| 1 | //===- MemProfUse.cpp - memory allocation profile use pass --*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file implements the MemProfUsePass which reads memory profiling data |
| 10 | // and uses it to add metadata to instructions to guide optimization. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #include "llvm/Transforms/Instrumentation/MemProfUse.h" |
| 15 | #include "llvm/ADT/SmallVector.h" |
| 16 | #include "llvm/ADT/Statistic.h" |
| 17 | #include "llvm/ADT/StringRef.h" |
| 18 | #include "llvm/Analysis/MemoryProfileInfo.h" |
| 19 | #include "llvm/Analysis/OptimizationRemarkEmitter.h" |
| 20 | #include "llvm/Analysis/StaticDataProfileInfo.h" |
| 21 | #include "llvm/Analysis/TargetLibraryInfo.h" |
| 22 | #include "llvm/IR/DiagnosticInfo.h" |
| 23 | #include "llvm/IR/Function.h" |
| 24 | #include "llvm/IR/IntrinsicInst.h" |
| 25 | #include "llvm/IR/Module.h" |
| 26 | #include "llvm/ProfileData/DataAccessProf.h" |
| 27 | #include "llvm/ProfileData/InstrProf.h" |
| 28 | #include "llvm/ProfileData/InstrProfReader.h" |
| 29 | #include "llvm/ProfileData/MemProfCommon.h" |
| 30 | #include "llvm/Support/BLAKE3.h" |
| 31 | #include "llvm/Support/CommandLine.h" |
| 32 | #include "llvm/Support/Debug.h" |
| 33 | #include "llvm/Support/HashBuilder.h" |
| 34 | #include "llvm/Support/VirtualFileSystem.h" |
| 35 | #include "llvm/Transforms/Utils/LongestCommonSequence.h" |
| 36 | #include <map> |
| 37 | #include <set> |
| 38 | |
| 39 | using namespace llvm; |
| 40 | using namespace llvm::memprof; |
| 41 | |
| 42 | #define DEBUG_TYPE "memprof" |
| 43 | |
| 44 | namespace llvm { |
| 45 | extern cl::opt<bool> PGOWarnMissing; |
| 46 | extern cl::opt<bool> NoPGOWarnMismatch; |
| 47 | extern cl::opt<bool> NoPGOWarnMismatchComdatWeak; |
| 48 | } // namespace llvm |
| 49 | |
| 50 | // By default disable matching of allocation profiles onto operator new that |
| 51 | // already explicitly pass a hot/cold hint, since we don't currently |
| 52 | // override these hints anyway. |
| 53 | static cl::opt<bool> ClMemProfMatchHotColdNew( |
| 54 | "memprof-match-hot-cold-new" , |
| 55 | cl::desc( |
| 56 | "Match allocation profiles onto existing hot/cold operator new calls" ), |
| 57 | cl::Hidden, cl::init(Val: false)); |
| 58 | |
| 59 | static cl::opt<bool> |
| 60 | ClPrintMemProfMatchInfo("memprof-print-match-info" , |
| 61 | cl::desc("Print matching stats for each allocation " |
| 62 | "context in this module's profiles" ), |
| 63 | cl::Hidden, cl::init(Val: false)); |
| 64 | |
| 65 | static cl::opt<bool> PrintMatchedAllocStack( |
| 66 | "memprof-print-matched-alloc-stack" , |
| 67 | cl::desc("Print full stack context for matched " |
| 68 | "allocations with -memprof-print-match-info." ), |
| 69 | cl::Hidden, cl::init(Val: false)); |
| 70 | |
| 71 | static cl::opt<bool> |
| 72 | PrintFunctionGuids("memprof-print-function-guids" , |
| 73 | cl::desc("Print function GUIDs computed for matching" ), |
| 74 | cl::Hidden, cl::init(Val: false)); |
| 75 | |
| 76 | static cl::opt<bool> |
| 77 | SalvageStaleProfile("memprof-salvage-stale-profile" , |
| 78 | cl::desc("Salvage stale MemProf profile" ), |
| 79 | cl::init(Val: false), cl::Hidden); |
| 80 | |
| 81 | static cl::opt<bool> ClMemProfAttachCalleeGuids( |
| 82 | "memprof-attach-calleeguids" , |
| 83 | cl::desc( |
| 84 | "Attach calleeguids as value profile metadata for indirect calls." ), |
| 85 | cl::init(Val: true), cl::Hidden); |
| 86 | |
| 87 | static cl::opt<unsigned> MinMatchedColdBytePercent( |
| 88 | "memprof-matching-cold-threshold" , cl::init(Val: 100), cl::Hidden, |
| 89 | cl::desc("Min percent of cold bytes matched to hint allocation cold" )); |
| 90 | |
| 91 | static cl::opt<bool> AnnotateStaticDataSectionPrefix( |
| 92 | "memprof-annotate-static-data-prefix" , cl::init(Val: false), cl::Hidden, |
| 93 | cl::desc("If true, annotate the static data section prefix" )); |
| 94 | |
| 95 | // FIXME: This option is added for incremental rollout purposes. |
| 96 | // After the option, string literal partitioning should be implied by |
| 97 | // AnnotateStaticDataSectionPrefix above and this option should be cleaned up. |
| 98 | static cl::opt<bool> AnnotateStringLiteralSectionPrefix( |
| 99 | "memprof-annotate-string-literal-section-prefix" , cl::init(Val: false), |
| 100 | cl::Hidden, |
| 101 | cl::desc("If true, annotate the string literal data section prefix" )); |
| 102 | |
| 103 | // Matching statistics |
| 104 | STATISTIC(NumOfMemProfMissing, "Number of functions without memory profile." ); |
| 105 | STATISTIC(NumOfMemProfMismatch, |
| 106 | "Number of functions having mismatched memory profile hash." ); |
| 107 | STATISTIC(NumOfMemProfFunc, "Number of functions having valid memory profile." ); |
| 108 | STATISTIC(NumOfMemProfAllocContextProfiles, |
| 109 | "Number of alloc contexts in memory profile." ); |
| 110 | STATISTIC(NumOfMemProfCallSiteProfiles, |
| 111 | "Number of callsites in memory profile." ); |
| 112 | STATISTIC(NumOfMemProfMatchedAllocContexts, |
| 113 | "Number of matched memory profile alloc contexts." ); |
| 114 | STATISTIC(NumOfMemProfMatchedAllocs, |
| 115 | "Number of matched memory profile allocs." ); |
| 116 | STATISTIC(NumOfMemProfMatchedCallSites, |
| 117 | "Number of matched memory profile callsites." ); |
| 118 | STATISTIC(NumOfMemProfHotGlobalVars, |
| 119 | "Number of global vars annotated with 'hot' section prefix." ); |
| 120 | STATISTIC(NumOfMemProfColdGlobalVars, |
| 121 | "Number of global vars annotated with 'unlikely' section prefix." ); |
| 122 | STATISTIC(NumOfMemProfUnknownGlobalVars, |
| 123 | "Number of global vars with unknown hotness (no section prefix)." ); |
| 124 | STATISTIC(NumOfMemProfExplicitSectionGlobalVars, |
| 125 | "Number of global vars with user-specified section (not annotated)." ); |
| 126 | |
| 127 | static void addCallsiteMetadata(Instruction &I, |
| 128 | ArrayRef<uint64_t> InlinedCallStack, |
| 129 | LLVMContext &Ctx) { |
| 130 | I.setMetadata(KindID: LLVMContext::MD_callsite, |
| 131 | Node: buildCallstackMetadata(CallStack: InlinedCallStack, Ctx)); |
| 132 | } |
| 133 | |
| 134 | static uint64_t computeStackId(GlobalValue::GUID Function, uint32_t LineOffset, |
| 135 | uint32_t Column) { |
| 136 | llvm::HashBuilder<llvm::TruncatedBLAKE3<8>, llvm::endianness::little> |
| 137 | HashBuilder; |
| 138 | HashBuilder.add(Args: Function, Args: LineOffset, Args: Column); |
| 139 | llvm::BLAKE3Result<8> Hash = HashBuilder.final(); |
| 140 | uint64_t Id; |
| 141 | std::memcpy(dest: &Id, src: Hash.data(), n: sizeof(Hash)); |
| 142 | return Id; |
| 143 | } |
| 144 | |
| 145 | static uint64_t computeStackId(const memprof::Frame &Frame) { |
| 146 | return computeStackId(Function: Frame.Function, LineOffset: Frame.LineOffset, Column: Frame.Column); |
| 147 | } |
| 148 | |
| 149 | static AllocationType getAllocType(const AllocationInfo *AllocInfo) { |
| 150 | return getAllocType(TotalLifetimeAccessDensity: AllocInfo->Info.getTotalLifetimeAccessDensity(), |
| 151 | AllocCount: AllocInfo->Info.getAllocCount(), |
| 152 | TotalLifetime: AllocInfo->Info.getTotalLifetime()); |
| 153 | } |
| 154 | |
| 155 | static AllocationType addCallStack(CallStackTrie &AllocTrie, |
| 156 | const AllocationInfo *AllocInfo, |
| 157 | uint64_t FullStackId) { |
| 158 | SmallVector<uint64_t> StackIds; |
| 159 | for (const auto &StackFrame : AllocInfo->CallStack) |
| 160 | StackIds.push_back(Elt: computeStackId(Frame: StackFrame)); |
| 161 | auto AllocType = getAllocType(AllocInfo); |
| 162 | std::vector<ContextTotalSize> ContextSizeInfo; |
| 163 | if (recordContextSizeInfoForAnalysis()) { |
| 164 | auto TotalSize = AllocInfo->Info.getTotalSize(); |
| 165 | assert(TotalSize); |
| 166 | assert(FullStackId != 0); |
| 167 | ContextSizeInfo.push_back(x: {.FullStackId: FullStackId, .TotalSize: TotalSize}); |
| 168 | } |
| 169 | AllocTrie.addCallStack(AllocType, StackIds, ContextSizeInfo: std::move(ContextSizeInfo)); |
| 170 | return AllocType; |
| 171 | } |
| 172 | |
| 173 | // Return true if InlinedCallStack, computed from a call instruction's debug |
| 174 | // info, is a prefix of ProfileCallStack, a list of Frames from profile data |
| 175 | // (either the allocation data or a callsite). |
| 176 | static bool |
| 177 | stackFrameIncludesInlinedCallStack(ArrayRef<Frame> ProfileCallStack, |
| 178 | ArrayRef<uint64_t> InlinedCallStack) { |
| 179 | return ProfileCallStack.size() >= InlinedCallStack.size() && |
| 180 | llvm::equal(LRange: ProfileCallStack.take_front(N: InlinedCallStack.size()), |
| 181 | RRange&: InlinedCallStack, P: [](const Frame &F, uint64_t StackId) { |
| 182 | return computeStackId(Frame: F) == StackId; |
| 183 | }); |
| 184 | } |
| 185 | |
| 186 | static bool isAllocationWithHotColdVariant(const Function *Callee, |
| 187 | const TargetLibraryInfo &TLI) { |
| 188 | if (!Callee) |
| 189 | return false; |
| 190 | LibFunc Func; |
| 191 | if (!TLI.getLibFunc(FDecl: *Callee, F&: Func)) |
| 192 | return false; |
| 193 | switch (Func) { |
| 194 | case LibFunc_Znwm: |
| 195 | case LibFunc_ZnwmRKSt9nothrow_t: |
| 196 | case LibFunc_ZnwmSt11align_val_t: |
| 197 | case LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t: |
| 198 | case LibFunc_Znam: |
| 199 | case LibFunc_ZnamRKSt9nothrow_t: |
| 200 | case LibFunc_ZnamSt11align_val_t: |
| 201 | case LibFunc_ZnamSt11align_val_tRKSt9nothrow_t: |
| 202 | case LibFunc_size_returning_new: |
| 203 | case LibFunc_size_returning_new_aligned: |
| 204 | return true; |
| 205 | case LibFunc_Znwm12__hot_cold_t: |
| 206 | case LibFunc_ZnwmRKSt9nothrow_t12__hot_cold_t: |
| 207 | case LibFunc_ZnwmSt11align_val_t12__hot_cold_t: |
| 208 | case LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t12__hot_cold_t: |
| 209 | case LibFunc_Znam12__hot_cold_t: |
| 210 | case LibFunc_ZnamRKSt9nothrow_t12__hot_cold_t: |
| 211 | case LibFunc_ZnamSt11align_val_t12__hot_cold_t: |
| 212 | case LibFunc_ZnamSt11align_val_tRKSt9nothrow_t12__hot_cold_t: |
| 213 | case LibFunc_size_returning_new_hot_cold: |
| 214 | case LibFunc_size_returning_new_aligned_hot_cold: |
| 215 | return ClMemProfMatchHotColdNew; |
| 216 | default: |
| 217 | return false; |
| 218 | } |
| 219 | } |
| 220 | |
| 221 | static void HandleUnsupportedAnnotationKinds(GlobalVariable &GVar, |
| 222 | AnnotationKind Kind) { |
| 223 | assert(Kind != llvm::memprof::AnnotationKind::AnnotationOK && |
| 224 | "Should not handle AnnotationOK here" ); |
| 225 | SmallString<32> Reason; |
| 226 | switch (Kind) { |
| 227 | case llvm::memprof::AnnotationKind::ExplicitSection: |
| 228 | ++NumOfMemProfExplicitSectionGlobalVars; |
| 229 | Reason.append(RHS: "explicit section name" ); |
| 230 | break; |
| 231 | case llvm::memprof::AnnotationKind::DeclForLinker: |
| 232 | Reason.append(RHS: "linker declaration" ); |
| 233 | break; |
| 234 | case llvm::memprof::AnnotationKind::ReservedName: |
| 235 | Reason.append(RHS: "name starts with `llvm.`" ); |
| 236 | break; |
| 237 | default: |
| 238 | llvm_unreachable("Unexpected annotation kind" ); |
| 239 | } |
| 240 | LLVM_DEBUG(dbgs() << "Skip annotation for " << GVar.getName() << " due to " |
| 241 | << Reason << ".\n" ); |
| 242 | } |
| 243 | |
| 244 | // Computes the LLVM version of MD5 hash for the content of a string |
| 245 | // literal. |
| 246 | static std::optional<uint64_t> |
| 247 | getStringContentHash(const GlobalVariable &GVar) { |
| 248 | auto *Initializer = GVar.getInitializer(); |
| 249 | if (!Initializer) |
| 250 | return std::nullopt; |
| 251 | if (auto *C = dyn_cast<ConstantDataSequential>(Val: Initializer)) |
| 252 | if (C->isString()) { |
| 253 | // Note the hash computed for the literal would include the null byte. |
| 254 | return llvm::MD5Hash(Str: C->getAsString()); |
| 255 | } |
| 256 | return std::nullopt; |
| 257 | } |
| 258 | |
| 259 | // Structure for tracking info about matched allocation contexts for use with |
| 260 | // -memprof-print-match-info and -memprof-print-matched-alloc-stack. |
| 261 | struct AllocMatchInfo { |
| 262 | // Total size in bytes of matched context. |
| 263 | uint64_t TotalSize = 0; |
| 264 | // Matched allocation's type. |
| 265 | AllocationType AllocType = AllocationType::None; |
| 266 | // Number of frames matched to the allocation itself (values will be >1 in |
| 267 | // cases where allocation was already inlined). Use a set because there can |
| 268 | // be multiple inlined instances and each may have a different inline depth. |
| 269 | // Use std::set to iterate in sorted order when printing. |
| 270 | std::set<unsigned> MatchedFramesSet; |
| 271 | // The full call stack of the allocation, for cases where requested via |
| 272 | // -memprof-print-matched-alloc-stack. |
| 273 | std::vector<Frame> CallStack; |
| 274 | |
| 275 | // Caller responsible for inserting the matched frames and the call stack when |
| 276 | // appropriate. |
| 277 | AllocMatchInfo(uint64_t TotalSize, AllocationType AllocType) |
| 278 | : TotalSize(TotalSize), AllocType(AllocType) {} |
| 279 | }; |
| 280 | |
| 281 | DenseMap<uint64_t, SmallVector<CallEdgeTy, 0>> |
| 282 | memprof::(Module &M, const TargetLibraryInfo &TLI, |
| 283 | function_ref<bool(uint64_t)> IsPresentInProfile) { |
| 284 | DenseMap<uint64_t, SmallVector<CallEdgeTy, 0>> Calls; |
| 285 | |
| 286 | auto GetOffset = [](const DILocation *DIL) { |
| 287 | return (DIL->getLine() - DIL->getScope()->getSubprogram()->getLine()) & |
| 288 | 0xffff; |
| 289 | }; |
| 290 | |
| 291 | for (Function &F : M) { |
| 292 | if (F.isDeclaration()) |
| 293 | continue; |
| 294 | |
| 295 | for (auto &BB : F) { |
| 296 | for (auto &I : BB) { |
| 297 | if (!isa<CallBase>(Val: &I) || isa<IntrinsicInst>(Val: &I)) |
| 298 | continue; |
| 299 | |
| 300 | auto *CB = dyn_cast<CallBase>(Val: &I); |
| 301 | auto *CalledFunction = CB->getCalledFunction(); |
| 302 | // Disregard indirect calls and intrinsics. |
| 303 | if (!CalledFunction || CalledFunction->isIntrinsic()) |
| 304 | continue; |
| 305 | |
| 306 | StringRef CalleeName = CalledFunction->getName(); |
| 307 | // True if we are calling a heap allocation function that supports |
| 308 | // hot/cold variants. |
| 309 | bool IsAlloc = isAllocationWithHotColdVariant(Callee: CalledFunction, TLI); |
| 310 | // True for the first iteration below, indicating that we are looking at |
| 311 | // a leaf node. |
| 312 | bool IsLeaf = true; |
| 313 | for (const DILocation *DIL = I.getDebugLoc(); DIL; |
| 314 | DIL = DIL->getInlinedAt()) { |
| 315 | StringRef CallerName = DIL->getSubprogramLinkageName(); |
| 316 | assert(!CallerName.empty() && |
| 317 | "Be sure to enable -fdebug-info-for-profiling" ); |
| 318 | uint64_t CallerGUID = memprof::getGUID(FunctionName: CallerName); |
| 319 | uint64_t CalleeGUID = memprof::getGUID(FunctionName: CalleeName); |
| 320 | // Pretend that we are calling a function with GUID == 0 if we are |
| 321 | // in the inline stack leading to a heap allocation function. |
| 322 | if (IsAlloc) { |
| 323 | if (IsLeaf) { |
| 324 | // For leaf nodes, set CalleeGUID to 0 without consulting |
| 325 | // IsPresentInProfile. |
| 326 | CalleeGUID = 0; |
| 327 | } else if (!IsPresentInProfile(CalleeGUID)) { |
| 328 | // In addition to the leaf case above, continue to set CalleeGUID |
| 329 | // to 0 as long as we don't see CalleeGUID in the profile. |
| 330 | CalleeGUID = 0; |
| 331 | } else { |
| 332 | // Once we encounter a callee that exists in the profile, stop |
| 333 | // setting CalleeGUID to 0. |
| 334 | IsAlloc = false; |
| 335 | } |
| 336 | } |
| 337 | |
| 338 | LineLocation Loc = {GetOffset(DIL), DIL->getColumn()}; |
| 339 | Calls[CallerGUID].emplace_back(Args&: Loc, Args&: CalleeGUID); |
| 340 | CalleeName = CallerName; |
| 341 | IsLeaf = false; |
| 342 | } |
| 343 | } |
| 344 | } |
| 345 | } |
| 346 | |
| 347 | // Sort each call list by the source location. |
| 348 | for (auto &[CallerGUID, CallList] : Calls) { |
| 349 | llvm::sort(C&: CallList); |
| 350 | CallList.erase(CS: llvm::unique(R&: CallList), CE: CallList.end()); |
| 351 | } |
| 352 | |
| 353 | return Calls; |
| 354 | } |
| 355 | |
| 356 | DenseMap<uint64_t, LocToLocMap> |
| 357 | memprof::computeUndriftMap(Module &M, IndexedInstrProfReader *MemProfReader, |
| 358 | const TargetLibraryInfo &TLI) { |
| 359 | DenseMap<uint64_t, LocToLocMap> UndriftMaps; |
| 360 | |
| 361 | DenseMap<uint64_t, SmallVector<memprof::CallEdgeTy, 0>> CallsFromProfile = |
| 362 | MemProfReader->getMemProfCallerCalleePairs(); |
| 363 | DenseMap<uint64_t, SmallVector<memprof::CallEdgeTy, 0>> CallsFromIR = |
| 364 | extractCallsFromIR(M, TLI, IsPresentInProfile: [&](uint64_t GUID) { |
| 365 | return CallsFromProfile.contains(Val: GUID); |
| 366 | }); |
| 367 | |
| 368 | // Compute an undrift map for each CallerGUID. |
| 369 | for (const auto &[CallerGUID, IRAnchors] : CallsFromIR) { |
| 370 | auto It = CallsFromProfile.find(Val: CallerGUID); |
| 371 | if (It == CallsFromProfile.end()) |
| 372 | continue; |
| 373 | const auto &ProfileAnchors = It->second; |
| 374 | |
| 375 | LocToLocMap Matchings; |
| 376 | longestCommonSequence<LineLocation, GlobalValue::GUID>( |
| 377 | AnchorList1: ProfileAnchors, AnchorList2: IRAnchors, FunctionMatchesProfile: std::equal_to<GlobalValue::GUID>(), |
| 378 | InsertMatching: [&](LineLocation A, LineLocation B) { Matchings.try_emplace(k: A, args&: B); }); |
| 379 | [[maybe_unused]] bool Inserted = |
| 380 | UndriftMaps.try_emplace(Key: CallerGUID, Args: std::move(Matchings)).second; |
| 381 | |
| 382 | // The insertion must succeed because we visit each GUID exactly once. |
| 383 | assert(Inserted); |
| 384 | } |
| 385 | |
| 386 | return UndriftMaps; |
| 387 | } |
| 388 | |
| 389 | // Given a MemProfRecord, undrift all the source locations present in the |
| 390 | // record in place. |
| 391 | static void |
| 392 | undriftMemProfRecord(const DenseMap<uint64_t, LocToLocMap> &UndriftMaps, |
| 393 | memprof::MemProfRecord &MemProfRec) { |
| 394 | // Undrift a call stack in place. |
| 395 | auto UndriftCallStack = [&](std::vector<Frame> &CallStack) { |
| 396 | for (auto &F : CallStack) { |
| 397 | auto I = UndriftMaps.find(Val: F.Function); |
| 398 | if (I == UndriftMaps.end()) |
| 399 | continue; |
| 400 | auto J = I->second.find(x: LineLocation(F.LineOffset, F.Column)); |
| 401 | if (J == I->second.end()) |
| 402 | continue; |
| 403 | auto &NewLoc = J->second; |
| 404 | F.LineOffset = NewLoc.LineOffset; |
| 405 | F.Column = NewLoc.Column; |
| 406 | } |
| 407 | }; |
| 408 | |
| 409 | for (auto &AS : MemProfRec.AllocSites) |
| 410 | UndriftCallStack(AS.CallStack); |
| 411 | |
| 412 | for (auto &CS : MemProfRec.CallSites) |
| 413 | UndriftCallStack(CS.Frames); |
| 414 | } |
| 415 | |
| 416 | // Helper function to process CalleeGuids and create value profile metadata |
| 417 | static void addVPMetadata(Module &M, Instruction &I, |
| 418 | ArrayRef<GlobalValue::GUID> CalleeGuids) { |
| 419 | if (!ClMemProfAttachCalleeGuids || CalleeGuids.empty()) |
| 420 | return; |
| 421 | |
| 422 | // Prepare the vector of value data, initializing from any existing |
| 423 | // value-profile metadata present on the instruction so that we merge the |
| 424 | // new CalleeGuids into the existing entries. |
| 425 | SmallVector<InstrProfValueData> VDs; |
| 426 | uint64_t TotalCount = 0; |
| 427 | |
| 428 | if (I.getMetadata(KindID: LLVMContext::MD_prof)) { |
| 429 | // Read all existing entries so we can merge them. Use a large |
| 430 | // MaxNumValueData to retrieve all existing entries. |
| 431 | VDs = getValueProfDataFromInst(Inst: I, ValueKind: IPVK_IndirectCallTarget, |
| 432 | /*MaxNumValueData=*/UINT32_MAX, TotalC&: TotalCount); |
| 433 | } |
| 434 | |
| 435 | // Save the original size for use later in detecting whether any were added. |
| 436 | const size_t OriginalSize = VDs.size(); |
| 437 | |
| 438 | // Initialize the set of existing guids with the original list. |
| 439 | DenseSet<uint64_t> ExistingValues( |
| 440 | llvm::from_range, |
| 441 | llvm::map_range( |
| 442 | C&: VDs, F: [](const InstrProfValueData &Entry) { return Entry.Value; })); |
| 443 | |
| 444 | // Merge CalleeGuids into list of existing VDs, by appending any that are not |
| 445 | // already included. |
| 446 | VDs.reserve(N: OriginalSize + CalleeGuids.size()); |
| 447 | for (auto G : CalleeGuids) { |
| 448 | if (!ExistingValues.insert(V: G).second) |
| 449 | continue; |
| 450 | InstrProfValueData NewEntry; |
| 451 | NewEntry.Value = G; |
| 452 | // For MemProf, we don't have actual call counts, so we assign |
| 453 | // a weight of 1 to each potential target. |
| 454 | // TODO: Consider making this weight configurable or increasing it to |
| 455 | // improve effectiveness for ICP. |
| 456 | NewEntry.Count = 1; |
| 457 | TotalCount += NewEntry.Count; |
| 458 | VDs.push_back(Elt: NewEntry); |
| 459 | } |
| 460 | |
| 461 | // Update the VP metadata if we added any new callee GUIDs to the list. |
| 462 | assert(VDs.size() >= OriginalSize); |
| 463 | if (VDs.size() == OriginalSize) |
| 464 | return; |
| 465 | |
| 466 | // First clear the existing !prof. |
| 467 | I.setMetadata(KindID: LLVMContext::MD_prof, Node: nullptr); |
| 468 | |
| 469 | // No need to sort the updated VDs as all appended entries have the same count |
| 470 | // of 1, which is no larger than any existing entries. The incoming list of |
| 471 | // CalleeGuids should already be deterministic for a given profile. |
| 472 | annotateValueSite(M, Inst&: I, VDs, Sum: TotalCount, ValueKind: IPVK_IndirectCallTarget, MaxMDCount: VDs.size()); |
| 473 | } |
| 474 | |
| 475 | static void handleAllocSite( |
| 476 | Instruction &I, CallBase *CI, ArrayRef<uint64_t> InlinedCallStack, |
| 477 | LLVMContext &Ctx, OptimizationRemarkEmitter &ORE, uint64_t MaxColdSize, |
| 478 | const std::set<const AllocationInfo *> &AllocInfoSet, |
| 479 | std::map<uint64_t, AllocMatchInfo> &FullStackIdToAllocMatchInfo) { |
| 480 | // TODO: Remove this once the profile creation logic deduplicates contexts |
| 481 | // that are the same other than the IsInlineFrame bool. Until then, keep the |
| 482 | // largest. |
| 483 | DenseMap<uint64_t, const AllocationInfo *> UniqueFullContextIdAllocInfo; |
| 484 | for (auto *AllocInfo : AllocInfoSet) { |
| 485 | auto FullStackId = computeFullStackId(CallStack: AllocInfo->CallStack); |
| 486 | auto [It, Inserted] = |
| 487 | UniqueFullContextIdAllocInfo.insert(KV: {FullStackId, AllocInfo}); |
| 488 | // If inserted entry, done. |
| 489 | if (Inserted) |
| 490 | continue; |
| 491 | // Keep the larger one, or the noncold one if they are the same size. |
| 492 | auto CurSize = It->second->Info.getTotalSize(); |
| 493 | auto NewSize = AllocInfo->Info.getTotalSize(); |
| 494 | if ((CurSize > NewSize) || |
| 495 | (CurSize == NewSize && |
| 496 | getAllocType(AllocInfo) != AllocationType::NotCold)) |
| 497 | continue; |
| 498 | It->second = AllocInfo; |
| 499 | } |
| 500 | // We may match this instruction's location list to multiple MIB |
| 501 | // contexts. Add them to a Trie specialized for trimming the contexts to |
| 502 | // the minimal needed to disambiguate contexts with unique behavior. |
| 503 | CallStackTrie AllocTrie(&ORE, MaxColdSize); |
| 504 | uint64_t TotalSize = 0; |
| 505 | uint64_t TotalColdSize = 0; |
| 506 | for (auto &[FullStackId, AllocInfo] : UniqueFullContextIdAllocInfo) { |
| 507 | // Check the full inlined call stack against this one. |
| 508 | // If we found and thus matched all frames on the call, include |
| 509 | // this MIB. |
| 510 | if (stackFrameIncludesInlinedCallStack(ProfileCallStack: AllocInfo->CallStack, |
| 511 | InlinedCallStack)) { |
| 512 | NumOfMemProfMatchedAllocContexts++; |
| 513 | auto AllocType = addCallStack(AllocTrie, AllocInfo, FullStackId); |
| 514 | TotalSize += AllocInfo->Info.getTotalSize(); |
| 515 | if (AllocType == AllocationType::Cold) |
| 516 | TotalColdSize += AllocInfo->Info.getTotalSize(); |
| 517 | // Record information about the allocation if match info printing |
| 518 | // was requested. |
| 519 | if (ClPrintMemProfMatchInfo) { |
| 520 | assert(FullStackId != 0); |
| 521 | auto [Iter, Inserted] = FullStackIdToAllocMatchInfo.try_emplace( |
| 522 | k: FullStackId, |
| 523 | args: AllocMatchInfo(AllocInfo->Info.getTotalSize(), AllocType)); |
| 524 | // Always insert the new matched frame count, since it may differ. |
| 525 | Iter->second.MatchedFramesSet.insert(x: InlinedCallStack.size()); |
| 526 | if (Inserted && PrintMatchedAllocStack) |
| 527 | Iter->second.CallStack.insert(position: Iter->second.CallStack.begin(), |
| 528 | first: AllocInfo->CallStack.begin(), |
| 529 | last: AllocInfo->CallStack.end()); |
| 530 | } |
| 531 | ORE.emit( |
| 532 | OptDiag: OptimizationRemark(DEBUG_TYPE, "MemProfUse" , CI) |
| 533 | << ore::NV("AllocationCall" , CI) << " in function " |
| 534 | << ore::NV("Caller" , CI->getFunction()) |
| 535 | << " matched alloc context with alloc type " |
| 536 | << ore::NV("Attribute" , getAllocTypeAttributeString(Type: AllocType)) |
| 537 | << " total size " << ore::NV("Size" , AllocInfo->Info.getTotalSize()) |
| 538 | << " full context id " << ore::NV("Context" , FullStackId) |
| 539 | << " frame count " << ore::NV("Frames" , InlinedCallStack.size())); |
| 540 | } |
| 541 | } |
| 542 | // If the threshold for the percent of cold bytes is less than 100%, |
| 543 | // and not all bytes are cold, see if we should still hint this |
| 544 | // allocation as cold without context sensitivity. |
| 545 | if (TotalColdSize < TotalSize && MinMatchedColdBytePercent < 100 && |
| 546 | TotalColdSize * 100 >= MinMatchedColdBytePercent * TotalSize) { |
| 547 | AllocTrie.addSingleAllocTypeAttribute(CI, AT: AllocationType::Cold, Descriptor: "dominant" ); |
| 548 | return; |
| 549 | } |
| 550 | |
| 551 | // We might not have matched any to the full inlined call stack. |
| 552 | // But if we did, create and attach metadata, or a function attribute if |
| 553 | // all contexts have identical profiled behavior. |
| 554 | if (!AllocTrie.empty()) { |
| 555 | NumOfMemProfMatchedAllocs++; |
| 556 | // MemprofMDAttached will be false if a function attribute was |
| 557 | // attached. |
| 558 | bool MemprofMDAttached = AllocTrie.buildAndAttachMIBMetadata(CI); |
| 559 | assert(MemprofMDAttached == I.hasMetadata(LLVMContext::MD_memprof)); |
| 560 | if (MemprofMDAttached) { |
| 561 | // Add callsite metadata for the instruction's location list so that |
| 562 | // it simpler later on to identify which part of the MIB contexts |
| 563 | // are from this particular instruction (including during inlining, |
| 564 | // when the callsite metadata will be updated appropriately). |
| 565 | // FIXME: can this be changed to strip out the matching stack |
| 566 | // context ids from the MIB contexts and not add any callsite |
| 567 | // metadata here to save space? |
| 568 | addCallsiteMetadata(I, InlinedCallStack, Ctx); |
| 569 | } |
| 570 | } |
| 571 | } |
| 572 | |
| 573 | // Helper struct for maintaining refs to callsite data. As an alternative we |
| 574 | // could store a pointer to the CallSiteInfo struct but we also need the frame |
| 575 | // index. Using ArrayRefs instead makes it a little easier to read. |
| 576 | struct CallSiteEntry { |
| 577 | // Subset of frames for the corresponding CallSiteInfo. |
| 578 | ArrayRef<Frame> Frames; |
| 579 | // Potential targets for indirect calls. |
| 580 | ArrayRef<GlobalValue::GUID> CalleeGuids; |
| 581 | }; |
| 582 | |
| 583 | static void handleCallSite(Instruction &I, const Function *CalledFunction, |
| 584 | ArrayRef<uint64_t> InlinedCallStack, |
| 585 | const std::vector<CallSiteEntry> &CallSiteEntries, |
| 586 | Module &M, |
| 587 | std::set<std::vector<uint64_t>> &MatchedCallSites, |
| 588 | OptimizationRemarkEmitter &ORE) { |
| 589 | auto &Ctx = M.getContext(); |
| 590 | // Set of Callee GUIDs to attach to indirect calls. We accumulate all of them |
| 591 | // to support cases where the instuction's inlined frames match multiple call |
| 592 | // site entries, which can happen if the profile was collected from a binary |
| 593 | // where this instruction was eventually inlined into multiple callers. |
| 594 | SetVector<GlobalValue::GUID> CalleeGuids; |
| 595 | bool CallsiteMDAdded = false; |
| 596 | for (const auto &CallSiteEntry : CallSiteEntries) { |
| 597 | // If we found and thus matched all frames on the call, create and |
| 598 | // attach call stack metadata. |
| 599 | if (stackFrameIncludesInlinedCallStack(ProfileCallStack: CallSiteEntry.Frames, |
| 600 | InlinedCallStack)) { |
| 601 | NumOfMemProfMatchedCallSites++; |
| 602 | // Only need to find one with a matching call stack and add a single |
| 603 | // callsite metadata. |
| 604 | if (!CallsiteMDAdded) { |
| 605 | addCallsiteMetadata(I, InlinedCallStack, Ctx); |
| 606 | |
| 607 | // Accumulate call site matching information upon request. |
| 608 | if (ClPrintMemProfMatchInfo) { |
| 609 | std::vector<uint64_t> CallStack; |
| 610 | append_range(C&: CallStack, R&: InlinedCallStack); |
| 611 | MatchedCallSites.insert(x: std::move(CallStack)); |
| 612 | } |
| 613 | ORE.emit(OptDiag: OptimizationRemark(DEBUG_TYPE, "MemProfUse" , &I) |
| 614 | << ore::NV("CallSite" , &I) << " in function " |
| 615 | << ore::NV("Caller" , I.getFunction()) |
| 616 | << " matched callsite with frame count " |
| 617 | << ore::NV("Frames" , InlinedCallStack.size())); |
| 618 | |
| 619 | // If this is a direct call, we're done. |
| 620 | if (CalledFunction) |
| 621 | break; |
| 622 | CallsiteMDAdded = true; |
| 623 | } |
| 624 | |
| 625 | assert(!CalledFunction && "Didn't expect direct call" ); |
| 626 | |
| 627 | // Collect Callee GUIDs from all matching CallSiteEntries. |
| 628 | CalleeGuids.insert(Start: CallSiteEntry.CalleeGuids.begin(), |
| 629 | End: CallSiteEntry.CalleeGuids.end()); |
| 630 | } |
| 631 | } |
| 632 | // Try to attach indirect call metadata if possible. |
| 633 | addVPMetadata(M, I, CalleeGuids: CalleeGuids.getArrayRef()); |
| 634 | } |
| 635 | |
| 636 | static void |
| 637 | readMemprof(Module &M, Function &F, IndexedInstrProfReader *MemProfReader, |
| 638 | const TargetLibraryInfo &TLI, |
| 639 | std::map<uint64_t, AllocMatchInfo> &FullStackIdToAllocMatchInfo, |
| 640 | std::set<std::vector<uint64_t>> &MatchedCallSites, |
| 641 | DenseMap<uint64_t, LocToLocMap> &UndriftMaps, |
| 642 | OptimizationRemarkEmitter &ORE, uint64_t MaxColdSize) { |
| 643 | auto &Ctx = M.getContext(); |
| 644 | // Previously we used getIRPGOFuncName() here. If F is local linkage, |
| 645 | // getIRPGOFuncName() returns FuncName with prefix 'FileName;'. But |
| 646 | // llvm-profdata uses FuncName in dwarf to create GUID which doesn't |
| 647 | // contain FileName's prefix. It caused local linkage function can't |
| 648 | // find MemProfRecord. So we use getName() now. |
| 649 | // 'unique-internal-linkage-names' can make MemProf work better for local |
| 650 | // linkage function. |
| 651 | auto FuncName = F.getName(); |
| 652 | auto FuncGUID = Function::getGUIDAssumingExternalLinkage(GlobalName: FuncName); |
| 653 | if (PrintFunctionGuids) |
| 654 | errs() << "MemProf: Function GUID " << FuncGUID << " is " << FuncName |
| 655 | << "\n" ; |
| 656 | std::optional<memprof::MemProfRecord> MemProfRec; |
| 657 | auto Err = MemProfReader->getMemProfRecord(FuncNameHash: FuncGUID).moveInto(Value&: MemProfRec); |
| 658 | if (Err) { |
| 659 | handleAllErrors(E: std::move(Err), Handlers: [&](const InstrProfError &IPE) { |
| 660 | auto Err = IPE.get(); |
| 661 | bool SkipWarning = false; |
| 662 | LLVM_DEBUG(dbgs() << "Error in reading profile for Func " << FuncName |
| 663 | << ": " ); |
| 664 | if (Err == instrprof_error::unknown_function) { |
| 665 | NumOfMemProfMissing++; |
| 666 | SkipWarning = !PGOWarnMissing; |
| 667 | LLVM_DEBUG(dbgs() << "unknown function" ); |
| 668 | } else if (Err == instrprof_error::hash_mismatch) { |
| 669 | NumOfMemProfMismatch++; |
| 670 | SkipWarning = |
| 671 | NoPGOWarnMismatch || |
| 672 | (NoPGOWarnMismatchComdatWeak && |
| 673 | (F.hasComdat() || |
| 674 | F.getLinkage() == GlobalValue::AvailableExternallyLinkage)); |
| 675 | LLVM_DEBUG(dbgs() << "hash mismatch (skip=" << SkipWarning << ")" ); |
| 676 | } |
| 677 | |
| 678 | if (SkipWarning) |
| 679 | return; |
| 680 | |
| 681 | std::string Msg = (IPE.message() + Twine(" " ) + F.getName().str() + |
| 682 | Twine(" Hash = " ) + std::to_string(val: FuncGUID)) |
| 683 | .str(); |
| 684 | |
| 685 | Ctx.diagnose( |
| 686 | DI: DiagnosticInfoPGOProfile(M.getName().data(), Msg, DS_Warning)); |
| 687 | }); |
| 688 | return; |
| 689 | } |
| 690 | |
| 691 | NumOfMemProfFunc++; |
| 692 | |
| 693 | // If requested, undrfit MemProfRecord so that the source locations in it |
| 694 | // match those in the IR. |
| 695 | if (SalvageStaleProfile) |
| 696 | undriftMemProfRecord(UndriftMaps, MemProfRec&: *MemProfRec); |
| 697 | |
| 698 | // Detect if there are non-zero column numbers in the profile. If not, |
| 699 | // treat all column numbers as 0 when matching (i.e. ignore any non-zero |
| 700 | // columns in the IR). The profiled binary might have been built with |
| 701 | // column numbers disabled, for example. |
| 702 | bool ProfileHasColumns = false; |
| 703 | |
| 704 | // Build maps of the location hash to all profile data with that leaf location |
| 705 | // (allocation info and the callsites). |
| 706 | std::map<uint64_t, std::set<const AllocationInfo *>> LocHashToAllocInfo; |
| 707 | |
| 708 | // For the callsites we need to record slices of the frame array (see comments |
| 709 | // below where the map entries are added) along with their CalleeGuids. |
| 710 | std::map<uint64_t, std::vector<CallSiteEntry>> LocHashToCallSites; |
| 711 | for (auto &AI : MemProfRec->AllocSites) { |
| 712 | NumOfMemProfAllocContextProfiles++; |
| 713 | // Associate the allocation info with the leaf frame. The later matching |
| 714 | // code will match any inlined call sequences in the IR with a longer prefix |
| 715 | // of call stack frames. |
| 716 | uint64_t StackId = computeStackId(Frame: AI.CallStack[0]); |
| 717 | LocHashToAllocInfo[StackId].insert(x: &AI); |
| 718 | ProfileHasColumns |= AI.CallStack[0].Column; |
| 719 | } |
| 720 | for (auto &CS : MemProfRec->CallSites) { |
| 721 | NumOfMemProfCallSiteProfiles++; |
| 722 | // Need to record all frames from leaf up to and including this function, |
| 723 | // as any of these may or may not have been inlined at this point. |
| 724 | unsigned Idx = 0; |
| 725 | for (auto &StackFrame : CS.Frames) { |
| 726 | uint64_t StackId = computeStackId(Frame: StackFrame); |
| 727 | ArrayRef<Frame> FrameSlice = ArrayRef<Frame>(CS.Frames).drop_front(N: Idx++); |
| 728 | // The callee guids for the slice containing all frames (due to the |
| 729 | // increment above Idx is now 1) comes from the CalleeGuids recorded in |
| 730 | // the CallSite. For the slices not containing the leaf-most frame, the |
| 731 | // callee guid is simply the function GUID of the prior frame. |
| 732 | LocHashToCallSites[StackId].push_back( |
| 733 | x: {.Frames: FrameSlice, .CalleeGuids: (Idx == 1 ? CS.CalleeGuids |
| 734 | : ArrayRef<GlobalValue::GUID>( |
| 735 | CS.Frames[Idx - 2].Function))}); |
| 736 | |
| 737 | ProfileHasColumns |= StackFrame.Column; |
| 738 | // Once we find this function, we can stop recording. |
| 739 | if (StackFrame.Function == FuncGUID) |
| 740 | break; |
| 741 | } |
| 742 | assert(Idx <= CS.Frames.size() && CS.Frames[Idx - 1].Function == FuncGUID); |
| 743 | } |
| 744 | |
| 745 | auto GetOffset = [](const DILocation *DIL) { |
| 746 | return (DIL->getLine() - DIL->getScope()->getSubprogram()->getLine()) & |
| 747 | 0xffff; |
| 748 | }; |
| 749 | |
| 750 | // Now walk the instructions, looking up the associated profile data using |
| 751 | // debug locations. |
| 752 | for (auto &BB : F) { |
| 753 | for (auto &I : BB) { |
| 754 | if (I.isDebugOrPseudoInst()) |
| 755 | continue; |
| 756 | // We are only interested in calls (allocation or interior call stack |
| 757 | // context calls). |
| 758 | auto *CI = dyn_cast<CallBase>(Val: &I); |
| 759 | if (!CI) |
| 760 | continue; |
| 761 | auto *CalledFunction = CI->getCalledFunction(); |
| 762 | if (CalledFunction && CalledFunction->isIntrinsic()) |
| 763 | continue; |
| 764 | // List of call stack ids computed from the location hashes on debug |
| 765 | // locations (leaf to inlined at root). |
| 766 | SmallVector<uint64_t, 8> InlinedCallStack; |
| 767 | // Was the leaf location found in one of the profile maps? |
| 768 | bool LeafFound = false; |
| 769 | // If leaf was found in a map, iterators pointing to its location in both |
| 770 | // of the maps. It might exist in neither, one, or both (the latter case |
| 771 | // can happen because we don't currently have discriminators to |
| 772 | // distinguish the case when a single line/col maps to both an allocation |
| 773 | // and another callsite). |
| 774 | auto AllocInfoIter = LocHashToAllocInfo.end(); |
| 775 | auto CallSitesIter = LocHashToCallSites.end(); |
| 776 | for (const DILocation *DIL = I.getDebugLoc(); DIL != nullptr; |
| 777 | DIL = DIL->getInlinedAt()) { |
| 778 | // Use C++ linkage name if possible. Need to compile with |
| 779 | // -fdebug-info-for-profiling to get linkage name. |
| 780 | StringRef Name = DIL->getScope()->getSubprogram()->getLinkageName(); |
| 781 | if (Name.empty()) |
| 782 | Name = DIL->getScope()->getSubprogram()->getName(); |
| 783 | auto CalleeGUID = Function::getGUIDAssumingExternalLinkage(GlobalName: Name); |
| 784 | auto StackId = computeStackId(Function: CalleeGUID, LineOffset: GetOffset(DIL), |
| 785 | Column: ProfileHasColumns ? DIL->getColumn() : 0); |
| 786 | // Check if we have found the profile's leaf frame. If yes, collect |
| 787 | // the rest of the call's inlined context starting here. If not, see if |
| 788 | // we find a match further up the inlined context (in case the profile |
| 789 | // was missing debug frames at the leaf). |
| 790 | if (!LeafFound) { |
| 791 | AllocInfoIter = LocHashToAllocInfo.find(x: StackId); |
| 792 | CallSitesIter = LocHashToCallSites.find(x: StackId); |
| 793 | if (AllocInfoIter != LocHashToAllocInfo.end() || |
| 794 | CallSitesIter != LocHashToCallSites.end()) |
| 795 | LeafFound = true; |
| 796 | } |
| 797 | if (LeafFound) |
| 798 | InlinedCallStack.push_back(Elt: StackId); |
| 799 | } |
| 800 | // If leaf not in either of the maps, skip inst. |
| 801 | if (!LeafFound) |
| 802 | continue; |
| 803 | |
| 804 | // First add !memprof metadata from allocation info, if we found the |
| 805 | // instruction's leaf location in that map, and if the rest of the |
| 806 | // instruction's locations match the prefix Frame locations on an |
| 807 | // allocation context with the same leaf. |
| 808 | if (AllocInfoIter != LocHashToAllocInfo.end() && |
| 809 | // Only consider allocations which support hinting. |
| 810 | isAllocationWithHotColdVariant(Callee: CI->getCalledFunction(), TLI)) |
| 811 | handleAllocSite(I, CI, InlinedCallStack, Ctx, ORE, MaxColdSize, |
| 812 | AllocInfoSet: AllocInfoIter->second, FullStackIdToAllocMatchInfo); |
| 813 | else if (CallSitesIter != LocHashToCallSites.end()) |
| 814 | // Otherwise, add callsite metadata. If we reach here then we found the |
| 815 | // instruction's leaf location in the callsites map and not the |
| 816 | // allocation map. |
| 817 | handleCallSite(I, CalledFunction, InlinedCallStack, |
| 818 | CallSiteEntries: CallSitesIter->second, M, MatchedCallSites, ORE); |
| 819 | } |
| 820 | } |
| 821 | } |
| 822 | |
| 823 | MemProfUsePass::MemProfUsePass(std::string MemoryProfileFile, |
| 824 | IntrusiveRefCntPtr<vfs::FileSystem> FS) |
| 825 | : MemoryProfileFileName(MemoryProfileFile), FS(FS) { |
| 826 | if (!FS) |
| 827 | this->FS = vfs::getRealFileSystem(); |
| 828 | } |
| 829 | |
| 830 | PreservedAnalyses MemProfUsePass::run(Module &M, ModuleAnalysisManager &AM) { |
| 831 | // Return immediately if the module doesn't contain any function or global |
| 832 | // variables. |
| 833 | if (M.empty() && M.globals().empty()) |
| 834 | return PreservedAnalyses::all(); |
| 835 | |
| 836 | LLVM_DEBUG(dbgs() << "Read in memory profile:\n" ); |
| 837 | auto &Ctx = M.getContext(); |
| 838 | auto ReaderOrErr = IndexedInstrProfReader::create(Path: MemoryProfileFileName, FS&: *FS); |
| 839 | if (Error E = ReaderOrErr.takeError()) { |
| 840 | handleAllErrors(E: std::move(E), Handlers: [&](const ErrorInfoBase &EI) { |
| 841 | Ctx.diagnose( |
| 842 | DI: DiagnosticInfoPGOProfile(MemoryProfileFileName.data(), EI.message())); |
| 843 | }); |
| 844 | return PreservedAnalyses::all(); |
| 845 | } |
| 846 | |
| 847 | std::unique_ptr<IndexedInstrProfReader> MemProfReader = |
| 848 | std::move(ReaderOrErr.get()); |
| 849 | if (!MemProfReader) { |
| 850 | Ctx.diagnose(DI: DiagnosticInfoPGOProfile( |
| 851 | MemoryProfileFileName.data(), StringRef("Cannot get MemProfReader" ))); |
| 852 | return PreservedAnalyses::all(); |
| 853 | } |
| 854 | |
| 855 | if (!MemProfReader->hasMemoryProfile()) { |
| 856 | Ctx.diagnose(DI: DiagnosticInfoPGOProfile(MemoryProfileFileName.data(), |
| 857 | "Not a memory profile" )); |
| 858 | return PreservedAnalyses::all(); |
| 859 | } |
| 860 | |
| 861 | const bool Changed = |
| 862 | annotateGlobalVariables(M, DataAccessProf: MemProfReader->getDataAccessProfileData()); |
| 863 | |
| 864 | // If the module doesn't contain any function, return after we process all |
| 865 | // global variables. |
| 866 | if (M.empty()) |
| 867 | return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all(); |
| 868 | |
| 869 | auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(IR&: M).getManager(); |
| 870 | |
| 871 | TargetLibraryInfo &TLI = FAM.getResult<TargetLibraryAnalysis>(IR&: *M.begin()); |
| 872 | DenseMap<uint64_t, LocToLocMap> UndriftMaps; |
| 873 | if (SalvageStaleProfile) |
| 874 | UndriftMaps = computeUndriftMap(M, MemProfReader: MemProfReader.get(), TLI); |
| 875 | |
| 876 | // Map from the stack hash of each matched allocation context in the function |
| 877 | // profiles to match info such as the total profiled size (bytes), allocation |
| 878 | // type, number of frames matched to the allocation itself, and the full array |
| 879 | // of call stack ids. |
| 880 | std::map<uint64_t, AllocMatchInfo> FullStackIdToAllocMatchInfo; |
| 881 | |
| 882 | // Set of the matched call sites, each expressed as a sequence of an inline |
| 883 | // call stack. |
| 884 | std::set<std::vector<uint64_t>> MatchedCallSites; |
| 885 | |
| 886 | uint64_t MaxColdSize = 0; |
| 887 | if (auto *MemProfSum = MemProfReader->getMemProfSummary()) |
| 888 | MaxColdSize = MemProfSum->getMaxColdTotalSize(); |
| 889 | |
| 890 | for (auto &F : M) { |
| 891 | if (F.isDeclaration()) |
| 892 | continue; |
| 893 | |
| 894 | const TargetLibraryInfo &TLI = FAM.getResult<TargetLibraryAnalysis>(IR&: F); |
| 895 | auto &ORE = FAM.getResult<OptimizationRemarkEmitterAnalysis>(IR&: F); |
| 896 | readMemprof(M, F, MemProfReader: MemProfReader.get(), TLI, FullStackIdToAllocMatchInfo, |
| 897 | MatchedCallSites, UndriftMaps, ORE, MaxColdSize); |
| 898 | } |
| 899 | |
| 900 | if (ClPrintMemProfMatchInfo) { |
| 901 | for (const auto &[Id, Info] : FullStackIdToAllocMatchInfo) { |
| 902 | for (auto Frames : Info.MatchedFramesSet) { |
| 903 | // TODO: To reduce verbosity, should we change the existing message |
| 904 | // so that we emit a list of matched frame counts in a single message |
| 905 | // about the context (instead of one message per frame count? |
| 906 | errs() << "MemProf " << getAllocTypeAttributeString(Type: Info.AllocType) |
| 907 | << " context with id " << Id << " has total profiled size " |
| 908 | << Info.TotalSize << " is matched with " << Frames << " frames" ; |
| 909 | if (PrintMatchedAllocStack) { |
| 910 | errs() << " and call stack" ; |
| 911 | for (auto &F : Info.CallStack) |
| 912 | errs() << " " << computeStackId(Frame: F); |
| 913 | } |
| 914 | errs() << "\n" ; |
| 915 | } |
| 916 | } |
| 917 | |
| 918 | for (const auto &CallStack : MatchedCallSites) { |
| 919 | errs() << "MemProf callsite match for inline call stack" ; |
| 920 | for (uint64_t StackId : CallStack) |
| 921 | errs() << " " << StackId; |
| 922 | errs() << "\n" ; |
| 923 | } |
| 924 | } |
| 925 | |
| 926 | return PreservedAnalyses::none(); |
| 927 | } |
| 928 | |
| 929 | bool MemProfUsePass::annotateGlobalVariables( |
| 930 | Module &M, const memprof::DataAccessProfData *DataAccessProf) { |
| 931 | if (!AnnotateStaticDataSectionPrefix || M.globals().empty()) |
| 932 | return false; |
| 933 | |
| 934 | if (!DataAccessProf) { |
| 935 | M.addModuleFlag(Behavior: Module::Warning, Key: "EnableDataAccessProf" , Val: 0U); |
| 936 | // FIXME: Add a diagnostic message without failing the compilation when |
| 937 | // data access profile payload is not available. |
| 938 | return false; |
| 939 | } |
| 940 | M.addModuleFlag(Behavior: Module::Warning, Key: "EnableDataAccessProf" , Val: 1U); |
| 941 | |
| 942 | bool Changed = false; |
| 943 | // Iterate all global variables in the module and annotate them based on |
| 944 | // data access profiles. Note it's up to the linker to decide how to map input |
| 945 | // sections to output sections, and one conservative practice is to map |
| 946 | // unlikely-prefixed ones to unlikely output section, and map the rest |
| 947 | // (hot-prefixed or prefix-less) to the canonical output section. |
| 948 | for (GlobalVariable &GVar : M.globals()) { |
| 949 | assert(!GVar.getSectionPrefix().has_value() && |
| 950 | "GVar shouldn't have section prefix yet" ); |
| 951 | auto Kind = llvm::memprof::getAnnotationKind(GV: GVar); |
| 952 | if (Kind != llvm::memprof::AnnotationKind::AnnotationOK) { |
| 953 | HandleUnsupportedAnnotationKinds(GVar, Kind); |
| 954 | continue; |
| 955 | } |
| 956 | |
| 957 | StringRef Name = GVar.getName(); |
| 958 | SymbolHandleRef Handle = SymbolHandleRef(Name); |
| 959 | // Skip string literals as their mangled names don't stay stable across |
| 960 | // binary releases. |
| 961 | if (!AnnotateStringLiteralSectionPrefix) |
| 962 | if (Name.starts_with(Prefix: ".str" )) |
| 963 | continue; |
| 964 | |
| 965 | if (Name.starts_with(Prefix: ".str" )) { |
| 966 | std::optional<uint64_t> Hash = getStringContentHash(GVar); |
| 967 | if (!Hash) { |
| 968 | LLVM_DEBUG(dbgs() << "Cannot compute content hash for string literal " |
| 969 | << Name << "\n" ); |
| 970 | continue; |
| 971 | } |
| 972 | Handle = SymbolHandleRef(Hash.value()); |
| 973 | } |
| 974 | |
| 975 | // DataAccessProfRecord's get* methods will canonicalize the name under the |
| 976 | // hood before looking it up, so optimizer doesn't need to do it. |
| 977 | std::optional<DataAccessProfRecord> Record = |
| 978 | DataAccessProf->getProfileRecord(SymID: Handle); |
| 979 | // Annotate a global variable as hot if it has non-zero sampled count, and |
| 980 | // annotate it as cold if it's seen in the profiled binary |
| 981 | // file but doesn't have any access sample. |
| 982 | // For logging, optimization remark emitter requires a llvm::Function, but |
| 983 | // it's not well defined how to associate a global variable with a function. |
| 984 | // So we just print out the static data section prefix in LLVM_DEBUG. |
| 985 | if (Record && Record->AccessCount > 0) { |
| 986 | ++NumOfMemProfHotGlobalVars; |
| 987 | Changed |= GVar.setSectionPrefix("hot" ); |
| 988 | LLVM_DEBUG(dbgs() << "Global variable " << Name |
| 989 | << " is annotated as hot\n" ); |
| 990 | } else if (DataAccessProf->isKnownColdSymbol(SymID: Handle)) { |
| 991 | ++NumOfMemProfColdGlobalVars; |
| 992 | Changed |= GVar.setSectionPrefix("unlikely" ); |
| 993 | Changed = true; |
| 994 | LLVM_DEBUG(dbgs() << "Global variable " << Name |
| 995 | << " is annotated as unlikely\n" ); |
| 996 | } else { |
| 997 | ++NumOfMemProfUnknownGlobalVars; |
| 998 | LLVM_DEBUG(dbgs() << "Global variable " << Name << " is not annotated\n" ); |
| 999 | } |
| 1000 | } |
| 1001 | |
| 1002 | return Changed; |
| 1003 | } |
| 1004 | |