1) |
| 1667 | /// ((X s>> ShiftC) ^ X) u> (C - 1) --> (X + C) u> ((C << 1) - 1) |
| 1668 | Instruction *InstCombinerImpl::foldICmpXorShiftConst(ICmpInst &Cmp, |
| 1669 | BinaryOperator *Xor, |
| 1670 | const APInt &C) { |
| 1671 | CmpInst::Predicate Pred = Cmp.getPredicate(); |
| 1672 | APInt PowerOf2; |
| 1673 | if (Pred == ICmpInst::ICMP_ULT) |
| 1674 | PowerOf2 = C; |
| 1675 | else if (Pred == ICmpInst::ICMP_UGT && !C.isMaxValue()) |
| 1676 | PowerOf2 = C + 1; |
| 1677 | else |
| 1678 | return nullptr; |
| 1679 | if (!PowerOf2.isPowerOf2()) |
| 1680 | return nullptr; |
| 1681 | Value *X; |
| 1682 | const APInt *ShiftC; |
| 1683 | if (!match(V: Xor, P: m_OneUse(SubPattern: m_c_Xor(L: m_Value(V&: X), |
| 1684 | R: m_AShr(L: m_Deferred(V: X), R: m_APInt(Res&: ShiftC)))))) |
| 1685 | return nullptr; |
| 1686 | uint64_t Shift = ShiftC->getLimitedValue(); |
| 1687 | Type *XType = X->getType(); |
| 1688 | if (Shift == 0 || PowerOf2.isMinSignedValue()) |
| 1689 | return nullptr; |
| 1690 | Value *Add = Builder.CreateAdd(LHS: X, RHS: ConstantInt::get(Ty: XType, V: PowerOf2)); |
| 1691 | APInt Bound = |
| 1692 | Pred == ICmpInst::ICMP_ULT ? PowerOf2 << 1 : ((PowerOf2 << 1) - 1); |
| 1693 | return new ICmpInst(Pred, Add, ConstantInt::get(Ty: XType, V: Bound)); |
| 1694 | } |
| 1695 | |
| 1696 | /// Fold icmp (and (sh X, Y), C2), C1. |
| 1697 | Instruction *InstCombinerImpl::foldICmpAndShift(ICmpInst &Cmp, |
| 1698 | BinaryOperator *And, |
| 1699 | const APInt &C1, |
| 1700 | const APInt &C2) { |
| 1701 | BinaryOperator *Shift = dyn_cast<BinaryOperator>(Val: And->getOperand(i_nocapture: 0)); |
| 1702 | if (!Shift || !Shift->isShift()) |
| 1703 | return nullptr; |
| 1704 | |
| 1705 | // If this is: (X >> C3) & C2 != C1 (where any shift and any compare could |
| 1706 | // exist), turn it into (X & (C2 << C3)) != (C1 << C3). This happens a LOT in |
| 1707 | // code produced by the clang front-end, for bitfield access. |
| 1708 | // This seemingly simple opportunity to fold away a shift turns out to be |
| 1709 | // rather complicated. See PR17827 for details. |
| 1710 | unsigned ShiftOpcode = Shift->getOpcode(); |
| 1711 | bool IsShl = ShiftOpcode == Instruction::Shl; |
| 1712 | const APInt *C3; |
| 1713 | if (match(V: Shift->getOperand(i_nocapture: 1), P: m_APInt(Res&: C3))) { |
| 1714 | APInt NewAndCst, NewCmpCst; |
| 1715 | bool AnyCmpCstBitsShiftedOut; |
| 1716 | if (ShiftOpcode == Instruction::Shl) { |
| 1717 | // For a left shift, we can fold if the comparison is not signed. We can |
| 1718 | // also fold a signed comparison if the mask value and comparison value |
| 1719 | // are not negative. These constraints may not be obvious, but we can |
| 1720 | // prove that they are correct using an SMT solver. |
| 1721 | if (Cmp.isSigned() && (C2.isNegative() || C1.isNegative())) |
| 1722 | return nullptr; |
| 1723 | |
| 1724 | NewCmpCst = C1.lshr(ShiftAmt: *C3); |
| 1725 | NewAndCst = C2.lshr(ShiftAmt: *C3); |
| 1726 | AnyCmpCstBitsShiftedOut = NewCmpCst.shl(ShiftAmt: *C3) != C1; |
| 1727 | } else if (ShiftOpcode == Instruction::LShr) { |
| 1728 | // For a logical right shift, we can fold if the comparison is not signed. |
| 1729 | // We can also fold a signed comparison if the shifted mask value and the |
| 1730 | // shifted comparison value are not negative. These constraints may not be |
| 1731 | // obvious, but we can prove that they are correct using an SMT solver. |
| 1732 | NewCmpCst = C1.shl(ShiftAmt: *C3); |
| 1733 | NewAndCst = C2.shl(ShiftAmt: *C3); |
| 1734 | AnyCmpCstBitsShiftedOut = NewCmpCst.lshr(ShiftAmt: *C3) != C1; |
| 1735 | if (Cmp.isSigned() && (NewAndCst.isNegative() || NewCmpCst.isNegative())) |
| 1736 | return nullptr; |
| 1737 | } else { |
| 1738 | // For an arithmetic shift, check that both constants don't use (in a |
| 1739 | // signed sense) the top bits being shifted out. |
| 1740 | assert(ShiftOpcode == Instruction::AShr && "Unknown shift opcode" ); |
| 1741 | NewCmpCst = C1.shl(ShiftAmt: *C3); |
| 1742 | NewAndCst = C2.shl(ShiftAmt: *C3); |
| 1743 | AnyCmpCstBitsShiftedOut = NewCmpCst.ashr(ShiftAmt: *C3) != C1; |
| 1744 | if (NewAndCst.ashr(ShiftAmt: *C3) != C2) |
| 1745 | return nullptr; |
| 1746 | } |
| 1747 | |
| 1748 | if (AnyCmpCstBitsShiftedOut) { |
| 1749 | // If we shifted bits out, the fold is not going to work out. As a |
| 1750 | // special case, check to see if this means that the result is always |
| 1751 | // true or false now. |
| 1752 | if (Cmp.getPredicate() == ICmpInst::ICMP_EQ) |
| 1753 | return replaceInstUsesWith(I&: Cmp, V: ConstantInt::getFalse(Ty: Cmp.getType())); |
| 1754 | if (Cmp.getPredicate() == ICmpInst::ICMP_NE) |
| 1755 | return replaceInstUsesWith(I&: Cmp, V: ConstantInt::getTrue(Ty: Cmp.getType())); |
| 1756 | } else { |
| 1757 | Value *NewAnd = Builder.CreateAnd( |
| 1758 | LHS: Shift->getOperand(i_nocapture: 0), RHS: ConstantInt::get(Ty: And->getType(), V: NewAndCst)); |
| 1759 | return new ICmpInst(Cmp.getPredicate(), NewAnd, |
| 1760 | ConstantInt::get(Ty: And->getType(), V: NewCmpCst)); |
| 1761 | } |
| 1762 | } |
| 1763 | |
| 1764 | // Turn ((X >> Y) & C2) == 0 into (X & (C2 << Y)) == 0. The latter is |
| 1765 | // preferable because it allows the C2 << Y expression to be hoisted out of a |
| 1766 | // loop if Y is invariant and X is not. |
| 1767 | if (Shift->hasOneUse() && C1.isZero() && Cmp.isEquality() && |
| 1768 | !Shift->isArithmeticShift() && |
| 1769 | ((!IsShl && C2.isOne()) || !isa<Constant>(Val: Shift->getOperand(i_nocapture: 0)))) { |
| 1770 | // Compute C2 << Y. |
| 1771 | Value *NewShift = |
| 1772 | IsShl ? Builder.CreateLShr(LHS: And->getOperand(i_nocapture: 1), RHS: Shift->getOperand(i_nocapture: 1)) |
| 1773 | : Builder.CreateShl(LHS: And->getOperand(i_nocapture: 1), RHS: Shift->getOperand(i_nocapture: 1)); |
| 1774 | |
| 1775 | // Compute X & (C2 << Y). |
| 1776 | Value *NewAnd = Builder.CreateAnd(LHS: Shift->getOperand(i_nocapture: 0), RHS: NewShift); |
| 1777 | return new ICmpInst(Cmp.getPredicate(), NewAnd, Cmp.getOperand(i_nocapture: 1)); |
| 1778 | } |
| 1779 | |
| 1780 | return nullptr; |
| 1781 | } |
| 1782 | |
| 1783 | /// Fold icmp (and X, C2), C1. |
| 1784 | Instruction *InstCombinerImpl::foldICmpAndConstConst(ICmpInst &Cmp, |
| 1785 | BinaryOperator *And, |
| 1786 | const APInt &C1) { |
| 1787 | bool isICMP_NE = Cmp.getPredicate() == ICmpInst::ICMP_NE; |
| 1788 | |
| 1789 | // For vectors: icmp ne (and X, 1), 0 --> trunc X to N x i1 |
| 1790 | // TODO: We canonicalize to the longer form for scalars because we have |
| 1791 | // better analysis/folds for icmp, and codegen may be better with icmp. |
| 1792 | if (isICMP_NE && Cmp.getType()->isVectorTy() && C1.isZero() && |
| 1793 | match(V: And->getOperand(i_nocapture: 1), P: m_One())) |
| 1794 | return new TruncInst(And->getOperand(i_nocapture: 0), Cmp.getType()); |
| 1795 | |
| 1796 | const APInt *C2; |
| 1797 | Value *X; |
| 1798 | if (!match(V: And, P: m_And(L: m_Value(V&: X), R: m_APInt(Res&: C2)))) |
| 1799 | return nullptr; |
| 1800 | |
| 1801 | // (and X, highmask) s> [0, ~highmask] --> X s> ~highmask |
| 1802 | if (Cmp.getPredicate() == ICmpInst::ICMP_SGT && C1.ule(RHS: ~*C2) && |
| 1803 | C2->isNegatedPowerOf2()) |
| 1804 | return new ICmpInst(ICmpInst::ICMP_SGT, X, |
| 1805 | ConstantInt::get(Ty: X->getType(), V: ~*C2)); |
| 1806 | // (and X, highmask) s< [1, -highmask] --> X s< -highmask |
| 1807 | if (Cmp.getPredicate() == ICmpInst::ICMP_SLT && !C1.isSignMask() && |
| 1808 | (C1 - 1).ule(RHS: ~*C2) && C2->isNegatedPowerOf2() && !C2->isSignMask()) |
| 1809 | return new ICmpInst(ICmpInst::ICMP_SLT, X, |
| 1810 | ConstantInt::get(Ty: X->getType(), V: -*C2)); |
| 1811 | |
| 1812 | // Don't perform the following transforms if the AND has multiple uses |
| 1813 | if (!And->hasOneUse()) |
| 1814 | return nullptr; |
| 1815 | |
| 1816 | if (Cmp.isEquality() && C1.isZero()) { |
| 1817 | // Restrict this fold to single-use 'and' (PR10267). |
| 1818 | // Replace (and X, (1 << size(X)-1) != 0) with X s< 0 |
| 1819 | if (C2->isSignMask()) { |
| 1820 | Constant *Zero = Constant::getNullValue(Ty: X->getType()); |
| 1821 | auto NewPred = isICMP_NE ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE; |
| 1822 | return new ICmpInst(NewPred, X, Zero); |
| 1823 | } |
| 1824 | |
| 1825 | APInt NewC2 = *C2; |
| 1826 | KnownBits Know = computeKnownBits(V: And->getOperand(i_nocapture: 0), CxtI: And); |
| 1827 | // Set high zeros of C2 to allow matching negated power-of-2. |
| 1828 | NewC2 = *C2 | APInt::getHighBitsSet(numBits: C2->getBitWidth(), |
| 1829 | hiBitsSet: Know.countMinLeadingZeros()); |
| 1830 | |
| 1831 | // Restrict this fold only for single-use 'and' (PR10267). |
| 1832 | // ((%x & C) == 0) --> %x u< (-C) iff (-C) is power of two. |
| 1833 | if (NewC2.isNegatedPowerOf2()) { |
| 1834 | Constant *NegBOC = ConstantInt::get(Ty: And->getType(), V: -NewC2); |
| 1835 | auto NewPred = isICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT; |
| 1836 | return new ICmpInst(NewPred, X, NegBOC); |
| 1837 | } |
| 1838 | } |
| 1839 | |
| 1840 | // If the LHS is an 'and' of a truncate and we can widen the and/compare to |
| 1841 | // the input width without changing the value produced, eliminate the cast: |
| 1842 | // |
| 1843 | // icmp (and (trunc W), C2), C1 -> icmp (and W, C2'), C1' |
| 1844 | // |
| 1845 | // We can do this transformation if the constants do not have their sign bits |
| 1846 | // set or if it is an equality comparison. Extending a relational comparison |
| 1847 | // when we're checking the sign bit would not work. |
| 1848 | Value *W; |
| 1849 | if (match(V: And->getOperand(i_nocapture: 0), P: m_OneUse(SubPattern: m_Trunc(Op: m_Value(V&: W)))) && |
| 1850 | (Cmp.isEquality() || (!C1.isNegative() && !C2->isNegative()))) { |
| 1851 | // TODO: Is this a good transform for vectors? Wider types may reduce |
| 1852 | // throughput. Should this transform be limited (even for scalars) by using |
| 1853 | // shouldChangeType()? |
| 1854 | if (!Cmp.getType()->isVectorTy()) { |
| 1855 | Type *WideType = W->getType(); |
| 1856 | unsigned WideScalarBits = WideType->getScalarSizeInBits(); |
| 1857 | Constant *ZextC1 = ConstantInt::get(Ty: WideType, V: C1.zext(width: WideScalarBits)); |
| 1858 | Constant *ZextC2 = ConstantInt::get(Ty: WideType, V: C2->zext(width: WideScalarBits)); |
| 1859 | Value *NewAnd = Builder.CreateAnd(LHS: W, RHS: ZextC2, Name: And->getName()); |
| 1860 | return new ICmpInst(Cmp.getPredicate(), NewAnd, ZextC1); |
| 1861 | } |
| 1862 | } |
| 1863 | |
| 1864 | if (Instruction *I = foldICmpAndShift(Cmp, And, C1, C2: *C2)) |
| 1865 | return I; |
| 1866 | |
| 1867 | // (icmp pred (and (or (lshr A, B), A), 1), 0) --> |
| 1868 | // (icmp pred (and A, (or (shl 1, B), 1), 0)) |
| 1869 | // |
| 1870 | // iff pred isn't signed |
| 1871 | if (!Cmp.isSigned() && C1.isZero() && And->getOperand(i_nocapture: 0)->hasOneUse() && |
| 1872 | match(V: And->getOperand(i_nocapture: 1), P: m_One())) { |
| 1873 | Constant *One = cast<Constant>(Val: And->getOperand(i_nocapture: 1)); |
| 1874 | Value *Or = And->getOperand(i_nocapture: 0); |
| 1875 | Value *A, *B, *LShr; |
| 1876 | if (match(V: Or, P: m_Or(L: m_Value(V&: LShr), R: m_Value(V&: A))) && |
| 1877 | match(V: LShr, P: m_LShr(L: m_Specific(V: A), R: m_Value(V&: B)))) { |
| 1878 | unsigned UsesRemoved = 0; |
| 1879 | if (And->hasOneUse()) |
| 1880 | ++UsesRemoved; |
| 1881 | if (Or->hasOneUse()) |
| 1882 | ++UsesRemoved; |
| 1883 | if (LShr->hasOneUse()) |
| 1884 | ++UsesRemoved; |
| 1885 | |
| 1886 | // Compute A & ((1 << B) | 1) |
| 1887 | unsigned RequireUsesRemoved = match(V: B, P: m_ImmConstant()) ? 1 : 3; |
| 1888 | if (UsesRemoved >= RequireUsesRemoved) { |
| 1889 | Value *NewOr = |
| 1890 | Builder.CreateOr(LHS: Builder.CreateShl(LHS: One, RHS: B, Name: LShr->getName(), |
| 1891 | /*HasNUW=*/true), |
| 1892 | RHS: One, Name: Or->getName()); |
| 1893 | Value *NewAnd = Builder.CreateAnd(LHS: A, RHS: NewOr, Name: And->getName()); |
| 1894 | return new ICmpInst(Cmp.getPredicate(), NewAnd, Cmp.getOperand(i_nocapture: 1)); |
| 1895 | } |
| 1896 | } |
| 1897 | } |
| 1898 | |
| 1899 | // (icmp eq (and (bitcast X to int), ExponentMask), ExponentMask) --> |
| 1900 | // llvm.is.fpclass(X, fcInf|fcNan) |
| 1901 | // (icmp ne (and (bitcast X to int), ExponentMask), ExponentMask) --> |
| 1902 | // llvm.is.fpclass(X, ~(fcInf|fcNan)) |
| 1903 | // (icmp eq (and (bitcast X to int), ExponentMask), 0) --> |
| 1904 | // llvm.is.fpclass(X, fcSubnormal|fcZero) |
| 1905 | // (icmp ne (and (bitcast X to int), ExponentMask), 0) --> |
| 1906 | // llvm.is.fpclass(X, ~(fcSubnormal|fcZero)) |
| 1907 | Value *V; |
| 1908 | if (!Cmp.getParent()->getParent()->hasFnAttribute( |
| 1909 | Kind: Attribute::NoImplicitFloat) && |
| 1910 | Cmp.isEquality() && |
| 1911 | match(V: X, P: m_OneUse(SubPattern: m_ElementWiseBitCast(Op: m_Value(V))))) { |
| 1912 | Type *FPType = V->getType()->getScalarType(); |
| 1913 | if (FPType->isIEEELikeFPTy() && (C1.isZero() || C1 == *C2)) { |
| 1914 | APInt ExponentMask = |
| 1915 | APFloat::getInf(Sem: FPType->getFltSemantics()).bitcastToAPInt(); |
| 1916 | if (*C2 == ExponentMask) { |
| 1917 | unsigned Mask = C1.isZero() |
| 1918 | ? FPClassTest::fcZero | FPClassTest::fcSubnormal |
| 1919 | : FPClassTest::fcNan | FPClassTest::fcInf; |
| 1920 | if (isICMP_NE) |
| 1921 | Mask = ~Mask & fcAllFlags; |
| 1922 | return replaceInstUsesWith(I&: Cmp, V: Builder.createIsFPClass(FPNum: V, Test: Mask)); |
| 1923 | } |
| 1924 | } |
| 1925 | } |
| 1926 | |
| 1927 | return nullptr; |
| 1928 | } |
| 1929 | |
| 1930 | /// Fold icmp (and X, Y), C. |
| 1931 | Instruction *InstCombinerImpl::foldICmpAndConstant(ICmpInst &Cmp, |
| 1932 | BinaryOperator *And, |
| 1933 | const APInt &C) { |
| 1934 | if (Instruction *I = foldICmpAndConstConst(Cmp, And, C1: C)) |
| 1935 | return I; |
| 1936 | |
| 1937 | const ICmpInst::Predicate Pred = Cmp.getPredicate(); |
| 1938 | bool TrueIfNeg; |
| 1939 | if (isSignBitCheck(Pred, RHS: C, TrueIfSigned&: TrueIfNeg)) { |
| 1940 | // ((X - 1) & ~X) < 0 --> X == 0 |
| 1941 | // ((X - 1) & ~X) >= 0 --> X != 0 |
| 1942 | Value *X; |
| 1943 | if (match(V: And->getOperand(i_nocapture: 0), P: m_Add(L: m_Value(V&: X), R: m_AllOnes())) && |
| 1944 | match(V: And->getOperand(i_nocapture: 1), P: m_Not(V: m_Specific(V: X)))) { |
| 1945 | auto NewPred = TrueIfNeg ? CmpInst::ICMP_EQ : CmpInst::ICMP_NE; |
| 1946 | return new ICmpInst(NewPred, X, ConstantInt::getNullValue(Ty: X->getType())); |
| 1947 | } |
| 1948 | // (X & -X) < 0 --> X == MinSignedC |
| 1949 | // (X & -X) > -1 --> X != MinSignedC |
| 1950 | if (match(V: And, P: m_c_And(L: m_Neg(V: m_Value(V&: X)), R: m_Deferred(V: X)))) { |
| 1951 | Constant *MinSignedC = ConstantInt::get( |
| 1952 | Ty: X->getType(), |
| 1953 | V: APInt::getSignedMinValue(numBits: X->getType()->getScalarSizeInBits())); |
| 1954 | auto NewPred = TrueIfNeg ? CmpInst::ICMP_EQ : CmpInst::ICMP_NE; |
| 1955 | return new ICmpInst(NewPred, X, MinSignedC); |
| 1956 | } |
| 1957 | } |
| 1958 | |
| 1959 | // TODO: These all require that Y is constant too, so refactor with the above. |
| 1960 | |
| 1961 | // Try to optimize things like "A[i] & 42 == 0" to index computations. |
| 1962 | Value *X = And->getOperand(i_nocapture: 0); |
| 1963 | Value *Y = And->getOperand(i_nocapture: 1); |
| 1964 | if (auto *C2 = dyn_cast<ConstantInt>(Val: Y)) |
| 1965 | if (auto *LI = dyn_cast<LoadInst>(Val: X)) |
| 1966 | if (auto *GEP = dyn_cast<GetElementPtrInst>(Val: LI->getOperand(i_nocapture: 0))) |
| 1967 | if (Instruction *Res = foldCmpLoadFromIndexedGlobal(LI, GEP, ICI&: Cmp, AndCst: C2)) |
| 1968 | return Res; |
| 1969 | |
| 1970 | if (!Cmp.isEquality()) |
| 1971 | return nullptr; |
| 1972 | |
| 1973 | // X & -C == -C -> X > u ~C |
| 1974 | // X & -C != -C -> X <= u ~C |
| 1975 | // iff C is a power of 2 |
| 1976 | if (Cmp.getOperand(i_nocapture: 1) == Y && C.isNegatedPowerOf2()) { |
| 1977 | auto NewPred = |
| 1978 | Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGT : CmpInst::ICMP_ULE; |
| 1979 | return new ICmpInst(NewPred, X, SubOne(C: cast<Constant>(Val: Cmp.getOperand(i_nocapture: 1)))); |
| 1980 | } |
| 1981 | |
| 1982 | // ((zext i1 X) & Y) == 0 --> !((trunc Y) & X) |
| 1983 | // ((zext i1 X) & Y) != 0 --> ((trunc Y) & X) |
| 1984 | // ((zext i1 X) & Y) == 1 --> ((trunc Y) & X) |
| 1985 | // ((zext i1 X) & Y) != 1 --> !((trunc Y) & X) |
| 1986 | if (match(V: And, P: m_OneUse(SubPattern: m_c_And(L: m_OneUse(SubPattern: m_ZExt(Op: m_Value(V&: X))), R: m_Value(V&: Y)))) && |
| 1987 | X->getType()->isIntOrIntVectorTy(BitWidth: 1) && (C.isZero() || C.isOne())) { |
| 1988 | Value *TruncY = Builder.CreateTrunc(V: Y, DestTy: X->getType()); |
| 1989 | if (C.isZero() ^ (Pred == CmpInst::ICMP_NE)) { |
| 1990 | Value *And = Builder.CreateAnd(LHS: TruncY, RHS: X); |
| 1991 | return BinaryOperator::CreateNot(Op: And); |
| 1992 | } |
| 1993 | return BinaryOperator::CreateAnd(V1: TruncY, V2: X); |
| 1994 | } |
| 1995 | |
| 1996 | // (icmp eq/ne (and (shl -1, X), Y), 0) |
| 1997 | // -> (icmp eq/ne (lshr Y, X), 0) |
| 1998 | // We could technically handle any C == 0 or (C < 0 && isOdd(C)) but it seems |
| 1999 | // highly unlikely the non-zero case will ever show up in code. |
| 2000 | if (C.isZero() && |
| 2001 | match(V: And, P: m_OneUse(SubPattern: m_c_And(L: m_OneUse(SubPattern: m_Shl(L: m_AllOnes(), R: m_Value(V&: X))), |
| 2002 | R: m_Value(V&: Y))))) { |
| 2003 | Value *LShr = Builder.CreateLShr(LHS: Y, RHS: X); |
| 2004 | return new ICmpInst(Pred, LShr, Constant::getNullValue(Ty: LShr->getType())); |
| 2005 | } |
| 2006 | |
| 2007 | // (icmp eq/ne (and (add A, Addend), Msk), C) |
| 2008 | // -> (icmp eq/ne (and A, Msk), (and (sub C, Addend), Msk)) |
| 2009 | { |
| 2010 | Value *A; |
| 2011 | const APInt *Addend, *Msk; |
| 2012 | if (match(V: And, P: m_And(L: m_OneUse(SubPattern: m_Add(L: m_Value(V&: A), R: m_APInt(Res&: Addend))), |
| 2013 | R: m_LowBitMask(V&: Msk))) && |
| 2014 | C.ule(RHS: *Msk)) { |
| 2015 | APInt NewComperand = (C - *Addend) & *Msk; |
| 2016 | Value *MaskA = Builder.CreateAnd(LHS: A, RHS: ConstantInt::get(Ty: A->getType(), V: *Msk)); |
| 2017 | return new ICmpInst(Pred, MaskA, |
| 2018 | ConstantInt::get(Ty: MaskA->getType(), V: NewComperand)); |
| 2019 | } |
| 2020 | } |
| 2021 | |
| 2022 | return nullptr; |
| 2023 | } |
| 2024 | |
| 2025 | /// Fold icmp eq/ne (or (xor/sub (X1, X2), xor/sub (X3, X4))), 0. |
| 2026 | static Value *foldICmpOrXorSubChain(ICmpInst &Cmp, BinaryOperator *Or, |
| 2027 | InstCombiner::BuilderTy &Builder) { |
| 2028 | // Are we using xors or subs to bitwise check for a pair or pairs of |
| 2029 | // (in)equalities? Convert to a shorter form that has more potential to be |
| 2030 | // folded even further. |
| 2031 | // ((X1 ^/- X2) || (X3 ^/- X4)) == 0 --> (X1 == X2) && (X3 == X4) |
| 2032 | // ((X1 ^/- X2) || (X3 ^/- X4)) != 0 --> (X1 != X2) || (X3 != X4) |
| 2033 | // ((X1 ^/- X2) || (X3 ^/- X4) || (X5 ^/- X6)) == 0 --> |
| 2034 | // (X1 == X2) && (X3 == X4) && (X5 == X6) |
| 2035 | // ((X1 ^/- X2) || (X3 ^/- X4) || (X5 ^/- X6)) != 0 --> |
| 2036 | // (X1 != X2) || (X3 != X4) || (X5 != X6) |
| 2037 | SmallVector<std::pair<Value *, Value *>, 2> CmpValues; |
| 2038 | SmallVector<Value *, 16> WorkList(1, Or); |
| 2039 | |
| 2040 | while (!WorkList.empty()) { |
| 2041 | auto MatchOrOperatorArgument = [&](Value *OrOperatorArgument) { |
| 2042 | Value *Lhs, *Rhs; |
| 2043 | |
| 2044 | if (match(V: OrOperatorArgument, |
| 2045 | P: m_OneUse(SubPattern: m_Xor(L: m_Value(V&: Lhs), R: m_Value(V&: Rhs))))) { |
| 2046 | CmpValues.emplace_back(Args&: Lhs, Args&: Rhs); |
| 2047 | return; |
| 2048 | } |
| 2049 | |
| 2050 | if (match(V: OrOperatorArgument, |
| 2051 | P: m_OneUse(SubPattern: m_Sub(L: m_Value(V&: Lhs), R: m_Value(V&: Rhs))))) { |
| 2052 | CmpValues.emplace_back(Args&: Lhs, Args&: Rhs); |
| 2053 | return; |
| 2054 | } |
| 2055 | |
| 2056 | WorkList.push_back(Elt: OrOperatorArgument); |
| 2057 | }; |
| 2058 | |
| 2059 | Value *CurrentValue = WorkList.pop_back_val(); |
| 2060 | Value *OrOperatorLhs, *OrOperatorRhs; |
| 2061 | |
| 2062 | if (!match(V: CurrentValue, |
| 2063 | P: m_Or(L: m_Value(V&: OrOperatorLhs), R: m_Value(V&: OrOperatorRhs)))) { |
| 2064 | return nullptr; |
| 2065 | } |
| 2066 | |
| 2067 | MatchOrOperatorArgument(OrOperatorRhs); |
| 2068 | MatchOrOperatorArgument(OrOperatorLhs); |
| 2069 | } |
| 2070 | |
| 2071 | ICmpInst::Predicate Pred = Cmp.getPredicate(); |
| 2072 | auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or; |
| 2073 | Value *LhsCmp = Builder.CreateICmp(P: Pred, LHS: CmpValues.rbegin()->first, |
| 2074 | RHS: CmpValues.rbegin()->second); |
| 2075 | |
| 2076 | for (auto It = CmpValues.rbegin() + 1; It != CmpValues.rend(); ++It) { |
| 2077 | Value *RhsCmp = Builder.CreateICmp(P: Pred, LHS: It->first, RHS: It->second); |
| 2078 | LhsCmp = Builder.CreateBinOp(Opc: BOpc, LHS: LhsCmp, RHS: RhsCmp); |
| 2079 | } |
| 2080 | |
| 2081 | return LhsCmp; |
| 2082 | } |
| 2083 | |
| 2084 | /// Fold icmp (or X, Y), C. |
| 2085 | Instruction *InstCombinerImpl::foldICmpOrConstant(ICmpInst &Cmp, |
| 2086 | BinaryOperator *Or, |
| 2087 | const APInt &C) { |
| 2088 | ICmpInst::Predicate Pred = Cmp.getPredicate(); |
| 2089 | if (C.isOne()) { |
| 2090 | // icmp slt signum(V) 1 --> icmp slt V, 1 |
| 2091 | Value *V = nullptr; |
| 2092 | if (Pred == ICmpInst::ICMP_SLT && match(V: Or, P: m_Signum(V: m_Value(V)))) |
| 2093 | return new ICmpInst(ICmpInst::ICMP_SLT, V, |
| 2094 | ConstantInt::get(Ty: V->getType(), V: 1)); |
| 2095 | } |
| 2096 | |
| 2097 | Value *OrOp0 = Or->getOperand(i_nocapture: 0), *OrOp1 = Or->getOperand(i_nocapture: 1); |
| 2098 | |
| 2099 | // (icmp eq/ne (or disjoint x, C0), C1) |
| 2100 | // -> (icmp eq/ne x, C0^C1) |
| 2101 | if (Cmp.isEquality() && match(V: OrOp1, P: m_ImmConstant()) && |
| 2102 | cast<PossiblyDisjointInst>(Val: Or)->isDisjoint()) { |
| 2103 | Value *NewC = |
| 2104 | Builder.CreateXor(LHS: OrOp1, RHS: ConstantInt::get(Ty: OrOp1->getType(), V: C)); |
| 2105 | return new ICmpInst(Pred, OrOp0, NewC); |
| 2106 | } |
| 2107 | |
| 2108 | const APInt *MaskC; |
| 2109 | if (match(V: OrOp1, P: m_APInt(Res&: MaskC)) && Cmp.isEquality()) { |
| 2110 | if (*MaskC == C && (C + 1).isPowerOf2()) { |
| 2111 | // X | C == C --> X <=u C |
| 2112 | // X | C != C --> X >u C |
| 2113 | // iff C+1 is a power of 2 (C is a bitmask of the low bits) |
| 2114 | Pred = (Pred == CmpInst::ICMP_EQ) ? CmpInst::ICMP_ULE : CmpInst::ICMP_UGT; |
| 2115 | return new ICmpInst(Pred, OrOp0, OrOp1); |
| 2116 | } |
| 2117 | |
| 2118 | // More general: canonicalize 'equality with set bits mask' to |
| 2119 | // 'equality with clear bits mask'. |
| 2120 | // (X | MaskC) == C --> (X & ~MaskC) == C ^ MaskC |
| 2121 | // (X | MaskC) != C --> (X & ~MaskC) != C ^ MaskC |
| 2122 | if (Or->hasOneUse()) { |
| 2123 | Value *And = Builder.CreateAnd(LHS: OrOp0, RHS: ~(*MaskC)); |
| 2124 | Constant *NewC = ConstantInt::get(Ty: Or->getType(), V: C ^ (*MaskC)); |
| 2125 | return new ICmpInst(Pred, And, NewC); |
| 2126 | } |
| 2127 | } |
| 2128 | |
| 2129 | // (X | (X-1)) s< 0 --> X s< 1 |
| 2130 | // (X | (X-1)) s> -1 --> X s> 0 |
| 2131 | Value *X; |
| 2132 | bool TrueIfSigned; |
| 2133 | if (isSignBitCheck(Pred, RHS: C, TrueIfSigned) && |
| 2134 | match(V: Or, P: m_c_Or(L: m_Add(L: m_Value(V&: X), R: m_AllOnes()), R: m_Deferred(V: X)))) { |
| 2135 | auto NewPred = TrueIfSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGT; |
| 2136 | Constant *NewC = ConstantInt::get(Ty: X->getType(), V: TrueIfSigned ? 1 : 0); |
| 2137 | return new ICmpInst(NewPred, X, NewC); |
| 2138 | } |
| 2139 | |
| 2140 | const APInt *OrC; |
| 2141 | // icmp(X | OrC, C) --> icmp(X, 0) |
| 2142 | if (C.isNonNegative() && match(V: Or, P: m_Or(L: m_Value(V&: X), R: m_APInt(Res&: OrC)))) { |
| 2143 | switch (Pred) { |
| 2144 | // X | OrC s< C --> X s< 0 iff OrC s>= C s>= 0 |
| 2145 | case ICmpInst::ICMP_SLT: |
| 2146 | // X | OrC s>= C --> X s>= 0 iff OrC s>= C s>= 0 |
| 2147 | case ICmpInst::ICMP_SGE: |
| 2148 | if (OrC->sge(RHS: C)) |
| 2149 | return new ICmpInst(Pred, X, ConstantInt::getNullValue(Ty: X->getType())); |
| 2150 | break; |
| 2151 | // X | OrC s<= C --> X s< 0 iff OrC s> C s>= 0 |
| 2152 | case ICmpInst::ICMP_SLE: |
| 2153 | // X | OrC s> C --> X s>= 0 iff OrC s> C s>= 0 |
| 2154 | case ICmpInst::ICMP_SGT: |
| 2155 | if (OrC->sgt(RHS: C)) |
| 2156 | return new ICmpInst(ICmpInst::getFlippedStrictnessPredicate(pred: Pred), X, |
| 2157 | ConstantInt::getNullValue(Ty: X->getType())); |
| 2158 | break; |
| 2159 | default: |
| 2160 | break; |
| 2161 | } |
| 2162 | } |
| 2163 | |
| 2164 | if (!Cmp.isEquality() || !C.isZero() || !Or->hasOneUse()) |
| 2165 | return nullptr; |
| 2166 | |
| 2167 | Value *P, *Q; |
| 2168 | if (match(V: Or, P: m_Or(L: m_PtrToInt(Op: m_Value(V&: P)), R: m_PtrToInt(Op: m_Value(V&: Q))))) { |
| 2169 | // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0 |
| 2170 | // -> and (icmp eq P, null), (icmp eq Q, null). |
| 2171 | Value *CmpP = |
| 2172 | Builder.CreateICmp(P: Pred, LHS: P, RHS: ConstantInt::getNullValue(Ty: P->getType())); |
| 2173 | Value *CmpQ = |
| 2174 | Builder.CreateICmp(P: Pred, LHS: Q, RHS: ConstantInt::getNullValue(Ty: Q->getType())); |
| 2175 | auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or; |
| 2176 | return BinaryOperator::Create(Op: BOpc, S1: CmpP, S2: CmpQ); |
| 2177 | } |
| 2178 | |
| 2179 | if (Value *V = foldICmpOrXorSubChain(Cmp, Or, Builder)) |
| 2180 | return replaceInstUsesWith(I&: Cmp, V); |
| 2181 | |
| 2182 | return nullptr; |
| 2183 | } |
| 2184 | |
| 2185 | /// Fold icmp (mul X, Y), C. |
| 2186 | Instruction *InstCombinerImpl::foldICmpMulConstant(ICmpInst &Cmp, |
| 2187 | BinaryOperator *Mul, |
| 2188 | const APInt &C) { |
| 2189 | ICmpInst::Predicate Pred = Cmp.getPredicate(); |
| 2190 | Type *MulTy = Mul->getType(); |
| 2191 | Value *X = Mul->getOperand(i_nocapture: 0); |
| 2192 | |
| 2193 | // If there's no overflow: |
| 2194 | // X * X == 0 --> X == 0 |
| 2195 | // X * X != 0 --> X != 0 |
| 2196 | if (Cmp.isEquality() && C.isZero() && X == Mul->getOperand(i_nocapture: 1) && |
| 2197 | (Mul->hasNoUnsignedWrap() || Mul->hasNoSignedWrap())) |
| 2198 | return new ICmpInst(Pred, X, ConstantInt::getNullValue(Ty: MulTy)); |
| 2199 | |
| 2200 | const APInt *MulC; |
| 2201 | if (!match(V: Mul->getOperand(i_nocapture: 1), P: m_APInt(Res&: MulC))) |
| 2202 | return nullptr; |
| 2203 | |
| 2204 | // If this is a test of the sign bit and the multiply is sign-preserving with |
| 2205 | // a constant operand, use the multiply LHS operand instead: |
| 2206 | // (X * +MulC) < 0 --> X < 0 |
| 2207 | // (X * -MulC) < 0 --> X > 0 |
| 2208 | if (isSignTest(Pred, C) && Mul->hasNoSignedWrap()) { |
| 2209 | if (MulC->isNegative()) |
| 2210 | Pred = ICmpInst::getSwappedPredicate(pred: Pred); |
| 2211 | return new ICmpInst(Pred, X, ConstantInt::getNullValue(Ty: MulTy)); |
| 2212 | } |
| 2213 | |
| 2214 | if (MulC->isZero()) |
| 2215 | return nullptr; |
| 2216 | |
| 2217 | // If the multiply does not wrap or the constant is odd, try to divide the |
| 2218 | // compare constant by the multiplication factor. |
| 2219 | if (Cmp.isEquality()) { |
| 2220 | // (mul nsw X, MulC) eq/ne C --> X eq/ne C /s MulC |
| 2221 | if (Mul->hasNoSignedWrap() && C.srem(RHS: *MulC).isZero()) { |
| 2222 | Constant *NewC = ConstantInt::get(Ty: MulTy, V: C.sdiv(RHS: *MulC)); |
| 2223 | return new ICmpInst(Pred, X, NewC); |
| 2224 | } |
| 2225 | |
| 2226 | // C % MulC == 0 is weaker than we could use if MulC is odd because it |
| 2227 | // correct to transform if MulC * N == C including overflow. I.e with i8 |
| 2228 | // (icmp eq (mul X, 5), 101) -> (icmp eq X, 225) but since 101 % 5 != 0, we |
| 2229 | // miss that case. |
| 2230 | if (C.urem(RHS: *MulC).isZero()) { |
| 2231 | // (mul nuw X, MulC) eq/ne C --> X eq/ne C /u MulC |
| 2232 | // (mul X, OddC) eq/ne N * C --> X eq/ne N |
| 2233 | if ((*MulC & 1).isOne() || Mul->hasNoUnsignedWrap()) { |
| 2234 | Constant *NewC = ConstantInt::get(Ty: MulTy, V: C.udiv(RHS: *MulC)); |
| 2235 | return new ICmpInst(Pred, X, NewC); |
| 2236 | } |
| 2237 | } |
| 2238 | } |
| 2239 | |
| 2240 | // With a matching no-overflow guarantee, fold the constants: |
| 2241 | // (X * MulC) < C --> X < (C / MulC) |
| 2242 | // (X * MulC) > C --> X > (C / MulC) |
| 2243 | // TODO: Assert that Pred is not equal to SGE, SLE, UGE, ULE? |
| 2244 | Constant *NewC = nullptr; |
| 2245 | if (Mul->hasNoSignedWrap() && ICmpInst::isSigned(predicate: Pred)) { |
| 2246 | // MININT / -1 --> overflow. |
| 2247 | if (C.isMinSignedValue() && MulC->isAllOnes()) |
| 2248 | return nullptr; |
| 2249 | if (MulC->isNegative()) |
| 2250 | Pred = ICmpInst::getSwappedPredicate(pred: Pred); |
| 2251 | |
| 2252 | if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) { |
| 2253 | NewC = ConstantInt::get( |
| 2254 | Ty: MulTy, V: APIntOps::RoundingSDiv(A: C, B: *MulC, RM: APInt::Rounding::UP)); |
| 2255 | } else { |
| 2256 | assert((Pred == ICmpInst::ICMP_SLE || Pred == ICmpInst::ICMP_SGT) && |
| 2257 | "Unexpected predicate" ); |
| 2258 | NewC = ConstantInt::get( |
| 2259 | Ty: MulTy, V: APIntOps::RoundingSDiv(A: C, B: *MulC, RM: APInt::Rounding::DOWN)); |
| 2260 | } |
| 2261 | } else if (Mul->hasNoUnsignedWrap() && ICmpInst::isUnsigned(predicate: Pred)) { |
| 2262 | if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE) { |
| 2263 | NewC = ConstantInt::get( |
| 2264 | Ty: MulTy, V: APIntOps::RoundingUDiv(A: C, B: *MulC, RM: APInt::Rounding::UP)); |
| 2265 | } else { |
| 2266 | assert((Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT) && |
| 2267 | "Unexpected predicate" ); |
| 2268 | NewC = ConstantInt::get( |
| 2269 | Ty: MulTy, V: APIntOps::RoundingUDiv(A: C, B: *MulC, RM: APInt::Rounding::DOWN)); |
| 2270 | } |
| 2271 | } |
| 2272 | |
| 2273 | return NewC ? new ICmpInst(Pred, X, NewC) : nullptr; |
| 2274 | } |
| 2275 | |
| 2276 | /// Fold icmp (shl nuw C2, Y), C. |
| 2277 | static Instruction *foldICmpShlLHSC(ICmpInst &Cmp, Instruction *Shl, |
| 2278 | const APInt &C) { |
| 2279 | Value *Y; |
| 2280 | const APInt *C2; |
| 2281 | if (!match(V: Shl, P: m_NUWShl(L: m_APInt(Res&: C2), R: m_Value(V&: Y)))) |
| 2282 | return nullptr; |
| 2283 | |
| 2284 | Type *ShiftType = Shl->getType(); |
| 2285 | unsigned TypeBits = C.getBitWidth(); |
| 2286 | ICmpInst::Predicate Pred = Cmp.getPredicate(); |
| 2287 | if (Cmp.isUnsigned()) { |
| 2288 | if (C2->isZero() || C2->ugt(RHS: C)) |
| 2289 | return nullptr; |
| 2290 | APInt Div, Rem; |
| 2291 | APInt::udivrem(LHS: C, RHS: *C2, Quotient&: Div, Remainder&: Rem); |
| 2292 | bool CIsPowerOf2 = Rem.isZero() && Div.isPowerOf2(); |
| 2293 | |
| 2294 | // (1 << Y) pred C -> Y pred Log2(C) |
| 2295 | if (!CIsPowerOf2) { |
| 2296 | // (1 << Y) < 30 -> Y <= 4 |
| 2297 | // (1 << Y) <= 30 -> Y <= 4 |
| 2298 | // (1 << Y) >= 30 -> Y > 4 |
| 2299 | // (1 << Y) > 30 -> Y > 4 |
| 2300 | if (Pred == ICmpInst::ICMP_ULT) |
| 2301 | Pred = ICmpInst::ICMP_ULE; |
| 2302 | else if (Pred == ICmpInst::ICMP_UGE) |
| 2303 | Pred = ICmpInst::ICMP_UGT; |
| 2304 | } |
| 2305 | |
| 2306 | unsigned CLog2 = Div.logBase2(); |
| 2307 | return new ICmpInst(Pred, Y, ConstantInt::get(Ty: ShiftType, V: CLog2)); |
| 2308 | } else if (Cmp.isSigned() && C2->isOne()) { |
| 2309 | Constant *BitWidthMinusOne = ConstantInt::get(Ty: ShiftType, V: TypeBits - 1); |
| 2310 | // (1 << Y) > 0 -> Y != 31 |
| 2311 | // (1 << Y) > C -> Y != 31 if C is negative. |
| 2312 | if (Pred == ICmpInst::ICMP_SGT && C.sle(RHS: 0)) |
| 2313 | return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne); |
| 2314 | |
| 2315 | // (1 << Y) < 0 -> Y == 31 |
| 2316 | // (1 << Y) < 1 -> Y == 31 |
| 2317 | // (1 << Y) < C -> Y == 31 if C is negative and not signed min. |
| 2318 | // Exclude signed min by subtracting 1 and lower the upper bound to 0. |
| 2319 | if (Pred == ICmpInst::ICMP_SLT && (C - 1).sle(RHS: 0)) |
| 2320 | return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne); |
| 2321 | } |
| 2322 | |
| 2323 | return nullptr; |
| 2324 | } |
| 2325 | |
| 2326 | /// Fold icmp (shl X, Y), C. |
| 2327 | Instruction *InstCombinerImpl::foldICmpShlConstant(ICmpInst &Cmp, |
| 2328 | BinaryOperator *Shl, |
| 2329 | const APInt &C) { |
| 2330 | const APInt *ShiftVal; |
| 2331 | if (Cmp.isEquality() && match(V: Shl->getOperand(i_nocapture: 0), P: m_APInt(Res&: ShiftVal))) |
| 2332 | return foldICmpShlConstConst(I&: Cmp, A: Shl->getOperand(i_nocapture: 1), AP1: C, AP2: *ShiftVal); |
| 2333 | |
| 2334 | ICmpInst::Predicate Pred = Cmp.getPredicate(); |
| 2335 | // (icmp pred (shl nuw&nsw X, Y), Csle0) |
| 2336 | // -> (icmp pred X, Csle0) |
| 2337 | // |
| 2338 | // The idea is the nuw/nsw essentially freeze the sign bit for the shift op |
| 2339 | // so X's must be what is used. |
| 2340 | if (C.sle(RHS: 0) && Shl->hasNoUnsignedWrap() && Shl->hasNoSignedWrap()) |
| 2341 | return new ICmpInst(Pred, Shl->getOperand(i_nocapture: 0), Cmp.getOperand(i_nocapture: 1)); |
| 2342 | |
| 2343 | // (icmp eq/ne (shl nuw|nsw X, Y), 0) |
| 2344 | // -> (icmp eq/ne X, 0) |
| 2345 | if (ICmpInst::isEquality(P: Pred) && C.isZero() && |
| 2346 | (Shl->hasNoUnsignedWrap() || Shl->hasNoSignedWrap())) |
| 2347 | return new ICmpInst(Pred, Shl->getOperand(i_nocapture: 0), Cmp.getOperand(i_nocapture: 1)); |
| 2348 | |
| 2349 | // (icmp slt (shl nsw X, Y), 0/1) |
| 2350 | // -> (icmp slt X, 0/1) |
| 2351 | // (icmp sgt (shl nsw X, Y), 0/-1) |
| 2352 | // -> (icmp sgt X, 0/-1) |
| 2353 | // |
| 2354 | // NB: sge/sle with a constant will canonicalize to sgt/slt. |
| 2355 | if (Shl->hasNoSignedWrap() && |
| 2356 | (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLT)) |
| 2357 | if (C.isZero() || (Pred == ICmpInst::ICMP_SGT ? C.isAllOnes() : C.isOne())) |
| 2358 | return new ICmpInst(Pred, Shl->getOperand(i_nocapture: 0), Cmp.getOperand(i_nocapture: 1)); |
| 2359 | |
| 2360 | const APInt *ShiftAmt; |
| 2361 | if (!match(V: Shl->getOperand(i_nocapture: 1), P: m_APInt(Res&: ShiftAmt))) |
| 2362 | return foldICmpShlLHSC(Cmp, Shl, C); |
| 2363 | |
| 2364 | // Check that the shift amount is in range. If not, don't perform undefined |
| 2365 | // shifts. When the shift is visited, it will be simplified. |
| 2366 | unsigned TypeBits = C.getBitWidth(); |
| 2367 | if (ShiftAmt->uge(RHS: TypeBits)) |
| 2368 | return nullptr; |
| 2369 | |
| 2370 | Value *X = Shl->getOperand(i_nocapture: 0); |
| 2371 | Type *ShType = Shl->getType(); |
| 2372 | |
| 2373 | // NSW guarantees that we are only shifting out sign bits from the high bits, |
| 2374 | // so we can ASHR the compare constant without needing a mask and eliminate |
| 2375 | // the shift. |
| 2376 | if (Shl->hasNoSignedWrap()) { |
| 2377 | if (Pred == ICmpInst::ICMP_SGT) { |
| 2378 | // icmp Pred (shl nsw X, ShiftAmt), C --> icmp Pred X, (C >>s ShiftAmt) |
| 2379 | APInt ShiftedC = C.ashr(ShiftAmt: *ShiftAmt); |
| 2380 | return new ICmpInst(Pred, X, ConstantInt::get(Ty: ShType, V: ShiftedC)); |
| 2381 | } |
| 2382 | if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) && |
| 2383 | C.ashr(ShiftAmt: *ShiftAmt).shl(ShiftAmt: *ShiftAmt) == C) { |
| 2384 | APInt ShiftedC = C.ashr(ShiftAmt: *ShiftAmt); |
| 2385 | return new ICmpInst(Pred, X, ConstantInt::get(Ty: ShType, V: ShiftedC)); |
| 2386 | } |
| 2387 | if (Pred == ICmpInst::ICMP_SLT) { |
| 2388 | // SLE is the same as above, but SLE is canonicalized to SLT, so convert: |
| 2389 | // (X << S) <=s C is equiv to X <=s (C >> S) for all C |
| 2390 | // (X << S) <s (C + 1) is equiv to X <s (C >> S) + 1 if C <s SMAX |
| 2391 | // (X << S) <s C is equiv to X <s ((C - 1) >> S) + 1 if C >s SMIN |
| 2392 | assert(!C.isMinSignedValue() && "Unexpected icmp slt" ); |
| 2393 | APInt ShiftedC = (C - 1).ashr(ShiftAmt: *ShiftAmt) + 1; |
| 2394 | return new ICmpInst(Pred, X, ConstantInt::get(Ty: ShType, V: ShiftedC)); |
| 2395 | } |
| 2396 | } |
| 2397 | |
| 2398 | // NUW guarantees that we are only shifting out zero bits from the high bits, |
| 2399 | // so we can LSHR the compare constant without needing a mask and eliminate |
| 2400 | // the shift. |
| 2401 | if (Shl->hasNoUnsignedWrap()) { |
| 2402 | if (Pred == ICmpInst::ICMP_UGT) { |
| 2403 | // icmp Pred (shl nuw X, ShiftAmt), C --> icmp Pred X, (C >>u ShiftAmt) |
| 2404 | APInt ShiftedC = C.lshr(ShiftAmt: *ShiftAmt); |
| 2405 | return new ICmpInst(Pred, X, ConstantInt::get(Ty: ShType, V: ShiftedC)); |
| 2406 | } |
| 2407 | if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) && |
| 2408 | C.lshr(ShiftAmt: *ShiftAmt).shl(ShiftAmt: *ShiftAmt) == C) { |
| 2409 | APInt ShiftedC = C.lshr(ShiftAmt: *ShiftAmt); |
| 2410 | return new ICmpInst(Pred, X, ConstantInt::get(Ty: ShType, V: ShiftedC)); |
| 2411 | } |
| 2412 | if (Pred == ICmpInst::ICMP_ULT) { |
| 2413 | // ULE is the same as above, but ULE is canonicalized to ULT, so convert: |
| 2414 | // (X << S) <=u C is equiv to X <=u (C >> S) for all C |
| 2415 | // (X << S) <u (C + 1) is equiv to X <u (C >> S) + 1 if C <u ~0u |
| 2416 | // (X << S) <u C is equiv to X <u ((C - 1) >> S) + 1 if C >u 0 |
| 2417 | assert(C.ugt(0) && "ult 0 should have been eliminated" ); |
| 2418 | APInt ShiftedC = (C - 1).lshr(ShiftAmt: *ShiftAmt) + 1; |
| 2419 | return new ICmpInst(Pred, X, ConstantInt::get(Ty: ShType, V: ShiftedC)); |
| 2420 | } |
| 2421 | } |
| 2422 | |
| 2423 | if (Cmp.isEquality() && Shl->hasOneUse()) { |
| 2424 | // Strength-reduce the shift into an 'and'. |
| 2425 | Constant *Mask = ConstantInt::get( |
| 2426 | Ty: ShType, |
| 2427 | V: APInt::getLowBitsSet(numBits: TypeBits, loBitsSet: TypeBits - ShiftAmt->getZExtValue())); |
| 2428 | Value *And = Builder.CreateAnd(LHS: X, RHS: Mask, Name: Shl->getName() + ".mask" ); |
| 2429 | Constant *LShrC = ConstantInt::get(Ty: ShType, V: C.lshr(ShiftAmt: *ShiftAmt)); |
| 2430 | return new ICmpInst(Pred, And, LShrC); |
| 2431 | } |
| 2432 | |
| 2433 | // Otherwise, if this is a comparison of the sign bit, simplify to and/test. |
| 2434 | bool TrueIfSigned = false; |
| 2435 | if (Shl->hasOneUse() && isSignBitCheck(Pred, RHS: C, TrueIfSigned)) { |
| 2436 | // (X << 31) <s 0 --> (X & 1) != 0 |
| 2437 | Constant *Mask = ConstantInt::get( |
| 2438 | Ty: ShType, |
| 2439 | V: APInt::getOneBitSet(numBits: TypeBits, BitNo: TypeBits - ShiftAmt->getZExtValue() - 1)); |
| 2440 | Value *And = Builder.CreateAnd(LHS: X, RHS: Mask, Name: Shl->getName() + ".mask" ); |
| 2441 | return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ, |
| 2442 | And, Constant::getNullValue(Ty: ShType)); |
| 2443 | } |
| 2444 | |
| 2445 | // Simplify 'shl' inequality test into 'and' equality test. |
| 2446 | if (Cmp.isUnsigned() && Shl->hasOneUse()) { |
| 2447 | // (X l<< C2) u<=/u> C1 iff C1+1 is power of two -> X & (~C1 l>> C2) ==/!= 0 |
| 2448 | if ((C + 1).isPowerOf2() && |
| 2449 | (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT)) { |
| 2450 | Value *And = Builder.CreateAnd(LHS: X, RHS: (~C).lshr(shiftAmt: ShiftAmt->getZExtValue())); |
| 2451 | return new ICmpInst(Pred == ICmpInst::ICMP_ULE ? ICmpInst::ICMP_EQ |
| 2452 | : ICmpInst::ICMP_NE, |
| 2453 | And, Constant::getNullValue(Ty: ShType)); |
| 2454 | } |
| 2455 | // (X l<< C2) u</u>= C1 iff C1 is power of two -> X & (-C1 l>> C2) ==/!= 0 |
| 2456 | if (C.isPowerOf2() && |
| 2457 | (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) { |
| 2458 | Value *And = |
| 2459 | Builder.CreateAnd(LHS: X, RHS: (~(C - 1)).lshr(shiftAmt: ShiftAmt->getZExtValue())); |
| 2460 | return new ICmpInst(Pred == ICmpInst::ICMP_ULT ? ICmpInst::ICMP_EQ |
| 2461 | : ICmpInst::ICMP_NE, |
| 2462 | And, Constant::getNullValue(Ty: ShType)); |
| 2463 | } |
| 2464 | } |
| 2465 | |
| 2466 | // Transform (icmp pred iM (shl iM %v, N), C) |
| 2467 | // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (C>>N)) |
| 2468 | // Transform the shl to a trunc if (trunc (C>>N)) has no loss and M-N. |
| 2469 | // This enables us to get rid of the shift in favor of a trunc that may be |
| 2470 | // free on the target. It has the additional benefit of comparing to a |
| 2471 | // smaller constant that may be more target-friendly. |
| 2472 | unsigned Amt = ShiftAmt->getLimitedValue(Limit: TypeBits - 1); |
| 2473 | if (Shl->hasOneUse() && Amt != 0 && |
| 2474 | shouldChangeType(FromBitWidth: ShType->getScalarSizeInBits(), ToBitWidth: TypeBits - Amt)) { |
| 2475 | ICmpInst::Predicate CmpPred = Pred; |
| 2476 | APInt RHSC = C; |
| 2477 | |
| 2478 | if (RHSC.countr_zero() < Amt && ICmpInst::isStrictPredicate(predicate: CmpPred)) { |
| 2479 | // Try the flipped strictness predicate. |
| 2480 | // e.g.: |
| 2481 | // icmp ult i64 (shl X, 32), 8589934593 -> |
| 2482 | // icmp ule i64 (shl X, 32), 8589934592 -> |
| 2483 | // icmp ule i32 (trunc X, i32), 2 -> |
| 2484 | // icmp ult i32 (trunc X, i32), 3 |
| 2485 | if (auto FlippedStrictness = getFlippedStrictnessPredicateAndConstant( |
| 2486 | Pred, C: ConstantInt::get(Context&: ShType->getContext(), V: C))) { |
| 2487 | CmpPred = FlippedStrictness->first; |
| 2488 | RHSC = cast<ConstantInt>(Val: FlippedStrictness->second)->getValue(); |
| 2489 | } |
| 2490 | } |
| 2491 | |
| 2492 | if (RHSC.countr_zero() >= Amt) { |
| 2493 | Type *TruncTy = ShType->getWithNewBitWidth(NewBitWidth: TypeBits - Amt); |
| 2494 | Constant *NewC = |
| 2495 | ConstantInt::get(Ty: TruncTy, V: RHSC.ashr(ShiftAmt: *ShiftAmt).trunc(width: TypeBits - Amt)); |
| 2496 | return new ICmpInst(CmpPred, |
| 2497 | Builder.CreateTrunc(V: X, DestTy: TruncTy, Name: "" , /*IsNUW=*/false, |
| 2498 | IsNSW: Shl->hasNoSignedWrap()), |
| 2499 | NewC); |
| 2500 | } |
| 2501 | } |
| 2502 | |
| 2503 | return nullptr; |
| 2504 | } |
| 2505 | |
| 2506 | /// Fold icmp ({al}shr X, Y), C. |
| 2507 | Instruction *InstCombinerImpl::foldICmpShrConstant(ICmpInst &Cmp, |
| 2508 | BinaryOperator *Shr, |
| 2509 | const APInt &C) { |
| 2510 | // An exact shr only shifts out zero bits, so: |
| 2511 | // icmp eq/ne (shr X, Y), 0 --> icmp eq/ne X, 0 |
| 2512 | Value *X = Shr->getOperand(i_nocapture: 0); |
| 2513 | CmpInst::Predicate Pred = Cmp.getPredicate(); |
| 2514 | if (Cmp.isEquality() && Shr->isExact() && C.isZero()) |
| 2515 | return new ICmpInst(Pred, X, Cmp.getOperand(i_nocapture: 1)); |
| 2516 | |
| 2517 | bool IsAShr = Shr->getOpcode() == Instruction::AShr; |
| 2518 | const APInt *ShiftValC; |
| 2519 | if (match(V: X, P: m_APInt(Res&: ShiftValC))) { |
| 2520 | if (Cmp.isEquality()) |
| 2521 | return foldICmpShrConstConst(I&: Cmp, A: Shr->getOperand(i_nocapture: 1), AP1: C, AP2: *ShiftValC); |
| 2522 | |
| 2523 | // (ShiftValC >> Y) >s -1 --> Y != 0 with ShiftValC < 0 |
| 2524 | // (ShiftValC >> Y) <s 0 --> Y == 0 with ShiftValC < 0 |
| 2525 | bool TrueIfSigned; |
| 2526 | if (!IsAShr && ShiftValC->isNegative() && |
| 2527 | isSignBitCheck(Pred, RHS: C, TrueIfSigned)) |
| 2528 | return new ICmpInst(TrueIfSigned ? CmpInst::ICMP_EQ : CmpInst::ICMP_NE, |
| 2529 | Shr->getOperand(i_nocapture: 1), |
| 2530 | ConstantInt::getNullValue(Ty: X->getType())); |
| 2531 | |
| 2532 | // If the shifted constant is a power-of-2, test the shift amount directly: |
| 2533 | // (ShiftValC >> Y) >u C --> X <u (LZ(C) - LZ(ShiftValC)) |
| 2534 | // (ShiftValC >> Y) <u C --> X >=u (LZ(C-1) - LZ(ShiftValC)) |
| 2535 | if (!IsAShr && ShiftValC->isPowerOf2() && |
| 2536 | (Pred == CmpInst::ICMP_UGT || Pred == CmpInst::ICMP_ULT)) { |
| 2537 | bool IsUGT = Pred == CmpInst::ICMP_UGT; |
| 2538 | assert(ShiftValC->uge(C) && "Expected simplify of compare" ); |
| 2539 | assert((IsUGT || !C.isZero()) && "Expected X u< 0 to simplify" ); |
| 2540 | |
| 2541 | unsigned CmpLZ = IsUGT ? C.countl_zero() : (C - 1).countl_zero(); |
| 2542 | unsigned ShiftLZ = ShiftValC->countl_zero(); |
| 2543 | Constant *NewC = ConstantInt::get(Ty: Shr->getType(), V: CmpLZ - ShiftLZ); |
| 2544 | auto NewPred = IsUGT ? CmpInst::ICMP_ULT : CmpInst::ICMP_UGE; |
| 2545 | return new ICmpInst(NewPred, Shr->getOperand(i_nocapture: 1), NewC); |
| 2546 | } |
| 2547 | } |
| 2548 | |
| 2549 | const APInt *ShiftAmtC; |
| 2550 | if (!match(V: Shr->getOperand(i_nocapture: 1), P: m_APInt(Res&: ShiftAmtC))) |
| 2551 | return nullptr; |
| 2552 | |
| 2553 | // Check that the shift amount is in range. If not, don't perform undefined |
| 2554 | // shifts. When the shift is visited it will be simplified. |
| 2555 | unsigned TypeBits = C.getBitWidth(); |
| 2556 | unsigned ShAmtVal = ShiftAmtC->getLimitedValue(Limit: TypeBits); |
| 2557 | if (ShAmtVal >= TypeBits || ShAmtVal == 0) |
| 2558 | return nullptr; |
| 2559 | |
| 2560 | bool IsExact = Shr->isExact(); |
| 2561 | Type *ShrTy = Shr->getType(); |
| 2562 | // TODO: If we could guarantee that InstSimplify would handle all of the |
| 2563 | // constant-value-based preconditions in the folds below, then we could assert |
| 2564 | // those conditions rather than checking them. This is difficult because of |
| 2565 | // undef/poison (PR34838). |
| 2566 | if (IsAShr && Shr->hasOneUse()) { |
| 2567 | if (IsExact && (Pred == CmpInst::ICMP_SLT || Pred == CmpInst::ICMP_ULT) && |
| 2568 | (C - 1).isPowerOf2() && C.countLeadingZeros() > ShAmtVal) { |
| 2569 | // When C - 1 is a power of two and the transform can be legally |
| 2570 | // performed, prefer this form so the produced constant is close to a |
| 2571 | // power of two. |
| 2572 | // icmp slt/ult (ashr exact X, ShAmtC), C |
| 2573 | // --> icmp slt/ult X, (C - 1) << ShAmtC) + 1 |
| 2574 | APInt ShiftedC = (C - 1).shl(shiftAmt: ShAmtVal) + 1; |
| 2575 | return new ICmpInst(Pred, X, ConstantInt::get(Ty: ShrTy, V: ShiftedC)); |
| 2576 | } |
| 2577 | if (IsExact || Pred == CmpInst::ICMP_SLT || Pred == CmpInst::ICMP_ULT) { |
| 2578 | // When ShAmtC can be shifted losslessly: |
| 2579 | // icmp PRED (ashr exact X, ShAmtC), C --> icmp PRED X, (C << ShAmtC) |
| 2580 | // icmp slt/ult (ashr X, ShAmtC), C --> icmp slt/ult X, (C << ShAmtC) |
| 2581 | APInt ShiftedC = C.shl(shiftAmt: ShAmtVal); |
| 2582 | if (ShiftedC.ashr(ShiftAmt: ShAmtVal) == C) |
| 2583 | return new ICmpInst(Pred, X, ConstantInt::get(Ty: ShrTy, V: ShiftedC)); |
| 2584 | } |
| 2585 | if (Pred == CmpInst::ICMP_SGT) { |
| 2586 | // icmp sgt (ashr X, ShAmtC), C --> icmp sgt X, ((C + 1) << ShAmtC) - 1 |
| 2587 | APInt ShiftedC = (C + 1).shl(shiftAmt: ShAmtVal) - 1; |
| 2588 | if (!C.isMaxSignedValue() && !(C + 1).shl(shiftAmt: ShAmtVal).isMinSignedValue() && |
| 2589 | (ShiftedC + 1).ashr(ShiftAmt: ShAmtVal) == (C + 1)) |
| 2590 | return new ICmpInst(Pred, X, ConstantInt::get(Ty: ShrTy, V: ShiftedC)); |
| 2591 | } |
| 2592 | if (Pred == CmpInst::ICMP_UGT) { |
| 2593 | // icmp ugt (ashr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1 |
| 2594 | // 'C + 1 << ShAmtC' can overflow as a signed number, so the 2nd |
| 2595 | // clause accounts for that pattern. |
| 2596 | APInt ShiftedC = (C + 1).shl(shiftAmt: ShAmtVal) - 1; |
| 2597 | if ((ShiftedC + 1).ashr(ShiftAmt: ShAmtVal) == (C + 1) || |
| 2598 | (C + 1).shl(shiftAmt: ShAmtVal).isMinSignedValue()) |
| 2599 | return new ICmpInst(Pred, X, ConstantInt::get(Ty: ShrTy, V: ShiftedC)); |
| 2600 | } |
| 2601 | |
| 2602 | // If the compare constant has significant bits above the lowest sign-bit, |
| 2603 | // then convert an unsigned cmp to a test of the sign-bit: |
| 2604 | // (ashr X, ShiftC) u> C --> X s< 0 |
| 2605 | // (ashr X, ShiftC) u< C --> X s> -1 |
| 2606 | if (C.getBitWidth() > 2 && C.getNumSignBits() <= ShAmtVal) { |
| 2607 | if (Pred == CmpInst::ICMP_UGT) { |
| 2608 | return new ICmpInst(CmpInst::ICMP_SLT, X, |
| 2609 | ConstantInt::getNullValue(Ty: ShrTy)); |
| 2610 | } |
| 2611 | if (Pred == CmpInst::ICMP_ULT) { |
| 2612 | return new ICmpInst(CmpInst::ICMP_SGT, X, |
| 2613 | ConstantInt::getAllOnesValue(Ty: ShrTy)); |
| 2614 | } |
| 2615 | } |
| 2616 | } else if (!IsAShr) { |
| 2617 | if (Pred == CmpInst::ICMP_ULT || (Pred == CmpInst::ICMP_UGT && IsExact)) { |
| 2618 | // icmp ult (lshr X, ShAmtC), C --> icmp ult X, (C << ShAmtC) |
| 2619 | // icmp ugt (lshr exact X, ShAmtC), C --> icmp ugt X, (C << ShAmtC) |
| 2620 | APInt ShiftedC = C.shl(shiftAmt: ShAmtVal); |
| 2621 | if (ShiftedC.lshr(shiftAmt: ShAmtVal) == C) |
| 2622 | return new ICmpInst(Pred, X, ConstantInt::get(Ty: ShrTy, V: ShiftedC)); |
| 2623 | } |
| 2624 | if (Pred == CmpInst::ICMP_UGT) { |
| 2625 | // icmp ugt (lshr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1 |
| 2626 | APInt ShiftedC = (C + 1).shl(shiftAmt: ShAmtVal) - 1; |
| 2627 | if ((ShiftedC + 1).lshr(shiftAmt: ShAmtVal) == (C + 1)) |
| 2628 | return new ICmpInst(Pred, X, ConstantInt::get(Ty: ShrTy, V: ShiftedC)); |
| 2629 | } |
| 2630 | } |
| 2631 | |
| 2632 | if (!Cmp.isEquality()) |
| 2633 | return nullptr; |
| 2634 | |
| 2635 | // Handle equality comparisons of shift-by-constant. |
| 2636 | |
| 2637 | // If the comparison constant changes with the shift, the comparison cannot |
| 2638 | // succeed (bits of the comparison constant cannot match the shifted value). |
| 2639 | // This should be known by InstSimplify and already be folded to true/false. |
| 2640 | assert(((IsAShr && C.shl(ShAmtVal).ashr(ShAmtVal) == C) || |
| 2641 | (!IsAShr && C.shl(ShAmtVal).lshr(ShAmtVal) == C)) && |
| 2642 | "Expected icmp+shr simplify did not occur." ); |
| 2643 | |
| 2644 | // If the bits shifted out are known zero, compare the unshifted value: |
| 2645 | // (X & 4) >> 1 == 2 --> (X & 4) == 4. |
| 2646 | if (Shr->isExact()) |
| 2647 | return new ICmpInst(Pred, X, ConstantInt::get(Ty: ShrTy, V: C << ShAmtVal)); |
| 2648 | |
| 2649 | if (Shr->hasOneUse()) { |
| 2650 | // Canonicalize the shift into an 'and': |
| 2651 | // icmp eq/ne (shr X, ShAmt), C --> icmp eq/ne (and X, HiMask), (C << ShAmt) |
| 2652 | APInt Val(APInt::getHighBitsSet(numBits: TypeBits, hiBitsSet: TypeBits - ShAmtVal)); |
| 2653 | Constant *Mask = ConstantInt::get(Ty: ShrTy, V: Val); |
| 2654 | Value *And = Builder.CreateAnd(LHS: X, RHS: Mask, Name: Shr->getName() + ".mask" ); |
| 2655 | return new ICmpInst(Pred, And, ConstantInt::get(Ty: ShrTy, V: C << ShAmtVal)); |
| 2656 | } |
| 2657 | |
| 2658 | return nullptr; |
| 2659 | } |
| 2660 | |
| 2661 | Instruction *InstCombinerImpl::foldICmpSRemConstant(ICmpInst &Cmp, |
| 2662 | BinaryOperator *SRem, |
| 2663 | const APInt &C) { |
| 2664 | const ICmpInst::Predicate Pred = Cmp.getPredicate(); |
| 2665 | if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULT) { |
| 2666 | // Canonicalize unsigned predicates to signed: |
| 2667 | // (X s% DivisorC) u> C -> (X s% DivisorC) s< 0 |
| 2668 | // iff (C s< 0 ? ~C : C) u>= abs(DivisorC)-1 |
| 2669 | // (X s% DivisorC) u< C+1 -> (X s% DivisorC) s> -1 |
| 2670 | // iff (C+1 s< 0 ? ~C : C) u>= abs(DivisorC)-1 |
| 2671 | |
| 2672 | const APInt *DivisorC; |
| 2673 | if (!match(V: SRem->getOperand(i_nocapture: 1), P: m_APInt(Res&: DivisorC))) |
| 2674 | return nullptr; |
| 2675 | if (DivisorC->isZero()) |
| 2676 | return nullptr; |
| 2677 | |
| 2678 | APInt NormalizedC = C; |
| 2679 | if (Pred == ICmpInst::ICMP_ULT) { |
| 2680 | assert(!NormalizedC.isZero() && |
| 2681 | "ult X, 0 should have been simplified already." ); |
| 2682 | --NormalizedC; |
| 2683 | } |
| 2684 | if (C.isNegative()) |
| 2685 | NormalizedC.flipAllBits(); |
| 2686 | if (!NormalizedC.uge(RHS: DivisorC->abs() - 1)) |
| 2687 | return nullptr; |
| 2688 | |
| 2689 | Type *Ty = SRem->getType(); |
| 2690 | if (Pred == ICmpInst::ICMP_UGT) |
| 2691 | return new ICmpInst(ICmpInst::ICMP_SLT, SRem, |
| 2692 | ConstantInt::getNullValue(Ty)); |
| 2693 | return new ICmpInst(ICmpInst::ICMP_SGT, SRem, |
| 2694 | ConstantInt::getAllOnesValue(Ty)); |
| 2695 | } |
| 2696 | // Match an 'is positive' or 'is negative' comparison of remainder by a |
| 2697 | // constant power-of-2 value: |
| 2698 | // (X % pow2C) sgt/slt 0 |
| 2699 | if (Pred != ICmpInst::ICMP_SGT && Pred != ICmpInst::ICMP_SLT && |
| 2700 | Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE) |
| 2701 | return nullptr; |
| 2702 | |
| 2703 | // TODO: The one-use check is standard because we do not typically want to |
| 2704 | // create longer instruction sequences, but this might be a special-case |
| 2705 | // because srem is not good for analysis or codegen. |
| 2706 | if (!SRem->hasOneUse()) |
| 2707 | return nullptr; |
| 2708 | |
| 2709 | const APInt *DivisorC; |
| 2710 | if (!match(V: SRem->getOperand(i_nocapture: 1), P: m_Power2(V&: DivisorC))) |
| 2711 | return nullptr; |
| 2712 | |
| 2713 | // For cmp_sgt/cmp_slt only zero valued C is handled. |
| 2714 | // For cmp_eq/cmp_ne only positive valued C is handled. |
| 2715 | if (((Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLT) && |
| 2716 | !C.isZero()) || |
| 2717 | ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) && |
| 2718 | !C.isStrictlyPositive())) |
| 2719 | return nullptr; |
| 2720 | |
| 2721 | // Mask off the sign bit and the modulo bits (low-bits). |
| 2722 | Type *Ty = SRem->getType(); |
| 2723 | APInt SignMask = APInt::getSignMask(BitWidth: Ty->getScalarSizeInBits()); |
| 2724 | Constant *MaskC = ConstantInt::get(Ty, V: SignMask | (*DivisorC - 1)); |
| 2725 | Value *And = Builder.CreateAnd(LHS: SRem->getOperand(i_nocapture: 0), RHS: MaskC); |
| 2726 | |
| 2727 | if (Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) |
| 2728 | return new ICmpInst(Pred, And, ConstantInt::get(Ty, V: C)); |
| 2729 | |
| 2730 | // For 'is positive?' check that the sign-bit is clear and at least 1 masked |
| 2731 | // bit is set. Example: |
| 2732 | // (i8 X % 32) s> 0 --> (X & 159) s> 0 |
| 2733 | if (Pred == ICmpInst::ICMP_SGT) |
| 2734 | return new ICmpInst(ICmpInst::ICMP_SGT, And, ConstantInt::getNullValue(Ty)); |
| 2735 | |
| 2736 | // For 'is negative?' check that the sign-bit is set and at least 1 masked |
| 2737 | // bit is set. Example: |
| 2738 | // (i16 X % 4) s< 0 --> (X & 32771) u> 32768 |
| 2739 | return new ICmpInst(ICmpInst::ICMP_UGT, And, ConstantInt::get(Ty, V: SignMask)); |
| 2740 | } |
| 2741 | |
| 2742 | /// Fold icmp (udiv X, Y), C. |
| 2743 | Instruction *InstCombinerImpl::foldICmpUDivConstant(ICmpInst &Cmp, |
| 2744 | BinaryOperator *UDiv, |
| 2745 | const APInt &C) { |
| 2746 | ICmpInst::Predicate Pred = Cmp.getPredicate(); |
| 2747 | Value *X = UDiv->getOperand(i_nocapture: 0); |
| 2748 | Value *Y = UDiv->getOperand(i_nocapture: 1); |
| 2749 | Type *Ty = UDiv->getType(); |
| 2750 | |
| 2751 | const APInt *C2; |
| 2752 | if (!match(V: X, P: m_APInt(Res&: C2))) |
| 2753 | return nullptr; |
| 2754 | |
| 2755 | assert(*C2 != 0 && "udiv 0, X should have been simplified already." ); |
| 2756 | |
| 2757 | // (icmp ugt (udiv C2, Y), C) -> (icmp ule Y, C2/(C+1)) |
| 2758 | if (Pred == ICmpInst::ICMP_UGT) { |
| 2759 | assert(!C.isMaxValue() && |
| 2760 | "icmp ugt X, UINT_MAX should have been simplified already." ); |
| 2761 | return new ICmpInst(ICmpInst::ICMP_ULE, Y, |
| 2762 | ConstantInt::get(Ty, V: C2->udiv(RHS: C + 1))); |
| 2763 | } |
| 2764 | |
| 2765 | // (icmp ult (udiv C2, Y), C) -> (icmp ugt Y, C2/C) |
| 2766 | if (Pred == ICmpInst::ICMP_ULT) { |
| 2767 | assert(C != 0 && "icmp ult X, 0 should have been simplified already." ); |
| 2768 | return new ICmpInst(ICmpInst::ICMP_UGT, Y, |
| 2769 | ConstantInt::get(Ty, V: C2->udiv(RHS: C))); |
| 2770 | } |
| 2771 | |
| 2772 | return nullptr; |
| 2773 | } |
| 2774 | |
| 2775 | /// Fold icmp ({su}div X, Y), C. |
| 2776 | Instruction *InstCombinerImpl::foldICmpDivConstant(ICmpInst &Cmp, |
| 2777 | BinaryOperator *Div, |
| 2778 | const APInt &C) { |
| 2779 | ICmpInst::Predicate Pred = Cmp.getPredicate(); |
| 2780 | Value *X = Div->getOperand(i_nocapture: 0); |
| 2781 | Value *Y = Div->getOperand(i_nocapture: 1); |
| 2782 | Type *Ty = Div->getType(); |
| 2783 | bool DivIsSigned = Div->getOpcode() == Instruction::SDiv; |
| 2784 | |
| 2785 | // If unsigned division and the compare constant is bigger than |
| 2786 | // UMAX/2 (negative), there's only one pair of values that satisfies an |
| 2787 | // equality check, so eliminate the division: |
| 2788 | // (X u/ Y) == C --> (X == C) && (Y == 1) |
| 2789 | // (X u/ Y) != C --> (X != C) || (Y != 1) |
| 2790 | // Similarly, if signed division and the compare constant is exactly SMIN: |
| 2791 | // (X s/ Y) == SMIN --> (X == SMIN) && (Y == 1) |
| 2792 | // (X s/ Y) != SMIN --> (X != SMIN) || (Y != 1) |
| 2793 | if (Cmp.isEquality() && Div->hasOneUse() && C.isSignBitSet() && |
| 2794 | (!DivIsSigned || C.isMinSignedValue())) { |
| 2795 | Value *XBig = Builder.CreateICmp(P: Pred, LHS: X, RHS: ConstantInt::get(Ty, V: C)); |
| 2796 | Value *YOne = Builder.CreateICmp(P: Pred, LHS: Y, RHS: ConstantInt::get(Ty, V: 1)); |
| 2797 | auto Logic = Pred == ICmpInst::ICMP_EQ ? Instruction::And : Instruction::Or; |
| 2798 | return BinaryOperator::Create(Op: Logic, S1: XBig, S2: YOne); |
| 2799 | } |
| 2800 | |
| 2801 | // Fold: icmp pred ([us]div X, C2), C -> range test |
| 2802 | // Fold this div into the comparison, producing a range check. |
| 2803 | // Determine, based on the divide type, what the range is being |
| 2804 | // checked. If there is an overflow on the low or high side, remember |
| 2805 | // it, otherwise compute the range [low, hi) bounding the new value. |
| 2806 | // See: InsertRangeTest above for the kinds of replacements possible. |
| 2807 | const APInt *C2; |
| 2808 | if (!match(V: Y, P: m_APInt(Res&: C2))) |
| 2809 | return nullptr; |
| 2810 | |
| 2811 | // FIXME: If the operand types don't match the type of the divide |
| 2812 | // then don't attempt this transform. The code below doesn't have the |
| 2813 | // logic to deal with a signed divide and an unsigned compare (and |
| 2814 | // vice versa). This is because (x /s C2) <s C produces different |
| 2815 | // results than (x /s C2) <u C or (x /u C2) <s C or even |
| 2816 | // (x /u C2) <u C. Simply casting the operands and result won't |
| 2817 | // work. :( The if statement below tests that condition and bails |
| 2818 | // if it finds it. |
| 2819 | if (!Cmp.isEquality() && DivIsSigned != Cmp.isSigned()) |
| 2820 | return nullptr; |
| 2821 | |
| 2822 | // The ProdOV computation fails on divide by 0 and divide by -1. Cases with |
| 2823 | // INT_MIN will also fail if the divisor is 1. Although folds of all these |
| 2824 | // division-by-constant cases should be present, we can not assert that they |
| 2825 | // have happened before we reach this icmp instruction. |
| 2826 | if (C2->isZero() || C2->isOne() || (DivIsSigned && C2->isAllOnes())) |
| 2827 | return nullptr; |
| 2828 | |
| 2829 | // Compute Prod = C * C2. We are essentially solving an equation of |
| 2830 | // form X / C2 = C. We solve for X by multiplying C2 and C. |
| 2831 | // By solving for X, we can turn this into a range check instead of computing |
| 2832 | // a divide. |
| 2833 | APInt Prod = C * *C2; |
| 2834 | |
| 2835 | // Determine if the product overflows by seeing if the product is not equal to |
| 2836 | // the divide. Make sure we do the same kind of divide as in the LHS |
| 2837 | // instruction that we're folding. |
| 2838 | bool ProdOV = (DivIsSigned ? Prod.sdiv(RHS: *C2) : Prod.udiv(RHS: *C2)) != C; |
| 2839 | |
| 2840 | // If the division is known to be exact, then there is no remainder from the |
| 2841 | // divide, so the covered range size is unit, otherwise it is the divisor. |
| 2842 | APInt RangeSize = Div->isExact() ? APInt(C2->getBitWidth(), 1) : *C2; |
| 2843 | |
| 2844 | // Figure out the interval that is being checked. For example, a comparison |
| 2845 | // like "X /u 5 == 0" is really checking that X is in the interval [0, 5). |
| 2846 | // Compute this interval based on the constants involved and the signedness of |
| 2847 | // the compare/divide. This computes a half-open interval, keeping track of |
| 2848 | // whether either value in the interval overflows. After analysis each |
| 2849 | // overflow variable is set to 0 if it's corresponding bound variable is valid |
| 2850 | // -1 if overflowed off the bottom end, or +1 if overflowed off the top end. |
| 2851 | int LoOverflow = 0, HiOverflow = 0; |
| 2852 | APInt LoBound, HiBound; |
| 2853 | |
| 2854 | if (!DivIsSigned) { // udiv |
| 2855 | // e.g. X/5 op 3 --> [15, 20) |
| 2856 | LoBound = Prod; |
| 2857 | HiOverflow = LoOverflow = ProdOV; |
| 2858 | if (!HiOverflow) { |
| 2859 | // If this is not an exact divide, then many values in the range collapse |
| 2860 | // to the same result value. |
| 2861 | HiOverflow = addWithOverflow(Result&: HiBound, In1: LoBound, In2: RangeSize, IsSigned: false); |
| 2862 | } |
| 2863 | } else if (C2->isStrictlyPositive()) { // Divisor is > 0. |
| 2864 | if (C.isZero()) { // (X / pos) op 0 |
| 2865 | // Can't overflow. e.g. X/2 op 0 --> [-1, 2) |
| 2866 | LoBound = -(RangeSize - 1); |
| 2867 | HiBound = RangeSize; |
| 2868 | } else if (C.isStrictlyPositive()) { // (X / pos) op pos |
| 2869 | LoBound = Prod; // e.g. X/5 op 3 --> [15, 20) |
| 2870 | HiOverflow = LoOverflow = ProdOV; |
| 2871 | if (!HiOverflow) |
| 2872 | HiOverflow = addWithOverflow(Result&: HiBound, In1: Prod, In2: RangeSize, IsSigned: true); |
| 2873 | } else { // (X / pos) op neg |
| 2874 | // e.g. X/5 op -3 --> [-15-4, -15+1) --> [-19, -14) |
| 2875 | HiBound = Prod + 1; |
| 2876 | LoOverflow = HiOverflow = ProdOV ? -1 : 0; |
| 2877 | if (!LoOverflow) { |
| 2878 | APInt DivNeg = -RangeSize; |
| 2879 | LoOverflow = addWithOverflow(Result&: LoBound, In1: HiBound, In2: DivNeg, IsSigned: true) ? -1 : 0; |
| 2880 | } |
| 2881 | } |
| 2882 | } else if (C2->isNegative()) { // Divisor is < 0. |
| 2883 | if (Div->isExact()) |
| 2884 | RangeSize.negate(); |
| 2885 | if (C.isZero()) { // (X / neg) op 0 |
| 2886 | // e.g. X/-5 op 0 --> [-4, 5) |
| 2887 | LoBound = RangeSize + 1; |
| 2888 | HiBound = -RangeSize; |
| 2889 | if (HiBound == *C2) { // -INTMIN = INTMIN |
| 2890 | HiOverflow = 1; // [INTMIN+1, overflow) |
| 2891 | HiBound = APInt(); // e.g. X/INTMIN = 0 --> X > INTMIN |
| 2892 | } |
| 2893 | } else if (C.isStrictlyPositive()) { // (X / neg) op pos |
| 2894 | // e.g. X/-5 op 3 --> [-19, -14) |
| 2895 | HiBound = Prod + 1; |
| 2896 | HiOverflow = LoOverflow = ProdOV ? -1 : 0; |
| 2897 | if (!LoOverflow) |
| 2898 | LoOverflow = |
| 2899 | addWithOverflow(Result&: LoBound, In1: HiBound, In2: RangeSize, IsSigned: true) ? -1 : 0; |
| 2900 | } else { // (X / neg) op neg |
| 2901 | LoBound = Prod; // e.g. X/-5 op -3 --> [15, 20) |
| 2902 | LoOverflow = HiOverflow = ProdOV; |
| 2903 | if (!HiOverflow) |
| 2904 | HiOverflow = subWithOverflow(Result&: HiBound, In1: Prod, In2: RangeSize, IsSigned: true); |
| 2905 | } |
| 2906 | |
| 2907 | // Dividing by a negative swaps the condition. LT <-> GT |
| 2908 | Pred = ICmpInst::getSwappedPredicate(pred: Pred); |
| 2909 | } |
| 2910 | |
| 2911 | switch (Pred) { |
| 2912 | default: |
| 2913 | llvm_unreachable("Unhandled icmp predicate!" ); |
| 2914 | case ICmpInst::ICMP_EQ: |
| 2915 | if (LoOverflow && HiOverflow) |
| 2916 | return replaceInstUsesWith(I&: Cmp, V: Builder.getFalse()); |
| 2917 | if (HiOverflow) |
| 2918 | return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, |
| 2919 | X, ConstantInt::get(Ty, V: LoBound)); |
| 2920 | if (LoOverflow) |
| 2921 | return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, |
| 2922 | X, ConstantInt::get(Ty, V: HiBound)); |
| 2923 | return replaceInstUsesWith( |
| 2924 | I&: Cmp, V: insertRangeTest(V: X, Lo: LoBound, Hi: HiBound, isSigned: DivIsSigned, Inside: true)); |
| 2925 | case ICmpInst::ICMP_NE: |
| 2926 | if (LoOverflow && HiOverflow) |
| 2927 | return replaceInstUsesWith(I&: Cmp, V: Builder.getTrue()); |
| 2928 | if (HiOverflow) |
| 2929 | return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, |
| 2930 | X, ConstantInt::get(Ty, V: LoBound)); |
| 2931 | if (LoOverflow) |
| 2932 | return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, |
| 2933 | X, ConstantInt::get(Ty, V: HiBound)); |
| 2934 | return replaceInstUsesWith( |
| 2935 | I&: Cmp, V: insertRangeTest(V: X, Lo: LoBound, Hi: HiBound, isSigned: DivIsSigned, Inside: false)); |
| 2936 | case ICmpInst::ICMP_ULT: |
| 2937 | case ICmpInst::ICMP_SLT: |
| 2938 | if (LoOverflow == +1) // Low bound is greater than input range. |
| 2939 | return replaceInstUsesWith(I&: Cmp, V: Builder.getTrue()); |
| 2940 | if (LoOverflow == -1) // Low bound is less than input range. |
| 2941 | return replaceInstUsesWith(I&: Cmp, V: Builder.getFalse()); |
| 2942 | return new ICmpInst(Pred, X, ConstantInt::get(Ty, V: LoBound)); |
| 2943 | case ICmpInst::ICMP_UGT: |
| 2944 | case ICmpInst::ICMP_SGT: |
| 2945 | if (HiOverflow == +1) // High bound greater than input range. |
| 2946 | return replaceInstUsesWith(I&: Cmp, V: Builder.getFalse()); |
| 2947 | if (HiOverflow == -1) // High bound less than input range. |
| 2948 | return replaceInstUsesWith(I&: Cmp, V: Builder.getTrue()); |
| 2949 | if (Pred == ICmpInst::ICMP_UGT) |
| 2950 | return new ICmpInst(ICmpInst::ICMP_UGE, X, ConstantInt::get(Ty, V: HiBound)); |
| 2951 | return new ICmpInst(ICmpInst::ICMP_SGE, X, ConstantInt::get(Ty, V: HiBound)); |
| 2952 | } |
| 2953 | |
| 2954 | return nullptr; |
| 2955 | } |
| 2956 | |
| 2957 | /// Fold icmp (sub X, Y), C. |
| 2958 | Instruction *InstCombinerImpl::foldICmpSubConstant(ICmpInst &Cmp, |
| 2959 | BinaryOperator *Sub, |
| 2960 | const APInt &C) { |
| 2961 | Value *X = Sub->getOperand(i_nocapture: 0), *Y = Sub->getOperand(i_nocapture: 1); |
| 2962 | ICmpInst::Predicate Pred = Cmp.getPredicate(); |
| 2963 | Type *Ty = Sub->getType(); |
| 2964 | |
| 2965 | // (SubC - Y) == C) --> Y == (SubC - C) |
| 2966 | // (SubC - Y) != C) --> Y != (SubC - C) |
| 2967 | Constant *SubC; |
| 2968 | if (Cmp.isEquality() && match(V: X, P: m_ImmConstant(C&: SubC))) { |
| 2969 | return new ICmpInst(Pred, Y, |
| 2970 | ConstantExpr::getSub(C1: SubC, C2: ConstantInt::get(Ty, V: C))); |
| 2971 | } |
| 2972 | |
| 2973 | // (icmp P (sub nuw|nsw C2, Y), C) -> (icmp swap(P) Y, C2-C) |
| 2974 | const APInt *C2; |
| 2975 | APInt SubResult; |
| 2976 | ICmpInst::Predicate SwappedPred = Cmp.getSwappedPredicate(); |
| 2977 | bool HasNSW = Sub->hasNoSignedWrap(); |
| 2978 | bool HasNUW = Sub->hasNoUnsignedWrap(); |
| 2979 | if (match(V: X, P: m_APInt(Res&: C2)) && |
| 2980 | ((Cmp.isUnsigned() && HasNUW) || (Cmp.isSigned() && HasNSW)) && |
| 2981 | !subWithOverflow(Result&: SubResult, In1: *C2, In2: C, IsSigned: Cmp.isSigned())) |
| 2982 | return new ICmpInst(SwappedPred, Y, ConstantInt::get(Ty, V: SubResult)); |
| 2983 | |
| 2984 | // X - Y == 0 --> X == Y. |
| 2985 | // X - Y != 0 --> X != Y. |
| 2986 | // TODO: We allow this with multiple uses as long as the other uses are not |
| 2987 | // in phis. The phi use check is guarding against a codegen regression |
| 2988 | // for a loop test. If the backend could undo this (and possibly |
| 2989 | // subsequent transforms), we would not need this hack. |
| 2990 | if (Cmp.isEquality() && C.isZero() && |
| 2991 | none_of(Range: (Sub->users()), P: [](const User *U) { return isa<PHINode>(Val: U); })) |
| 2992 | return new ICmpInst(Pred, X, Y); |
| 2993 | |
| 2994 | // The following transforms are only worth it if the only user of the subtract |
| 2995 | // is the icmp. |
| 2996 | // TODO: This is an artificial restriction for all of the transforms below |
| 2997 | // that only need a single replacement icmp. Can these use the phi test |
| 2998 | // like the transform above here? |
| 2999 | if (!Sub->hasOneUse()) |
| 3000 | return nullptr; |
| 3001 | |
| 3002 | if (Sub->hasNoSignedWrap()) { |
| 3003 | // (icmp sgt (sub nsw X, Y), -1) -> (icmp sge X, Y) |
| 3004 | if (Pred == ICmpInst::ICMP_SGT && C.isAllOnes()) |
| 3005 | return new ICmpInst(ICmpInst::ICMP_SGE, X, Y); |
| 3006 | |
| 3007 | // (icmp sgt (sub nsw X, Y), 0) -> (icmp sgt X, Y) |
| 3008 | if (Pred == ICmpInst::ICMP_SGT && C.isZero()) |
| 3009 | return new ICmpInst(ICmpInst::ICMP_SGT, X, Y); |
| 3010 | |
| 3011 | // (icmp slt (sub nsw X, Y), 0) -> (icmp slt X, Y) |
| 3012 | if (Pred == ICmpInst::ICMP_SLT && C.isZero()) |
| 3013 | return new ICmpInst(ICmpInst::ICMP_SLT, X, Y); |
| 3014 | |
| 3015 | // (icmp slt (sub nsw X, Y), 1) -> (icmp sle X, Y) |
| 3016 | if (Pred == ICmpInst::ICMP_SLT && C.isOne()) |
| 3017 | return new ICmpInst(ICmpInst::ICMP_SLE, X, Y); |
| 3018 | } |
| 3019 | |
| 3020 | if (!match(V: X, P: m_APInt(Res&: C2))) |
| 3021 | return nullptr; |
| 3022 | |
| 3023 | // C2 - Y <u C -> (Y | (C - 1)) == C2 |
| 3024 | // iff (C2 & (C - 1)) == C - 1 and C is a power of 2 |
| 3025 | if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && |
| 3026 | (*C2 & (C - 1)) == (C - 1)) |
| 3027 | return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateOr(LHS: Y, RHS: C - 1), X); |
| 3028 | |
| 3029 | // C2 - Y >u C -> (Y | C) != C2 |
| 3030 | // iff C2 & C == C and C + 1 is a power of 2 |
| 3031 | if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == C) |
| 3032 | return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateOr(LHS: Y, RHS: C), X); |
| 3033 | |
| 3034 | // We have handled special cases that reduce. |
| 3035 | // Canonicalize any remaining sub to add as: |
| 3036 | // (C2 - Y) > C --> (Y + ~C2) < ~C |
| 3037 | Value *Add = Builder.CreateAdd(LHS: Y, RHS: ConstantInt::get(Ty, V: ~(*C2)), Name: "notsub" , |
| 3038 | HasNUW, HasNSW); |
| 3039 | return new ICmpInst(SwappedPred, Add, ConstantInt::get(Ty, V: ~C)); |
| 3040 | } |
| 3041 | |
| 3042 | static Value *createLogicFromTable(const std::bitset<4> &Table, Value *Op0, |
| 3043 | Value *Op1, IRBuilderBase &Builder, |
| 3044 | bool HasOneUse) { |
| 3045 | auto FoldConstant = [&](bool Val) { |
| 3046 | Constant *Res = Val ? Builder.getTrue() : Builder.getFalse(); |
| 3047 | if (Op0->getType()->isVectorTy()) |
| 3048 | Res = ConstantVector::getSplat( |
| 3049 | EC: cast<VectorType>(Val: Op0->getType())->getElementCount(), Elt: Res); |
| 3050 | return Res; |
| 3051 | }; |
| 3052 | |
| 3053 | switch (Table.to_ulong()) { |
| 3054 | case 0: // 0 0 0 0 |
| 3055 | return FoldConstant(false); |
| 3056 | case 1: // 0 0 0 1 |
| 3057 | return HasOneUse ? Builder.CreateNot(V: Builder.CreateOr(LHS: Op0, RHS: Op1)) : nullptr; |
| 3058 | case 2: // 0 0 1 0 |
| 3059 | return HasOneUse ? Builder.CreateAnd(LHS: Builder.CreateNot(V: Op0), RHS: Op1) : nullptr; |
| 3060 | case 3: // 0 0 1 1 |
| 3061 | return Builder.CreateNot(V: Op0); |
| 3062 | case 4: // 0 1 0 0 |
| 3063 | return HasOneUse ? Builder.CreateAnd(LHS: Op0, RHS: Builder.CreateNot(V: Op1)) : nullptr; |
| 3064 | case 5: // 0 1 0 1 |
| 3065 | return Builder.CreateNot(V: Op1); |
| 3066 | case 6: // 0 1 1 0 |
| 3067 | return Builder.CreateXor(LHS: Op0, RHS: Op1); |
| 3068 | case 7: // 0 1 1 1 |
| 3069 | return HasOneUse ? Builder.CreateNot(V: Builder.CreateAnd(LHS: Op0, RHS: Op1)) : nullptr; |
| 3070 | case 8: // 1 0 0 0 |
| 3071 | return Builder.CreateAnd(LHS: Op0, RHS: Op1); |
| 3072 | case 9: // 1 0 0 1 |
| 3073 | return HasOneUse ? Builder.CreateNot(V: Builder.CreateXor(LHS: Op0, RHS: Op1)) : nullptr; |
| 3074 | case 10: // 1 0 1 0 |
| 3075 | return Op1; |
| 3076 | case 11: // 1 0 1 1 |
| 3077 | return HasOneUse ? Builder.CreateOr(LHS: Builder.CreateNot(V: Op0), RHS: Op1) : nullptr; |
| 3078 | case 12: // 1 1 0 0 |
| 3079 | return Op0; |
| 3080 | case 13: // 1 1 0 1 |
| 3081 | return HasOneUse ? Builder.CreateOr(LHS: Op0, RHS: Builder.CreateNot(V: Op1)) : nullptr; |
| 3082 | case 14: // 1 1 1 0 |
| 3083 | return Builder.CreateOr(LHS: Op0, RHS: Op1); |
| 3084 | case 15: // 1 1 1 1 |
| 3085 | return FoldConstant(true); |
| 3086 | default: |
| 3087 | llvm_unreachable("Invalid Operation" ); |
| 3088 | } |
| 3089 | return nullptr; |
| 3090 | } |
| 3091 | |
| 3092 | Instruction *InstCombinerImpl::foldICmpBinOpWithConstantViaTruthTable( |
| 3093 | ICmpInst &Cmp, BinaryOperator *BO, const APInt &C) { |
| 3094 | Value *A, *B; |
| 3095 | Constant *C1, *C2, *C3, *C4; |
| 3096 | if (!(match(V: BO->getOperand(i_nocapture: 0), |
| 3097 | P: m_Select(C: m_Value(V&: A), L: m_Constant(C&: C1), R: m_Constant(C&: C2)))) || |
| 3098 | !match(V: BO->getOperand(i_nocapture: 1), |
| 3099 | P: m_Select(C: m_Value(V&: B), L: m_Constant(C&: C3), R: m_Constant(C&: C4))) || |
| 3100 | Cmp.getType() != A->getType() || Cmp.getType() != B->getType()) |
| 3101 | return nullptr; |
| 3102 | |
| 3103 | std::bitset<4> Table; |
| 3104 | auto ComputeTable = [&](bool First, bool Second) -> std::optional<bool> { |
| 3105 | Constant *L = First ? C1 : C2; |
| 3106 | Constant *R = Second ? C3 : C4; |
| 3107 | if (auto *Res = ConstantFoldBinaryOpOperands(Opcode: BO->getOpcode(), LHS: L, RHS: R, DL)) { |
| 3108 | auto *Val = Res->getType()->isVectorTy() ? Res->getSplatValue() : Res; |
| 3109 | if (auto *CI = dyn_cast_or_null<ConstantInt>(Val)) |
| 3110 | return ICmpInst::compare(LHS: CI->getValue(), RHS: C, Pred: Cmp.getPredicate()); |
| 3111 | } |
| 3112 | return std::nullopt; |
| 3113 | }; |
| 3114 | |
| 3115 | for (unsigned I = 0; I < 4; ++I) { |
| 3116 | bool First = (I >> 1) & 1; |
| 3117 | bool Second = I & 1; |
| 3118 | if (auto Res = ComputeTable(First, Second)) |
| 3119 | Table[I] = *Res; |
| 3120 | else |
| 3121 | return nullptr; |
| 3122 | } |
| 3123 | |
| 3124 | // Synthesize optimal logic. |
| 3125 | if (auto *Cond = createLogicFromTable(Table, Op0: A, Op1: B, Builder, HasOneUse: BO->hasOneUse())) |
| 3126 | return replaceInstUsesWith(I&: Cmp, V: Cond); |
| 3127 | return nullptr; |
| 3128 | } |
| 3129 | |
| 3130 | /// Fold icmp (add X, Y), C. |
| 3131 | Instruction *InstCombinerImpl::foldICmpAddConstant(ICmpInst &Cmp, |
| 3132 | BinaryOperator *Add, |
| 3133 | const APInt &C) { |
| 3134 | Value *Y = Add->getOperand(i_nocapture: 1); |
| 3135 | Value *X = Add->getOperand(i_nocapture: 0); |
| 3136 | |
| 3137 | Value *Op0, *Op1; |
| 3138 | Instruction *Ext0, *Ext1; |
| 3139 | const CmpPredicate Pred = Cmp.getCmpPredicate(); |
| 3140 | if (match(V: Add, |
| 3141 | P: m_Add(L: m_CombineAnd(L: m_Instruction(I&: Ext0), R: m_ZExtOrSExt(Op: m_Value(V&: Op0))), |
| 3142 | R: m_CombineAnd(L: m_Instruction(I&: Ext1), |
| 3143 | R: m_ZExtOrSExt(Op: m_Value(V&: Op1))))) && |
| 3144 | Op0->getType()->isIntOrIntVectorTy(BitWidth: 1) && |
| 3145 | Op1->getType()->isIntOrIntVectorTy(BitWidth: 1)) { |
| 3146 | unsigned BW = C.getBitWidth(); |
| 3147 | std::bitset<4> Table; |
| 3148 | auto ComputeTable = [&](bool Op0Val, bool Op1Val) { |
| 3149 | APInt Res(BW, 0); |
| 3150 | if (Op0Val) |
| 3151 | Res += APInt(BW, isa<ZExtInst>(Val: Ext0) ? 1 : -1, /*isSigned=*/true); |
| 3152 | if (Op1Val) |
| 3153 | Res += APInt(BW, isa<ZExtInst>(Val: Ext1) ? 1 : -1, /*isSigned=*/true); |
| 3154 | return ICmpInst::compare(LHS: Res, RHS: C, Pred); |
| 3155 | }; |
| 3156 | |
| 3157 | Table[0] = ComputeTable(false, false); |
| 3158 | Table[1] = ComputeTable(false, true); |
| 3159 | Table[2] = ComputeTable(true, false); |
| 3160 | Table[3] = ComputeTable(true, true); |
| 3161 | if (auto *Cond = |
| 3162 | createLogicFromTable(Table, Op0, Op1, Builder, HasOneUse: Add->hasOneUse())) |
| 3163 | return replaceInstUsesWith(I&: Cmp, V: Cond); |
| 3164 | } |
| 3165 | |
| 3166 | // icmp ult (add nuw A, (lshr A, ShAmtC)), C --> icmp ult A, C |
| 3167 | // when C <= (1 << ShAmtC). |
| 3168 | const APInt *ShAmtC; |
| 3169 | Value *A; |
| 3170 | unsigned BitWidth = C.getBitWidth(); |
| 3171 | if (Pred == ICmpInst::ICMP_ULT && |
| 3172 | match(V: Add, |
| 3173 | P: m_c_NUWAdd(L: m_Value(V&: A), R: m_LShr(L: m_Deferred(V: A), R: m_APInt(Res&: ShAmtC)))) && |
| 3174 | ShAmtC->ult(RHS: BitWidth) && |
| 3175 | C.ule(RHS: APInt::getOneBitSet(numBits: BitWidth, BitNo: ShAmtC->getZExtValue()))) |
| 3176 | return new ICmpInst(Pred, A, ConstantInt::get(Ty: A->getType(), V: C)); |
| 3177 | |
| 3178 | const APInt *C2; |
| 3179 | if (Cmp.isEquality() || !match(V: Y, P: m_APInt(Res&: C2))) |
| 3180 | return nullptr; |
| 3181 | |
| 3182 | // Fold icmp pred (add X, C2), C. |
| 3183 | Type *Ty = Add->getType(); |
| 3184 | |
| 3185 | // If the add does not wrap, we can always adjust the compare by subtracting |
| 3186 | // the constants. Equality comparisons are handled elsewhere. SGE/SLE/UGE/ULE |
| 3187 | // have been canonicalized to SGT/SLT/UGT/ULT. |
| 3188 | if (Add->hasNoUnsignedWrap() && |
| 3189 | (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULT)) { |
| 3190 | bool Overflow; |
| 3191 | APInt NewC = C.usub_ov(RHS: *C2, Overflow); |
| 3192 | // If there is overflow, the result must be true or false. |
| 3193 | if (!Overflow) |
| 3194 | // icmp Pred (add nsw X, C2), C --> icmp Pred X, (C - C2) |
| 3195 | return new ICmpInst(Pred, X, ConstantInt::get(Ty, V: NewC)); |
| 3196 | } |
| 3197 | |
| 3198 | CmpInst::Predicate ChosenPred = Pred.getPreferredSignedPredicate(); |
| 3199 | |
| 3200 | if (Add->hasNoSignedWrap() && |
| 3201 | (ChosenPred == ICmpInst::ICMP_SGT || ChosenPred == ICmpInst::ICMP_SLT)) { |
| 3202 | bool Overflow; |
| 3203 | APInt NewC = C.ssub_ov(RHS: *C2, Overflow); |
| 3204 | if (!Overflow) |
| 3205 | // icmp samesign ugt/ult (add nsw X, C2), C |
| 3206 | // -> icmp sgt/slt X, (C - C2) |
| 3207 | return new ICmpInst(ChosenPred, X, ConstantInt::get(Ty, V: NewC)); |
| 3208 | } |
| 3209 | |
| 3210 | if (ICmpInst::isUnsigned(predicate: Pred) && Add->hasNoSignedWrap() && |
| 3211 | C.isNonNegative() && (C - *C2).isNonNegative() && |
| 3212 | computeConstantRange(V: X, /*ForSigned=*/true).add(Other: *C2).isAllNonNegative()) |
| 3213 | return new ICmpInst(ICmpInst::getSignedPredicate(Pred), X, |
| 3214 | ConstantInt::get(Ty, V: C - *C2)); |
| 3215 | |
| 3216 | auto CR = ConstantRange::makeExactICmpRegion(Pred, Other: C).subtract(CI: *C2); |
| 3217 | const APInt &Upper = CR.getUpper(); |
| 3218 | const APInt &Lower = CR.getLower(); |
| 3219 | if (Cmp.isSigned()) { |
| 3220 | if (Lower.isSignMask()) |
| 3221 | return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, V: Upper)); |
| 3222 | if (Upper.isSignMask()) |
| 3223 | return new ICmpInst(ICmpInst::ICMP_SGE, X, ConstantInt::get(Ty, V: Lower)); |
| 3224 | } else { |
| 3225 | if (Lower.isMinValue()) |
| 3226 | return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, V: Upper)); |
| 3227 | if (Upper.isMinValue()) |
| 3228 | return new ICmpInst(ICmpInst::ICMP_UGE, X, ConstantInt::get(Ty, V: Lower)); |
| 3229 | } |
| 3230 | |
| 3231 | // This set of folds is intentionally placed after folds that use no-wrapping |
| 3232 | // flags because those folds are likely better for later analysis/codegen. |
| 3233 | const APInt SMax = APInt::getSignedMaxValue(numBits: Ty->getScalarSizeInBits()); |
| 3234 | const APInt SMin = APInt::getSignedMinValue(numBits: Ty->getScalarSizeInBits()); |
| 3235 | |
| 3236 | // Fold compare with offset to opposite sign compare if it eliminates offset: |
| 3237 | // (X + C2) >u C --> X <s -C2 (if C == C2 + SMAX) |
| 3238 | if (Pred == CmpInst::ICMP_UGT && C == *C2 + SMax) |
| 3239 | return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, V: -(*C2))); |
| 3240 | |
| 3241 | // (X + C2) <u C --> X >s ~C2 (if C == C2 + SMIN) |
| 3242 | if (Pred == CmpInst::ICMP_ULT && C == *C2 + SMin) |
| 3243 | return new ICmpInst(ICmpInst::ICMP_SGT, X, ConstantInt::get(Ty, V: ~(*C2))); |
| 3244 | |
| 3245 | // (X + C2) >s C --> X <u (SMAX - C) (if C == C2 - 1) |
| 3246 | if (Pred == CmpInst::ICMP_SGT && C == *C2 - 1) |
| 3247 | return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, V: SMax - C)); |
| 3248 | |
| 3249 | // (X + C2) <s C --> X >u (C ^ SMAX) (if C == C2) |
| 3250 | if (Pred == CmpInst::ICMP_SLT && C == *C2) |
| 3251 | return new ICmpInst(ICmpInst::ICMP_UGT, X, ConstantInt::get(Ty, V: C ^ SMax)); |
| 3252 | |
| 3253 | // (X + -1) <u C --> X <=u C (if X is never null) |
| 3254 | if (Pred == CmpInst::ICMP_ULT && C2->isAllOnes()) { |
| 3255 | const SimplifyQuery Q = SQ.getWithInstruction(I: &Cmp); |
| 3256 | if (llvm::isKnownNonZero(V: X, Q)) |
| 3257 | return new ICmpInst(ICmpInst::ICMP_ULE, X, ConstantInt::get(Ty, V: C)); |
| 3258 | } |
| 3259 | |
| 3260 | if (!Add->hasOneUse()) |
| 3261 | return nullptr; |
| 3262 | |
| 3263 | // X+C <u C2 -> (X & -C2) == C |
| 3264 | // iff C & (C2-1) == 0 |
| 3265 | // C2 is a power of 2 |
| 3266 | if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && (*C2 & (C - 1)) == 0) |
| 3267 | return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateAnd(LHS: X, RHS: -C), |
| 3268 | ConstantExpr::getNeg(C: cast<Constant>(Val: Y))); |
| 3269 | |
| 3270 | // X+C2 <u C -> (X & C) == 2C |
| 3271 | // iff C == -(C2) |
| 3272 | // C2 is a power of 2 |
| 3273 | if (Pred == ICmpInst::ICMP_ULT && C2->isPowerOf2() && C == -*C2) |
| 3274 | return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateAnd(LHS: X, RHS: C), |
| 3275 | ConstantInt::get(Ty, V: C * 2)); |
| 3276 | |
| 3277 | // X+C >u C2 -> (X & ~C2) != C |
| 3278 | // iff C & C2 == 0 |
| 3279 | // C2+1 is a power of 2 |
| 3280 | if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == 0) |
| 3281 | return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateAnd(LHS: X, RHS: ~C), |
| 3282 | ConstantExpr::getNeg(C: cast<Constant>(Val: Y))); |
| 3283 | |
| 3284 | // The range test idiom can use either ult or ugt. Arbitrarily canonicalize |
| 3285 | // to the ult form. |
| 3286 | // X+C2 >u C -> X+(C2-C-1) <u ~C |
| 3287 | if (Pred == ICmpInst::ICMP_UGT) |
| 3288 | return new ICmpInst(ICmpInst::ICMP_ULT, |
| 3289 | Builder.CreateAdd(LHS: X, RHS: ConstantInt::get(Ty, V: *C2 - C - 1)), |
| 3290 | ConstantInt::get(Ty, V: ~C)); |
| 3291 | |
| 3292 | // zext(V) + C2 pred C -> V + C3 pred' C4 |
| 3293 | Value *V; |
| 3294 | if (match(V: X, P: m_ZExt(Op: m_Value(V)))) { |
| 3295 | Type *NewCmpTy = V->getType(); |
| 3296 | unsigned NewCmpBW = NewCmpTy->getScalarSizeInBits(); |
| 3297 | if (shouldChangeType(From: Ty, To: NewCmpTy)) { |
| 3298 | ConstantRange SrcCR = CR.truncate(BitWidth: NewCmpBW, NoWrapKind: TruncInst::NoUnsignedWrap); |
| 3299 | CmpInst::Predicate EquivPred; |
| 3300 | APInt EquivInt; |
| 3301 | APInt EquivOffset; |
| 3302 | |
| 3303 | SrcCR.getEquivalentICmp(Pred&: EquivPred, RHS&: EquivInt, Offset&: EquivOffset); |
| 3304 | return new ICmpInst( |
| 3305 | EquivPred, |
| 3306 | EquivOffset.isZero() |
| 3307 | ? V |
| 3308 | : Builder.CreateAdd(LHS: V, RHS: ConstantInt::get(Ty: NewCmpTy, V: EquivOffset)), |
| 3309 | ConstantInt::get(Ty: NewCmpTy, V: EquivInt)); |
| 3310 | } |
| 3311 | } |
| 3312 | |
| 3313 | return nullptr; |
| 3314 | } |
| 3315 | |
| 3316 | bool InstCombinerImpl::matchThreeWayIntCompare(SelectInst *SI, Value *&LHS, |
| 3317 | Value *&RHS, ConstantInt *&Less, |
| 3318 | ConstantInt *&Equal, |
| 3319 | ConstantInt *&Greater) { |
| 3320 | // TODO: Generalize this to work with other comparison idioms or ensure |
| 3321 | // they get canonicalized into this form. |
| 3322 | |
| 3323 | // select i1 (a == b), |
| 3324 | // i32 Equal, |
| 3325 | // i32 (select i1 (a < b), i32 Less, i32 Greater) |
| 3326 | // where Equal, Less and Greater are placeholders for any three constants. |
| 3327 | CmpPredicate PredA; |
| 3328 | if (!match(V: SI->getCondition(), P: m_ICmp(Pred&: PredA, L: m_Value(V&: LHS), R: m_Value(V&: RHS))) || |
| 3329 | !ICmpInst::isEquality(P: PredA)) |
| 3330 | return false; |
| 3331 | Value *EqualVal = SI->getTrueValue(); |
| 3332 | Value *UnequalVal = SI->getFalseValue(); |
| 3333 | // We still can get non-canonical predicate here, so canonicalize. |
| 3334 | if (PredA == ICmpInst::ICMP_NE) |
| 3335 | std::swap(a&: EqualVal, b&: UnequalVal); |
| 3336 | if (!match(V: EqualVal, P: m_ConstantInt(CI&: Equal))) |
| 3337 | return false; |
| 3338 | CmpPredicate PredB; |
| 3339 | Value *LHS2, *RHS2; |
| 3340 | if (!match(V: UnequalVal, P: m_Select(C: m_ICmp(Pred&: PredB, L: m_Value(V&: LHS2), R: m_Value(V&: RHS2)), |
| 3341 | L: m_ConstantInt(CI&: Less), R: m_ConstantInt(CI&: Greater)))) |
| 3342 | return false; |
| 3343 | // We can get predicate mismatch here, so canonicalize if possible: |
| 3344 | // First, ensure that 'LHS' match. |
| 3345 | if (LHS2 != LHS) { |
| 3346 | // x sgt y <--> y slt x |
| 3347 | std::swap(a&: LHS2, b&: RHS2); |
| 3348 | PredB = ICmpInst::getSwappedPredicate(pred: PredB); |
| 3349 | } |
| 3350 | if (LHS2 != LHS) |
| 3351 | return false; |
| 3352 | // We also need to canonicalize 'RHS'. |
| 3353 | if (PredB == ICmpInst::ICMP_SGT && isa<Constant>(Val: RHS2)) { |
| 3354 | // x sgt C-1 <--> x sge C <--> not(x slt C) |
| 3355 | auto FlippedStrictness = |
| 3356 | getFlippedStrictnessPredicateAndConstant(Pred: PredB, C: cast<Constant>(Val: RHS2)); |
| 3357 | if (!FlippedStrictness) |
| 3358 | return false; |
| 3359 | assert(FlippedStrictness->first == ICmpInst::ICMP_SGE && |
| 3360 | "basic correctness failure" ); |
| 3361 | RHS2 = FlippedStrictness->second; |
| 3362 | // And kind-of perform the result swap. |
| 3363 | std::swap(a&: Less, b&: Greater); |
| 3364 | PredB = ICmpInst::ICMP_SLT; |
| 3365 | } |
| 3366 | return PredB == ICmpInst::ICMP_SLT && RHS == RHS2; |
| 3367 | } |
| 3368 | |
| 3369 | Instruction *InstCombinerImpl::foldICmpSelectConstant(ICmpInst &Cmp, |
| 3370 | SelectInst *Select, |
| 3371 | ConstantInt *C) { |
| 3372 | |
| 3373 | assert(C && "Cmp RHS should be a constant int!" ); |
| 3374 | // If we're testing a constant value against the result of a three way |
| 3375 | // comparison, the result can be expressed directly in terms of the |
| 3376 | // original values being compared. Note: We could possibly be more |
| 3377 | // aggressive here and remove the hasOneUse test. The original select is |
| 3378 | // really likely to simplify or sink when we remove a test of the result. |
| 3379 | Value *OrigLHS, *OrigRHS; |
| 3380 | ConstantInt *C1LessThan, *C2Equal, *C3GreaterThan; |
| 3381 | if (Cmp.hasOneUse() && |
| 3382 | matchThreeWayIntCompare(SI: Select, LHS&: OrigLHS, RHS&: OrigRHS, Less&: C1LessThan, Equal&: C2Equal, |
| 3383 | Greater&: C3GreaterThan)) { |
| 3384 | assert(C1LessThan && C2Equal && C3GreaterThan); |
| 3385 | |
| 3386 | bool TrueWhenLessThan = ICmpInst::compare( |
| 3387 | LHS: C1LessThan->getValue(), RHS: C->getValue(), Pred: Cmp.getPredicate()); |
| 3388 | bool TrueWhenEqual = ICmpInst::compare(LHS: C2Equal->getValue(), RHS: C->getValue(), |
| 3389 | Pred: Cmp.getPredicate()); |
| 3390 | bool TrueWhenGreaterThan = ICmpInst::compare( |
| 3391 | LHS: C3GreaterThan->getValue(), RHS: C->getValue(), Pred: Cmp.getPredicate()); |
| 3392 | |
| 3393 | // This generates the new instruction that will replace the original Cmp |
| 3394 | // Instruction. Instead of enumerating the various combinations when |
| 3395 | // TrueWhenLessThan, TrueWhenEqual and TrueWhenGreaterThan are true versus |
| 3396 | // false, we rely on chaining of ORs and future passes of InstCombine to |
| 3397 | // simplify the OR further (i.e. a s< b || a == b becomes a s<= b). |
| 3398 | |
| 3399 | // When none of the three constants satisfy the predicate for the RHS (C), |
| 3400 | // the entire original Cmp can be simplified to a false. |
| 3401 | Value *Cond = Builder.getFalse(); |
| 3402 | if (TrueWhenLessThan) |
| 3403 | Cond = Builder.CreateOr( |
| 3404 | LHS: Cond, RHS: Builder.CreateICmp(P: ICmpInst::ICMP_SLT, LHS: OrigLHS, RHS: OrigRHS)); |
| 3405 | if (TrueWhenEqual) |
| 3406 | Cond = Builder.CreateOr( |
| 3407 | LHS: Cond, RHS: Builder.CreateICmp(P: ICmpInst::ICMP_EQ, LHS: OrigLHS, RHS: OrigRHS)); |
| 3408 | if (TrueWhenGreaterThan) |
| 3409 | Cond = Builder.CreateOr( |
| 3410 | LHS: Cond, RHS: Builder.CreateICmp(P: ICmpInst::ICMP_SGT, LHS: OrigLHS, RHS: OrigRHS)); |
| 3411 | |
| 3412 | return replaceInstUsesWith(I&: Cmp, V: Cond); |
| 3413 | } |
| 3414 | return nullptr; |
| 3415 | } |
| 3416 | |
| 3417 | Instruction *InstCombinerImpl::foldICmpBitCast(ICmpInst &Cmp) { |
| 3418 | auto *Bitcast = dyn_cast<BitCastInst>(Val: Cmp.getOperand(i_nocapture: 0)); |
| 3419 | if (!Bitcast) |
| 3420 | return nullptr; |
| 3421 | |
| 3422 | ICmpInst::Predicate Pred = Cmp.getPredicate(); |
| 3423 | Value *Op1 = Cmp.getOperand(i_nocapture: 1); |
| 3424 | Value *BCSrcOp = Bitcast->getOperand(i_nocapture: 0); |
| 3425 | Type *SrcType = Bitcast->getSrcTy(); |
| 3426 | Type *DstType = Bitcast->getType(); |
| 3427 | |
| 3428 | // Make sure the bitcast doesn't change between scalar and vector and |
| 3429 | // doesn't change the number of vector elements. |
| 3430 | if (SrcType->isVectorTy() == DstType->isVectorTy() && |
| 3431 | SrcType->getScalarSizeInBits() == DstType->getScalarSizeInBits()) { |
| 3432 | // Zero-equality and sign-bit checks are preserved through sitofp + bitcast. |
| 3433 | Value *X; |
| 3434 | if (match(V: BCSrcOp, P: m_SIToFP(Op: m_Value(V&: X)))) { |
| 3435 | // icmp eq (bitcast (sitofp X)), 0 --> icmp eq X, 0 |
| 3436 | // icmp ne (bitcast (sitofp X)), 0 --> icmp ne X, 0 |
| 3437 | // icmp slt (bitcast (sitofp X)), 0 --> icmp slt X, 0 |
| 3438 | // icmp sgt (bitcast (sitofp X)), 0 --> icmp sgt X, 0 |
| 3439 | if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_SLT || |
| 3440 | Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT) && |
| 3441 | match(V: Op1, P: m_Zero())) |
| 3442 | return new ICmpInst(Pred, X, ConstantInt::getNullValue(Ty: X->getType())); |
| 3443 | |
| 3444 | // icmp slt (bitcast (sitofp X)), 1 --> icmp slt X, 1 |
| 3445 | if (Pred == ICmpInst::ICMP_SLT && match(V: Op1, P: m_One())) |
| 3446 | return new ICmpInst(Pred, X, ConstantInt::get(Ty: X->getType(), V: 1)); |
| 3447 | |
| 3448 | // icmp sgt (bitcast (sitofp X)), -1 --> icmp sgt X, -1 |
| 3449 | if (Pred == ICmpInst::ICMP_SGT && match(V: Op1, P: m_AllOnes())) |
| 3450 | return new ICmpInst(Pred, X, |
| 3451 | ConstantInt::getAllOnesValue(Ty: X->getType())); |
| 3452 | } |
| 3453 | |
| 3454 | // Zero-equality checks are preserved through unsigned floating-point casts: |
| 3455 | // icmp eq (bitcast (uitofp X)), 0 --> icmp eq X, 0 |
| 3456 | // icmp ne (bitcast (uitofp X)), 0 --> icmp ne X, 0 |
| 3457 | if (match(V: BCSrcOp, P: m_UIToFP(Op: m_Value(V&: X)))) |
| 3458 | if (Cmp.isEquality() && match(V: Op1, P: m_Zero())) |
| 3459 | return new ICmpInst(Pred, X, ConstantInt::getNullValue(Ty: X->getType())); |
| 3460 | |
| 3461 | const APInt *C; |
| 3462 | bool TrueIfSigned; |
| 3463 | if (match(V: Op1, P: m_APInt(Res&: C)) && Bitcast->hasOneUse()) { |
| 3464 | // If this is a sign-bit test of a bitcast of a casted FP value, eliminate |
| 3465 | // the FP extend/truncate because that cast does not change the sign-bit. |
| 3466 | // This is true for all standard IEEE-754 types and the X86 80-bit type. |
| 3467 | // The sign-bit is always the most significant bit in those types. |
| 3468 | if (isSignBitCheck(Pred, RHS: *C, TrueIfSigned) && |
| 3469 | (match(V: BCSrcOp, P: m_FPExt(Op: m_Value(V&: X))) || |
| 3470 | match(V: BCSrcOp, P: m_FPTrunc(Op: m_Value(V&: X))))) { |
| 3471 | // (bitcast (fpext/fptrunc X)) to iX) < 0 --> (bitcast X to iY) < 0 |
| 3472 | // (bitcast (fpext/fptrunc X)) to iX) > -1 --> (bitcast X to iY) > -1 |
| 3473 | Type *XType = X->getType(); |
| 3474 | |
| 3475 | // We can't currently handle Power style floating point operations here. |
| 3476 | if (!(XType->isPPC_FP128Ty() || SrcType->isPPC_FP128Ty())) { |
| 3477 | Type *NewType = Builder.getIntNTy(N: XType->getScalarSizeInBits()); |
| 3478 | if (auto *XVTy = dyn_cast<VectorType>(Val: XType)) |
| 3479 | NewType = VectorType::get(ElementType: NewType, EC: XVTy->getElementCount()); |
| 3480 | Value *NewBitcast = Builder.CreateBitCast(V: X, DestTy: NewType); |
| 3481 | if (TrueIfSigned) |
| 3482 | return new ICmpInst(ICmpInst::ICMP_SLT, NewBitcast, |
| 3483 | ConstantInt::getNullValue(Ty: NewType)); |
| 3484 | else |
| 3485 | return new ICmpInst(ICmpInst::ICMP_SGT, NewBitcast, |
| 3486 | ConstantInt::getAllOnesValue(Ty: NewType)); |
| 3487 | } |
| 3488 | } |
| 3489 | |
| 3490 | // icmp eq/ne (bitcast X to int), special fp -> llvm.is.fpclass(X, class) |
| 3491 | Type *FPType = SrcType->getScalarType(); |
| 3492 | if (!Cmp.getParent()->getParent()->hasFnAttribute( |
| 3493 | Kind: Attribute::NoImplicitFloat) && |
| 3494 | Cmp.isEquality() && FPType->isIEEELikeFPTy()) { |
| 3495 | FPClassTest Mask = APFloat(FPType->getFltSemantics(), *C).classify(); |
| 3496 | if (Mask & (fcInf | fcZero)) { |
| 3497 | if (Pred == ICmpInst::ICMP_NE) |
| 3498 | Mask = ~Mask; |
| 3499 | return replaceInstUsesWith(I&: Cmp, |
| 3500 | V: Builder.createIsFPClass(FPNum: BCSrcOp, Test: Mask)); |
| 3501 | } |
| 3502 | } |
| 3503 | } |
| 3504 | } |
| 3505 | |
| 3506 | const APInt *C; |
| 3507 | if (!match(V: Cmp.getOperand(i_nocapture: 1), P: m_APInt(Res&: C)) || !DstType->isIntegerTy() || |
| 3508 | !SrcType->isIntOrIntVectorTy()) |
| 3509 | return nullptr; |
| 3510 | |
| 3511 | // If this is checking if all elements of a vector compare are set or not, |
| 3512 | // invert the casted vector equality compare and test if all compare |
| 3513 | // elements are clear or not. Compare against zero is generally easier for |
| 3514 | // analysis and codegen. |
| 3515 | // icmp eq/ne (bitcast (not X) to iN), -1 --> icmp eq/ne (bitcast X to iN), 0 |
| 3516 | // Example: are all elements equal? --> are zero elements not equal? |
| 3517 | // TODO: Try harder to reduce compare of 2 freely invertible operands? |
| 3518 | if (Cmp.isEquality() && C->isAllOnes() && Bitcast->hasOneUse()) { |
| 3519 | if (Value *NotBCSrcOp = |
| 3520 | getFreelyInverted(V: BCSrcOp, WillInvertAllUses: BCSrcOp->hasOneUse(), Builder: &Builder)) { |
| 3521 | Value *Cast = Builder.CreateBitCast(V: NotBCSrcOp, DestTy: DstType); |
| 3522 | return new ICmpInst(Pred, Cast, ConstantInt::getNullValue(Ty: DstType)); |
| 3523 | } |
| 3524 | } |
| 3525 | |
| 3526 | // If this is checking if all elements of an extended vector are clear or not, |
| 3527 | // compare in a narrow type to eliminate the extend: |
| 3528 | // icmp eq/ne (bitcast (ext X) to iN), 0 --> icmp eq/ne (bitcast X to iM), 0 |
| 3529 | Value *X; |
| 3530 | if (Cmp.isEquality() && C->isZero() && Bitcast->hasOneUse() && |
| 3531 | match(V: BCSrcOp, P: m_ZExtOrSExt(Op: m_Value(V&: X)))) { |
| 3532 | if (auto *VecTy = dyn_cast<FixedVectorType>(Val: X->getType())) { |
| 3533 | Type *NewType = Builder.getIntNTy(N: VecTy->getPrimitiveSizeInBits()); |
| 3534 | Value *NewCast = Builder.CreateBitCast(V: X, DestTy: NewType); |
| 3535 | return new ICmpInst(Pred, NewCast, ConstantInt::getNullValue(Ty: NewType)); |
| 3536 | } |
| 3537 | } |
| 3538 | |
| 3539 | // Folding: icmp <pred> iN X, C |
| 3540 | // where X = bitcast <M x iK> (shufflevector <M x iK> %vec, undef, SC)) to iN |
| 3541 | // and C is a splat of a K-bit pattern |
| 3542 | // and SC is a constant vector = <C', C', C', ..., C'> |
| 3543 | // Into: |
| 3544 | // %E = extractelement <M x iK> %vec, i32 C' |
| 3545 | // icmp <pred> iK %E, trunc(C) |
| 3546 | Value *Vec; |
| 3547 | ArrayRef<int> Mask; |
| 3548 | if (match(V: BCSrcOp, P: m_Shuffle(v1: m_Value(V&: Vec), v2: m_Undef(), mask: m_Mask(Mask)))) { |
| 3549 | // Check whether every element of Mask is the same constant |
| 3550 | if (all_equal(Range&: Mask)) { |
| 3551 | auto *VecTy = cast<VectorType>(Val: SrcType); |
| 3552 | auto *EltTy = cast<IntegerType>(Val: VecTy->getElementType()); |
| 3553 | if (C->isSplat(SplatSizeInBits: EltTy->getBitWidth())) { |
| 3554 | // Fold the icmp based on the value of C |
| 3555 | // If C is M copies of an iK sized bit pattern, |
| 3556 | // then: |
| 3557 | // => %E = extractelement <N x iK> %vec, i32 Elem |
| 3558 | // icmp <pred> iK %SplatVal, <pattern> |
| 3559 | Value *Elem = Builder.getInt32(C: Mask[0]); |
| 3560 | Value * = Builder.CreateExtractElement(Vec, Idx: Elem); |
| 3561 | Value *NewC = ConstantInt::get(Ty: EltTy, V: C->trunc(width: EltTy->getBitWidth())); |
| 3562 | return new ICmpInst(Pred, Extract, NewC); |
| 3563 | } |
| 3564 | } |
| 3565 | } |
| 3566 | return nullptr; |
| 3567 | } |
| 3568 | |
| 3569 | /// Try to fold integer comparisons with a constant operand: icmp Pred X, C |
| 3570 | /// where X is some kind of instruction. |
| 3571 | Instruction *InstCombinerImpl::foldICmpInstWithConstant(ICmpInst &Cmp) { |
| 3572 | const APInt *C; |
| 3573 | |
| 3574 | if (match(V: Cmp.getOperand(i_nocapture: 1), P: m_APInt(Res&: C))) { |
| 3575 | if (auto *BO = dyn_cast<BinaryOperator>(Val: Cmp.getOperand(i_nocapture: 0))) |
| 3576 | if (Instruction *I = foldICmpBinOpWithConstant(Cmp, BO, C: *C)) |
| 3577 | return I; |
| 3578 | |
| 3579 | if (auto *SI = dyn_cast<SelectInst>(Val: Cmp.getOperand(i_nocapture: 0))) |
| 3580 | // For now, we only support constant integers while folding the |
| 3581 | // ICMP(SELECT)) pattern. We can extend this to support vector of integers |
| 3582 | // similar to the cases handled by binary ops above. |
| 3583 | if (auto *ConstRHS = dyn_cast<ConstantInt>(Val: Cmp.getOperand(i_nocapture: 1))) |
| 3584 | if (Instruction *I = foldICmpSelectConstant(Cmp, Select: SI, C: ConstRHS)) |
| 3585 | return I; |
| 3586 | |
| 3587 | if (auto *TI = dyn_cast<TruncInst>(Val: Cmp.getOperand(i_nocapture: 0))) |
| 3588 | if (Instruction *I = foldICmpTruncConstant(Cmp, Trunc: TI, C: *C)) |
| 3589 | return I; |
| 3590 | |
| 3591 | if (auto *II = dyn_cast<IntrinsicInst>(Val: Cmp.getOperand(i_nocapture: 0))) |
| 3592 | if (Instruction *I = foldICmpIntrinsicWithConstant(ICI&: Cmp, II, C: *C)) |
| 3593 | return I; |
| 3594 | |
| 3595 | // (extractval ([s/u]subo X, Y), 0) == 0 --> X == Y |
| 3596 | // (extractval ([s/u]subo X, Y), 0) != 0 --> X != Y |
| 3597 | // TODO: This checks one-use, but that is not strictly necessary. |
| 3598 | Value *Cmp0 = Cmp.getOperand(i_nocapture: 0); |
| 3599 | Value *X, *Y; |
| 3600 | if (C->isZero() && Cmp.isEquality() && Cmp0->hasOneUse() && |
| 3601 | (match(V: Cmp0, |
| 3602 | P: m_ExtractValue<0>(V: m_Intrinsic<Intrinsic::ssub_with_overflow>( |
| 3603 | Op0: m_Value(V&: X), Op1: m_Value(V&: Y)))) || |
| 3604 | match(V: Cmp0, |
| 3605 | P: m_ExtractValue<0>(V: m_Intrinsic<Intrinsic::usub_with_overflow>( |
| 3606 | Op0: m_Value(V&: X), Op1: m_Value(V&: Y)))))) |
| 3607 | return new ICmpInst(Cmp.getPredicate(), X, Y); |
| 3608 | } |
| 3609 | |
| 3610 | if (match(V: Cmp.getOperand(i_nocapture: 1), P: m_APIntAllowPoison(Res&: C))) |
| 3611 | return foldICmpInstWithConstantAllowPoison(Cmp, C: *C); |
| 3612 | |
| 3613 | return nullptr; |
| 3614 | } |
| 3615 | |
| 3616 | /// Fold an icmp equality instruction with binary operator LHS and constant RHS: |
| 3617 | /// icmp eq/ne BO, C. |
| 3618 | Instruction *InstCombinerImpl::foldICmpBinOpEqualityWithConstant( |
| 3619 | ICmpInst &Cmp, BinaryOperator *BO, const APInt &C) { |
| 3620 | // TODO: Some of these folds could work with arbitrary constants, but this |
| 3621 | // function is limited to scalar and vector splat constants. |
| 3622 | if (!Cmp.isEquality()) |
| 3623 | return nullptr; |
| 3624 | |
| 3625 | ICmpInst::Predicate Pred = Cmp.getPredicate(); |
| 3626 | bool isICMP_NE = Pred == ICmpInst::ICMP_NE; |
| 3627 | Constant *RHS = cast<Constant>(Val: Cmp.getOperand(i_nocapture: 1)); |
| 3628 | Value *BOp0 = BO->getOperand(i_nocapture: 0), *BOp1 = BO->getOperand(i_nocapture: 1); |
| 3629 | |
| 3630 | switch (BO->getOpcode()) { |
| 3631 | case Instruction::SRem: |
| 3632 | // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one. |
| 3633 | if (C.isZero() && BO->hasOneUse()) { |
| 3634 | const APInt *BOC; |
| 3635 | if (match(V: BOp1, P: m_APInt(Res&: BOC)) && BOC->sgt(RHS: 1) && BOC->isPowerOf2()) { |
| 3636 | Value *NewRem = Builder.CreateURem(LHS: BOp0, RHS: BOp1, Name: BO->getName()); |
| 3637 | return new ICmpInst(Pred, NewRem, |
| 3638 | Constant::getNullValue(Ty: BO->getType())); |
| 3639 | } |
| 3640 | } |
| 3641 | break; |
| 3642 | case Instruction::Add: { |
| 3643 | // (A + C2) == C --> A == (C - C2) |
| 3644 | // (A + C2) != C --> A != (C - C2) |
| 3645 | // TODO: Remove the one-use limitation? See discussion in D58633. |
| 3646 | if (Constant *C2 = dyn_cast<Constant>(Val: BOp1)) { |
| 3647 | if (BO->hasOneUse()) |
| 3648 | return new ICmpInst(Pred, BOp0, ConstantExpr::getSub(C1: RHS, C2)); |
| 3649 | } else if (C.isZero()) { |
| 3650 | // Replace ((add A, B) != 0) with (A != -B) if A or B is |
| 3651 | // efficiently invertible, or if the add has just this one use. |
| 3652 | if (Value *NegVal = dyn_castNegVal(V: BOp1)) |
| 3653 | return new ICmpInst(Pred, BOp0, NegVal); |
| 3654 | if (Value *NegVal = dyn_castNegVal(V: BOp0)) |
| 3655 | return new ICmpInst(Pred, NegVal, BOp1); |
| 3656 | if (BO->hasOneUse()) { |
| 3657 | // (add nuw A, B) != 0 -> (or A, B) != 0 |
| 3658 | if (match(V: BO, P: m_NUWAdd(L: m_Value(), R: m_Value()))) { |
| 3659 | Value *Or = Builder.CreateOr(LHS: BOp0, RHS: BOp1); |
| 3660 | return new ICmpInst(Pred, Or, Constant::getNullValue(Ty: BO->getType())); |
| 3661 | } |
| 3662 | Value *Neg = Builder.CreateNeg(V: BOp1); |
| 3663 | Neg->takeName(V: BO); |
| 3664 | return new ICmpInst(Pred, BOp0, Neg); |
| 3665 | } |
| 3666 | } |
| 3667 | break; |
| 3668 | } |
| 3669 | case Instruction::Xor: |
| 3670 | if (Constant *BOC = dyn_cast<Constant>(Val: BOp1)) { |
| 3671 | // For the xor case, we can xor two constants together, eliminating |
| 3672 | // the explicit xor. |
| 3673 | return new ICmpInst(Pred, BOp0, ConstantExpr::getXor(C1: RHS, C2: BOC)); |
| 3674 | } else if (C.isZero()) { |
| 3675 | // Replace ((xor A, B) != 0) with (A != B) |
| 3676 | return new ICmpInst(Pred, BOp0, BOp1); |
| 3677 | } |
| 3678 | break; |
| 3679 | case Instruction::Or: { |
| 3680 | const APInt *BOC; |
| 3681 | if (match(V: BOp1, P: m_APInt(Res&: BOC)) && BO->hasOneUse() && RHS->isAllOnesValue()) { |
| 3682 | // Comparing if all bits outside of a constant mask are set? |
| 3683 | // Replace (X | C) == -1 with (X & ~C) == ~C. |
| 3684 | // This removes the -1 constant. |
| 3685 | Constant *NotBOC = ConstantExpr::getNot(C: cast<Constant>(Val: BOp1)); |
| 3686 | Value *And = Builder.CreateAnd(LHS: BOp0, RHS: NotBOC); |
| 3687 | return new ICmpInst(Pred, And, NotBOC); |
| 3688 | } |
| 3689 | // (icmp eq (or (select cond, 0, NonZero), Other), 0) |
| 3690 | // -> (and cond, (icmp eq Other, 0)) |
| 3691 | // (icmp ne (or (select cond, NonZero, 0), Other), 0) |
| 3692 | // -> (or cond, (icmp ne Other, 0)) |
| 3693 | Value *Cond, *TV, *FV, *Other, *Sel; |
| 3694 | if (C.isZero() && |
| 3695 | match(V: BO, |
| 3696 | P: m_OneUse(SubPattern: m_c_Or(L: m_CombineAnd(L: m_Value(V&: Sel), |
| 3697 | R: m_Select(C: m_Value(V&: Cond), L: m_Value(V&: TV), |
| 3698 | R: m_Value(V&: FV))), |
| 3699 | R: m_Value(V&: Other)))) && |
| 3700 | Cond->getType() == Cmp.getType()) { |
| 3701 | const SimplifyQuery Q = SQ.getWithInstruction(I: &Cmp); |
| 3702 | // Easy case is if eq/ne matches whether 0 is trueval/falseval. |
| 3703 | if (Pred == ICmpInst::ICMP_EQ |
| 3704 | ? (match(V: TV, P: m_Zero()) && isKnownNonZero(V: FV, Q)) |
| 3705 | : (match(V: FV, P: m_Zero()) && isKnownNonZero(V: TV, Q))) { |
| 3706 | Value *Cmp = Builder.CreateICmp( |
| 3707 | P: Pred, LHS: Other, RHS: Constant::getNullValue(Ty: Other->getType())); |
| 3708 | return BinaryOperator::Create( |
| 3709 | Op: Pred == ICmpInst::ICMP_EQ ? Instruction::And : Instruction::Or, S1: Cmp, |
| 3710 | S2: Cond); |
| 3711 | } |
| 3712 | // Harder case is if eq/ne matches whether 0 is falseval/trueval. In this |
| 3713 | // case we need to invert the select condition so we need to be careful to |
| 3714 | // avoid creating extra instructions. |
| 3715 | // (icmp ne (or (select cond, 0, NonZero), Other), 0) |
| 3716 | // -> (or (not cond), (icmp ne Other, 0)) |
| 3717 | // (icmp eq (or (select cond, NonZero, 0), Other), 0) |
| 3718 | // -> (and (not cond), (icmp eq Other, 0)) |
| 3719 | // |
| 3720 | // Only do this if the inner select has one use, in which case we are |
| 3721 | // replacing `select` with `(not cond)`. Otherwise, we will create more |
| 3722 | // uses. NB: Trying to freely invert cond doesn't make sense here, as if |
| 3723 | // cond was freely invertable, the select arms would have been inverted. |
| 3724 | if (Sel->hasOneUse() && |
| 3725 | (Pred == ICmpInst::ICMP_EQ |
| 3726 | ? (match(V: FV, P: m_Zero()) && isKnownNonZero(V: TV, Q)) |
| 3727 | : (match(V: TV, P: m_Zero()) && isKnownNonZero(V: FV, Q)))) { |
| 3728 | Value *NotCond = Builder.CreateNot(V: Cond); |
| 3729 | Value *Cmp = Builder.CreateICmp( |
| 3730 | P: Pred, LHS: Other, RHS: Constant::getNullValue(Ty: Other->getType())); |
| 3731 | return BinaryOperator::Create( |
| 3732 | Op: Pred == ICmpInst::ICMP_EQ ? Instruction::And : Instruction::Or, S1: Cmp, |
| 3733 | S2: NotCond); |
| 3734 | } |
| 3735 | } |
| 3736 | break; |
| 3737 | } |
| 3738 | case Instruction::UDiv: |
| 3739 | case Instruction::SDiv: |
| 3740 | if (BO->isExact()) { |
| 3741 | // div exact X, Y eq/ne 0 -> X eq/ne 0 |
| 3742 | // div exact X, Y eq/ne 1 -> X eq/ne Y |
| 3743 | // div exact X, Y eq/ne C -> |
| 3744 | // if Y * C never-overflow && OneUse: |
| 3745 | // -> Y * C eq/ne X |
| 3746 | if (C.isZero()) |
| 3747 | return new ICmpInst(Pred, BOp0, Constant::getNullValue(Ty: BO->getType())); |
| 3748 | else if (C.isOne()) |
| 3749 | return new ICmpInst(Pred, BOp0, BOp1); |
| 3750 | else if (BO->hasOneUse()) { |
| 3751 | OverflowResult OR = computeOverflow( |
| 3752 | BinaryOp: Instruction::Mul, IsSigned: BO->getOpcode() == Instruction::SDiv, LHS: BOp1, |
| 3753 | RHS: Cmp.getOperand(i_nocapture: 1), CxtI: BO); |
| 3754 | if (OR == OverflowResult::NeverOverflows) { |
| 3755 | Value *YC = |
| 3756 | Builder.CreateMul(LHS: BOp1, RHS: ConstantInt::get(Ty: BO->getType(), V: C)); |
| 3757 | return new ICmpInst(Pred, YC, BOp0); |
| 3758 | } |
| 3759 | } |
| 3760 | } |
| 3761 | if (BO->getOpcode() == Instruction::UDiv && C.isZero()) { |
| 3762 | // (icmp eq/ne (udiv A, B), 0) -> (icmp ugt/ule i32 B, A) |
| 3763 | auto NewPred = isICMP_NE ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT; |
| 3764 | return new ICmpInst(NewPred, BOp1, BOp0); |
| 3765 | } |
| 3766 | break; |
| 3767 | default: |
| 3768 | break; |
| 3769 | } |
| 3770 | return nullptr; |
| 3771 | } |
| 3772 | |
| 3773 | static Instruction *foldCtpopPow2Test(ICmpInst &I, IntrinsicInst *CtpopLhs, |
| 3774 | const APInt &CRhs, |
| 3775 | InstCombiner::BuilderTy &Builder, |
| 3776 | const SimplifyQuery &Q) { |
| 3777 | assert(CtpopLhs->getIntrinsicID() == Intrinsic::ctpop && |
| 3778 | "Non-ctpop intrin in ctpop fold" ); |
| 3779 | if (!CtpopLhs->hasOneUse()) |
| 3780 | return nullptr; |
| 3781 | |
| 3782 | // Power of 2 test: |
| 3783 | // isPow2OrZero : ctpop(X) u< 2 |
| 3784 | // isPow2 : ctpop(X) == 1 |
| 3785 | // NotPow2OrZero: ctpop(X) u> 1 |
| 3786 | // NotPow2 : ctpop(X) != 1 |
| 3787 | // If we know any bit of X can be folded to: |
| 3788 | // IsPow2 : X & (~Bit) == 0 |
| 3789 | // NotPow2 : X & (~Bit) != 0 |
| 3790 | const ICmpInst::Predicate Pred = I.getPredicate(); |
| 3791 | if (((I.isEquality() || Pred == ICmpInst::ICMP_UGT) && CRhs == 1) || |
| 3792 | (Pred == ICmpInst::ICMP_ULT && CRhs == 2)) { |
| 3793 | Value *Op = CtpopLhs->getArgOperand(i: 0); |
| 3794 | KnownBits OpKnown = computeKnownBits(V: Op, DL: Q.DL, AC: Q.AC, CxtI: Q.CxtI, DT: Q.DT); |
| 3795 | // No need to check for count > 1, that should be already constant folded. |
| 3796 | if (OpKnown.countMinPopulation() == 1) { |
| 3797 | Value *And = Builder.CreateAnd( |
| 3798 | LHS: Op, RHS: Constant::getIntegerValue(Ty: Op->getType(), V: ~(OpKnown.One))); |
| 3799 | return new ICmpInst( |
| 3800 | (Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_ULT) |
| 3801 | ? ICmpInst::ICMP_EQ |
| 3802 | : ICmpInst::ICMP_NE, |
| 3803 | And, Constant::getNullValue(Ty: Op->getType())); |
| 3804 | } |
| 3805 | } |
| 3806 | |
| 3807 | return nullptr; |
| 3808 | } |
| 3809 | |
| 3810 | /// Fold an equality icmp with LLVM intrinsic and constant operand. |
| 3811 | Instruction *InstCombinerImpl::foldICmpEqIntrinsicWithConstant( |
| 3812 | ICmpInst &Cmp, IntrinsicInst *II, const APInt &C) { |
| 3813 | Type *Ty = II->getType(); |
| 3814 | unsigned BitWidth = C.getBitWidth(); |
| 3815 | const ICmpInst::Predicate Pred = Cmp.getPredicate(); |
| 3816 | |
| 3817 | switch (II->getIntrinsicID()) { |
| 3818 | case Intrinsic::abs: |
| 3819 | // abs(A) == 0 -> A == 0 |
| 3820 | // abs(A) == INT_MIN -> A == INT_MIN |
| 3821 | if (C.isZero() || C.isMinSignedValue()) |
| 3822 | return new ICmpInst(Pred, II->getArgOperand(i: 0), ConstantInt::get(Ty, V: C)); |
| 3823 | break; |
| 3824 | |
| 3825 | case Intrinsic::bswap: |
| 3826 | // bswap(A) == C -> A == bswap(C) |
| 3827 | return new ICmpInst(Pred, II->getArgOperand(i: 0), |
| 3828 | ConstantInt::get(Ty, V: C.byteSwap())); |
| 3829 | |
| 3830 | case Intrinsic::bitreverse: |
| 3831 | // bitreverse(A) == C -> A == bitreverse(C) |
| 3832 | return new ICmpInst(Pred, II->getArgOperand(i: 0), |
| 3833 | ConstantInt::get(Ty, V: C.reverseBits())); |
| 3834 | |
| 3835 | case Intrinsic::ctlz: |
| 3836 | case Intrinsic::cttz: { |
| 3837 | // ctz(A) == bitwidth(A) -> A == 0 and likewise for != |
| 3838 | if (C == BitWidth) |
| 3839 | return new ICmpInst(Pred, II->getArgOperand(i: 0), |
| 3840 | ConstantInt::getNullValue(Ty)); |
| 3841 | |
| 3842 | // ctz(A) == C -> A & Mask1 == Mask2, where Mask2 only has bit C set |
| 3843 | // and Mask1 has bits 0..C+1 set. Similar for ctl, but for high bits. |
| 3844 | // Limit to one use to ensure we don't increase instruction count. |
| 3845 | unsigned Num = C.getLimitedValue(Limit: BitWidth); |
| 3846 | if (Num != BitWidth && II->hasOneUse()) { |
| 3847 | bool IsTrailing = II->getIntrinsicID() == Intrinsic::cttz; |
| 3848 | APInt Mask1 = IsTrailing ? APInt::getLowBitsSet(numBits: BitWidth, loBitsSet: Num + 1) |
| 3849 | : APInt::getHighBitsSet(numBits: BitWidth, hiBitsSet: Num + 1); |
| 3850 | APInt Mask2 = IsTrailing |
| 3851 | ? APInt::getOneBitSet(numBits: BitWidth, BitNo: Num) |
| 3852 | : APInt::getOneBitSet(numBits: BitWidth, BitNo: BitWidth - Num - 1); |
| 3853 | return new ICmpInst(Pred, Builder.CreateAnd(LHS: II->getArgOperand(i: 0), RHS: Mask1), |
| 3854 | ConstantInt::get(Ty, V: Mask2)); |
| 3855 | } |
| 3856 | break; |
| 3857 | } |
| 3858 | |
| 3859 | case Intrinsic::ctpop: { |
| 3860 | // popcount(A) == 0 -> A == 0 and likewise for != |
| 3861 | // popcount(A) == bitwidth(A) -> A == -1 and likewise for != |
| 3862 | bool IsZero = C.isZero(); |
| 3863 | if (IsZero || C == BitWidth) |
| 3864 | return new ICmpInst(Pred, II->getArgOperand(i: 0), |
| 3865 | IsZero ? Constant::getNullValue(Ty) |
| 3866 | : Constant::getAllOnesValue(Ty)); |
| 3867 | |
| 3868 | break; |
| 3869 | } |
| 3870 | |
| 3871 | case Intrinsic::fshl: |
| 3872 | case Intrinsic::fshr: |
| 3873 | if (II->getArgOperand(i: 0) == II->getArgOperand(i: 1)) { |
| 3874 | const APInt *RotAmtC; |
| 3875 | // ror(X, RotAmtC) == C --> X == rol(C, RotAmtC) |
| 3876 | // rol(X, RotAmtC) == C --> X == ror(C, RotAmtC) |
| 3877 | if (match(V: II->getArgOperand(i: 2), P: m_APInt(Res&: RotAmtC))) |
| 3878 | return new ICmpInst(Pred, II->getArgOperand(i: 0), |
| 3879 | II->getIntrinsicID() == Intrinsic::fshl |
| 3880 | ? ConstantInt::get(Ty, V: C.rotr(rotateAmt: *RotAmtC)) |
| 3881 | : ConstantInt::get(Ty, V: C.rotl(rotateAmt: *RotAmtC))); |
| 3882 | } |
| 3883 | break; |
| 3884 | |
| 3885 | case Intrinsic::umax: |
| 3886 | case Intrinsic::uadd_sat: { |
| 3887 | // uadd.sat(a, b) == 0 -> (a | b) == 0 |
| 3888 | // umax(a, b) == 0 -> (a | b) == 0 |
| 3889 | if (C.isZero() && II->hasOneUse()) { |
| 3890 | Value *Or = Builder.CreateOr(LHS: II->getArgOperand(i: 0), RHS: II->getArgOperand(i: 1)); |
| 3891 | return new ICmpInst(Pred, Or, Constant::getNullValue(Ty)); |
| 3892 | } |
| 3893 | break; |
| 3894 | } |
| 3895 | |
| 3896 | case Intrinsic::ssub_sat: |
| 3897 | // ssub.sat(a, b) == 0 -> a == b |
| 3898 | // |
| 3899 | // Note this doesn't work for ssub.sat.i1 because ssub.sat.i1 0, -1 = 0 |
| 3900 | // (because 1 saturates to 0). Just skip the optimization for i1. |
| 3901 | if (C.isZero() && II->getType()->getScalarSizeInBits() > 1) |
| 3902 | return new ICmpInst(Pred, II->getArgOperand(i: 0), II->getArgOperand(i: 1)); |
| 3903 | break; |
| 3904 | case Intrinsic::usub_sat: { |
| 3905 | // usub.sat(a, b) == 0 -> a <= b |
| 3906 | if (C.isZero()) { |
| 3907 | ICmpInst::Predicate NewPred = |
| 3908 | Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT; |
| 3909 | return new ICmpInst(NewPred, II->getArgOperand(i: 0), II->getArgOperand(i: 1)); |
| 3910 | } |
| 3911 | break; |
| 3912 | } |
| 3913 | default: |
| 3914 | break; |
| 3915 | } |
| 3916 | |
| 3917 | return nullptr; |
| 3918 | } |
| 3919 | |
| 3920 | /// Fold an icmp with LLVM intrinsics |
| 3921 | static Instruction * |
| 3922 | foldICmpIntrinsicWithIntrinsic(ICmpInst &Cmp, |
| 3923 | InstCombiner::BuilderTy &Builder) { |
| 3924 | assert(Cmp.isEquality()); |
| 3925 | |
| 3926 | ICmpInst::Predicate Pred = Cmp.getPredicate(); |
| 3927 | Value *Op0 = Cmp.getOperand(i_nocapture: 0); |
| 3928 | Value *Op1 = Cmp.getOperand(i_nocapture: 1); |
| 3929 | const auto *IIOp0 = dyn_cast<IntrinsicInst>(Val: Op0); |
| 3930 | const auto *IIOp1 = dyn_cast<IntrinsicInst>(Val: Op1); |
| 3931 | if (!IIOp0 || !IIOp1 || IIOp0->getIntrinsicID() != IIOp1->getIntrinsicID()) |
| 3932 | return nullptr; |
| 3933 | |
| 3934 | switch (IIOp0->getIntrinsicID()) { |
| 3935 | case Intrinsic::bswap: |
| 3936 | case Intrinsic::bitreverse: |
| 3937 | // If both operands are byte-swapped or bit-reversed, just compare the |
| 3938 | // original values. |
| 3939 | return new ICmpInst(Pred, IIOp0->getOperand(i_nocapture: 0), IIOp1->getOperand(i_nocapture: 0)); |
| 3940 | case Intrinsic::fshl: |
| 3941 | case Intrinsic::fshr: { |
| 3942 | // If both operands are rotated by same amount, just compare the |
| 3943 | // original values. |
| 3944 | if (IIOp0->getOperand(i_nocapture: 0) != IIOp0->getOperand(i_nocapture: 1)) |
| 3945 | break; |
| 3946 | if (IIOp1->getOperand(i_nocapture: 0) != IIOp1->getOperand(i_nocapture: 1)) |
| 3947 | break; |
| 3948 | if (IIOp0->getOperand(i_nocapture: 2) == IIOp1->getOperand(i_nocapture: 2)) |
| 3949 | return new ICmpInst(Pred, IIOp0->getOperand(i_nocapture: 0), IIOp1->getOperand(i_nocapture: 0)); |
| 3950 | |
| 3951 | // rotate(X, AmtX) == rotate(Y, AmtY) |
| 3952 | // -> rotate(X, AmtX - AmtY) == Y |
| 3953 | // Do this if either both rotates have one use or if only one has one use |
| 3954 | // and AmtX/AmtY are constants. |
| 3955 | unsigned OneUses = IIOp0->hasOneUse() + IIOp1->hasOneUse(); |
| 3956 | if (OneUses == 2 || |
| 3957 | (OneUses == 1 && match(V: IIOp0->getOperand(i_nocapture: 2), P: m_ImmConstant()) && |
| 3958 | match(V: IIOp1->getOperand(i_nocapture: 2), P: m_ImmConstant()))) { |
| 3959 | Value *SubAmt = |
| 3960 | Builder.CreateSub(LHS: IIOp0->getOperand(i_nocapture: 2), RHS: IIOp1->getOperand(i_nocapture: 2)); |
| 3961 | Value *CombinedRotate = Builder.CreateIntrinsic( |
| 3962 | RetTy: Op0->getType(), ID: IIOp0->getIntrinsicID(), |
| 3963 | Args: {IIOp0->getOperand(i_nocapture: 0), IIOp0->getOperand(i_nocapture: 0), SubAmt}); |
| 3964 | return new ICmpInst(Pred, IIOp1->getOperand(i_nocapture: 0), CombinedRotate); |
| 3965 | } |
| 3966 | } break; |
| 3967 | default: |
| 3968 | break; |
| 3969 | } |
| 3970 | |
| 3971 | return nullptr; |
| 3972 | } |
| 3973 | |
| 3974 | /// Try to fold integer comparisons with a constant operand: icmp Pred X, C |
| 3975 | /// where X is some kind of instruction and C is AllowPoison. |
| 3976 | /// TODO: Move more folds which allow poison to this function. |
| 3977 | Instruction * |
| 3978 | InstCombinerImpl::foldICmpInstWithConstantAllowPoison(ICmpInst &Cmp, |
| 3979 | const APInt &C) { |
| 3980 | const ICmpInst::Predicate Pred = Cmp.getPredicate(); |
| 3981 | if (auto *II = dyn_cast<IntrinsicInst>(Val: Cmp.getOperand(i_nocapture: 0))) { |
| 3982 | switch (II->getIntrinsicID()) { |
| 3983 | default: |
| 3984 | break; |
| 3985 | case Intrinsic::fshl: |
| 3986 | case Intrinsic::fshr: |
| 3987 | if (Cmp.isEquality() && II->getArgOperand(i: 0) == II->getArgOperand(i: 1)) { |
| 3988 | // (rot X, ?) == 0/-1 --> X == 0/-1 |
| 3989 | if (C.isZero() || C.isAllOnes()) |
| 3990 | return new ICmpInst(Pred, II->getArgOperand(i: 0), Cmp.getOperand(i_nocapture: 1)); |
| 3991 | } |
| 3992 | break; |
| 3993 | } |
| 3994 | } |
| 3995 | |
| 3996 | return nullptr; |
| 3997 | } |
| 3998 | |
| 3999 | /// Fold an icmp with BinaryOp and constant operand: icmp Pred BO, C. |
| 4000 | Instruction *InstCombinerImpl::foldICmpBinOpWithConstant(ICmpInst &Cmp, |
| 4001 | BinaryOperator *BO, |
| 4002 | const APInt &C) { |
| 4003 | switch (BO->getOpcode()) { |
| 4004 | case Instruction::Xor: |
| 4005 | if (Instruction *I = foldICmpXorConstant(Cmp, Xor: BO, C)) |
| 4006 | return I; |
| 4007 | break; |
| 4008 | case Instruction::And: |
| 4009 | if (Instruction *I = foldICmpAndConstant(Cmp, And: BO, C)) |
| 4010 | return I; |
| 4011 | break; |
| 4012 | case Instruction::Or: |
| 4013 | if (Instruction *I = foldICmpOrConstant(Cmp, Or: BO, C)) |
| 4014 | return I; |
| 4015 | break; |
| 4016 | case Instruction::Mul: |
| 4017 | if (Instruction *I = foldICmpMulConstant(Cmp, Mul: BO, C)) |
| 4018 | return I; |
| 4019 | break; |
| 4020 | case Instruction::Shl: |
| 4021 | if (Instruction *I = foldICmpShlConstant(Cmp, Shl: BO, C)) |
| 4022 | return I; |
| 4023 | break; |
| 4024 | case Instruction::LShr: |
| 4025 | case Instruction::AShr: |
| 4026 | if (Instruction *I = foldICmpShrConstant(Cmp, Shr: BO, C)) |
| 4027 | return I; |
| 4028 | break; |
| 4029 | case Instruction::SRem: |
| 4030 | if (Instruction *I = foldICmpSRemConstant(Cmp, SRem: BO, C)) |
| 4031 | return I; |
| 4032 | break; |
| 4033 | case Instruction::UDiv: |
| 4034 | if (Instruction *I = foldICmpUDivConstant(Cmp, UDiv: BO, C)) |
| 4035 | return I; |
| 4036 | [[fallthrough]]; |
| 4037 | case Instruction::SDiv: |
| 4038 | if (Instruction *I = foldICmpDivConstant(Cmp, Div: BO, C)) |
| 4039 | return I; |
| 4040 | break; |
| 4041 | case Instruction::Sub: |
| 4042 | if (Instruction *I = foldICmpSubConstant(Cmp, Sub: BO, C)) |
| 4043 | return I; |
| 4044 | break; |
| 4045 | case Instruction::Add: |
| 4046 | if (Instruction *I = foldICmpAddConstant(Cmp, Add: BO, C)) |
| 4047 | return I; |
| 4048 | break; |
| 4049 | default: |
| 4050 | break; |
| 4051 | } |
| 4052 | |
| 4053 | // TODO: These folds could be refactored to be part of the above calls. |
| 4054 | if (Instruction *I = foldICmpBinOpEqualityWithConstant(Cmp, BO, C)) |
| 4055 | return I; |
| 4056 | |
| 4057 | // Fall back to handling `icmp pred (select A ? C1 : C2) binop (select B ? C3 |
| 4058 | // : C4), C5` pattern, by computing a truth table of the four constant |
| 4059 | // variants. |
| 4060 | return foldICmpBinOpWithConstantViaTruthTable(Cmp, BO, C); |
| 4061 | } |
| 4062 | |
| 4063 | static Instruction * |
| 4064 | foldICmpUSubSatOrUAddSatWithConstant(CmpPredicate Pred, SaturatingInst *II, |
| 4065 | const APInt &C, |
| 4066 | InstCombiner::BuilderTy &Builder) { |
| 4067 | // This transform may end up producing more than one instruction for the |
| 4068 | // intrinsic, so limit it to one user of the intrinsic. |
| 4069 | if (!II->hasOneUse()) |
| 4070 | return nullptr; |
| 4071 | |
| 4072 | // Let Y = [add/sub]_sat(X, C) pred C2 |
| 4073 | // SatVal = The saturating value for the operation |
| 4074 | // WillWrap = Whether or not the operation will underflow / overflow |
| 4075 | // => Y = (WillWrap ? SatVal : (X binop C)) pred C2 |
| 4076 | // => Y = WillWrap ? (SatVal pred C2) : ((X binop C) pred C2) |
| 4077 | // |
| 4078 | // When (SatVal pred C2) is true, then |
| 4079 | // Y = WillWrap ? true : ((X binop C) pred C2) |
| 4080 | // => Y = WillWrap || ((X binop C) pred C2) |
| 4081 | // else |
| 4082 | // Y = WillWrap ? false : ((X binop C) pred C2) |
| 4083 | // => Y = !WillWrap ? ((X binop C) pred C2) : false |
| 4084 | // => Y = !WillWrap && ((X binop C) pred C2) |
| 4085 | Value *Op0 = II->getOperand(i_nocapture: 0); |
| 4086 | Value *Op1 = II->getOperand(i_nocapture: 1); |
| 4087 | |
| 4088 | const APInt *COp1; |
| 4089 | // This transform only works when the intrinsic has an integral constant or |
| 4090 | // splat vector as the second operand. |
| 4091 | if (!match(V: Op1, P: m_APInt(Res&: COp1))) |
| 4092 | return nullptr; |
| 4093 | |
| 4094 | APInt SatVal; |
| 4095 | switch (II->getIntrinsicID()) { |
| 4096 | default: |
| 4097 | llvm_unreachable( |
| 4098 | "This function only works with usub_sat and uadd_sat for now!" ); |
| 4099 | case Intrinsic::uadd_sat: |
| 4100 | SatVal = APInt::getAllOnes(numBits: C.getBitWidth()); |
| 4101 | break; |
| 4102 | case Intrinsic::usub_sat: |
| 4103 | SatVal = APInt::getZero(numBits: C.getBitWidth()); |
| 4104 | break; |
| 4105 | } |
| 4106 | |
| 4107 | // Check (SatVal pred C2) |
| 4108 | bool SatValCheck = ICmpInst::compare(LHS: SatVal, RHS: C, Pred); |
| 4109 | |
| 4110 | // !WillWrap. |
| 4111 | ConstantRange C1 = ConstantRange::makeExactNoWrapRegion( |
| 4112 | BinOp: II->getBinaryOp(), Other: *COp1, NoWrapKind: II->getNoWrapKind()); |
| 4113 | |
| 4114 | // WillWrap. |
| 4115 | if (SatValCheck) |
| 4116 | C1 = C1.inverse(); |
| 4117 | |
| 4118 | ConstantRange C2 = ConstantRange::makeExactICmpRegion(Pred, Other: C); |
| 4119 | if (II->getBinaryOp() == Instruction::Add) |
| 4120 | C2 = C2.sub(Other: *COp1); |
| 4121 | else |
| 4122 | C2 = C2.add(Other: *COp1); |
| 4123 | |
| 4124 | Instruction::BinaryOps CombiningOp = |
| 4125 | SatValCheck ? Instruction::BinaryOps::Or : Instruction::BinaryOps::And; |
| 4126 | |
| 4127 | std::optional<ConstantRange> Combination; |
| 4128 | if (CombiningOp == Instruction::BinaryOps::Or) |
| 4129 | Combination = C1.exactUnionWith(CR: C2); |
| 4130 | else /* CombiningOp == Instruction::BinaryOps::And */ |
| 4131 | Combination = C1.exactIntersectWith(CR: C2); |
| 4132 | |
| 4133 | if (!Combination) |
| 4134 | return nullptr; |
| 4135 | |
| 4136 | CmpInst::Predicate EquivPred; |
| 4137 | APInt EquivInt; |
| 4138 | APInt EquivOffset; |
| 4139 | |
| 4140 | Combination->getEquivalentICmp(Pred&: EquivPred, RHS&: EquivInt, Offset&: EquivOffset); |
| 4141 | |
| 4142 | return new ICmpInst( |
| 4143 | EquivPred, |
| 4144 | Builder.CreateAdd(LHS: Op0, RHS: ConstantInt::get(Ty: Op1->getType(), V: EquivOffset)), |
| 4145 | ConstantInt::get(Ty: Op1->getType(), V: EquivInt)); |
| 4146 | } |
| 4147 | |
| 4148 | static Instruction * |
| 4149 | foldICmpOfCmpIntrinsicWithConstant(CmpPredicate Pred, IntrinsicInst *I, |
| 4150 | const APInt &C, |
| 4151 | InstCombiner::BuilderTy &Builder) { |
| 4152 | std::optional<ICmpInst::Predicate> NewPredicate = std::nullopt; |
| 4153 | switch (Pred) { |
| 4154 | case ICmpInst::ICMP_EQ: |
| 4155 | case ICmpInst::ICMP_NE: |
| 4156 | if (C.isZero()) |
| 4157 | NewPredicate = Pred; |
| 4158 | else if (C.isOne()) |
| 4159 | NewPredicate = |
| 4160 | Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_ULE; |
| 4161 | else if (C.isAllOnes()) |
| 4162 | NewPredicate = |
| 4163 | Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_UGE; |
| 4164 | break; |
| 4165 | |
| 4166 | case ICmpInst::ICMP_SGT: |
| 4167 | if (C.isAllOnes()) |
| 4168 | NewPredicate = ICmpInst::ICMP_UGE; |
| 4169 | else if (C.isZero()) |
| 4170 | NewPredicate = ICmpInst::ICMP_UGT; |
| 4171 | break; |
| 4172 | |
| 4173 | case ICmpInst::ICMP_SLT: |
| 4174 | if (C.isZero()) |
| 4175 | NewPredicate = ICmpInst::ICMP_ULT; |
| 4176 | else if (C.isOne()) |
| 4177 | NewPredicate = ICmpInst::ICMP_ULE; |
| 4178 | break; |
| 4179 | |
| 4180 | case ICmpInst::ICMP_ULT: |
| 4181 | if (C.ugt(RHS: 1)) |
| 4182 | NewPredicate = ICmpInst::ICMP_UGE; |
| 4183 | break; |
| 4184 | |
| 4185 | case ICmpInst::ICMP_UGT: |
| 4186 | if (!C.isZero() && !C.isAllOnes()) |
| 4187 | NewPredicate = ICmpInst::ICMP_ULT; |
| 4188 | break; |
| 4189 | |
| 4190 | default: |
| 4191 | break; |
| 4192 | } |
| 4193 | |
| 4194 | if (!NewPredicate) |
| 4195 | return nullptr; |
| 4196 | |
| 4197 | if (I->getIntrinsicID() == Intrinsic::scmp) |
| 4198 | NewPredicate = ICmpInst::getSignedPredicate(Pred: *NewPredicate); |
| 4199 | Value *LHS = I->getOperand(i_nocapture: 0); |
| 4200 | Value *RHS = I->getOperand(i_nocapture: 1); |
| 4201 | return new ICmpInst(*NewPredicate, LHS, RHS); |
| 4202 | } |
| 4203 | |
| 4204 | /// Fold an icmp with LLVM intrinsic and constant operand: icmp Pred II, C. |
| 4205 | Instruction *InstCombinerImpl::foldICmpIntrinsicWithConstant(ICmpInst &Cmp, |
| 4206 | IntrinsicInst *II, |
| 4207 | const APInt &C) { |
| 4208 | ICmpInst::Predicate Pred = Cmp.getPredicate(); |
| 4209 | |
| 4210 | // Handle folds that apply for any kind of icmp. |
| 4211 | switch (II->getIntrinsicID()) { |
| 4212 | default: |
| 4213 | break; |
| 4214 | case Intrinsic::uadd_sat: |
| 4215 | case Intrinsic::usub_sat: |
| 4216 | if (auto *Folded = foldICmpUSubSatOrUAddSatWithConstant( |
| 4217 | Pred, II: cast<SaturatingInst>(Val: II), C, Builder)) |
| 4218 | return Folded; |
| 4219 | break; |
| 4220 | case Intrinsic::ctpop: { |
| 4221 | const SimplifyQuery Q = SQ.getWithInstruction(I: &Cmp); |
| 4222 | if (Instruction *R = foldCtpopPow2Test(I&: Cmp, CtpopLhs: II, CRhs: C, Builder, Q)) |
| 4223 | return R; |
| 4224 | } break; |
| 4225 | case Intrinsic::scmp: |
| 4226 | case Intrinsic::ucmp: |
| 4227 | if (auto *Folded = foldICmpOfCmpIntrinsicWithConstant(Pred, I: II, C, Builder)) |
| 4228 | return Folded; |
| 4229 | break; |
| 4230 | } |
| 4231 | |
| 4232 | if (Cmp.isEquality()) |
| 4233 | return foldICmpEqIntrinsicWithConstant(Cmp, II, C); |
| 4234 | |
| 4235 | Type *Ty = II->getType(); |
| 4236 | unsigned BitWidth = C.getBitWidth(); |
| 4237 | switch (II->getIntrinsicID()) { |
| 4238 | case Intrinsic::ctpop: { |
| 4239 | // (ctpop X > BitWidth - 1) --> X == -1 |
| 4240 | Value *X = II->getArgOperand(i: 0); |
| 4241 | if (C == BitWidth - 1 && Pred == ICmpInst::ICMP_UGT) |
| 4242 | return CmpInst::Create(Op: Instruction::ICmp, Pred: ICmpInst::ICMP_EQ, S1: X, |
| 4243 | S2: ConstantInt::getAllOnesValue(Ty)); |
| 4244 | // (ctpop X < BitWidth) --> X != -1 |
| 4245 | if (C == BitWidth && Pred == ICmpInst::ICMP_ULT) |
| 4246 | return CmpInst::Create(Op: Instruction::ICmp, Pred: ICmpInst::ICMP_NE, S1: X, |
| 4247 | S2: ConstantInt::getAllOnesValue(Ty)); |
| 4248 | break; |
| 4249 | } |
| 4250 | case Intrinsic::ctlz: { |
| 4251 | // ctlz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX < 0b00010000 |
| 4252 | if (Pred == ICmpInst::ICMP_UGT && C.ult(RHS: BitWidth)) { |
| 4253 | unsigned Num = C.getLimitedValue(); |
| 4254 | APInt Limit = APInt::getOneBitSet(numBits: BitWidth, BitNo: BitWidth - Num - 1); |
| 4255 | return CmpInst::Create(Op: Instruction::ICmp, Pred: ICmpInst::ICMP_ULT, |
| 4256 | S1: II->getArgOperand(i: 0), S2: ConstantInt::get(Ty, V: Limit)); |
| 4257 | } |
| 4258 | |
| 4259 | // ctlz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX > 0b00011111 |
| 4260 | if (Pred == ICmpInst::ICMP_ULT && C.uge(RHS: 1) && C.ule(RHS: BitWidth)) { |
| 4261 | unsigned Num = C.getLimitedValue(); |
| 4262 | APInt Limit = APInt::getLowBitsSet(numBits: BitWidth, loBitsSet: BitWidth - Num); |
| 4263 | return CmpInst::Create(Op: Instruction::ICmp, Pred: ICmpInst::ICMP_UGT, |
| 4264 | S1: II->getArgOperand(i: 0), S2: ConstantInt::get(Ty, V: Limit)); |
| 4265 | } |
| 4266 | break; |
| 4267 | } |
| 4268 | case Intrinsic::cttz: { |
| 4269 | // Limit to one use to ensure we don't increase instruction count. |
| 4270 | if (!II->hasOneUse()) |
| 4271 | return nullptr; |
| 4272 | |
| 4273 | // cttz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX & 0b00001111 == 0 |
| 4274 | if (Pred == ICmpInst::ICMP_UGT && C.ult(RHS: BitWidth)) { |
| 4275 | APInt Mask = APInt::getLowBitsSet(numBits: BitWidth, loBitsSet: C.getLimitedValue() + 1); |
| 4276 | return CmpInst::Create(Op: Instruction::ICmp, Pred: ICmpInst::ICMP_EQ, |
| 4277 | S1: Builder.CreateAnd(LHS: II->getArgOperand(i: 0), RHS: Mask), |
| 4278 | S2: ConstantInt::getNullValue(Ty)); |
| 4279 | } |
| 4280 | |
| 4281 | // cttz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX & 0b00000111 != 0 |
| 4282 | if (Pred == ICmpInst::ICMP_ULT && C.uge(RHS: 1) && C.ule(RHS: BitWidth)) { |
| 4283 | APInt Mask = APInt::getLowBitsSet(numBits: BitWidth, loBitsSet: C.getLimitedValue()); |
| 4284 | return CmpInst::Create(Op: Instruction::ICmp, Pred: ICmpInst::ICMP_NE, |
| 4285 | S1: Builder.CreateAnd(LHS: II->getArgOperand(i: 0), RHS: Mask), |
| 4286 | S2: ConstantInt::getNullValue(Ty)); |
| 4287 | } |
| 4288 | break; |
| 4289 | } |
| 4290 | case Intrinsic::ssub_sat: |
| 4291 | // ssub.sat(a, b) spred 0 -> a spred b |
| 4292 | // |
| 4293 | // Note this doesn't work for ssub.sat.i1 because ssub.sat.i1 0, -1 = 0 |
| 4294 | // (because 1 saturates to 0). Just skip the optimization for i1. |
| 4295 | if (ICmpInst::isSigned(predicate: Pred) && C.getBitWidth() > 1) { |
| 4296 | if (C.isZero()) |
| 4297 | return new ICmpInst(Pred, II->getArgOperand(i: 0), II->getArgOperand(i: 1)); |
| 4298 | // X s<= 0 is cannonicalized to X s< 1 |
| 4299 | if (Pred == ICmpInst::ICMP_SLT && C.isOne()) |
| 4300 | return new ICmpInst(ICmpInst::ICMP_SLE, II->getArgOperand(i: 0), |
| 4301 | II->getArgOperand(i: 1)); |
| 4302 | // X s>= 0 is cannonicalized to X s> -1 |
| 4303 | if (Pred == ICmpInst::ICMP_SGT && C.isAllOnes()) |
| 4304 | return new ICmpInst(ICmpInst::ICMP_SGE, II->getArgOperand(i: 0), |
| 4305 | II->getArgOperand(i: 1)); |
| 4306 | } |
| 4307 | break; |
| 4308 | case Intrinsic::abs: { |
| 4309 | if (!II->hasOneUse()) |
| 4310 | return nullptr; |
| 4311 | |
| 4312 | Value *X = II->getArgOperand(i: 0); |
| 4313 | bool IsIntMinPoison = |
| 4314 | cast<ConstantInt>(Val: II->getArgOperand(i: 1))->getValue().isOne(); |
| 4315 | |
| 4316 | // If C >= 0: |
| 4317 | // abs(X) u> C --> X + C u> 2 * C |
| 4318 | if (Pred == CmpInst::ICMP_UGT && C.isNonNegative()) { |
| 4319 | return new ICmpInst(ICmpInst::ICMP_UGT, |
| 4320 | Builder.CreateAdd(LHS: X, RHS: ConstantInt::get(Ty, V: C)), |
| 4321 | ConstantInt::get(Ty, V: 2 * C)); |
| 4322 | } |
| 4323 | |
| 4324 | // If abs(INT_MIN) is poison and C >= 1: |
| 4325 | // abs(X) u< C --> X + (C - 1) u<= 2 * (C - 1) |
| 4326 | if (IsIntMinPoison && Pred == CmpInst::ICMP_ULT && C.sge(RHS: 1)) { |
| 4327 | return new ICmpInst(ICmpInst::ICMP_ULE, |
| 4328 | Builder.CreateAdd(LHS: X, RHS: ConstantInt::get(Ty, V: C - 1)), |
| 4329 | ConstantInt::get(Ty, V: 2 * (C - 1))); |
| 4330 | } |
| 4331 | |
| 4332 | break; |
| 4333 | } |
| 4334 | default: |
| 4335 | break; |
| 4336 | } |
| 4337 | |
| 4338 | return nullptr; |
| 4339 | } |
| 4340 | |
| 4341 | /// Handle icmp with constant (but not simple integer constant) RHS. |
| 4342 | Instruction *InstCombinerImpl::foldICmpInstWithConstantNotInt(ICmpInst &I) { |
| 4343 | Value *Op0 = I.getOperand(i_nocapture: 0), *Op1 = I.getOperand(i_nocapture: 1); |
| 4344 | Constant *RHSC = dyn_cast<Constant>(Val: Op1); |
| 4345 | Instruction *LHSI = dyn_cast<Instruction>(Val: Op0); |
| 4346 | if (!RHSC || !LHSI) |
| 4347 | return nullptr; |
| 4348 | |
| 4349 | switch (LHSI->getOpcode()) { |
| 4350 | case Instruction::IntToPtr: |
| 4351 | // icmp pred inttoptr(X), null -> icmp pred X, 0 |
| 4352 | if (RHSC->isNullValue() && |
| 4353 | DL.getIntPtrType(RHSC->getType()) == LHSI->getOperand(i: 0)->getType()) |
| 4354 | return new ICmpInst( |
| 4355 | I.getPredicate(), LHSI->getOperand(i: 0), |
| 4356 | Constant::getNullValue(Ty: LHSI->getOperand(i: 0)->getType())); |
| 4357 | break; |
| 4358 | |
| 4359 | case Instruction::Load: |
| 4360 | // Try to optimize things like "A[i] > 4" to index computations. |
| 4361 | if (GetElementPtrInst *GEP = |
| 4362 | dyn_cast<GetElementPtrInst>(Val: LHSI->getOperand(i: 0))) |
| 4363 | if (Instruction *Res = |
| 4364 | foldCmpLoadFromIndexedGlobal(LI: cast<LoadInst>(Val: LHSI), GEP, ICI&: I)) |
| 4365 | return Res; |
| 4366 | break; |
| 4367 | } |
| 4368 | |
| 4369 | return nullptr; |
| 4370 | } |
| 4371 | |
| 4372 | Instruction *InstCombinerImpl::foldSelectICmp(CmpPredicate Pred, SelectInst *SI, |
| 4373 | Value *RHS, const ICmpInst &I) { |
| 4374 | // Try to fold the comparison into the select arms, which will cause the |
| 4375 | // select to be converted into a logical and/or. |
| 4376 | auto SimplifyOp = [&](Value *Op, bool SelectCondIsTrue) -> Value * { |
| 4377 | if (Value *Res = simplifyICmpInst(Pred, LHS: Op, RHS, Q: SQ)) |
| 4378 | return Res; |
| 4379 | if (std::optional<bool> Impl = isImpliedCondition( |
| 4380 | LHS: SI->getCondition(), RHSPred: Pred, RHSOp0: Op, RHSOp1: RHS, DL, LHSIsTrue: SelectCondIsTrue)) |
| 4381 | return ConstantInt::get(Ty: I.getType(), V: *Impl); |
| 4382 | return nullptr; |
| 4383 | }; |
| 4384 | |
| 4385 | ConstantInt *CI = nullptr; |
| 4386 | Value *Op1 = SimplifyOp(SI->getOperand(i_nocapture: 1), true); |
| 4387 | if (Op1) |
| 4388 | CI = dyn_cast<ConstantInt>(Val: Op1); |
| 4389 | |
| 4390 | Value *Op2 = SimplifyOp(SI->getOperand(i_nocapture: 2), false); |
| 4391 | if (Op2) |
| 4392 | CI = dyn_cast<ConstantInt>(Val: Op2); |
| 4393 | |
| 4394 | auto Simplifies = [&](Value *Op, unsigned Idx) { |
| 4395 | // A comparison of ucmp/scmp with a constant will fold into an icmp. |
| 4396 | const APInt *Dummy; |
| 4397 | return Op || |
| 4398 | (isa<CmpIntrinsic>(Val: SI->getOperand(i_nocapture: Idx)) && |
| 4399 | SI->getOperand(i_nocapture: Idx)->hasOneUse() && match(V: RHS, P: m_APInt(Res&: Dummy))); |
| 4400 | }; |
| 4401 | |
| 4402 | // We only want to perform this transformation if it will not lead to |
| 4403 | // additional code. This is true if either both sides of the select |
| 4404 | // fold to a constant (in which case the icmp is replaced with a select |
| 4405 | // which will usually simplify) or this is the only user of the |
| 4406 | // select (in which case we are trading a select+icmp for a simpler |
| 4407 | // select+icmp) or all uses of the select can be replaced based on |
| 4408 | // dominance information ("Global cases"). |
| 4409 | bool Transform = false; |
| 4410 | if (Op1 && Op2) |
| 4411 | Transform = true; |
| 4412 | else if (Simplifies(Op1, 1) || Simplifies(Op2, 2)) { |
| 4413 | // Local case |
| 4414 | if (SI->hasOneUse()) |
| 4415 | Transform = true; |
| 4416 | // Global cases |
| 4417 | else if (CI && !CI->isZero()) |
| 4418 | // When Op1 is constant try replacing select with second operand. |
| 4419 | // Otherwise Op2 is constant and try replacing select with first |
| 4420 | // operand. |
| 4421 | Transform = replacedSelectWithOperand(SI, Icmp: &I, SIOpd: Op1 ? 2 : 1); |
| 4422 | } |
| 4423 | if (Transform) { |
| 4424 | if (!Op1) |
| 4425 | Op1 = Builder.CreateICmp(P: Pred, LHS: SI->getOperand(i_nocapture: 1), RHS, Name: I.getName()); |
| 4426 | if (!Op2) |
| 4427 | Op2 = Builder.CreateICmp(P: Pred, LHS: SI->getOperand(i_nocapture: 2), RHS, Name: I.getName()); |
| 4428 | return SelectInst::Create(C: SI->getOperand(i_nocapture: 0), S1: Op1, S2: Op2, NameStr: "" , InsertBefore: nullptr, |
| 4429 | MDFrom: ProfcheckDisableMetadataFixes ? nullptr : SI); |
| 4430 | } |
| 4431 | |
| 4432 | return nullptr; |
| 4433 | } |
| 4434 | |
| 4435 | // Returns whether V is a Mask ((X + 1) & X == 0) or ~Mask (-Pow2OrZero) |
| 4436 | static bool isMaskOrZero(const Value *V, bool Not, const SimplifyQuery &Q, |
| 4437 | unsigned Depth = 0) { |
| 4438 | if (Not ? match(V, P: m_NegatedPower2OrZero()) : match(V, P: m_LowBitMaskOrZero())) |
| 4439 | return true; |
| 4440 | if (V->getType()->getScalarSizeInBits() == 1) |
| 4441 | return true; |
| 4442 | if (Depth++ >= MaxAnalysisRecursionDepth) |
| 4443 | return false; |
| 4444 | Value *X; |
| 4445 | const Instruction *I = dyn_cast<Instruction>(Val: V); |
| 4446 | if (!I) |
| 4447 | return false; |
| 4448 | switch (I->getOpcode()) { |
| 4449 | case Instruction::ZExt: |
| 4450 | // ZExt(Mask) is a Mask. |
| 4451 | return !Not && isMaskOrZero(V: I->getOperand(i: 0), Not, Q, Depth); |
| 4452 | case Instruction::SExt: |
| 4453 | // SExt(Mask) is a Mask. |
| 4454 | // SExt(~Mask) is a ~Mask. |
| 4455 | return isMaskOrZero(V: I->getOperand(i: 0), Not, Q, Depth); |
| 4456 | case Instruction::And: |
| 4457 | case Instruction::Or: |
| 4458 | // Mask0 | Mask1 is a Mask. |
| 4459 | // Mask0 & Mask1 is a Mask. |
| 4460 | // ~Mask0 | ~Mask1 is a ~Mask. |
| 4461 | // ~Mask0 & ~Mask1 is a ~Mask. |
| 4462 | return isMaskOrZero(V: I->getOperand(i: 1), Not, Q, Depth) && |
| 4463 | isMaskOrZero(V: I->getOperand(i: 0), Not, Q, Depth); |
| 4464 | case Instruction::Xor: |
| 4465 | if (match(V, P: m_Not(V: m_Value(V&: X)))) |
| 4466 | return isMaskOrZero(V: X, Not: !Not, Q, Depth); |
| 4467 | |
| 4468 | // (X ^ -X) is a ~Mask |
| 4469 | if (Not) |
| 4470 | return match(V, P: m_c_Xor(L: m_Value(V&: X), R: m_Neg(V: m_Deferred(V: X)))); |
| 4471 | // (X ^ (X - 1)) is a Mask |
| 4472 | else |
| 4473 | return match(V, P: m_c_Xor(L: m_Value(V&: X), R: m_Add(L: m_Deferred(V: X), R: m_AllOnes()))); |
| 4474 | case Instruction::Select: |
| 4475 | // c ? Mask0 : Mask1 is a Mask. |
| 4476 | return isMaskOrZero(V: I->getOperand(i: 1), Not, Q, Depth) && |
| 4477 | isMaskOrZero(V: I->getOperand(i: 2), Not, Q, Depth); |
| 4478 | case Instruction::Shl: |
| 4479 | // (~Mask) << X is a ~Mask. |
| 4480 | return Not && isMaskOrZero(V: I->getOperand(i: 0), Not, Q, Depth); |
| 4481 | case Instruction::LShr: |
| 4482 | // Mask >> X is a Mask. |
| 4483 | return !Not && isMaskOrZero(V: I->getOperand(i: 0), Not, Q, Depth); |
| 4484 | case Instruction::AShr: |
| 4485 | // Mask s>> X is a Mask. |
| 4486 | // ~Mask s>> X is a ~Mask. |
| 4487 | return isMaskOrZero(V: I->getOperand(i: 0), Not, Q, Depth); |
| 4488 | case Instruction::Add: |
| 4489 | // Pow2 - 1 is a Mask. |
| 4490 | if (!Not && match(V: I->getOperand(i: 1), P: m_AllOnes())) |
| 4491 | return isKnownToBeAPowerOfTwo(V: I->getOperand(i: 0), DL: Q.DL, /*OrZero*/ true, |
| 4492 | AC: Q.AC, CxtI: Q.CxtI, DT: Q.DT, UseInstrInfo: Depth); |
| 4493 | break; |
| 4494 | case Instruction::Sub: |
| 4495 | // -Pow2 is a ~Mask. |
| 4496 | if (Not && match(V: I->getOperand(i: 0), P: m_Zero())) |
| 4497 | return isKnownToBeAPowerOfTwo(V: I->getOperand(i: 1), DL: Q.DL, /*OrZero*/ true, |
| 4498 | AC: Q.AC, CxtI: Q.CxtI, DT: Q.DT, UseInstrInfo: Depth); |
| 4499 | break; |
| 4500 | case Instruction::Call: { |
| 4501 | if (auto *II = dyn_cast<IntrinsicInst>(Val: I)) { |
| 4502 | switch (II->getIntrinsicID()) { |
| 4503 | // min/max(Mask0, Mask1) is a Mask. |
| 4504 | // min/max(~Mask0, ~Mask1) is a ~Mask. |
| 4505 | case Intrinsic::umax: |
| 4506 | case Intrinsic::smax: |
| 4507 | case Intrinsic::umin: |
| 4508 | case Intrinsic::smin: |
| 4509 | return isMaskOrZero(V: II->getArgOperand(i: 1), Not, Q, Depth) && |
| 4510 | isMaskOrZero(V: II->getArgOperand(i: 0), Not, Q, Depth); |
| 4511 | |
| 4512 | // In the context of masks, bitreverse(Mask) == ~Mask |
| 4513 | case Intrinsic::bitreverse: |
| 4514 | return isMaskOrZero(V: II->getArgOperand(i: 0), Not: !Not, Q, Depth); |
| 4515 | default: |
| 4516 | break; |
| 4517 | } |
| 4518 | } |
| 4519 | break; |
| 4520 | } |
| 4521 | default: |
| 4522 | break; |
| 4523 | } |
| 4524 | return false; |
| 4525 | } |
| 4526 | |
| 4527 | /// Some comparisons can be simplified. |
| 4528 | /// In this case, we are looking for comparisons that look like |
| 4529 | /// a check for a lossy truncation. |
| 4530 | /// Folds: |
| 4531 | /// icmp SrcPred (x & Mask), x to icmp DstPred x, Mask |
| 4532 | /// icmp SrcPred (x & ~Mask), ~Mask to icmp DstPred x, ~Mask |
| 4533 | /// icmp eq/ne (x & ~Mask), 0 to icmp DstPred x, Mask |
| 4534 | /// icmp eq/ne (~x | Mask), -1 to icmp DstPred x, Mask |
| 4535 | /// Where Mask is some pattern that produces all-ones in low bits: |
| 4536 | /// (-1 >> y) |
| 4537 | /// ((-1 << y) >> y) <- non-canonical, has extra uses |
| 4538 | /// ~(-1 << y) |
| 4539 | /// ((1 << y) + (-1)) <- non-canonical, has extra uses |
| 4540 | /// The Mask can be a constant, too. |
| 4541 | /// For some predicates, the operands are commutative. |
| 4542 | /// For others, x can only be on a specific side. |
| 4543 | static Value *foldICmpWithLowBitMaskedVal(CmpPredicate Pred, Value *Op0, |
| 4544 | Value *Op1, const SimplifyQuery &Q, |
| 4545 | InstCombiner &IC) { |
| 4546 | |
| 4547 | ICmpInst::Predicate DstPred; |
| 4548 | switch (Pred) { |
| 4549 | case ICmpInst::Predicate::ICMP_EQ: |
| 4550 | // x & Mask == x |
| 4551 | // x & ~Mask == 0 |
| 4552 | // ~x | Mask == -1 |
| 4553 | // -> x u<= Mask |
| 4554 | // x & ~Mask == ~Mask |
| 4555 | // -> ~Mask u<= x |
| 4556 | DstPred = ICmpInst::Predicate::ICMP_ULE; |
| 4557 | break; |
| 4558 | case ICmpInst::Predicate::ICMP_NE: |
| 4559 | // x & Mask != x |
| 4560 | // x & ~Mask != 0 |
| 4561 | // ~x | Mask != -1 |
| 4562 | // -> x u> Mask |
| 4563 | // x & ~Mask != ~Mask |
| 4564 | // -> ~Mask u> x |
| 4565 | DstPred = ICmpInst::Predicate::ICMP_UGT; |
| 4566 | break; |
| 4567 | case ICmpInst::Predicate::ICMP_ULT: |
| 4568 | // x & Mask u< x |
| 4569 | // -> x u> Mask |
| 4570 | // x & ~Mask u< ~Mask |
| 4571 | // -> ~Mask u> x |
| 4572 | DstPred = ICmpInst::Predicate::ICMP_UGT; |
| 4573 | break; |
| 4574 | case ICmpInst::Predicate::ICMP_UGE: |
| 4575 | // x & Mask u>= x |
| 4576 | // -> x u<= Mask |
| 4577 | // x & ~Mask u>= ~Mask |
| 4578 | // -> ~Mask u<= x |
| 4579 | DstPred = ICmpInst::Predicate::ICMP_ULE; |
| 4580 | break; |
| 4581 | case ICmpInst::Predicate::ICMP_SLT: |
| 4582 | // x & Mask s< x [iff Mask s>= 0] |
| 4583 | // -> x s> Mask |
| 4584 | // x & ~Mask s< ~Mask [iff ~Mask != 0] |
| 4585 | // -> ~Mask s> x |
| 4586 | DstPred = ICmpInst::Predicate::ICMP_SGT; |
| 4587 | break; |
| 4588 | case ICmpInst::Predicate::ICMP_SGE: |
| 4589 | // x & Mask s>= x [iff Mask s>= 0] |
| 4590 | // -> x s<= Mask |
| 4591 | // x & ~Mask s>= ~Mask [iff ~Mask != 0] |
| 4592 | // -> ~Mask s<= x |
| 4593 | DstPred = ICmpInst::Predicate::ICMP_SLE; |
| 4594 | break; |
| 4595 | default: |
| 4596 | // We don't support sgt,sle |
| 4597 | // ult/ugt are simplified to true/false respectively. |
| 4598 | return nullptr; |
| 4599 | } |
| 4600 | |
| 4601 | Value *X, *M; |
| 4602 | // Put search code in lambda for early positive returns. |
| 4603 | auto IsLowBitMask = [&]() { |
| 4604 | if (match(V: Op0, P: m_c_And(L: m_Specific(V: Op1), R: m_Value(V&: M)))) { |
| 4605 | X = Op1; |
| 4606 | // Look for: x & Mask pred x |
| 4607 | if (isMaskOrZero(V: M, /*Not=*/false, Q)) { |
| 4608 | return !ICmpInst::isSigned(predicate: Pred) || |
| 4609 | (match(V: M, P: m_NonNegative()) || isKnownNonNegative(V: M, SQ: Q)); |
| 4610 | } |
| 4611 | |
| 4612 | // Look for: x & ~Mask pred ~Mask |
| 4613 | if (isMaskOrZero(V: X, /*Not=*/true, Q)) { |
| 4614 | return !ICmpInst::isSigned(predicate: Pred) || isKnownNonZero(V: X, Q); |
| 4615 | } |
| 4616 | return false; |
| 4617 | } |
| 4618 | if (ICmpInst::isEquality(P: Pred) && match(V: Op1, P: m_AllOnes()) && |
| 4619 | match(V: Op0, P: m_OneUse(SubPattern: m_Or(L: m_Value(V&: X), R: m_Value(V&: M))))) { |
| 4620 | |
| 4621 | auto Check = [&]() { |
| 4622 | // Look for: ~x | Mask == -1 |
| 4623 | if (isMaskOrZero(V: M, /*Not=*/false, Q)) { |
| 4624 | if (Value *NotX = |
| 4625 | IC.getFreelyInverted(V: X, WillInvertAllUses: X->hasOneUse(), Builder: &IC.Builder)) { |
| 4626 | X = NotX; |
| 4627 | return true; |
| 4628 | } |
| 4629 | } |
| 4630 | return false; |
| 4631 | }; |
| 4632 | if (Check()) |
| 4633 | return true; |
| 4634 | std::swap(a&: X, b&: M); |
| 4635 | return Check(); |
| 4636 | } |
| 4637 | if (ICmpInst::isEquality(P: Pred) && match(V: Op1, P: m_Zero()) && |
| 4638 | match(V: Op0, P: m_OneUse(SubPattern: m_And(L: m_Value(V&: X), R: m_Value(V&: M))))) { |
| 4639 | auto Check = [&]() { |
| 4640 | // Look for: x & ~Mask == 0 |
| 4641 | if (isMaskOrZero(V: M, /*Not=*/true, Q)) { |
| 4642 | if (Value *NotM = |
| 4643 | IC.getFreelyInverted(V: M, WillInvertAllUses: M->hasOneUse(), Builder: &IC.Builder)) { |
| 4644 | M = NotM; |
| 4645 | return true; |
| 4646 | } |
| 4647 | } |
| 4648 | return false; |
| 4649 | }; |
| 4650 | if (Check()) |
| 4651 | return true; |
| 4652 | std::swap(a&: X, b&: M); |
| 4653 | return Check(); |
| 4654 | } |
| 4655 | return false; |
| 4656 | }; |
| 4657 | |
| 4658 | if (!IsLowBitMask()) |
| 4659 | return nullptr; |
| 4660 | |
| 4661 | return IC.Builder.CreateICmp(P: DstPred, LHS: X, RHS: M); |
| 4662 | } |
| 4663 | |
| 4664 | /// Some comparisons can be simplified. |
| 4665 | /// In this case, we are looking for comparisons that look like |
| 4666 | /// a check for a lossy signed truncation. |
| 4667 | /// Folds: (MaskedBits is a constant.) |
| 4668 | /// ((%x << MaskedBits) a>> MaskedBits) SrcPred %x |
| 4669 | /// Into: |
| 4670 | /// (add %x, (1 << (KeptBits-1))) DstPred (1 << KeptBits) |
| 4671 | /// Where KeptBits = bitwidth(%x) - MaskedBits |
| 4672 | static Value * |
| 4673 | foldICmpWithTruncSignExtendedVal(ICmpInst &I, |
| 4674 | InstCombiner::BuilderTy &Builder) { |
| 4675 | CmpPredicate SrcPred; |
| 4676 | Value *X; |
| 4677 | const APInt *C0, *C1; // FIXME: non-splats, potentially with undef. |
| 4678 | // We are ok with 'shl' having multiple uses, but 'ashr' must be one-use. |
| 4679 | if (!match(V: &I, P: m_c_ICmp(Pred&: SrcPred, |
| 4680 | L: m_OneUse(SubPattern: m_AShr(L: m_Shl(L: m_Value(V&: X), R: m_APInt(Res&: C0)), |
| 4681 | R: m_APInt(Res&: C1))), |
| 4682 | R: m_Deferred(V: X)))) |
| 4683 | return nullptr; |
| 4684 | |
| 4685 | // Potential handling of non-splats: for each element: |
| 4686 | // * if both are undef, replace with constant 0. |
| 4687 | // Because (1<<0) is OK and is 1, and ((1<<0)>>1) is also OK and is 0. |
| 4688 | // * if both are not undef, and are different, bailout. |
| 4689 | // * else, only one is undef, then pick the non-undef one. |
| 4690 | |
| 4691 | // The shift amount must be equal. |
| 4692 | if (*C0 != *C1) |
| 4693 | return nullptr; |
| 4694 | const APInt &MaskedBits = *C0; |
| 4695 | assert(MaskedBits != 0 && "shift by zero should be folded away already." ); |
| 4696 | |
| 4697 | ICmpInst::Predicate DstPred; |
| 4698 | switch (SrcPred) { |
| 4699 | case ICmpInst::Predicate::ICMP_EQ: |
| 4700 | // ((%x << MaskedBits) a>> MaskedBits) == %x |
| 4701 | // => |
| 4702 | // (add %x, (1 << (KeptBits-1))) u< (1 << KeptBits) |
| 4703 | DstPred = ICmpInst::Predicate::ICMP_ULT; |
| 4704 | break; |
| 4705 | case ICmpInst::Predicate::ICMP_NE: |
| 4706 | // ((%x << MaskedBits) a>> MaskedBits) != %x |
| 4707 | // => |
| 4708 | // (add %x, (1 << (KeptBits-1))) u>= (1 << KeptBits) |
| 4709 | DstPred = ICmpInst::Predicate::ICMP_UGE; |
| 4710 | break; |
| 4711 | // FIXME: are more folds possible? |
| 4712 | default: |
| 4713 | return nullptr; |
| 4714 | } |
| 4715 | |
| 4716 | auto *XType = X->getType(); |
| 4717 | const unsigned XBitWidth = XType->getScalarSizeInBits(); |
| 4718 | const APInt BitWidth = APInt(XBitWidth, XBitWidth); |
| 4719 | assert(BitWidth.ugt(MaskedBits) && "shifts should leave some bits untouched" ); |
| 4720 | |
| 4721 | // KeptBits = bitwidth(%x) - MaskedBits |
| 4722 | const APInt KeptBits = BitWidth - MaskedBits; |
| 4723 | assert(KeptBits.ugt(0) && KeptBits.ult(BitWidth) && "unreachable" ); |
| 4724 | // ICmpCst = (1 << KeptBits) |
| 4725 | const APInt ICmpCst = APInt(XBitWidth, 1).shl(ShiftAmt: KeptBits); |
| 4726 | assert(ICmpCst.isPowerOf2()); |
| 4727 | // AddCst = (1 << (KeptBits-1)) |
| 4728 | const APInt AddCst = ICmpCst.lshr(shiftAmt: 1); |
| 4729 | assert(AddCst.ult(ICmpCst) && AddCst.isPowerOf2()); |
| 4730 | |
| 4731 | // T0 = add %x, AddCst |
| 4732 | Value *T0 = Builder.CreateAdd(LHS: X, RHS: ConstantInt::get(Ty: XType, V: AddCst)); |
| 4733 | // T1 = T0 DstPred ICmpCst |
| 4734 | Value *T1 = Builder.CreateICmp(P: DstPred, LHS: T0, RHS: ConstantInt::get(Ty: XType, V: ICmpCst)); |
| 4735 | |
| 4736 | return T1; |
| 4737 | } |
| 4738 | |
| 4739 | // Given pattern: |
| 4740 | // icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0 |
| 4741 | // we should move shifts to the same hand of 'and', i.e. rewrite as |
| 4742 | // icmp eq/ne (and (x shift (Q+K)), y), 0 iff (Q+K) u< bitwidth(x) |
| 4743 | // We are only interested in opposite logical shifts here. |
| 4744 | // One of the shifts can be truncated. |
| 4745 | // If we can, we want to end up creating 'lshr' shift. |
| 4746 | static Value * |
| 4747 | foldShiftIntoShiftInAnotherHandOfAndInICmp(ICmpInst &I, const SimplifyQuery SQ, |
| 4748 | InstCombiner::BuilderTy &Builder) { |
| 4749 | if (!I.isEquality() || !match(V: I.getOperand(i_nocapture: 1), P: m_Zero()) || |
| 4750 | !I.getOperand(i_nocapture: 0)->hasOneUse()) |
| 4751 | return nullptr; |
| 4752 | |
| 4753 | auto m_AnyLogicalShift = m_LogicalShift(L: m_Value(), R: m_Value()); |
| 4754 | |
| 4755 | // Look for an 'and' of two logical shifts, one of which may be truncated. |
| 4756 | // We use m_TruncOrSelf() on the RHS to correctly handle commutative case. |
| 4757 | Instruction *XShift, *MaybeTruncation, *YShift; |
| 4758 | if (!match( |
| 4759 | V: I.getOperand(i_nocapture: 0), |
| 4760 | P: m_c_And(L: m_CombineAnd(L: m_AnyLogicalShift, R: m_Instruction(I&: XShift)), |
| 4761 | R: m_CombineAnd(L: m_TruncOrSelf(Op: m_CombineAnd( |
| 4762 | L: m_AnyLogicalShift, R: m_Instruction(I&: YShift))), |
| 4763 | R: m_Instruction(I&: MaybeTruncation))))) |
| 4764 | return nullptr; |
| 4765 | |
| 4766 | // We potentially looked past 'trunc', but only when matching YShift, |
| 4767 | // therefore YShift must have the widest type. |
| 4768 | Instruction *WidestShift = YShift; |
| 4769 | // Therefore XShift must have the shallowest type. |
| 4770 | // Or they both have identical types if there was no truncation. |
| 4771 | Instruction *NarrowestShift = XShift; |
| 4772 | |
| 4773 | Type *WidestTy = WidestShift->getType(); |
| 4774 | Type *NarrowestTy = NarrowestShift->getType(); |
| 4775 | assert(NarrowestTy == I.getOperand(0)->getType() && |
| 4776 | "We did not look past any shifts while matching XShift though." ); |
| 4777 | bool HadTrunc = WidestTy != I.getOperand(i_nocapture: 0)->getType(); |
| 4778 | |
| 4779 | // If YShift is a 'lshr', swap the shifts around. |
| 4780 | if (match(V: YShift, P: m_LShr(L: m_Value(), R: m_Value()))) |
| 4781 | std::swap(a&: XShift, b&: YShift); |
| 4782 | |
| 4783 | // The shifts must be in opposite directions. |
| 4784 | auto XShiftOpcode = XShift->getOpcode(); |
| 4785 | if (XShiftOpcode == YShift->getOpcode()) |
| 4786 | return nullptr; // Do not care about same-direction shifts here. |
| 4787 | |
| 4788 | Value *X, *XShAmt, *Y, *YShAmt; |
| 4789 | match(V: XShift, P: m_BinOp(L: m_Value(V&: X), R: m_ZExtOrSelf(Op: m_Value(V&: XShAmt)))); |
| 4790 | match(V: YShift, P: m_BinOp(L: m_Value(V&: Y), R: m_ZExtOrSelf(Op: m_Value(V&: YShAmt)))); |
| 4791 | |
| 4792 | // If one of the values being shifted is a constant, then we will end with |
| 4793 | // and+icmp, and [zext+]shift instrs will be constant-folded. If they are not, |
| 4794 | // however, we will need to ensure that we won't increase instruction count. |
| 4795 | if (!isa<Constant>(Val: X) && !isa<Constant>(Val: Y)) { |
| 4796 | // At least one of the hands of the 'and' should be one-use shift. |
| 4797 | if (!match(V: I.getOperand(i_nocapture: 0), |
| 4798 | P: m_c_And(L: m_OneUse(SubPattern: m_AnyLogicalShift), R: m_Value()))) |
| 4799 | return nullptr; |
| 4800 | if (HadTrunc) { |
| 4801 | // Due to the 'trunc', we will need to widen X. For that either the old |
| 4802 | // 'trunc' or the shift amt in the non-truncated shift should be one-use. |
| 4803 | if (!MaybeTruncation->hasOneUse() && |
| 4804 | !NarrowestShift->getOperand(i: 1)->hasOneUse()) |
| 4805 | return nullptr; |
| 4806 | } |
| 4807 | } |
| 4808 | |
| 4809 | // We have two shift amounts from two different shifts. The types of those |
| 4810 | // shift amounts may not match. If that's the case let's bailout now. |
| 4811 | if (XShAmt->getType() != YShAmt->getType()) |
| 4812 | return nullptr; |
| 4813 | |
| 4814 | // As input, we have the following pattern: |
| 4815 | // icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0 |
| 4816 | // We want to rewrite that as: |
| 4817 | // icmp eq/ne (and (x shift (Q+K)), y), 0 iff (Q+K) u< bitwidth(x) |
| 4818 | // While we know that originally (Q+K) would not overflow |
| 4819 | // (because 2 * (N-1) u<= iN -1), we have looked past extensions of |
| 4820 | // shift amounts. so it may now overflow in smaller bitwidth. |
| 4821 | // To ensure that does not happen, we need to ensure that the total maximal |
| 4822 | // shift amount is still representable in that smaller bit width. |
| 4823 | unsigned MaximalPossibleTotalShiftAmount = |
| 4824 | (WidestTy->getScalarSizeInBits() - 1) + |
| 4825 | (NarrowestTy->getScalarSizeInBits() - 1); |
| 4826 | APInt MaximalRepresentableShiftAmount = |
| 4827 | APInt::getAllOnes(numBits: XShAmt->getType()->getScalarSizeInBits()); |
| 4828 | if (MaximalRepresentableShiftAmount.ult(RHS: MaximalPossibleTotalShiftAmount)) |
| 4829 | return nullptr; |
| 4830 | |
| 4831 | // Can we fold (XShAmt+YShAmt) ? |
| 4832 | auto *NewShAmt = dyn_cast_or_null<Constant>( |
| 4833 | Val: simplifyAddInst(LHS: XShAmt, RHS: YShAmt, /*isNSW=*/IsNSW: false, |
| 4834 | /*isNUW=*/IsNUW: false, Q: SQ.getWithInstruction(I: &I))); |
| 4835 | if (!NewShAmt) |
| 4836 | return nullptr; |
| 4837 | if (NewShAmt->getType() != WidestTy) { |
| 4838 | NewShAmt = |
| 4839 | ConstantFoldCastOperand(Opcode: Instruction::ZExt, C: NewShAmt, DestTy: WidestTy, DL: SQ.DL); |
| 4840 | if (!NewShAmt) |
| 4841 | return nullptr; |
| 4842 | } |
| 4843 | unsigned WidestBitWidth = WidestTy->getScalarSizeInBits(); |
| 4844 | |
| 4845 | // Is the new shift amount smaller than the bit width? |
| 4846 | // FIXME: could also rely on ConstantRange. |
| 4847 | if (!match(V: NewShAmt, |
| 4848 | P: m_SpecificInt_ICMP(Predicate: ICmpInst::Predicate::ICMP_ULT, |
| 4849 | Threshold: APInt(WidestBitWidth, WidestBitWidth)))) |
| 4850 | return nullptr; |
| 4851 | |
| 4852 | // An extra legality check is needed if we had trunc-of-lshr. |
| 4853 | if (HadTrunc && match(V: WidestShift, P: m_LShr(L: m_Value(), R: m_Value()))) { |
| 4854 | auto CanFold = [NewShAmt, WidestBitWidth, NarrowestShift, SQ, |
| 4855 | WidestShift]() { |
| 4856 | // It isn't obvious whether it's worth it to analyze non-constants here. |
| 4857 | // Also, let's basically give up on non-splat cases, pessimizing vectors. |
| 4858 | // If *any* of these preconditions matches we can perform the fold. |
| 4859 | Constant *NewShAmtSplat = NewShAmt->getType()->isVectorTy() |
| 4860 | ? NewShAmt->getSplatValue() |
| 4861 | : NewShAmt; |
| 4862 | // If it's edge-case shift (by 0 or by WidestBitWidth-1) we can fold. |
| 4863 | if (NewShAmtSplat && |
| 4864 | (NewShAmtSplat->isNullValue() || |
| 4865 | NewShAmtSplat->getUniqueInteger() == WidestBitWidth - 1)) |
| 4866 | return true; |
| 4867 | // We consider *min* leading zeros so a single outlier |
| 4868 | // blocks the transform as opposed to allowing it. |
| 4869 | if (auto *C = dyn_cast<Constant>(Val: NarrowestShift->getOperand(i: 0))) { |
| 4870 | KnownBits Known = computeKnownBits(V: C, DL: SQ.DL); |
| 4871 | unsigned MinLeadZero = Known.countMinLeadingZeros(); |
| 4872 | // If the value being shifted has at most lowest bit set we can fold. |
| 4873 | unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero; |
| 4874 | if (MaxActiveBits <= 1) |
| 4875 | return true; |
| 4876 | // Precondition: NewShAmt u<= countLeadingZeros(C) |
| 4877 | if (NewShAmtSplat && NewShAmtSplat->getUniqueInteger().ule(RHS: MinLeadZero)) |
| 4878 | return true; |
| 4879 | } |
| 4880 | if (auto *C = dyn_cast<Constant>(Val: WidestShift->getOperand(i: 0))) { |
| 4881 | KnownBits Known = computeKnownBits(V: C, DL: SQ.DL); |
| 4882 | unsigned MinLeadZero = Known.countMinLeadingZeros(); |
| 4883 | // If the value being shifted has at most lowest bit set we can fold. |
| 4884 | unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero; |
| 4885 | if (MaxActiveBits <= 1) |
| 4886 | return true; |
| 4887 | // Precondition: ((WidestBitWidth-1)-NewShAmt) u<= countLeadingZeros(C) |
| 4888 | if (NewShAmtSplat) { |
| 4889 | APInt AdjNewShAmt = |
| 4890 | (WidestBitWidth - 1) - NewShAmtSplat->getUniqueInteger(); |
| 4891 | if (AdjNewShAmt.ule(RHS: MinLeadZero)) |
| 4892 | return true; |
| 4893 | } |
| 4894 | } |
| 4895 | return false; // Can't tell if it's ok. |
| 4896 | }; |
| 4897 | if (!CanFold()) |
| 4898 | return nullptr; |
| 4899 | } |
| 4900 | |
| 4901 | // All good, we can do this fold. |
| 4902 | X = Builder.CreateZExt(V: X, DestTy: WidestTy); |
| 4903 | Y = Builder.CreateZExt(V: Y, DestTy: WidestTy); |
| 4904 | // The shift is the same that was for X. |
| 4905 | Value *T0 = XShiftOpcode == Instruction::BinaryOps::LShr |
| 4906 | ? Builder.CreateLShr(LHS: X, RHS: NewShAmt) |
| 4907 | : Builder.CreateShl(LHS: X, RHS: NewShAmt); |
| 4908 | Value *T1 = Builder.CreateAnd(LHS: T0, RHS: Y); |
| 4909 | return Builder.CreateICmp(P: I.getPredicate(), LHS: T1, |
| 4910 | RHS: Constant::getNullValue(Ty: WidestTy)); |
| 4911 | } |
| 4912 | |
| 4913 | /// Fold |
| 4914 | /// (-1 u/ x) u< y |
| 4915 | /// ((x * y) ?/ x) != y |
| 4916 | /// to |
| 4917 | /// @llvm.?mul.with.overflow(x, y) plus extraction of overflow bit |
| 4918 | /// Note that the comparison is commutative, while inverted (u>=, ==) predicate |
| 4919 | /// will mean that we are looking for the opposite answer. |
| 4920 | Value *InstCombinerImpl::foldMultiplicationOverflowCheck(ICmpInst &I) { |
| 4921 | CmpPredicate Pred; |
| 4922 | Value *X, *Y; |
| 4923 | Instruction *Mul; |
| 4924 | Instruction *Div; |
| 4925 | bool NeedNegation; |
| 4926 | // Look for: (-1 u/ x) u</u>= y |
| 4927 | if (!I.isEquality() && |
| 4928 | match(V: &I, P: m_c_ICmp(Pred, |
| 4929 | L: m_CombineAnd(L: m_OneUse(SubPattern: m_UDiv(L: m_AllOnes(), R: m_Value(V&: X))), |
| 4930 | R: m_Instruction(I&: Div)), |
| 4931 | R: m_Value(V&: Y)))) { |
| 4932 | Mul = nullptr; |
| 4933 | |
| 4934 | // Are we checking that overflow does not happen, or does happen? |
| 4935 | switch (Pred) { |
| 4936 | case ICmpInst::Predicate::ICMP_ULT: |
| 4937 | NeedNegation = false; |
| 4938 | break; // OK |
| 4939 | case ICmpInst::Predicate::ICMP_UGE: |
| 4940 | NeedNegation = true; |
| 4941 | break; // OK |
| 4942 | default: |
| 4943 | return nullptr; // Wrong predicate. |
| 4944 | } |
| 4945 | } else // Look for: ((x * y) / x) !=/== y |
| 4946 | if (I.isEquality() && |
| 4947 | match(V: &I, P: m_c_ICmp(Pred, L: m_Value(V&: Y), |
| 4948 | R: m_CombineAnd(L: m_OneUse(SubPattern: m_IDiv( |
| 4949 | L: m_CombineAnd(L: m_c_Mul(L: m_Deferred(V: Y), |
| 4950 | R: m_Value(V&: X)), |
| 4951 | R: m_Instruction(I&: Mul)), |
| 4952 | R: m_Deferred(V: X))), |
| 4953 | R: m_Instruction(I&: Div))))) { |
| 4954 | NeedNegation = Pred == ICmpInst::Predicate::ICMP_EQ; |
| 4955 | } else |
| 4956 | return nullptr; |
| 4957 | |
| 4958 | BuilderTy::InsertPointGuard Guard(Builder); |
| 4959 | // If the pattern included (x * y), we'll want to insert new instructions |
| 4960 | // right before that original multiplication so that we can replace it. |
| 4961 | bool MulHadOtherUses = Mul && !Mul->hasOneUse(); |
| 4962 | if (MulHadOtherUses) |
| 4963 | Builder.SetInsertPoint(Mul); |
| 4964 | |
| 4965 | CallInst *Call = Builder.CreateIntrinsic( |
| 4966 | ID: Div->getOpcode() == Instruction::UDiv ? Intrinsic::umul_with_overflow |
| 4967 | : Intrinsic::smul_with_overflow, |
| 4968 | Types: X->getType(), Args: {X, Y}, /*FMFSource=*/nullptr, Name: "mul" ); |
| 4969 | |
| 4970 | // If the multiplication was used elsewhere, to ensure that we don't leave |
| 4971 | // "duplicate" instructions, replace uses of that original multiplication |
| 4972 | // with the multiplication result from the with.overflow intrinsic. |
| 4973 | if (MulHadOtherUses) |
| 4974 | replaceInstUsesWith(I&: *Mul, V: Builder.CreateExtractValue(Agg: Call, Idxs: 0, Name: "mul.val" )); |
| 4975 | |
| 4976 | Value *Res = Builder.CreateExtractValue(Agg: Call, Idxs: 1, Name: "mul.ov" ); |
| 4977 | if (NeedNegation) // This technically increases instruction count. |
| 4978 | Res = Builder.CreateNot(V: Res, Name: "mul.not.ov" ); |
| 4979 | |
| 4980 | // If we replaced the mul, erase it. Do this after all uses of Builder, |
| 4981 | // as the mul is used as insertion point. |
| 4982 | if (MulHadOtherUses) |
| 4983 | eraseInstFromFunction(I&: *Mul); |
| 4984 | |
| 4985 | return Res; |
| 4986 | } |
| 4987 | |
| 4988 | static Instruction *foldICmpXNegX(ICmpInst &I, |
| 4989 | InstCombiner::BuilderTy &Builder) { |
| 4990 | CmpPredicate Pred; |
| 4991 | Value *X; |
| 4992 | if (match(V: &I, P: m_c_ICmp(Pred, L: m_NSWNeg(V: m_Value(V&: X)), R: m_Deferred(V: X)))) { |
| 4993 | |
| 4994 | if (ICmpInst::isSigned(predicate: Pred)) |
| 4995 | Pred = ICmpInst::getSwappedPredicate(pred: Pred); |
| 4996 | else if (ICmpInst::isUnsigned(predicate: Pred)) |
| 4997 | Pred = ICmpInst::getSignedPredicate(Pred); |
| 4998 | // else for equality-comparisons just keep the predicate. |
| 4999 | |
| 5000 | return ICmpInst::Create(Op: Instruction::ICmp, Pred, S1: X, |
| 5001 | S2: Constant::getNullValue(Ty: X->getType()), Name: I.getName()); |
| 5002 | } |
| 5003 | |
| 5004 | // A value is not equal to its negation unless that value is 0 or |
| 5005 | // MinSignedValue, ie: a != -a --> (a & MaxSignedVal) != 0 |
| 5006 | if (match(V: &I, P: m_c_ICmp(Pred, L: m_OneUse(SubPattern: m_Neg(V: m_Value(V&: X))), R: m_Deferred(V: X))) && |
| 5007 | ICmpInst::isEquality(P: Pred)) { |
| 5008 | Type *Ty = X->getType(); |
| 5009 | uint32_t BitWidth = Ty->getScalarSizeInBits(); |
| 5010 | Constant *MaxSignedVal = |
| 5011 | ConstantInt::get(Ty, V: APInt::getSignedMaxValue(numBits: BitWidth)); |
| 5012 | Value *And = Builder.CreateAnd(LHS: X, RHS: MaxSignedVal); |
| 5013 | Constant *Zero = Constant::getNullValue(Ty); |
| 5014 | return CmpInst::Create(Op: Instruction::ICmp, Pred, S1: And, S2: Zero); |
| 5015 | } |
| 5016 | |
| 5017 | return nullptr; |
| 5018 | } |
| 5019 | |
| 5020 | static Instruction *foldICmpAndXX(ICmpInst &I, const SimplifyQuery &Q, |
| 5021 | InstCombinerImpl &IC) { |
| 5022 | Value *Op0 = I.getOperand(i_nocapture: 0), *Op1 = I.getOperand(i_nocapture: 1), *A; |
| 5023 | // Normalize and operand as operand 0. |
| 5024 | CmpInst::Predicate Pred = I.getPredicate(); |
| 5025 | if (match(V: Op1, P: m_c_And(L: m_Specific(V: Op0), R: m_Value()))) { |
| 5026 | std::swap(a&: Op0, b&: Op1); |
| 5027 | Pred = ICmpInst::getSwappedPredicate(pred: Pred); |
| 5028 | } |
| 5029 | |
| 5030 | if (!match(V: Op0, P: m_c_And(L: m_Specific(V: Op1), R: m_Value(V&: A)))) |
| 5031 | return nullptr; |
| 5032 | |
| 5033 | // (icmp (X & Y) u< X --> (X & Y) != X |
| 5034 | if (Pred == ICmpInst::ICMP_ULT) |
| 5035 | return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); |
| 5036 | |
| 5037 | // (icmp (X & Y) u>= X --> (X & Y) == X |
| 5038 | if (Pred == ICmpInst::ICMP_UGE) |
| 5039 | return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); |
| 5040 | |
| 5041 | if (ICmpInst::isEquality(P: Pred) && Op0->hasOneUse()) { |
| 5042 | // icmp (X & Y) eq/ne Y --> (X | ~Y) eq/ne -1 if Y is freely invertible and |
| 5043 | // Y is non-constant. If Y is constant the `X & C == C` form is preferable |
| 5044 | // so don't do this fold. |
| 5045 | if (!match(V: Op1, P: m_ImmConstant())) |
| 5046 | if (auto *NotOp1 = |
| 5047 | IC.getFreelyInverted(V: Op1, WillInvertAllUses: !Op1->hasNUsesOrMore(N: 3), Builder: &IC.Builder)) |
| 5048 | return new ICmpInst(Pred, IC.Builder.CreateOr(LHS: A, RHS: NotOp1), |
| 5049 | Constant::getAllOnesValue(Ty: Op1->getType())); |
| 5050 | // icmp (X & Y) eq/ne Y --> (~X & Y) eq/ne 0 if X is freely invertible. |
| 5051 | if (auto *NotA = IC.getFreelyInverted(V: A, WillInvertAllUses: A->hasOneUse(), Builder: &IC.Builder)) |
| 5052 | return new ICmpInst(Pred, IC.Builder.CreateAnd(LHS: Op1, RHS: NotA), |
| 5053 | Constant::getNullValue(Ty: Op1->getType())); |
| 5054 | } |
| 5055 | |
| 5056 | if (!ICmpInst::isSigned(predicate: Pred)) |
| 5057 | return nullptr; |
| 5058 | |
| 5059 | KnownBits KnownY = IC.computeKnownBits(V: A, CxtI: &I); |
| 5060 | // (X & NegY) spred X --> (X & NegY) upred X |
| 5061 | if (KnownY.isNegative()) |
| 5062 | return new ICmpInst(ICmpInst::getUnsignedPredicate(Pred), Op0, Op1); |
| 5063 | |
| 5064 | if (Pred != ICmpInst::ICMP_SLE && Pred != ICmpInst::ICMP_SGT) |
| 5065 | return nullptr; |
| 5066 | |
| 5067 | if (KnownY.isNonNegative()) |
| 5068 | // (X & PosY) s<= X --> X s>= 0 |
| 5069 | // (X & PosY) s> X --> X s< 0 |
| 5070 | return new ICmpInst(ICmpInst::getSwappedPredicate(pred: Pred), Op1, |
| 5071 | Constant::getNullValue(Ty: Op1->getType())); |
| 5072 | |
| 5073 | if (isKnownNegative(V: Op1, SQ: IC.getSimplifyQuery().getWithInstruction(I: &I))) |
| 5074 | // (NegX & Y) s<= NegX --> Y s< 0 |
| 5075 | // (NegX & Y) s> NegX --> Y s>= 0 |
| 5076 | return new ICmpInst(ICmpInst::getFlippedStrictnessPredicate(pred: Pred), A, |
| 5077 | Constant::getNullValue(Ty: A->getType())); |
| 5078 | |
| 5079 | return nullptr; |
| 5080 | } |
| 5081 | |
| 5082 | static Instruction *foldICmpOrXX(ICmpInst &I, const SimplifyQuery &Q, |
| 5083 | InstCombinerImpl &IC) { |
| 5084 | Value *Op0 = I.getOperand(i_nocapture: 0), *Op1 = I.getOperand(i_nocapture: 1), *A; |
| 5085 | |
| 5086 | // Normalize or operand as operand 0. |
| 5087 | CmpInst::Predicate Pred = I.getPredicate(); |
| 5088 | if (match(V: Op1, P: m_c_Or(L: m_Specific(V: Op0), R: m_Value(V&: A)))) { |
| 5089 | std::swap(a&: Op0, b&: Op1); |
| 5090 | Pred = ICmpInst::getSwappedPredicate(pred: Pred); |
| 5091 | } else if (!match(V: Op0, P: m_c_Or(L: m_Specific(V: Op1), R: m_Value(V&: A)))) { |
| 5092 | return nullptr; |
| 5093 | } |
| 5094 | |
| 5095 | // icmp (X | Y) u<= X --> (X | Y) == X |
| 5096 | if (Pred == ICmpInst::ICMP_ULE) |
| 5097 | return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); |
| 5098 | |
| 5099 | // icmp (X | Y) u> X --> (X | Y) != X |
| 5100 | if (Pred == ICmpInst::ICMP_UGT) |
| 5101 | return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); |
| 5102 | |
| 5103 | if (ICmpInst::isEquality(P: Pred) && Op0->hasOneUse()) { |
| 5104 | // icmp (X | Y) eq/ne Y --> (X & ~Y) eq/ne 0 if Y is freely invertible |
| 5105 | if (Value *NotOp1 = IC.getFreelyInverted( |
| 5106 | V: Op1, WillInvertAllUses: !isa<Constant>(Val: Op1) && !Op1->hasNUsesOrMore(N: 3), Builder: &IC.Builder)) |
| 5107 | return new ICmpInst(Pred, IC.Builder.CreateAnd(LHS: A, RHS: NotOp1), |
| 5108 | Constant::getNullValue(Ty: Op1->getType())); |
| 5109 | // icmp (X | Y) eq/ne Y --> (~X | Y) eq/ne -1 if X is freely invertible. |
| 5110 | if (Value *NotA = IC.getFreelyInverted(V: A, WillInvertAllUses: A->hasOneUse(), Builder: &IC.Builder)) |
| 5111 | return new ICmpInst(Pred, IC.Builder.CreateOr(LHS: Op1, RHS: NotA), |
| 5112 | Constant::getAllOnesValue(Ty: Op1->getType())); |
| 5113 | } |
| 5114 | return nullptr; |
| 5115 | } |
| 5116 | |
| 5117 | static Instruction *foldICmpXorXX(ICmpInst &I, const SimplifyQuery &Q, |
| 5118 | InstCombinerImpl &IC) { |
| 5119 | Value *Op0 = I.getOperand(i_nocapture: 0), *Op1 = I.getOperand(i_nocapture: 1), *A; |
| 5120 | // Normalize xor operand as operand 0. |
| 5121 | CmpInst::Predicate Pred = I.getPredicate(); |
| 5122 | if (match(V: Op1, P: m_c_Xor(L: m_Specific(V: Op0), R: m_Value()))) { |
| 5123 | std::swap(a&: Op0, b&: Op1); |
| 5124 | Pred = ICmpInst::getSwappedPredicate(pred: Pred); |
| 5125 | } |
| 5126 | if (!match(V: Op0, P: m_c_Xor(L: m_Specific(V: Op1), R: m_Value(V&: A)))) |
| 5127 | return nullptr; |
| 5128 | |
| 5129 | // icmp (X ^ Y_NonZero) u>= X --> icmp (X ^ Y_NonZero) u> X |
| 5130 | // icmp (X ^ Y_NonZero) u<= X --> icmp (X ^ Y_NonZero) u< X |
| 5131 | // icmp (X ^ Y_NonZero) s>= X --> icmp (X ^ Y_NonZero) s> X |
| 5132 | // icmp (X ^ Y_NonZero) s<= X --> icmp (X ^ Y_NonZero) s< X |
| 5133 | CmpInst::Predicate PredOut = CmpInst::getStrictPredicate(pred: Pred); |
| 5134 | if (PredOut != Pred && isKnownNonZero(V: A, Q)) |
| 5135 | return new ICmpInst(PredOut, Op0, Op1); |
| 5136 | |
| 5137 | // These transform work when A is negative. |
| 5138 | // X s< X^A, X s<= X^A, X u> X^A, X u>= X^A --> X s< 0 |
| 5139 | // X s> X^A, X s>= X^A, X u< X^A, X u<= X^A --> X s>= 0 |
| 5140 | if (match(V: A, P: m_Negative())) { |
| 5141 | CmpInst::Predicate NewPred; |
| 5142 | switch (ICmpInst::getStrictPredicate(pred: Pred)) { |
| 5143 | default: |
| 5144 | return nullptr; |
| 5145 | case ICmpInst::ICMP_SLT: |
| 5146 | case ICmpInst::ICMP_UGT: |
| 5147 | NewPred = ICmpInst::ICMP_SLT; |
| 5148 | break; |
| 5149 | case ICmpInst::ICMP_SGT: |
| 5150 | case ICmpInst::ICMP_ULT: |
| 5151 | NewPred = ICmpInst::ICMP_SGE; |
| 5152 | break; |
| 5153 | } |
| 5154 | Constant *Const = Constant::getNullValue(Ty: Op0->getType()); |
| 5155 | return new ICmpInst(NewPred, Op0, Const); |
| 5156 | } |
| 5157 | |
| 5158 | return nullptr; |
| 5159 | } |
| 5160 | |
| 5161 | /// Return true if X is a multiple of C. |
| 5162 | /// TODO: Handle non-power-of-2 factors. |
| 5163 | static bool isMultipleOf(Value *X, const APInt &C, const SimplifyQuery &Q) { |
| 5164 | if (C.isOne()) |
| 5165 | return true; |
| 5166 | |
| 5167 | if (!C.isPowerOf2()) |
| 5168 | return false; |
| 5169 | |
| 5170 | return MaskedValueIsZero(V: X, Mask: C - 1, SQ: Q); |
| 5171 | } |
| 5172 | |
| 5173 | /// Try to fold icmp (binop), X or icmp X, (binop). |
| 5174 | /// TODO: A large part of this logic is duplicated in InstSimplify's |
| 5175 | /// simplifyICmpWithBinOp(). We should be able to share that and avoid the code |
| 5176 | /// duplication. |
| 5177 | Instruction *InstCombinerImpl::foldICmpBinOp(ICmpInst &I, |
| 5178 | const SimplifyQuery &SQ) { |
| 5179 | const SimplifyQuery Q = SQ.getWithInstruction(I: &I); |
| 5180 | Value *Op0 = I.getOperand(i_nocapture: 0), *Op1 = I.getOperand(i_nocapture: 1); |
| 5181 | |
| 5182 | // Special logic for binary operators. |
| 5183 | BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Val: Op0); |
| 5184 | BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Val: Op1); |
| 5185 | if (!BO0 && !BO1) |
| 5186 | return nullptr; |
| 5187 | |
| 5188 | if (Instruction *NewICmp = foldICmpXNegX(I, Builder)) |
| 5189 | return NewICmp; |
| 5190 | |
| 5191 | const CmpInst::Predicate Pred = I.getPredicate(); |
| 5192 | Value *X; |
| 5193 | |
| 5194 | // Convert add-with-unsigned-overflow comparisons into a 'not' with compare. |
| 5195 | // (Op1 + X) u</u>= Op1 --> ~Op1 u</u>= X |
| 5196 | if (match(V: Op0, P: m_OneUse(SubPattern: m_c_Add(L: m_Specific(V: Op1), R: m_Value(V&: X)))) && |
| 5197 | (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) |
| 5198 | return new ICmpInst(Pred, Builder.CreateNot(V: Op1), X); |
| 5199 | // Op0 u>/u<= (Op0 + X) --> X u>/u<= ~Op0 |
| 5200 | if (match(V: Op1, P: m_OneUse(SubPattern: m_c_Add(L: m_Specific(V: Op0), R: m_Value(V&: X)))) && |
| 5201 | (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE)) |
| 5202 | return new ICmpInst(Pred, X, Builder.CreateNot(V: Op0)); |
| 5203 | |
| 5204 | { |
| 5205 | // (Op1 + X) + C u</u>= Op1 --> ~C - X u</u>= Op1 |
| 5206 | Constant *C; |
| 5207 | if (match(V: Op0, P: m_OneUse(SubPattern: m_Add(L: m_c_Add(L: m_Specific(V: Op1), R: m_Value(V&: X)), |
| 5208 | R: m_ImmConstant(C)))) && |
| 5209 | (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) { |
| 5210 | Constant *C2 = ConstantExpr::getNot(C); |
| 5211 | return new ICmpInst(Pred, Builder.CreateSub(LHS: C2, RHS: X), Op1); |
| 5212 | } |
| 5213 | // Op0 u>/u<= (Op0 + X) + C --> Op0 u>/u<= ~C - X |
| 5214 | if (match(V: Op1, P: m_OneUse(SubPattern: m_Add(L: m_c_Add(L: m_Specific(V: Op0), R: m_Value(V&: X)), |
| 5215 | R: m_ImmConstant(C)))) && |
| 5216 | (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE)) { |
| 5217 | Constant *C2 = ConstantExpr::getNot(C); |
| 5218 | return new ICmpInst(Pred, Op0, Builder.CreateSub(LHS: C2, RHS: X)); |
| 5219 | } |
| 5220 | } |
| 5221 | |
| 5222 | // (icmp eq/ne (X, -P2), INT_MIN) |
| 5223 | // -> (icmp slt/sge X, INT_MIN + P2) |
| 5224 | if (ICmpInst::isEquality(P: Pred) && BO0 && |
| 5225 | match(V: I.getOperand(i_nocapture: 1), P: m_SignMask()) && |
| 5226 | match(V: BO0, P: m_And(L: m_Value(), R: m_NegatedPower2OrZero()))) { |
| 5227 | // Will Constant fold. |
| 5228 | Value *NewC = Builder.CreateSub(LHS: I.getOperand(i_nocapture: 1), RHS: BO0->getOperand(i_nocapture: 1)); |
| 5229 | return new ICmpInst(Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_SLT |
| 5230 | : ICmpInst::ICMP_SGE, |
| 5231 | BO0->getOperand(i_nocapture: 0), NewC); |
| 5232 | } |
| 5233 | |
| 5234 | { |
| 5235 | // Similar to above: an unsigned overflow comparison may use offset + mask: |
| 5236 | // ((Op1 + C) & C) u< Op1 --> Op1 != 0 |
| 5237 | // ((Op1 + C) & C) u>= Op1 --> Op1 == 0 |
| 5238 | // Op0 u> ((Op0 + C) & C) --> Op0 != 0 |
| 5239 | // Op0 u<= ((Op0 + C) & C) --> Op0 == 0 |
| 5240 | BinaryOperator *BO; |
| 5241 | const APInt *C; |
| 5242 | if ((Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE) && |
| 5243 | match(V: Op0, P: m_And(L: m_BinOp(I&: BO), R: m_LowBitMask(V&: C))) && |
| 5244 | match(V: BO, P: m_Add(L: m_Specific(V: Op1), R: m_SpecificIntAllowPoison(V: *C)))) { |
| 5245 | CmpInst::Predicate NewPred = |
| 5246 | Pred == ICmpInst::ICMP_ULT ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ; |
| 5247 | Constant *Zero = ConstantInt::getNullValue(Ty: Op1->getType()); |
| 5248 | return new ICmpInst(NewPred, Op1, Zero); |
| 5249 | } |
| 5250 | |
| 5251 | if ((Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE) && |
| 5252 | match(V: Op1, P: m_And(L: m_BinOp(I&: BO), R: m_LowBitMask(V&: C))) && |
| 5253 | match(V: BO, P: m_Add(L: m_Specific(V: Op0), R: m_SpecificIntAllowPoison(V: *C)))) { |
| 5254 | CmpInst::Predicate NewPred = |
| 5255 | Pred == ICmpInst::ICMP_UGT ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ; |
| 5256 | Constant *Zero = ConstantInt::getNullValue(Ty: Op1->getType()); |
| 5257 | return new ICmpInst(NewPred, Op0, Zero); |
| 5258 | } |
| 5259 | } |
| 5260 | |
| 5261 | bool NoOp0WrapProblem = false, NoOp1WrapProblem = false; |
| 5262 | bool Op0HasNUW = false, Op1HasNUW = false; |
| 5263 | bool Op0HasNSW = false, Op1HasNSW = false; |
| 5264 | // Analyze the case when either Op0 or Op1 is an add instruction. |
| 5265 | // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null). |
| 5266 | auto hasNoWrapProblem = [](const BinaryOperator &BO, CmpInst::Predicate Pred, |
| 5267 | bool &HasNSW, bool &HasNUW) -> bool { |
| 5268 | if (isa<OverflowingBinaryOperator>(Val: BO)) { |
| 5269 | HasNUW = BO.hasNoUnsignedWrap(); |
| 5270 | HasNSW = BO.hasNoSignedWrap(); |
| 5271 | return ICmpInst::isEquality(P: Pred) || |
| 5272 | (CmpInst::isUnsigned(predicate: Pred) && HasNUW) || |
| 5273 | (CmpInst::isSigned(predicate: Pred) && HasNSW); |
| 5274 | } else if (BO.getOpcode() == Instruction::Or) { |
| 5275 | HasNUW = true; |
| 5276 | HasNSW = true; |
| 5277 | return true; |
| 5278 | } else { |
| 5279 | return false; |
| 5280 | } |
| 5281 | }; |
| 5282 | Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; |
| 5283 | |
| 5284 | if (BO0) { |
| 5285 | match(V: BO0, P: m_AddLike(L: m_Value(V&: A), R: m_Value(V&: B))); |
| 5286 | NoOp0WrapProblem = hasNoWrapProblem(*BO0, Pred, Op0HasNSW, Op0HasNUW); |
| 5287 | } |
| 5288 | if (BO1) { |
| 5289 | match(V: BO1, P: m_AddLike(L: m_Value(V&: C), R: m_Value(V&: D))); |
| 5290 | NoOp1WrapProblem = hasNoWrapProblem(*BO1, Pred, Op1HasNSW, Op1HasNUW); |
| 5291 | } |
| 5292 | |
| 5293 | // icmp (A+B), A -> icmp B, 0 for equalities or if there is no overflow. |
| 5294 | // icmp (A+B), B -> icmp A, 0 for equalities or if there is no overflow. |
| 5295 | if ((A == Op1 || B == Op1) && NoOp0WrapProblem) |
| 5296 | return new ICmpInst(Pred, A == Op1 ? B : A, |
| 5297 | Constant::getNullValue(Ty: Op1->getType())); |
| 5298 | |
| 5299 | // icmp C, (C+D) -> icmp 0, D for equalities or if there is no overflow. |
| 5300 | // icmp D, (C+D) -> icmp 0, C for equalities or if there is no overflow. |
| 5301 | if ((C == Op0 || D == Op0) && NoOp1WrapProblem) |
| 5302 | return new ICmpInst(Pred, Constant::getNullValue(Ty: Op0->getType()), |
| 5303 | C == Op0 ? D : C); |
| 5304 | |
| 5305 | // icmp (A+B), (A+D) -> icmp B, D for equalities or if there is no overflow. |
| 5306 | if (A && C && (A == C || A == D || B == C || B == D) && NoOp0WrapProblem && |
| 5307 | NoOp1WrapProblem) { |
| 5308 | // Determine Y and Z in the form icmp (X+Y), (X+Z). |
| 5309 | Value *Y, *Z; |
| 5310 | if (A == C) { |
| 5311 | // C + B == C + D -> B == D |
| 5312 | Y = B; |
| 5313 | Z = D; |
| 5314 | } else if (A == D) { |
| 5315 | // D + B == C + D -> B == C |
| 5316 | Y = B; |
| 5317 | Z = C; |
| 5318 | } else if (B == C) { |
| 5319 | // A + C == C + D -> A == D |
| 5320 | Y = A; |
| 5321 | Z = D; |
| 5322 | } else { |
| 5323 | assert(B == D); |
| 5324 | // A + D == C + D -> A == C |
| 5325 | Y = A; |
| 5326 | Z = C; |
| 5327 | } |
| 5328 | return new ICmpInst(Pred, Y, Z); |
| 5329 | } |
| 5330 | |
| 5331 | if (ICmpInst::isRelational(P: Pred)) { |
| 5332 | // Return if both X and Y is divisible by Z/-Z. |
| 5333 | // TODO: Generalize to check if (X - Y) is divisible by Z/-Z. |
| 5334 | auto ShareCommonDivisor = [&Q](Value *X, Value *Y, Value *Z, |
| 5335 | bool IsNegative) -> bool { |
| 5336 | const APInt *OffsetC; |
| 5337 | if (!match(V: Z, P: m_APInt(Res&: OffsetC))) |
| 5338 | return false; |
| 5339 | |
| 5340 | // Fast path for Z == 1/-1. |
| 5341 | if (IsNegative ? OffsetC->isAllOnes() : OffsetC->isOne()) |
| 5342 | return true; |
| 5343 | |
| 5344 | APInt C = *OffsetC; |
| 5345 | if (IsNegative) |
| 5346 | C.negate(); |
| 5347 | // Note: -INT_MIN is also negative. |
| 5348 | if (!C.isStrictlyPositive()) |
| 5349 | return false; |
| 5350 | |
| 5351 | return isMultipleOf(X, C, Q) && isMultipleOf(X: Y, C, Q); |
| 5352 | }; |
| 5353 | |
| 5354 | // TODO: The subtraction-related identities shown below also hold, but |
| 5355 | // canonicalization from (X -nuw 1) to (X + -1) means that the combinations |
| 5356 | // wouldn't happen even if they were implemented. |
| 5357 | // |
| 5358 | // icmp ult (A - 1), Op1 -> icmp ule A, Op1 |
| 5359 | // icmp uge (A - 1), Op1 -> icmp ugt A, Op1 |
| 5360 | // icmp ugt Op0, (C - 1) -> icmp uge Op0, C |
| 5361 | // icmp ule Op0, (C - 1) -> icmp ult Op0, C |
| 5362 | |
| 5363 | // icmp slt (A + -1), Op1 -> icmp sle A, Op1 |
| 5364 | // icmp sge (A + -1), Op1 -> icmp sgt A, Op1 |
| 5365 | // icmp sle (A + 1), Op1 -> icmp slt A, Op1 |
| 5366 | // icmp sgt (A + 1), Op1 -> icmp sge A, Op1 |
| 5367 | // icmp ule (A + 1), Op0 -> icmp ult A, Op1 |
| 5368 | // icmp ugt (A + 1), Op0 -> icmp uge A, Op1 |
| 5369 | if (A && NoOp0WrapProblem && |
| 5370 | ShareCommonDivisor(A, Op1, B, |
| 5371 | ICmpInst::isLT(P: Pred) || ICmpInst::isGE(P: Pred))) |
| 5372 | return new ICmpInst(ICmpInst::getFlippedStrictnessPredicate(pred: Pred), A, |
| 5373 | Op1); |
| 5374 | |
| 5375 | // icmp sgt Op0, (C + -1) -> icmp sge Op0, C |
| 5376 | // icmp sle Op0, (C + -1) -> icmp slt Op0, C |
| 5377 | // icmp sge Op0, (C + 1) -> icmp sgt Op0, C |
| 5378 | // icmp slt Op0, (C + 1) -> icmp sle Op0, C |
| 5379 | // icmp uge Op0, (C + 1) -> icmp ugt Op0, C |
| 5380 | // icmp ult Op0, (C + 1) -> icmp ule Op0, C |
| 5381 | if (C && NoOp1WrapProblem && |
| 5382 | ShareCommonDivisor(Op0, C, D, |
| 5383 | ICmpInst::isGT(P: Pred) || ICmpInst::isLE(P: Pred))) |
| 5384 | return new ICmpInst(ICmpInst::getFlippedStrictnessPredicate(pred: Pred), Op0, |
| 5385 | C); |
| 5386 | } |
| 5387 | |
| 5388 | // if C1 has greater magnitude than C2: |
| 5389 | // icmp (A + C1), (C + C2) -> icmp (A + C3), C |
| 5390 | // s.t. C3 = C1 - C2 |
| 5391 | // |
| 5392 | // if C2 has greater magnitude than C1: |
| 5393 | // icmp (A + C1), (C + C2) -> icmp A, (C + C3) |
| 5394 | // s.t. C3 = C2 - C1 |
| 5395 | if (A && C && NoOp0WrapProblem && NoOp1WrapProblem && |
| 5396 | (BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned()) { |
| 5397 | const APInt *AP1, *AP2; |
| 5398 | // TODO: Support non-uniform vectors. |
| 5399 | // TODO: Allow poison passthrough if B or D's element is poison. |
| 5400 | if (match(V: B, P: m_APIntAllowPoison(Res&: AP1)) && |
| 5401 | match(V: D, P: m_APIntAllowPoison(Res&: AP2)) && |
| 5402 | AP1->isNegative() == AP2->isNegative()) { |
| 5403 | APInt AP1Abs = AP1->abs(); |
| 5404 | APInt AP2Abs = AP2->abs(); |
| 5405 | if (AP1Abs.uge(RHS: AP2Abs)) { |
| 5406 | APInt Diff = *AP1 - *AP2; |
| 5407 | Constant *C3 = Constant::getIntegerValue(Ty: BO0->getType(), V: Diff); |
| 5408 | Value *NewAdd = Builder.CreateAdd( |
| 5409 | LHS: A, RHS: C3, Name: "" , HasNUW: Op0HasNUW && Diff.ule(RHS: *AP1), HasNSW: Op0HasNSW); |
| 5410 | return new ICmpInst(Pred, NewAdd, C); |
| 5411 | } else { |
| 5412 | APInt Diff = *AP2 - *AP1; |
| 5413 | Constant *C3 = Constant::getIntegerValue(Ty: BO0->getType(), V: Diff); |
| 5414 | Value *NewAdd = Builder.CreateAdd( |
| 5415 | LHS: C, RHS: C3, Name: "" , HasNUW: Op1HasNUW && Diff.ule(RHS: *AP2), HasNSW: Op1HasNSW); |
| 5416 | return new ICmpInst(Pred, A, NewAdd); |
| 5417 | } |
| 5418 | } |
| 5419 | Constant *Cst1, *Cst2; |
| 5420 | if (match(V: B, P: m_ImmConstant(C&: Cst1)) && match(V: D, P: m_ImmConstant(C&: Cst2)) && |
| 5421 | ICmpInst::isEquality(P: Pred)) { |
| 5422 | Constant *Diff = ConstantExpr::getSub(C1: Cst2, C2: Cst1); |
| 5423 | Value *NewAdd = Builder.CreateAdd(LHS: C, RHS: Diff); |
| 5424 | return new ICmpInst(Pred, A, NewAdd); |
| 5425 | } |
| 5426 | } |
| 5427 | |
| 5428 | // Analyze the case when either Op0 or Op1 is a sub instruction. |
| 5429 | // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null). |
| 5430 | A = nullptr; |
| 5431 | B = nullptr; |
| 5432 | C = nullptr; |
| 5433 | D = nullptr; |
| 5434 | if (BO0 && BO0->getOpcode() == Instruction::Sub) { |
| 5435 | A = BO0->getOperand(i_nocapture: 0); |
| 5436 | B = BO0->getOperand(i_nocapture: 1); |
| 5437 | } |
| 5438 | if (BO1 && BO1->getOpcode() == Instruction::Sub) { |
| 5439 | C = BO1->getOperand(i_nocapture: 0); |
| 5440 | D = BO1->getOperand(i_nocapture: 1); |
| 5441 | } |
| 5442 | |
| 5443 | // icmp (A-B), A -> icmp 0, B for equalities or if there is no overflow. |
| 5444 | if (A == Op1 && NoOp0WrapProblem) |
| 5445 | return new ICmpInst(Pred, Constant::getNullValue(Ty: Op1->getType()), B); |
| 5446 | // icmp C, (C-D) -> icmp D, 0 for equalities or if there is no overflow. |
| 5447 | if (C == Op0 && NoOp1WrapProblem) |
| 5448 | return new ICmpInst(Pred, D, Constant::getNullValue(Ty: Op0->getType())); |
| 5449 | |
| 5450 | // Convert sub-with-unsigned-overflow comparisons into a comparison of args. |
| 5451 | // (A - B) u>/u<= A --> B u>/u<= A |
| 5452 | if (A == Op1 && (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE)) |
| 5453 | return new ICmpInst(Pred, B, A); |
| 5454 | // C u</u>= (C - D) --> C u</u>= D |
| 5455 | if (C == Op0 && (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) |
| 5456 | return new ICmpInst(Pred, C, D); |
| 5457 | // (A - B) u>=/u< A --> B u>/u<= A iff B != 0 |
| 5458 | if (A == Op1 && (Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_ULT) && |
| 5459 | isKnownNonZero(V: B, Q)) |
| 5460 | return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(pred: Pred), B, A); |
| 5461 | // C u<=/u> (C - D) --> C u</u>= D iff B != 0 |
| 5462 | if (C == Op0 && (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT) && |
| 5463 | isKnownNonZero(V: D, Q)) |
| 5464 | return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(pred: Pred), C, D); |
| 5465 | |
| 5466 | // icmp (A-B), (C-B) -> icmp A, C for equalities or if there is no overflow. |
| 5467 | if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem) |
| 5468 | return new ICmpInst(Pred, A, C); |
| 5469 | |
| 5470 | // icmp (A-B), (A-D) -> icmp D, B for equalities or if there is no overflow. |
| 5471 | if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem) |
| 5472 | return new ICmpInst(Pred, D, B); |
| 5473 | |
| 5474 | // icmp (0-X) < cst --> x > -cst |
| 5475 | if (NoOp0WrapProblem && ICmpInst::isSigned(predicate: Pred)) { |
| 5476 | Value *X; |
| 5477 | if (match(V: BO0, P: m_Neg(V: m_Value(V&: X)))) |
| 5478 | if (Constant *RHSC = dyn_cast<Constant>(Val: Op1)) |
| 5479 | if (RHSC->isNotMinSignedValue()) |
| 5480 | return new ICmpInst(I.getSwappedPredicate(), X, |
| 5481 | ConstantExpr::getNeg(C: RHSC)); |
| 5482 | } |
| 5483 | |
| 5484 | if (Instruction *R = foldICmpXorXX(I, Q, IC&: *this)) |
| 5485 | return R; |
| 5486 | if (Instruction *R = foldICmpOrXX(I, Q, IC&: *this)) |
| 5487 | return R; |
| 5488 | |
| 5489 | { |
| 5490 | // Try to remove shared multiplier from comparison: |
| 5491 | // X * Z pred Y * Z |
| 5492 | Value *X, *Y, *Z; |
| 5493 | if ((match(V: Op0, P: m_Mul(L: m_Value(V&: X), R: m_Value(V&: Z))) && |
| 5494 | match(V: Op1, P: m_c_Mul(L: m_Specific(V: Z), R: m_Value(V&: Y)))) || |
| 5495 | (match(V: Op0, P: m_Mul(L: m_Value(V&: Z), R: m_Value(V&: X))) && |
| 5496 | match(V: Op1, P: m_c_Mul(L: m_Specific(V: Z), R: m_Value(V&: Y))))) { |
| 5497 | if (ICmpInst::isSigned(predicate: Pred)) { |
| 5498 | if (Op0HasNSW && Op1HasNSW) { |
| 5499 | KnownBits ZKnown = computeKnownBits(V: Z, CxtI: &I); |
| 5500 | if (ZKnown.isStrictlyPositive()) |
| 5501 | return new ICmpInst(Pred, X, Y); |
| 5502 | if (ZKnown.isNegative()) |
| 5503 | return new ICmpInst(ICmpInst::getSwappedPredicate(pred: Pred), X, Y); |
| 5504 | Value *LessThan = simplifyICmpInst(Pred: ICmpInst::ICMP_SLT, LHS: X, RHS: Y, |
| 5505 | Q: SQ.getWithInstruction(I: &I)); |
| 5506 | if (LessThan && match(V: LessThan, P: m_One())) |
| 5507 | return new ICmpInst(ICmpInst::getSwappedPredicate(pred: Pred), Z, |
| 5508 | Constant::getNullValue(Ty: Z->getType())); |
| 5509 | Value *GreaterThan = simplifyICmpInst(Pred: ICmpInst::ICMP_SGT, LHS: X, RHS: Y, |
| 5510 | Q: SQ.getWithInstruction(I: &I)); |
| 5511 | if (GreaterThan && match(V: GreaterThan, P: m_One())) |
| 5512 | return new ICmpInst(Pred, Z, Constant::getNullValue(Ty: Z->getType())); |
| 5513 | } |
| 5514 | } else { |
| 5515 | bool NonZero; |
| 5516 | if (ICmpInst::isEquality(P: Pred)) { |
| 5517 | // If X != Y, fold (X *nw Z) eq/ne (Y *nw Z) -> Z eq/ne 0 |
| 5518 | if (((Op0HasNSW && Op1HasNSW) || (Op0HasNUW && Op1HasNUW)) && |
| 5519 | isKnownNonEqual(V1: X, V2: Y, SQ)) |
| 5520 | return new ICmpInst(Pred, Z, Constant::getNullValue(Ty: Z->getType())); |
| 5521 | |
| 5522 | KnownBits ZKnown = computeKnownBits(V: Z, CxtI: &I); |
| 5523 | // if Z % 2 != 0 |
| 5524 | // X * Z eq/ne Y * Z -> X eq/ne Y |
| 5525 | if (ZKnown.countMaxTrailingZeros() == 0) |
| 5526 | return new ICmpInst(Pred, X, Y); |
| 5527 | NonZero = !ZKnown.One.isZero() || isKnownNonZero(V: Z, Q); |
| 5528 | // if Z != 0 and nsw(X * Z) and nsw(Y * Z) |
| 5529 | // X * Z eq/ne Y * Z -> X eq/ne Y |
| 5530 | if (NonZero && BO0 && BO1 && Op0HasNSW && Op1HasNSW) |
| 5531 | return new ICmpInst(Pred, X, Y); |
| 5532 | } else |
| 5533 | NonZero = isKnownNonZero(V: Z, Q); |
| 5534 | |
| 5535 | // If Z != 0 and nuw(X * Z) and nuw(Y * Z) |
| 5536 | // X * Z u{lt/le/gt/ge}/eq/ne Y * Z -> X u{lt/le/gt/ge}/eq/ne Y |
| 5537 | if (NonZero && BO0 && BO1 && Op0HasNUW && Op1HasNUW) |
| 5538 | return new ICmpInst(Pred, X, Y); |
| 5539 | } |
| 5540 | } |
| 5541 | } |
| 5542 | |
| 5543 | BinaryOperator *SRem = nullptr; |
| 5544 | // icmp (srem X, Y), Y |
| 5545 | if (BO0 && BO0->getOpcode() == Instruction::SRem && Op1 == BO0->getOperand(i_nocapture: 1)) |
| 5546 | SRem = BO0; |
| 5547 | // icmp Y, (srem X, Y) |
| 5548 | else if (BO1 && BO1->getOpcode() == Instruction::SRem && |
| 5549 | Op0 == BO1->getOperand(i_nocapture: 1)) |
| 5550 | SRem = BO1; |
| 5551 | if (SRem) { |
| 5552 | // We don't check hasOneUse to avoid increasing register pressure because |
| 5553 | // the value we use is the same value this instruction was already using. |
| 5554 | switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(pred: Pred) : Pred) { |
| 5555 | default: |
| 5556 | break; |
| 5557 | case ICmpInst::ICMP_EQ: |
| 5558 | return replaceInstUsesWith(I, V: ConstantInt::getFalse(Ty: I.getType())); |
| 5559 | case ICmpInst::ICMP_NE: |
| 5560 | return replaceInstUsesWith(I, V: ConstantInt::getTrue(Ty: I.getType())); |
| 5561 | case ICmpInst::ICMP_SGT: |
| 5562 | case ICmpInst::ICMP_SGE: |
| 5563 | return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(i_nocapture: 1), |
| 5564 | Constant::getAllOnesValue(Ty: SRem->getType())); |
| 5565 | case ICmpInst::ICMP_SLT: |
| 5566 | case ICmpInst::ICMP_SLE: |
| 5567 | return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(i_nocapture: 1), |
| 5568 | Constant::getNullValue(Ty: SRem->getType())); |
| 5569 | } |
| 5570 | } |
| 5571 | |
| 5572 | if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() && |
| 5573 | (BO0->hasOneUse() || BO1->hasOneUse()) && |
| 5574 | BO0->getOperand(i_nocapture: 1) == BO1->getOperand(i_nocapture: 1)) { |
| 5575 | switch (BO0->getOpcode()) { |
| 5576 | default: |
| 5577 | break; |
| 5578 | case Instruction::Add: |
| 5579 | case Instruction::Sub: |
| 5580 | case Instruction::Xor: { |
| 5581 | if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b |
| 5582 | return new ICmpInst(Pred, BO0->getOperand(i_nocapture: 0), BO1->getOperand(i_nocapture: 0)); |
| 5583 | |
| 5584 | const APInt *C; |
| 5585 | if (match(V: BO0->getOperand(i_nocapture: 1), P: m_APInt(Res&: C))) { |
| 5586 | // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b |
| 5587 | if (C->isSignMask()) { |
| 5588 | ICmpInst::Predicate NewPred = I.getFlippedSignednessPredicate(); |
| 5589 | return new ICmpInst(NewPred, BO0->getOperand(i_nocapture: 0), BO1->getOperand(i_nocapture: 0)); |
| 5590 | } |
| 5591 | |
| 5592 | // icmp u/s (a ^ maxsignval), (b ^ maxsignval) --> icmp s/u' a, b |
| 5593 | if (BO0->getOpcode() == Instruction::Xor && C->isMaxSignedValue()) { |
| 5594 | ICmpInst::Predicate NewPred = I.getFlippedSignednessPredicate(); |
| 5595 | NewPred = I.getSwappedPredicate(pred: NewPred); |
| 5596 | return new ICmpInst(NewPred, BO0->getOperand(i_nocapture: 0), BO1->getOperand(i_nocapture: 0)); |
| 5597 | } |
| 5598 | } |
| 5599 | break; |
| 5600 | } |
| 5601 | case Instruction::Mul: { |
| 5602 | if (!I.isEquality()) |
| 5603 | break; |
| 5604 | |
| 5605 | const APInt *C; |
| 5606 | if (match(V: BO0->getOperand(i_nocapture: 1), P: m_APInt(Res&: C)) && !C->isZero() && |
| 5607 | !C->isOne()) { |
| 5608 | // icmp eq/ne (X * C), (Y * C) --> icmp (X & Mask), (Y & Mask) |
| 5609 | // Mask = -1 >> count-trailing-zeros(C). |
| 5610 | if (unsigned TZs = C->countr_zero()) { |
| 5611 | Constant *Mask = ConstantInt::get( |
| 5612 | Ty: BO0->getType(), |
| 5613 | V: APInt::getLowBitsSet(numBits: C->getBitWidth(), loBitsSet: C->getBitWidth() - TZs)); |
| 5614 | Value *And1 = Builder.CreateAnd(LHS: BO0->getOperand(i_nocapture: 0), RHS: Mask); |
| 5615 | Value *And2 = Builder.CreateAnd(LHS: BO1->getOperand(i_nocapture: 0), RHS: Mask); |
| 5616 | return new ICmpInst(Pred, And1, And2); |
| 5617 | } |
| 5618 | } |
| 5619 | break; |
| 5620 | } |
| 5621 | case Instruction::UDiv: |
| 5622 | case Instruction::LShr: |
| 5623 | if (I.isSigned() || !BO0->isExact() || !BO1->isExact()) |
| 5624 | break; |
| 5625 | return new ICmpInst(Pred, BO0->getOperand(i_nocapture: 0), BO1->getOperand(i_nocapture: 0)); |
| 5626 | |
| 5627 | case Instruction::SDiv: |
| 5628 | if (!(I.isEquality() || match(V: BO0->getOperand(i_nocapture: 1), P: m_NonNegative())) || |
| 5629 | !BO0->isExact() || !BO1->isExact()) |
| 5630 | break; |
| 5631 | return new ICmpInst(Pred, BO0->getOperand(i_nocapture: 0), BO1->getOperand(i_nocapture: 0)); |
| 5632 | |
| 5633 | case Instruction::AShr: |
| 5634 | if (!BO0->isExact() || !BO1->isExact()) |
| 5635 | break; |
| 5636 | return new ICmpInst(Pred, BO0->getOperand(i_nocapture: 0), BO1->getOperand(i_nocapture: 0)); |
| 5637 | |
| 5638 | case Instruction::Shl: { |
| 5639 | bool NUW = Op0HasNUW && Op1HasNUW; |
| 5640 | bool NSW = Op0HasNSW && Op1HasNSW; |
| 5641 | if (!NUW && !NSW) |
| 5642 | break; |
| 5643 | if (!NSW && I.isSigned()) |
| 5644 | break; |
| 5645 | return new ICmpInst(Pred, BO0->getOperand(i_nocapture: 0), BO1->getOperand(i_nocapture: 0)); |
| 5646 | } |
| 5647 | } |
| 5648 | } |
| 5649 | |
| 5650 | if (BO0) { |
| 5651 | // Transform A & (L - 1) `ult` L --> L != 0 |
| 5652 | auto LSubOne = m_Add(L: m_Specific(V: Op1), R: m_AllOnes()); |
| 5653 | auto BitwiseAnd = m_c_And(L: m_Value(), R: LSubOne); |
| 5654 | |
| 5655 | if (match(V: BO0, P: BitwiseAnd) && Pred == ICmpInst::ICMP_ULT) { |
| 5656 | auto *Zero = Constant::getNullValue(Ty: BO0->getType()); |
| 5657 | return new ICmpInst(ICmpInst::ICMP_NE, Op1, Zero); |
| 5658 | } |
| 5659 | } |
| 5660 | |
| 5661 | // For unsigned predicates / eq / ne: |
| 5662 | // icmp pred (x << 1), x --> icmp getSignedPredicate(pred) x, 0 |
| 5663 | // icmp pred x, (x << 1) --> icmp getSignedPredicate(pred) 0, x |
| 5664 | if (!ICmpInst::isSigned(predicate: Pred)) { |
| 5665 | if (match(V: Op0, P: m_Shl(L: m_Specific(V: Op1), R: m_One()))) |
| 5666 | return new ICmpInst(ICmpInst::getSignedPredicate(Pred), Op1, |
| 5667 | Constant::getNullValue(Ty: Op1->getType())); |
| 5668 | else if (match(V: Op1, P: m_Shl(L: m_Specific(V: Op0), R: m_One()))) |
| 5669 | return new ICmpInst(ICmpInst::getSignedPredicate(Pred), |
| 5670 | Constant::getNullValue(Ty: Op0->getType()), Op0); |
| 5671 | } |
| 5672 | |
| 5673 | if (Value *V = foldMultiplicationOverflowCheck(I)) |
| 5674 | return replaceInstUsesWith(I, V); |
| 5675 | |
| 5676 | if (Instruction *R = foldICmpAndXX(I, Q, IC&: *this)) |
| 5677 | return R; |
| 5678 | |
| 5679 | if (Value *V = foldICmpWithTruncSignExtendedVal(I, Builder)) |
| 5680 | return replaceInstUsesWith(I, V); |
| 5681 | |
| 5682 | if (Value *V = foldShiftIntoShiftInAnotherHandOfAndInICmp(I, SQ, Builder)) |
| 5683 | return replaceInstUsesWith(I, V); |
| 5684 | |
| 5685 | return nullptr; |
| 5686 | } |
| 5687 | |
| 5688 | /// Fold icmp Pred min|max(X, Y), Z. |
| 5689 | Instruction *InstCombinerImpl::foldICmpWithMinMax(Instruction &I, |
| 5690 | MinMaxIntrinsic *MinMax, |
| 5691 | Value *Z, CmpPredicate Pred) { |
| 5692 | Value *X = MinMax->getLHS(); |
| 5693 | Value *Y = MinMax->getRHS(); |
| 5694 | if (ICmpInst::isSigned(predicate: Pred) && !MinMax->isSigned()) |
| 5695 | return nullptr; |
| 5696 | if (ICmpInst::isUnsigned(predicate: Pred) && MinMax->isSigned()) { |
| 5697 | // Revert the transform signed pred -> unsigned pred |
| 5698 | // TODO: We can flip the signedness of predicate if both operands of icmp |
| 5699 | // are negative. |
| 5700 | if (isKnownNonNegative(V: Z, SQ: SQ.getWithInstruction(I: &I)) && |
| 5701 | isKnownNonNegative(V: MinMax, SQ: SQ.getWithInstruction(I: &I))) { |
| 5702 | Pred = ICmpInst::getFlippedSignednessPredicate(Pred); |
| 5703 | } else |
| 5704 | return nullptr; |
| 5705 | } |
| 5706 | SimplifyQuery Q = SQ.getWithInstruction(I: &I); |
| 5707 | auto IsCondKnownTrue = [](Value *Val) -> std::optional<bool> { |
| 5708 | if (!Val) |
| 5709 | return std::nullopt; |
| 5710 | if (match(V: Val, P: m_One())) |
| 5711 | return true; |
| 5712 | if (match(V: Val, P: m_Zero())) |
| 5713 | return false; |
| 5714 | return std::nullopt; |
| 5715 | }; |
| 5716 | // Remove samesign here since it is illegal to keep it when we speculatively |
| 5717 | // execute comparisons. For example, `icmp samesign ult umax(X, -46), -32` |
| 5718 | // cannot be decomposed into `(icmp samesign ult X, -46) or (icmp samesign ult |
| 5719 | // -46, -32)`. `X` is allowed to be non-negative here. |
| 5720 | Pred = Pred.dropSameSign(); |
| 5721 | auto CmpXZ = IsCondKnownTrue(simplifyICmpInst(Pred, LHS: X, RHS: Z, Q)); |
| 5722 | auto CmpYZ = IsCondKnownTrue(simplifyICmpInst(Pred, LHS: Y, RHS: Z, Q)); |
| 5723 | if (!CmpXZ.has_value() && !CmpYZ.has_value()) |
| 5724 | return nullptr; |
| 5725 | if (!CmpXZ.has_value()) { |
| 5726 | std::swap(a&: X, b&: Y); |
| 5727 | std::swap(lhs&: CmpXZ, rhs&: CmpYZ); |
| 5728 | } |
| 5729 | |
| 5730 | auto FoldIntoCmpYZ = [&]() -> Instruction * { |
| 5731 | if (CmpYZ.has_value()) |
| 5732 | return replaceInstUsesWith(I, V: ConstantInt::getBool(Ty: I.getType(), V: *CmpYZ)); |
| 5733 | return ICmpInst::Create(Op: Instruction::ICmp, Pred, S1: Y, S2: Z); |
| 5734 | }; |
| 5735 | |
| 5736 | switch (Pred) { |
| 5737 | case ICmpInst::ICMP_EQ: |
| 5738 | case ICmpInst::ICMP_NE: { |
| 5739 | // If X == Z: |
| 5740 | // Expr Result |
| 5741 | // min(X, Y) == Z X <= Y |
| 5742 | // max(X, Y) == Z X >= Y |
| 5743 | // min(X, Y) != Z X > Y |
| 5744 | // max(X, Y) != Z X < Y |
| 5745 | if ((Pred == ICmpInst::ICMP_EQ) == *CmpXZ) { |
| 5746 | ICmpInst::Predicate NewPred = |
| 5747 | ICmpInst::getNonStrictPredicate(pred: MinMax->getPredicate()); |
| 5748 | if (Pred == ICmpInst::ICMP_NE) |
| 5749 | NewPred = ICmpInst::getInversePredicate(pred: NewPred); |
| 5750 | return ICmpInst::Create(Op: Instruction::ICmp, Pred: NewPred, S1: X, S2: Y); |
| 5751 | } |
| 5752 | // Otherwise (X != Z): |
| 5753 | ICmpInst::Predicate NewPred = MinMax->getPredicate(); |
| 5754 | auto MinMaxCmpXZ = IsCondKnownTrue(simplifyICmpInst(Pred: NewPred, LHS: X, RHS: Z, Q)); |
| 5755 | if (!MinMaxCmpXZ.has_value()) { |
| 5756 | std::swap(a&: X, b&: Y); |
| 5757 | std::swap(lhs&: CmpXZ, rhs&: CmpYZ); |
| 5758 | // Re-check pre-condition X != Z |
| 5759 | if (!CmpXZ.has_value() || (Pred == ICmpInst::ICMP_EQ) == *CmpXZ) |
| 5760 | break; |
| 5761 | MinMaxCmpXZ = IsCondKnownTrue(simplifyICmpInst(Pred: NewPred, LHS: X, RHS: Z, Q)); |
| 5762 | } |
| 5763 | if (!MinMaxCmpXZ.has_value()) |
| 5764 | break; |
| 5765 | if (*MinMaxCmpXZ) { |
| 5766 | // Expr Fact Result |
| 5767 | // min(X, Y) == Z X < Z false |
| 5768 | // max(X, Y) == Z X > Z false |
| 5769 | // min(X, Y) != Z X < Z true |
| 5770 | // max(X, Y) != Z X > Z true |
| 5771 | return replaceInstUsesWith( |
| 5772 | I, V: ConstantInt::getBool(Ty: I.getType(), V: Pred == ICmpInst::ICMP_NE)); |
| 5773 | } else { |
| 5774 | // Expr Fact Result |
| 5775 | // min(X, Y) == Z X > Z Y == Z |
| 5776 | // max(X, Y) == Z X < Z Y == Z |
| 5777 | // min(X, Y) != Z X > Z Y != Z |
| 5778 | // max(X, Y) != Z X < Z Y != Z |
| 5779 | return FoldIntoCmpYZ(); |
| 5780 | } |
| 5781 | break; |
| 5782 | } |
| 5783 | case ICmpInst::ICMP_SLT: |
| 5784 | case ICmpInst::ICMP_ULT: |
| 5785 | case ICmpInst::ICMP_SLE: |
| 5786 | case ICmpInst::ICMP_ULE: |
| 5787 | case ICmpInst::ICMP_SGT: |
| 5788 | case ICmpInst::ICMP_UGT: |
| 5789 | case ICmpInst::ICMP_SGE: |
| 5790 | case ICmpInst::ICMP_UGE: { |
| 5791 | bool IsSame = MinMax->getPredicate() == ICmpInst::getStrictPredicate(pred: Pred); |
| 5792 | if (*CmpXZ) { |
| 5793 | if (IsSame) { |
| 5794 | // Expr Fact Result |
| 5795 | // min(X, Y) < Z X < Z true |
| 5796 | // min(X, Y) <= Z X <= Z true |
| 5797 | // max(X, Y) > Z X > Z true |
| 5798 | // max(X, Y) >= Z X >= Z true |
| 5799 | return replaceInstUsesWith(I, V: ConstantInt::getTrue(Ty: I.getType())); |
| 5800 | } else { |
| 5801 | // Expr Fact Result |
| 5802 | // max(X, Y) < Z X < Z Y < Z |
| 5803 | // max(X, Y) <= Z X <= Z Y <= Z |
| 5804 | // min(X, Y) > Z X > Z Y > Z |
| 5805 | // min(X, Y) >= Z X >= Z Y >= Z |
| 5806 | return FoldIntoCmpYZ(); |
| 5807 | } |
| 5808 | } else { |
| 5809 | if (IsSame) { |
| 5810 | // Expr Fact Result |
| 5811 | // min(X, Y) < Z X >= Z Y < Z |
| 5812 | // min(X, Y) <= Z X > Z Y <= Z |
| 5813 | // max(X, Y) > Z X <= Z Y > Z |
| 5814 | // max(X, Y) >= Z X < Z Y >= Z |
| 5815 | return FoldIntoCmpYZ(); |
| 5816 | } else { |
| 5817 | // Expr Fact Result |
| 5818 | // max(X, Y) < Z X >= Z false |
| 5819 | // max(X, Y) <= Z X > Z false |
| 5820 | // min(X, Y) > Z X <= Z false |
| 5821 | // min(X, Y) >= Z X < Z false |
| 5822 | return replaceInstUsesWith(I, V: ConstantInt::getFalse(Ty: I.getType())); |
| 5823 | } |
| 5824 | } |
| 5825 | break; |
| 5826 | } |
| 5827 | default: |
| 5828 | break; |
| 5829 | } |
| 5830 | |
| 5831 | return nullptr; |
| 5832 | } |
| 5833 | |
| 5834 | /// Match and fold patterns like: |
| 5835 | /// icmp eq/ne X, min(max(X, Lo), Hi) |
| 5836 | /// which represents a range check and can be repsented as a ConstantRange. |
| 5837 | /// |
| 5838 | /// For icmp eq, build ConstantRange [Lo, Hi + 1) and convert to: |
| 5839 | /// (X - Lo) u< (Hi + 1 - Lo) |
| 5840 | /// For icmp ne, build ConstantRange [Hi + 1, Lo) and convert to: |
| 5841 | /// (X - (Hi + 1)) u< (Lo - (Hi + 1)) |
| 5842 | Instruction *InstCombinerImpl::foldICmpWithClamp(ICmpInst &I, Value *X, |
| 5843 | MinMaxIntrinsic *Min) { |
| 5844 | if (!I.isEquality() || !Min->hasOneUse() || !Min->isMin()) |
| 5845 | return nullptr; |
| 5846 | |
| 5847 | const APInt *Lo = nullptr, *Hi = nullptr; |
| 5848 | if (Min->isSigned()) { |
| 5849 | if (!match(V: Min->getLHS(), P: m_OneUse(SubPattern: m_SMax(L: m_Specific(V: X), R: m_APInt(Res&: Lo)))) || |
| 5850 | !match(V: Min->getRHS(), P: m_APInt(Res&: Hi)) || !Lo->slt(RHS: *Hi)) |
| 5851 | return nullptr; |
| 5852 | } else { |
| 5853 | if (!match(V: Min->getLHS(), P: m_OneUse(SubPattern: m_UMax(L: m_Specific(V: X), R: m_APInt(Res&: Lo)))) || |
| 5854 | !match(V: Min->getRHS(), P: m_APInt(Res&: Hi)) || !Lo->ult(RHS: *Hi)) |
| 5855 | return nullptr; |
| 5856 | } |
| 5857 | |
| 5858 | ConstantRange CR = ConstantRange::getNonEmpty(Lower: *Lo, Upper: *Hi + 1); |
| 5859 | ICmpInst::Predicate Pred; |
| 5860 | APInt C, Offset; |
| 5861 | if (I.getPredicate() == ICmpInst::ICMP_EQ) |
| 5862 | CR.getEquivalentICmp(Pred, RHS&: C, Offset); |
| 5863 | else |
| 5864 | CR.inverse().getEquivalentICmp(Pred, RHS&: C, Offset); |
| 5865 | |
| 5866 | if (!Offset.isZero()) |
| 5867 | X = Builder.CreateAdd(LHS: X, RHS: ConstantInt::get(Ty: X->getType(), V: Offset)); |
| 5868 | |
| 5869 | return replaceInstUsesWith( |
| 5870 | I, V: Builder.CreateICmp(P: Pred, LHS: X, RHS: ConstantInt::get(Ty: X->getType(), V: C))); |
| 5871 | } |
| 5872 | |
| 5873 | // Canonicalize checking for a power-of-2-or-zero value: |
| 5874 | static Instruction *foldICmpPow2Test(ICmpInst &I, |
| 5875 | InstCombiner::BuilderTy &Builder) { |
| 5876 | Value *Op0 = I.getOperand(i_nocapture: 0), *Op1 = I.getOperand(i_nocapture: 1); |
| 5877 | const CmpInst::Predicate Pred = I.getPredicate(); |
| 5878 | Value *A = nullptr; |
| 5879 | bool CheckIs; |
| 5880 | if (I.isEquality()) { |
| 5881 | // (A & (A-1)) == 0 --> ctpop(A) < 2 (two commuted variants) |
| 5882 | // ((A-1) & A) != 0 --> ctpop(A) > 1 (two commuted variants) |
| 5883 | if (!match(V: Op0, P: m_OneUse(SubPattern: m_c_And(L: m_Add(L: m_Value(V&: A), R: m_AllOnes()), |
| 5884 | R: m_Deferred(V: A)))) || |
| 5885 | !match(V: Op1, P: m_ZeroInt())) |
| 5886 | A = nullptr; |
| 5887 | |
| 5888 | // (A & -A) == A --> ctpop(A) < 2 (four commuted variants) |
| 5889 | // (-A & A) != A --> ctpop(A) > 1 (four commuted variants) |
| 5890 | if (match(V: Op0, P: m_OneUse(SubPattern: m_c_And(L: m_Neg(V: m_Specific(V: Op1)), R: m_Specific(V: Op1))))) |
| 5891 | A = Op1; |
| 5892 | else if (match(V: Op1, |
| 5893 | P: m_OneUse(SubPattern: m_c_And(L: m_Neg(V: m_Specific(V: Op0)), R: m_Specific(V: Op0))))) |
| 5894 | A = Op0; |
| 5895 | |
| 5896 | CheckIs = Pred == ICmpInst::ICMP_EQ; |
| 5897 | } else if (ICmpInst::isUnsigned(predicate: Pred)) { |
| 5898 | // (A ^ (A-1)) u>= A --> ctpop(A) < 2 (two commuted variants) |
| 5899 | // ((A-1) ^ A) u< A --> ctpop(A) > 1 (two commuted variants) |
| 5900 | |
| 5901 | if ((Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_ULT) && |
| 5902 | match(V: Op0, P: m_OneUse(SubPattern: m_c_Xor(L: m_Add(L: m_Specific(V: Op1), R: m_AllOnes()), |
| 5903 | R: m_Specific(V: Op1))))) { |
| 5904 | A = Op1; |
| 5905 | CheckIs = Pred == ICmpInst::ICMP_UGE; |
| 5906 | } else if ((Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE) && |
| 5907 | match(V: Op1, P: m_OneUse(SubPattern: m_c_Xor(L: m_Add(L: m_Specific(V: Op0), R: m_AllOnes()), |
| 5908 | R: m_Specific(V: Op0))))) { |
| 5909 | A = Op0; |
| 5910 | CheckIs = Pred == ICmpInst::ICMP_ULE; |
| 5911 | } |
| 5912 | } |
| 5913 | |
| 5914 | if (A) { |
| 5915 | Type *Ty = A->getType(); |
| 5916 | CallInst *CtPop = Builder.CreateUnaryIntrinsic(ID: Intrinsic::ctpop, V: A); |
| 5917 | return CheckIs ? new ICmpInst(ICmpInst::ICMP_ULT, CtPop, |
| 5918 | ConstantInt::get(Ty, V: 2)) |
| 5919 | : new ICmpInst(ICmpInst::ICMP_UGT, CtPop, |
| 5920 | ConstantInt::get(Ty, V: 1)); |
| 5921 | } |
| 5922 | |
| 5923 | return nullptr; |
| 5924 | } |
| 5925 | |
| 5926 | /// Find all possible pairs (BinOp, RHS) that BinOp V, RHS can be simplified. |
| 5927 | using OffsetOp = std::pair<Instruction::BinaryOps, Value *>; |
| 5928 | static void collectOffsetOp(Value *V, SmallVectorImpl<OffsetOp> &Offsets, |
| 5929 | bool AllowRecursion) { |
| 5930 | Instruction *Inst = dyn_cast<Instruction>(Val: V); |
| 5931 | if (!Inst || !Inst->hasOneUse()) |
| 5932 | return; |
| 5933 | |
| 5934 | switch (Inst->getOpcode()) { |
| 5935 | case Instruction::Add: |
| 5936 | Offsets.emplace_back(Args: Instruction::Sub, Args: Inst->getOperand(i: 1)); |
| 5937 | Offsets.emplace_back(Args: Instruction::Sub, Args: Inst->getOperand(i: 0)); |
| 5938 | break; |
| 5939 | case Instruction::Sub: |
| 5940 | Offsets.emplace_back(Args: Instruction::Add, Args: Inst->getOperand(i: 1)); |
| 5941 | break; |
| 5942 | case Instruction::Xor: |
| 5943 | Offsets.emplace_back(Args: Instruction::Xor, Args: Inst->getOperand(i: 1)); |
| 5944 | Offsets.emplace_back(Args: Instruction::Xor, Args: Inst->getOperand(i: 0)); |
| 5945 | break; |
| 5946 | case Instruction::Shl: |
| 5947 | if (Inst->hasNoSignedWrap()) |
| 5948 | Offsets.emplace_back(Args: Instruction::AShr, Args: Inst->getOperand(i: 1)); |
| 5949 | if (Inst->hasNoUnsignedWrap()) |
| 5950 | Offsets.emplace_back(Args: Instruction::LShr, Args: Inst->getOperand(i: 1)); |
| 5951 | break; |
| 5952 | case Instruction::Select: |
| 5953 | if (AllowRecursion) { |
| 5954 | collectOffsetOp(V: Inst->getOperand(i: 1), Offsets, /*AllowRecursion=*/false); |
| 5955 | collectOffsetOp(V: Inst->getOperand(i: 2), Offsets, /*AllowRecursion=*/false); |
| 5956 | } |
| 5957 | break; |
| 5958 | default: |
| 5959 | break; |
| 5960 | } |
| 5961 | } |
| 5962 | |
| 5963 | enum class OffsetKind { Invalid, Value, Select }; |
| 5964 | |
| 5965 | struct OffsetResult { |
| 5966 | OffsetKind Kind; |
| 5967 | Value *V0, *V1, *V2; |
| 5968 | Instruction *MDFrom; |
| 5969 | |
| 5970 | static OffsetResult invalid() { |
| 5971 | return {.Kind: OffsetKind::Invalid, .V0: nullptr, .V1: nullptr, .V2: nullptr, .MDFrom: nullptr}; |
| 5972 | } |
| 5973 | static OffsetResult value(Value *V) { |
| 5974 | return {.Kind: OffsetKind::Value, .V0: V, .V1: nullptr, .V2: nullptr, .MDFrom: nullptr}; |
| 5975 | } |
| 5976 | static OffsetResult select(Value *Cond, Value *TrueV, Value *FalseV, |
| 5977 | Instruction *MDFrom) { |
| 5978 | return {.Kind: OffsetKind::Select, .V0: Cond, .V1: TrueV, .V2: FalseV, .MDFrom: MDFrom}; |
| 5979 | } |
| 5980 | bool isValid() const { return Kind != OffsetKind::Invalid; } |
| 5981 | Value *materialize(InstCombiner::BuilderTy &Builder) const { |
| 5982 | switch (Kind) { |
| 5983 | case OffsetKind::Invalid: |
| 5984 | llvm_unreachable("Invalid offset result" ); |
| 5985 | case OffsetKind::Value: |
| 5986 | return V0; |
| 5987 | case OffsetKind::Select: |
| 5988 | return Builder.CreateSelect( |
| 5989 | C: V0, True: V1, False: V2, Name: "" , MDFrom: ProfcheckDisableMetadataFixes ? nullptr : MDFrom); |
| 5990 | } |
| 5991 | llvm_unreachable("Unknown OffsetKind enum" ); |
| 5992 | } |
| 5993 | }; |
| 5994 | |
| 5995 | /// Offset both sides of an equality icmp to see if we can save some |
| 5996 | /// instructions: icmp eq/ne X, Y -> icmp eq/ne X op Z, Y op Z. |
| 5997 | /// Note: This operation should not introduce poison. |
| 5998 | static Instruction *foldICmpEqualityWithOffset(ICmpInst &I, |
| 5999 | InstCombiner::BuilderTy &Builder, |
| 6000 | const SimplifyQuery &SQ) { |
| 6001 | assert(I.isEquality() && "Expected an equality icmp" ); |
| 6002 | Value *Op0 = I.getOperand(i_nocapture: 0), *Op1 = I.getOperand(i_nocapture: 1); |
| 6003 | if (!Op0->getType()->isIntOrIntVectorTy()) |
| 6004 | return nullptr; |
| 6005 | |
| 6006 | SmallVector<OffsetOp, 4> OffsetOps; |
| 6007 | collectOffsetOp(V: Op0, Offsets&: OffsetOps, /*AllowRecursion=*/true); |
| 6008 | collectOffsetOp(V: Op1, Offsets&: OffsetOps, /*AllowRecursion=*/true); |
| 6009 | |
| 6010 | auto ApplyOffsetImpl = [&](Value *V, unsigned BinOpc, Value *RHS) -> Value * { |
| 6011 | switch (BinOpc) { |
| 6012 | // V = shl nsw X, RHS => X = ashr V, RHS |
| 6013 | case Instruction::AShr: { |
| 6014 | const APInt *CV, *CRHS; |
| 6015 | if (!(match(V, P: m_APInt(Res&: CV)) && match(V: RHS, P: m_APInt(Res&: CRHS)) && |
| 6016 | CV->ashr(ShiftAmt: *CRHS).shl(ShiftAmt: *CRHS) == *CV) && |
| 6017 | !match(V, P: m_NSWShl(L: m_Value(), R: m_Specific(V: RHS)))) |
| 6018 | return nullptr; |
| 6019 | break; |
| 6020 | } |
| 6021 | // V = shl nuw X, RHS => X = lshr V, RHS |
| 6022 | case Instruction::LShr: { |
| 6023 | const APInt *CV, *CRHS; |
| 6024 | if (!(match(V, P: m_APInt(Res&: CV)) && match(V: RHS, P: m_APInt(Res&: CRHS)) && |
| 6025 | CV->lshr(ShiftAmt: *CRHS).shl(ShiftAmt: *CRHS) == *CV) && |
| 6026 | !match(V, P: m_NUWShl(L: m_Value(), R: m_Specific(V: RHS)))) |
| 6027 | return nullptr; |
| 6028 | break; |
| 6029 | } |
| 6030 | default: |
| 6031 | break; |
| 6032 | } |
| 6033 | |
| 6034 | Value *Simplified = simplifyBinOp(Opcode: BinOpc, LHS: V, RHS, Q: SQ); |
| 6035 | if (!Simplified) |
| 6036 | return nullptr; |
| 6037 | // Reject constant expressions as they don't simplify things. |
| 6038 | if (isa<Constant>(Val: Simplified) && !match(V: Simplified, P: m_ImmConstant())) |
| 6039 | return nullptr; |
| 6040 | // Check if the transformation introduces poison. |
| 6041 | return impliesPoison(ValAssumedPoison: RHS, V) ? Simplified : nullptr; |
| 6042 | }; |
| 6043 | |
| 6044 | auto ApplyOffset = [&](Value *V, unsigned BinOpc, |
| 6045 | Value *RHS) -> OffsetResult { |
| 6046 | if (auto *Sel = dyn_cast<SelectInst>(Val: V)) { |
| 6047 | if (!Sel->hasOneUse()) |
| 6048 | return OffsetResult::invalid(); |
| 6049 | Value *TrueVal = ApplyOffsetImpl(Sel->getTrueValue(), BinOpc, RHS); |
| 6050 | if (!TrueVal) |
| 6051 | return OffsetResult::invalid(); |
| 6052 | Value *FalseVal = ApplyOffsetImpl(Sel->getFalseValue(), BinOpc, RHS); |
| 6053 | if (!FalseVal) |
| 6054 | return OffsetResult::invalid(); |
| 6055 | return OffsetResult::select(Cond: Sel->getCondition(), TrueV: TrueVal, FalseV: FalseVal, MDFrom: Sel); |
| 6056 | } |
| 6057 | if (Value *Simplified = ApplyOffsetImpl(V, BinOpc, RHS)) |
| 6058 | return OffsetResult::value(V: Simplified); |
| 6059 | return OffsetResult::invalid(); |
| 6060 | }; |
| 6061 | |
| 6062 | for (auto [BinOp, RHS] : OffsetOps) { |
| 6063 | auto BinOpc = static_cast<unsigned>(BinOp); |
| 6064 | |
| 6065 | auto Op0Result = ApplyOffset(Op0, BinOpc, RHS); |
| 6066 | if (!Op0Result.isValid()) |
| 6067 | continue; |
| 6068 | auto Op1Result = ApplyOffset(Op1, BinOpc, RHS); |
| 6069 | if (!Op1Result.isValid()) |
| 6070 | continue; |
| 6071 | |
| 6072 | Value *NewLHS = Op0Result.materialize(Builder); |
| 6073 | Value *NewRHS = Op1Result.materialize(Builder); |
| 6074 | return new ICmpInst(I.getPredicate(), NewLHS, NewRHS); |
| 6075 | } |
| 6076 | |
| 6077 | return nullptr; |
| 6078 | } |
| 6079 | |
| 6080 | Instruction *InstCombinerImpl::foldICmpEquality(ICmpInst &I) { |
| 6081 | if (!I.isEquality()) |
| 6082 | return nullptr; |
| 6083 | |
| 6084 | Value *Op0 = I.getOperand(i_nocapture: 0), *Op1 = I.getOperand(i_nocapture: 1); |
| 6085 | const CmpInst::Predicate Pred = I.getPredicate(); |
| 6086 | Value *A, *B, *C, *D; |
| 6087 | if (match(V: Op0, P: m_Xor(L: m_Value(V&: A), R: m_Value(V&: B)))) { |
| 6088 | if (A == Op1 || B == Op1) { // (A^B) == A -> B == 0 |
| 6089 | Value *OtherVal = A == Op1 ? B : A; |
| 6090 | return new ICmpInst(Pred, OtherVal, Constant::getNullValue(Ty: A->getType())); |
| 6091 | } |
| 6092 | |
| 6093 | if (match(V: Op1, P: m_Xor(L: m_Value(V&: C), R: m_Value(V&: D)))) { |
| 6094 | // A^c1 == C^c2 --> A == C^(c1^c2) |
| 6095 | ConstantInt *C1, *C2; |
| 6096 | if (match(V: B, P: m_ConstantInt(CI&: C1)) && match(V: D, P: m_ConstantInt(CI&: C2)) && |
| 6097 | Op1->hasOneUse()) { |
| 6098 | Constant *NC = Builder.getInt(AI: C1->getValue() ^ C2->getValue()); |
| 6099 | Value *Xor = Builder.CreateXor(LHS: C, RHS: NC); |
| 6100 | return new ICmpInst(Pred, A, Xor); |
| 6101 | } |
| 6102 | |
| 6103 | // A^B == A^D -> B == D |
| 6104 | if (A == C) |
| 6105 | return new ICmpInst(Pred, B, D); |
| 6106 | if (A == D) |
| 6107 | return new ICmpInst(Pred, B, C); |
| 6108 | if (B == C) |
| 6109 | return new ICmpInst(Pred, A, D); |
| 6110 | if (B == D) |
| 6111 | return new ICmpInst(Pred, A, C); |
| 6112 | } |
| 6113 | } |
| 6114 | |
| 6115 | if (match(V: Op1, P: m_Xor(L: m_Value(V&: A), R: m_Value(V&: B))) && (A == Op0 || B == Op0)) { |
| 6116 | // A == (A^B) -> B == 0 |
| 6117 | Value *OtherVal = A == Op0 ? B : A; |
| 6118 | return new ICmpInst(Pred, OtherVal, Constant::getNullValue(Ty: A->getType())); |
| 6119 | } |
| 6120 | |
| 6121 | // (X&Z) == (Y&Z) -> (X^Y) & Z == 0 |
| 6122 | if (match(V: Op0, P: m_And(L: m_Value(V&: A), R: m_Value(V&: B))) && |
| 6123 | match(V: Op1, P: m_And(L: m_Value(V&: C), R: m_Value(V&: D)))) { |
| 6124 | Value *X = nullptr, *Y = nullptr, *Z = nullptr; |
| 6125 | |
| 6126 | if (A == C) { |
| 6127 | X = B; |
| 6128 | Y = D; |
| 6129 | Z = A; |
| 6130 | } else if (A == D) { |
| 6131 | X = B; |
| 6132 | Y = C; |
| 6133 | Z = A; |
| 6134 | } else if (B == C) { |
| 6135 | X = A; |
| 6136 | Y = D; |
| 6137 | Z = B; |
| 6138 | } else if (B == D) { |
| 6139 | X = A; |
| 6140 | Y = C; |
| 6141 | Z = B; |
| 6142 | } |
| 6143 | |
| 6144 | if (X) { |
| 6145 | // If X^Y is a negative power of two, then `icmp eq/ne (Z & NegP2), 0` |
| 6146 | // will fold to `icmp ult/uge Z, -NegP2` incurringb no additional |
| 6147 | // instructions. |
| 6148 | const APInt *C0, *C1; |
| 6149 | bool XorIsNegP2 = match(V: X, P: m_APInt(Res&: C0)) && match(V: Y, P: m_APInt(Res&: C1)) && |
| 6150 | (*C0 ^ *C1).isNegatedPowerOf2(); |
| 6151 | |
| 6152 | // If either Op0/Op1 are both one use or X^Y will constant fold and one of |
| 6153 | // Op0/Op1 are one use, proceed. In those cases we are instruction neutral |
| 6154 | // but `icmp eq/ne A, 0` is easier to analyze than `icmp eq/ne A, B`. |
| 6155 | int UseCnt = |
| 6156 | int(Op0->hasOneUse()) + int(Op1->hasOneUse()) + |
| 6157 | (int(match(V: X, P: m_ImmConstant()) && match(V: Y, P: m_ImmConstant()))); |
| 6158 | if (XorIsNegP2 || UseCnt >= 2) { |
| 6159 | // Build (X^Y) & Z |
| 6160 | Op1 = Builder.CreateXor(LHS: X, RHS: Y); |
| 6161 | Op1 = Builder.CreateAnd(LHS: Op1, RHS: Z); |
| 6162 | return new ICmpInst(Pred, Op1, Constant::getNullValue(Ty: Op1->getType())); |
| 6163 | } |
| 6164 | } |
| 6165 | } |
| 6166 | |
| 6167 | { |
| 6168 | // Similar to above, but specialized for constant because invert is needed: |
| 6169 | // (X | C) == (Y | C) --> (X ^ Y) & ~C == 0 |
| 6170 | Value *X, *Y; |
| 6171 | Constant *C; |
| 6172 | if (match(V: Op0, P: m_OneUse(SubPattern: m_Or(L: m_Value(V&: X), R: m_Constant(C)))) && |
| 6173 | match(V: Op1, P: m_OneUse(SubPattern: m_Or(L: m_Value(V&: Y), R: m_Specific(V: C))))) { |
| 6174 | Value *Xor = Builder.CreateXor(LHS: X, RHS: Y); |
| 6175 | Value *And = Builder.CreateAnd(LHS: Xor, RHS: ConstantExpr::getNot(C)); |
| 6176 | return new ICmpInst(Pred, And, Constant::getNullValue(Ty: And->getType())); |
| 6177 | } |
| 6178 | } |
| 6179 | |
| 6180 | if (match(V: Op1, P: m_ZExt(Op: m_Value(V&: A))) && |
| 6181 | (Op0->hasOneUse() || Op1->hasOneUse())) { |
| 6182 | // (B & (Pow2C-1)) == zext A --> A == trunc B |
| 6183 | // (B & (Pow2C-1)) != zext A --> A != trunc B |
| 6184 | const APInt *MaskC; |
| 6185 | if (match(V: Op0, P: m_And(L: m_Value(V&: B), R: m_LowBitMask(V&: MaskC))) && |
| 6186 | MaskC->countr_one() == A->getType()->getScalarSizeInBits()) |
| 6187 | return new ICmpInst(Pred, A, Builder.CreateTrunc(V: B, DestTy: A->getType())); |
| 6188 | } |
| 6189 | |
| 6190 | // (A >> C) == (B >> C) --> (A^B) u< (1 << C) |
| 6191 | // For lshr and ashr pairs. |
| 6192 | const APInt *AP1, *AP2; |
| 6193 | if ((match(V: Op0, P: m_OneUse(SubPattern: m_LShr(L: m_Value(V&: A), R: m_APIntAllowPoison(Res&: AP1)))) && |
| 6194 | match(V: Op1, P: m_OneUse(SubPattern: m_LShr(L: m_Value(V&: B), R: m_APIntAllowPoison(Res&: AP2))))) || |
| 6195 | (match(V: Op0, P: m_OneUse(SubPattern: m_AShr(L: m_Value(V&: A), R: m_APIntAllowPoison(Res&: AP1)))) && |
| 6196 | match(V: Op1, P: m_OneUse(SubPattern: m_AShr(L: m_Value(V&: B), R: m_APIntAllowPoison(Res&: AP2)))))) { |
| 6197 | if (*AP1 != *AP2) |
| 6198 | return nullptr; |
| 6199 | unsigned TypeBits = AP1->getBitWidth(); |
| 6200 | unsigned ShAmt = AP1->getLimitedValue(Limit: TypeBits); |
| 6201 | if (ShAmt < TypeBits && ShAmt != 0) { |
| 6202 | ICmpInst::Predicate NewPred = |
| 6203 | Pred == ICmpInst::ICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT; |
| 6204 | Value *Xor = Builder.CreateXor(LHS: A, RHS: B, Name: I.getName() + ".unshifted" ); |
| 6205 | APInt CmpVal = APInt::getOneBitSet(numBits: TypeBits, BitNo: ShAmt); |
| 6206 | return new ICmpInst(NewPred, Xor, ConstantInt::get(Ty: A->getType(), V: CmpVal)); |
| 6207 | } |
| 6208 | } |
| 6209 | |
| 6210 | // (A << C) == (B << C) --> ((A^B) & (~0U >> C)) == 0 |
| 6211 | ConstantInt *Cst1; |
| 6212 | if (match(V: Op0, P: m_OneUse(SubPattern: m_Shl(L: m_Value(V&: A), R: m_ConstantInt(CI&: Cst1)))) && |
| 6213 | match(V: Op1, P: m_OneUse(SubPattern: m_Shl(L: m_Value(V&: B), R: m_Specific(V: Cst1))))) { |
| 6214 | unsigned TypeBits = Cst1->getBitWidth(); |
| 6215 | unsigned ShAmt = (unsigned)Cst1->getLimitedValue(Limit: TypeBits); |
| 6216 | if (ShAmt < TypeBits && ShAmt != 0) { |
| 6217 | Value *Xor = Builder.CreateXor(LHS: A, RHS: B, Name: I.getName() + ".unshifted" ); |
| 6218 | APInt AndVal = APInt::getLowBitsSet(numBits: TypeBits, loBitsSet: TypeBits - ShAmt); |
| 6219 | Value *And = |
| 6220 | Builder.CreateAnd(LHS: Xor, RHS: Builder.getInt(AI: AndVal), Name: I.getName() + ".mask" ); |
| 6221 | return new ICmpInst(Pred, And, Constant::getNullValue(Ty: Cst1->getType())); |
| 6222 | } |
| 6223 | } |
| 6224 | |
| 6225 | // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to |
| 6226 | // "icmp (and X, mask), cst" |
| 6227 | uint64_t ShAmt = 0; |
| 6228 | if (Op0->hasOneUse() && |
| 6229 | match(V: Op0, P: m_Trunc(Op: m_OneUse(SubPattern: m_LShr(L: m_Value(V&: A), R: m_ConstantInt(V&: ShAmt))))) && |
| 6230 | match(V: Op1, P: m_ConstantInt(CI&: Cst1)) && |
| 6231 | // Only do this when A has multiple uses. This is most important to do |
| 6232 | // when it exposes other optimizations. |
| 6233 | !A->hasOneUse()) { |
| 6234 | unsigned ASize = cast<IntegerType>(Val: A->getType())->getPrimitiveSizeInBits(); |
| 6235 | |
| 6236 | if (ShAmt < ASize) { |
| 6237 | APInt MaskV = |
| 6238 | APInt::getLowBitsSet(numBits: ASize, loBitsSet: Op0->getType()->getPrimitiveSizeInBits()); |
| 6239 | MaskV <<= ShAmt; |
| 6240 | |
| 6241 | APInt CmpV = Cst1->getValue().zext(width: ASize); |
| 6242 | CmpV <<= ShAmt; |
| 6243 | |
| 6244 | Value *Mask = Builder.CreateAnd(LHS: A, RHS: Builder.getInt(AI: MaskV)); |
| 6245 | return new ICmpInst(Pred, Mask, Builder.getInt(AI: CmpV)); |
| 6246 | } |
| 6247 | } |
| 6248 | |
| 6249 | if (Instruction *ICmp = foldICmpIntrinsicWithIntrinsic(Cmp&: I, Builder)) |
| 6250 | return ICmp; |
| 6251 | |
| 6252 | // Match icmp eq (trunc (lshr A, BW), (ashr (trunc A), BW-1)), which checks |
| 6253 | // the top BW/2 + 1 bits are all the same. Create "A >=s INT_MIN && A <=s |
| 6254 | // INT_MAX", which we generate as "icmp ult (add A, 2^(BW-1)), 2^BW" to skip a |
| 6255 | // few steps of instcombine. |
| 6256 | unsigned BitWidth = Op0->getType()->getScalarSizeInBits(); |
| 6257 | if (match(V: Op0, P: m_AShr(L: m_Trunc(Op: m_Value(V&: A)), R: m_SpecificInt(V: BitWidth - 1))) && |
| 6258 | match(V: Op1, P: m_Trunc(Op: m_LShr(L: m_Specific(V: A), R: m_SpecificInt(V: BitWidth)))) && |
| 6259 | A->getType()->getScalarSizeInBits() == BitWidth * 2 && |
| 6260 | (I.getOperand(i_nocapture: 0)->hasOneUse() || I.getOperand(i_nocapture: 1)->hasOneUse())) { |
| 6261 | APInt C = APInt::getOneBitSet(numBits: BitWidth * 2, BitNo: BitWidth - 1); |
| 6262 | Value *Add = Builder.CreateAdd(LHS: A, RHS: ConstantInt::get(Ty: A->getType(), V: C)); |
| 6263 | return new ICmpInst(Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_ULT |
| 6264 | : ICmpInst::ICMP_UGE, |
| 6265 | Add, ConstantInt::get(Ty: A->getType(), V: C.shl(shiftAmt: 1))); |
| 6266 | } |
| 6267 | |
| 6268 | // Canonicalize: |
| 6269 | // Assume B_Pow2 != 0 |
| 6270 | // 1. A & B_Pow2 != B_Pow2 -> A & B_Pow2 == 0 |
| 6271 | // 2. A & B_Pow2 == B_Pow2 -> A & B_Pow2 != 0 |
| 6272 | if (match(V: Op0, P: m_c_And(L: m_Specific(V: Op1), R: m_Value())) && |
| 6273 | isKnownToBeAPowerOfTwo(V: Op1, /* OrZero */ false, CxtI: &I)) |
| 6274 | return new ICmpInst(CmpInst::getInversePredicate(pred: Pred), Op0, |
| 6275 | ConstantInt::getNullValue(Ty: Op0->getType())); |
| 6276 | |
| 6277 | if (match(V: Op1, P: m_c_And(L: m_Specific(V: Op0), R: m_Value())) && |
| 6278 | isKnownToBeAPowerOfTwo(V: Op0, /* OrZero */ false, CxtI: &I)) |
| 6279 | return new ICmpInst(CmpInst::getInversePredicate(pred: Pred), Op1, |
| 6280 | ConstantInt::getNullValue(Ty: Op1->getType())); |
| 6281 | |
| 6282 | // Canonicalize: |
| 6283 | // icmp eq/ne X, OneUse(rotate-right(X)) |
| 6284 | // -> icmp eq/ne X, rotate-left(X) |
| 6285 | // We generally try to convert rotate-right -> rotate-left, this just |
| 6286 | // canonicalizes another case. |
| 6287 | if (match(V: &I, P: m_c_ICmp(L: m_Value(V&: A), |
| 6288 | R: m_OneUse(SubPattern: m_Intrinsic<Intrinsic::fshr>( |
| 6289 | Op0: m_Deferred(V: A), Op1: m_Deferred(V: A), Op2: m_Value(V&: B)))))) |
| 6290 | return new ICmpInst( |
| 6291 | Pred, A, |
| 6292 | Builder.CreateIntrinsic(RetTy: Op0->getType(), ID: Intrinsic::fshl, Args: {A, A, B})); |
| 6293 | |
| 6294 | // Canonicalize: |
| 6295 | // icmp eq/ne OneUse(A ^ Cst), B --> icmp eq/ne (A ^ B), Cst |
| 6296 | Constant *Cst; |
| 6297 | if (match(V: &I, P: m_c_ICmp(L: m_OneUse(SubPattern: m_Xor(L: m_Value(V&: A), R: m_ImmConstant(C&: Cst))), |
| 6298 | R: m_CombineAnd(L: m_Value(V&: B), R: m_Unless(M: m_ImmConstant()))))) |
| 6299 | return new ICmpInst(Pred, Builder.CreateXor(LHS: A, RHS: B), Cst); |
| 6300 | |
| 6301 | { |
| 6302 | // (icmp eq/ne (and (add/sub/xor X, P2), P2), P2) |
| 6303 | auto m_Matcher = |
| 6304 | m_CombineOr(L: m_CombineOr(L: m_c_Add(L: m_Value(V&: B), R: m_Deferred(V: A)), |
| 6305 | R: m_c_Xor(L: m_Value(V&: B), R: m_Deferred(V: A))), |
| 6306 | R: m_Sub(L: m_Value(V&: B), R: m_Deferred(V: A))); |
| 6307 | std::optional<bool> IsZero = std::nullopt; |
| 6308 | if (match(V: &I, P: m_c_ICmp(L: m_OneUse(SubPattern: m_c_And(L: m_Value(V&: A), R: m_Matcher)), |
| 6309 | R: m_Deferred(V: A)))) |
| 6310 | IsZero = false; |
| 6311 | // (icmp eq/ne (and (add/sub/xor X, P2), P2), 0) |
| 6312 | else if (match(V: &I, |
| 6313 | P: m_ICmp(L: m_OneUse(SubPattern: m_c_And(L: m_Value(V&: A), R: m_Matcher)), R: m_Zero()))) |
| 6314 | IsZero = true; |
| 6315 | |
| 6316 | if (IsZero && isKnownToBeAPowerOfTwo(V: A, /* OrZero */ true, CxtI: &I)) |
| 6317 | // (icmp eq/ne (and (add/sub/xor X, P2), P2), P2) |
| 6318 | // -> (icmp eq/ne (and X, P2), 0) |
| 6319 | // (icmp eq/ne (and (add/sub/xor X, P2), P2), 0) |
| 6320 | // -> (icmp eq/ne (and X, P2), P2) |
| 6321 | return new ICmpInst(Pred, Builder.CreateAnd(LHS: B, RHS: A), |
| 6322 | *IsZero ? A |
| 6323 | : ConstantInt::getNullValue(Ty: A->getType())); |
| 6324 | } |
| 6325 | |
| 6326 | if (auto *Res = foldICmpEqualityWithOffset( |
| 6327 | I, Builder, SQ: getSimplifyQuery().getWithInstruction(I: &I))) |
| 6328 | return Res; |
| 6329 | |
| 6330 | return nullptr; |
| 6331 | } |
| 6332 | |
| 6333 | Instruction *InstCombinerImpl::foldICmpWithTrunc(ICmpInst &ICmp) { |
| 6334 | ICmpInst::Predicate Pred = ICmp.getPredicate(); |
| 6335 | Value *Op0 = ICmp.getOperand(i_nocapture: 0), *Op1 = ICmp.getOperand(i_nocapture: 1); |
| 6336 | |
| 6337 | // Try to canonicalize trunc + compare-to-constant into a mask + cmp. |
| 6338 | // The trunc masks high bits while the compare may effectively mask low bits. |
| 6339 | Value *X; |
| 6340 | const APInt *C; |
| 6341 | if (!match(V: Op0, P: m_OneUse(SubPattern: m_Trunc(Op: m_Value(V&: X)))) || !match(V: Op1, P: m_APInt(Res&: C))) |
| 6342 | return nullptr; |
| 6343 | |
| 6344 | // This matches patterns corresponding to tests of the signbit as well as: |
| 6345 | // (trunc X) pred C2 --> (X & Mask) == C |
| 6346 | if (auto Res = decomposeBitTestICmp(LHS: Op0, RHS: Op1, Pred, /*LookThroughTrunc=*/true, |
| 6347 | /*AllowNonZeroC=*/true)) { |
| 6348 | Value *And = Builder.CreateAnd(LHS: Res->X, RHS: Res->Mask); |
| 6349 | Constant *C = ConstantInt::get(Ty: Res->X->getType(), V: Res->C); |
| 6350 | return new ICmpInst(Res->Pred, And, C); |
| 6351 | } |
| 6352 | |
| 6353 | unsigned SrcBits = X->getType()->getScalarSizeInBits(); |
| 6354 | if (auto *II = dyn_cast<IntrinsicInst>(Val: X)) { |
| 6355 | if (II->getIntrinsicID() == Intrinsic::cttz || |
| 6356 | II->getIntrinsicID() == Intrinsic::ctlz) { |
| 6357 | unsigned MaxRet = SrcBits; |
| 6358 | // If the "is_zero_poison" argument is set, then we know at least |
| 6359 | // one bit is set in the input, so the result is always at least one |
| 6360 | // less than the full bitwidth of that input. |
| 6361 | if (match(V: II->getArgOperand(i: 1), P: m_One())) |
| 6362 | MaxRet--; |
| 6363 | |
| 6364 | // Make sure the destination is wide enough to hold the largest output of |
| 6365 | // the intrinsic. |
| 6366 | if (llvm::Log2_32(Value: MaxRet) + 1 <= Op0->getType()->getScalarSizeInBits()) |
| 6367 | if (Instruction *I = |
| 6368 | foldICmpIntrinsicWithConstant(Cmp&: ICmp, II, C: C->zext(width: SrcBits))) |
| 6369 | return I; |
| 6370 | } |
| 6371 | } |
| 6372 | |
| 6373 | return nullptr; |
| 6374 | } |
| 6375 | |
| 6376 | Instruction *InstCombinerImpl::foldICmpWithZextOrSext(ICmpInst &ICmp) { |
| 6377 | assert(isa<CastInst>(ICmp.getOperand(0)) && "Expected cast for operand 0" ); |
| 6378 | auto *CastOp0 = cast<CastInst>(Val: ICmp.getOperand(i_nocapture: 0)); |
| 6379 | Value *X; |
| 6380 | if (!match(V: CastOp0, P: m_ZExtOrSExt(Op: m_Value(V&: X)))) |
| 6381 | return nullptr; |
| 6382 | |
| 6383 | bool IsSignedExt = CastOp0->getOpcode() == Instruction::SExt; |
| 6384 | bool IsSignedCmp = ICmp.isSigned(); |
| 6385 | |
| 6386 | // icmp Pred (ext X), (ext Y) |
| 6387 | Value *Y; |
| 6388 | if (match(V: ICmp.getOperand(i_nocapture: 1), P: m_ZExtOrSExt(Op: m_Value(V&: Y)))) { |
| 6389 | bool IsZext0 = isa<ZExtInst>(Val: ICmp.getOperand(i_nocapture: 0)); |
| 6390 | bool IsZext1 = isa<ZExtInst>(Val: ICmp.getOperand(i_nocapture: 1)); |
| 6391 | |
| 6392 | if (IsZext0 != IsZext1) { |
| 6393 | // If X and Y and both i1 |
| 6394 | // (icmp eq/ne (zext X) (sext Y)) |
| 6395 | // eq -> (icmp eq (or X, Y), 0) |
| 6396 | // ne -> (icmp ne (or X, Y), 0) |
| 6397 | if (ICmp.isEquality() && X->getType()->isIntOrIntVectorTy(BitWidth: 1) && |
| 6398 | Y->getType()->isIntOrIntVectorTy(BitWidth: 1)) |
| 6399 | return new ICmpInst(ICmp.getPredicate(), Builder.CreateOr(LHS: X, RHS: Y), |
| 6400 | Constant::getNullValue(Ty: X->getType())); |
| 6401 | |
| 6402 | // If we have mismatched casts and zext has the nneg flag, we can |
| 6403 | // treat the "zext nneg" as "sext". Otherwise, we cannot fold and quit. |
| 6404 | |
| 6405 | auto *NonNegInst0 = dyn_cast<PossiblyNonNegInst>(Val: ICmp.getOperand(i_nocapture: 0)); |
| 6406 | auto *NonNegInst1 = dyn_cast<PossiblyNonNegInst>(Val: ICmp.getOperand(i_nocapture: 1)); |
| 6407 | |
| 6408 | bool IsNonNeg0 = NonNegInst0 && NonNegInst0->hasNonNeg(); |
| 6409 | bool IsNonNeg1 = NonNegInst1 && NonNegInst1->hasNonNeg(); |
| 6410 | |
| 6411 | if ((IsZext0 && IsNonNeg0) || (IsZext1 && IsNonNeg1)) |
| 6412 | IsSignedExt = true; |
| 6413 | else |
| 6414 | return nullptr; |
| 6415 | } |
| 6416 | |
| 6417 | // Not an extension from the same type? |
| 6418 | Type *XTy = X->getType(), *YTy = Y->getType(); |
| 6419 | if (XTy != YTy) { |
| 6420 | // One of the casts must have one use because we are creating a new cast. |
| 6421 | if (!ICmp.getOperand(i_nocapture: 0)->hasOneUse() && !ICmp.getOperand(i_nocapture: 1)->hasOneUse()) |
| 6422 | return nullptr; |
| 6423 | // Extend the narrower operand to the type of the wider operand. |
| 6424 | CastInst::CastOps CastOpcode = |
| 6425 | IsSignedExt ? Instruction::SExt : Instruction::ZExt; |
| 6426 | if (XTy->getScalarSizeInBits() < YTy->getScalarSizeInBits()) |
| 6427 | X = Builder.CreateCast(Op: CastOpcode, V: X, DestTy: YTy); |
| 6428 | else if (YTy->getScalarSizeInBits() < XTy->getScalarSizeInBits()) |
| 6429 | Y = Builder.CreateCast(Op: CastOpcode, V: Y, DestTy: XTy); |
| 6430 | else |
| 6431 | return nullptr; |
| 6432 | } |
| 6433 | |
| 6434 | // (zext X) == (zext Y) --> X == Y |
| 6435 | // (sext X) == (sext Y) --> X == Y |
| 6436 | if (ICmp.isEquality()) |
| 6437 | return new ICmpInst(ICmp.getPredicate(), X, Y); |
| 6438 | |
| 6439 | // A signed comparison of sign extended values simplifies into a |
| 6440 | // signed comparison. |
| 6441 | if (IsSignedCmp && IsSignedExt) |
| 6442 | return new ICmpInst(ICmp.getPredicate(), X, Y); |
| 6443 | |
| 6444 | // The other three cases all fold into an unsigned comparison. |
| 6445 | return new ICmpInst(ICmp.getUnsignedPredicate(), X, Y); |
| 6446 | } |
| 6447 | |
| 6448 | // Below here, we are only folding a compare with constant. |
| 6449 | auto *C = dyn_cast<Constant>(Val: ICmp.getOperand(i_nocapture: 1)); |
| 6450 | if (!C) |
| 6451 | return nullptr; |
| 6452 | |
| 6453 | // If a lossless truncate is possible... |
| 6454 | Type *SrcTy = CastOp0->getSrcTy(); |
| 6455 | Constant *Res = getLosslessInvCast(C, InvCastTo: SrcTy, CastOp: CastOp0->getOpcode(), DL); |
| 6456 | if (Res) { |
| 6457 | if (ICmp.isEquality()) |
| 6458 | return new ICmpInst(ICmp.getPredicate(), X, Res); |
| 6459 | |
| 6460 | // A signed comparison of sign extended values simplifies into a |
| 6461 | // signed comparison. |
| 6462 | if (IsSignedExt && IsSignedCmp) |
| 6463 | return new ICmpInst(ICmp.getPredicate(), X, Res); |
| 6464 | |
| 6465 | // The other three cases all fold into an unsigned comparison. |
| 6466 | return new ICmpInst(ICmp.getUnsignedPredicate(), X, Res); |
| 6467 | } |
| 6468 | |
| 6469 | // The re-extended constant changed, partly changed (in the case of a vector), |
| 6470 | // or could not be determined to be equal (in the case of a constant |
| 6471 | // expression), so the constant cannot be represented in the shorter type. |
| 6472 | // All the cases that fold to true or false will have already been handled |
| 6473 | // by simplifyICmpInst, so only deal with the tricky case. |
| 6474 | if (IsSignedCmp || !IsSignedExt || !isa<ConstantInt>(Val: C)) |
| 6475 | return nullptr; |
| 6476 | |
| 6477 | // Is source op positive? |
| 6478 | // icmp ult (sext X), C --> icmp sgt X, -1 |
| 6479 | if (ICmp.getPredicate() == ICmpInst::ICMP_ULT) |
| 6480 | return new ICmpInst(CmpInst::ICMP_SGT, X, Constant::getAllOnesValue(Ty: SrcTy)); |
| 6481 | |
| 6482 | // Is source op negative? |
| 6483 | // icmp ugt (sext X), C --> icmp slt X, 0 |
| 6484 | assert(ICmp.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!" ); |
| 6485 | return new ICmpInst(CmpInst::ICMP_SLT, X, Constant::getNullValue(Ty: SrcTy)); |
| 6486 | } |
| 6487 | |
| 6488 | /// Handle icmp (cast x), (cast or constant). |
| 6489 | Instruction *InstCombinerImpl::foldICmpWithCastOp(ICmpInst &ICmp) { |
| 6490 | // If any operand of ICmp is a inttoptr roundtrip cast then remove it as |
| 6491 | // icmp compares only pointer's value. |
| 6492 | // icmp (inttoptr (ptrtoint p1)), p2 --> icmp p1, p2. |
| 6493 | Value *SimplifiedOp0 = simplifyIntToPtrRoundTripCast(Val: ICmp.getOperand(i_nocapture: 0)); |
| 6494 | Value *SimplifiedOp1 = simplifyIntToPtrRoundTripCast(Val: ICmp.getOperand(i_nocapture: 1)); |
| 6495 | if (SimplifiedOp0 || SimplifiedOp1) |
| 6496 | return new ICmpInst(ICmp.getPredicate(), |
| 6497 | SimplifiedOp0 ? SimplifiedOp0 : ICmp.getOperand(i_nocapture: 0), |
| 6498 | SimplifiedOp1 ? SimplifiedOp1 : ICmp.getOperand(i_nocapture: 1)); |
| 6499 | |
| 6500 | auto *CastOp0 = dyn_cast<CastInst>(Val: ICmp.getOperand(i_nocapture: 0)); |
| 6501 | if (!CastOp0) |
| 6502 | return nullptr; |
| 6503 | if (!isa<Constant>(Val: ICmp.getOperand(i_nocapture: 1)) && !isa<CastInst>(Val: ICmp.getOperand(i_nocapture: 1))) |
| 6504 | return nullptr; |
| 6505 | |
| 6506 | Value *Op0Src = CastOp0->getOperand(i_nocapture: 0); |
| 6507 | Type *SrcTy = CastOp0->getSrcTy(); |
| 6508 | Type *DestTy = CastOp0->getDestTy(); |
| 6509 | |
| 6510 | // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the |
| 6511 | // integer type is the same size as the pointer type. |
| 6512 | auto CompatibleSizes = [&](Type *PtrTy, Type *IntTy) { |
| 6513 | if (isa<VectorType>(Val: PtrTy)) { |
| 6514 | PtrTy = cast<VectorType>(Val: PtrTy)->getElementType(); |
| 6515 | IntTy = cast<VectorType>(Val: IntTy)->getElementType(); |
| 6516 | } |
| 6517 | return DL.getPointerTypeSizeInBits(PtrTy) == IntTy->getIntegerBitWidth(); |
| 6518 | }; |
| 6519 | if (CastOp0->getOpcode() == Instruction::PtrToInt && |
| 6520 | CompatibleSizes(SrcTy, DestTy)) { |
| 6521 | Value *NewOp1 = nullptr; |
| 6522 | if (auto *PtrToIntOp1 = dyn_cast<PtrToIntOperator>(Val: ICmp.getOperand(i_nocapture: 1))) { |
| 6523 | Value *PtrSrc = PtrToIntOp1->getOperand(i_nocapture: 0); |
| 6524 | if (PtrSrc->getType() == Op0Src->getType()) |
| 6525 | NewOp1 = PtrToIntOp1->getOperand(i_nocapture: 0); |
| 6526 | } else if (auto *RHSC = dyn_cast<Constant>(Val: ICmp.getOperand(i_nocapture: 1))) { |
| 6527 | NewOp1 = ConstantExpr::getIntToPtr(C: RHSC, Ty: SrcTy); |
| 6528 | } |
| 6529 | |
| 6530 | if (NewOp1) |
| 6531 | return new ICmpInst(ICmp.getPredicate(), Op0Src, NewOp1); |
| 6532 | } |
| 6533 | |
| 6534 | // Do the same in the other direction for icmp (inttoptr x), (inttoptr/c). |
| 6535 | if (CastOp0->getOpcode() == Instruction::IntToPtr && |
| 6536 | CompatibleSizes(DestTy, SrcTy)) { |
| 6537 | Value *NewOp1 = nullptr; |
| 6538 | if (auto *IntToPtrOp1 = dyn_cast<IntToPtrInst>(Val: ICmp.getOperand(i_nocapture: 1))) { |
| 6539 | Value *IntSrc = IntToPtrOp1->getOperand(i_nocapture: 0); |
| 6540 | if (IntSrc->getType() == Op0Src->getType()) |
| 6541 | NewOp1 = IntToPtrOp1->getOperand(i_nocapture: 0); |
| 6542 | } else if (auto *RHSC = dyn_cast<Constant>(Val: ICmp.getOperand(i_nocapture: 1))) { |
| 6543 | NewOp1 = ConstantFoldConstant(C: ConstantExpr::getPtrToInt(C: RHSC, Ty: SrcTy), DL); |
| 6544 | } |
| 6545 | |
| 6546 | if (NewOp1) |
| 6547 | return new ICmpInst(ICmp.getPredicate(), Op0Src, NewOp1); |
| 6548 | } |
| 6549 | |
| 6550 | if (Instruction *R = foldICmpWithTrunc(ICmp)) |
| 6551 | return R; |
| 6552 | |
| 6553 | return foldICmpWithZextOrSext(ICmp); |
| 6554 | } |
| 6555 | |
| 6556 | static bool isNeutralValue(Instruction::BinaryOps BinaryOp, Value *RHS, |
| 6557 | bool IsSigned) { |
| 6558 | switch (BinaryOp) { |
| 6559 | default: |
| 6560 | llvm_unreachable("Unsupported binary op" ); |
| 6561 | case Instruction::Add: |
| 6562 | case Instruction::Sub: |
| 6563 | return match(V: RHS, P: m_Zero()); |
| 6564 | case Instruction::Mul: |
| 6565 | return !(RHS->getType()->isIntOrIntVectorTy(BitWidth: 1) && IsSigned) && |
| 6566 | match(V: RHS, P: m_One()); |
| 6567 | } |
| 6568 | } |
| 6569 | |
| 6570 | OverflowResult |
| 6571 | InstCombinerImpl::computeOverflow(Instruction::BinaryOps BinaryOp, |
| 6572 | bool IsSigned, Value *LHS, Value *RHS, |
| 6573 | Instruction *CxtI) const { |
| 6574 | switch (BinaryOp) { |
| 6575 | default: |
| 6576 | llvm_unreachable("Unsupported binary op" ); |
| 6577 | case Instruction::Add: |
| 6578 | if (IsSigned) |
| 6579 | return computeOverflowForSignedAdd(LHS, RHS, CxtI); |
| 6580 | else |
| 6581 | return computeOverflowForUnsignedAdd(LHS, RHS, CxtI); |
| 6582 | case Instruction::Sub: |
| 6583 | if (IsSigned) |
| 6584 | return computeOverflowForSignedSub(LHS, RHS, CxtI); |
| 6585 | else |
| 6586 | return computeOverflowForUnsignedSub(LHS, RHS, CxtI); |
| 6587 | case Instruction::Mul: |
| 6588 | if (IsSigned) |
| 6589 | return computeOverflowForSignedMul(LHS, RHS, CxtI); |
| 6590 | else |
| 6591 | return computeOverflowForUnsignedMul(LHS, RHS, CxtI); |
| 6592 | } |
| 6593 | } |
| 6594 | |
| 6595 | bool InstCombinerImpl::OptimizeOverflowCheck(Instruction::BinaryOps BinaryOp, |
| 6596 | bool IsSigned, Value *LHS, |
| 6597 | Value *RHS, Instruction &OrigI, |
| 6598 | Value *&Result, |
| 6599 | Constant *&Overflow) { |
| 6600 | if (OrigI.isCommutative() && isa<Constant>(Val: LHS) && !isa<Constant>(Val: RHS)) |
| 6601 | std::swap(a&: LHS, b&: RHS); |
| 6602 | |
| 6603 | // If the overflow check was an add followed by a compare, the insertion point |
| 6604 | // may be pointing to the compare. We want to insert the new instructions |
| 6605 | // before the add in case there are uses of the add between the add and the |
| 6606 | // compare. |
| 6607 | Builder.SetInsertPoint(&OrigI); |
| 6608 | |
| 6609 | Type *OverflowTy = Type::getInt1Ty(C&: LHS->getContext()); |
| 6610 | if (auto *LHSTy = dyn_cast<VectorType>(Val: LHS->getType())) |
| 6611 | OverflowTy = VectorType::get(ElementType: OverflowTy, EC: LHSTy->getElementCount()); |
| 6612 | |
| 6613 | if (isNeutralValue(BinaryOp, RHS, IsSigned)) { |
| 6614 | Result = LHS; |
| 6615 | Overflow = ConstantInt::getFalse(Ty: OverflowTy); |
| 6616 | return true; |
| 6617 | } |
| 6618 | |
| 6619 | switch (computeOverflow(BinaryOp, IsSigned, LHS, RHS, CxtI: &OrigI)) { |
| 6620 | case OverflowResult::MayOverflow: |
| 6621 | return false; |
| 6622 | case OverflowResult::AlwaysOverflowsLow: |
| 6623 | case OverflowResult::AlwaysOverflowsHigh: |
| 6624 | Result = Builder.CreateBinOp(Opc: BinaryOp, LHS, RHS); |
| 6625 | Result->takeName(V: &OrigI); |
| 6626 | Overflow = ConstantInt::getTrue(Ty: OverflowTy); |
| 6627 | return true; |
| 6628 | case OverflowResult::NeverOverflows: |
| 6629 | Result = Builder.CreateBinOp(Opc: BinaryOp, LHS, RHS); |
| 6630 | Result->takeName(V: &OrigI); |
| 6631 | Overflow = ConstantInt::getFalse(Ty: OverflowTy); |
| 6632 | if (auto *Inst = dyn_cast<Instruction>(Val: Result)) { |
| 6633 | if (IsSigned) |
| 6634 | Inst->setHasNoSignedWrap(); |
| 6635 | else |
| 6636 | Inst->setHasNoUnsignedWrap(); |
| 6637 | } |
| 6638 | return true; |
| 6639 | } |
| 6640 | |
| 6641 | llvm_unreachable("Unexpected overflow result" ); |
| 6642 | } |
| 6643 | |
| 6644 | /// Recognize and process idiom involving test for multiplication |
| 6645 | /// overflow. |
| 6646 | /// |
| 6647 | /// The caller has matched a pattern of the form: |
| 6648 | /// I = cmp u (mul(zext A, zext B), V |
| 6649 | /// The function checks if this is a test for overflow and if so replaces |
| 6650 | /// multiplication with call to 'mul.with.overflow' intrinsic. |
| 6651 | /// |
| 6652 | /// \param I Compare instruction. |
| 6653 | /// \param MulVal Result of 'mult' instruction. It is one of the arguments of |
| 6654 | /// the compare instruction. Must be of integer type. |
| 6655 | /// \param OtherVal The other argument of compare instruction. |
| 6656 | /// \returns Instruction which must replace the compare instruction, NULL if no |
| 6657 | /// replacement required. |
| 6658 | static Instruction *processUMulZExtIdiom(ICmpInst &I, Value *MulVal, |
| 6659 | const APInt *OtherVal, |
| 6660 | InstCombinerImpl &IC) { |
| 6661 | // Don't bother doing this transformation for pointers, don't do it for |
| 6662 | // vectors. |
| 6663 | if (!isa<IntegerType>(Val: MulVal->getType())) |
| 6664 | return nullptr; |
| 6665 | |
| 6666 | auto *MulInstr = dyn_cast<Instruction>(Val: MulVal); |
| 6667 | if (!MulInstr) |
| 6668 | return nullptr; |
| 6669 | assert(MulInstr->getOpcode() == Instruction::Mul); |
| 6670 | |
| 6671 | auto *LHS = cast<ZExtInst>(Val: MulInstr->getOperand(i: 0)), |
| 6672 | *RHS = cast<ZExtInst>(Val: MulInstr->getOperand(i: 1)); |
| 6673 | assert(LHS->getOpcode() == Instruction::ZExt); |
| 6674 | assert(RHS->getOpcode() == Instruction::ZExt); |
| 6675 | Value *A = LHS->getOperand(i_nocapture: 0), *B = RHS->getOperand(i_nocapture: 0); |
| 6676 | |
| 6677 | // Calculate type and width of the result produced by mul.with.overflow. |
| 6678 | Type *TyA = A->getType(), *TyB = B->getType(); |
| 6679 | unsigned WidthA = TyA->getPrimitiveSizeInBits(), |
| 6680 | WidthB = TyB->getPrimitiveSizeInBits(); |
| 6681 | unsigned MulWidth; |
| 6682 | Type *MulType; |
| 6683 | if (WidthB > WidthA) { |
| 6684 | MulWidth = WidthB; |
| 6685 | MulType = TyB; |
| 6686 | } else { |
| 6687 | MulWidth = WidthA; |
| 6688 | MulType = TyA; |
| 6689 | } |
| 6690 | |
| 6691 | // In order to replace the original mul with a narrower mul.with.overflow, |
| 6692 | // all uses must ignore upper bits of the product. The number of used low |
| 6693 | // bits must be not greater than the width of mul.with.overflow. |
| 6694 | if (MulVal->hasNUsesOrMore(N: 2)) |
| 6695 | for (User *U : MulVal->users()) { |
| 6696 | if (U == &I) |
| 6697 | continue; |
| 6698 | if (TruncInst *TI = dyn_cast<TruncInst>(Val: U)) { |
| 6699 | // Check if truncation ignores bits above MulWidth. |
| 6700 | unsigned TruncWidth = TI->getType()->getPrimitiveSizeInBits(); |
| 6701 | if (TruncWidth > MulWidth) |
| 6702 | return nullptr; |
| 6703 | } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Val: U)) { |
| 6704 | // Check if AND ignores bits above MulWidth. |
| 6705 | if (BO->getOpcode() != Instruction::And) |
| 6706 | return nullptr; |
| 6707 | if (ConstantInt *CI = dyn_cast<ConstantInt>(Val: BO->getOperand(i_nocapture: 1))) { |
| 6708 | const APInt &CVal = CI->getValue(); |
| 6709 | if (CVal.getBitWidth() - CVal.countl_zero() > MulWidth) |
| 6710 | return nullptr; |
| 6711 | } else { |
| 6712 | // In this case we could have the operand of the binary operation |
| 6713 | // being defined in another block, and performing the replacement |
| 6714 | // could break the dominance relation. |
| 6715 | return nullptr; |
| 6716 | } |
| 6717 | } else { |
| 6718 | // Other uses prohibit this transformation. |
| 6719 | return nullptr; |
| 6720 | } |
| 6721 | } |
| 6722 | |
| 6723 | // Recognize patterns |
| 6724 | switch (I.getPredicate()) { |
| 6725 | case ICmpInst::ICMP_UGT: { |
| 6726 | // Recognize pattern: |
| 6727 | // mulval = mul(zext A, zext B) |
| 6728 | // cmp ugt mulval, max |
| 6729 | APInt MaxVal = APInt::getMaxValue(numBits: MulWidth); |
| 6730 | MaxVal = MaxVal.zext(width: OtherVal->getBitWidth()); |
| 6731 | if (MaxVal.eq(RHS: *OtherVal)) |
| 6732 | break; // Recognized |
| 6733 | return nullptr; |
| 6734 | } |
| 6735 | |
| 6736 | case ICmpInst::ICMP_ULT: { |
| 6737 | // Recognize pattern: |
| 6738 | // mulval = mul(zext A, zext B) |
| 6739 | // cmp ule mulval, max + 1 |
| 6740 | APInt MaxVal = APInt::getOneBitSet(numBits: OtherVal->getBitWidth(), BitNo: MulWidth); |
| 6741 | if (MaxVal.eq(RHS: *OtherVal)) |
| 6742 | break; // Recognized |
| 6743 | return nullptr; |
| 6744 | } |
| 6745 | |
| 6746 | default: |
| 6747 | return nullptr; |
| 6748 | } |
| 6749 | |
| 6750 | InstCombiner::BuilderTy &Builder = IC.Builder; |
| 6751 | Builder.SetInsertPoint(MulInstr); |
| 6752 | |
| 6753 | // Replace: mul(zext A, zext B) --> mul.with.overflow(A, B) |
| 6754 | Value *MulA = A, *MulB = B; |
| 6755 | if (WidthA < MulWidth) |
| 6756 | MulA = Builder.CreateZExt(V: A, DestTy: MulType); |
| 6757 | if (WidthB < MulWidth) |
| 6758 | MulB = Builder.CreateZExt(V: B, DestTy: MulType); |
| 6759 | CallInst *Call = |
| 6760 | Builder.CreateIntrinsic(ID: Intrinsic::umul_with_overflow, Types: MulType, |
| 6761 | Args: {MulA, MulB}, /*FMFSource=*/nullptr, Name: "umul" ); |
| 6762 | IC.addToWorklist(I: MulInstr); |
| 6763 | |
| 6764 | // If there are uses of mul result other than the comparison, we know that |
| 6765 | // they are truncation or binary AND. Change them to use result of |
| 6766 | // mul.with.overflow and adjust properly mask/size. |
| 6767 | if (MulVal->hasNUsesOrMore(N: 2)) { |
| 6768 | Value *Mul = Builder.CreateExtractValue(Agg: Call, Idxs: 0, Name: "umul.value" ); |
| 6769 | for (User *U : make_early_inc_range(Range: MulVal->users())) { |
| 6770 | if (U == &I) |
| 6771 | continue; |
| 6772 | if (TruncInst *TI = dyn_cast<TruncInst>(Val: U)) { |
| 6773 | if (TI->getType()->getPrimitiveSizeInBits() == MulWidth) |
| 6774 | IC.replaceInstUsesWith(I&: *TI, V: Mul); |
| 6775 | else |
| 6776 | TI->setOperand(i_nocapture: 0, Val_nocapture: Mul); |
| 6777 | } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Val: U)) { |
| 6778 | assert(BO->getOpcode() == Instruction::And); |
| 6779 | // Replace (mul & mask) --> zext (mul.with.overflow & short_mask) |
| 6780 | ConstantInt *CI = cast<ConstantInt>(Val: BO->getOperand(i_nocapture: 1)); |
| 6781 | APInt ShortMask = CI->getValue().trunc(width: MulWidth); |
| 6782 | Value *ShortAnd = Builder.CreateAnd(LHS: Mul, RHS: ShortMask); |
| 6783 | Value *Zext = Builder.CreateZExt(V: ShortAnd, DestTy: BO->getType()); |
| 6784 | IC.replaceInstUsesWith(I&: *BO, V: Zext); |
| 6785 | } else { |
| 6786 | llvm_unreachable("Unexpected Binary operation" ); |
| 6787 | } |
| 6788 | IC.addToWorklist(I: cast<Instruction>(Val: U)); |
| 6789 | } |
| 6790 | } |
| 6791 | |
| 6792 | // The original icmp gets replaced with the overflow value, maybe inverted |
| 6793 | // depending on predicate. |
| 6794 | if (I.getPredicate() == ICmpInst::ICMP_ULT) { |
| 6795 | Value *Res = Builder.CreateExtractValue(Agg: Call, Idxs: 1); |
| 6796 | return BinaryOperator::CreateNot(Op: Res); |
| 6797 | } |
| 6798 | |
| 6799 | return ExtractValueInst::Create(Agg: Call, Idxs: 1); |
| 6800 | } |
| 6801 | |
| 6802 | /// When performing a comparison against a constant, it is possible that not all |
| 6803 | /// the bits in the LHS are demanded. This helper method computes the mask that |
| 6804 | /// IS demanded. |
| 6805 | static APInt getDemandedBitsLHSMask(ICmpInst &I, unsigned BitWidth) { |
| 6806 | const APInt *RHS; |
| 6807 | if (!match(V: I.getOperand(i_nocapture: 1), P: m_APInt(Res&: RHS))) |
| 6808 | return APInt::getAllOnes(numBits: BitWidth); |
| 6809 | |
| 6810 | // If this is a normal comparison, it demands all bits. If it is a sign bit |
| 6811 | // comparison, it only demands the sign bit. |
| 6812 | bool UnusedBit; |
| 6813 | if (isSignBitCheck(Pred: I.getPredicate(), RHS: *RHS, TrueIfSigned&: UnusedBit)) |
| 6814 | return APInt::getSignMask(BitWidth); |
| 6815 | |
| 6816 | switch (I.getPredicate()) { |
| 6817 | // For a UGT comparison, we don't care about any bits that |
| 6818 | // correspond to the trailing ones of the comparand. The value of these |
| 6819 | // bits doesn't impact the outcome of the comparison, because any value |
| 6820 | // greater than the RHS must differ in a bit higher than these due to carry. |
| 6821 | case ICmpInst::ICMP_UGT: |
| 6822 | return APInt::getBitsSetFrom(numBits: BitWidth, loBit: RHS->countr_one()); |
| 6823 | |
| 6824 | // Similarly, for a ULT comparison, we don't care about the trailing zeros. |
| 6825 | // Any value less than the RHS must differ in a higher bit because of carries. |
| 6826 | case ICmpInst::ICMP_ULT: |
| 6827 | return APInt::getBitsSetFrom(numBits: BitWidth, loBit: RHS->countr_zero()); |
| 6828 | |
| 6829 | default: |
| 6830 | return APInt::getAllOnes(numBits: BitWidth); |
| 6831 | } |
| 6832 | } |
| 6833 | |
| 6834 | /// Check that one use is in the same block as the definition and all |
| 6835 | /// other uses are in blocks dominated by a given block. |
| 6836 | /// |
| 6837 | /// \param DI Definition |
| 6838 | /// \param UI Use |
| 6839 | /// \param DB Block that must dominate all uses of \p DI outside |
| 6840 | /// the parent block |
| 6841 | /// \return true when \p UI is the only use of \p DI in the parent block |
| 6842 | /// and all other uses of \p DI are in blocks dominated by \p DB. |
| 6843 | /// |
| 6844 | bool InstCombinerImpl::dominatesAllUses(const Instruction *DI, |
| 6845 | const Instruction *UI, |
| 6846 | const BasicBlock *DB) const { |
| 6847 | assert(DI && UI && "Instruction not defined\n" ); |
| 6848 | // Ignore incomplete definitions. |
| 6849 | if (!DI->getParent()) |
| 6850 | return false; |
| 6851 | // DI and UI must be in the same block. |
| 6852 | if (DI->getParent() != UI->getParent()) |
| 6853 | return false; |
| 6854 | // Protect from self-referencing blocks. |
| 6855 | if (DI->getParent() == DB) |
| 6856 | return false; |
| 6857 | for (const User *U : DI->users()) { |
| 6858 | auto *Usr = cast<Instruction>(Val: U); |
| 6859 | if (Usr != UI && !DT.dominates(A: DB, B: Usr->getParent())) |
| 6860 | return false; |
| 6861 | } |
| 6862 | return true; |
| 6863 | } |
| 6864 | |
| 6865 | /// Return true when the instruction sequence within a block is select-cmp-br. |
| 6866 | static bool isChainSelectCmpBranch(const SelectInst *SI) { |
| 6867 | const BasicBlock *BB = SI->getParent(); |
| 6868 | if (!BB) |
| 6869 | return false; |
| 6870 | auto *BI = dyn_cast_or_null<BranchInst>(Val: BB->getTerminator()); |
| 6871 | if (!BI || BI->getNumSuccessors() != 2) |
| 6872 | return false; |
| 6873 | auto *IC = dyn_cast<ICmpInst>(Val: BI->getCondition()); |
| 6874 | if (!IC || (IC->getOperand(i_nocapture: 0) != SI && IC->getOperand(i_nocapture: 1) != SI)) |
| 6875 | return false; |
| 6876 | return true; |
| 6877 | } |
| 6878 | |
| 6879 | /// True when a select result is replaced by one of its operands |
| 6880 | /// in select-icmp sequence. This will eventually result in the elimination |
| 6881 | /// of the select. |
| 6882 | /// |
| 6883 | /// \param SI Select instruction |
| 6884 | /// \param Icmp Compare instruction |
| 6885 | /// \param SIOpd Operand that replaces the select |
| 6886 | /// |
| 6887 | /// Notes: |
| 6888 | /// - The replacement is global and requires dominator information |
| 6889 | /// - The caller is responsible for the actual replacement |
| 6890 | /// |
| 6891 | /// Example: |
| 6892 | /// |
| 6893 | /// entry: |
| 6894 | /// %4 = select i1 %3, %C* %0, %C* null |
| 6895 | /// %5 = icmp eq %C* %4, null |
| 6896 | /// br i1 %5, label %9, label %7 |
| 6897 | /// ... |
| 6898 | /// ; <label>:7 ; preds = %entry |
| 6899 | /// %8 = getelementptr inbounds %C* %4, i64 0, i32 0 |
| 6900 | /// ... |
| 6901 | /// |
| 6902 | /// can be transformed to |
| 6903 | /// |
| 6904 | /// %5 = icmp eq %C* %0, null |
| 6905 | /// %6 = select i1 %3, i1 %5, i1 true |
| 6906 | /// br i1 %6, label %9, label %7 |
| 6907 | /// ... |
| 6908 | /// ; <label>:7 ; preds = %entry |
| 6909 | /// %8 = getelementptr inbounds %C* %0, i64 0, i32 0 // replace by %0! |
| 6910 | /// |
| 6911 | /// Similar when the first operand of the select is a constant or/and |
| 6912 | /// the compare is for not equal rather than equal. |
| 6913 | /// |
| 6914 | /// NOTE: The function is only called when the select and compare constants |
| 6915 | /// are equal, the optimization can work only for EQ predicates. This is not a |
| 6916 | /// major restriction since a NE compare should be 'normalized' to an equal |
| 6917 | /// compare, which usually happens in the combiner and test case |
| 6918 | /// select-cmp-br.ll checks for it. |
| 6919 | bool InstCombinerImpl::replacedSelectWithOperand(SelectInst *SI, |
| 6920 | const ICmpInst *Icmp, |
| 6921 | const unsigned SIOpd) { |
| 6922 | assert((SIOpd == 1 || SIOpd == 2) && "Invalid select operand!" ); |
| 6923 | if (isChainSelectCmpBranch(SI) && Icmp->getPredicate() == ICmpInst::ICMP_EQ) { |
| 6924 | BasicBlock *Succ = SI->getParent()->getTerminator()->getSuccessor(Idx: 1); |
| 6925 | // The check for the single predecessor is not the best that can be |
| 6926 | // done. But it protects efficiently against cases like when SI's |
| 6927 | // home block has two successors, Succ and Succ1, and Succ1 predecessor |
| 6928 | // of Succ. Then SI can't be replaced by SIOpd because the use that gets |
| 6929 | // replaced can be reached on either path. So the uniqueness check |
| 6930 | // guarantees that the path all uses of SI (outside SI's parent) are on |
| 6931 | // is disjoint from all other paths out of SI. But that information |
| 6932 | // is more expensive to compute, and the trade-off here is in favor |
| 6933 | // of compile-time. It should also be noticed that we check for a single |
| 6934 | // predecessor and not only uniqueness. This to handle the situation when |
| 6935 | // Succ and Succ1 points to the same basic block. |
| 6936 | if (Succ->getSinglePredecessor() && dominatesAllUses(DI: SI, UI: Icmp, DB: Succ)) { |
| 6937 | NumSel++; |
| 6938 | SI->replaceUsesOutsideBlock(V: SI->getOperand(i_nocapture: SIOpd), BB: SI->getParent()); |
| 6939 | return true; |
| 6940 | } |
| 6941 | } |
| 6942 | return false; |
| 6943 | } |
| 6944 | |
| 6945 | /// Try to fold the comparison based on range information we can get by checking |
| 6946 | /// whether bits are known to be zero or one in the inputs. |
| 6947 | Instruction *InstCombinerImpl::foldICmpUsingKnownBits(ICmpInst &I) { |
| 6948 | Value *Op0 = I.getOperand(i_nocapture: 0), *Op1 = I.getOperand(i_nocapture: 1); |
| 6949 | Type *Ty = Op0->getType(); |
| 6950 | ICmpInst::Predicate Pred = I.getPredicate(); |
| 6951 | |
| 6952 | // Get scalar or pointer size. |
| 6953 | unsigned BitWidth = Ty->isIntOrIntVectorTy() |
| 6954 | ? Ty->getScalarSizeInBits() |
| 6955 | : DL.getPointerTypeSizeInBits(Ty->getScalarType()); |
| 6956 | |
| 6957 | if (!BitWidth) |
| 6958 | return nullptr; |
| 6959 | |
| 6960 | KnownBits Op0Known(BitWidth); |
| 6961 | KnownBits Op1Known(BitWidth); |
| 6962 | |
| 6963 | { |
| 6964 | // Don't use dominating conditions when folding icmp using known bits. This |
| 6965 | // may convert signed into unsigned predicates in ways that other passes |
| 6966 | // (especially IndVarSimplify) may not be able to reliably undo. |
| 6967 | SimplifyQuery Q = SQ.getWithoutDomCondCache().getWithInstruction(I: &I); |
| 6968 | if (SimplifyDemandedBits(I: &I, Op: 0, DemandedMask: getDemandedBitsLHSMask(I, BitWidth), |
| 6969 | Known&: Op0Known, Q)) |
| 6970 | return &I; |
| 6971 | |
| 6972 | if (SimplifyDemandedBits(I: &I, Op: 1, DemandedMask: APInt::getAllOnes(numBits: BitWidth), Known&: Op1Known, Q)) |
| 6973 | return &I; |
| 6974 | } |
| 6975 | |
| 6976 | if (!isa<Constant>(Val: Op0) && Op0Known.isConstant()) |
| 6977 | return new ICmpInst( |
| 6978 | Pred, ConstantExpr::getIntegerValue(Ty, V: Op0Known.getConstant()), Op1); |
| 6979 | if (!isa<Constant>(Val: Op1) && Op1Known.isConstant()) |
| 6980 | return new ICmpInst( |
| 6981 | Pred, Op0, ConstantExpr::getIntegerValue(Ty, V: Op1Known.getConstant())); |
| 6982 | |
| 6983 | if (std::optional<bool> Res = ICmpInst::compare(LHS: Op0Known, RHS: Op1Known, Pred)) |
| 6984 | return replaceInstUsesWith(I, V: ConstantInt::getBool(Ty: I.getType(), V: *Res)); |
| 6985 | |
| 6986 | // Given the known and unknown bits, compute a range that the LHS could be |
| 6987 | // in. Compute the Min, Max and RHS values based on the known bits. For the |
| 6988 | // EQ and NE we use unsigned values. |
| 6989 | APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0); |
| 6990 | APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0); |
| 6991 | if (I.isSigned()) { |
| 6992 | Op0Min = Op0Known.getSignedMinValue(); |
| 6993 | Op0Max = Op0Known.getSignedMaxValue(); |
| 6994 | Op1Min = Op1Known.getSignedMinValue(); |
| 6995 | Op1Max = Op1Known.getSignedMaxValue(); |
| 6996 | } else { |
| 6997 | Op0Min = Op0Known.getMinValue(); |
| 6998 | Op0Max = Op0Known.getMaxValue(); |
| 6999 | Op1Min = Op1Known.getMinValue(); |
| 7000 | Op1Max = Op1Known.getMaxValue(); |
| 7001 | } |
| 7002 | |
| 7003 | // Don't break up a clamp pattern -- (min(max X, Y), Z) -- by replacing a |
| 7004 | // min/max canonical compare with some other compare. That could lead to |
| 7005 | // conflict with select canonicalization and infinite looping. |
| 7006 | // FIXME: This constraint may go away if min/max intrinsics are canonical. |
| 7007 | auto isMinMaxCmp = [&](Instruction &Cmp) { |
| 7008 | if (!Cmp.hasOneUse()) |
| 7009 | return false; |
| 7010 | Value *A, *B; |
| 7011 | SelectPatternFlavor SPF = matchSelectPattern(V: Cmp.user_back(), LHS&: A, RHS&: B).Flavor; |
| 7012 | if (!SelectPatternResult::isMinOrMax(SPF)) |
| 7013 | return false; |
| 7014 | return match(V: Op0, P: m_MaxOrMin(L: m_Value(), R: m_Value())) || |
| 7015 | match(V: Op1, P: m_MaxOrMin(L: m_Value(), R: m_Value())); |
| 7016 | }; |
| 7017 | if (!isMinMaxCmp(I)) { |
| 7018 | switch (Pred) { |
| 7019 | default: |
| 7020 | break; |
| 7021 | case ICmpInst::ICMP_ULT: { |
| 7022 | if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B) |
| 7023 | return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); |
| 7024 | const APInt *CmpC; |
| 7025 | if (match(V: Op1, P: m_APInt(Res&: CmpC))) { |
| 7026 | // A <u C -> A == C-1 if min(A)+1 == C |
| 7027 | if (*CmpC == Op0Min + 1) |
| 7028 | return new ICmpInst(ICmpInst::ICMP_EQ, Op0, |
| 7029 | ConstantInt::get(Ty: Op1->getType(), V: *CmpC - 1)); |
| 7030 | // X <u C --> X == 0, if the number of zero bits in the bottom of X |
| 7031 | // exceeds the log2 of C. |
| 7032 | if (Op0Known.countMinTrailingZeros() >= CmpC->ceilLogBase2()) |
| 7033 | return new ICmpInst(ICmpInst::ICMP_EQ, Op0, |
| 7034 | Constant::getNullValue(Ty: Op1->getType())); |
| 7035 | } |
| 7036 | break; |
| 7037 | } |
| 7038 | case ICmpInst::ICMP_UGT: { |
| 7039 | if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B) |
| 7040 | return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); |
| 7041 | const APInt *CmpC; |
| 7042 | if (match(V: Op1, P: m_APInt(Res&: CmpC))) { |
| 7043 | // A >u C -> A == C+1 if max(a)-1 == C |
| 7044 | if (*CmpC == Op0Max - 1) |
| 7045 | return new ICmpInst(ICmpInst::ICMP_EQ, Op0, |
| 7046 | ConstantInt::get(Ty: Op1->getType(), V: *CmpC + 1)); |
| 7047 | // X >u C --> X != 0, if the number of zero bits in the bottom of X |
| 7048 | // exceeds the log2 of C. |
| 7049 | if (Op0Known.countMinTrailingZeros() >= CmpC->getActiveBits()) |
| 7050 | return new ICmpInst(ICmpInst::ICMP_NE, Op0, |
| 7051 | Constant::getNullValue(Ty: Op1->getType())); |
| 7052 | } |
| 7053 | break; |
| 7054 | } |
| 7055 | case ICmpInst::ICMP_SLT: { |
| 7056 | if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B) |
| 7057 | return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); |
| 7058 | const APInt *CmpC; |
| 7059 | if (match(V: Op1, P: m_APInt(Res&: CmpC))) { |
| 7060 | if (*CmpC == Op0Min + 1) // A <s C -> A == C-1 if min(A)+1 == C |
| 7061 | return new ICmpInst(ICmpInst::ICMP_EQ, Op0, |
| 7062 | ConstantInt::get(Ty: Op1->getType(), V: *CmpC - 1)); |
| 7063 | } |
| 7064 | break; |
| 7065 | } |
| 7066 | case ICmpInst::ICMP_SGT: { |
| 7067 | if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B) |
| 7068 | return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); |
| 7069 | const APInt *CmpC; |
| 7070 | if (match(V: Op1, P: m_APInt(Res&: CmpC))) { |
| 7071 | if (*CmpC == Op0Max - 1) // A >s C -> A == C+1 if max(A)-1 == C |
| 7072 | return new ICmpInst(ICmpInst::ICMP_EQ, Op0, |
| 7073 | ConstantInt::get(Ty: Op1->getType(), V: *CmpC + 1)); |
| 7074 | } |
| 7075 | break; |
| 7076 | } |
| 7077 | } |
| 7078 | } |
| 7079 | |
| 7080 | // Based on the range information we know about the LHS, see if we can |
| 7081 | // simplify this comparison. For example, (x&4) < 8 is always true. |
| 7082 | switch (Pred) { |
| 7083 | default: |
| 7084 | break; |
| 7085 | case ICmpInst::ICMP_EQ: |
| 7086 | case ICmpInst::ICMP_NE: { |
| 7087 | // If all bits are known zero except for one, then we know at most one bit |
| 7088 | // is set. If the comparison is against zero, then this is a check to see if |
| 7089 | // *that* bit is set. |
| 7090 | APInt Op0KnownZeroInverted = ~Op0Known.Zero; |
| 7091 | if (Op1Known.isZero()) { |
| 7092 | // If the LHS is an AND with the same constant, look through it. |
| 7093 | Value *LHS = nullptr; |
| 7094 | const APInt *LHSC; |
| 7095 | if (!match(V: Op0, P: m_And(L: m_Value(V&: LHS), R: m_APInt(Res&: LHSC))) || |
| 7096 | *LHSC != Op0KnownZeroInverted) |
| 7097 | LHS = Op0; |
| 7098 | |
| 7099 | Value *X; |
| 7100 | const APInt *C1; |
| 7101 | if (match(V: LHS, P: m_Shl(L: m_Power2(V&: C1), R: m_Value(V&: X)))) { |
| 7102 | Type *XTy = X->getType(); |
| 7103 | unsigned Log2C1 = C1->countr_zero(); |
| 7104 | APInt C2 = Op0KnownZeroInverted; |
| 7105 | APInt C2Pow2 = (C2 & ~(*C1 - 1)) + *C1; |
| 7106 | if (C2Pow2.isPowerOf2()) { |
| 7107 | // iff (C1 is pow2) & ((C2 & ~(C1-1)) + C1) is pow2): |
| 7108 | // ((C1 << X) & C2) == 0 -> X >= (Log2(C2+C1) - Log2(C1)) |
| 7109 | // ((C1 << X) & C2) != 0 -> X < (Log2(C2+C1) - Log2(C1)) |
| 7110 | unsigned Log2C2 = C2Pow2.countr_zero(); |
| 7111 | auto *CmpC = ConstantInt::get(Ty: XTy, V: Log2C2 - Log2C1); |
| 7112 | auto NewPred = |
| 7113 | Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGE : CmpInst::ICMP_ULT; |
| 7114 | return new ICmpInst(NewPred, X, CmpC); |
| 7115 | } |
| 7116 | } |
| 7117 | } |
| 7118 | |
| 7119 | // Op0 eq C_Pow2 -> Op0 ne 0 if Op0 is known to be C_Pow2 or zero. |
| 7120 | if (Op1Known.isConstant() && Op1Known.getConstant().isPowerOf2() && |
| 7121 | (Op0Known & Op1Known) == Op0Known) |
| 7122 | return new ICmpInst(CmpInst::getInversePredicate(pred: Pred), Op0, |
| 7123 | ConstantInt::getNullValue(Ty: Op1->getType())); |
| 7124 | break; |
| 7125 | } |
| 7126 | case ICmpInst::ICMP_SGE: |
| 7127 | if (Op1Min == Op0Max) // A >=s B -> A == B if max(A) == min(B) |
| 7128 | return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); |
| 7129 | break; |
| 7130 | case ICmpInst::ICMP_SLE: |
| 7131 | if (Op1Max == Op0Min) // A <=s B -> A == B if min(A) == max(B) |
| 7132 | return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); |
| 7133 | break; |
| 7134 | case ICmpInst::ICMP_UGE: |
| 7135 | if (Op1Min == Op0Max) // A >=u B -> A == B if max(A) == min(B) |
| 7136 | return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); |
| 7137 | break; |
| 7138 | case ICmpInst::ICMP_ULE: |
| 7139 | if (Op1Max == Op0Min) // A <=u B -> A == B if min(A) == max(B) |
| 7140 | return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); |
| 7141 | break; |
| 7142 | } |
| 7143 | |
| 7144 | // Turn a signed comparison into an unsigned one if both operands are known to |
| 7145 | // have the same sign. Set samesign if possible (except for equality |
| 7146 | // predicates). |
| 7147 | if ((I.isSigned() || (I.isUnsigned() && !I.hasSameSign())) && |
| 7148 | ((Op0Known.Zero.isNegative() && Op1Known.Zero.isNegative()) || |
| 7149 | (Op0Known.One.isNegative() && Op1Known.One.isNegative()))) { |
| 7150 | I.setPredicate(I.getUnsignedPredicate()); |
| 7151 | I.setSameSign(); |
| 7152 | return &I; |
| 7153 | } |
| 7154 | |
| 7155 | return nullptr; |
| 7156 | } |
| 7157 | |
| 7158 | /// If one operand of an icmp is effectively a bool (value range of {0,1}), |
| 7159 | /// then try to reduce patterns based on that limit. |
| 7160 | Instruction *InstCombinerImpl::foldICmpUsingBoolRange(ICmpInst &I) { |
| 7161 | Value *X, *Y; |
| 7162 | CmpPredicate Pred; |
| 7163 | |
| 7164 | // X must be 0 and bool must be true for "ULT": |
| 7165 | // X <u (zext i1 Y) --> (X == 0) & Y |
| 7166 | if (match(V: &I, P: m_c_ICmp(Pred, L: m_Value(V&: X), R: m_OneUse(SubPattern: m_ZExt(Op: m_Value(V&: Y))))) && |
| 7167 | Y->getType()->isIntOrIntVectorTy(BitWidth: 1) && Pred == ICmpInst::ICMP_ULT) |
| 7168 | return BinaryOperator::CreateAnd(V1: Builder.CreateIsNull(Arg: X), V2: Y); |
| 7169 | |
| 7170 | // X must be 0 or bool must be true for "ULE": |
| 7171 | // X <=u (sext i1 Y) --> (X == 0) | Y |
| 7172 | if (match(V: &I, P: m_c_ICmp(Pred, L: m_Value(V&: X), R: m_OneUse(SubPattern: m_SExt(Op: m_Value(V&: Y))))) && |
| 7173 | Y->getType()->isIntOrIntVectorTy(BitWidth: 1) && Pred == ICmpInst::ICMP_ULE) |
| 7174 | return BinaryOperator::CreateOr(V1: Builder.CreateIsNull(Arg: X), V2: Y); |
| 7175 | |
| 7176 | // icmp eq/ne X, (zext/sext (icmp eq/ne X, C)) |
| 7177 | CmpPredicate Pred1, Pred2; |
| 7178 | const APInt *C; |
| 7179 | Instruction *ExtI; |
| 7180 | if (match(V: &I, P: m_c_ICmp(Pred&: Pred1, L: m_Value(V&: X), |
| 7181 | R: m_CombineAnd(L: m_Instruction(I&: ExtI), |
| 7182 | R: m_ZExtOrSExt(Op: m_ICmp(Pred&: Pred2, L: m_Deferred(V: X), |
| 7183 | R: m_APInt(Res&: C)))))) && |
| 7184 | ICmpInst::isEquality(P: Pred1) && ICmpInst::isEquality(P: Pred2)) { |
| 7185 | bool IsSExt = ExtI->getOpcode() == Instruction::SExt; |
| 7186 | bool HasOneUse = ExtI->hasOneUse() && ExtI->getOperand(i: 0)->hasOneUse(); |
| 7187 | auto CreateRangeCheck = [&] { |
| 7188 | Value *CmpV1 = |
| 7189 | Builder.CreateICmp(P: Pred1, LHS: X, RHS: Constant::getNullValue(Ty: X->getType())); |
| 7190 | Value *CmpV2 = Builder.CreateICmp( |
| 7191 | P: Pred1, LHS: X, RHS: ConstantInt::getSigned(Ty: X->getType(), V: IsSExt ? -1 : 1)); |
| 7192 | return BinaryOperator::Create( |
| 7193 | Op: Pred1 == ICmpInst::ICMP_EQ ? Instruction::Or : Instruction::And, |
| 7194 | S1: CmpV1, S2: CmpV2); |
| 7195 | }; |
| 7196 | if (C->isZero()) { |
| 7197 | if (Pred2 == ICmpInst::ICMP_EQ) { |
| 7198 | // icmp eq X, (zext/sext (icmp eq X, 0)) --> false |
| 7199 | // icmp ne X, (zext/sext (icmp eq X, 0)) --> true |
| 7200 | return replaceInstUsesWith( |
| 7201 | I, V: ConstantInt::getBool(Ty: I.getType(), V: Pred1 == ICmpInst::ICMP_NE)); |
| 7202 | } else if (!IsSExt || HasOneUse) { |
| 7203 | // icmp eq X, (zext (icmp ne X, 0)) --> X == 0 || X == 1 |
| 7204 | // icmp ne X, (zext (icmp ne X, 0)) --> X != 0 && X != 1 |
| 7205 | // icmp eq X, (sext (icmp ne X, 0)) --> X == 0 || X == -1 |
| 7206 | // icmp ne X, (sext (icmp ne X, 0)) --> X != 0 && X != -1 |
| 7207 | return CreateRangeCheck(); |
| 7208 | } |
| 7209 | } else if (IsSExt ? C->isAllOnes() : C->isOne()) { |
| 7210 | if (Pred2 == ICmpInst::ICMP_NE) { |
| 7211 | // icmp eq X, (zext (icmp ne X, 1)) --> false |
| 7212 | // icmp ne X, (zext (icmp ne X, 1)) --> true |
| 7213 | // icmp eq X, (sext (icmp ne X, -1)) --> false |
| 7214 | // icmp ne X, (sext (icmp ne X, -1)) --> true |
| 7215 | return replaceInstUsesWith( |
| 7216 | I, V: ConstantInt::getBool(Ty: I.getType(), V: Pred1 == ICmpInst::ICMP_NE)); |
| 7217 | } else if (!IsSExt || HasOneUse) { |
| 7218 | // icmp eq X, (zext (icmp eq X, 1)) --> X == 0 || X == 1 |
| 7219 | // icmp ne X, (zext (icmp eq X, 1)) --> X != 0 && X != 1 |
| 7220 | // icmp eq X, (sext (icmp eq X, -1)) --> X == 0 || X == -1 |
| 7221 | // icmp ne X, (sext (icmp eq X, -1)) --> X != 0 && X == -1 |
| 7222 | return CreateRangeCheck(); |
| 7223 | } |
| 7224 | } else { |
| 7225 | // when C != 0 && C != 1: |
| 7226 | // icmp eq X, (zext (icmp eq X, C)) --> icmp eq X, 0 |
| 7227 | // icmp eq X, (zext (icmp ne X, C)) --> icmp eq X, 1 |
| 7228 | // icmp ne X, (zext (icmp eq X, C)) --> icmp ne X, 0 |
| 7229 | // icmp ne X, (zext (icmp ne X, C)) --> icmp ne X, 1 |
| 7230 | // when C != 0 && C != -1: |
| 7231 | // icmp eq X, (sext (icmp eq X, C)) --> icmp eq X, 0 |
| 7232 | // icmp eq X, (sext (icmp ne X, C)) --> icmp eq X, -1 |
| 7233 | // icmp ne X, (sext (icmp eq X, C)) --> icmp ne X, 0 |
| 7234 | // icmp ne X, (sext (icmp ne X, C)) --> icmp ne X, -1 |
| 7235 | return ICmpInst::Create( |
| 7236 | Op: Instruction::ICmp, Pred: Pred1, S1: X, |
| 7237 | S2: ConstantInt::getSigned(Ty: X->getType(), V: Pred2 == ICmpInst::ICMP_NE |
| 7238 | ? (IsSExt ? -1 : 1) |
| 7239 | : 0)); |
| 7240 | } |
| 7241 | } |
| 7242 | |
| 7243 | return nullptr; |
| 7244 | } |
| 7245 | |
| 7246 | /// If we have an icmp le or icmp ge instruction with a constant operand, turn |
| 7247 | /// it into the appropriate icmp lt or icmp gt instruction. This transform |
| 7248 | /// allows them to be folded in visitICmpInst. |
| 7249 | static ICmpInst *canonicalizeCmpWithConstant(ICmpInst &I) { |
| 7250 | ICmpInst::Predicate Pred = I.getPredicate(); |
| 7251 | if (ICmpInst::isEquality(P: Pred) || !ICmpInst::isIntPredicate(P: Pred) || |
| 7252 | InstCombiner::isCanonicalPredicate(Pred)) |
| 7253 | return nullptr; |
| 7254 | |
| 7255 | Value *Op0 = I.getOperand(i_nocapture: 0); |
| 7256 | Value *Op1 = I.getOperand(i_nocapture: 1); |
| 7257 | auto *Op1C = dyn_cast<Constant>(Val: Op1); |
| 7258 | if (!Op1C) |
| 7259 | return nullptr; |
| 7260 | |
| 7261 | auto FlippedStrictness = getFlippedStrictnessPredicateAndConstant(Pred, C: Op1C); |
| 7262 | if (!FlippedStrictness) |
| 7263 | return nullptr; |
| 7264 | |
| 7265 | return new ICmpInst(FlippedStrictness->first, Op0, FlippedStrictness->second); |
| 7266 | } |
| 7267 | |
| 7268 | /// If we have a comparison with a non-canonical predicate, if we can update |
| 7269 | /// all the users, invert the predicate and adjust all the users. |
| 7270 | CmpInst *InstCombinerImpl::canonicalizeICmpPredicate(CmpInst &I) { |
| 7271 | // Is the predicate already canonical? |
| 7272 | CmpInst::Predicate Pred = I.getPredicate(); |
| 7273 | if (InstCombiner::isCanonicalPredicate(Pred)) |
| 7274 | return nullptr; |
| 7275 | |
| 7276 | // Can all users be adjusted to predicate inversion? |
| 7277 | if (!InstCombiner::canFreelyInvertAllUsersOf(V: &I, /*IgnoredUser=*/nullptr)) |
| 7278 | return nullptr; |
| 7279 | |
| 7280 | // Ok, we can canonicalize comparison! |
| 7281 | // Let's first invert the comparison's predicate. |
| 7282 | I.setPredicate(CmpInst::getInversePredicate(pred: Pred)); |
| 7283 | I.setName(I.getName() + ".not" ); |
| 7284 | |
| 7285 | // And, adapt users. |
| 7286 | freelyInvertAllUsersOf(V: &I); |
| 7287 | |
| 7288 | return &I; |
| 7289 | } |
| 7290 | |
| 7291 | /// Integer compare with boolean values can always be turned into bitwise ops. |
| 7292 | static Instruction *canonicalizeICmpBool(ICmpInst &I, |
| 7293 | InstCombiner::BuilderTy &Builder) { |
| 7294 | Value *A = I.getOperand(i_nocapture: 0), *B = I.getOperand(i_nocapture: 1); |
| 7295 | assert(A->getType()->isIntOrIntVectorTy(1) && "Bools only" ); |
| 7296 | |
| 7297 | // A boolean compared to true/false can be simplified to Op0/true/false in |
| 7298 | // 14 out of the 20 (10 predicates * 2 constants) possible combinations. |
| 7299 | // Cases not handled by InstSimplify are always 'not' of Op0. |
| 7300 | if (match(V: B, P: m_Zero())) { |
| 7301 | switch (I.getPredicate()) { |
| 7302 | case CmpInst::ICMP_EQ: // A == 0 -> !A |
| 7303 | case CmpInst::ICMP_ULE: // A <=u 0 -> !A |
| 7304 | case CmpInst::ICMP_SGE: // A >=s 0 -> !A |
| 7305 | return BinaryOperator::CreateNot(Op: A); |
| 7306 | default: |
| 7307 | llvm_unreachable("ICmp i1 X, C not simplified as expected." ); |
| 7308 | } |
| 7309 | } else if (match(V: B, P: m_One())) { |
| 7310 | switch (I.getPredicate()) { |
| 7311 | case CmpInst::ICMP_NE: // A != 1 -> !A |
| 7312 | case CmpInst::ICMP_ULT: // A <u 1 -> !A |
| 7313 | case CmpInst::ICMP_SGT: // A >s -1 -> !A |
| 7314 | return BinaryOperator::CreateNot(Op: A); |
| 7315 | default: |
| 7316 | llvm_unreachable("ICmp i1 X, C not simplified as expected." ); |
| 7317 | } |
| 7318 | } |
| 7319 | |
| 7320 | switch (I.getPredicate()) { |
| 7321 | default: |
| 7322 | llvm_unreachable("Invalid icmp instruction!" ); |
| 7323 | case ICmpInst::ICMP_EQ: |
| 7324 | // icmp eq i1 A, B -> ~(A ^ B) |
| 7325 | return BinaryOperator::CreateNot(Op: Builder.CreateXor(LHS: A, RHS: B)); |
| 7326 | |
| 7327 | case ICmpInst::ICMP_NE: |
| 7328 | // icmp ne i1 A, B -> A ^ B |
| 7329 | return BinaryOperator::CreateXor(V1: A, V2: B); |
| 7330 | |
| 7331 | case ICmpInst::ICMP_UGT: |
| 7332 | // icmp ugt -> icmp ult |
| 7333 | std::swap(a&: A, b&: B); |
| 7334 | [[fallthrough]]; |
| 7335 | case ICmpInst::ICMP_ULT: |
| 7336 | // icmp ult i1 A, B -> ~A & B |
| 7337 | return BinaryOperator::CreateAnd(V1: Builder.CreateNot(V: A), V2: B); |
| 7338 | |
| 7339 | case ICmpInst::ICMP_SGT: |
| 7340 | // icmp sgt -> icmp slt |
| 7341 | std::swap(a&: A, b&: B); |
| 7342 | [[fallthrough]]; |
| 7343 | case ICmpInst::ICMP_SLT: |
| 7344 | // icmp slt i1 A, B -> A & ~B |
| 7345 | return BinaryOperator::CreateAnd(V1: Builder.CreateNot(V: B), V2: A); |
| 7346 | |
| 7347 | case ICmpInst::ICMP_UGE: |
| 7348 | // icmp uge -> icmp ule |
| 7349 | std::swap(a&: A, b&: B); |
| 7350 | [[fallthrough]]; |
| 7351 | case ICmpInst::ICMP_ULE: |
| 7352 | // icmp ule i1 A, B -> ~A | B |
| 7353 | return BinaryOperator::CreateOr(V1: Builder.CreateNot(V: A), V2: B); |
| 7354 | |
| 7355 | case ICmpInst::ICMP_SGE: |
| 7356 | // icmp sge -> icmp sle |
| 7357 | std::swap(a&: A, b&: B); |
| 7358 | [[fallthrough]]; |
| 7359 | case ICmpInst::ICMP_SLE: |
| 7360 | // icmp sle i1 A, B -> A | ~B |
| 7361 | return BinaryOperator::CreateOr(V1: Builder.CreateNot(V: B), V2: A); |
| 7362 | } |
| 7363 | } |
| 7364 | |
| 7365 | // Transform pattern like: |
| 7366 | // (1 << Y) u<= X or ~(-1 << Y) u< X or ((1 << Y)+(-1)) u< X |
| 7367 | // (1 << Y) u> X or ~(-1 << Y) u>= X or ((1 << Y)+(-1)) u>= X |
| 7368 | // Into: |
| 7369 | // (X l>> Y) != 0 |
| 7370 | // (X l>> Y) == 0 |
| 7371 | static Instruction *foldICmpWithHighBitMask(ICmpInst &Cmp, |
| 7372 | InstCombiner::BuilderTy &Builder) { |
| 7373 | CmpPredicate Pred, NewPred; |
| 7374 | Value *X, *Y; |
| 7375 | if (match(V: &Cmp, |
| 7376 | P: m_c_ICmp(Pred, L: m_OneUse(SubPattern: m_Shl(L: m_One(), R: m_Value(V&: Y))), R: m_Value(V&: X)))) { |
| 7377 | switch (Pred) { |
| 7378 | case ICmpInst::ICMP_ULE: |
| 7379 | NewPred = ICmpInst::ICMP_NE; |
| 7380 | break; |
| 7381 | case ICmpInst::ICMP_UGT: |
| 7382 | NewPred = ICmpInst::ICMP_EQ; |
| 7383 | break; |
| 7384 | default: |
| 7385 | return nullptr; |
| 7386 | } |
| 7387 | } else if (match(V: &Cmp, P: m_c_ICmp(Pred, |
| 7388 | L: m_OneUse(SubPattern: m_CombineOr( |
| 7389 | L: m_Not(V: m_Shl(L: m_AllOnes(), R: m_Value(V&: Y))), |
| 7390 | R: m_Add(L: m_Shl(L: m_One(), R: m_Value(V&: Y)), |
| 7391 | R: m_AllOnes()))), |
| 7392 | R: m_Value(V&: X)))) { |
| 7393 | // The variant with 'add' is not canonical, (the variant with 'not' is) |
| 7394 | // we only get it because it has extra uses, and can't be canonicalized, |
| 7395 | |
| 7396 | switch (Pred) { |
| 7397 | case ICmpInst::ICMP_ULT: |
| 7398 | NewPred = ICmpInst::ICMP_NE; |
| 7399 | break; |
| 7400 | case ICmpInst::ICMP_UGE: |
| 7401 | NewPred = ICmpInst::ICMP_EQ; |
| 7402 | break; |
| 7403 | default: |
| 7404 | return nullptr; |
| 7405 | } |
| 7406 | } else |
| 7407 | return nullptr; |
| 7408 | |
| 7409 | Value *NewX = Builder.CreateLShr(LHS: X, RHS: Y, Name: X->getName() + ".highbits" ); |
| 7410 | Constant *Zero = Constant::getNullValue(Ty: NewX->getType()); |
| 7411 | return CmpInst::Create(Op: Instruction::ICmp, Pred: NewPred, S1: NewX, S2: Zero); |
| 7412 | } |
| 7413 | |
| 7414 | static Instruction *foldVectorCmp(CmpInst &Cmp, |
| 7415 | InstCombiner::BuilderTy &Builder) { |
| 7416 | const CmpInst::Predicate Pred = Cmp.getPredicate(); |
| 7417 | Value *LHS = Cmp.getOperand(i_nocapture: 0), *RHS = Cmp.getOperand(i_nocapture: 1); |
| 7418 | Value *V1, *V2; |
| 7419 | |
| 7420 | auto createCmpReverse = [&](CmpInst::Predicate Pred, Value *X, Value *Y) { |
| 7421 | Value *V = Builder.CreateCmp(Pred, LHS: X, RHS: Y, Name: Cmp.getName()); |
| 7422 | if (auto *I = dyn_cast<Instruction>(Val: V)) |
| 7423 | I->copyIRFlags(V: &Cmp); |
| 7424 | Module *M = Cmp.getModule(); |
| 7425 | Function *F = Intrinsic::getOrInsertDeclaration( |
| 7426 | M, id: Intrinsic::vector_reverse, Tys: V->getType()); |
| 7427 | return CallInst::Create(Func: F, Args: V); |
| 7428 | }; |
| 7429 | |
| 7430 | if (match(V: LHS, P: m_VecReverse(Op0: m_Value(V&: V1)))) { |
| 7431 | // cmp Pred, rev(V1), rev(V2) --> rev(cmp Pred, V1, V2) |
| 7432 | if (match(V: RHS, P: m_VecReverse(Op0: m_Value(V&: V2))) && |
| 7433 | (LHS->hasOneUse() || RHS->hasOneUse())) |
| 7434 | return createCmpReverse(Pred, V1, V2); |
| 7435 | |
| 7436 | // cmp Pred, rev(V1), RHSSplat --> rev(cmp Pred, V1, RHSSplat) |
| 7437 | if (LHS->hasOneUse() && isSplatValue(V: RHS)) |
| 7438 | return createCmpReverse(Pred, V1, RHS); |
| 7439 | } |
| 7440 | // cmp Pred, LHSSplat, rev(V2) --> rev(cmp Pred, LHSSplat, V2) |
| 7441 | else if (isSplatValue(V: LHS) && match(V: RHS, P: m_OneUse(SubPattern: m_VecReverse(Op0: m_Value(V&: V2))))) |
| 7442 | return createCmpReverse(Pred, LHS, V2); |
| 7443 | |
| 7444 | ArrayRef<int> M; |
| 7445 | if (!match(V: LHS, P: m_Shuffle(v1: m_Value(V&: V1), v2: m_Undef(), mask: m_Mask(M)))) |
| 7446 | return nullptr; |
| 7447 | |
| 7448 | // If both arguments of the cmp are shuffles that use the same mask and |
| 7449 | // shuffle within a single vector, move the shuffle after the cmp: |
| 7450 | // cmp (shuffle V1, M), (shuffle V2, M) --> shuffle (cmp V1, V2), M |
| 7451 | Type *V1Ty = V1->getType(); |
| 7452 | if (match(V: RHS, P: m_Shuffle(v1: m_Value(V&: V2), v2: m_Undef(), mask: m_SpecificMask(M))) && |
| 7453 | V1Ty == V2->getType() && (LHS->hasOneUse() || RHS->hasOneUse())) { |
| 7454 | Value *NewCmp = Builder.CreateCmp(Pred, LHS: V1, RHS: V2); |
| 7455 | return new ShuffleVectorInst(NewCmp, M); |
| 7456 | } |
| 7457 | |
| 7458 | // Try to canonicalize compare with splatted operand and splat constant. |
| 7459 | // TODO: We could generalize this for more than splats. See/use the code in |
| 7460 | // InstCombiner::foldVectorBinop(). |
| 7461 | Constant *C; |
| 7462 | if (!LHS->hasOneUse() || !match(V: RHS, P: m_Constant(C))) |
| 7463 | return nullptr; |
| 7464 | |
| 7465 | // Length-changing splats are ok, so adjust the constants as needed: |
| 7466 | // cmp (shuffle V1, M), C --> shuffle (cmp V1, C'), M |
| 7467 | Constant *ScalarC = C->getSplatValue(/* AllowPoison */ true); |
| 7468 | int MaskSplatIndex; |
| 7469 | if (ScalarC && match(Mask: M, P: m_SplatOrPoisonMask(MaskSplatIndex))) { |
| 7470 | // We allow poison in matching, but this transform removes it for safety. |
| 7471 | // Demanded elements analysis should be able to recover some/all of that. |
| 7472 | C = ConstantVector::getSplat(EC: cast<VectorType>(Val: V1Ty)->getElementCount(), |
| 7473 | Elt: ScalarC); |
| 7474 | SmallVector<int, 8> NewM(M.size(), MaskSplatIndex); |
| 7475 | Value *NewCmp = Builder.CreateCmp(Pred, LHS: V1, RHS: C); |
| 7476 | return new ShuffleVectorInst(NewCmp, NewM); |
| 7477 | } |
| 7478 | |
| 7479 | return nullptr; |
| 7480 | } |
| 7481 | |
| 7482 | // extract(uadd.with.overflow(A, B), 0) ult A |
| 7483 | // -> extract(uadd.with.overflow(A, B), 1) |
| 7484 | static Instruction *foldICmpOfUAddOv(ICmpInst &I) { |
| 7485 | CmpInst::Predicate Pred = I.getPredicate(); |
| 7486 | Value *Op0 = I.getOperand(i_nocapture: 0), *Op1 = I.getOperand(i_nocapture: 1); |
| 7487 | |
| 7488 | Value *UAddOv; |
| 7489 | Value *A, *B; |
| 7490 | auto UAddOvResultPat = m_ExtractValue<0>( |
| 7491 | V: m_Intrinsic<Intrinsic::uadd_with_overflow>(Op0: m_Value(V&: A), Op1: m_Value(V&: B))); |
| 7492 | if (match(V: Op0, P: UAddOvResultPat) && |
| 7493 | ((Pred == ICmpInst::ICMP_ULT && (Op1 == A || Op1 == B)) || |
| 7494 | (Pred == ICmpInst::ICMP_EQ && match(V: Op1, P: m_ZeroInt()) && |
| 7495 | (match(V: A, P: m_One()) || match(V: B, P: m_One()))) || |
| 7496 | (Pred == ICmpInst::ICMP_NE && match(V: Op1, P: m_AllOnes()) && |
| 7497 | (match(V: A, P: m_AllOnes()) || match(V: B, P: m_AllOnes()))))) |
| 7498 | // extract(uadd.with.overflow(A, B), 0) < A |
| 7499 | // extract(uadd.with.overflow(A, 1), 0) == 0 |
| 7500 | // extract(uadd.with.overflow(A, -1), 0) != -1 |
| 7501 | UAddOv = cast<ExtractValueInst>(Val: Op0)->getAggregateOperand(); |
| 7502 | else if (match(V: Op1, P: UAddOvResultPat) && Pred == ICmpInst::ICMP_UGT && |
| 7503 | (Op0 == A || Op0 == B)) |
| 7504 | // A > extract(uadd.with.overflow(A, B), 0) |
| 7505 | UAddOv = cast<ExtractValueInst>(Val: Op1)->getAggregateOperand(); |
| 7506 | else |
| 7507 | return nullptr; |
| 7508 | |
| 7509 | return ExtractValueInst::Create(Agg: UAddOv, Idxs: 1); |
| 7510 | } |
| 7511 | |
| 7512 | static Instruction *foldICmpInvariantGroup(ICmpInst &I) { |
| 7513 | if (!I.getOperand(i_nocapture: 0)->getType()->isPointerTy() || |
| 7514 | NullPointerIsDefined( |
| 7515 | F: I.getParent()->getParent(), |
| 7516 | AS: I.getOperand(i_nocapture: 0)->getType()->getPointerAddressSpace())) { |
| 7517 | return nullptr; |
| 7518 | } |
| 7519 | Instruction *Op; |
| 7520 | if (match(V: I.getOperand(i_nocapture: 0), P: m_Instruction(I&: Op)) && |
| 7521 | match(V: I.getOperand(i_nocapture: 1), P: m_Zero()) && |
| 7522 | Op->isLaunderOrStripInvariantGroup()) { |
| 7523 | return ICmpInst::Create(Op: Instruction::ICmp, Pred: I.getPredicate(), |
| 7524 | S1: Op->getOperand(i: 0), S2: I.getOperand(i_nocapture: 1)); |
| 7525 | } |
| 7526 | return nullptr; |
| 7527 | } |
| 7528 | |
| 7529 | /// This function folds patterns produced by lowering of reduce idioms, such as |
| 7530 | /// llvm.vector.reduce.and which are lowered into instruction chains. This code |
| 7531 | /// attempts to generate fewer number of scalar comparisons instead of vector |
| 7532 | /// comparisons when possible. |
| 7533 | static Instruction *foldReductionIdiom(ICmpInst &I, |
| 7534 | InstCombiner::BuilderTy &Builder, |
| 7535 | const DataLayout &DL) { |
| 7536 | if (I.getType()->isVectorTy()) |
| 7537 | return nullptr; |
| 7538 | CmpPredicate OuterPred, InnerPred; |
| 7539 | Value *LHS, *RHS; |
| 7540 | |
| 7541 | // Match lowering of @llvm.vector.reduce.and. Turn |
| 7542 | /// %vec_ne = icmp ne <8 x i8> %lhs, %rhs |
| 7543 | /// %scalar_ne = bitcast <8 x i1> %vec_ne to i8 |
| 7544 | /// %res = icmp <pred> i8 %scalar_ne, 0 |
| 7545 | /// |
| 7546 | /// into |
| 7547 | /// |
| 7548 | /// %lhs.scalar = bitcast <8 x i8> %lhs to i64 |
| 7549 | /// %rhs.scalar = bitcast <8 x i8> %rhs to i64 |
| 7550 | /// %res = icmp <pred> i64 %lhs.scalar, %rhs.scalar |
| 7551 | /// |
| 7552 | /// for <pred> in {ne, eq}. |
| 7553 | if (!match(V: &I, P: m_ICmp(Pred&: OuterPred, |
| 7554 | L: m_OneUse(SubPattern: m_BitCast(Op: m_OneUse( |
| 7555 | SubPattern: m_ICmp(Pred&: InnerPred, L: m_Value(V&: LHS), R: m_Value(V&: RHS))))), |
| 7556 | R: m_Zero()))) |
| 7557 | return nullptr; |
| 7558 | auto *LHSTy = dyn_cast<FixedVectorType>(Val: LHS->getType()); |
| 7559 | if (!LHSTy || !LHSTy->getElementType()->isIntegerTy()) |
| 7560 | return nullptr; |
| 7561 | unsigned NumBits = |
| 7562 | LHSTy->getNumElements() * LHSTy->getElementType()->getIntegerBitWidth(); |
| 7563 | // TODO: Relax this to "not wider than max legal integer type"? |
| 7564 | if (!DL.isLegalInteger(Width: NumBits)) |
| 7565 | return nullptr; |
| 7566 | |
| 7567 | if (ICmpInst::isEquality(P: OuterPred) && InnerPred == ICmpInst::ICMP_NE) { |
| 7568 | auto *ScalarTy = Builder.getIntNTy(N: NumBits); |
| 7569 | LHS = Builder.CreateBitCast(V: LHS, DestTy: ScalarTy, Name: LHS->getName() + ".scalar" ); |
| 7570 | RHS = Builder.CreateBitCast(V: RHS, DestTy: ScalarTy, Name: RHS->getName() + ".scalar" ); |
| 7571 | return ICmpInst::Create(Op: Instruction::ICmp, Pred: OuterPred, S1: LHS, S2: RHS, |
| 7572 | Name: I.getName()); |
| 7573 | } |
| 7574 | |
| 7575 | return nullptr; |
| 7576 | } |
| 7577 | |
| 7578 | // This helper will be called with icmp operands in both orders. |
| 7579 | Instruction *InstCombinerImpl::foldICmpCommutative(CmpPredicate Pred, |
| 7580 | Value *Op0, Value *Op1, |
| 7581 | ICmpInst &CxtI) { |
| 7582 | // Try to optimize 'icmp GEP, P' or 'icmp P, GEP'. |
| 7583 | if (auto *GEP = dyn_cast<GEPOperator>(Val: Op0)) |
| 7584 | if (Instruction *NI = foldGEPICmp(GEPLHS: GEP, RHS: Op1, Cond: Pred, I&: CxtI)) |
| 7585 | return NI; |
| 7586 | |
| 7587 | if (auto *SI = dyn_cast<SelectInst>(Val: Op0)) |
| 7588 | if (Instruction *NI = foldSelectICmp(Pred, SI, RHS: Op1, I: CxtI)) |
| 7589 | return NI; |
| 7590 | |
| 7591 | if (auto *MinMax = dyn_cast<MinMaxIntrinsic>(Val: Op0)) { |
| 7592 | if (Instruction *Res = foldICmpWithMinMax(I&: CxtI, MinMax, Z: Op1, Pred)) |
| 7593 | return Res; |
| 7594 | |
| 7595 | if (Instruction *Res = foldICmpWithClamp(I&: CxtI, X: Op1, Min: MinMax)) |
| 7596 | return Res; |
| 7597 | } |
| 7598 | |
| 7599 | { |
| 7600 | Value *X; |
| 7601 | const APInt *C; |
| 7602 | // icmp X+Cst, X |
| 7603 | if (match(V: Op0, P: m_Add(L: m_Value(V&: X), R: m_APInt(Res&: C))) && Op1 == X) |
| 7604 | return foldICmpAddOpConst(X, C: *C, Pred); |
| 7605 | } |
| 7606 | |
| 7607 | // abs(X) >= X --> true |
| 7608 | // abs(X) u<= X --> true |
| 7609 | // abs(X) < X --> false |
| 7610 | // abs(X) u> X --> false |
| 7611 | // abs(X) u>= X --> IsIntMinPosion ? `X > -1`: `X u<= INTMIN` |
| 7612 | // abs(X) <= X --> IsIntMinPosion ? `X > -1`: `X u<= INTMIN` |
| 7613 | // abs(X) == X --> IsIntMinPosion ? `X > -1`: `X u<= INTMIN` |
| 7614 | // abs(X) u< X --> IsIntMinPosion ? `X < 0` : `X > INTMIN` |
| 7615 | // abs(X) > X --> IsIntMinPosion ? `X < 0` : `X > INTMIN` |
| 7616 | // abs(X) != X --> IsIntMinPosion ? `X < 0` : `X > INTMIN` |
| 7617 | { |
| 7618 | Value *X; |
| 7619 | Constant *C; |
| 7620 | if (match(V: Op0, P: m_Intrinsic<Intrinsic::abs>(Op0: m_Value(V&: X), Op1: m_Constant(C))) && |
| 7621 | match(V: Op1, P: m_Specific(V: X))) { |
| 7622 | Value *NullValue = Constant::getNullValue(Ty: X->getType()); |
| 7623 | Value *AllOnesValue = Constant::getAllOnesValue(Ty: X->getType()); |
| 7624 | const APInt SMin = |
| 7625 | APInt::getSignedMinValue(numBits: X->getType()->getScalarSizeInBits()); |
| 7626 | bool IsIntMinPosion = C->isAllOnesValue(); |
| 7627 | switch (Pred) { |
| 7628 | case CmpInst::ICMP_ULE: |
| 7629 | case CmpInst::ICMP_SGE: |
| 7630 | return replaceInstUsesWith(I&: CxtI, V: ConstantInt::getTrue(Ty: CxtI.getType())); |
| 7631 | case CmpInst::ICMP_UGT: |
| 7632 | case CmpInst::ICMP_SLT: |
| 7633 | return replaceInstUsesWith(I&: CxtI, V: ConstantInt::getFalse(Ty: CxtI.getType())); |
| 7634 | case CmpInst::ICMP_UGE: |
| 7635 | case CmpInst::ICMP_SLE: |
| 7636 | case CmpInst::ICMP_EQ: { |
| 7637 | return replaceInstUsesWith( |
| 7638 | I&: CxtI, V: IsIntMinPosion |
| 7639 | ? Builder.CreateICmpSGT(LHS: X, RHS: AllOnesValue) |
| 7640 | : Builder.CreateICmpULT( |
| 7641 | LHS: X, RHS: ConstantInt::get(Ty: X->getType(), V: SMin + 1))); |
| 7642 | } |
| 7643 | case CmpInst::ICMP_ULT: |
| 7644 | case CmpInst::ICMP_SGT: |
| 7645 | case CmpInst::ICMP_NE: { |
| 7646 | return replaceInstUsesWith( |
| 7647 | I&: CxtI, V: IsIntMinPosion |
| 7648 | ? Builder.CreateICmpSLT(LHS: X, RHS: NullValue) |
| 7649 | : Builder.CreateICmpUGT( |
| 7650 | LHS: X, RHS: ConstantInt::get(Ty: X->getType(), V: SMin))); |
| 7651 | } |
| 7652 | default: |
| 7653 | llvm_unreachable("Invalid predicate!" ); |
| 7654 | } |
| 7655 | } |
| 7656 | } |
| 7657 | |
| 7658 | const SimplifyQuery Q = SQ.getWithInstruction(I: &CxtI); |
| 7659 | if (Value *V = foldICmpWithLowBitMaskedVal(Pred, Op0, Op1, Q, IC&: *this)) |
| 7660 | return replaceInstUsesWith(I&: CxtI, V); |
| 7661 | |
| 7662 | // Folding (X / Y) pred X => X swap(pred) 0 for constant Y other than 0 or 1 |
| 7663 | auto CheckUGT1 = [](const APInt &Divisor) { return Divisor.ugt(RHS: 1); }; |
| 7664 | { |
| 7665 | if (match(V: Op0, P: m_UDiv(L: m_Specific(V: Op1), R: m_CheckedInt(CheckFn: CheckUGT1)))) { |
| 7666 | return new ICmpInst(ICmpInst::getSwappedPredicate(pred: Pred), Op1, |
| 7667 | Constant::getNullValue(Ty: Op1->getType())); |
| 7668 | } |
| 7669 | |
| 7670 | if (!ICmpInst::isUnsigned(predicate: Pred) && |
| 7671 | match(V: Op0, P: m_SDiv(L: m_Specific(V: Op1), R: m_CheckedInt(CheckFn: CheckUGT1)))) { |
| 7672 | return new ICmpInst(ICmpInst::getSwappedPredicate(pred: Pred), Op1, |
| 7673 | Constant::getNullValue(Ty: Op1->getType())); |
| 7674 | } |
| 7675 | } |
| 7676 | |
| 7677 | // Another case of this fold is (X >> Y) pred X => X swap(pred) 0 if Y != 0 |
| 7678 | auto CheckNE0 = [](const APInt &Shift) { return !Shift.isZero(); }; |
| 7679 | { |
| 7680 | if (match(V: Op0, P: m_LShr(L: m_Specific(V: Op1), R: m_CheckedInt(CheckFn: CheckNE0)))) { |
| 7681 | return new ICmpInst(ICmpInst::getSwappedPredicate(pred: Pred), Op1, |
| 7682 | Constant::getNullValue(Ty: Op1->getType())); |
| 7683 | } |
| 7684 | |
| 7685 | if ((Pred == CmpInst::ICMP_SLT || Pred == CmpInst::ICMP_SGE) && |
| 7686 | match(V: Op0, P: m_AShr(L: m_Specific(V: Op1), R: m_CheckedInt(CheckFn: CheckNE0)))) { |
| 7687 | return new ICmpInst(ICmpInst::getSwappedPredicate(pred: Pred), Op1, |
| 7688 | Constant::getNullValue(Ty: Op1->getType())); |
| 7689 | } |
| 7690 | } |
| 7691 | |
| 7692 | return nullptr; |
| 7693 | } |
| 7694 | |
| 7695 | Instruction *InstCombinerImpl::visitICmpInst(ICmpInst &I) { |
| 7696 | bool Changed = false; |
| 7697 | const SimplifyQuery Q = SQ.getWithInstruction(I: &I); |
| 7698 | Value *Op0 = I.getOperand(i_nocapture: 0), *Op1 = I.getOperand(i_nocapture: 1); |
| 7699 | unsigned Op0Cplxity = getComplexity(V: Op0); |
| 7700 | unsigned Op1Cplxity = getComplexity(V: Op1); |
| 7701 | |
| 7702 | /// Orders the operands of the compare so that they are listed from most |
| 7703 | /// complex to least complex. This puts constants before unary operators, |
| 7704 | /// before binary operators. |
| 7705 | if (Op0Cplxity < Op1Cplxity) { |
| 7706 | I.swapOperands(); |
| 7707 | std::swap(a&: Op0, b&: Op1); |
| 7708 | Changed = true; |
| 7709 | } |
| 7710 | |
| 7711 | if (Value *V = simplifyICmpInst(Pred: I.getCmpPredicate(), LHS: Op0, RHS: Op1, Q)) |
| 7712 | return replaceInstUsesWith(I, V); |
| 7713 | |
| 7714 | // Comparing -val or val with non-zero is the same as just comparing val |
| 7715 | // ie, abs(val) != 0 -> val != 0 |
| 7716 | if (I.getPredicate() == ICmpInst::ICMP_NE && match(V: Op1, P: m_Zero())) { |
| 7717 | Value *Cond, *SelectTrue, *SelectFalse; |
| 7718 | if (match(V: Op0, P: m_Select(C: m_Value(V&: Cond), L: m_Value(V&: SelectTrue), |
| 7719 | R: m_Value(V&: SelectFalse)))) { |
| 7720 | if (Value *V = dyn_castNegVal(V: SelectTrue)) { |
| 7721 | if (V == SelectFalse) |
| 7722 | return CmpInst::Create(Op: Instruction::ICmp, Pred: I.getPredicate(), S1: V, S2: Op1); |
| 7723 | } else if (Value *V = dyn_castNegVal(V: SelectFalse)) { |
| 7724 | if (V == SelectTrue) |
| 7725 | return CmpInst::Create(Op: Instruction::ICmp, Pred: I.getPredicate(), S1: V, S2: Op1); |
| 7726 | } |
| 7727 | } |
| 7728 | } |
| 7729 | |
| 7730 | if (Instruction *Res = foldICmpTruncWithTruncOrExt(Cmp&: I, Q)) |
| 7731 | return Res; |
| 7732 | |
| 7733 | if (Op0->getType()->isIntOrIntVectorTy(BitWidth: 1)) |
| 7734 | if (Instruction *Res = canonicalizeICmpBool(I, Builder)) |
| 7735 | return Res; |
| 7736 | |
| 7737 | if (Instruction *Res = canonicalizeCmpWithConstant(I)) |
| 7738 | return Res; |
| 7739 | |
| 7740 | if (Instruction *Res = canonicalizeICmpPredicate(I)) |
| 7741 | return Res; |
| 7742 | |
| 7743 | if (Instruction *Res = foldICmpWithConstant(Cmp&: I)) |
| 7744 | return Res; |
| 7745 | |
| 7746 | if (Instruction *Res = foldICmpWithDominatingICmp(Cmp&: I)) |
| 7747 | return Res; |
| 7748 | |
| 7749 | if (Instruction *Res = foldICmpUsingBoolRange(I)) |
| 7750 | return Res; |
| 7751 | |
| 7752 | if (Instruction *Res = foldICmpUsingKnownBits(I)) |
| 7753 | return Res; |
| 7754 | |
| 7755 | if (Instruction *Res = foldIsMultipleOfAPowerOfTwo(Cmp&: I)) |
| 7756 | return Res; |
| 7757 | |
| 7758 | // Test if the ICmpInst instruction is used exclusively by a select as |
| 7759 | // part of a minimum or maximum operation. If so, refrain from doing |
| 7760 | // any other folding. This helps out other analyses which understand |
| 7761 | // non-obfuscated minimum and maximum idioms, such as ScalarEvolution |
| 7762 | // and CodeGen. And in this case, at least one of the comparison |
| 7763 | // operands has at least one user besides the compare (the select), |
| 7764 | // which would often largely negate the benefit of folding anyway. |
| 7765 | // |
| 7766 | // Do the same for the other patterns recognized by matchSelectPattern. |
| 7767 | if (I.hasOneUse()) |
| 7768 | if (SelectInst *SI = dyn_cast<SelectInst>(Val: I.user_back())) { |
| 7769 | Value *A, *B; |
| 7770 | SelectPatternResult SPR = matchSelectPattern(V: SI, LHS&: A, RHS&: B); |
| 7771 | if (SPR.Flavor != SPF_UNKNOWN) |
| 7772 | return nullptr; |
| 7773 | } |
| 7774 | |
| 7775 | // Do this after checking for min/max to prevent infinite looping. |
| 7776 | if (Instruction *Res = foldICmpWithZero(Cmp&: I)) |
| 7777 | return Res; |
| 7778 | |
| 7779 | // FIXME: We only do this after checking for min/max to prevent infinite |
| 7780 | // looping caused by a reverse canonicalization of these patterns for min/max. |
| 7781 | // FIXME: The organization of folds is a mess. These would naturally go into |
| 7782 | // canonicalizeCmpWithConstant(), but we can't move all of the above folds |
| 7783 | // down here after the min/max restriction. |
| 7784 | ICmpInst::Predicate Pred = I.getPredicate(); |
| 7785 | const APInt *C; |
| 7786 | if (match(V: Op1, P: m_APInt(Res&: C))) { |
| 7787 | // For i32: x >u 2147483647 -> x <s 0 -> true if sign bit set |
| 7788 | if (Pred == ICmpInst::ICMP_UGT && C->isMaxSignedValue()) { |
| 7789 | Constant *Zero = Constant::getNullValue(Ty: Op0->getType()); |
| 7790 | return new ICmpInst(ICmpInst::ICMP_SLT, Op0, Zero); |
| 7791 | } |
| 7792 | |
| 7793 | // For i32: x <u 2147483648 -> x >s -1 -> true if sign bit clear |
| 7794 | if (Pred == ICmpInst::ICMP_ULT && C->isMinSignedValue()) { |
| 7795 | Constant *AllOnes = Constant::getAllOnesValue(Ty: Op0->getType()); |
| 7796 | return new ICmpInst(ICmpInst::ICMP_SGT, Op0, AllOnes); |
| 7797 | } |
| 7798 | } |
| 7799 | |
| 7800 | // The folds in here may rely on wrapping flags and special constants, so |
| 7801 | // they can break up min/max idioms in some cases but not seemingly similar |
| 7802 | // patterns. |
| 7803 | // FIXME: It may be possible to enhance select folding to make this |
| 7804 | // unnecessary. It may also be moot if we canonicalize to min/max |
| 7805 | // intrinsics. |
| 7806 | if (Instruction *Res = foldICmpBinOp(I, SQ: Q)) |
| 7807 | return Res; |
| 7808 | |
| 7809 | if (Instruction *Res = foldICmpInstWithConstant(Cmp&: I)) |
| 7810 | return Res; |
| 7811 | |
| 7812 | // Try to match comparison as a sign bit test. Intentionally do this after |
| 7813 | // foldICmpInstWithConstant() to potentially let other folds to happen first. |
| 7814 | if (Instruction *New = foldSignBitTest(I)) |
| 7815 | return New; |
| 7816 | |
| 7817 | if (auto *PN = dyn_cast<PHINode>(Val: Op0)) |
| 7818 | if (Instruction *NV = foldOpIntoPhi(I, PN)) |
| 7819 | return NV; |
| 7820 | if (auto *PN = dyn_cast<PHINode>(Val: Op1)) |
| 7821 | if (Instruction *NV = foldOpIntoPhi(I, PN)) |
| 7822 | return NV; |
| 7823 | |
| 7824 | if (Instruction *Res = foldICmpInstWithConstantNotInt(I)) |
| 7825 | return Res; |
| 7826 | |
| 7827 | if (Instruction *Res = foldICmpCommutative(Pred: I.getCmpPredicate(), Op0, Op1, CxtI&: I)) |
| 7828 | return Res; |
| 7829 | if (Instruction *Res = |
| 7830 | foldICmpCommutative(Pred: I.getSwappedCmpPredicate(), Op0: Op1, Op1: Op0, CxtI&: I)) |
| 7831 | return Res; |
| 7832 | |
| 7833 | if (I.isCommutative()) { |
| 7834 | if (auto Pair = matchSymmetricPair(LHS: I.getOperand(i_nocapture: 0), RHS: I.getOperand(i_nocapture: 1))) { |
| 7835 | replaceOperand(I, OpNum: 0, V: Pair->first); |
| 7836 | replaceOperand(I, OpNum: 1, V: Pair->second); |
| 7837 | return &I; |
| 7838 | } |
| 7839 | } |
| 7840 | |
| 7841 | // In case of a comparison with two select instructions having the same |
| 7842 | // condition, check whether one of the resulting branches can be simplified. |
| 7843 | // If so, just compare the other branch and select the appropriate result. |
| 7844 | // For example: |
| 7845 | // %tmp1 = select i1 %cmp, i32 %y, i32 %x |
| 7846 | // %tmp2 = select i1 %cmp, i32 %z, i32 %x |
| 7847 | // %cmp2 = icmp slt i32 %tmp2, %tmp1 |
| 7848 | // The icmp will result false for the false value of selects and the result |
| 7849 | // will depend upon the comparison of true values of selects if %cmp is |
| 7850 | // true. Thus, transform this into: |
| 7851 | // %cmp = icmp slt i32 %y, %z |
| 7852 | // %sel = select i1 %cond, i1 %cmp, i1 false |
| 7853 | // This handles similar cases to transform. |
| 7854 | { |
| 7855 | Value *Cond, *A, *B, *C, *D; |
| 7856 | if (match(V: Op0, P: m_Select(C: m_Value(V&: Cond), L: m_Value(V&: A), R: m_Value(V&: B))) && |
| 7857 | match(V: Op1, P: m_Select(C: m_Specific(V: Cond), L: m_Value(V&: C), R: m_Value(V&: D))) && |
| 7858 | (Op0->hasOneUse() || Op1->hasOneUse())) { |
| 7859 | // Check whether comparison of TrueValues can be simplified |
| 7860 | if (Value *Res = simplifyICmpInst(Pred, LHS: A, RHS: C, Q: SQ)) { |
| 7861 | Value *NewICMP = Builder.CreateICmp(P: Pred, LHS: B, RHS: D); |
| 7862 | return SelectInst::Create( |
| 7863 | C: Cond, S1: Res, S2: NewICMP, /*NameStr=*/"" , /*InsertBefore=*/nullptr, |
| 7864 | MDFrom: ProfcheckDisableMetadataFixes ? nullptr : cast<Instruction>(Val: Op0)); |
| 7865 | } |
| 7866 | // Check whether comparison of FalseValues can be simplified |
| 7867 | if (Value *Res = simplifyICmpInst(Pred, LHS: B, RHS: D, Q: SQ)) { |
| 7868 | Value *NewICMP = Builder.CreateICmp(P: Pred, LHS: A, RHS: C); |
| 7869 | return SelectInst::Create( |
| 7870 | C: Cond, S1: NewICMP, S2: Res, /*NameStr=*/"" , /*InsertBefore=*/nullptr, |
| 7871 | MDFrom: ProfcheckDisableMetadataFixes ? nullptr : cast<Instruction>(Val: Op0)); |
| 7872 | } |
| 7873 | } |
| 7874 | } |
| 7875 | |
| 7876 | // icmp slt (sub nsw x, y), (add nsw x, y) --> icmp sgt y, 0 |
| 7877 | // icmp ult (sub nuw x, y), (add nuw x, y) --> icmp ugt y, 0 |
| 7878 | // icmp eq (sub nsw/nuw x, y), (add nsw/nuw x, y) --> icmp eq y, 0 |
| 7879 | { |
| 7880 | Value *A, *B; |
| 7881 | CmpPredicate CmpPred; |
| 7882 | if (match(V: &I, P: m_c_ICmp(Pred&: CmpPred, L: m_Sub(L: m_Value(V&: A), R: m_Value(V&: B)), |
| 7883 | R: m_c_Add(L: m_Deferred(V: A), R: m_Deferred(V: B))))) { |
| 7884 | auto *I0 = cast<OverflowingBinaryOperator>(Val: Op0); |
| 7885 | auto *I1 = cast<OverflowingBinaryOperator>(Val: Op1); |
| 7886 | bool I0NUW = I0->hasNoUnsignedWrap(); |
| 7887 | bool I1NUW = I1->hasNoUnsignedWrap(); |
| 7888 | bool I0NSW = I0->hasNoSignedWrap(); |
| 7889 | bool I1NSW = I1->hasNoSignedWrap(); |
| 7890 | if ((ICmpInst::isUnsigned(predicate: Pred) && I0NUW && I1NUW) || |
| 7891 | (ICmpInst::isSigned(predicate: Pred) && I0NSW && I1NSW) || |
| 7892 | (ICmpInst::isEquality(P: Pred) && |
| 7893 | ((I0NUW || I0NSW) && (I1NUW || I1NSW)))) { |
| 7894 | return new ICmpInst(CmpPredicate::getSwapped(P: CmpPred), B, |
| 7895 | ConstantInt::get(Ty: Op0->getType(), V: 0)); |
| 7896 | } |
| 7897 | } |
| 7898 | } |
| 7899 | |
| 7900 | // Try to optimize equality comparisons against alloca-based pointers. |
| 7901 | if (Op0->getType()->isPointerTy() && I.isEquality()) { |
| 7902 | assert(Op1->getType()->isPointerTy() && |
| 7903 | "Comparing pointer with non-pointer?" ); |
| 7904 | if (auto *Alloca = dyn_cast<AllocaInst>(Val: getUnderlyingObject(V: Op0))) |
| 7905 | if (foldAllocaCmp(Alloca)) |
| 7906 | return nullptr; |
| 7907 | if (auto *Alloca = dyn_cast<AllocaInst>(Val: getUnderlyingObject(V: Op1))) |
| 7908 | if (foldAllocaCmp(Alloca)) |
| 7909 | return nullptr; |
| 7910 | } |
| 7911 | |
| 7912 | if (Instruction *Res = foldICmpBitCast(Cmp&: I)) |
| 7913 | return Res; |
| 7914 | |
| 7915 | // TODO: Hoist this above the min/max bailout. |
| 7916 | if (Instruction *R = foldICmpWithCastOp(ICmp&: I)) |
| 7917 | return R; |
| 7918 | |
| 7919 | { |
| 7920 | Value *X, *Y; |
| 7921 | // Transform (X & ~Y) == 0 --> (X & Y) != 0 |
| 7922 | // and (X & ~Y) != 0 --> (X & Y) == 0 |
| 7923 | // if A is a power of 2. |
| 7924 | if (match(V: Op0, P: m_And(L: m_Value(V&: X), R: m_Not(V: m_Value(V&: Y)))) && |
| 7925 | match(V: Op1, P: m_Zero()) && isKnownToBeAPowerOfTwo(V: X, OrZero: false, CxtI: &I) && |
| 7926 | I.isEquality()) |
| 7927 | return new ICmpInst(I.getInversePredicate(), Builder.CreateAnd(LHS: X, RHS: Y), |
| 7928 | Op1); |
| 7929 | |
| 7930 | // Op0 pred Op1 -> ~Op1 pred ~Op0, if this allows us to drop an instruction. |
| 7931 | if (Op0->getType()->isIntOrIntVectorTy()) { |
| 7932 | bool ConsumesOp0, ConsumesOp1; |
| 7933 | if (isFreeToInvert(V: Op0, WillInvertAllUses: Op0->hasOneUse(), DoesConsume&: ConsumesOp0) && |
| 7934 | isFreeToInvert(V: Op1, WillInvertAllUses: Op1->hasOneUse(), DoesConsume&: ConsumesOp1) && |
| 7935 | (ConsumesOp0 || ConsumesOp1)) { |
| 7936 | Value *InvOp0 = getFreelyInverted(V: Op0, WillInvertAllUses: Op0->hasOneUse(), Builder: &Builder); |
| 7937 | Value *InvOp1 = getFreelyInverted(V: Op1, WillInvertAllUses: Op1->hasOneUse(), Builder: &Builder); |
| 7938 | assert(InvOp0 && InvOp1 && |
| 7939 | "Mismatch between isFreeToInvert and getFreelyInverted" ); |
| 7940 | return new ICmpInst(I.getSwappedPredicate(), InvOp0, InvOp1); |
| 7941 | } |
| 7942 | } |
| 7943 | |
| 7944 | Instruction *AddI = nullptr; |
| 7945 | if (match(V: &I, P: m_UAddWithOverflow(L: m_Value(V&: X), R: m_Value(V&: Y), |
| 7946 | S: m_Instruction(I&: AddI))) && |
| 7947 | isa<IntegerType>(Val: X->getType())) { |
| 7948 | Value *Result; |
| 7949 | Constant *Overflow; |
| 7950 | // m_UAddWithOverflow can match patterns that do not include an explicit |
| 7951 | // "add" instruction, so check the opcode of the matched op. |
| 7952 | if (AddI->getOpcode() == Instruction::Add && |
| 7953 | OptimizeOverflowCheck(BinaryOp: Instruction::Add, /*Signed*/ IsSigned: false, LHS: X, RHS: Y, OrigI&: *AddI, |
| 7954 | Result, Overflow)) { |
| 7955 | replaceInstUsesWith(I&: *AddI, V: Result); |
| 7956 | eraseInstFromFunction(I&: *AddI); |
| 7957 | return replaceInstUsesWith(I, V: Overflow); |
| 7958 | } |
| 7959 | } |
| 7960 | |
| 7961 | // (zext X) * (zext Y) --> llvm.umul.with.overflow. |
| 7962 | if (match(V: Op0, P: m_NUWMul(L: m_ZExt(Op: m_Value(V&: X)), R: m_ZExt(Op: m_Value(V&: Y)))) && |
| 7963 | match(V: Op1, P: m_APInt(Res&: C))) { |
| 7964 | if (Instruction *R = processUMulZExtIdiom(I, MulVal: Op0, OtherVal: C, IC&: *this)) |
| 7965 | return R; |
| 7966 | } |
| 7967 | |
| 7968 | // Signbit test folds |
| 7969 | // Fold (X u>> BitWidth - 1 Pred ZExt(i1)) --> X s< 0 Pred i1 |
| 7970 | // Fold (X s>> BitWidth - 1 Pred SExt(i1)) --> X s< 0 Pred i1 |
| 7971 | Instruction *ExtI; |
| 7972 | if ((I.isUnsigned() || I.isEquality()) && |
| 7973 | match(V: Op1, |
| 7974 | P: m_CombineAnd(L: m_Instruction(I&: ExtI), R: m_ZExtOrSExt(Op: m_Value(V&: Y)))) && |
| 7975 | Y->getType()->getScalarSizeInBits() == 1 && |
| 7976 | (Op0->hasOneUse() || Op1->hasOneUse())) { |
| 7977 | unsigned OpWidth = Op0->getType()->getScalarSizeInBits(); |
| 7978 | Instruction *ShiftI; |
| 7979 | if (match(V: Op0, P: m_CombineAnd(L: m_Instruction(I&: ShiftI), |
| 7980 | R: m_Shr(L: m_Value(V&: X), R: m_SpecificIntAllowPoison( |
| 7981 | V: OpWidth - 1))))) { |
| 7982 | unsigned ExtOpc = ExtI->getOpcode(); |
| 7983 | unsigned ShiftOpc = ShiftI->getOpcode(); |
| 7984 | if ((ExtOpc == Instruction::ZExt && ShiftOpc == Instruction::LShr) || |
| 7985 | (ExtOpc == Instruction::SExt && ShiftOpc == Instruction::AShr)) { |
| 7986 | Value *SLTZero = |
| 7987 | Builder.CreateICmpSLT(LHS: X, RHS: Constant::getNullValue(Ty: X->getType())); |
| 7988 | Value *Cmp = Builder.CreateICmp(P: Pred, LHS: SLTZero, RHS: Y, Name: I.getName()); |
| 7989 | return replaceInstUsesWith(I, V: Cmp); |
| 7990 | } |
| 7991 | } |
| 7992 | } |
| 7993 | } |
| 7994 | |
| 7995 | if (Instruction *Res = foldICmpEquality(I)) |
| 7996 | return Res; |
| 7997 | |
| 7998 | if (Instruction *Res = foldICmpPow2Test(I, Builder)) |
| 7999 | return Res; |
| 8000 | |
| 8001 | if (Instruction *Res = foldICmpOfUAddOv(I)) |
| 8002 | return Res; |
| 8003 | |
| 8004 | // The 'cmpxchg' instruction returns an aggregate containing the old value and |
| 8005 | // an i1 which indicates whether or not we successfully did the swap. |
| 8006 | // |
| 8007 | // Replace comparisons between the old value and the expected value with the |
| 8008 | // indicator that 'cmpxchg' returns. |
| 8009 | // |
| 8010 | // N.B. This transform is only valid when the 'cmpxchg' is not permitted to |
| 8011 | // spuriously fail. In those cases, the old value may equal the expected |
| 8012 | // value but it is possible for the swap to not occur. |
| 8013 | if (I.getPredicate() == ICmpInst::ICMP_EQ) |
| 8014 | if (auto *EVI = dyn_cast<ExtractValueInst>(Val: Op0)) |
| 8015 | if (auto *ACXI = dyn_cast<AtomicCmpXchgInst>(Val: EVI->getAggregateOperand())) |
| 8016 | if (EVI->getIndices()[0] == 0 && ACXI->getCompareOperand() == Op1 && |
| 8017 | !ACXI->isWeak()) |
| 8018 | return ExtractValueInst::Create(Agg: ACXI, Idxs: 1); |
| 8019 | |
| 8020 | if (Instruction *Res = foldICmpWithHighBitMask(Cmp&: I, Builder)) |
| 8021 | return Res; |
| 8022 | |
| 8023 | if (I.getType()->isVectorTy()) |
| 8024 | if (Instruction *Res = foldVectorCmp(Cmp&: I, Builder)) |
| 8025 | return Res; |
| 8026 | |
| 8027 | if (Instruction *Res = foldICmpInvariantGroup(I)) |
| 8028 | return Res; |
| 8029 | |
| 8030 | if (Instruction *Res = foldReductionIdiom(I, Builder, DL)) |
| 8031 | return Res; |
| 8032 | |
| 8033 | { |
| 8034 | Value *A; |
| 8035 | const APInt *C1, *C2; |
| 8036 | ICmpInst::Predicate Pred = I.getPredicate(); |
| 8037 | if (ICmpInst::isEquality(P: Pred)) { |
| 8038 | // sext(a) & c1 == c2 --> a & c3 == trunc(c2) |
| 8039 | // sext(a) & c1 != c2 --> a & c3 != trunc(c2) |
| 8040 | if (match(V: Op0, P: m_And(L: m_SExt(Op: m_Value(V&: A)), R: m_APInt(Res&: C1))) && |
| 8041 | match(V: Op1, P: m_APInt(Res&: C2))) { |
| 8042 | Type *InputTy = A->getType(); |
| 8043 | unsigned InputBitWidth = InputTy->getScalarSizeInBits(); |
| 8044 | // c2 must be non-negative at the bitwidth of a. |
| 8045 | if (C2->getActiveBits() < InputBitWidth) { |
| 8046 | APInt TruncC1 = C1->trunc(width: InputBitWidth); |
| 8047 | // Check if there are 1s in C1 high bits of size InputBitWidth. |
| 8048 | if (C1->uge(RHS: APInt::getOneBitSet(numBits: C1->getBitWidth(), BitNo: InputBitWidth))) |
| 8049 | TruncC1.setBit(InputBitWidth - 1); |
| 8050 | Value *AndInst = Builder.CreateAnd(LHS: A, RHS: TruncC1); |
| 8051 | return new ICmpInst( |
| 8052 | Pred, AndInst, |
| 8053 | ConstantInt::get(Ty: InputTy, V: C2->trunc(width: InputBitWidth))); |
| 8054 | } |
| 8055 | } |
| 8056 | } |
| 8057 | } |
| 8058 | |
| 8059 | return Changed ? &I : nullptr; |
| 8060 | } |
| 8061 | |
| 8062 | /// Fold fcmp ([us]itofp x, cst) if possible. |
| 8063 | Instruction *InstCombinerImpl::foldFCmpIntToFPConst(FCmpInst &I, |
| 8064 | Instruction *LHSI, |
| 8065 | Constant *RHSC) { |
| 8066 | const APFloat *RHS; |
| 8067 | if (!match(V: RHSC, P: m_APFloat(Res&: RHS))) |
| 8068 | return nullptr; |
| 8069 | |
| 8070 | // Get the width of the mantissa. We don't want to hack on conversions that |
| 8071 | // might lose information from the integer, e.g. "i64 -> float" |
| 8072 | int MantissaWidth = LHSI->getType()->getFPMantissaWidth(); |
| 8073 | if (MantissaWidth == -1) |
| 8074 | return nullptr; // Unknown. |
| 8075 | |
| 8076 | Type *IntTy = LHSI->getOperand(i: 0)->getType(); |
| 8077 | unsigned IntWidth = IntTy->getScalarSizeInBits(); |
| 8078 | bool LHSUnsigned = isa<UIToFPInst>(Val: LHSI); |
| 8079 | |
| 8080 | if (I.isEquality()) { |
| 8081 | FCmpInst::Predicate P = I.getPredicate(); |
| 8082 | bool IsExact = false; |
| 8083 | APSInt RHSCvt(IntWidth, LHSUnsigned); |
| 8084 | RHS->convertToInteger(Result&: RHSCvt, RM: APFloat::rmNearestTiesToEven, IsExact: &IsExact); |
| 8085 | |
| 8086 | // If the floating point constant isn't an integer value, we know if we will |
| 8087 | // ever compare equal / not equal to it. |
| 8088 | if (!IsExact) { |
| 8089 | // TODO: Can never be -0.0 and other non-representable values |
| 8090 | APFloat RHSRoundInt(*RHS); |
| 8091 | RHSRoundInt.roundToIntegral(RM: APFloat::rmNearestTiesToEven); |
| 8092 | if (*RHS != RHSRoundInt) { |
| 8093 | if (P == FCmpInst::FCMP_OEQ || P == FCmpInst::FCMP_UEQ) |
| 8094 | return replaceInstUsesWith(I, V: ConstantInt::getFalse(Ty: I.getType())); |
| 8095 | |
| 8096 | assert(P == FCmpInst::FCMP_ONE || P == FCmpInst::FCMP_UNE); |
| 8097 | return replaceInstUsesWith(I, V: ConstantInt::getTrue(Ty: I.getType())); |
| 8098 | } |
| 8099 | } |
| 8100 | |
| 8101 | // TODO: If the constant is exactly representable, is it always OK to do |
| 8102 | // equality compares as integer? |
| 8103 | } |
| 8104 | |
| 8105 | // Check to see that the input is converted from an integer type that is small |
| 8106 | // enough that preserves all bits. TODO: check here for "known" sign bits. |
| 8107 | // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e. |
| 8108 | |
| 8109 | // Following test does NOT adjust IntWidth downwards for signed inputs, |
| 8110 | // because the most negative value still requires all the mantissa bits |
| 8111 | // to distinguish it from one less than that value. |
| 8112 | if ((int)IntWidth > MantissaWidth) { |
| 8113 | // Conversion would lose accuracy. Check if loss can impact comparison. |
| 8114 | int Exp = ilogb(Arg: *RHS); |
| 8115 | if (Exp == APFloat::IEK_Inf) { |
| 8116 | int MaxExponent = ilogb(Arg: APFloat::getLargest(Sem: RHS->getSemantics())); |
| 8117 | if (MaxExponent < (int)IntWidth - !LHSUnsigned) |
| 8118 | // Conversion could create infinity. |
| 8119 | return nullptr; |
| 8120 | } else { |
| 8121 | // Note that if RHS is zero or NaN, then Exp is negative |
| 8122 | // and first condition is trivially false. |
| 8123 | if (MantissaWidth <= Exp && Exp <= (int)IntWidth - !LHSUnsigned) |
| 8124 | // Conversion could affect comparison. |
| 8125 | return nullptr; |
| 8126 | } |
| 8127 | } |
| 8128 | |
| 8129 | // Otherwise, we can potentially simplify the comparison. We know that it |
| 8130 | // will always come through as an integer value and we know the constant is |
| 8131 | // not a NAN (it would have been previously simplified). |
| 8132 | assert(!RHS->isNaN() && "NaN comparison not already folded!" ); |
| 8133 | |
| 8134 | ICmpInst::Predicate Pred; |
| 8135 | switch (I.getPredicate()) { |
| 8136 | default: |
| 8137 | llvm_unreachable("Unexpected predicate!" ); |
| 8138 | case FCmpInst::FCMP_UEQ: |
| 8139 | case FCmpInst::FCMP_OEQ: |
| 8140 | Pred = ICmpInst::ICMP_EQ; |
| 8141 | break; |
| 8142 | case FCmpInst::FCMP_UGT: |
| 8143 | case FCmpInst::FCMP_OGT: |
| 8144 | Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT; |
| 8145 | break; |
| 8146 | case FCmpInst::FCMP_UGE: |
| 8147 | case FCmpInst::FCMP_OGE: |
| 8148 | Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE; |
| 8149 | break; |
| 8150 | case FCmpInst::FCMP_ULT: |
| 8151 | case FCmpInst::FCMP_OLT: |
| 8152 | Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT; |
| 8153 | break; |
| 8154 | case FCmpInst::FCMP_ULE: |
| 8155 | case FCmpInst::FCMP_OLE: |
| 8156 | Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE; |
| 8157 | break; |
| 8158 | case FCmpInst::FCMP_UNE: |
| 8159 | case FCmpInst::FCMP_ONE: |
| 8160 | Pred = ICmpInst::ICMP_NE; |
| 8161 | break; |
| 8162 | case FCmpInst::FCMP_ORD: |
| 8163 | return replaceInstUsesWith(I, V: ConstantInt::getTrue(Ty: I.getType())); |
| 8164 | case FCmpInst::FCMP_UNO: |
| 8165 | return replaceInstUsesWith(I, V: ConstantInt::getFalse(Ty: I.getType())); |
| 8166 | } |
| 8167 | |
| 8168 | // Now we know that the APFloat is a normal number, zero or inf. |
| 8169 | |
| 8170 | // See if the FP constant is too large for the integer. For example, |
| 8171 | // comparing an i8 to 300.0. |
| 8172 | if (!LHSUnsigned) { |
| 8173 | // If the RHS value is > SignedMax, fold the comparison. This handles +INF |
| 8174 | // and large values. |
| 8175 | APFloat SMax(RHS->getSemantics()); |
| 8176 | SMax.convertFromAPInt(Input: APInt::getSignedMaxValue(numBits: IntWidth), IsSigned: true, |
| 8177 | RM: APFloat::rmNearestTiesToEven); |
| 8178 | if (SMax < *RHS) { // smax < 13123.0 |
| 8179 | if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SLT || |
| 8180 | Pred == ICmpInst::ICMP_SLE) |
| 8181 | return replaceInstUsesWith(I, V: ConstantInt::getTrue(Ty: I.getType())); |
| 8182 | return replaceInstUsesWith(I, V: ConstantInt::getFalse(Ty: I.getType())); |
| 8183 | } |
| 8184 | } else { |
| 8185 | // If the RHS value is > UnsignedMax, fold the comparison. This handles |
| 8186 | // +INF and large values. |
| 8187 | APFloat UMax(RHS->getSemantics()); |
| 8188 | UMax.convertFromAPInt(Input: APInt::getMaxValue(numBits: IntWidth), IsSigned: false, |
| 8189 | RM: APFloat::rmNearestTiesToEven); |
| 8190 | if (UMax < *RHS) { // umax < 13123.0 |
| 8191 | if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_ULT || |
| 8192 | Pred == ICmpInst::ICMP_ULE) |
| 8193 | return replaceInstUsesWith(I, V: ConstantInt::getTrue(Ty: I.getType())); |
| 8194 | return replaceInstUsesWith(I, V: ConstantInt::getFalse(Ty: I.getType())); |
| 8195 | } |
| 8196 | } |
| 8197 | |
| 8198 | if (!LHSUnsigned) { |
| 8199 | // See if the RHS value is < SignedMin. |
| 8200 | APFloat SMin(RHS->getSemantics()); |
| 8201 | SMin.convertFromAPInt(Input: APInt::getSignedMinValue(numBits: IntWidth), IsSigned: true, |
| 8202 | RM: APFloat::rmNearestTiesToEven); |
| 8203 | if (SMin > *RHS) { // smin > 12312.0 |
| 8204 | if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT || |
| 8205 | Pred == ICmpInst::ICMP_SGE) |
| 8206 | return replaceInstUsesWith(I, V: ConstantInt::getTrue(Ty: I.getType())); |
| 8207 | return replaceInstUsesWith(I, V: ConstantInt::getFalse(Ty: I.getType())); |
| 8208 | } |
| 8209 | } else { |
| 8210 | // See if the RHS value is < UnsignedMin. |
| 8211 | APFloat UMin(RHS->getSemantics()); |
| 8212 | UMin.convertFromAPInt(Input: APInt::getMinValue(numBits: IntWidth), IsSigned: false, |
| 8213 | RM: APFloat::rmNearestTiesToEven); |
| 8214 | if (UMin > *RHS) { // umin > 12312.0 |
| 8215 | if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT || |
| 8216 | Pred == ICmpInst::ICMP_UGE) |
| 8217 | return replaceInstUsesWith(I, V: ConstantInt::getTrue(Ty: I.getType())); |
| 8218 | return replaceInstUsesWith(I, V: ConstantInt::getFalse(Ty: I.getType())); |
| 8219 | } |
| 8220 | } |
| 8221 | |
| 8222 | // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or |
| 8223 | // [0, UMAX], but it may still be fractional. Check whether this is the case |
| 8224 | // using the IsExact flag. |
| 8225 | // Don't do this for zero, because -0.0 is not fractional. |
| 8226 | APSInt RHSInt(IntWidth, LHSUnsigned); |
| 8227 | bool IsExact; |
| 8228 | RHS->convertToInteger(Result&: RHSInt, RM: APFloat::rmTowardZero, IsExact: &IsExact); |
| 8229 | if (!RHS->isZero()) { |
| 8230 | if (!IsExact) { |
| 8231 | // If we had a comparison against a fractional value, we have to adjust |
| 8232 | // the compare predicate and sometimes the value. RHSC is rounded towards |
| 8233 | // zero at this point. |
| 8234 | switch (Pred) { |
| 8235 | default: |
| 8236 | llvm_unreachable("Unexpected integer comparison!" ); |
| 8237 | case ICmpInst::ICMP_NE: // (float)int != 4.4 --> true |
| 8238 | return replaceInstUsesWith(I, V: ConstantInt::getTrue(Ty: I.getType())); |
| 8239 | case ICmpInst::ICMP_EQ: // (float)int == 4.4 --> false |
| 8240 | return replaceInstUsesWith(I, V: ConstantInt::getFalse(Ty: I.getType())); |
| 8241 | case ICmpInst::ICMP_ULE: |
| 8242 | // (float)int <= 4.4 --> int <= 4 |
| 8243 | // (float)int <= -4.4 --> false |
| 8244 | if (RHS->isNegative()) |
| 8245 | return replaceInstUsesWith(I, V: ConstantInt::getFalse(Ty: I.getType())); |
| 8246 | break; |
| 8247 | case ICmpInst::ICMP_SLE: |
| 8248 | // (float)int <= 4.4 --> int <= 4 |
| 8249 | // (float)int <= -4.4 --> int < -4 |
| 8250 | if (RHS->isNegative()) |
| 8251 | Pred = ICmpInst::ICMP_SLT; |
| 8252 | break; |
| 8253 | case ICmpInst::ICMP_ULT: |
| 8254 | // (float)int < -4.4 --> false |
| 8255 | // (float)int < 4.4 --> int <= 4 |
| 8256 | if (RHS->isNegative()) |
| 8257 | return replaceInstUsesWith(I, V: ConstantInt::getFalse(Ty: I.getType())); |
| 8258 | Pred = ICmpInst::ICMP_ULE; |
| 8259 | break; |
| 8260 | case ICmpInst::ICMP_SLT: |
| 8261 | // (float)int < -4.4 --> int < -4 |
| 8262 | // (float)int < 4.4 --> int <= 4 |
| 8263 | if (!RHS->isNegative()) |
| 8264 | Pred = ICmpInst::ICMP_SLE; |
| 8265 | break; |
| 8266 | case ICmpInst::ICMP_UGT: |
| 8267 | // (float)int > 4.4 --> int > 4 |
| 8268 | // (float)int > -4.4 --> true |
| 8269 | if (RHS->isNegative()) |
| 8270 | return replaceInstUsesWith(I, V: ConstantInt::getTrue(Ty: I.getType())); |
| 8271 | break; |
| 8272 | case ICmpInst::ICMP_SGT: |
| 8273 | // (float)int > 4.4 --> int > 4 |
| 8274 | // (float)int > -4.4 --> int >= -4 |
| 8275 | if (RHS->isNegative()) |
| 8276 | Pred = ICmpInst::ICMP_SGE; |
| 8277 | break; |
| 8278 | case ICmpInst::ICMP_UGE: |
| 8279 | // (float)int >= -4.4 --> true |
| 8280 | // (float)int >= 4.4 --> int > 4 |
| 8281 | if (RHS->isNegative()) |
| 8282 | return replaceInstUsesWith(I, V: ConstantInt::getTrue(Ty: I.getType())); |
| 8283 | Pred = ICmpInst::ICMP_UGT; |
| 8284 | break; |
| 8285 | case ICmpInst::ICMP_SGE: |
| 8286 | // (float)int >= -4.4 --> int >= -4 |
| 8287 | // (float)int >= 4.4 --> int > 4 |
| 8288 | if (!RHS->isNegative()) |
| 8289 | Pred = ICmpInst::ICMP_SGT; |
| 8290 | break; |
| 8291 | } |
| 8292 | } |
| 8293 | } |
| 8294 | |
| 8295 | // Lower this FP comparison into an appropriate integer version of the |
| 8296 | // comparison. |
| 8297 | return new ICmpInst(Pred, LHSI->getOperand(i: 0), |
| 8298 | ConstantInt::get(Ty: LHSI->getOperand(i: 0)->getType(), V: RHSInt)); |
| 8299 | } |
| 8300 | |
| 8301 | /// Fold (C / X) < 0.0 --> X < 0.0 if possible. Swap predicate if necessary. |
| 8302 | static Instruction *foldFCmpReciprocalAndZero(FCmpInst &I, Instruction *LHSI, |
| 8303 | Constant *RHSC) { |
| 8304 | // When C is not 0.0 and infinities are not allowed: |
| 8305 | // (C / X) < 0.0 is a sign-bit test of X |
| 8306 | // (C / X) < 0.0 --> X < 0.0 (if C is positive) |
| 8307 | // (C / X) < 0.0 --> X > 0.0 (if C is negative, swap the predicate) |
| 8308 | // |
| 8309 | // Proof: |
| 8310 | // Multiply (C / X) < 0.0 by X * X / C. |
| 8311 | // - X is non zero, if it is the flag 'ninf' is violated. |
| 8312 | // - C defines the sign of X * X * C. Thus it also defines whether to swap |
| 8313 | // the predicate. C is also non zero by definition. |
| 8314 | // |
| 8315 | // Thus X * X / C is non zero and the transformation is valid. [qed] |
| 8316 | |
| 8317 | FCmpInst::Predicate Pred = I.getPredicate(); |
| 8318 | |
| 8319 | // Check that predicates are valid. |
| 8320 | if ((Pred != FCmpInst::FCMP_OGT) && (Pred != FCmpInst::FCMP_OLT) && |
| 8321 | (Pred != FCmpInst::FCMP_OGE) && (Pred != FCmpInst::FCMP_OLE)) |
| 8322 | return nullptr; |
| 8323 | |
| 8324 | // Check that RHS operand is zero. |
| 8325 | if (!match(V: RHSC, P: m_AnyZeroFP())) |
| 8326 | return nullptr; |
| 8327 | |
| 8328 | // Check fastmath flags ('ninf'). |
| 8329 | if (!LHSI->hasNoInfs() || !I.hasNoInfs()) |
| 8330 | return nullptr; |
| 8331 | |
| 8332 | // Check the properties of the dividend. It must not be zero to avoid a |
| 8333 | // division by zero (see Proof). |
| 8334 | const APFloat *C; |
| 8335 | if (!match(V: LHSI->getOperand(i: 0), P: m_APFloat(Res&: C))) |
| 8336 | return nullptr; |
| 8337 | |
| 8338 | if (C->isZero()) |
| 8339 | return nullptr; |
| 8340 | |
| 8341 | // Get swapped predicate if necessary. |
| 8342 | if (C->isNegative()) |
| 8343 | Pred = I.getSwappedPredicate(); |
| 8344 | |
| 8345 | return new FCmpInst(Pred, LHSI->getOperand(i: 1), RHSC, "" , &I); |
| 8346 | } |
| 8347 | |
| 8348 | // Transform 'fptrunc(x) cmp C' to 'x cmp ext(C)' if possible. |
| 8349 | // Patterns include: |
| 8350 | // fptrunc(x) < C --> x < ext(C) |
| 8351 | // fptrunc(x) <= C --> x <= ext(C) |
| 8352 | // fptrunc(x) > C --> x > ext(C) |
| 8353 | // fptrunc(x) >= C --> x >= ext(C) |
| 8354 | // where 'ext(C)' is the extension of 'C' to the type of 'x' with a small bias |
| 8355 | // due to precision loss. |
| 8356 | static Instruction *foldFCmpFpTrunc(FCmpInst &I, const Instruction &FPTrunc, |
| 8357 | const Constant &C) { |
| 8358 | FCmpInst::Predicate Pred = I.getPredicate(); |
| 8359 | bool RoundDown = false; |
| 8360 | |
| 8361 | if (Pred == FCmpInst::FCMP_OGE || Pred == FCmpInst::FCMP_UGE || |
| 8362 | Pred == FCmpInst::FCMP_OLT || Pred == FCmpInst::FCMP_ULT) |
| 8363 | RoundDown = true; |
| 8364 | else if (Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_UGT || |
| 8365 | Pred == FCmpInst::FCMP_OLE || Pred == FCmpInst::FCMP_ULE) |
| 8366 | RoundDown = false; |
| 8367 | else |
| 8368 | return nullptr; |
| 8369 | |
| 8370 | const APFloat *CValue; |
| 8371 | if (!match(V: &C, P: m_APFloat(Res&: CValue))) |
| 8372 | return nullptr; |
| 8373 | |
| 8374 | if (CValue->isNaN() || CValue->isInfinity()) |
| 8375 | return nullptr; |
| 8376 | |
| 8377 | auto ConvertFltSema = [](const APFloat &Src, const fltSemantics &Sema) { |
| 8378 | bool LosesInfo; |
| 8379 | APFloat Dest = Src; |
| 8380 | Dest.convert(ToSemantics: Sema, RM: APFloat::rmNearestTiesToEven, losesInfo: &LosesInfo); |
| 8381 | return Dest; |
| 8382 | }; |
| 8383 | |
| 8384 | auto NextValue = [](const APFloat &Value, bool RoundDown) { |
| 8385 | APFloat NextValue = Value; |
| 8386 | NextValue.next(nextDown: RoundDown); |
| 8387 | return NextValue; |
| 8388 | }; |
| 8389 | |
| 8390 | APFloat NextCValue = NextValue(*CValue, RoundDown); |
| 8391 | |
| 8392 | Type *DestType = FPTrunc.getOperand(i: 0)->getType(); |
| 8393 | const fltSemantics &DestFltSema = |
| 8394 | DestType->getScalarType()->getFltSemantics(); |
| 8395 | |
| 8396 | APFloat ExtCValue = ConvertFltSema(*CValue, DestFltSema); |
| 8397 | APFloat ExtNextCValue = ConvertFltSema(NextCValue, DestFltSema); |
| 8398 | |
| 8399 | // When 'NextCValue' is infinity, use an imaged 'NextCValue' that equals |
| 8400 | // 'CValue + bias' to avoid the infinity after conversion. The bias is |
| 8401 | // estimated as 'CValue - PrevCValue', where 'PrevCValue' is the previous |
| 8402 | // value of 'CValue'. |
| 8403 | if (NextCValue.isInfinity()) { |
| 8404 | APFloat PrevCValue = NextValue(*CValue, !RoundDown); |
| 8405 | APFloat Bias = ConvertFltSema(*CValue - PrevCValue, DestFltSema); |
| 8406 | |
| 8407 | ExtNextCValue = ExtCValue + Bias; |
| 8408 | } |
| 8409 | |
| 8410 | APFloat ExtMidValue = |
| 8411 | scalbn(X: ExtCValue + ExtNextCValue, Exp: -1, RM: APFloat::rmNearestTiesToEven); |
| 8412 | |
| 8413 | const fltSemantics &SrcFltSema = |
| 8414 | C.getType()->getScalarType()->getFltSemantics(); |
| 8415 | |
| 8416 | // 'MidValue' might be rounded to 'NextCValue'. Correct it here. |
| 8417 | APFloat MidValue = ConvertFltSema(ExtMidValue, SrcFltSema); |
| 8418 | if (MidValue != *CValue) |
| 8419 | ExtMidValue.next(nextDown: !RoundDown); |
| 8420 | |
| 8421 | // Check whether 'ExtMidValue' is a valid result since the assumption on |
| 8422 | // imaged 'NextCValue' might not hold for new float types. |
| 8423 | // ppc_fp128 can't pass here when converting from max float because of |
| 8424 | // APFloat implementation. |
| 8425 | if (NextCValue.isInfinity()) { |
| 8426 | // ExtMidValue --- narrowed ---> Finite |
| 8427 | if (ConvertFltSema(ExtMidValue, SrcFltSema).isInfinity()) |
| 8428 | return nullptr; |
| 8429 | |
| 8430 | // NextExtMidValue --- narrowed ---> Infinity |
| 8431 | APFloat NextExtMidValue = NextValue(ExtMidValue, RoundDown); |
| 8432 | if (ConvertFltSema(NextExtMidValue, SrcFltSema).isFinite()) |
| 8433 | return nullptr; |
| 8434 | } |
| 8435 | |
| 8436 | return new FCmpInst(Pred, FPTrunc.getOperand(i: 0), |
| 8437 | ConstantFP::get(Ty: DestType, V: ExtMidValue), "" , &I); |
| 8438 | } |
| 8439 | |
| 8440 | /// Optimize fabs(X) compared with zero. |
| 8441 | static Instruction *foldFabsWithFcmpZero(FCmpInst &I, InstCombinerImpl &IC) { |
| 8442 | Value *X; |
| 8443 | if (!match(V: I.getOperand(i_nocapture: 0), P: m_FAbs(Op0: m_Value(V&: X)))) |
| 8444 | return nullptr; |
| 8445 | |
| 8446 | const APFloat *C; |
| 8447 | if (!match(V: I.getOperand(i_nocapture: 1), P: m_APFloat(Res&: C))) |
| 8448 | return nullptr; |
| 8449 | |
| 8450 | if (!C->isPosZero()) { |
| 8451 | if (!C->isSmallestNormalized()) |
| 8452 | return nullptr; |
| 8453 | |
| 8454 | const Function *F = I.getFunction(); |
| 8455 | DenormalMode Mode = F->getDenormalMode(FPType: C->getSemantics()); |
| 8456 | if (Mode.Input == DenormalMode::PreserveSign || |
| 8457 | Mode.Input == DenormalMode::PositiveZero) { |
| 8458 | |
| 8459 | auto replaceFCmp = [](FCmpInst *I, FCmpInst::Predicate P, Value *X) { |
| 8460 | Constant *Zero = ConstantFP::getZero(Ty: X->getType()); |
| 8461 | return new FCmpInst(P, X, Zero, "" , I); |
| 8462 | }; |
| 8463 | |
| 8464 | switch (I.getPredicate()) { |
| 8465 | case FCmpInst::FCMP_OLT: |
| 8466 | // fcmp olt fabs(x), smallest_normalized_number -> fcmp oeq x, 0.0 |
| 8467 | return replaceFCmp(&I, FCmpInst::FCMP_OEQ, X); |
| 8468 | case FCmpInst::FCMP_UGE: |
| 8469 | // fcmp uge fabs(x), smallest_normalized_number -> fcmp une x, 0.0 |
| 8470 | return replaceFCmp(&I, FCmpInst::FCMP_UNE, X); |
| 8471 | case FCmpInst::FCMP_OGE: |
| 8472 | // fcmp oge fabs(x), smallest_normalized_number -> fcmp one x, 0.0 |
| 8473 | return replaceFCmp(&I, FCmpInst::FCMP_ONE, X); |
| 8474 | case FCmpInst::FCMP_ULT: |
| 8475 | // fcmp ult fabs(x), smallest_normalized_number -> fcmp ueq x, 0.0 |
| 8476 | return replaceFCmp(&I, FCmpInst::FCMP_UEQ, X); |
| 8477 | default: |
| 8478 | break; |
| 8479 | } |
| 8480 | } |
| 8481 | |
| 8482 | return nullptr; |
| 8483 | } |
| 8484 | |
| 8485 | auto replacePredAndOp0 = [&IC](FCmpInst *I, FCmpInst::Predicate P, Value *X) { |
| 8486 | I->setPredicate(P); |
| 8487 | return IC.replaceOperand(I&: *I, OpNum: 0, V: X); |
| 8488 | }; |
| 8489 | |
| 8490 | switch (I.getPredicate()) { |
| 8491 | case FCmpInst::FCMP_UGE: |
| 8492 | case FCmpInst::FCMP_OLT: |
| 8493 | // fabs(X) >= 0.0 --> true |
| 8494 | // fabs(X) < 0.0 --> false |
| 8495 | llvm_unreachable("fcmp should have simplified" ); |
| 8496 | |
| 8497 | case FCmpInst::FCMP_OGT: |
| 8498 | // fabs(X) > 0.0 --> X != 0.0 |
| 8499 | return replacePredAndOp0(&I, FCmpInst::FCMP_ONE, X); |
| 8500 | |
| 8501 | case FCmpInst::FCMP_UGT: |
| 8502 | // fabs(X) u> 0.0 --> X u!= 0.0 |
| 8503 | return replacePredAndOp0(&I, FCmpInst::FCMP_UNE, X); |
| 8504 | |
| 8505 | case FCmpInst::FCMP_OLE: |
| 8506 | // fabs(X) <= 0.0 --> X == 0.0 |
| 8507 | return replacePredAndOp0(&I, FCmpInst::FCMP_OEQ, X); |
| 8508 | |
| 8509 | case FCmpInst::FCMP_ULE: |
| 8510 | // fabs(X) u<= 0.0 --> X u== 0.0 |
| 8511 | return replacePredAndOp0(&I, FCmpInst::FCMP_UEQ, X); |
| 8512 | |
| 8513 | case FCmpInst::FCMP_OGE: |
| 8514 | // fabs(X) >= 0.0 --> !isnan(X) |
| 8515 | assert(!I.hasNoNaNs() && "fcmp should have simplified" ); |
| 8516 | return replacePredAndOp0(&I, FCmpInst::FCMP_ORD, X); |
| 8517 | |
| 8518 | case FCmpInst::FCMP_ULT: |
| 8519 | // fabs(X) u< 0.0 --> isnan(X) |
| 8520 | assert(!I.hasNoNaNs() && "fcmp should have simplified" ); |
| 8521 | return replacePredAndOp0(&I, FCmpInst::FCMP_UNO, X); |
| 8522 | |
| 8523 | case FCmpInst::FCMP_OEQ: |
| 8524 | case FCmpInst::FCMP_UEQ: |
| 8525 | case FCmpInst::FCMP_ONE: |
| 8526 | case FCmpInst::FCMP_UNE: |
| 8527 | case FCmpInst::FCMP_ORD: |
| 8528 | case FCmpInst::FCMP_UNO: |
| 8529 | // Look through the fabs() because it doesn't change anything but the sign. |
| 8530 | // fabs(X) == 0.0 --> X == 0.0, |
| 8531 | // fabs(X) != 0.0 --> X != 0.0 |
| 8532 | // isnan(fabs(X)) --> isnan(X) |
| 8533 | // !isnan(fabs(X) --> !isnan(X) |
| 8534 | return replacePredAndOp0(&I, I.getPredicate(), X); |
| 8535 | |
| 8536 | default: |
| 8537 | return nullptr; |
| 8538 | } |
| 8539 | } |
| 8540 | |
| 8541 | /// Optimize sqrt(X) compared with zero. |
| 8542 | static Instruction *foldSqrtWithFcmpZero(FCmpInst &I, InstCombinerImpl &IC) { |
| 8543 | Value *X; |
| 8544 | if (!match(V: I.getOperand(i_nocapture: 0), P: m_Sqrt(Op0: m_Value(V&: X)))) |
| 8545 | return nullptr; |
| 8546 | |
| 8547 | if (!match(V: I.getOperand(i_nocapture: 1), P: m_PosZeroFP())) |
| 8548 | return nullptr; |
| 8549 | |
| 8550 | auto ReplacePredAndOp0 = [&](FCmpInst::Predicate P) { |
| 8551 | I.setPredicate(P); |
| 8552 | return IC.replaceOperand(I, OpNum: 0, V: X); |
| 8553 | }; |
| 8554 | |
| 8555 | // Clear ninf flag if sqrt doesn't have it. |
| 8556 | if (!cast<Instruction>(Val: I.getOperand(i_nocapture: 0))->hasNoInfs()) |
| 8557 | I.setHasNoInfs(false); |
| 8558 | |
| 8559 | switch (I.getPredicate()) { |
| 8560 | case FCmpInst::FCMP_OLT: |
| 8561 | case FCmpInst::FCMP_UGE: |
| 8562 | // sqrt(X) < 0.0 --> false |
| 8563 | // sqrt(X) u>= 0.0 --> true |
| 8564 | llvm_unreachable("fcmp should have simplified" ); |
| 8565 | case FCmpInst::FCMP_ULT: |
| 8566 | case FCmpInst::FCMP_ULE: |
| 8567 | case FCmpInst::FCMP_OGT: |
| 8568 | case FCmpInst::FCMP_OGE: |
| 8569 | case FCmpInst::FCMP_OEQ: |
| 8570 | case FCmpInst::FCMP_UNE: |
| 8571 | // sqrt(X) u< 0.0 --> X u< 0.0 |
| 8572 | // sqrt(X) u<= 0.0 --> X u<= 0.0 |
| 8573 | // sqrt(X) > 0.0 --> X > 0.0 |
| 8574 | // sqrt(X) >= 0.0 --> X >= 0.0 |
| 8575 | // sqrt(X) == 0.0 --> X == 0.0 |
| 8576 | // sqrt(X) u!= 0.0 --> X u!= 0.0 |
| 8577 | return IC.replaceOperand(I, OpNum: 0, V: X); |
| 8578 | |
| 8579 | case FCmpInst::FCMP_OLE: |
| 8580 | // sqrt(X) <= 0.0 --> X == 0.0 |
| 8581 | return ReplacePredAndOp0(FCmpInst::FCMP_OEQ); |
| 8582 | case FCmpInst::FCMP_UGT: |
| 8583 | // sqrt(X) u> 0.0 --> X u!= 0.0 |
| 8584 | return ReplacePredAndOp0(FCmpInst::FCMP_UNE); |
| 8585 | case FCmpInst::FCMP_UEQ: |
| 8586 | // sqrt(X) u== 0.0 --> X u<= 0.0 |
| 8587 | return ReplacePredAndOp0(FCmpInst::FCMP_ULE); |
| 8588 | case FCmpInst::FCMP_ONE: |
| 8589 | // sqrt(X) != 0.0 --> X > 0.0 |
| 8590 | return ReplacePredAndOp0(FCmpInst::FCMP_OGT); |
| 8591 | case FCmpInst::FCMP_ORD: |
| 8592 | // !isnan(sqrt(X)) --> X >= 0.0 |
| 8593 | return ReplacePredAndOp0(FCmpInst::FCMP_OGE); |
| 8594 | case FCmpInst::FCMP_UNO: |
| 8595 | // isnan(sqrt(X)) --> X u< 0.0 |
| 8596 | return ReplacePredAndOp0(FCmpInst::FCMP_ULT); |
| 8597 | default: |
| 8598 | llvm_unreachable("Unexpected predicate!" ); |
| 8599 | } |
| 8600 | } |
| 8601 | |
| 8602 | static Instruction *foldFCmpFNegCommonOp(FCmpInst &I) { |
| 8603 | CmpInst::Predicate Pred = I.getPredicate(); |
| 8604 | Value *Op0 = I.getOperand(i_nocapture: 0), *Op1 = I.getOperand(i_nocapture: 1); |
| 8605 | |
| 8606 | // Canonicalize fneg as Op1. |
| 8607 | if (match(V: Op0, P: m_FNeg(X: m_Value())) && !match(V: Op1, P: m_FNeg(X: m_Value()))) { |
| 8608 | std::swap(a&: Op0, b&: Op1); |
| 8609 | Pred = I.getSwappedPredicate(); |
| 8610 | } |
| 8611 | |
| 8612 | if (!match(V: Op1, P: m_FNeg(X: m_Specific(V: Op0)))) |
| 8613 | return nullptr; |
| 8614 | |
| 8615 | // Replace the negated operand with 0.0: |
| 8616 | // fcmp Pred Op0, -Op0 --> fcmp Pred Op0, 0.0 |
| 8617 | Constant *Zero = ConstantFP::getZero(Ty: Op0->getType()); |
| 8618 | return new FCmpInst(Pred, Op0, Zero, "" , &I); |
| 8619 | } |
| 8620 | |
| 8621 | static Instruction *foldFCmpFSubIntoFCmp(FCmpInst &I, Instruction *LHSI, |
| 8622 | Constant *RHSC, InstCombinerImpl &CI) { |
| 8623 | const CmpInst::Predicate Pred = I.getPredicate(); |
| 8624 | Value *X = LHSI->getOperand(i: 0); |
| 8625 | Value *Y = LHSI->getOperand(i: 1); |
| 8626 | switch (Pred) { |
| 8627 | default: |
| 8628 | break; |
| 8629 | case FCmpInst::FCMP_UGT: |
| 8630 | case FCmpInst::FCMP_ULT: |
| 8631 | case FCmpInst::FCMP_UNE: |
| 8632 | case FCmpInst::FCMP_OEQ: |
| 8633 | case FCmpInst::FCMP_OGE: |
| 8634 | case FCmpInst::FCMP_OLE: |
| 8635 | // The optimization is not valid if X and Y are infinities of the same |
| 8636 | // sign, i.e. the inf - inf = nan case. If the fsub has the ninf or nnan |
| 8637 | // flag then we can assume we do not have that case. Otherwise we might be |
| 8638 | // able to prove that either X or Y is not infinity. |
| 8639 | if (!LHSI->hasNoNaNs() && !LHSI->hasNoInfs() && |
| 8640 | !isKnownNeverInfinity(V: Y, |
| 8641 | SQ: CI.getSimplifyQuery().getWithInstruction(I: &I)) && |
| 8642 | !isKnownNeverInfinity(V: X, SQ: CI.getSimplifyQuery().getWithInstruction(I: &I))) |
| 8643 | break; |
| 8644 | |
| 8645 | [[fallthrough]]; |
| 8646 | case FCmpInst::FCMP_OGT: |
| 8647 | case FCmpInst::FCMP_OLT: |
| 8648 | case FCmpInst::FCMP_ONE: |
| 8649 | case FCmpInst::FCMP_UEQ: |
| 8650 | case FCmpInst::FCMP_UGE: |
| 8651 | case FCmpInst::FCMP_ULE: |
| 8652 | // fcmp pred (x - y), 0 --> fcmp pred x, y |
| 8653 | if (match(V: RHSC, P: m_AnyZeroFP()) && |
| 8654 | I.getFunction()->getDenormalMode( |
| 8655 | FPType: LHSI->getType()->getScalarType()->getFltSemantics()) == |
| 8656 | DenormalMode::getIEEE()) { |
| 8657 | CI.replaceOperand(I, OpNum: 0, V: X); |
| 8658 | CI.replaceOperand(I, OpNum: 1, V: Y); |
| 8659 | I.setHasNoInfs(LHSI->hasNoInfs()); |
| 8660 | if (LHSI->hasNoNaNs()) |
| 8661 | I.setHasNoNaNs(true); |
| 8662 | return &I; |
| 8663 | } |
| 8664 | break; |
| 8665 | } |
| 8666 | |
| 8667 | return nullptr; |
| 8668 | } |
| 8669 | |
| 8670 | static Instruction *foldFCmpWithFloorAndCeil(FCmpInst &I, |
| 8671 | InstCombinerImpl &IC) { |
| 8672 | Value *LHS = I.getOperand(i_nocapture: 0), *RHS = I.getOperand(i_nocapture: 1); |
| 8673 | Type *OpType = LHS->getType(); |
| 8674 | CmpInst::Predicate Pred = I.getPredicate(); |
| 8675 | |
| 8676 | bool FloorX = match(V: LHS, P: m_Intrinsic<Intrinsic::floor>(Op0: m_Specific(V: RHS))); |
| 8677 | bool CeilX = match(V: LHS, P: m_Intrinsic<Intrinsic::ceil>(Op0: m_Specific(V: RHS))); |
| 8678 | |
| 8679 | if (!FloorX && !CeilX) { |
| 8680 | if ((FloorX = match(V: RHS, P: m_Intrinsic<Intrinsic::floor>(Op0: m_Specific(V: LHS)))) || |
| 8681 | (CeilX = match(V: RHS, P: m_Intrinsic<Intrinsic::ceil>(Op0: m_Specific(V: LHS))))) { |
| 8682 | std::swap(a&: LHS, b&: RHS); |
| 8683 | Pred = I.getSwappedPredicate(); |
| 8684 | } |
| 8685 | } |
| 8686 | |
| 8687 | switch (Pred) { |
| 8688 | case FCmpInst::FCMP_OLE: |
| 8689 | // fcmp ole floor(x), x => fcmp ord x, 0 |
| 8690 | if (FloorX) |
| 8691 | return new FCmpInst(FCmpInst::FCMP_ORD, RHS, ConstantFP::getZero(Ty: OpType), |
| 8692 | "" , &I); |
| 8693 | break; |
| 8694 | case FCmpInst::FCMP_OGT: |
| 8695 | // fcmp ogt floor(x), x => false |
| 8696 | if (FloorX) |
| 8697 | return IC.replaceInstUsesWith(I, V: ConstantInt::getFalse(Ty: I.getType())); |
| 8698 | break; |
| 8699 | case FCmpInst::FCMP_OGE: |
| 8700 | // fcmp oge ceil(x), x => fcmp ord x, 0 |
| 8701 | if (CeilX) |
| 8702 | return new FCmpInst(FCmpInst::FCMP_ORD, RHS, ConstantFP::getZero(Ty: OpType), |
| 8703 | "" , &I); |
| 8704 | break; |
| 8705 | case FCmpInst::FCMP_OLT: |
| 8706 | // fcmp olt ceil(x), x => false |
| 8707 | if (CeilX) |
| 8708 | return IC.replaceInstUsesWith(I, V: ConstantInt::getFalse(Ty: I.getType())); |
| 8709 | break; |
| 8710 | case FCmpInst::FCMP_ULE: |
| 8711 | // fcmp ule floor(x), x => true |
| 8712 | if (FloorX) |
| 8713 | return IC.replaceInstUsesWith(I, V: ConstantInt::getTrue(Ty: I.getType())); |
| 8714 | break; |
| 8715 | case FCmpInst::FCMP_UGT: |
| 8716 | // fcmp ugt floor(x), x => fcmp uno x, 0 |
| 8717 | if (FloorX) |
| 8718 | return new FCmpInst(FCmpInst::FCMP_UNO, RHS, ConstantFP::getZero(Ty: OpType), |
| 8719 | "" , &I); |
| 8720 | break; |
| 8721 | case FCmpInst::FCMP_UGE: |
| 8722 | // fcmp uge ceil(x), x => true |
| 8723 | if (CeilX) |
| 8724 | return IC.replaceInstUsesWith(I, V: ConstantInt::getTrue(Ty: I.getType())); |
| 8725 | break; |
| 8726 | case FCmpInst::FCMP_ULT: |
| 8727 | // fcmp ult ceil(x), x => fcmp uno x, 0 |
| 8728 | if (CeilX) |
| 8729 | return new FCmpInst(FCmpInst::FCMP_UNO, RHS, ConstantFP::getZero(Ty: OpType), |
| 8730 | "" , &I); |
| 8731 | break; |
| 8732 | default: |
| 8733 | break; |
| 8734 | } |
| 8735 | |
| 8736 | return nullptr; |
| 8737 | } |
| 8738 | |
| 8739 | /// Returns true if a select that implements a min/max is redundant and |
| 8740 | /// select result can be replaced with its non-constant operand, e.g., |
| 8741 | /// select ( (si/ui-to-fp A) <= C ), C, (si/ui-to-fp A) |
| 8742 | /// where C is the FP constant equal to the minimum integer value |
| 8743 | /// representable by A. |
| 8744 | static bool isMinMaxCmpSelectEliminable(SelectPatternFlavor Flavor, Value *A, |
| 8745 | Value *B) { |
| 8746 | const APFloat *APF; |
| 8747 | if (!match(V: B, P: m_APFloat(Res&: APF))) |
| 8748 | return false; |
| 8749 | |
| 8750 | auto *I = dyn_cast<Instruction>(Val: A); |
| 8751 | if (!I || !(I->getOpcode() == Instruction::SIToFP || |
| 8752 | I->getOpcode() == Instruction::UIToFP)) |
| 8753 | return false; |
| 8754 | |
| 8755 | bool IsUnsigned = I->getOpcode() == Instruction::UIToFP; |
| 8756 | unsigned BitWidth = I->getOperand(i: 0)->getType()->getScalarSizeInBits(); |
| 8757 | APSInt IntBoundary = (Flavor == SPF_FMAXNUM) |
| 8758 | ? APSInt::getMinValue(numBits: BitWidth, Unsigned: IsUnsigned) |
| 8759 | : APSInt::getMaxValue(numBits: BitWidth, Unsigned: IsUnsigned); |
| 8760 | APSInt ConvertedInt(BitWidth, IsUnsigned); |
| 8761 | bool IsExact; |
| 8762 | APFloat::opStatus Status = |
| 8763 | APF->convertToInteger(Result&: ConvertedInt, RM: APFloat::rmTowardZero, IsExact: &IsExact); |
| 8764 | return Status == APFloat::opOK && IsExact && ConvertedInt == IntBoundary; |
| 8765 | } |
| 8766 | |
| 8767 | Instruction *InstCombinerImpl::visitFCmpInst(FCmpInst &I) { |
| 8768 | bool Changed = false; |
| 8769 | |
| 8770 | /// Orders the operands of the compare so that they are listed from most |
| 8771 | /// complex to least complex. This puts constants before unary operators, |
| 8772 | /// before binary operators. |
| 8773 | if (getComplexity(V: I.getOperand(i_nocapture: 0)) < getComplexity(V: I.getOperand(i_nocapture: 1))) { |
| 8774 | I.swapOperands(); |
| 8775 | Changed = true; |
| 8776 | } |
| 8777 | |
| 8778 | const CmpInst::Predicate Pred = I.getPredicate(); |
| 8779 | Value *Op0 = I.getOperand(i_nocapture: 0), *Op1 = I.getOperand(i_nocapture: 1); |
| 8780 | if (Value *V = simplifyFCmpInst(Predicate: Pred, LHS: Op0, RHS: Op1, FMF: I.getFastMathFlags(), |
| 8781 | Q: SQ.getWithInstruction(I: &I))) |
| 8782 | return replaceInstUsesWith(I, V); |
| 8783 | |
| 8784 | // Simplify 'fcmp pred X, X' |
| 8785 | Type *OpType = Op0->getType(); |
| 8786 | assert(OpType == Op1->getType() && "fcmp with different-typed operands?" ); |
| 8787 | if (Op0 == Op1) { |
| 8788 | switch (Pred) { |
| 8789 | default: |
| 8790 | break; |
| 8791 | case FCmpInst::FCMP_UNO: // True if unordered: isnan(X) | isnan(Y) |
| 8792 | case FCmpInst::FCMP_ULT: // True if unordered or less than |
| 8793 | case FCmpInst::FCMP_UGT: // True if unordered or greater than |
| 8794 | case FCmpInst::FCMP_UNE: // True if unordered or not equal |
| 8795 | // Canonicalize these to be 'fcmp uno %X, 0.0'. |
| 8796 | I.setPredicate(FCmpInst::FCMP_UNO); |
| 8797 | I.setOperand(i_nocapture: 1, Val_nocapture: Constant::getNullValue(Ty: OpType)); |
| 8798 | return &I; |
| 8799 | |
| 8800 | case FCmpInst::FCMP_ORD: // True if ordered (no nans) |
| 8801 | case FCmpInst::FCMP_OEQ: // True if ordered and equal |
| 8802 | case FCmpInst::FCMP_OGE: // True if ordered and greater than or equal |
| 8803 | case FCmpInst::FCMP_OLE: // True if ordered and less than or equal |
| 8804 | // Canonicalize these to be 'fcmp ord %X, 0.0'. |
| 8805 | I.setPredicate(FCmpInst::FCMP_ORD); |
| 8806 | I.setOperand(i_nocapture: 1, Val_nocapture: Constant::getNullValue(Ty: OpType)); |
| 8807 | return &I; |
| 8808 | } |
| 8809 | } |
| 8810 | |
| 8811 | if (I.isCommutative()) { |
| 8812 | if (auto Pair = matchSymmetricPair(LHS: I.getOperand(i_nocapture: 0), RHS: I.getOperand(i_nocapture: 1))) { |
| 8813 | replaceOperand(I, OpNum: 0, V: Pair->first); |
| 8814 | replaceOperand(I, OpNum: 1, V: Pair->second); |
| 8815 | return &I; |
| 8816 | } |
| 8817 | } |
| 8818 | |
| 8819 | // If we're just checking for a NaN (ORD/UNO) and have a non-NaN operand, |
| 8820 | // then canonicalize the operand to 0.0. |
| 8821 | if (Pred == CmpInst::FCMP_ORD || Pred == CmpInst::FCMP_UNO) { |
| 8822 | if (!match(V: Op0, P: m_PosZeroFP()) && |
| 8823 | isKnownNeverNaN(V: Op0, SQ: getSimplifyQuery().getWithInstruction(I: &I))) |
| 8824 | return replaceOperand(I, OpNum: 0, V: ConstantFP::getZero(Ty: OpType)); |
| 8825 | |
| 8826 | if (!match(V: Op1, P: m_PosZeroFP()) && |
| 8827 | isKnownNeverNaN(V: Op1, SQ: getSimplifyQuery().getWithInstruction(I: &I))) |
| 8828 | return replaceOperand(I, OpNum: 1, V: ConstantFP::getZero(Ty: OpType)); |
| 8829 | } |
| 8830 | |
| 8831 | // fcmp pred (fneg X), (fneg Y) -> fcmp swap(pred) X, Y |
| 8832 | Value *X, *Y; |
| 8833 | if (match(V: Op0, P: m_FNeg(X: m_Value(V&: X))) && match(V: Op1, P: m_FNeg(X: m_Value(V&: Y)))) |
| 8834 | return new FCmpInst(I.getSwappedPredicate(), X, Y, "" , &I); |
| 8835 | |
| 8836 | if (Instruction *R = foldFCmpFNegCommonOp(I)) |
| 8837 | return R; |
| 8838 | |
| 8839 | // Test if the FCmpInst instruction is used exclusively by a select as |
| 8840 | // part of a minimum or maximum operation. If so, refrain from doing |
| 8841 | // any other folding. This helps out other analyses which understand |
| 8842 | // non-obfuscated minimum and maximum idioms, such as ScalarEvolution |
| 8843 | // and CodeGen. And in this case, at least one of the comparison |
| 8844 | // operands has at least one user besides the compare (the select), |
| 8845 | // which would often largely negate the benefit of folding anyway. |
| 8846 | if (I.hasOneUse()) |
| 8847 | if (SelectInst *SI = dyn_cast<SelectInst>(Val: I.user_back())) { |
| 8848 | Value *A, *B; |
| 8849 | SelectPatternResult SPR = matchSelectPattern(V: SI, LHS&: A, RHS&: B); |
| 8850 | bool IsRedundantMinMaxClamp = |
| 8851 | (SPR.Flavor == SPF_FMAXNUM || SPR.Flavor == SPF_FMINNUM) && |
| 8852 | isMinMaxCmpSelectEliminable(Flavor: SPR.Flavor, A, B); |
| 8853 | if (SPR.Flavor != SPF_UNKNOWN && !IsRedundantMinMaxClamp) |
| 8854 | return nullptr; |
| 8855 | } |
| 8856 | |
| 8857 | // The sign of 0.0 is ignored by fcmp, so canonicalize to +0.0: |
| 8858 | // fcmp Pred X, -0.0 --> fcmp Pred X, 0.0 |
| 8859 | if (match(V: Op1, P: m_AnyZeroFP()) && !match(V: Op1, P: m_PosZeroFP())) |
| 8860 | return replaceOperand(I, OpNum: 1, V: ConstantFP::getZero(Ty: OpType)); |
| 8861 | |
| 8862 | // Canonicalize: |
| 8863 | // fcmp olt X, +inf -> fcmp one X, +inf |
| 8864 | // fcmp ole X, +inf -> fcmp ord X, 0 |
| 8865 | // fcmp ogt X, +inf -> false |
| 8866 | // fcmp oge X, +inf -> fcmp oeq X, +inf |
| 8867 | // fcmp ult X, +inf -> fcmp une X, +inf |
| 8868 | // fcmp ule X, +inf -> true |
| 8869 | // fcmp ugt X, +inf -> fcmp uno X, 0 |
| 8870 | // fcmp uge X, +inf -> fcmp ueq X, +inf |
| 8871 | // fcmp olt X, -inf -> false |
| 8872 | // fcmp ole X, -inf -> fcmp oeq X, -inf |
| 8873 | // fcmp ogt X, -inf -> fcmp one X, -inf |
| 8874 | // fcmp oge X, -inf -> fcmp ord X, 0 |
| 8875 | // fcmp ult X, -inf -> fcmp uno X, 0 |
| 8876 | // fcmp ule X, -inf -> fcmp ueq X, -inf |
| 8877 | // fcmp ugt X, -inf -> fcmp une X, -inf |
| 8878 | // fcmp uge X, -inf -> true |
| 8879 | const APFloat *C; |
| 8880 | if (match(V: Op1, P: m_APFloat(Res&: C)) && C->isInfinity()) { |
| 8881 | switch (C->isNegative() ? FCmpInst::getSwappedPredicate(pred: Pred) : Pred) { |
| 8882 | default: |
| 8883 | break; |
| 8884 | case FCmpInst::FCMP_ORD: |
| 8885 | case FCmpInst::FCMP_UNO: |
| 8886 | case FCmpInst::FCMP_TRUE: |
| 8887 | case FCmpInst::FCMP_FALSE: |
| 8888 | case FCmpInst::FCMP_OGT: |
| 8889 | case FCmpInst::FCMP_ULE: |
| 8890 | llvm_unreachable("Should be simplified by InstSimplify" ); |
| 8891 | case FCmpInst::FCMP_OLT: |
| 8892 | return new FCmpInst(FCmpInst::FCMP_ONE, Op0, Op1, "" , &I); |
| 8893 | case FCmpInst::FCMP_OLE: |
| 8894 | return new FCmpInst(FCmpInst::FCMP_ORD, Op0, ConstantFP::getZero(Ty: OpType), |
| 8895 | "" , &I); |
| 8896 | case FCmpInst::FCMP_OGE: |
| 8897 | return new FCmpInst(FCmpInst::FCMP_OEQ, Op0, Op1, "" , &I); |
| 8898 | case FCmpInst::FCMP_ULT: |
| 8899 | return new FCmpInst(FCmpInst::FCMP_UNE, Op0, Op1, "" , &I); |
| 8900 | case FCmpInst::FCMP_UGT: |
| 8901 | return new FCmpInst(FCmpInst::FCMP_UNO, Op0, ConstantFP::getZero(Ty: OpType), |
| 8902 | "" , &I); |
| 8903 | case FCmpInst::FCMP_UGE: |
| 8904 | return new FCmpInst(FCmpInst::FCMP_UEQ, Op0, Op1, "" , &I); |
| 8905 | } |
| 8906 | } |
| 8907 | |
| 8908 | // Ignore signbit of bitcasted int when comparing equality to FP 0.0: |
| 8909 | // fcmp oeq/une (bitcast X), 0.0 --> (and X, SignMaskC) ==/!= 0 |
| 8910 | if (match(V: Op1, P: m_PosZeroFP()) && |
| 8911 | match(V: Op0, P: m_OneUse(SubPattern: m_ElementWiseBitCast(Op: m_Value(V&: X))))) { |
| 8912 | ICmpInst::Predicate IntPred = ICmpInst::BAD_ICMP_PREDICATE; |
| 8913 | if (Pred == FCmpInst::FCMP_OEQ) |
| 8914 | IntPred = ICmpInst::ICMP_EQ; |
| 8915 | else if (Pred == FCmpInst::FCMP_UNE) |
| 8916 | IntPred = ICmpInst::ICMP_NE; |
| 8917 | |
| 8918 | if (IntPred != ICmpInst::BAD_ICMP_PREDICATE) { |
| 8919 | Type *IntTy = X->getType(); |
| 8920 | const APInt &SignMask = ~APInt::getSignMask(BitWidth: IntTy->getScalarSizeInBits()); |
| 8921 | Value *MaskX = Builder.CreateAnd(LHS: X, RHS: ConstantInt::get(Ty: IntTy, V: SignMask)); |
| 8922 | return new ICmpInst(IntPred, MaskX, ConstantInt::getNullValue(Ty: IntTy)); |
| 8923 | } |
| 8924 | } |
| 8925 | |
| 8926 | // Handle fcmp with instruction LHS and constant RHS. |
| 8927 | Instruction *LHSI; |
| 8928 | Constant *RHSC; |
| 8929 | if (match(V: Op0, P: m_Instruction(I&: LHSI)) && match(V: Op1, P: m_Constant(C&: RHSC))) { |
| 8930 | switch (LHSI->getOpcode()) { |
| 8931 | case Instruction::Select: |
| 8932 | // fcmp eq (cond ? x : -x), 0 --> fcmp eq x, 0 |
| 8933 | if (FCmpInst::isEquality(Pred) && match(V: RHSC, P: m_AnyZeroFP()) && |
| 8934 | match(V: LHSI, P: m_c_Select(L: m_FNeg(X: m_Value(V&: X)), R: m_Deferred(V: X)))) |
| 8935 | return replaceOperand(I, OpNum: 0, V: X); |
| 8936 | if (Instruction *NV = FoldOpIntoSelect(Op&: I, SI: cast<SelectInst>(Val: LHSI))) |
| 8937 | return NV; |
| 8938 | break; |
| 8939 | case Instruction::FSub: |
| 8940 | if (LHSI->hasOneUse()) |
| 8941 | if (Instruction *NV = foldFCmpFSubIntoFCmp(I, LHSI, RHSC, CI&: *this)) |
| 8942 | return NV; |
| 8943 | break; |
| 8944 | case Instruction::PHI: |
| 8945 | if (Instruction *NV = foldOpIntoPhi(I, PN: cast<PHINode>(Val: LHSI))) |
| 8946 | return NV; |
| 8947 | break; |
| 8948 | case Instruction::SIToFP: |
| 8949 | case Instruction::UIToFP: |
| 8950 | if (Instruction *NV = foldFCmpIntToFPConst(I, LHSI, RHSC)) |
| 8951 | return NV; |
| 8952 | break; |
| 8953 | case Instruction::FDiv: |
| 8954 | if (Instruction *NV = foldFCmpReciprocalAndZero(I, LHSI, RHSC)) |
| 8955 | return NV; |
| 8956 | break; |
| 8957 | case Instruction::Load: |
| 8958 | if (auto *GEP = dyn_cast<GetElementPtrInst>(Val: LHSI->getOperand(i: 0))) |
| 8959 | if (Instruction *Res = |
| 8960 | foldCmpLoadFromIndexedGlobal(LI: cast<LoadInst>(Val: LHSI), GEP, ICI&: I)) |
| 8961 | return Res; |
| 8962 | break; |
| 8963 | case Instruction::FPTrunc: |
| 8964 | if (Instruction *NV = foldFCmpFpTrunc(I, FPTrunc: *LHSI, C: *RHSC)) |
| 8965 | return NV; |
| 8966 | break; |
| 8967 | } |
| 8968 | } |
| 8969 | |
| 8970 | if (Instruction *R = foldFabsWithFcmpZero(I, IC&: *this)) |
| 8971 | return R; |
| 8972 | |
| 8973 | if (Instruction *R = foldSqrtWithFcmpZero(I, IC&: *this)) |
| 8974 | return R; |
| 8975 | |
| 8976 | if (Instruction *R = foldFCmpWithFloorAndCeil(I, IC&: *this)) |
| 8977 | return R; |
| 8978 | |
| 8979 | if (match(V: Op0, P: m_FNeg(X: m_Value(V&: X)))) { |
| 8980 | // fcmp pred (fneg X), C --> fcmp swap(pred) X, -C |
| 8981 | Constant *C; |
| 8982 | if (match(V: Op1, P: m_Constant(C))) |
| 8983 | if (Constant *NegC = ConstantFoldUnaryOpOperand(Opcode: Instruction::FNeg, Op: C, DL)) |
| 8984 | return new FCmpInst(I.getSwappedPredicate(), X, NegC, "" , &I); |
| 8985 | } |
| 8986 | |
| 8987 | // fcmp (fadd X, 0.0), Y --> fcmp X, Y |
| 8988 | if (match(V: Op0, P: m_FAdd(L: m_Value(V&: X), R: m_AnyZeroFP()))) |
| 8989 | return new FCmpInst(Pred, X, Op1, "" , &I); |
| 8990 | |
| 8991 | // fcmp X, (fadd Y, 0.0) --> fcmp X, Y |
| 8992 | if (match(V: Op1, P: m_FAdd(L: m_Value(V&: Y), R: m_AnyZeroFP()))) |
| 8993 | return new FCmpInst(Pred, Op0, Y, "" , &I); |
| 8994 | |
| 8995 | if (match(V: Op0, P: m_FPExt(Op: m_Value(V&: X)))) { |
| 8996 | // fcmp (fpext X), (fpext Y) -> fcmp X, Y |
| 8997 | if (match(V: Op1, P: m_FPExt(Op: m_Value(V&: Y))) && X->getType() == Y->getType()) |
| 8998 | return new FCmpInst(Pred, X, Y, "" , &I); |
| 8999 | |
| 9000 | const APFloat *C; |
| 9001 | if (match(V: Op1, P: m_APFloat(Res&: C))) { |
| 9002 | const fltSemantics &FPSem = |
| 9003 | X->getType()->getScalarType()->getFltSemantics(); |
| 9004 | bool Lossy; |
| 9005 | APFloat TruncC = *C; |
| 9006 | TruncC.convert(ToSemantics: FPSem, RM: APFloat::rmNearestTiesToEven, losesInfo: &Lossy); |
| 9007 | |
| 9008 | if (Lossy) { |
| 9009 | // X can't possibly equal the higher-precision constant, so reduce any |
| 9010 | // equality comparison. |
| 9011 | // TODO: Other predicates can be handled via getFCmpCode(). |
| 9012 | switch (Pred) { |
| 9013 | case FCmpInst::FCMP_OEQ: |
| 9014 | // X is ordered and equal to an impossible constant --> false |
| 9015 | return replaceInstUsesWith(I, V: ConstantInt::getFalse(Ty: I.getType())); |
| 9016 | case FCmpInst::FCMP_ONE: |
| 9017 | // X is ordered and not equal to an impossible constant --> ordered |
| 9018 | return new FCmpInst(FCmpInst::FCMP_ORD, X, |
| 9019 | ConstantFP::getZero(Ty: X->getType())); |
| 9020 | case FCmpInst::FCMP_UEQ: |
| 9021 | // X is unordered or equal to an impossible constant --> unordered |
| 9022 | return new FCmpInst(FCmpInst::FCMP_UNO, X, |
| 9023 | ConstantFP::getZero(Ty: X->getType())); |
| 9024 | case FCmpInst::FCMP_UNE: |
| 9025 | // X is unordered or not equal to an impossible constant --> true |
| 9026 | return replaceInstUsesWith(I, V: ConstantInt::getTrue(Ty: I.getType())); |
| 9027 | default: |
| 9028 | break; |
| 9029 | } |
| 9030 | } |
| 9031 | |
| 9032 | // fcmp (fpext X), C -> fcmp X, (fptrunc C) if fptrunc is lossless |
| 9033 | // Avoid lossy conversions and denormals. |
| 9034 | // Zero is a special case that's OK to convert. |
| 9035 | APFloat Fabs = TruncC; |
| 9036 | Fabs.clearSign(); |
| 9037 | if (!Lossy && |
| 9038 | (Fabs.isZero() || !(Fabs < APFloat::getSmallestNormalized(Sem: FPSem)))) { |
| 9039 | Constant *NewC = ConstantFP::get(Ty: X->getType(), V: TruncC); |
| 9040 | return new FCmpInst(Pred, X, NewC, "" , &I); |
| 9041 | } |
| 9042 | } |
| 9043 | } |
| 9044 | |
| 9045 | // Convert a sign-bit test of an FP value into a cast and integer compare. |
| 9046 | // TODO: Simplify if the copysign constant is 0.0 or NaN. |
| 9047 | // TODO: Handle non-zero compare constants. |
| 9048 | // TODO: Handle other predicates. |
| 9049 | if (match(V: Op0, P: m_OneUse(SubPattern: m_Intrinsic<Intrinsic::copysign>(Op0: m_APFloat(Res&: C), |
| 9050 | Op1: m_Value(V&: X)))) && |
| 9051 | match(V: Op1, P: m_AnyZeroFP()) && !C->isZero() && !C->isNaN()) { |
| 9052 | Type *IntType = Builder.getIntNTy(N: X->getType()->getScalarSizeInBits()); |
| 9053 | if (auto *VecTy = dyn_cast<VectorType>(Val: OpType)) |
| 9054 | IntType = VectorType::get(ElementType: IntType, EC: VecTy->getElementCount()); |
| 9055 | |
| 9056 | // copysign(non-zero constant, X) < 0.0 --> (bitcast X) < 0 |
| 9057 | if (Pred == FCmpInst::FCMP_OLT) { |
| 9058 | Value *IntX = Builder.CreateBitCast(V: X, DestTy: IntType); |
| 9059 | return new ICmpInst(ICmpInst::ICMP_SLT, IntX, |
| 9060 | ConstantInt::getNullValue(Ty: IntType)); |
| 9061 | } |
| 9062 | } |
| 9063 | |
| 9064 | { |
| 9065 | Value *CanonLHS = nullptr; |
| 9066 | match(V: Op0, P: m_Intrinsic<Intrinsic::canonicalize>(Op0: m_Value(V&: CanonLHS))); |
| 9067 | // (canonicalize(x) == x) => (x == x) |
| 9068 | if (CanonLHS == Op1) |
| 9069 | return new FCmpInst(Pred, Op1, Op1, "" , &I); |
| 9070 | |
| 9071 | Value *CanonRHS = nullptr; |
| 9072 | match(V: Op1, P: m_Intrinsic<Intrinsic::canonicalize>(Op0: m_Value(V&: CanonRHS))); |
| 9073 | // (x == canonicalize(x)) => (x == x) |
| 9074 | if (CanonRHS == Op0) |
| 9075 | return new FCmpInst(Pred, Op0, Op0, "" , &I); |
| 9076 | |
| 9077 | // (canonicalize(x) == canonicalize(y)) => (x == y) |
| 9078 | if (CanonLHS && CanonRHS) |
| 9079 | return new FCmpInst(Pred, CanonLHS, CanonRHS, "" , &I); |
| 9080 | } |
| 9081 | |
| 9082 | if (I.getType()->isVectorTy()) |
| 9083 | if (Instruction *Res = foldVectorCmp(Cmp&: I, Builder)) |
| 9084 | return Res; |
| 9085 | |
| 9086 | return Changed ? &I : nullptr; |
| 9087 | } |
| 9088 | |