| 1 | //===- MemorySanitizer.cpp - detector of uninitialized reads --------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | /// \file |
| 10 | /// This file is a part of MemorySanitizer, a detector of uninitialized |
| 11 | /// reads. |
| 12 | /// |
| 13 | /// The algorithm of the tool is similar to Memcheck |
| 14 | /// (https://static.usenix.org/event/usenix05/tech/general/full_papers/seward/seward_html/usenix2005.html) |
| 15 | /// We associate a few shadow bits with every byte of the application memory, |
| 16 | /// poison the shadow of the malloc-ed or alloca-ed memory, load the shadow, |
| 17 | /// bits on every memory read, propagate the shadow bits through some of the |
| 18 | /// arithmetic instruction (including MOV), store the shadow bits on every |
| 19 | /// memory write, report a bug on some other instructions (e.g. JMP) if the |
| 20 | /// associated shadow is poisoned. |
| 21 | /// |
| 22 | /// But there are differences too. The first and the major one: |
| 23 | /// compiler instrumentation instead of binary instrumentation. This |
| 24 | /// gives us much better register allocation, possible compiler |
| 25 | /// optimizations and a fast start-up. But this brings the major issue |
| 26 | /// as well: msan needs to see all program events, including system |
| 27 | /// calls and reads/writes in system libraries, so we either need to |
| 28 | /// compile *everything* with msan or use a binary translation |
| 29 | /// component (e.g. DynamoRIO) to instrument pre-built libraries. |
| 30 | /// Another difference from Memcheck is that we use 8 shadow bits per |
| 31 | /// byte of application memory and use a direct shadow mapping. This |
| 32 | /// greatly simplifies the instrumentation code and avoids races on |
| 33 | /// shadow updates (Memcheck is single-threaded so races are not a |
| 34 | /// concern there. Memcheck uses 2 shadow bits per byte with a slow |
| 35 | /// path storage that uses 8 bits per byte). |
| 36 | /// |
| 37 | /// The default value of shadow is 0, which means "clean" (not poisoned). |
| 38 | /// |
| 39 | /// Every module initializer should call __msan_init to ensure that the |
| 40 | /// shadow memory is ready. On error, __msan_warning is called. Since |
| 41 | /// parameters and return values may be passed via registers, we have a |
| 42 | /// specialized thread-local shadow for return values |
| 43 | /// (__msan_retval_tls) and parameters (__msan_param_tls). |
| 44 | /// |
| 45 | /// Origin tracking. |
| 46 | /// |
| 47 | /// MemorySanitizer can track origins (allocation points) of all uninitialized |
| 48 | /// values. This behavior is controlled with a flag (msan-track-origins) and is |
| 49 | /// disabled by default. |
| 50 | /// |
| 51 | /// Origins are 4-byte values created and interpreted by the runtime library. |
| 52 | /// They are stored in a second shadow mapping, one 4-byte value for 4 bytes |
| 53 | /// of application memory. Propagation of origins is basically a bunch of |
| 54 | /// "select" instructions that pick the origin of a dirty argument, if an |
| 55 | /// instruction has one. |
| 56 | /// |
| 57 | /// Every 4 aligned, consecutive bytes of application memory have one origin |
| 58 | /// value associated with them. If these bytes contain uninitialized data |
| 59 | /// coming from 2 different allocations, the last store wins. Because of this, |
| 60 | /// MemorySanitizer reports can show unrelated origins, but this is unlikely in |
| 61 | /// practice. |
| 62 | /// |
| 63 | /// Origins are meaningless for fully initialized values, so MemorySanitizer |
| 64 | /// avoids storing origin to memory when a fully initialized value is stored. |
| 65 | /// This way it avoids needless overwriting origin of the 4-byte region on |
| 66 | /// a short (i.e. 1 byte) clean store, and it is also good for performance. |
| 67 | /// |
| 68 | /// Atomic handling. |
| 69 | /// |
| 70 | /// Ideally, every atomic store of application value should update the |
| 71 | /// corresponding shadow location in an atomic way. Unfortunately, atomic store |
| 72 | /// of two disjoint locations can not be done without severe slowdown. |
| 73 | /// |
| 74 | /// Therefore, we implement an approximation that may err on the safe side. |
| 75 | /// In this implementation, every atomically accessed location in the program |
| 76 | /// may only change from (partially) uninitialized to fully initialized, but |
| 77 | /// not the other way around. We load the shadow _after_ the application load, |
| 78 | /// and we store the shadow _before_ the app store. Also, we always store clean |
| 79 | /// shadow (if the application store is atomic). This way, if the store-load |
| 80 | /// pair constitutes a happens-before arc, shadow store and load are correctly |
| 81 | /// ordered such that the load will get either the value that was stored, or |
| 82 | /// some later value (which is always clean). |
| 83 | /// |
| 84 | /// This does not work very well with Compare-And-Swap (CAS) and |
| 85 | /// Read-Modify-Write (RMW) operations. To follow the above logic, CAS and RMW |
| 86 | /// must store the new shadow before the app operation, and load the shadow |
| 87 | /// after the app operation. Computers don't work this way. Current |
| 88 | /// implementation ignores the load aspect of CAS/RMW, always returning a clean |
| 89 | /// value. It implements the store part as a simple atomic store by storing a |
| 90 | /// clean shadow. |
| 91 | /// |
| 92 | /// Instrumenting inline assembly. |
| 93 | /// |
| 94 | /// For inline assembly code LLVM has little idea about which memory locations |
| 95 | /// become initialized depending on the arguments. It can be possible to figure |
| 96 | /// out which arguments are meant to point to inputs and outputs, but the |
| 97 | /// actual semantics can be only visible at runtime. In the Linux kernel it's |
| 98 | /// also possible that the arguments only indicate the offset for a base taken |
| 99 | /// from a segment register, so it's dangerous to treat any asm() arguments as |
| 100 | /// pointers. We take a conservative approach generating calls to |
| 101 | /// __msan_instrument_asm_store(ptr, size) |
| 102 | /// , which defer the memory unpoisoning to the runtime library. |
| 103 | /// The latter can perform more complex address checks to figure out whether |
| 104 | /// it's safe to touch the shadow memory. |
| 105 | /// Like with atomic operations, we call __msan_instrument_asm_store() before |
| 106 | /// the assembly call, so that changes to the shadow memory will be seen by |
| 107 | /// other threads together with main memory initialization. |
| 108 | /// |
| 109 | /// KernelMemorySanitizer (KMSAN) implementation. |
| 110 | /// |
| 111 | /// The major differences between KMSAN and MSan instrumentation are: |
| 112 | /// - KMSAN always tracks the origins and implies msan-keep-going=true; |
| 113 | /// - KMSAN allocates shadow and origin memory for each page separately, so |
| 114 | /// there are no explicit accesses to shadow and origin in the |
| 115 | /// instrumentation. |
| 116 | /// Shadow and origin values for a particular X-byte memory location |
| 117 | /// (X=1,2,4,8) are accessed through pointers obtained via the |
| 118 | /// __msan_metadata_ptr_for_load_X(ptr) |
| 119 | /// __msan_metadata_ptr_for_store_X(ptr) |
| 120 | /// functions. The corresponding functions check that the X-byte accesses |
| 121 | /// are possible and returns the pointers to shadow and origin memory. |
| 122 | /// Arbitrary sized accesses are handled with: |
| 123 | /// __msan_metadata_ptr_for_load_n(ptr, size) |
| 124 | /// __msan_metadata_ptr_for_store_n(ptr, size); |
| 125 | /// Note that the sanitizer code has to deal with how shadow/origin pairs |
| 126 | /// returned by the these functions are represented in different ABIs. In |
| 127 | /// the X86_64 ABI they are returned in RDX:RAX, in PowerPC64 they are |
| 128 | /// returned in r3 and r4, and in the SystemZ ABI they are written to memory |
| 129 | /// pointed to by a hidden parameter. |
| 130 | /// - TLS variables are stored in a single per-task struct. A call to a |
| 131 | /// function __msan_get_context_state() returning a pointer to that struct |
| 132 | /// is inserted into every instrumented function before the entry block; |
| 133 | /// - __msan_warning() takes a 32-bit origin parameter; |
| 134 | /// - local variables are poisoned with __msan_poison_alloca() upon function |
| 135 | /// entry and unpoisoned with __msan_unpoison_alloca() before leaving the |
| 136 | /// function; |
| 137 | /// - the pass doesn't declare any global variables or add global constructors |
| 138 | /// to the translation unit. |
| 139 | /// |
| 140 | /// Also, KMSAN currently ignores uninitialized memory passed into inline asm |
| 141 | /// calls, making sure we're on the safe side wrt. possible false positives. |
| 142 | /// |
| 143 | /// KernelMemorySanitizer only supports X86_64, SystemZ and PowerPC64 at the |
| 144 | /// moment. |
| 145 | /// |
| 146 | // |
| 147 | // FIXME: This sanitizer does not yet handle scalable vectors |
| 148 | // |
| 149 | //===----------------------------------------------------------------------===// |
| 150 | |
| 151 | #include "llvm/Transforms/Instrumentation/MemorySanitizer.h" |
| 152 | #include "llvm/ADT/APInt.h" |
| 153 | #include "llvm/ADT/ArrayRef.h" |
| 154 | #include "llvm/ADT/DenseMap.h" |
| 155 | #include "llvm/ADT/DepthFirstIterator.h" |
| 156 | #include "llvm/ADT/SetVector.h" |
| 157 | #include "llvm/ADT/SmallPtrSet.h" |
| 158 | #include "llvm/ADT/SmallVector.h" |
| 159 | #include "llvm/ADT/StringExtras.h" |
| 160 | #include "llvm/ADT/StringRef.h" |
| 161 | #include "llvm/Analysis/GlobalsModRef.h" |
| 162 | #include "llvm/Analysis/TargetLibraryInfo.h" |
| 163 | #include "llvm/Analysis/ValueTracking.h" |
| 164 | #include "llvm/IR/Argument.h" |
| 165 | #include "llvm/IR/AttributeMask.h" |
| 166 | #include "llvm/IR/Attributes.h" |
| 167 | #include "llvm/IR/BasicBlock.h" |
| 168 | #include "llvm/IR/CallingConv.h" |
| 169 | #include "llvm/IR/Constant.h" |
| 170 | #include "llvm/IR/Constants.h" |
| 171 | #include "llvm/IR/DataLayout.h" |
| 172 | #include "llvm/IR/DerivedTypes.h" |
| 173 | #include "llvm/IR/Function.h" |
| 174 | #include "llvm/IR/GlobalValue.h" |
| 175 | #include "llvm/IR/GlobalVariable.h" |
| 176 | #include "llvm/IR/IRBuilder.h" |
| 177 | #include "llvm/IR/InlineAsm.h" |
| 178 | #include "llvm/IR/InstVisitor.h" |
| 179 | #include "llvm/IR/InstrTypes.h" |
| 180 | #include "llvm/IR/Instruction.h" |
| 181 | #include "llvm/IR/Instructions.h" |
| 182 | #include "llvm/IR/IntrinsicInst.h" |
| 183 | #include "llvm/IR/Intrinsics.h" |
| 184 | #include "llvm/IR/IntrinsicsAArch64.h" |
| 185 | #include "llvm/IR/IntrinsicsX86.h" |
| 186 | #include "llvm/IR/MDBuilder.h" |
| 187 | #include "llvm/IR/Module.h" |
| 188 | #include "llvm/IR/Type.h" |
| 189 | #include "llvm/IR/Value.h" |
| 190 | #include "llvm/IR/ValueMap.h" |
| 191 | #include "llvm/Support/Alignment.h" |
| 192 | #include "llvm/Support/AtomicOrdering.h" |
| 193 | #include "llvm/Support/Casting.h" |
| 194 | #include "llvm/Support/CommandLine.h" |
| 195 | #include "llvm/Support/Debug.h" |
| 196 | #include "llvm/Support/DebugCounter.h" |
| 197 | #include "llvm/Support/ErrorHandling.h" |
| 198 | #include "llvm/Support/MathExtras.h" |
| 199 | #include "llvm/Support/raw_ostream.h" |
| 200 | #include "llvm/TargetParser/Triple.h" |
| 201 | #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| 202 | #include "llvm/Transforms/Utils/Instrumentation.h" |
| 203 | #include "llvm/Transforms/Utils/Local.h" |
| 204 | #include "llvm/Transforms/Utils/ModuleUtils.h" |
| 205 | #include <algorithm> |
| 206 | #include <cassert> |
| 207 | #include <cstddef> |
| 208 | #include <cstdint> |
| 209 | #include <memory> |
| 210 | #include <numeric> |
| 211 | #include <string> |
| 212 | #include <tuple> |
| 213 | |
| 214 | using namespace llvm; |
| 215 | |
| 216 | #define DEBUG_TYPE "msan" |
| 217 | |
| 218 | DEBUG_COUNTER(DebugInsertCheck, "msan-insert-check" , |
| 219 | "Controls which checks to insert" ); |
| 220 | |
| 221 | DEBUG_COUNTER(DebugInstrumentInstruction, "msan-instrument-instruction" , |
| 222 | "Controls which instruction to instrument" ); |
| 223 | |
| 224 | static const unsigned kOriginSize = 4; |
| 225 | static const Align kMinOriginAlignment = Align(4); |
| 226 | static const Align kShadowTLSAlignment = Align(8); |
| 227 | |
| 228 | // These constants must be kept in sync with the ones in msan.h. |
| 229 | // TODO: increase size to match SVE/SVE2/SME/SME2 limits |
| 230 | static const unsigned kParamTLSSize = 800; |
| 231 | static const unsigned kRetvalTLSSize = 800; |
| 232 | |
| 233 | // Accesses sizes are powers of two: 1, 2, 4, 8. |
| 234 | static const size_t kNumberOfAccessSizes = 4; |
| 235 | |
| 236 | /// Track origins of uninitialized values. |
| 237 | /// |
| 238 | /// Adds a section to MemorySanitizer report that points to the allocation |
| 239 | /// (stack or heap) the uninitialized bits came from originally. |
| 240 | static cl::opt<int> ClTrackOrigins( |
| 241 | "msan-track-origins" , |
| 242 | cl::desc("Track origins (allocation sites) of poisoned memory" ), cl::Hidden, |
| 243 | cl::init(Val: 0)); |
| 244 | |
| 245 | static cl::opt<bool> ClKeepGoing("msan-keep-going" , |
| 246 | cl::desc("keep going after reporting a UMR" ), |
| 247 | cl::Hidden, cl::init(Val: false)); |
| 248 | |
| 249 | static cl::opt<bool> |
| 250 | ClPoisonStack("msan-poison-stack" , |
| 251 | cl::desc("poison uninitialized stack variables" ), cl::Hidden, |
| 252 | cl::init(Val: true)); |
| 253 | |
| 254 | static cl::opt<bool> ClPoisonStackWithCall( |
| 255 | "msan-poison-stack-with-call" , |
| 256 | cl::desc("poison uninitialized stack variables with a call" ), cl::Hidden, |
| 257 | cl::init(Val: false)); |
| 258 | |
| 259 | static cl::opt<int> ClPoisonStackPattern( |
| 260 | "msan-poison-stack-pattern" , |
| 261 | cl::desc("poison uninitialized stack variables with the given pattern" ), |
| 262 | cl::Hidden, cl::init(Val: 0xff)); |
| 263 | |
| 264 | static cl::opt<bool> |
| 265 | ClPrintStackNames("msan-print-stack-names" , |
| 266 | cl::desc("Print name of local stack variable" ), |
| 267 | cl::Hidden, cl::init(Val: true)); |
| 268 | |
| 269 | static cl::opt<bool> |
| 270 | ClPoisonUndef("msan-poison-undef" , |
| 271 | cl::desc("Poison fully undef temporary values. " |
| 272 | "Partially undefined constant vectors " |
| 273 | "are unaffected by this flag (see " |
| 274 | "-msan-poison-undef-vectors)." ), |
| 275 | cl::Hidden, cl::init(Val: true)); |
| 276 | |
| 277 | static cl::opt<bool> ClPoisonUndefVectors( |
| 278 | "msan-poison-undef-vectors" , |
| 279 | cl::desc("Precisely poison partially undefined constant vectors. " |
| 280 | "If false (legacy behavior), the entire vector is " |
| 281 | "considered fully initialized, which may lead to false " |
| 282 | "negatives. Fully undefined constant vectors are " |
| 283 | "unaffected by this flag (see -msan-poison-undef)." ), |
| 284 | cl::Hidden, cl::init(Val: false)); |
| 285 | |
| 286 | static cl::opt<bool> ClPreciseDisjointOr( |
| 287 | "msan-precise-disjoint-or" , |
| 288 | cl::desc("Precisely poison disjoint OR. If false (legacy behavior), " |
| 289 | "disjointedness is ignored (i.e., 1|1 is initialized)." ), |
| 290 | cl::Hidden, cl::init(Val: false)); |
| 291 | |
| 292 | static cl::opt<bool> |
| 293 | ClHandleICmp("msan-handle-icmp" , |
| 294 | cl::desc("propagate shadow through ICmpEQ and ICmpNE" ), |
| 295 | cl::Hidden, cl::init(Val: true)); |
| 296 | |
| 297 | static cl::opt<bool> |
| 298 | ClHandleICmpExact("msan-handle-icmp-exact" , |
| 299 | cl::desc("exact handling of relational integer ICmp" ), |
| 300 | cl::Hidden, cl::init(Val: true)); |
| 301 | |
| 302 | static cl::opt<bool> ClHandleLifetimeIntrinsics( |
| 303 | "msan-handle-lifetime-intrinsics" , |
| 304 | cl::desc( |
| 305 | "when possible, poison scoped variables at the beginning of the scope " |
| 306 | "(slower, but more precise)" ), |
| 307 | cl::Hidden, cl::init(Val: true)); |
| 308 | |
| 309 | // When compiling the Linux kernel, we sometimes see false positives related to |
| 310 | // MSan being unable to understand that inline assembly calls may initialize |
| 311 | // local variables. |
| 312 | // This flag makes the compiler conservatively unpoison every memory location |
| 313 | // passed into an assembly call. Note that this may cause false positives. |
| 314 | // Because it's impossible to figure out the array sizes, we can only unpoison |
| 315 | // the first sizeof(type) bytes for each type* pointer. |
| 316 | static cl::opt<bool> ClHandleAsmConservative( |
| 317 | "msan-handle-asm-conservative" , |
| 318 | cl::desc("conservative handling of inline assembly" ), cl::Hidden, |
| 319 | cl::init(Val: true)); |
| 320 | |
| 321 | // This flag controls whether we check the shadow of the address |
| 322 | // operand of load or store. Such bugs are very rare, since load from |
| 323 | // a garbage address typically results in SEGV, but still happen |
| 324 | // (e.g. only lower bits of address are garbage, or the access happens |
| 325 | // early at program startup where malloc-ed memory is more likely to |
| 326 | // be zeroed. As of 2012-08-28 this flag adds 20% slowdown. |
| 327 | static cl::opt<bool> ClCheckAccessAddress( |
| 328 | "msan-check-access-address" , |
| 329 | cl::desc("report accesses through a pointer which has poisoned shadow" ), |
| 330 | cl::Hidden, cl::init(Val: true)); |
| 331 | |
| 332 | static cl::opt<bool> ClEagerChecks( |
| 333 | "msan-eager-checks" , |
| 334 | cl::desc("check arguments and return values at function call boundaries" ), |
| 335 | cl::Hidden, cl::init(Val: false)); |
| 336 | |
| 337 | static cl::opt<bool> ClDumpStrictInstructions( |
| 338 | "msan-dump-strict-instructions" , |
| 339 | cl::desc("print out instructions with default strict semantics i.e.," |
| 340 | "check that all the inputs are fully initialized, and mark " |
| 341 | "the output as fully initialized. These semantics are applied " |
| 342 | "to instructions that could not be handled explicitly nor " |
| 343 | "heuristically." ), |
| 344 | cl::Hidden, cl::init(Val: false)); |
| 345 | |
| 346 | // Currently, all the heuristically handled instructions are specifically |
| 347 | // IntrinsicInst. However, we use the broader "HeuristicInstructions" name |
| 348 | // to parallel 'msan-dump-strict-instructions', and to keep the door open to |
| 349 | // handling non-intrinsic instructions heuristically. |
| 350 | static cl::opt<bool> ClDumpHeuristicInstructions( |
| 351 | "msan-dump-heuristic-instructions" , |
| 352 | cl::desc("Prints 'unknown' instructions that were handled heuristically. " |
| 353 | "Use -msan-dump-strict-instructions to print instructions that " |
| 354 | "could not be handled explicitly nor heuristically." ), |
| 355 | cl::Hidden, cl::init(Val: false)); |
| 356 | |
| 357 | static cl::opt<int> ClInstrumentationWithCallThreshold( |
| 358 | "msan-instrumentation-with-call-threshold" , |
| 359 | cl::desc( |
| 360 | "If the function being instrumented requires more than " |
| 361 | "this number of checks and origin stores, use callbacks instead of " |
| 362 | "inline checks (-1 means never use callbacks)." ), |
| 363 | cl::Hidden, cl::init(Val: 3500)); |
| 364 | |
| 365 | static cl::opt<bool> |
| 366 | ClEnableKmsan("msan-kernel" , |
| 367 | cl::desc("Enable KernelMemorySanitizer instrumentation" ), |
| 368 | cl::Hidden, cl::init(Val: false)); |
| 369 | |
| 370 | static cl::opt<bool> |
| 371 | ClDisableChecks("msan-disable-checks" , |
| 372 | cl::desc("Apply no_sanitize to the whole file" ), cl::Hidden, |
| 373 | cl::init(Val: false)); |
| 374 | |
| 375 | static cl::opt<bool> |
| 376 | ClCheckConstantShadow("msan-check-constant-shadow" , |
| 377 | cl::desc("Insert checks for constant shadow values" ), |
| 378 | cl::Hidden, cl::init(Val: true)); |
| 379 | |
| 380 | // This is off by default because of a bug in gold: |
| 381 | // https://sourceware.org/bugzilla/show_bug.cgi?id=19002 |
| 382 | static cl::opt<bool> |
| 383 | ClWithComdat("msan-with-comdat" , |
| 384 | cl::desc("Place MSan constructors in comdat sections" ), |
| 385 | cl::Hidden, cl::init(Val: false)); |
| 386 | |
| 387 | // These options allow to specify custom memory map parameters |
| 388 | // See MemoryMapParams for details. |
| 389 | static cl::opt<uint64_t> ClAndMask("msan-and-mask" , |
| 390 | cl::desc("Define custom MSan AndMask" ), |
| 391 | cl::Hidden, cl::init(Val: 0)); |
| 392 | |
| 393 | static cl::opt<uint64_t> ClXorMask("msan-xor-mask" , |
| 394 | cl::desc("Define custom MSan XorMask" ), |
| 395 | cl::Hidden, cl::init(Val: 0)); |
| 396 | |
| 397 | static cl::opt<uint64_t> ClShadowBase("msan-shadow-base" , |
| 398 | cl::desc("Define custom MSan ShadowBase" ), |
| 399 | cl::Hidden, cl::init(Val: 0)); |
| 400 | |
| 401 | static cl::opt<uint64_t> ClOriginBase("msan-origin-base" , |
| 402 | cl::desc("Define custom MSan OriginBase" ), |
| 403 | cl::Hidden, cl::init(Val: 0)); |
| 404 | |
| 405 | static cl::opt<int> |
| 406 | ClDisambiguateWarning("msan-disambiguate-warning-threshold" , |
| 407 | cl::desc("Define threshold for number of checks per " |
| 408 | "debug location to force origin update." ), |
| 409 | cl::Hidden, cl::init(Val: 3)); |
| 410 | |
| 411 | const char kMsanModuleCtorName[] = "msan.module_ctor" ; |
| 412 | const char kMsanInitName[] = "__msan_init" ; |
| 413 | |
| 414 | namespace { |
| 415 | |
| 416 | // Memory map parameters used in application-to-shadow address calculation. |
| 417 | // Offset = (Addr & ~AndMask) ^ XorMask |
| 418 | // Shadow = ShadowBase + Offset |
| 419 | // Origin = OriginBase + Offset |
| 420 | struct MemoryMapParams { |
| 421 | uint64_t AndMask; |
| 422 | uint64_t XorMask; |
| 423 | uint64_t ShadowBase; |
| 424 | uint64_t OriginBase; |
| 425 | }; |
| 426 | |
| 427 | struct PlatformMemoryMapParams { |
| 428 | const MemoryMapParams *bits32; |
| 429 | const MemoryMapParams *bits64; |
| 430 | }; |
| 431 | |
| 432 | } // end anonymous namespace |
| 433 | |
| 434 | // i386 Linux |
| 435 | static const MemoryMapParams Linux_I386_MemoryMapParams = { |
| 436 | .AndMask: 0x000080000000, // AndMask |
| 437 | .XorMask: 0, // XorMask (not used) |
| 438 | .ShadowBase: 0, // ShadowBase (not used) |
| 439 | .OriginBase: 0x000040000000, // OriginBase |
| 440 | }; |
| 441 | |
| 442 | // x86_64 Linux |
| 443 | static const MemoryMapParams Linux_X86_64_MemoryMapParams = { |
| 444 | .AndMask: 0, // AndMask (not used) |
| 445 | .XorMask: 0x500000000000, // XorMask |
| 446 | .ShadowBase: 0, // ShadowBase (not used) |
| 447 | .OriginBase: 0x100000000000, // OriginBase |
| 448 | }; |
| 449 | |
| 450 | // mips32 Linux |
| 451 | // FIXME: Remove -msan-origin-base -msan-and-mask added by PR #109284 to tests |
| 452 | // after picking good constants |
| 453 | |
| 454 | // mips64 Linux |
| 455 | static const MemoryMapParams Linux_MIPS64_MemoryMapParams = { |
| 456 | .AndMask: 0, // AndMask (not used) |
| 457 | .XorMask: 0x008000000000, // XorMask |
| 458 | .ShadowBase: 0, // ShadowBase (not used) |
| 459 | .OriginBase: 0x002000000000, // OriginBase |
| 460 | }; |
| 461 | |
| 462 | // ppc32 Linux |
| 463 | // FIXME: Remove -msan-origin-base -msan-and-mask added by PR #109284 to tests |
| 464 | // after picking good constants |
| 465 | |
| 466 | // ppc64 Linux |
| 467 | static const MemoryMapParams Linux_PowerPC64_MemoryMapParams = { |
| 468 | .AndMask: 0xE00000000000, // AndMask |
| 469 | .XorMask: 0x100000000000, // XorMask |
| 470 | .ShadowBase: 0x080000000000, // ShadowBase |
| 471 | .OriginBase: 0x1C0000000000, // OriginBase |
| 472 | }; |
| 473 | |
| 474 | // s390x Linux |
| 475 | static const MemoryMapParams Linux_S390X_MemoryMapParams = { |
| 476 | .AndMask: 0xC00000000000, // AndMask |
| 477 | .XorMask: 0, // XorMask (not used) |
| 478 | .ShadowBase: 0x080000000000, // ShadowBase |
| 479 | .OriginBase: 0x1C0000000000, // OriginBase |
| 480 | }; |
| 481 | |
| 482 | // arm32 Linux |
| 483 | // FIXME: Remove -msan-origin-base -msan-and-mask added by PR #109284 to tests |
| 484 | // after picking good constants |
| 485 | |
| 486 | // aarch64 Linux |
| 487 | static const MemoryMapParams Linux_AArch64_MemoryMapParams = { |
| 488 | .AndMask: 0, // AndMask (not used) |
| 489 | .XorMask: 0x0B00000000000, // XorMask |
| 490 | .ShadowBase: 0, // ShadowBase (not used) |
| 491 | .OriginBase: 0x0200000000000, // OriginBase |
| 492 | }; |
| 493 | |
| 494 | // loongarch64 Linux |
| 495 | static const MemoryMapParams Linux_LoongArch64_MemoryMapParams = { |
| 496 | .AndMask: 0, // AndMask (not used) |
| 497 | .XorMask: 0x500000000000, // XorMask |
| 498 | .ShadowBase: 0, // ShadowBase (not used) |
| 499 | .OriginBase: 0x100000000000, // OriginBase |
| 500 | }; |
| 501 | |
| 502 | // riscv32 Linux |
| 503 | // FIXME: Remove -msan-origin-base -msan-and-mask added by PR #109284 to tests |
| 504 | // after picking good constants |
| 505 | |
| 506 | // aarch64 FreeBSD |
| 507 | static const MemoryMapParams FreeBSD_AArch64_MemoryMapParams = { |
| 508 | .AndMask: 0x1800000000000, // AndMask |
| 509 | .XorMask: 0x0400000000000, // XorMask |
| 510 | .ShadowBase: 0x0200000000000, // ShadowBase |
| 511 | .OriginBase: 0x0700000000000, // OriginBase |
| 512 | }; |
| 513 | |
| 514 | // i386 FreeBSD |
| 515 | static const MemoryMapParams FreeBSD_I386_MemoryMapParams = { |
| 516 | .AndMask: 0x000180000000, // AndMask |
| 517 | .XorMask: 0x000040000000, // XorMask |
| 518 | .ShadowBase: 0x000020000000, // ShadowBase |
| 519 | .OriginBase: 0x000700000000, // OriginBase |
| 520 | }; |
| 521 | |
| 522 | // x86_64 FreeBSD |
| 523 | static const MemoryMapParams FreeBSD_X86_64_MemoryMapParams = { |
| 524 | .AndMask: 0xc00000000000, // AndMask |
| 525 | .XorMask: 0x200000000000, // XorMask |
| 526 | .ShadowBase: 0x100000000000, // ShadowBase |
| 527 | .OriginBase: 0x380000000000, // OriginBase |
| 528 | }; |
| 529 | |
| 530 | // x86_64 NetBSD |
| 531 | static const MemoryMapParams NetBSD_X86_64_MemoryMapParams = { |
| 532 | .AndMask: 0, // AndMask |
| 533 | .XorMask: 0x500000000000, // XorMask |
| 534 | .ShadowBase: 0, // ShadowBase |
| 535 | .OriginBase: 0x100000000000, // OriginBase |
| 536 | }; |
| 537 | |
| 538 | static const PlatformMemoryMapParams Linux_X86_MemoryMapParams = { |
| 539 | .bits32: &Linux_I386_MemoryMapParams, |
| 540 | .bits64: &Linux_X86_64_MemoryMapParams, |
| 541 | }; |
| 542 | |
| 543 | static const PlatformMemoryMapParams Linux_MIPS_MemoryMapParams = { |
| 544 | .bits32: nullptr, |
| 545 | .bits64: &Linux_MIPS64_MemoryMapParams, |
| 546 | }; |
| 547 | |
| 548 | static const PlatformMemoryMapParams Linux_PowerPC_MemoryMapParams = { |
| 549 | .bits32: nullptr, |
| 550 | .bits64: &Linux_PowerPC64_MemoryMapParams, |
| 551 | }; |
| 552 | |
| 553 | static const PlatformMemoryMapParams Linux_S390_MemoryMapParams = { |
| 554 | .bits32: nullptr, |
| 555 | .bits64: &Linux_S390X_MemoryMapParams, |
| 556 | }; |
| 557 | |
| 558 | static const PlatformMemoryMapParams Linux_ARM_MemoryMapParams = { |
| 559 | .bits32: nullptr, |
| 560 | .bits64: &Linux_AArch64_MemoryMapParams, |
| 561 | }; |
| 562 | |
| 563 | static const PlatformMemoryMapParams Linux_LoongArch_MemoryMapParams = { |
| 564 | .bits32: nullptr, |
| 565 | .bits64: &Linux_LoongArch64_MemoryMapParams, |
| 566 | }; |
| 567 | |
| 568 | static const PlatformMemoryMapParams FreeBSD_ARM_MemoryMapParams = { |
| 569 | .bits32: nullptr, |
| 570 | .bits64: &FreeBSD_AArch64_MemoryMapParams, |
| 571 | }; |
| 572 | |
| 573 | static const PlatformMemoryMapParams FreeBSD_X86_MemoryMapParams = { |
| 574 | .bits32: &FreeBSD_I386_MemoryMapParams, |
| 575 | .bits64: &FreeBSD_X86_64_MemoryMapParams, |
| 576 | }; |
| 577 | |
| 578 | static const PlatformMemoryMapParams NetBSD_X86_MemoryMapParams = { |
| 579 | .bits32: nullptr, |
| 580 | .bits64: &NetBSD_X86_64_MemoryMapParams, |
| 581 | }; |
| 582 | |
| 583 | enum OddOrEvenLanes { kBothLanes, kEvenLanes, kOddLanes }; |
| 584 | |
| 585 | namespace { |
| 586 | |
| 587 | /// Instrument functions of a module to detect uninitialized reads. |
| 588 | /// |
| 589 | /// Instantiating MemorySanitizer inserts the msan runtime library API function |
| 590 | /// declarations into the module if they don't exist already. Instantiating |
| 591 | /// ensures the __msan_init function is in the list of global constructors for |
| 592 | /// the module. |
| 593 | class MemorySanitizer { |
| 594 | public: |
| 595 | MemorySanitizer(Module &M, MemorySanitizerOptions Options) |
| 596 | : CompileKernel(Options.Kernel), TrackOrigins(Options.TrackOrigins), |
| 597 | Recover(Options.Recover), EagerChecks(Options.EagerChecks) { |
| 598 | initializeModule(M); |
| 599 | } |
| 600 | |
| 601 | // MSan cannot be moved or copied because of MapParams. |
| 602 | MemorySanitizer(MemorySanitizer &&) = delete; |
| 603 | MemorySanitizer &operator=(MemorySanitizer &&) = delete; |
| 604 | MemorySanitizer(const MemorySanitizer &) = delete; |
| 605 | MemorySanitizer &operator=(const MemorySanitizer &) = delete; |
| 606 | |
| 607 | bool sanitizeFunction(Function &F, TargetLibraryInfo &TLI); |
| 608 | |
| 609 | private: |
| 610 | friend struct MemorySanitizerVisitor; |
| 611 | friend struct VarArgHelperBase; |
| 612 | friend struct VarArgAMD64Helper; |
| 613 | friend struct VarArgAArch64Helper; |
| 614 | friend struct VarArgPowerPC64Helper; |
| 615 | friend struct VarArgPowerPC32Helper; |
| 616 | friend struct VarArgSystemZHelper; |
| 617 | friend struct VarArgI386Helper; |
| 618 | friend struct VarArgGenericHelper; |
| 619 | |
| 620 | void initializeModule(Module &M); |
| 621 | void initializeCallbacks(Module &M, const TargetLibraryInfo &TLI); |
| 622 | void createKernelApi(Module &M, const TargetLibraryInfo &TLI); |
| 623 | void createUserspaceApi(Module &M, const TargetLibraryInfo &TLI); |
| 624 | |
| 625 | template <typename... ArgsTy> |
| 626 | FunctionCallee getOrInsertMsanMetadataFunction(Module &M, StringRef Name, |
| 627 | ArgsTy... Args); |
| 628 | |
| 629 | /// True if we're compiling the Linux kernel. |
| 630 | bool CompileKernel; |
| 631 | /// Track origins (allocation points) of uninitialized values. |
| 632 | int TrackOrigins; |
| 633 | bool Recover; |
| 634 | bool EagerChecks; |
| 635 | |
| 636 | Triple TargetTriple; |
| 637 | LLVMContext *C; |
| 638 | Type *IntptrTy; ///< Integer type with the size of a ptr in default AS. |
| 639 | Type *OriginTy; |
| 640 | PointerType *PtrTy; ///< Integer type with the size of a ptr in default AS. |
| 641 | |
| 642 | // XxxTLS variables represent the per-thread state in MSan and per-task state |
| 643 | // in KMSAN. |
| 644 | // For the userspace these point to thread-local globals. In the kernel land |
| 645 | // they point to the members of a per-task struct obtained via a call to |
| 646 | // __msan_get_context_state(). |
| 647 | |
| 648 | /// Thread-local shadow storage for function parameters. |
| 649 | Value *ParamTLS; |
| 650 | |
| 651 | /// Thread-local origin storage for function parameters. |
| 652 | Value *ParamOriginTLS; |
| 653 | |
| 654 | /// Thread-local shadow storage for function return value. |
| 655 | Value *RetvalTLS; |
| 656 | |
| 657 | /// Thread-local origin storage for function return value. |
| 658 | Value *RetvalOriginTLS; |
| 659 | |
| 660 | /// Thread-local shadow storage for in-register va_arg function. |
| 661 | Value *VAArgTLS; |
| 662 | |
| 663 | /// Thread-local shadow storage for in-register va_arg function. |
| 664 | Value *VAArgOriginTLS; |
| 665 | |
| 666 | /// Thread-local shadow storage for va_arg overflow area. |
| 667 | Value *VAArgOverflowSizeTLS; |
| 668 | |
| 669 | /// Are the instrumentation callbacks set up? |
| 670 | bool CallbacksInitialized = false; |
| 671 | |
| 672 | /// The run-time callback to print a warning. |
| 673 | FunctionCallee WarningFn; |
| 674 | |
| 675 | // These arrays are indexed by log2(AccessSize). |
| 676 | FunctionCallee MaybeWarningFn[kNumberOfAccessSizes]; |
| 677 | FunctionCallee MaybeWarningVarSizeFn; |
| 678 | FunctionCallee MaybeStoreOriginFn[kNumberOfAccessSizes]; |
| 679 | |
| 680 | /// Run-time helper that generates a new origin value for a stack |
| 681 | /// allocation. |
| 682 | FunctionCallee MsanSetAllocaOriginWithDescriptionFn; |
| 683 | // No description version |
| 684 | FunctionCallee MsanSetAllocaOriginNoDescriptionFn; |
| 685 | |
| 686 | /// Run-time helper that poisons stack on function entry. |
| 687 | FunctionCallee MsanPoisonStackFn; |
| 688 | |
| 689 | /// Run-time helper that records a store (or any event) of an |
| 690 | /// uninitialized value and returns an updated origin id encoding this info. |
| 691 | FunctionCallee MsanChainOriginFn; |
| 692 | |
| 693 | /// Run-time helper that paints an origin over a region. |
| 694 | FunctionCallee MsanSetOriginFn; |
| 695 | |
| 696 | /// MSan runtime replacements for memmove, memcpy and memset. |
| 697 | FunctionCallee MemmoveFn, MemcpyFn, MemsetFn; |
| 698 | |
| 699 | /// KMSAN callback for task-local function argument shadow. |
| 700 | StructType *MsanContextStateTy; |
| 701 | FunctionCallee MsanGetContextStateFn; |
| 702 | |
| 703 | /// Functions for poisoning/unpoisoning local variables |
| 704 | FunctionCallee MsanPoisonAllocaFn, MsanUnpoisonAllocaFn; |
| 705 | |
| 706 | /// Pair of shadow/origin pointers. |
| 707 | Type *MsanMetadata; |
| 708 | |
| 709 | /// Each of the MsanMetadataPtrXxx functions returns a MsanMetadata. |
| 710 | FunctionCallee MsanMetadataPtrForLoadN, MsanMetadataPtrForStoreN; |
| 711 | FunctionCallee MsanMetadataPtrForLoad_1_8[4]; |
| 712 | FunctionCallee MsanMetadataPtrForStore_1_8[4]; |
| 713 | FunctionCallee MsanInstrumentAsmStoreFn; |
| 714 | |
| 715 | /// Storage for return values of the MsanMetadataPtrXxx functions. |
| 716 | Value *MsanMetadataAlloca; |
| 717 | |
| 718 | /// Helper to choose between different MsanMetadataPtrXxx(). |
| 719 | FunctionCallee getKmsanShadowOriginAccessFn(bool isStore, int size); |
| 720 | |
| 721 | /// Memory map parameters used in application-to-shadow calculation. |
| 722 | const MemoryMapParams *MapParams; |
| 723 | |
| 724 | /// Custom memory map parameters used when -msan-shadow-base or |
| 725 | // -msan-origin-base is provided. |
| 726 | MemoryMapParams CustomMapParams; |
| 727 | |
| 728 | MDNode *ColdCallWeights; |
| 729 | |
| 730 | /// Branch weights for origin store. |
| 731 | MDNode *OriginStoreWeights; |
| 732 | }; |
| 733 | |
| 734 | void insertModuleCtor(Module &M) { |
| 735 | getOrCreateSanitizerCtorAndInitFunctions( |
| 736 | M, CtorName: kMsanModuleCtorName, InitName: kMsanInitName, |
| 737 | /*InitArgTypes=*/{}, |
| 738 | /*InitArgs=*/{}, |
| 739 | // This callback is invoked when the functions are created the first |
| 740 | // time. Hook them into the global ctors list in that case: |
| 741 | FunctionsCreatedCallback: [&](Function *Ctor, FunctionCallee) { |
| 742 | if (!ClWithComdat) { |
| 743 | appendToGlobalCtors(M, F: Ctor, Priority: 0); |
| 744 | return; |
| 745 | } |
| 746 | Comdat *MsanCtorComdat = M.getOrInsertComdat(Name: kMsanModuleCtorName); |
| 747 | Ctor->setComdat(MsanCtorComdat); |
| 748 | appendToGlobalCtors(M, F: Ctor, Priority: 0, Data: Ctor); |
| 749 | }); |
| 750 | } |
| 751 | |
| 752 | template <class T> T getOptOrDefault(const cl::opt<T> &Opt, T Default) { |
| 753 | return (Opt.getNumOccurrences() > 0) ? Opt : Default; |
| 754 | } |
| 755 | |
| 756 | } // end anonymous namespace |
| 757 | |
| 758 | MemorySanitizerOptions::MemorySanitizerOptions(int TO, bool R, bool K, |
| 759 | bool EagerChecks) |
| 760 | : Kernel(getOptOrDefault(Opt: ClEnableKmsan, Default: K)), |
| 761 | TrackOrigins(getOptOrDefault(Opt: ClTrackOrigins, Default: Kernel ? 2 : TO)), |
| 762 | Recover(getOptOrDefault(Opt: ClKeepGoing, Default: Kernel || R)), |
| 763 | EagerChecks(getOptOrDefault(Opt: ClEagerChecks, Default: EagerChecks)) {} |
| 764 | |
| 765 | PreservedAnalyses MemorySanitizerPass::run(Module &M, |
| 766 | ModuleAnalysisManager &AM) { |
| 767 | // Return early if nosanitize_memory module flag is present for the module. |
| 768 | if (checkIfAlreadyInstrumented(M, Flag: "nosanitize_memory" )) |
| 769 | return PreservedAnalyses::all(); |
| 770 | bool Modified = false; |
| 771 | if (!Options.Kernel) { |
| 772 | insertModuleCtor(M); |
| 773 | Modified = true; |
| 774 | } |
| 775 | |
| 776 | auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(IR&: M).getManager(); |
| 777 | for (Function &F : M) { |
| 778 | if (F.empty()) |
| 779 | continue; |
| 780 | MemorySanitizer Msan(*F.getParent(), Options); |
| 781 | Modified |= |
| 782 | Msan.sanitizeFunction(F, TLI&: FAM.getResult<TargetLibraryAnalysis>(IR&: F)); |
| 783 | } |
| 784 | |
| 785 | if (!Modified) |
| 786 | return PreservedAnalyses::all(); |
| 787 | |
| 788 | PreservedAnalyses PA = PreservedAnalyses::none(); |
| 789 | // GlobalsAA is considered stateless and does not get invalidated unless |
| 790 | // explicitly invalidated; PreservedAnalyses::none() is not enough. Sanitizers |
| 791 | // make changes that require GlobalsAA to be invalidated. |
| 792 | PA.abandon<GlobalsAA>(); |
| 793 | return PA; |
| 794 | } |
| 795 | |
| 796 | void MemorySanitizerPass::printPipeline( |
| 797 | raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { |
| 798 | static_cast<PassInfoMixin<MemorySanitizerPass> *>(this)->printPipeline( |
| 799 | OS, MapClassName2PassName); |
| 800 | OS << '<'; |
| 801 | if (Options.Recover) |
| 802 | OS << "recover;" ; |
| 803 | if (Options.Kernel) |
| 804 | OS << "kernel;" ; |
| 805 | if (Options.EagerChecks) |
| 806 | OS << "eager-checks;" ; |
| 807 | OS << "track-origins=" << Options.TrackOrigins; |
| 808 | OS << '>'; |
| 809 | } |
| 810 | |
| 811 | /// Create a non-const global initialized with the given string. |
| 812 | /// |
| 813 | /// Creates a writable global for Str so that we can pass it to the |
| 814 | /// run-time lib. Runtime uses first 4 bytes of the string to store the |
| 815 | /// frame ID, so the string needs to be mutable. |
| 816 | static GlobalVariable *createPrivateConstGlobalForString(Module &M, |
| 817 | StringRef Str) { |
| 818 | Constant *StrConst = ConstantDataArray::getString(Context&: M.getContext(), Initializer: Str); |
| 819 | return new GlobalVariable(M, StrConst->getType(), /*isConstant=*/true, |
| 820 | GlobalValue::PrivateLinkage, StrConst, "" ); |
| 821 | } |
| 822 | |
| 823 | template <typename... ArgsTy> |
| 824 | FunctionCallee |
| 825 | MemorySanitizer::getOrInsertMsanMetadataFunction(Module &M, StringRef Name, |
| 826 | ArgsTy... Args) { |
| 827 | if (TargetTriple.getArch() == Triple::systemz) { |
| 828 | // SystemZ ABI: shadow/origin pair is returned via a hidden parameter. |
| 829 | return M.getOrInsertFunction(Name, Type::getVoidTy(C&: *C), PtrTy, |
| 830 | std::forward<ArgsTy>(Args)...); |
| 831 | } |
| 832 | |
| 833 | return M.getOrInsertFunction(Name, MsanMetadata, |
| 834 | std::forward<ArgsTy>(Args)...); |
| 835 | } |
| 836 | |
| 837 | /// Create KMSAN API callbacks. |
| 838 | void MemorySanitizer::createKernelApi(Module &M, const TargetLibraryInfo &TLI) { |
| 839 | IRBuilder<> IRB(*C); |
| 840 | |
| 841 | // These will be initialized in insertKmsanPrologue(). |
| 842 | RetvalTLS = nullptr; |
| 843 | RetvalOriginTLS = nullptr; |
| 844 | ParamTLS = nullptr; |
| 845 | ParamOriginTLS = nullptr; |
| 846 | VAArgTLS = nullptr; |
| 847 | VAArgOriginTLS = nullptr; |
| 848 | VAArgOverflowSizeTLS = nullptr; |
| 849 | |
| 850 | WarningFn = M.getOrInsertFunction(Name: "__msan_warning" , |
| 851 | AttributeList: TLI.getAttrList(C, ArgNos: {0}, /*Signed=*/false), |
| 852 | RetTy: IRB.getVoidTy(), Args: IRB.getInt32Ty()); |
| 853 | |
| 854 | // Requests the per-task context state (kmsan_context_state*) from the |
| 855 | // runtime library. |
| 856 | MsanContextStateTy = StructType::get( |
| 857 | elt1: ArrayType::get(ElementType: IRB.getInt64Ty(), NumElements: kParamTLSSize / 8), |
| 858 | elts: ArrayType::get(ElementType: IRB.getInt64Ty(), NumElements: kRetvalTLSSize / 8), |
| 859 | elts: ArrayType::get(ElementType: IRB.getInt64Ty(), NumElements: kParamTLSSize / 8), |
| 860 | elts: ArrayType::get(ElementType: IRB.getInt64Ty(), NumElements: kParamTLSSize / 8), /* va_arg_origin */ |
| 861 | elts: IRB.getInt64Ty(), elts: ArrayType::get(ElementType: OriginTy, NumElements: kParamTLSSize / 4), elts: OriginTy, |
| 862 | elts: OriginTy); |
| 863 | MsanGetContextStateFn = |
| 864 | M.getOrInsertFunction(Name: "__msan_get_context_state" , RetTy: PtrTy); |
| 865 | |
| 866 | MsanMetadata = StructType::get(elt1: PtrTy, elts: PtrTy); |
| 867 | |
| 868 | for (int ind = 0, size = 1; ind < 4; ind++, size <<= 1) { |
| 869 | std::string name_load = |
| 870 | "__msan_metadata_ptr_for_load_" + std::to_string(val: size); |
| 871 | std::string name_store = |
| 872 | "__msan_metadata_ptr_for_store_" + std::to_string(val: size); |
| 873 | MsanMetadataPtrForLoad_1_8[ind] = |
| 874 | getOrInsertMsanMetadataFunction(M, Name: name_load, Args: PtrTy); |
| 875 | MsanMetadataPtrForStore_1_8[ind] = |
| 876 | getOrInsertMsanMetadataFunction(M, Name: name_store, Args: PtrTy); |
| 877 | } |
| 878 | |
| 879 | MsanMetadataPtrForLoadN = getOrInsertMsanMetadataFunction( |
| 880 | M, Name: "__msan_metadata_ptr_for_load_n" , Args: PtrTy, Args: IntptrTy); |
| 881 | MsanMetadataPtrForStoreN = getOrInsertMsanMetadataFunction( |
| 882 | M, Name: "__msan_metadata_ptr_for_store_n" , Args: PtrTy, Args: IntptrTy); |
| 883 | |
| 884 | // Functions for poisoning and unpoisoning memory. |
| 885 | MsanPoisonAllocaFn = M.getOrInsertFunction( |
| 886 | Name: "__msan_poison_alloca" , RetTy: IRB.getVoidTy(), Args: PtrTy, Args: IntptrTy, Args: PtrTy); |
| 887 | MsanUnpoisonAllocaFn = M.getOrInsertFunction( |
| 888 | Name: "__msan_unpoison_alloca" , RetTy: IRB.getVoidTy(), Args: PtrTy, Args: IntptrTy); |
| 889 | } |
| 890 | |
| 891 | static Constant *getOrInsertGlobal(Module &M, StringRef Name, Type *Ty) { |
| 892 | return M.getOrInsertGlobal(Name, Ty, CreateGlobalCallback: [&] { |
| 893 | return new GlobalVariable(M, Ty, false, GlobalVariable::ExternalLinkage, |
| 894 | nullptr, Name, nullptr, |
| 895 | GlobalVariable::InitialExecTLSModel); |
| 896 | }); |
| 897 | } |
| 898 | |
| 899 | /// Insert declarations for userspace-specific functions and globals. |
| 900 | void MemorySanitizer::createUserspaceApi(Module &M, |
| 901 | const TargetLibraryInfo &TLI) { |
| 902 | IRBuilder<> IRB(*C); |
| 903 | |
| 904 | // Create the callback. |
| 905 | // FIXME: this function should have "Cold" calling conv, |
| 906 | // which is not yet implemented. |
| 907 | if (TrackOrigins) { |
| 908 | StringRef WarningFnName = Recover ? "__msan_warning_with_origin" |
| 909 | : "__msan_warning_with_origin_noreturn" ; |
| 910 | WarningFn = M.getOrInsertFunction(Name: WarningFnName, |
| 911 | AttributeList: TLI.getAttrList(C, ArgNos: {0}, /*Signed=*/false), |
| 912 | RetTy: IRB.getVoidTy(), Args: IRB.getInt32Ty()); |
| 913 | } else { |
| 914 | StringRef WarningFnName = |
| 915 | Recover ? "__msan_warning" : "__msan_warning_noreturn" ; |
| 916 | WarningFn = M.getOrInsertFunction(Name: WarningFnName, RetTy: IRB.getVoidTy()); |
| 917 | } |
| 918 | |
| 919 | // Create the global TLS variables. |
| 920 | RetvalTLS = |
| 921 | getOrInsertGlobal(M, Name: "__msan_retval_tls" , |
| 922 | Ty: ArrayType::get(ElementType: IRB.getInt64Ty(), NumElements: kRetvalTLSSize / 8)); |
| 923 | |
| 924 | RetvalOriginTLS = getOrInsertGlobal(M, Name: "__msan_retval_origin_tls" , Ty: OriginTy); |
| 925 | |
| 926 | ParamTLS = |
| 927 | getOrInsertGlobal(M, Name: "__msan_param_tls" , |
| 928 | Ty: ArrayType::get(ElementType: IRB.getInt64Ty(), NumElements: kParamTLSSize / 8)); |
| 929 | |
| 930 | ParamOriginTLS = |
| 931 | getOrInsertGlobal(M, Name: "__msan_param_origin_tls" , |
| 932 | Ty: ArrayType::get(ElementType: OriginTy, NumElements: kParamTLSSize / 4)); |
| 933 | |
| 934 | VAArgTLS = |
| 935 | getOrInsertGlobal(M, Name: "__msan_va_arg_tls" , |
| 936 | Ty: ArrayType::get(ElementType: IRB.getInt64Ty(), NumElements: kParamTLSSize / 8)); |
| 937 | |
| 938 | VAArgOriginTLS = |
| 939 | getOrInsertGlobal(M, Name: "__msan_va_arg_origin_tls" , |
| 940 | Ty: ArrayType::get(ElementType: OriginTy, NumElements: kParamTLSSize / 4)); |
| 941 | |
| 942 | VAArgOverflowSizeTLS = getOrInsertGlobal(M, Name: "__msan_va_arg_overflow_size_tls" , |
| 943 | Ty: IRB.getIntPtrTy(DL: M.getDataLayout())); |
| 944 | |
| 945 | for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes; |
| 946 | AccessSizeIndex++) { |
| 947 | unsigned AccessSize = 1 << AccessSizeIndex; |
| 948 | std::string FunctionName = "__msan_maybe_warning_" + itostr(X: AccessSize); |
| 949 | MaybeWarningFn[AccessSizeIndex] = M.getOrInsertFunction( |
| 950 | Name: FunctionName, AttributeList: TLI.getAttrList(C, ArgNos: {0, 1}, /*Signed=*/false), |
| 951 | RetTy: IRB.getVoidTy(), Args: IRB.getIntNTy(N: AccessSize * 8), Args: IRB.getInt32Ty()); |
| 952 | MaybeWarningVarSizeFn = M.getOrInsertFunction( |
| 953 | Name: "__msan_maybe_warning_N" , AttributeList: TLI.getAttrList(C, ArgNos: {}, /*Signed=*/false), |
| 954 | RetTy: IRB.getVoidTy(), Args: PtrTy, Args: IRB.getInt64Ty(), Args: IRB.getInt32Ty()); |
| 955 | FunctionName = "__msan_maybe_store_origin_" + itostr(X: AccessSize); |
| 956 | MaybeStoreOriginFn[AccessSizeIndex] = M.getOrInsertFunction( |
| 957 | Name: FunctionName, AttributeList: TLI.getAttrList(C, ArgNos: {0, 2}, /*Signed=*/false), |
| 958 | RetTy: IRB.getVoidTy(), Args: IRB.getIntNTy(N: AccessSize * 8), Args: PtrTy, |
| 959 | Args: IRB.getInt32Ty()); |
| 960 | } |
| 961 | |
| 962 | MsanSetAllocaOriginWithDescriptionFn = |
| 963 | M.getOrInsertFunction(Name: "__msan_set_alloca_origin_with_descr" , |
| 964 | RetTy: IRB.getVoidTy(), Args: PtrTy, Args: IntptrTy, Args: PtrTy, Args: PtrTy); |
| 965 | MsanSetAllocaOriginNoDescriptionFn = |
| 966 | M.getOrInsertFunction(Name: "__msan_set_alloca_origin_no_descr" , |
| 967 | RetTy: IRB.getVoidTy(), Args: PtrTy, Args: IntptrTy, Args: PtrTy); |
| 968 | MsanPoisonStackFn = M.getOrInsertFunction(Name: "__msan_poison_stack" , |
| 969 | RetTy: IRB.getVoidTy(), Args: PtrTy, Args: IntptrTy); |
| 970 | } |
| 971 | |
| 972 | /// Insert extern declaration of runtime-provided functions and globals. |
| 973 | void MemorySanitizer::initializeCallbacks(Module &M, |
| 974 | const TargetLibraryInfo &TLI) { |
| 975 | // Only do this once. |
| 976 | if (CallbacksInitialized) |
| 977 | return; |
| 978 | |
| 979 | IRBuilder<> IRB(*C); |
| 980 | // Initialize callbacks that are common for kernel and userspace |
| 981 | // instrumentation. |
| 982 | MsanChainOriginFn = M.getOrInsertFunction( |
| 983 | Name: "__msan_chain_origin" , |
| 984 | AttributeList: TLI.getAttrList(C, ArgNos: {0}, /*Signed=*/false, /*Ret=*/true), RetTy: IRB.getInt32Ty(), |
| 985 | Args: IRB.getInt32Ty()); |
| 986 | MsanSetOriginFn = M.getOrInsertFunction( |
| 987 | Name: "__msan_set_origin" , AttributeList: TLI.getAttrList(C, ArgNos: {2}, /*Signed=*/false), |
| 988 | RetTy: IRB.getVoidTy(), Args: PtrTy, Args: IntptrTy, Args: IRB.getInt32Ty()); |
| 989 | MemmoveFn = |
| 990 | M.getOrInsertFunction(Name: "__msan_memmove" , RetTy: PtrTy, Args: PtrTy, Args: PtrTy, Args: IntptrTy); |
| 991 | MemcpyFn = |
| 992 | M.getOrInsertFunction(Name: "__msan_memcpy" , RetTy: PtrTy, Args: PtrTy, Args: PtrTy, Args: IntptrTy); |
| 993 | MemsetFn = M.getOrInsertFunction(Name: "__msan_memset" , |
| 994 | AttributeList: TLI.getAttrList(C, ArgNos: {1}, /*Signed=*/true), |
| 995 | RetTy: PtrTy, Args: PtrTy, Args: IRB.getInt32Ty(), Args: IntptrTy); |
| 996 | |
| 997 | MsanInstrumentAsmStoreFn = M.getOrInsertFunction( |
| 998 | Name: "__msan_instrument_asm_store" , RetTy: IRB.getVoidTy(), Args: PtrTy, Args: IntptrTy); |
| 999 | |
| 1000 | if (CompileKernel) { |
| 1001 | createKernelApi(M, TLI); |
| 1002 | } else { |
| 1003 | createUserspaceApi(M, TLI); |
| 1004 | } |
| 1005 | CallbacksInitialized = true; |
| 1006 | } |
| 1007 | |
| 1008 | FunctionCallee MemorySanitizer::getKmsanShadowOriginAccessFn(bool isStore, |
| 1009 | int size) { |
| 1010 | FunctionCallee *Fns = |
| 1011 | isStore ? MsanMetadataPtrForStore_1_8 : MsanMetadataPtrForLoad_1_8; |
| 1012 | switch (size) { |
| 1013 | case 1: |
| 1014 | return Fns[0]; |
| 1015 | case 2: |
| 1016 | return Fns[1]; |
| 1017 | case 4: |
| 1018 | return Fns[2]; |
| 1019 | case 8: |
| 1020 | return Fns[3]; |
| 1021 | default: |
| 1022 | return nullptr; |
| 1023 | } |
| 1024 | } |
| 1025 | |
| 1026 | /// Module-level initialization. |
| 1027 | /// |
| 1028 | /// inserts a call to __msan_init to the module's constructor list. |
| 1029 | void MemorySanitizer::initializeModule(Module &M) { |
| 1030 | auto &DL = M.getDataLayout(); |
| 1031 | |
| 1032 | TargetTriple = M.getTargetTriple(); |
| 1033 | |
| 1034 | bool ShadowPassed = ClShadowBase.getNumOccurrences() > 0; |
| 1035 | bool OriginPassed = ClOriginBase.getNumOccurrences() > 0; |
| 1036 | // Check the overrides first |
| 1037 | if (ShadowPassed || OriginPassed) { |
| 1038 | CustomMapParams.AndMask = ClAndMask; |
| 1039 | CustomMapParams.XorMask = ClXorMask; |
| 1040 | CustomMapParams.ShadowBase = ClShadowBase; |
| 1041 | CustomMapParams.OriginBase = ClOriginBase; |
| 1042 | MapParams = &CustomMapParams; |
| 1043 | } else { |
| 1044 | switch (TargetTriple.getOS()) { |
| 1045 | case Triple::FreeBSD: |
| 1046 | switch (TargetTriple.getArch()) { |
| 1047 | case Triple::aarch64: |
| 1048 | MapParams = FreeBSD_ARM_MemoryMapParams.bits64; |
| 1049 | break; |
| 1050 | case Triple::x86_64: |
| 1051 | MapParams = FreeBSD_X86_MemoryMapParams.bits64; |
| 1052 | break; |
| 1053 | case Triple::x86: |
| 1054 | MapParams = FreeBSD_X86_MemoryMapParams.bits32; |
| 1055 | break; |
| 1056 | default: |
| 1057 | report_fatal_error(reason: "unsupported architecture" ); |
| 1058 | } |
| 1059 | break; |
| 1060 | case Triple::NetBSD: |
| 1061 | switch (TargetTriple.getArch()) { |
| 1062 | case Triple::x86_64: |
| 1063 | MapParams = NetBSD_X86_MemoryMapParams.bits64; |
| 1064 | break; |
| 1065 | default: |
| 1066 | report_fatal_error(reason: "unsupported architecture" ); |
| 1067 | } |
| 1068 | break; |
| 1069 | case Triple::Linux: |
| 1070 | switch (TargetTriple.getArch()) { |
| 1071 | case Triple::x86_64: |
| 1072 | MapParams = Linux_X86_MemoryMapParams.bits64; |
| 1073 | break; |
| 1074 | case Triple::x86: |
| 1075 | MapParams = Linux_X86_MemoryMapParams.bits32; |
| 1076 | break; |
| 1077 | case Triple::mips64: |
| 1078 | case Triple::mips64el: |
| 1079 | MapParams = Linux_MIPS_MemoryMapParams.bits64; |
| 1080 | break; |
| 1081 | case Triple::ppc64: |
| 1082 | case Triple::ppc64le: |
| 1083 | MapParams = Linux_PowerPC_MemoryMapParams.bits64; |
| 1084 | break; |
| 1085 | case Triple::systemz: |
| 1086 | MapParams = Linux_S390_MemoryMapParams.bits64; |
| 1087 | break; |
| 1088 | case Triple::aarch64: |
| 1089 | case Triple::aarch64_be: |
| 1090 | MapParams = Linux_ARM_MemoryMapParams.bits64; |
| 1091 | break; |
| 1092 | case Triple::loongarch64: |
| 1093 | MapParams = Linux_LoongArch_MemoryMapParams.bits64; |
| 1094 | break; |
| 1095 | default: |
| 1096 | report_fatal_error(reason: "unsupported architecture" ); |
| 1097 | } |
| 1098 | break; |
| 1099 | default: |
| 1100 | report_fatal_error(reason: "unsupported operating system" ); |
| 1101 | } |
| 1102 | } |
| 1103 | |
| 1104 | C = &(M.getContext()); |
| 1105 | IRBuilder<> IRB(*C); |
| 1106 | IntptrTy = IRB.getIntPtrTy(DL); |
| 1107 | OriginTy = IRB.getInt32Ty(); |
| 1108 | PtrTy = IRB.getPtrTy(); |
| 1109 | |
| 1110 | ColdCallWeights = MDBuilder(*C).createUnlikelyBranchWeights(); |
| 1111 | OriginStoreWeights = MDBuilder(*C).createUnlikelyBranchWeights(); |
| 1112 | |
| 1113 | if (!CompileKernel) { |
| 1114 | if (TrackOrigins) |
| 1115 | M.getOrInsertGlobal(Name: "__msan_track_origins" , Ty: IRB.getInt32Ty(), CreateGlobalCallback: [&] { |
| 1116 | return new GlobalVariable( |
| 1117 | M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage, |
| 1118 | IRB.getInt32(C: TrackOrigins), "__msan_track_origins" ); |
| 1119 | }); |
| 1120 | |
| 1121 | if (Recover) |
| 1122 | M.getOrInsertGlobal(Name: "__msan_keep_going" , Ty: IRB.getInt32Ty(), CreateGlobalCallback: [&] { |
| 1123 | return new GlobalVariable(M, IRB.getInt32Ty(), true, |
| 1124 | GlobalValue::WeakODRLinkage, |
| 1125 | IRB.getInt32(C: Recover), "__msan_keep_going" ); |
| 1126 | }); |
| 1127 | } |
| 1128 | } |
| 1129 | |
| 1130 | namespace { |
| 1131 | |
| 1132 | /// A helper class that handles instrumentation of VarArg |
| 1133 | /// functions on a particular platform. |
| 1134 | /// |
| 1135 | /// Implementations are expected to insert the instrumentation |
| 1136 | /// necessary to propagate argument shadow through VarArg function |
| 1137 | /// calls. Visit* methods are called during an InstVisitor pass over |
| 1138 | /// the function, and should avoid creating new basic blocks. A new |
| 1139 | /// instance of this class is created for each instrumented function. |
| 1140 | struct VarArgHelper { |
| 1141 | virtual ~VarArgHelper() = default; |
| 1142 | |
| 1143 | /// Visit a CallBase. |
| 1144 | virtual void visitCallBase(CallBase &CB, IRBuilder<> &IRB) = 0; |
| 1145 | |
| 1146 | /// Visit a va_start call. |
| 1147 | virtual void visitVAStartInst(VAStartInst &I) = 0; |
| 1148 | |
| 1149 | /// Visit a va_copy call. |
| 1150 | virtual void visitVACopyInst(VACopyInst &I) = 0; |
| 1151 | |
| 1152 | /// Finalize function instrumentation. |
| 1153 | /// |
| 1154 | /// This method is called after visiting all interesting (see above) |
| 1155 | /// instructions in a function. |
| 1156 | virtual void finalizeInstrumentation() = 0; |
| 1157 | }; |
| 1158 | |
| 1159 | struct MemorySanitizerVisitor; |
| 1160 | |
| 1161 | } // end anonymous namespace |
| 1162 | |
| 1163 | static VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan, |
| 1164 | MemorySanitizerVisitor &Visitor); |
| 1165 | |
| 1166 | static unsigned TypeSizeToSizeIndex(TypeSize TS) { |
| 1167 | if (TS.isScalable()) |
| 1168 | // Scalable types unconditionally take slowpaths. |
| 1169 | return kNumberOfAccessSizes; |
| 1170 | unsigned TypeSizeFixed = TS.getFixedValue(); |
| 1171 | if (TypeSizeFixed <= 8) |
| 1172 | return 0; |
| 1173 | return Log2_32_Ceil(Value: (TypeSizeFixed + 7) / 8); |
| 1174 | } |
| 1175 | |
| 1176 | namespace { |
| 1177 | |
| 1178 | /// Helper class to attach debug information of the given instruction onto new |
| 1179 | /// instructions inserted after. |
| 1180 | class NextNodeIRBuilder : public IRBuilder<> { |
| 1181 | public: |
| 1182 | explicit NextNodeIRBuilder(Instruction *IP) : IRBuilder<>(IP->getNextNode()) { |
| 1183 | SetCurrentDebugLocation(IP->getDebugLoc()); |
| 1184 | } |
| 1185 | }; |
| 1186 | |
| 1187 | /// This class does all the work for a given function. Store and Load |
| 1188 | /// instructions store and load corresponding shadow and origin |
| 1189 | /// values. Most instructions propagate shadow from arguments to their |
| 1190 | /// return values. Certain instructions (most importantly, BranchInst) |
| 1191 | /// test their argument shadow and print reports (with a runtime call) if it's |
| 1192 | /// non-zero. |
| 1193 | struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> { |
| 1194 | Function &F; |
| 1195 | MemorySanitizer &MS; |
| 1196 | SmallVector<PHINode *, 16> ShadowPHINodes, OriginPHINodes; |
| 1197 | ValueMap<Value *, Value *> ShadowMap, OriginMap; |
| 1198 | std::unique_ptr<VarArgHelper> VAHelper; |
| 1199 | const TargetLibraryInfo *TLI; |
| 1200 | Instruction *FnPrologueEnd; |
| 1201 | SmallVector<Instruction *, 16> Instructions; |
| 1202 | |
| 1203 | // The following flags disable parts of MSan instrumentation based on |
| 1204 | // exclusion list contents and command-line options. |
| 1205 | bool InsertChecks; |
| 1206 | bool PropagateShadow; |
| 1207 | bool PoisonStack; |
| 1208 | bool PoisonUndef; |
| 1209 | bool PoisonUndefVectors; |
| 1210 | |
| 1211 | struct ShadowOriginAndInsertPoint { |
| 1212 | Value *Shadow; |
| 1213 | Value *Origin; |
| 1214 | Instruction *OrigIns; |
| 1215 | |
| 1216 | ShadowOriginAndInsertPoint(Value *S, Value *O, Instruction *I) |
| 1217 | : Shadow(S), Origin(O), OrigIns(I) {} |
| 1218 | }; |
| 1219 | SmallVector<ShadowOriginAndInsertPoint, 16> InstrumentationList; |
| 1220 | DenseMap<const DILocation *, int> LazyWarningDebugLocationCount; |
| 1221 | SmallSetVector<AllocaInst *, 16> AllocaSet; |
| 1222 | SmallVector<std::pair<IntrinsicInst *, AllocaInst *>, 16> LifetimeStartList; |
| 1223 | SmallVector<StoreInst *, 16> StoreList; |
| 1224 | int64_t SplittableBlocksCount = 0; |
| 1225 | |
| 1226 | MemorySanitizerVisitor(Function &F, MemorySanitizer &MS, |
| 1227 | const TargetLibraryInfo &TLI) |
| 1228 | : F(F), MS(MS), VAHelper(CreateVarArgHelper(Func&: F, Msan&: MS, Visitor&: *this)), TLI(&TLI) { |
| 1229 | bool SanitizeFunction = |
| 1230 | F.hasFnAttribute(Kind: Attribute::SanitizeMemory) && !ClDisableChecks; |
| 1231 | InsertChecks = SanitizeFunction; |
| 1232 | PropagateShadow = SanitizeFunction; |
| 1233 | PoisonStack = SanitizeFunction && ClPoisonStack; |
| 1234 | PoisonUndef = SanitizeFunction && ClPoisonUndef; |
| 1235 | PoisonUndefVectors = SanitizeFunction && ClPoisonUndefVectors; |
| 1236 | |
| 1237 | // In the presence of unreachable blocks, we may see Phi nodes with |
| 1238 | // incoming nodes from such blocks. Since InstVisitor skips unreachable |
| 1239 | // blocks, such nodes will not have any shadow value associated with them. |
| 1240 | // It's easier to remove unreachable blocks than deal with missing shadow. |
| 1241 | removeUnreachableBlocks(F); |
| 1242 | |
| 1243 | MS.initializeCallbacks(M&: *F.getParent(), TLI); |
| 1244 | FnPrologueEnd = |
| 1245 | IRBuilder<>(&F.getEntryBlock(), F.getEntryBlock().getFirstNonPHIIt()) |
| 1246 | .CreateIntrinsic(ID: Intrinsic::donothing, Args: {}); |
| 1247 | |
| 1248 | if (MS.CompileKernel) { |
| 1249 | IRBuilder<> IRB(FnPrologueEnd); |
| 1250 | insertKmsanPrologue(IRB); |
| 1251 | } |
| 1252 | |
| 1253 | LLVM_DEBUG(if (!InsertChecks) dbgs() |
| 1254 | << "MemorySanitizer is not inserting checks into '" |
| 1255 | << F.getName() << "'\n" ); |
| 1256 | } |
| 1257 | |
| 1258 | bool instrumentWithCalls(Value *V) { |
| 1259 | // Constants likely will be eliminated by follow-up passes. |
| 1260 | if (isa<Constant>(Val: V)) |
| 1261 | return false; |
| 1262 | ++SplittableBlocksCount; |
| 1263 | return ClInstrumentationWithCallThreshold >= 0 && |
| 1264 | SplittableBlocksCount > ClInstrumentationWithCallThreshold; |
| 1265 | } |
| 1266 | |
| 1267 | bool isInPrologue(Instruction &I) { |
| 1268 | return I.getParent() == FnPrologueEnd->getParent() && |
| 1269 | (&I == FnPrologueEnd || I.comesBefore(Other: FnPrologueEnd)); |
| 1270 | } |
| 1271 | |
| 1272 | // Creates a new origin and records the stack trace. In general we can call |
| 1273 | // this function for any origin manipulation we like. However it will cost |
| 1274 | // runtime resources. So use this wisely only if it can provide additional |
| 1275 | // information helpful to a user. |
| 1276 | Value *updateOrigin(Value *V, IRBuilder<> &IRB) { |
| 1277 | if (MS.TrackOrigins <= 1) |
| 1278 | return V; |
| 1279 | return IRB.CreateCall(Callee: MS.MsanChainOriginFn, Args: V); |
| 1280 | } |
| 1281 | |
| 1282 | Value *originToIntptr(IRBuilder<> &IRB, Value *Origin) { |
| 1283 | const DataLayout &DL = F.getDataLayout(); |
| 1284 | unsigned IntptrSize = DL.getTypeStoreSize(Ty: MS.IntptrTy); |
| 1285 | if (IntptrSize == kOriginSize) |
| 1286 | return Origin; |
| 1287 | assert(IntptrSize == kOriginSize * 2); |
| 1288 | Origin = IRB.CreateIntCast(V: Origin, DestTy: MS.IntptrTy, /* isSigned */ false); |
| 1289 | return IRB.CreateOr(LHS: Origin, RHS: IRB.CreateShl(LHS: Origin, RHS: kOriginSize * 8)); |
| 1290 | } |
| 1291 | |
| 1292 | /// Fill memory range with the given origin value. |
| 1293 | void paintOrigin(IRBuilder<> &IRB, Value *Origin, Value *OriginPtr, |
| 1294 | TypeSize TS, Align Alignment) { |
| 1295 | const DataLayout &DL = F.getDataLayout(); |
| 1296 | const Align IntptrAlignment = DL.getABITypeAlign(Ty: MS.IntptrTy); |
| 1297 | unsigned IntptrSize = DL.getTypeStoreSize(Ty: MS.IntptrTy); |
| 1298 | assert(IntptrAlignment >= kMinOriginAlignment); |
| 1299 | assert(IntptrSize >= kOriginSize); |
| 1300 | |
| 1301 | // Note: The loop based formation works for fixed length vectors too, |
| 1302 | // however we prefer to unroll and specialize alignment below. |
| 1303 | if (TS.isScalable()) { |
| 1304 | Value *Size = IRB.CreateTypeSize(Ty: MS.IntptrTy, Size: TS); |
| 1305 | Value *RoundUp = |
| 1306 | IRB.CreateAdd(LHS: Size, RHS: ConstantInt::get(Ty: MS.IntptrTy, V: kOriginSize - 1)); |
| 1307 | Value *End = |
| 1308 | IRB.CreateUDiv(LHS: RoundUp, RHS: ConstantInt::get(Ty: MS.IntptrTy, V: kOriginSize)); |
| 1309 | auto [InsertPt, Index] = |
| 1310 | SplitBlockAndInsertSimpleForLoop(End, SplitBefore: IRB.GetInsertPoint()); |
| 1311 | IRB.SetInsertPoint(InsertPt); |
| 1312 | |
| 1313 | Value *GEP = IRB.CreateGEP(Ty: MS.OriginTy, Ptr: OriginPtr, IdxList: Index); |
| 1314 | IRB.CreateAlignedStore(Val: Origin, Ptr: GEP, Align: kMinOriginAlignment); |
| 1315 | return; |
| 1316 | } |
| 1317 | |
| 1318 | unsigned Size = TS.getFixedValue(); |
| 1319 | |
| 1320 | unsigned Ofs = 0; |
| 1321 | Align CurrentAlignment = Alignment; |
| 1322 | if (Alignment >= IntptrAlignment && IntptrSize > kOriginSize) { |
| 1323 | Value *IntptrOrigin = originToIntptr(IRB, Origin); |
| 1324 | Value *IntptrOriginPtr = IRB.CreatePointerCast(V: OriginPtr, DestTy: MS.PtrTy); |
| 1325 | for (unsigned i = 0; i < Size / IntptrSize; ++i) { |
| 1326 | Value *Ptr = i ? IRB.CreateConstGEP1_32(Ty: MS.IntptrTy, Ptr: IntptrOriginPtr, Idx0: i) |
| 1327 | : IntptrOriginPtr; |
| 1328 | IRB.CreateAlignedStore(Val: IntptrOrigin, Ptr, Align: CurrentAlignment); |
| 1329 | Ofs += IntptrSize / kOriginSize; |
| 1330 | CurrentAlignment = IntptrAlignment; |
| 1331 | } |
| 1332 | } |
| 1333 | |
| 1334 | for (unsigned i = Ofs; i < (Size + kOriginSize - 1) / kOriginSize; ++i) { |
| 1335 | Value *GEP = |
| 1336 | i ? IRB.CreateConstGEP1_32(Ty: MS.OriginTy, Ptr: OriginPtr, Idx0: i) : OriginPtr; |
| 1337 | IRB.CreateAlignedStore(Val: Origin, Ptr: GEP, Align: CurrentAlignment); |
| 1338 | CurrentAlignment = kMinOriginAlignment; |
| 1339 | } |
| 1340 | } |
| 1341 | |
| 1342 | void storeOrigin(IRBuilder<> &IRB, Value *Addr, Value *Shadow, Value *Origin, |
| 1343 | Value *OriginPtr, Align Alignment) { |
| 1344 | const DataLayout &DL = F.getDataLayout(); |
| 1345 | const Align OriginAlignment = std::max(a: kMinOriginAlignment, b: Alignment); |
| 1346 | TypeSize StoreSize = DL.getTypeStoreSize(Ty: Shadow->getType()); |
| 1347 | // ZExt cannot convert between vector and scalar |
| 1348 | Value *ConvertedShadow = convertShadowToScalar(V: Shadow, IRB); |
| 1349 | if (auto *ConstantShadow = dyn_cast<Constant>(Val: ConvertedShadow)) { |
| 1350 | if (!ClCheckConstantShadow || ConstantShadow->isZeroValue()) { |
| 1351 | // Origin is not needed: value is initialized or const shadow is |
| 1352 | // ignored. |
| 1353 | return; |
| 1354 | } |
| 1355 | if (llvm::isKnownNonZero(V: ConvertedShadow, Q: DL)) { |
| 1356 | // Copy origin as the value is definitely uninitialized. |
| 1357 | paintOrigin(IRB, Origin: updateOrigin(V: Origin, IRB), OriginPtr, TS: StoreSize, |
| 1358 | Alignment: OriginAlignment); |
| 1359 | return; |
| 1360 | } |
| 1361 | // Fallback to runtime check, which still can be optimized out later. |
| 1362 | } |
| 1363 | |
| 1364 | TypeSize TypeSizeInBits = DL.getTypeSizeInBits(Ty: ConvertedShadow->getType()); |
| 1365 | unsigned SizeIndex = TypeSizeToSizeIndex(TS: TypeSizeInBits); |
| 1366 | if (instrumentWithCalls(V: ConvertedShadow) && |
| 1367 | SizeIndex < kNumberOfAccessSizes && !MS.CompileKernel) { |
| 1368 | FunctionCallee Fn = MS.MaybeStoreOriginFn[SizeIndex]; |
| 1369 | Value *ConvertedShadow2 = |
| 1370 | IRB.CreateZExt(V: ConvertedShadow, DestTy: IRB.getIntNTy(N: 8 * (1 << SizeIndex))); |
| 1371 | CallBase *CB = IRB.CreateCall(Callee: Fn, Args: {ConvertedShadow2, Addr, Origin}); |
| 1372 | CB->addParamAttr(ArgNo: 0, Kind: Attribute::ZExt); |
| 1373 | CB->addParamAttr(ArgNo: 2, Kind: Attribute::ZExt); |
| 1374 | } else { |
| 1375 | Value *Cmp = convertToBool(V: ConvertedShadow, IRB, name: "_mscmp" ); |
| 1376 | Instruction *CheckTerm = SplitBlockAndInsertIfThen( |
| 1377 | Cond: Cmp, SplitBefore: &*IRB.GetInsertPoint(), Unreachable: false, BranchWeights: MS.OriginStoreWeights); |
| 1378 | IRBuilder<> IRBNew(CheckTerm); |
| 1379 | paintOrigin(IRB&: IRBNew, Origin: updateOrigin(V: Origin, IRB&: IRBNew), OriginPtr, TS: StoreSize, |
| 1380 | Alignment: OriginAlignment); |
| 1381 | } |
| 1382 | } |
| 1383 | |
| 1384 | void materializeStores() { |
| 1385 | for (StoreInst *SI : StoreList) { |
| 1386 | IRBuilder<> IRB(SI); |
| 1387 | Value *Val = SI->getValueOperand(); |
| 1388 | Value *Addr = SI->getPointerOperand(); |
| 1389 | Value *Shadow = SI->isAtomic() ? getCleanShadow(V: Val) : getShadow(V: Val); |
| 1390 | Value *ShadowPtr, *OriginPtr; |
| 1391 | Type *ShadowTy = Shadow->getType(); |
| 1392 | const Align Alignment = SI->getAlign(); |
| 1393 | const Align OriginAlignment = std::max(a: kMinOriginAlignment, b: Alignment); |
| 1394 | std::tie(args&: ShadowPtr, args&: OriginPtr) = |
| 1395 | getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ true); |
| 1396 | |
| 1397 | [[maybe_unused]] StoreInst *NewSI = |
| 1398 | IRB.CreateAlignedStore(Val: Shadow, Ptr: ShadowPtr, Align: Alignment); |
| 1399 | LLVM_DEBUG(dbgs() << " STORE: " << *NewSI << "\n" ); |
| 1400 | |
| 1401 | if (SI->isAtomic()) |
| 1402 | SI->setOrdering(addReleaseOrdering(a: SI->getOrdering())); |
| 1403 | |
| 1404 | if (MS.TrackOrigins && !SI->isAtomic()) |
| 1405 | storeOrigin(IRB, Addr, Shadow, Origin: getOrigin(V: Val), OriginPtr, |
| 1406 | Alignment: OriginAlignment); |
| 1407 | } |
| 1408 | } |
| 1409 | |
| 1410 | // Returns true if Debug Location corresponds to multiple warnings. |
| 1411 | bool shouldDisambiguateWarningLocation(const DebugLoc &DebugLoc) { |
| 1412 | if (MS.TrackOrigins < 2) |
| 1413 | return false; |
| 1414 | |
| 1415 | if (LazyWarningDebugLocationCount.empty()) |
| 1416 | for (const auto &I : InstrumentationList) |
| 1417 | ++LazyWarningDebugLocationCount[I.OrigIns->getDebugLoc()]; |
| 1418 | |
| 1419 | return LazyWarningDebugLocationCount[DebugLoc] >= ClDisambiguateWarning; |
| 1420 | } |
| 1421 | |
| 1422 | /// Helper function to insert a warning at IRB's current insert point. |
| 1423 | void insertWarningFn(IRBuilder<> &IRB, Value *Origin) { |
| 1424 | if (!Origin) |
| 1425 | Origin = (Value *)IRB.getInt32(C: 0); |
| 1426 | assert(Origin->getType()->isIntegerTy()); |
| 1427 | |
| 1428 | if (shouldDisambiguateWarningLocation(DebugLoc: IRB.getCurrentDebugLocation())) { |
| 1429 | // Try to create additional origin with debug info of the last origin |
| 1430 | // instruction. It may provide additional information to the user. |
| 1431 | if (Instruction *OI = dyn_cast_or_null<Instruction>(Val: Origin)) { |
| 1432 | assert(MS.TrackOrigins); |
| 1433 | auto NewDebugLoc = OI->getDebugLoc(); |
| 1434 | // Origin update with missing or the same debug location provides no |
| 1435 | // additional value. |
| 1436 | if (NewDebugLoc && NewDebugLoc != IRB.getCurrentDebugLocation()) { |
| 1437 | // Insert update just before the check, so we call runtime only just |
| 1438 | // before the report. |
| 1439 | IRBuilder<> IRBOrigin(&*IRB.GetInsertPoint()); |
| 1440 | IRBOrigin.SetCurrentDebugLocation(NewDebugLoc); |
| 1441 | Origin = updateOrigin(V: Origin, IRB&: IRBOrigin); |
| 1442 | } |
| 1443 | } |
| 1444 | } |
| 1445 | |
| 1446 | if (MS.CompileKernel || MS.TrackOrigins) |
| 1447 | IRB.CreateCall(Callee: MS.WarningFn, Args: Origin)->setCannotMerge(); |
| 1448 | else |
| 1449 | IRB.CreateCall(Callee: MS.WarningFn)->setCannotMerge(); |
| 1450 | // FIXME: Insert UnreachableInst if !MS.Recover? |
| 1451 | // This may invalidate some of the following checks and needs to be done |
| 1452 | // at the very end. |
| 1453 | } |
| 1454 | |
| 1455 | void materializeOneCheck(IRBuilder<> &IRB, Value *ConvertedShadow, |
| 1456 | Value *Origin) { |
| 1457 | const DataLayout &DL = F.getDataLayout(); |
| 1458 | TypeSize TypeSizeInBits = DL.getTypeSizeInBits(Ty: ConvertedShadow->getType()); |
| 1459 | unsigned SizeIndex = TypeSizeToSizeIndex(TS: TypeSizeInBits); |
| 1460 | if (instrumentWithCalls(V: ConvertedShadow) && !MS.CompileKernel) { |
| 1461 | // ZExt cannot convert between vector and scalar |
| 1462 | ConvertedShadow = convertShadowToScalar(V: ConvertedShadow, IRB); |
| 1463 | Value *ConvertedShadow2 = |
| 1464 | IRB.CreateZExt(V: ConvertedShadow, DestTy: IRB.getIntNTy(N: 8 * (1 << SizeIndex))); |
| 1465 | |
| 1466 | if (SizeIndex < kNumberOfAccessSizes) { |
| 1467 | FunctionCallee Fn = MS.MaybeWarningFn[SizeIndex]; |
| 1468 | CallBase *CB = IRB.CreateCall( |
| 1469 | Callee: Fn, |
| 1470 | Args: {ConvertedShadow2, |
| 1471 | MS.TrackOrigins && Origin ? Origin : (Value *)IRB.getInt32(C: 0)}); |
| 1472 | CB->addParamAttr(ArgNo: 0, Kind: Attribute::ZExt); |
| 1473 | CB->addParamAttr(ArgNo: 1, Kind: Attribute::ZExt); |
| 1474 | } else { |
| 1475 | FunctionCallee Fn = MS.MaybeWarningVarSizeFn; |
| 1476 | Value *ShadowAlloca = IRB.CreateAlloca(Ty: ConvertedShadow2->getType(), AddrSpace: 0u); |
| 1477 | IRB.CreateStore(Val: ConvertedShadow2, Ptr: ShadowAlloca); |
| 1478 | unsigned ShadowSize = DL.getTypeAllocSize(Ty: ConvertedShadow2->getType()); |
| 1479 | CallBase *CB = IRB.CreateCall( |
| 1480 | Callee: Fn, |
| 1481 | Args: {ShadowAlloca, ConstantInt::get(Ty: IRB.getInt64Ty(), V: ShadowSize), |
| 1482 | MS.TrackOrigins && Origin ? Origin : (Value *)IRB.getInt32(C: 0)}); |
| 1483 | CB->addParamAttr(ArgNo: 1, Kind: Attribute::ZExt); |
| 1484 | CB->addParamAttr(ArgNo: 2, Kind: Attribute::ZExt); |
| 1485 | } |
| 1486 | } else { |
| 1487 | Value *Cmp = convertToBool(V: ConvertedShadow, IRB, name: "_mscmp" ); |
| 1488 | Instruction *CheckTerm = SplitBlockAndInsertIfThen( |
| 1489 | Cond: Cmp, SplitBefore: &*IRB.GetInsertPoint(), |
| 1490 | /* Unreachable */ !MS.Recover, BranchWeights: MS.ColdCallWeights); |
| 1491 | |
| 1492 | IRB.SetInsertPoint(CheckTerm); |
| 1493 | insertWarningFn(IRB, Origin); |
| 1494 | LLVM_DEBUG(dbgs() << " CHECK: " << *Cmp << "\n" ); |
| 1495 | } |
| 1496 | } |
| 1497 | |
| 1498 | void materializeInstructionChecks( |
| 1499 | ArrayRef<ShadowOriginAndInsertPoint> InstructionChecks) { |
| 1500 | const DataLayout &DL = F.getDataLayout(); |
| 1501 | // Disable combining in some cases. TrackOrigins checks each shadow to pick |
| 1502 | // correct origin. |
| 1503 | bool Combine = !MS.TrackOrigins; |
| 1504 | Instruction *Instruction = InstructionChecks.front().OrigIns; |
| 1505 | Value *Shadow = nullptr; |
| 1506 | for (const auto &ShadowData : InstructionChecks) { |
| 1507 | assert(ShadowData.OrigIns == Instruction); |
| 1508 | IRBuilder<> IRB(Instruction); |
| 1509 | |
| 1510 | Value *ConvertedShadow = ShadowData.Shadow; |
| 1511 | |
| 1512 | if (auto *ConstantShadow = dyn_cast<Constant>(Val: ConvertedShadow)) { |
| 1513 | if (!ClCheckConstantShadow || ConstantShadow->isZeroValue()) { |
| 1514 | // Skip, value is initialized or const shadow is ignored. |
| 1515 | continue; |
| 1516 | } |
| 1517 | if (llvm::isKnownNonZero(V: ConvertedShadow, Q: DL)) { |
| 1518 | // Report as the value is definitely uninitialized. |
| 1519 | insertWarningFn(IRB, Origin: ShadowData.Origin); |
| 1520 | if (!MS.Recover) |
| 1521 | return; // Always fail and stop here, not need to check the rest. |
| 1522 | // Skip entire instruction, |
| 1523 | continue; |
| 1524 | } |
| 1525 | // Fallback to runtime check, which still can be optimized out later. |
| 1526 | } |
| 1527 | |
| 1528 | if (!Combine) { |
| 1529 | materializeOneCheck(IRB, ConvertedShadow, Origin: ShadowData.Origin); |
| 1530 | continue; |
| 1531 | } |
| 1532 | |
| 1533 | if (!Shadow) { |
| 1534 | Shadow = ConvertedShadow; |
| 1535 | continue; |
| 1536 | } |
| 1537 | |
| 1538 | Shadow = convertToBool(V: Shadow, IRB, name: "_mscmp" ); |
| 1539 | ConvertedShadow = convertToBool(V: ConvertedShadow, IRB, name: "_mscmp" ); |
| 1540 | Shadow = IRB.CreateOr(LHS: Shadow, RHS: ConvertedShadow, Name: "_msor" ); |
| 1541 | } |
| 1542 | |
| 1543 | if (Shadow) { |
| 1544 | assert(Combine); |
| 1545 | IRBuilder<> IRB(Instruction); |
| 1546 | materializeOneCheck(IRB, ConvertedShadow: Shadow, Origin: nullptr); |
| 1547 | } |
| 1548 | } |
| 1549 | |
| 1550 | static bool isAArch64SVCount(Type *Ty) { |
| 1551 | if (TargetExtType *TTy = dyn_cast<TargetExtType>(Val: Ty)) |
| 1552 | return TTy->getName() == "aarch64.svcount" ; |
| 1553 | return false; |
| 1554 | } |
| 1555 | |
| 1556 | // This is intended to match the "AArch64 Predicate-as-Counter Type" (aka |
| 1557 | // 'target("aarch64.svcount")', but not e.g., <vscale x 4 x i32>. |
| 1558 | static bool isScalableNonVectorType(Type *Ty) { |
| 1559 | if (!isAArch64SVCount(Ty)) |
| 1560 | LLVM_DEBUG(dbgs() << "isScalableNonVectorType: Unexpected type " << *Ty |
| 1561 | << "\n" ); |
| 1562 | |
| 1563 | return Ty->isScalableTy() && !isa<VectorType>(Val: Ty); |
| 1564 | } |
| 1565 | |
| 1566 | void materializeChecks() { |
| 1567 | #ifndef NDEBUG |
| 1568 | // For assert below. |
| 1569 | SmallPtrSet<Instruction *, 16> Done; |
| 1570 | #endif |
| 1571 | |
| 1572 | for (auto I = InstrumentationList.begin(); |
| 1573 | I != InstrumentationList.end();) { |
| 1574 | auto OrigIns = I->OrigIns; |
| 1575 | // Checks are grouped by the original instruction. We call all |
| 1576 | // `insertShadowCheck` for an instruction at once. |
| 1577 | assert(Done.insert(OrigIns).second); |
| 1578 | auto J = std::find_if(first: I + 1, last: InstrumentationList.end(), |
| 1579 | pred: [OrigIns](const ShadowOriginAndInsertPoint &R) { |
| 1580 | return OrigIns != R.OrigIns; |
| 1581 | }); |
| 1582 | // Process all checks of instruction at once. |
| 1583 | materializeInstructionChecks(InstructionChecks: ArrayRef<ShadowOriginAndInsertPoint>(I, J)); |
| 1584 | I = J; |
| 1585 | } |
| 1586 | |
| 1587 | LLVM_DEBUG(dbgs() << "DONE:\n" << F); |
| 1588 | } |
| 1589 | |
| 1590 | // Returns the last instruction in the new prologue |
| 1591 | void insertKmsanPrologue(IRBuilder<> &IRB) { |
| 1592 | Value *ContextState = IRB.CreateCall(Callee: MS.MsanGetContextStateFn, Args: {}); |
| 1593 | Constant *Zero = IRB.getInt32(C: 0); |
| 1594 | MS.ParamTLS = IRB.CreateGEP(Ty: MS.MsanContextStateTy, Ptr: ContextState, |
| 1595 | IdxList: {Zero, IRB.getInt32(C: 0)}, Name: "param_shadow" ); |
| 1596 | MS.RetvalTLS = IRB.CreateGEP(Ty: MS.MsanContextStateTy, Ptr: ContextState, |
| 1597 | IdxList: {Zero, IRB.getInt32(C: 1)}, Name: "retval_shadow" ); |
| 1598 | MS.VAArgTLS = IRB.CreateGEP(Ty: MS.MsanContextStateTy, Ptr: ContextState, |
| 1599 | IdxList: {Zero, IRB.getInt32(C: 2)}, Name: "va_arg_shadow" ); |
| 1600 | MS.VAArgOriginTLS = IRB.CreateGEP(Ty: MS.MsanContextStateTy, Ptr: ContextState, |
| 1601 | IdxList: {Zero, IRB.getInt32(C: 3)}, Name: "va_arg_origin" ); |
| 1602 | MS.VAArgOverflowSizeTLS = |
| 1603 | IRB.CreateGEP(Ty: MS.MsanContextStateTy, Ptr: ContextState, |
| 1604 | IdxList: {Zero, IRB.getInt32(C: 4)}, Name: "va_arg_overflow_size" ); |
| 1605 | MS.ParamOriginTLS = IRB.CreateGEP(Ty: MS.MsanContextStateTy, Ptr: ContextState, |
| 1606 | IdxList: {Zero, IRB.getInt32(C: 5)}, Name: "param_origin" ); |
| 1607 | MS.RetvalOriginTLS = |
| 1608 | IRB.CreateGEP(Ty: MS.MsanContextStateTy, Ptr: ContextState, |
| 1609 | IdxList: {Zero, IRB.getInt32(C: 6)}, Name: "retval_origin" ); |
| 1610 | if (MS.TargetTriple.getArch() == Triple::systemz) |
| 1611 | MS.MsanMetadataAlloca = IRB.CreateAlloca(Ty: MS.MsanMetadata, AddrSpace: 0u); |
| 1612 | } |
| 1613 | |
| 1614 | /// Add MemorySanitizer instrumentation to a function. |
| 1615 | bool runOnFunction() { |
| 1616 | // Iterate all BBs in depth-first order and create shadow instructions |
| 1617 | // for all instructions (where applicable). |
| 1618 | // For PHI nodes we create dummy shadow PHIs which will be finalized later. |
| 1619 | for (BasicBlock *BB : depth_first(G: FnPrologueEnd->getParent())) |
| 1620 | visit(BB&: *BB); |
| 1621 | |
| 1622 | // `visit` above only collects instructions. Process them after iterating |
| 1623 | // CFG to avoid requirement on CFG transformations. |
| 1624 | for (Instruction *I : Instructions) |
| 1625 | InstVisitor<MemorySanitizerVisitor>::visit(I&: *I); |
| 1626 | |
| 1627 | // Finalize PHI nodes. |
| 1628 | for (PHINode *PN : ShadowPHINodes) { |
| 1629 | PHINode *PNS = cast<PHINode>(Val: getShadow(V: PN)); |
| 1630 | PHINode *PNO = MS.TrackOrigins ? cast<PHINode>(Val: getOrigin(V: PN)) : nullptr; |
| 1631 | size_t NumValues = PN->getNumIncomingValues(); |
| 1632 | for (size_t v = 0; v < NumValues; v++) { |
| 1633 | PNS->addIncoming(V: getShadow(I: PN, i: v), BB: PN->getIncomingBlock(i: v)); |
| 1634 | if (PNO) |
| 1635 | PNO->addIncoming(V: getOrigin(I: PN, i: v), BB: PN->getIncomingBlock(i: v)); |
| 1636 | } |
| 1637 | } |
| 1638 | |
| 1639 | VAHelper->finalizeInstrumentation(); |
| 1640 | |
| 1641 | // Poison llvm.lifetime.start intrinsics, if we haven't fallen back to |
| 1642 | // instrumenting only allocas. |
| 1643 | if (ClHandleLifetimeIntrinsics) { |
| 1644 | for (auto Item : LifetimeStartList) { |
| 1645 | instrumentAlloca(I&: *Item.second, InsPoint: Item.first); |
| 1646 | AllocaSet.remove(X: Item.second); |
| 1647 | } |
| 1648 | } |
| 1649 | // Poison the allocas for which we didn't instrument the corresponding |
| 1650 | // lifetime intrinsics. |
| 1651 | for (AllocaInst *AI : AllocaSet) |
| 1652 | instrumentAlloca(I&: *AI); |
| 1653 | |
| 1654 | // Insert shadow value checks. |
| 1655 | materializeChecks(); |
| 1656 | |
| 1657 | // Delayed instrumentation of StoreInst. |
| 1658 | // This may not add new address checks. |
| 1659 | materializeStores(); |
| 1660 | |
| 1661 | return true; |
| 1662 | } |
| 1663 | |
| 1664 | /// Compute the shadow type that corresponds to a given Value. |
| 1665 | Type *getShadowTy(Value *V) { return getShadowTy(OrigTy: V->getType()); } |
| 1666 | |
| 1667 | /// Compute the shadow type that corresponds to a given Type. |
| 1668 | Type *getShadowTy(Type *OrigTy) { |
| 1669 | if (!OrigTy->isSized()) { |
| 1670 | return nullptr; |
| 1671 | } |
| 1672 | // For integer type, shadow is the same as the original type. |
| 1673 | // This may return weird-sized types like i1. |
| 1674 | if (IntegerType *IT = dyn_cast<IntegerType>(Val: OrigTy)) |
| 1675 | return IT; |
| 1676 | const DataLayout &DL = F.getDataLayout(); |
| 1677 | if (VectorType *VT = dyn_cast<VectorType>(Val: OrigTy)) { |
| 1678 | uint32_t EltSize = DL.getTypeSizeInBits(Ty: VT->getElementType()); |
| 1679 | return VectorType::get(ElementType: IntegerType::get(C&: *MS.C, NumBits: EltSize), |
| 1680 | EC: VT->getElementCount()); |
| 1681 | } |
| 1682 | if (ArrayType *AT = dyn_cast<ArrayType>(Val: OrigTy)) { |
| 1683 | return ArrayType::get(ElementType: getShadowTy(OrigTy: AT->getElementType()), |
| 1684 | NumElements: AT->getNumElements()); |
| 1685 | } |
| 1686 | if (StructType *ST = dyn_cast<StructType>(Val: OrigTy)) { |
| 1687 | SmallVector<Type *, 4> Elements; |
| 1688 | for (unsigned i = 0, n = ST->getNumElements(); i < n; i++) |
| 1689 | Elements.push_back(Elt: getShadowTy(OrigTy: ST->getElementType(N: i))); |
| 1690 | StructType *Res = StructType::get(Context&: *MS.C, Elements, isPacked: ST->isPacked()); |
| 1691 | LLVM_DEBUG(dbgs() << "getShadowTy: " << *ST << " ===> " << *Res << "\n" ); |
| 1692 | return Res; |
| 1693 | } |
| 1694 | if (isScalableNonVectorType(Ty: OrigTy)) { |
| 1695 | LLVM_DEBUG(dbgs() << "getShadowTy: Scalable non-vector type: " << *OrigTy |
| 1696 | << "\n" ); |
| 1697 | return OrigTy; |
| 1698 | } |
| 1699 | |
| 1700 | uint32_t TypeSize = DL.getTypeSizeInBits(Ty: OrigTy); |
| 1701 | return IntegerType::get(C&: *MS.C, NumBits: TypeSize); |
| 1702 | } |
| 1703 | |
| 1704 | /// Extract combined shadow of struct elements as a bool |
| 1705 | Value *collapseStructShadow(StructType *Struct, Value *Shadow, |
| 1706 | IRBuilder<> &IRB) { |
| 1707 | Value *FalseVal = IRB.getIntN(/* width */ N: 1, /* value */ C: 0); |
| 1708 | Value *Aggregator = FalseVal; |
| 1709 | |
| 1710 | for (unsigned Idx = 0; Idx < Struct->getNumElements(); Idx++) { |
| 1711 | // Combine by ORing together each element's bool shadow |
| 1712 | Value *ShadowItem = IRB.CreateExtractValue(Agg: Shadow, Idxs: Idx); |
| 1713 | Value *ShadowBool = convertToBool(V: ShadowItem, IRB); |
| 1714 | |
| 1715 | if (Aggregator != FalseVal) |
| 1716 | Aggregator = IRB.CreateOr(LHS: Aggregator, RHS: ShadowBool); |
| 1717 | else |
| 1718 | Aggregator = ShadowBool; |
| 1719 | } |
| 1720 | |
| 1721 | return Aggregator; |
| 1722 | } |
| 1723 | |
| 1724 | // Extract combined shadow of array elements |
| 1725 | Value *collapseArrayShadow(ArrayType *Array, Value *Shadow, |
| 1726 | IRBuilder<> &IRB) { |
| 1727 | if (!Array->getNumElements()) |
| 1728 | return IRB.getIntN(/* width */ N: 1, /* value */ C: 0); |
| 1729 | |
| 1730 | Value *FirstItem = IRB.CreateExtractValue(Agg: Shadow, Idxs: 0); |
| 1731 | Value *Aggregator = convertShadowToScalar(V: FirstItem, IRB); |
| 1732 | |
| 1733 | for (unsigned Idx = 1; Idx < Array->getNumElements(); Idx++) { |
| 1734 | Value *ShadowItem = IRB.CreateExtractValue(Agg: Shadow, Idxs: Idx); |
| 1735 | Value *ShadowInner = convertShadowToScalar(V: ShadowItem, IRB); |
| 1736 | Aggregator = IRB.CreateOr(LHS: Aggregator, RHS: ShadowInner); |
| 1737 | } |
| 1738 | return Aggregator; |
| 1739 | } |
| 1740 | |
| 1741 | /// Convert a shadow value to it's flattened variant. The resulting |
| 1742 | /// shadow may not necessarily have the same bit width as the input |
| 1743 | /// value, but it will always be comparable to zero. |
| 1744 | Value *convertShadowToScalar(Value *V, IRBuilder<> &IRB) { |
| 1745 | if (StructType *Struct = dyn_cast<StructType>(Val: V->getType())) |
| 1746 | return collapseStructShadow(Struct, Shadow: V, IRB); |
| 1747 | if (ArrayType *Array = dyn_cast<ArrayType>(Val: V->getType())) |
| 1748 | return collapseArrayShadow(Array, Shadow: V, IRB); |
| 1749 | if (isa<VectorType>(Val: V->getType())) { |
| 1750 | if (isa<ScalableVectorType>(Val: V->getType())) |
| 1751 | return convertShadowToScalar(V: IRB.CreateOrReduce(Src: V), IRB); |
| 1752 | unsigned BitWidth = |
| 1753 | V->getType()->getPrimitiveSizeInBits().getFixedValue(); |
| 1754 | return IRB.CreateBitCast(V, DestTy: IntegerType::get(C&: *MS.C, NumBits: BitWidth)); |
| 1755 | } |
| 1756 | return V; |
| 1757 | } |
| 1758 | |
| 1759 | // Convert a scalar value to an i1 by comparing with 0 |
| 1760 | Value *convertToBool(Value *V, IRBuilder<> &IRB, const Twine &name = "" ) { |
| 1761 | Type *VTy = V->getType(); |
| 1762 | if (!VTy->isIntegerTy()) |
| 1763 | return convertToBool(V: convertShadowToScalar(V, IRB), IRB, name); |
| 1764 | if (VTy->getIntegerBitWidth() == 1) |
| 1765 | // Just converting a bool to a bool, so do nothing. |
| 1766 | return V; |
| 1767 | return IRB.CreateICmpNE(LHS: V, RHS: ConstantInt::get(Ty: VTy, V: 0), Name: name); |
| 1768 | } |
| 1769 | |
| 1770 | Type *ptrToIntPtrType(Type *PtrTy) const { |
| 1771 | if (VectorType *VectTy = dyn_cast<VectorType>(Val: PtrTy)) { |
| 1772 | return VectorType::get(ElementType: ptrToIntPtrType(PtrTy: VectTy->getElementType()), |
| 1773 | EC: VectTy->getElementCount()); |
| 1774 | } |
| 1775 | assert(PtrTy->isIntOrPtrTy()); |
| 1776 | return MS.IntptrTy; |
| 1777 | } |
| 1778 | |
| 1779 | Type *getPtrToShadowPtrType(Type *IntPtrTy, Type *ShadowTy) const { |
| 1780 | if (VectorType *VectTy = dyn_cast<VectorType>(Val: IntPtrTy)) { |
| 1781 | return VectorType::get( |
| 1782 | ElementType: getPtrToShadowPtrType(IntPtrTy: VectTy->getElementType(), ShadowTy), |
| 1783 | EC: VectTy->getElementCount()); |
| 1784 | } |
| 1785 | assert(IntPtrTy == MS.IntptrTy); |
| 1786 | return MS.PtrTy; |
| 1787 | } |
| 1788 | |
| 1789 | Constant *constToIntPtr(Type *IntPtrTy, uint64_t C) const { |
| 1790 | if (VectorType *VectTy = dyn_cast<VectorType>(Val: IntPtrTy)) { |
| 1791 | return ConstantVector::getSplat( |
| 1792 | EC: VectTy->getElementCount(), |
| 1793 | Elt: constToIntPtr(IntPtrTy: VectTy->getElementType(), C)); |
| 1794 | } |
| 1795 | assert(IntPtrTy == MS.IntptrTy); |
| 1796 | // TODO: Avoid implicit trunc? |
| 1797 | // See https://github.com/llvm/llvm-project/issues/112510. |
| 1798 | return ConstantInt::get(Ty: MS.IntptrTy, V: C, /*IsSigned=*/false, |
| 1799 | /*ImplicitTrunc=*/true); |
| 1800 | } |
| 1801 | |
| 1802 | /// Returns the integer shadow offset that corresponds to a given |
| 1803 | /// application address, whereby: |
| 1804 | /// |
| 1805 | /// Offset = (Addr & ~AndMask) ^ XorMask |
| 1806 | /// Shadow = ShadowBase + Offset |
| 1807 | /// Origin = (OriginBase + Offset) & ~Alignment |
| 1808 | /// |
| 1809 | /// Note: for efficiency, many shadow mappings only require use the XorMask |
| 1810 | /// and OriginBase; the AndMask and ShadowBase are often zero. |
| 1811 | Value *getShadowPtrOffset(Value *Addr, IRBuilder<> &IRB) { |
| 1812 | Type *IntptrTy = ptrToIntPtrType(PtrTy: Addr->getType()); |
| 1813 | Value *OffsetLong = IRB.CreatePointerCast(V: Addr, DestTy: IntptrTy); |
| 1814 | |
| 1815 | if (uint64_t AndMask = MS.MapParams->AndMask) |
| 1816 | OffsetLong = IRB.CreateAnd(LHS: OffsetLong, RHS: constToIntPtr(IntPtrTy: IntptrTy, C: ~AndMask)); |
| 1817 | |
| 1818 | if (uint64_t XorMask = MS.MapParams->XorMask) |
| 1819 | OffsetLong = IRB.CreateXor(LHS: OffsetLong, RHS: constToIntPtr(IntPtrTy: IntptrTy, C: XorMask)); |
| 1820 | return OffsetLong; |
| 1821 | } |
| 1822 | |
| 1823 | /// Compute the shadow and origin addresses corresponding to a given |
| 1824 | /// application address. |
| 1825 | /// |
| 1826 | /// Shadow = ShadowBase + Offset |
| 1827 | /// Origin = (OriginBase + Offset) & ~3ULL |
| 1828 | /// Addr can be a ptr or <N x ptr>. In both cases ShadowTy the shadow type of |
| 1829 | /// a single pointee. |
| 1830 | /// Returns <shadow_ptr, origin_ptr> or <<N x shadow_ptr>, <N x origin_ptr>>. |
| 1831 | std::pair<Value *, Value *> |
| 1832 | getShadowOriginPtrUserspace(Value *Addr, IRBuilder<> &IRB, Type *ShadowTy, |
| 1833 | MaybeAlign Alignment) { |
| 1834 | VectorType *VectTy = dyn_cast<VectorType>(Val: Addr->getType()); |
| 1835 | if (!VectTy) { |
| 1836 | assert(Addr->getType()->isPointerTy()); |
| 1837 | } else { |
| 1838 | assert(VectTy->getElementType()->isPointerTy()); |
| 1839 | } |
| 1840 | Type *IntptrTy = ptrToIntPtrType(PtrTy: Addr->getType()); |
| 1841 | Value *ShadowOffset = getShadowPtrOffset(Addr, IRB); |
| 1842 | Value *ShadowLong = ShadowOffset; |
| 1843 | if (uint64_t ShadowBase = MS.MapParams->ShadowBase) { |
| 1844 | ShadowLong = |
| 1845 | IRB.CreateAdd(LHS: ShadowLong, RHS: constToIntPtr(IntPtrTy: IntptrTy, C: ShadowBase)); |
| 1846 | } |
| 1847 | Value *ShadowPtr = IRB.CreateIntToPtr( |
| 1848 | V: ShadowLong, DestTy: getPtrToShadowPtrType(IntPtrTy: IntptrTy, ShadowTy)); |
| 1849 | |
| 1850 | Value *OriginPtr = nullptr; |
| 1851 | if (MS.TrackOrigins) { |
| 1852 | Value *OriginLong = ShadowOffset; |
| 1853 | uint64_t OriginBase = MS.MapParams->OriginBase; |
| 1854 | if (OriginBase != 0) |
| 1855 | OriginLong = |
| 1856 | IRB.CreateAdd(LHS: OriginLong, RHS: constToIntPtr(IntPtrTy: IntptrTy, C: OriginBase)); |
| 1857 | if (!Alignment || *Alignment < kMinOriginAlignment) { |
| 1858 | uint64_t Mask = kMinOriginAlignment.value() - 1; |
| 1859 | OriginLong = IRB.CreateAnd(LHS: OriginLong, RHS: constToIntPtr(IntPtrTy: IntptrTy, C: ~Mask)); |
| 1860 | } |
| 1861 | OriginPtr = IRB.CreateIntToPtr( |
| 1862 | V: OriginLong, DestTy: getPtrToShadowPtrType(IntPtrTy: IntptrTy, ShadowTy: MS.OriginTy)); |
| 1863 | } |
| 1864 | return std::make_pair(x&: ShadowPtr, y&: OriginPtr); |
| 1865 | } |
| 1866 | |
| 1867 | template <typename... ArgsTy> |
| 1868 | Value *createMetadataCall(IRBuilder<> &IRB, FunctionCallee Callee, |
| 1869 | ArgsTy... Args) { |
| 1870 | if (MS.TargetTriple.getArch() == Triple::systemz) { |
| 1871 | IRB.CreateCall(Callee, |
| 1872 | {MS.MsanMetadataAlloca, std::forward<ArgsTy>(Args)...}); |
| 1873 | return IRB.CreateLoad(Ty: MS.MsanMetadata, Ptr: MS.MsanMetadataAlloca); |
| 1874 | } |
| 1875 | |
| 1876 | return IRB.CreateCall(Callee, {std::forward<ArgsTy>(Args)...}); |
| 1877 | } |
| 1878 | |
| 1879 | std::pair<Value *, Value *> getShadowOriginPtrKernelNoVec(Value *Addr, |
| 1880 | IRBuilder<> &IRB, |
| 1881 | Type *ShadowTy, |
| 1882 | bool isStore) { |
| 1883 | Value *ShadowOriginPtrs; |
| 1884 | const DataLayout &DL = F.getDataLayout(); |
| 1885 | TypeSize Size = DL.getTypeStoreSize(Ty: ShadowTy); |
| 1886 | |
| 1887 | FunctionCallee Getter = MS.getKmsanShadowOriginAccessFn(isStore, size: Size); |
| 1888 | Value *AddrCast = IRB.CreatePointerCast(V: Addr, DestTy: MS.PtrTy); |
| 1889 | if (Getter) { |
| 1890 | ShadowOriginPtrs = createMetadataCall(IRB, Callee: Getter, Args: AddrCast); |
| 1891 | } else { |
| 1892 | Value *SizeVal = ConstantInt::get(Ty: MS.IntptrTy, V: Size); |
| 1893 | ShadowOriginPtrs = createMetadataCall( |
| 1894 | IRB, |
| 1895 | Callee: isStore ? MS.MsanMetadataPtrForStoreN : MS.MsanMetadataPtrForLoadN, |
| 1896 | Args: AddrCast, Args: SizeVal); |
| 1897 | } |
| 1898 | Value *ShadowPtr = IRB.CreateExtractValue(Agg: ShadowOriginPtrs, Idxs: 0); |
| 1899 | ShadowPtr = IRB.CreatePointerCast(V: ShadowPtr, DestTy: MS.PtrTy); |
| 1900 | Value *OriginPtr = IRB.CreateExtractValue(Agg: ShadowOriginPtrs, Idxs: 1); |
| 1901 | |
| 1902 | return std::make_pair(x&: ShadowPtr, y&: OriginPtr); |
| 1903 | } |
| 1904 | |
| 1905 | /// Addr can be a ptr or <N x ptr>. In both cases ShadowTy the shadow type of |
| 1906 | /// a single pointee. |
| 1907 | /// Returns <shadow_ptr, origin_ptr> or <<N x shadow_ptr>, <N x origin_ptr>>. |
| 1908 | std::pair<Value *, Value *> getShadowOriginPtrKernel(Value *Addr, |
| 1909 | IRBuilder<> &IRB, |
| 1910 | Type *ShadowTy, |
| 1911 | bool isStore) { |
| 1912 | VectorType *VectTy = dyn_cast<VectorType>(Val: Addr->getType()); |
| 1913 | if (!VectTy) { |
| 1914 | assert(Addr->getType()->isPointerTy()); |
| 1915 | return getShadowOriginPtrKernelNoVec(Addr, IRB, ShadowTy, isStore); |
| 1916 | } |
| 1917 | |
| 1918 | // TODO: Support callbacs with vectors of addresses. |
| 1919 | unsigned NumElements = cast<FixedVectorType>(Val: VectTy)->getNumElements(); |
| 1920 | Value *ShadowPtrs = ConstantInt::getNullValue( |
| 1921 | Ty: FixedVectorType::get(ElementType: IRB.getPtrTy(), NumElts: NumElements)); |
| 1922 | Value *OriginPtrs = nullptr; |
| 1923 | if (MS.TrackOrigins) |
| 1924 | OriginPtrs = ConstantInt::getNullValue( |
| 1925 | Ty: FixedVectorType::get(ElementType: IRB.getPtrTy(), NumElts: NumElements)); |
| 1926 | for (unsigned i = 0; i < NumElements; ++i) { |
| 1927 | Value *OneAddr = |
| 1928 | IRB.CreateExtractElement(Vec: Addr, Idx: ConstantInt::get(Ty: IRB.getInt32Ty(), V: i)); |
| 1929 | auto [ShadowPtr, OriginPtr] = |
| 1930 | getShadowOriginPtrKernelNoVec(Addr: OneAddr, IRB, ShadowTy, isStore); |
| 1931 | |
| 1932 | ShadowPtrs = IRB.CreateInsertElement( |
| 1933 | Vec: ShadowPtrs, NewElt: ShadowPtr, Idx: ConstantInt::get(Ty: IRB.getInt32Ty(), V: i)); |
| 1934 | if (MS.TrackOrigins) |
| 1935 | OriginPtrs = IRB.CreateInsertElement( |
| 1936 | Vec: OriginPtrs, NewElt: OriginPtr, Idx: ConstantInt::get(Ty: IRB.getInt32Ty(), V: i)); |
| 1937 | } |
| 1938 | return {ShadowPtrs, OriginPtrs}; |
| 1939 | } |
| 1940 | |
| 1941 | std::pair<Value *, Value *> getShadowOriginPtr(Value *Addr, IRBuilder<> &IRB, |
| 1942 | Type *ShadowTy, |
| 1943 | MaybeAlign Alignment, |
| 1944 | bool isStore) { |
| 1945 | if (MS.CompileKernel) |
| 1946 | return getShadowOriginPtrKernel(Addr, IRB, ShadowTy, isStore); |
| 1947 | return getShadowOriginPtrUserspace(Addr, IRB, ShadowTy, Alignment); |
| 1948 | } |
| 1949 | |
| 1950 | /// Compute the shadow address for a given function argument. |
| 1951 | /// |
| 1952 | /// Shadow = ParamTLS+ArgOffset. |
| 1953 | Value *getShadowPtrForArgument(IRBuilder<> &IRB, int ArgOffset) { |
| 1954 | return IRB.CreatePtrAdd(Ptr: MS.ParamTLS, |
| 1955 | Offset: ConstantInt::get(Ty: MS.IntptrTy, V: ArgOffset), Name: "_msarg" ); |
| 1956 | } |
| 1957 | |
| 1958 | /// Compute the origin address for a given function argument. |
| 1959 | Value *getOriginPtrForArgument(IRBuilder<> &IRB, int ArgOffset) { |
| 1960 | if (!MS.TrackOrigins) |
| 1961 | return nullptr; |
| 1962 | return IRB.CreatePtrAdd(Ptr: MS.ParamOriginTLS, |
| 1963 | Offset: ConstantInt::get(Ty: MS.IntptrTy, V: ArgOffset), |
| 1964 | Name: "_msarg_o" ); |
| 1965 | } |
| 1966 | |
| 1967 | /// Compute the shadow address for a retval. |
| 1968 | Value *getShadowPtrForRetval(IRBuilder<> &IRB) { |
| 1969 | return IRB.CreatePointerCast(V: MS.RetvalTLS, DestTy: IRB.getPtrTy(AddrSpace: 0), Name: "_msret" ); |
| 1970 | } |
| 1971 | |
| 1972 | /// Compute the origin address for a retval. |
| 1973 | Value *getOriginPtrForRetval() { |
| 1974 | // We keep a single origin for the entire retval. Might be too optimistic. |
| 1975 | return MS.RetvalOriginTLS; |
| 1976 | } |
| 1977 | |
| 1978 | /// Set SV to be the shadow value for V. |
| 1979 | void setShadow(Value *V, Value *SV) { |
| 1980 | assert(!ShadowMap.count(V) && "Values may only have one shadow" ); |
| 1981 | ShadowMap[V] = PropagateShadow ? SV : getCleanShadow(V); |
| 1982 | } |
| 1983 | |
| 1984 | /// Set Origin to be the origin value for V. |
| 1985 | void setOrigin(Value *V, Value *Origin) { |
| 1986 | if (!MS.TrackOrigins) |
| 1987 | return; |
| 1988 | assert(!OriginMap.count(V) && "Values may only have one origin" ); |
| 1989 | LLVM_DEBUG(dbgs() << "ORIGIN: " << *V << " ==> " << *Origin << "\n" ); |
| 1990 | OriginMap[V] = Origin; |
| 1991 | } |
| 1992 | |
| 1993 | Constant *getCleanShadow(Type *OrigTy) { |
| 1994 | Type *ShadowTy = getShadowTy(OrigTy); |
| 1995 | if (!ShadowTy) |
| 1996 | return nullptr; |
| 1997 | return Constant::getNullValue(Ty: ShadowTy); |
| 1998 | } |
| 1999 | |
| 2000 | /// Create a clean shadow value for a given value. |
| 2001 | /// |
| 2002 | /// Clean shadow (all zeroes) means all bits of the value are defined |
| 2003 | /// (initialized). |
| 2004 | Constant *getCleanShadow(Value *V) { return getCleanShadow(OrigTy: V->getType()); } |
| 2005 | |
| 2006 | /// Create a dirty shadow of a given shadow type. |
| 2007 | Constant *getPoisonedShadow(Type *ShadowTy) { |
| 2008 | assert(ShadowTy); |
| 2009 | if (isa<IntegerType>(Val: ShadowTy) || isa<VectorType>(Val: ShadowTy)) |
| 2010 | return Constant::getAllOnesValue(Ty: ShadowTy); |
| 2011 | if (ArrayType *AT = dyn_cast<ArrayType>(Val: ShadowTy)) { |
| 2012 | SmallVector<Constant *, 4> Vals(AT->getNumElements(), |
| 2013 | getPoisonedShadow(ShadowTy: AT->getElementType())); |
| 2014 | return ConstantArray::get(T: AT, V: Vals); |
| 2015 | } |
| 2016 | if (StructType *ST = dyn_cast<StructType>(Val: ShadowTy)) { |
| 2017 | SmallVector<Constant *, 4> Vals; |
| 2018 | for (unsigned i = 0, n = ST->getNumElements(); i < n; i++) |
| 2019 | Vals.push_back(Elt: getPoisonedShadow(ShadowTy: ST->getElementType(N: i))); |
| 2020 | return ConstantStruct::get(T: ST, V: Vals); |
| 2021 | } |
| 2022 | llvm_unreachable("Unexpected shadow type" ); |
| 2023 | } |
| 2024 | |
| 2025 | /// Create a dirty shadow for a given value. |
| 2026 | Constant *getPoisonedShadow(Value *V) { |
| 2027 | Type *ShadowTy = getShadowTy(V); |
| 2028 | if (!ShadowTy) |
| 2029 | return nullptr; |
| 2030 | return getPoisonedShadow(ShadowTy); |
| 2031 | } |
| 2032 | |
| 2033 | /// Create a clean (zero) origin. |
| 2034 | Value *getCleanOrigin() { return Constant::getNullValue(Ty: MS.OriginTy); } |
| 2035 | |
| 2036 | /// Get the shadow value for a given Value. |
| 2037 | /// |
| 2038 | /// This function either returns the value set earlier with setShadow, |
| 2039 | /// or extracts if from ParamTLS (for function arguments). |
| 2040 | Value *getShadow(Value *V) { |
| 2041 | if (Instruction *I = dyn_cast<Instruction>(Val: V)) { |
| 2042 | if (!PropagateShadow || I->getMetadata(KindID: LLVMContext::MD_nosanitize)) |
| 2043 | return getCleanShadow(V); |
| 2044 | // For instructions the shadow is already stored in the map. |
| 2045 | Value *Shadow = ShadowMap[V]; |
| 2046 | if (!Shadow) { |
| 2047 | LLVM_DEBUG(dbgs() << "No shadow: " << *V << "\n" << *(I->getParent())); |
| 2048 | assert(Shadow && "No shadow for a value" ); |
| 2049 | } |
| 2050 | return Shadow; |
| 2051 | } |
| 2052 | // Handle fully undefined values |
| 2053 | // (partially undefined constant vectors are handled later) |
| 2054 | if ([[maybe_unused]] UndefValue *U = dyn_cast<UndefValue>(Val: V)) { |
| 2055 | Value *AllOnes = (PropagateShadow && PoisonUndef) ? getPoisonedShadow(V) |
| 2056 | : getCleanShadow(V); |
| 2057 | LLVM_DEBUG(dbgs() << "Undef: " << *U << " ==> " << *AllOnes << "\n" ); |
| 2058 | return AllOnes; |
| 2059 | } |
| 2060 | if (Argument *A = dyn_cast<Argument>(Val: V)) { |
| 2061 | // For arguments we compute the shadow on demand and store it in the map. |
| 2062 | Value *&ShadowPtr = ShadowMap[V]; |
| 2063 | if (ShadowPtr) |
| 2064 | return ShadowPtr; |
| 2065 | Function *F = A->getParent(); |
| 2066 | IRBuilder<> EntryIRB(FnPrologueEnd); |
| 2067 | unsigned ArgOffset = 0; |
| 2068 | const DataLayout &DL = F->getDataLayout(); |
| 2069 | for (auto &FArg : F->args()) { |
| 2070 | if (!FArg.getType()->isSized() || FArg.getType()->isScalableTy()) { |
| 2071 | LLVM_DEBUG(dbgs() << (FArg.getType()->isScalableTy() |
| 2072 | ? "vscale not fully supported\n" |
| 2073 | : "Arg is not sized\n" )); |
| 2074 | if (A == &FArg) { |
| 2075 | ShadowPtr = getCleanShadow(V); |
| 2076 | setOrigin(V: A, Origin: getCleanOrigin()); |
| 2077 | break; |
| 2078 | } |
| 2079 | continue; |
| 2080 | } |
| 2081 | |
| 2082 | unsigned Size = FArg.hasByValAttr() |
| 2083 | ? DL.getTypeAllocSize(Ty: FArg.getParamByValType()) |
| 2084 | : DL.getTypeAllocSize(Ty: FArg.getType()); |
| 2085 | |
| 2086 | if (A == &FArg) { |
| 2087 | bool Overflow = ArgOffset + Size > kParamTLSSize; |
| 2088 | if (FArg.hasByValAttr()) { |
| 2089 | // ByVal pointer itself has clean shadow. We copy the actual |
| 2090 | // argument shadow to the underlying memory. |
| 2091 | // Figure out maximal valid memcpy alignment. |
| 2092 | const Align ArgAlign = DL.getValueOrABITypeAlignment( |
| 2093 | Alignment: FArg.getParamAlign(), Ty: FArg.getParamByValType()); |
| 2094 | Value *CpShadowPtr, *CpOriginPtr; |
| 2095 | std::tie(args&: CpShadowPtr, args&: CpOriginPtr) = |
| 2096 | getShadowOriginPtr(Addr: V, IRB&: EntryIRB, ShadowTy: EntryIRB.getInt8Ty(), Alignment: ArgAlign, |
| 2097 | /*isStore*/ true); |
| 2098 | if (!PropagateShadow || Overflow) { |
| 2099 | // ParamTLS overflow. |
| 2100 | EntryIRB.CreateMemSet( |
| 2101 | Ptr: CpShadowPtr, Val: Constant::getNullValue(Ty: EntryIRB.getInt8Ty()), |
| 2102 | Size, Align: ArgAlign); |
| 2103 | } else { |
| 2104 | Value *Base = getShadowPtrForArgument(IRB&: EntryIRB, ArgOffset); |
| 2105 | const Align CopyAlign = std::min(a: ArgAlign, b: kShadowTLSAlignment); |
| 2106 | [[maybe_unused]] Value *Cpy = EntryIRB.CreateMemCpy( |
| 2107 | Dst: CpShadowPtr, DstAlign: CopyAlign, Src: Base, SrcAlign: CopyAlign, Size); |
| 2108 | LLVM_DEBUG(dbgs() << " ByValCpy: " << *Cpy << "\n" ); |
| 2109 | |
| 2110 | if (MS.TrackOrigins) { |
| 2111 | Value *OriginPtr = getOriginPtrForArgument(IRB&: EntryIRB, ArgOffset); |
| 2112 | // FIXME: OriginSize should be: |
| 2113 | // alignTo(V % kMinOriginAlignment + Size, kMinOriginAlignment) |
| 2114 | unsigned OriginSize = alignTo(Size, A: kMinOriginAlignment); |
| 2115 | EntryIRB.CreateMemCpy( |
| 2116 | Dst: CpOriginPtr, |
| 2117 | /* by getShadowOriginPtr */ DstAlign: kMinOriginAlignment, Src: OriginPtr, |
| 2118 | /* by origin_tls[ArgOffset] */ SrcAlign: kMinOriginAlignment, |
| 2119 | Size: OriginSize); |
| 2120 | } |
| 2121 | } |
| 2122 | } |
| 2123 | |
| 2124 | if (!PropagateShadow || Overflow || FArg.hasByValAttr() || |
| 2125 | (MS.EagerChecks && FArg.hasAttribute(Kind: Attribute::NoUndef))) { |
| 2126 | ShadowPtr = getCleanShadow(V); |
| 2127 | setOrigin(V: A, Origin: getCleanOrigin()); |
| 2128 | } else { |
| 2129 | // Shadow over TLS |
| 2130 | Value *Base = getShadowPtrForArgument(IRB&: EntryIRB, ArgOffset); |
| 2131 | ShadowPtr = EntryIRB.CreateAlignedLoad(Ty: getShadowTy(V: &FArg), Ptr: Base, |
| 2132 | Align: kShadowTLSAlignment); |
| 2133 | if (MS.TrackOrigins) { |
| 2134 | Value *OriginPtr = getOriginPtrForArgument(IRB&: EntryIRB, ArgOffset); |
| 2135 | setOrigin(V: A, Origin: EntryIRB.CreateLoad(Ty: MS.OriginTy, Ptr: OriginPtr)); |
| 2136 | } |
| 2137 | } |
| 2138 | LLVM_DEBUG(dbgs() |
| 2139 | << " ARG: " << FArg << " ==> " << *ShadowPtr << "\n" ); |
| 2140 | break; |
| 2141 | } |
| 2142 | |
| 2143 | ArgOffset += alignTo(Size, A: kShadowTLSAlignment); |
| 2144 | } |
| 2145 | assert(ShadowPtr && "Could not find shadow for an argument" ); |
| 2146 | return ShadowPtr; |
| 2147 | } |
| 2148 | |
| 2149 | // Check for partially-undefined constant vectors |
| 2150 | // TODO: scalable vectors (this is hard because we do not have IRBuilder) |
| 2151 | if (isa<FixedVectorType>(Val: V->getType()) && isa<Constant>(Val: V) && |
| 2152 | cast<Constant>(Val: V)->containsUndefOrPoisonElement() && PropagateShadow && |
| 2153 | PoisonUndefVectors) { |
| 2154 | unsigned NumElems = cast<FixedVectorType>(Val: V->getType())->getNumElements(); |
| 2155 | SmallVector<Constant *, 32> ShadowVector(NumElems); |
| 2156 | for (unsigned i = 0; i != NumElems; ++i) { |
| 2157 | Constant *Elem = cast<Constant>(Val: V)->getAggregateElement(Elt: i); |
| 2158 | ShadowVector[i] = isa<UndefValue>(Val: Elem) ? getPoisonedShadow(V: Elem) |
| 2159 | : getCleanShadow(V: Elem); |
| 2160 | } |
| 2161 | |
| 2162 | Value *ShadowConstant = ConstantVector::get(V: ShadowVector); |
| 2163 | LLVM_DEBUG(dbgs() << "Partial undef constant vector: " << *V << " ==> " |
| 2164 | << *ShadowConstant << "\n" ); |
| 2165 | |
| 2166 | return ShadowConstant; |
| 2167 | } |
| 2168 | |
| 2169 | // TODO: partially-undefined constant arrays, structures, and nested types |
| 2170 | |
| 2171 | // For everything else the shadow is zero. |
| 2172 | return getCleanShadow(V); |
| 2173 | } |
| 2174 | |
| 2175 | /// Get the shadow for i-th argument of the instruction I. |
| 2176 | Value *getShadow(Instruction *I, int i) { |
| 2177 | return getShadow(V: I->getOperand(i)); |
| 2178 | } |
| 2179 | |
| 2180 | /// Get the origin for a value. |
| 2181 | Value *getOrigin(Value *V) { |
| 2182 | if (!MS.TrackOrigins) |
| 2183 | return nullptr; |
| 2184 | if (!PropagateShadow || isa<Constant>(Val: V) || isa<InlineAsm>(Val: V)) |
| 2185 | return getCleanOrigin(); |
| 2186 | assert((isa<Instruction>(V) || isa<Argument>(V)) && |
| 2187 | "Unexpected value type in getOrigin()" ); |
| 2188 | if (Instruction *I = dyn_cast<Instruction>(Val: V)) { |
| 2189 | if (I->getMetadata(KindID: LLVMContext::MD_nosanitize)) |
| 2190 | return getCleanOrigin(); |
| 2191 | } |
| 2192 | Value *Origin = OriginMap[V]; |
| 2193 | assert(Origin && "Missing origin" ); |
| 2194 | return Origin; |
| 2195 | } |
| 2196 | |
| 2197 | /// Get the origin for i-th argument of the instruction I. |
| 2198 | Value *getOrigin(Instruction *I, int i) { |
| 2199 | return getOrigin(V: I->getOperand(i)); |
| 2200 | } |
| 2201 | |
| 2202 | /// Remember the place where a shadow check should be inserted. |
| 2203 | /// |
| 2204 | /// This location will be later instrumented with a check that will print a |
| 2205 | /// UMR warning in runtime if the shadow value is not 0. |
| 2206 | void insertCheckShadow(Value *Shadow, Value *Origin, Instruction *OrigIns) { |
| 2207 | assert(Shadow); |
| 2208 | if (!InsertChecks) |
| 2209 | return; |
| 2210 | |
| 2211 | if (!DebugCounter::shouldExecute(Counter&: DebugInsertCheck)) { |
| 2212 | LLVM_DEBUG(dbgs() << "Skipping check of " << *Shadow << " before " |
| 2213 | << *OrigIns << "\n" ); |
| 2214 | return; |
| 2215 | } |
| 2216 | |
| 2217 | Type *ShadowTy = Shadow->getType(); |
| 2218 | if (isScalableNonVectorType(Ty: ShadowTy)) { |
| 2219 | LLVM_DEBUG(dbgs() << "Skipping check of scalable non-vector " << *Shadow |
| 2220 | << " before " << *OrigIns << "\n" ); |
| 2221 | return; |
| 2222 | } |
| 2223 | #ifndef NDEBUG |
| 2224 | assert((isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy) || |
| 2225 | isa<StructType>(ShadowTy) || isa<ArrayType>(ShadowTy)) && |
| 2226 | "Can only insert checks for integer, vector, and aggregate shadow " |
| 2227 | "types" ); |
| 2228 | #endif |
| 2229 | InstrumentationList.push_back( |
| 2230 | Elt: ShadowOriginAndInsertPoint(Shadow, Origin, OrigIns)); |
| 2231 | } |
| 2232 | |
| 2233 | /// Get shadow for value, and remember the place where a shadow check should |
| 2234 | /// be inserted. |
| 2235 | /// |
| 2236 | /// This location will be later instrumented with a check that will print a |
| 2237 | /// UMR warning in runtime if the value is not fully defined. |
| 2238 | void insertCheckShadowOf(Value *Val, Instruction *OrigIns) { |
| 2239 | assert(Val); |
| 2240 | Value *Shadow, *Origin; |
| 2241 | if (ClCheckConstantShadow) { |
| 2242 | Shadow = getShadow(V: Val); |
| 2243 | if (!Shadow) |
| 2244 | return; |
| 2245 | Origin = getOrigin(V: Val); |
| 2246 | } else { |
| 2247 | Shadow = dyn_cast_or_null<Instruction>(Val: getShadow(V: Val)); |
| 2248 | if (!Shadow) |
| 2249 | return; |
| 2250 | Origin = dyn_cast_or_null<Instruction>(Val: getOrigin(V: Val)); |
| 2251 | } |
| 2252 | insertCheckShadow(Shadow, Origin, OrigIns); |
| 2253 | } |
| 2254 | |
| 2255 | AtomicOrdering addReleaseOrdering(AtomicOrdering a) { |
| 2256 | switch (a) { |
| 2257 | case AtomicOrdering::NotAtomic: |
| 2258 | return AtomicOrdering::NotAtomic; |
| 2259 | case AtomicOrdering::Unordered: |
| 2260 | case AtomicOrdering::Monotonic: |
| 2261 | case AtomicOrdering::Release: |
| 2262 | return AtomicOrdering::Release; |
| 2263 | case AtomicOrdering::Acquire: |
| 2264 | case AtomicOrdering::AcquireRelease: |
| 2265 | return AtomicOrdering::AcquireRelease; |
| 2266 | case AtomicOrdering::SequentiallyConsistent: |
| 2267 | return AtomicOrdering::SequentiallyConsistent; |
| 2268 | } |
| 2269 | llvm_unreachable("Unknown ordering" ); |
| 2270 | } |
| 2271 | |
| 2272 | Value *makeAddReleaseOrderingTable(IRBuilder<> &IRB) { |
| 2273 | constexpr int NumOrderings = (int)AtomicOrderingCABI::seq_cst + 1; |
| 2274 | uint32_t OrderingTable[NumOrderings] = {}; |
| 2275 | |
| 2276 | OrderingTable[(int)AtomicOrderingCABI::relaxed] = |
| 2277 | OrderingTable[(int)AtomicOrderingCABI::release] = |
| 2278 | (int)AtomicOrderingCABI::release; |
| 2279 | OrderingTable[(int)AtomicOrderingCABI::consume] = |
| 2280 | OrderingTable[(int)AtomicOrderingCABI::acquire] = |
| 2281 | OrderingTable[(int)AtomicOrderingCABI::acq_rel] = |
| 2282 | (int)AtomicOrderingCABI::acq_rel; |
| 2283 | OrderingTable[(int)AtomicOrderingCABI::seq_cst] = |
| 2284 | (int)AtomicOrderingCABI::seq_cst; |
| 2285 | |
| 2286 | return ConstantDataVector::get(Context&: IRB.getContext(), Elts: OrderingTable); |
| 2287 | } |
| 2288 | |
| 2289 | AtomicOrdering addAcquireOrdering(AtomicOrdering a) { |
| 2290 | switch (a) { |
| 2291 | case AtomicOrdering::NotAtomic: |
| 2292 | return AtomicOrdering::NotAtomic; |
| 2293 | case AtomicOrdering::Unordered: |
| 2294 | case AtomicOrdering::Monotonic: |
| 2295 | case AtomicOrdering::Acquire: |
| 2296 | return AtomicOrdering::Acquire; |
| 2297 | case AtomicOrdering::Release: |
| 2298 | case AtomicOrdering::AcquireRelease: |
| 2299 | return AtomicOrdering::AcquireRelease; |
| 2300 | case AtomicOrdering::SequentiallyConsistent: |
| 2301 | return AtomicOrdering::SequentiallyConsistent; |
| 2302 | } |
| 2303 | llvm_unreachable("Unknown ordering" ); |
| 2304 | } |
| 2305 | |
| 2306 | Value *makeAddAcquireOrderingTable(IRBuilder<> &IRB) { |
| 2307 | constexpr int NumOrderings = (int)AtomicOrderingCABI::seq_cst + 1; |
| 2308 | uint32_t OrderingTable[NumOrderings] = {}; |
| 2309 | |
| 2310 | OrderingTable[(int)AtomicOrderingCABI::relaxed] = |
| 2311 | OrderingTable[(int)AtomicOrderingCABI::acquire] = |
| 2312 | OrderingTable[(int)AtomicOrderingCABI::consume] = |
| 2313 | (int)AtomicOrderingCABI::acquire; |
| 2314 | OrderingTable[(int)AtomicOrderingCABI::release] = |
| 2315 | OrderingTable[(int)AtomicOrderingCABI::acq_rel] = |
| 2316 | (int)AtomicOrderingCABI::acq_rel; |
| 2317 | OrderingTable[(int)AtomicOrderingCABI::seq_cst] = |
| 2318 | (int)AtomicOrderingCABI::seq_cst; |
| 2319 | |
| 2320 | return ConstantDataVector::get(Context&: IRB.getContext(), Elts: OrderingTable); |
| 2321 | } |
| 2322 | |
| 2323 | // ------------------- Visitors. |
| 2324 | using InstVisitor<MemorySanitizerVisitor>::visit; |
| 2325 | void visit(Instruction &I) { |
| 2326 | if (I.getMetadata(KindID: LLVMContext::MD_nosanitize)) |
| 2327 | return; |
| 2328 | // Don't want to visit if we're in the prologue |
| 2329 | if (isInPrologue(I)) |
| 2330 | return; |
| 2331 | if (!DebugCounter::shouldExecute(Counter&: DebugInstrumentInstruction)) { |
| 2332 | LLVM_DEBUG(dbgs() << "Skipping instruction: " << I << "\n" ); |
| 2333 | // We still need to set the shadow and origin to clean values. |
| 2334 | setShadow(V: &I, SV: getCleanShadow(V: &I)); |
| 2335 | setOrigin(V: &I, Origin: getCleanOrigin()); |
| 2336 | return; |
| 2337 | } |
| 2338 | |
| 2339 | Instructions.push_back(Elt: &I); |
| 2340 | } |
| 2341 | |
| 2342 | /// Instrument LoadInst |
| 2343 | /// |
| 2344 | /// Loads the corresponding shadow and (optionally) origin. |
| 2345 | /// Optionally, checks that the load address is fully defined. |
| 2346 | void visitLoadInst(LoadInst &I) { |
| 2347 | assert(I.getType()->isSized() && "Load type must have size" ); |
| 2348 | assert(!I.getMetadata(LLVMContext::MD_nosanitize)); |
| 2349 | NextNodeIRBuilder IRB(&I); |
| 2350 | Type *ShadowTy = getShadowTy(V: &I); |
| 2351 | Value *Addr = I.getPointerOperand(); |
| 2352 | Value *ShadowPtr = nullptr, *OriginPtr = nullptr; |
| 2353 | const Align Alignment = I.getAlign(); |
| 2354 | if (PropagateShadow) { |
| 2355 | std::tie(args&: ShadowPtr, args&: OriginPtr) = |
| 2356 | getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false); |
| 2357 | setShadow(V: &I, |
| 2358 | SV: IRB.CreateAlignedLoad(Ty: ShadowTy, Ptr: ShadowPtr, Align: Alignment, Name: "_msld" )); |
| 2359 | } else { |
| 2360 | setShadow(V: &I, SV: getCleanShadow(V: &I)); |
| 2361 | } |
| 2362 | |
| 2363 | if (ClCheckAccessAddress) |
| 2364 | insertCheckShadowOf(Val: I.getPointerOperand(), OrigIns: &I); |
| 2365 | |
| 2366 | if (I.isAtomic()) |
| 2367 | I.setOrdering(addAcquireOrdering(a: I.getOrdering())); |
| 2368 | |
| 2369 | if (MS.TrackOrigins) { |
| 2370 | if (PropagateShadow) { |
| 2371 | const Align OriginAlignment = std::max(a: kMinOriginAlignment, b: Alignment); |
| 2372 | setOrigin( |
| 2373 | V: &I, Origin: IRB.CreateAlignedLoad(Ty: MS.OriginTy, Ptr: OriginPtr, Align: OriginAlignment)); |
| 2374 | } else { |
| 2375 | setOrigin(V: &I, Origin: getCleanOrigin()); |
| 2376 | } |
| 2377 | } |
| 2378 | } |
| 2379 | |
| 2380 | /// Instrument StoreInst |
| 2381 | /// |
| 2382 | /// Stores the corresponding shadow and (optionally) origin. |
| 2383 | /// Optionally, checks that the store address is fully defined. |
| 2384 | void visitStoreInst(StoreInst &I) { |
| 2385 | StoreList.push_back(Elt: &I); |
| 2386 | if (ClCheckAccessAddress) |
| 2387 | insertCheckShadowOf(Val: I.getPointerOperand(), OrigIns: &I); |
| 2388 | } |
| 2389 | |
| 2390 | void handleCASOrRMW(Instruction &I) { |
| 2391 | assert(isa<AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I)); |
| 2392 | |
| 2393 | IRBuilder<> IRB(&I); |
| 2394 | Value *Addr = I.getOperand(i: 0); |
| 2395 | Value *Val = I.getOperand(i: 1); |
| 2396 | Value *ShadowPtr = getShadowOriginPtr(Addr, IRB, ShadowTy: getShadowTy(V: Val), Alignment: Align(1), |
| 2397 | /*isStore*/ true) |
| 2398 | .first; |
| 2399 | |
| 2400 | if (ClCheckAccessAddress) |
| 2401 | insertCheckShadowOf(Val: Addr, OrigIns: &I); |
| 2402 | |
| 2403 | // Only test the conditional argument of cmpxchg instruction. |
| 2404 | // The other argument can potentially be uninitialized, but we can not |
| 2405 | // detect this situation reliably without possible false positives. |
| 2406 | if (isa<AtomicCmpXchgInst>(Val: I)) |
| 2407 | insertCheckShadowOf(Val, OrigIns: &I); |
| 2408 | |
| 2409 | IRB.CreateStore(Val: getCleanShadow(V: Val), Ptr: ShadowPtr); |
| 2410 | |
| 2411 | setShadow(V: &I, SV: getCleanShadow(V: &I)); |
| 2412 | setOrigin(V: &I, Origin: getCleanOrigin()); |
| 2413 | } |
| 2414 | |
| 2415 | void visitAtomicRMWInst(AtomicRMWInst &I) { |
| 2416 | handleCASOrRMW(I); |
| 2417 | I.setOrdering(addReleaseOrdering(a: I.getOrdering())); |
| 2418 | } |
| 2419 | |
| 2420 | void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) { |
| 2421 | handleCASOrRMW(I); |
| 2422 | I.setSuccessOrdering(addReleaseOrdering(a: I.getSuccessOrdering())); |
| 2423 | } |
| 2424 | |
| 2425 | // Vector manipulation. |
| 2426 | void (ExtractElementInst &I) { |
| 2427 | insertCheckShadowOf(Val: I.getOperand(i_nocapture: 1), OrigIns: &I); |
| 2428 | IRBuilder<> IRB(&I); |
| 2429 | setShadow(V: &I, SV: IRB.CreateExtractElement(Vec: getShadow(I: &I, i: 0), Idx: I.getOperand(i_nocapture: 1), |
| 2430 | Name: "_msprop" )); |
| 2431 | setOrigin(V: &I, Origin: getOrigin(I: &I, i: 0)); |
| 2432 | } |
| 2433 | |
| 2434 | void visitInsertElementInst(InsertElementInst &I) { |
| 2435 | insertCheckShadowOf(Val: I.getOperand(i_nocapture: 2), OrigIns: &I); |
| 2436 | IRBuilder<> IRB(&I); |
| 2437 | auto *Shadow0 = getShadow(I: &I, i: 0); |
| 2438 | auto *Shadow1 = getShadow(I: &I, i: 1); |
| 2439 | setShadow(V: &I, SV: IRB.CreateInsertElement(Vec: Shadow0, NewElt: Shadow1, Idx: I.getOperand(i_nocapture: 2), |
| 2440 | Name: "_msprop" )); |
| 2441 | setOriginForNaryOp(I); |
| 2442 | } |
| 2443 | |
| 2444 | void visitShuffleVectorInst(ShuffleVectorInst &I) { |
| 2445 | IRBuilder<> IRB(&I); |
| 2446 | auto *Shadow0 = getShadow(I: &I, i: 0); |
| 2447 | auto *Shadow1 = getShadow(I: &I, i: 1); |
| 2448 | setShadow(V: &I, SV: IRB.CreateShuffleVector(V1: Shadow0, V2: Shadow1, Mask: I.getShuffleMask(), |
| 2449 | Name: "_msprop" )); |
| 2450 | setOriginForNaryOp(I); |
| 2451 | } |
| 2452 | |
| 2453 | // Casts. |
| 2454 | void visitSExtInst(SExtInst &I) { |
| 2455 | IRBuilder<> IRB(&I); |
| 2456 | setShadow(V: &I, SV: IRB.CreateSExt(V: getShadow(I: &I, i: 0), DestTy: I.getType(), Name: "_msprop" )); |
| 2457 | setOrigin(V: &I, Origin: getOrigin(I: &I, i: 0)); |
| 2458 | } |
| 2459 | |
| 2460 | void visitZExtInst(ZExtInst &I) { |
| 2461 | IRBuilder<> IRB(&I); |
| 2462 | setShadow(V: &I, SV: IRB.CreateZExt(V: getShadow(I: &I, i: 0), DestTy: I.getType(), Name: "_msprop" )); |
| 2463 | setOrigin(V: &I, Origin: getOrigin(I: &I, i: 0)); |
| 2464 | } |
| 2465 | |
| 2466 | void visitTruncInst(TruncInst &I) { |
| 2467 | IRBuilder<> IRB(&I); |
| 2468 | setShadow(V: &I, SV: IRB.CreateTrunc(V: getShadow(I: &I, i: 0), DestTy: I.getType(), Name: "_msprop" )); |
| 2469 | setOrigin(V: &I, Origin: getOrigin(I: &I, i: 0)); |
| 2470 | } |
| 2471 | |
| 2472 | void visitBitCastInst(BitCastInst &I) { |
| 2473 | // Special case: if this is the bitcast (there is exactly 1 allowed) between |
| 2474 | // a musttail call and a ret, don't instrument. New instructions are not |
| 2475 | // allowed after a musttail call. |
| 2476 | if (auto *CI = dyn_cast<CallInst>(Val: I.getOperand(i_nocapture: 0))) |
| 2477 | if (CI->isMustTailCall()) |
| 2478 | return; |
| 2479 | IRBuilder<> IRB(&I); |
| 2480 | setShadow(V: &I, SV: IRB.CreateBitCast(V: getShadow(I: &I, i: 0), DestTy: getShadowTy(V: &I))); |
| 2481 | setOrigin(V: &I, Origin: getOrigin(I: &I, i: 0)); |
| 2482 | } |
| 2483 | |
| 2484 | void visitPtrToIntInst(PtrToIntInst &I) { |
| 2485 | IRBuilder<> IRB(&I); |
| 2486 | setShadow(V: &I, SV: IRB.CreateIntCast(V: getShadow(I: &I, i: 0), DestTy: getShadowTy(V: &I), isSigned: false, |
| 2487 | Name: "_msprop_ptrtoint" )); |
| 2488 | setOrigin(V: &I, Origin: getOrigin(I: &I, i: 0)); |
| 2489 | } |
| 2490 | |
| 2491 | void visitIntToPtrInst(IntToPtrInst &I) { |
| 2492 | IRBuilder<> IRB(&I); |
| 2493 | setShadow(V: &I, SV: IRB.CreateIntCast(V: getShadow(I: &I, i: 0), DestTy: getShadowTy(V: &I), isSigned: false, |
| 2494 | Name: "_msprop_inttoptr" )); |
| 2495 | setOrigin(V: &I, Origin: getOrigin(I: &I, i: 0)); |
| 2496 | } |
| 2497 | |
| 2498 | void visitFPToSIInst(CastInst &I) { handleShadowOr(I); } |
| 2499 | void visitFPToUIInst(CastInst &I) { handleShadowOr(I); } |
| 2500 | void visitSIToFPInst(CastInst &I) { handleShadowOr(I); } |
| 2501 | void visitUIToFPInst(CastInst &I) { handleShadowOr(I); } |
| 2502 | void visitFPExtInst(CastInst &I) { handleShadowOr(I); } |
| 2503 | void visitFPTruncInst(CastInst &I) { handleShadowOr(I); } |
| 2504 | |
| 2505 | /// Generic handler to compute shadow for bitwise AND. |
| 2506 | /// |
| 2507 | /// This is used by 'visitAnd' but also as a primitive for other handlers. |
| 2508 | /// |
| 2509 | /// This code is precise: it implements the rule that "And" of an initialized |
| 2510 | /// zero bit always results in an initialized value: |
| 2511 | // 1&1 => 1; 0&1 => 0; p&1 => p; |
| 2512 | // 1&0 => 0; 0&0 => 0; p&0 => 0; |
| 2513 | // 1&p => p; 0&p => 0; p&p => p; |
| 2514 | // |
| 2515 | // S = (S1 & S2) | (V1 & S2) | (S1 & V2) |
| 2516 | Value *handleBitwiseAnd(IRBuilder<> &IRB, Value *V1, Value *V2, Value *S1, |
| 2517 | Value *S2) { |
| 2518 | Value *S1S2 = IRB.CreateAnd(LHS: S1, RHS: S2); |
| 2519 | Value *V1S2 = IRB.CreateAnd(LHS: V1, RHS: S2); |
| 2520 | Value *S1V2 = IRB.CreateAnd(LHS: S1, RHS: V2); |
| 2521 | |
| 2522 | if (V1->getType() != S1->getType()) { |
| 2523 | V1 = IRB.CreateIntCast(V: V1, DestTy: S1->getType(), isSigned: false); |
| 2524 | V2 = IRB.CreateIntCast(V: V2, DestTy: S2->getType(), isSigned: false); |
| 2525 | } |
| 2526 | |
| 2527 | return IRB.CreateOr(Ops: {S1S2, V1S2, S1V2}); |
| 2528 | } |
| 2529 | |
| 2530 | /// Handler for bitwise AND operator. |
| 2531 | void visitAnd(BinaryOperator &I) { |
| 2532 | IRBuilder<> IRB(&I); |
| 2533 | Value *V1 = I.getOperand(i_nocapture: 0); |
| 2534 | Value *V2 = I.getOperand(i_nocapture: 1); |
| 2535 | Value *S1 = getShadow(I: &I, i: 0); |
| 2536 | Value *S2 = getShadow(I: &I, i: 1); |
| 2537 | |
| 2538 | Value *OutShadow = handleBitwiseAnd(IRB, V1, V2, S1, S2); |
| 2539 | |
| 2540 | setShadow(V: &I, SV: OutShadow); |
| 2541 | setOriginForNaryOp(I); |
| 2542 | } |
| 2543 | |
| 2544 | void visitOr(BinaryOperator &I) { |
| 2545 | IRBuilder<> IRB(&I); |
| 2546 | // "Or" of 1 and a poisoned value results in unpoisoned value: |
| 2547 | // 1|1 => 1; 0|1 => 1; p|1 => 1; |
| 2548 | // 1|0 => 1; 0|0 => 0; p|0 => p; |
| 2549 | // 1|p => 1; 0|p => p; p|p => p; |
| 2550 | // |
| 2551 | // S = (S1 & S2) | (~V1 & S2) | (S1 & ~V2) |
| 2552 | // |
| 2553 | // If the "disjoint OR" property is violated, the result is poison, and |
| 2554 | // hence the entire shadow is uninitialized: |
| 2555 | // S = S | SignExt(V1 & V2 != 0) |
| 2556 | Value *S1 = getShadow(I: &I, i: 0); |
| 2557 | Value *S2 = getShadow(I: &I, i: 1); |
| 2558 | Value *V1 = I.getOperand(i_nocapture: 0); |
| 2559 | Value *V2 = I.getOperand(i_nocapture: 1); |
| 2560 | if (V1->getType() != S1->getType()) { |
| 2561 | V1 = IRB.CreateIntCast(V: V1, DestTy: S1->getType(), isSigned: false); |
| 2562 | V2 = IRB.CreateIntCast(V: V2, DestTy: S2->getType(), isSigned: false); |
| 2563 | } |
| 2564 | |
| 2565 | Value *NotV1 = IRB.CreateNot(V: V1); |
| 2566 | Value *NotV2 = IRB.CreateNot(V: V2); |
| 2567 | |
| 2568 | Value *S1S2 = IRB.CreateAnd(LHS: S1, RHS: S2); |
| 2569 | Value *S2NotV1 = IRB.CreateAnd(LHS: NotV1, RHS: S2); |
| 2570 | Value *S1NotV2 = IRB.CreateAnd(LHS: S1, RHS: NotV2); |
| 2571 | |
| 2572 | Value *S = IRB.CreateOr(Ops: {S1S2, S2NotV1, S1NotV2}); |
| 2573 | |
| 2574 | if (ClPreciseDisjointOr && cast<PossiblyDisjointInst>(Val: &I)->isDisjoint()) { |
| 2575 | Value *V1V2 = IRB.CreateAnd(LHS: V1, RHS: V2); |
| 2576 | Value *DisjointOrShadow = IRB.CreateSExt( |
| 2577 | V: IRB.CreateICmpNE(LHS: V1V2, RHS: getCleanShadow(V: V1V2)), DestTy: V1V2->getType()); |
| 2578 | S = IRB.CreateOr(LHS: S, RHS: DisjointOrShadow, Name: "_ms_disjoint" ); |
| 2579 | } |
| 2580 | |
| 2581 | setShadow(V: &I, SV: S); |
| 2582 | setOriginForNaryOp(I); |
| 2583 | } |
| 2584 | |
| 2585 | /// Default propagation of shadow and/or origin. |
| 2586 | /// |
| 2587 | /// This class implements the general case of shadow propagation, used in all |
| 2588 | /// cases where we don't know and/or don't care about what the operation |
| 2589 | /// actually does. It converts all input shadow values to a common type |
| 2590 | /// (extending or truncating as necessary), and bitwise OR's them. |
| 2591 | /// |
| 2592 | /// This is much cheaper than inserting checks (i.e. requiring inputs to be |
| 2593 | /// fully initialized), and less prone to false positives. |
| 2594 | /// |
| 2595 | /// This class also implements the general case of origin propagation. For a |
| 2596 | /// Nary operation, result origin is set to the origin of an argument that is |
| 2597 | /// not entirely initialized. If there is more than one such arguments, the |
| 2598 | /// rightmost of them is picked. It does not matter which one is picked if all |
| 2599 | /// arguments are initialized. |
| 2600 | template <bool CombineShadow> class Combiner { |
| 2601 | Value *Shadow = nullptr; |
| 2602 | Value *Origin = nullptr; |
| 2603 | IRBuilder<> &IRB; |
| 2604 | MemorySanitizerVisitor *MSV; |
| 2605 | |
| 2606 | public: |
| 2607 | Combiner(MemorySanitizerVisitor *MSV, IRBuilder<> &IRB) |
| 2608 | : IRB(IRB), MSV(MSV) {} |
| 2609 | |
| 2610 | /// Add a pair of shadow and origin values to the mix. |
| 2611 | Combiner &Add(Value *OpShadow, Value *OpOrigin) { |
| 2612 | if (CombineShadow) { |
| 2613 | assert(OpShadow); |
| 2614 | if (!Shadow) |
| 2615 | Shadow = OpShadow; |
| 2616 | else { |
| 2617 | OpShadow = MSV->CreateShadowCast(IRB, V: OpShadow, dstTy: Shadow->getType()); |
| 2618 | Shadow = IRB.CreateOr(LHS: Shadow, RHS: OpShadow, Name: "_msprop" ); |
| 2619 | } |
| 2620 | } |
| 2621 | |
| 2622 | if (MSV->MS.TrackOrigins) { |
| 2623 | assert(OpOrigin); |
| 2624 | if (!Origin) { |
| 2625 | Origin = OpOrigin; |
| 2626 | } else { |
| 2627 | Constant *ConstOrigin = dyn_cast<Constant>(Val: OpOrigin); |
| 2628 | // No point in adding something that might result in 0 origin value. |
| 2629 | if (!ConstOrigin || !ConstOrigin->isNullValue()) { |
| 2630 | Value *Cond = MSV->convertToBool(V: OpShadow, IRB); |
| 2631 | Origin = IRB.CreateSelect(C: Cond, True: OpOrigin, False: Origin); |
| 2632 | } |
| 2633 | } |
| 2634 | } |
| 2635 | return *this; |
| 2636 | } |
| 2637 | |
| 2638 | /// Add an application value to the mix. |
| 2639 | Combiner &Add(Value *V) { |
| 2640 | Value *OpShadow = MSV->getShadow(V); |
| 2641 | Value *OpOrigin = MSV->MS.TrackOrigins ? MSV->getOrigin(V) : nullptr; |
| 2642 | return Add(OpShadow, OpOrigin); |
| 2643 | } |
| 2644 | |
| 2645 | /// Set the current combined values as the given instruction's shadow |
| 2646 | /// and origin. |
| 2647 | void Done(Instruction *I) { |
| 2648 | if (CombineShadow) { |
| 2649 | assert(Shadow); |
| 2650 | Shadow = MSV->CreateShadowCast(IRB, V: Shadow, dstTy: MSV->getShadowTy(V: I)); |
| 2651 | MSV->setShadow(V: I, SV: Shadow); |
| 2652 | } |
| 2653 | if (MSV->MS.TrackOrigins) { |
| 2654 | assert(Origin); |
| 2655 | MSV->setOrigin(V: I, Origin); |
| 2656 | } |
| 2657 | } |
| 2658 | |
| 2659 | /// Store the current combined value at the specified origin |
| 2660 | /// location. |
| 2661 | void DoneAndStoreOrigin(TypeSize TS, Value *OriginPtr) { |
| 2662 | if (MSV->MS.TrackOrigins) { |
| 2663 | assert(Origin); |
| 2664 | MSV->paintOrigin(IRB, Origin, OriginPtr, TS, Alignment: kMinOriginAlignment); |
| 2665 | } |
| 2666 | } |
| 2667 | }; |
| 2668 | |
| 2669 | using ShadowAndOriginCombiner = Combiner<true>; |
| 2670 | using OriginCombiner = Combiner<false>; |
| 2671 | |
| 2672 | /// Propagate origin for arbitrary operation. |
| 2673 | void setOriginForNaryOp(Instruction &I) { |
| 2674 | if (!MS.TrackOrigins) |
| 2675 | return; |
| 2676 | IRBuilder<> IRB(&I); |
| 2677 | OriginCombiner OC(this, IRB); |
| 2678 | for (Use &Op : I.operands()) |
| 2679 | OC.Add(V: Op.get()); |
| 2680 | OC.Done(I: &I); |
| 2681 | } |
| 2682 | |
| 2683 | size_t VectorOrPrimitiveTypeSizeInBits(Type *Ty) { |
| 2684 | assert(!(Ty->isVectorTy() && Ty->getScalarType()->isPointerTy()) && |
| 2685 | "Vector of pointers is not a valid shadow type" ); |
| 2686 | return Ty->isVectorTy() ? cast<FixedVectorType>(Val: Ty)->getNumElements() * |
| 2687 | Ty->getScalarSizeInBits() |
| 2688 | : Ty->getPrimitiveSizeInBits(); |
| 2689 | } |
| 2690 | |
| 2691 | /// Cast between two shadow types, extending or truncating as |
| 2692 | /// necessary. |
| 2693 | Value *CreateShadowCast(IRBuilder<> &IRB, Value *V, Type *dstTy, |
| 2694 | bool Signed = false) { |
| 2695 | Type *srcTy = V->getType(); |
| 2696 | if (srcTy == dstTy) |
| 2697 | return V; |
| 2698 | size_t srcSizeInBits = VectorOrPrimitiveTypeSizeInBits(Ty: srcTy); |
| 2699 | size_t dstSizeInBits = VectorOrPrimitiveTypeSizeInBits(Ty: dstTy); |
| 2700 | if (srcSizeInBits > 1 && dstSizeInBits == 1) |
| 2701 | return IRB.CreateICmpNE(LHS: V, RHS: getCleanShadow(V)); |
| 2702 | |
| 2703 | if (dstTy->isIntegerTy() && srcTy->isIntegerTy()) |
| 2704 | return IRB.CreateIntCast(V, DestTy: dstTy, isSigned: Signed); |
| 2705 | if (dstTy->isVectorTy() && srcTy->isVectorTy() && |
| 2706 | cast<VectorType>(Val: dstTy)->getElementCount() == |
| 2707 | cast<VectorType>(Val: srcTy)->getElementCount()) |
| 2708 | return IRB.CreateIntCast(V, DestTy: dstTy, isSigned: Signed); |
| 2709 | Value *V1 = IRB.CreateBitCast(V, DestTy: Type::getIntNTy(C&: *MS.C, N: srcSizeInBits)); |
| 2710 | Value *V2 = |
| 2711 | IRB.CreateIntCast(V: V1, DestTy: Type::getIntNTy(C&: *MS.C, N: dstSizeInBits), isSigned: Signed); |
| 2712 | return IRB.CreateBitCast(V: V2, DestTy: dstTy); |
| 2713 | // TODO: handle struct types. |
| 2714 | } |
| 2715 | |
| 2716 | /// Cast an application value to the type of its own shadow. |
| 2717 | Value *CreateAppToShadowCast(IRBuilder<> &IRB, Value *V) { |
| 2718 | Type *ShadowTy = getShadowTy(V); |
| 2719 | if (V->getType() == ShadowTy) |
| 2720 | return V; |
| 2721 | if (V->getType()->isPtrOrPtrVectorTy()) |
| 2722 | return IRB.CreatePtrToInt(V, DestTy: ShadowTy); |
| 2723 | else |
| 2724 | return IRB.CreateBitCast(V, DestTy: ShadowTy); |
| 2725 | } |
| 2726 | |
| 2727 | /// Propagate shadow for arbitrary operation. |
| 2728 | void handleShadowOr(Instruction &I) { |
| 2729 | IRBuilder<> IRB(&I); |
| 2730 | ShadowAndOriginCombiner SC(this, IRB); |
| 2731 | for (Use &Op : I.operands()) |
| 2732 | SC.Add(V: Op.get()); |
| 2733 | SC.Done(I: &I); |
| 2734 | } |
| 2735 | |
| 2736 | // Perform a bitwise OR on the horizontal pairs (or other specified grouping) |
| 2737 | // of elements. |
| 2738 | // |
| 2739 | // For example, suppose we have: |
| 2740 | // VectorA: <a0, a1, a2, a3, a4, a5> |
| 2741 | // VectorB: <b0, b1, b2, b3, b4, b5> |
| 2742 | // ReductionFactor: 3 |
| 2743 | // Shards: 1 |
| 2744 | // The output would be: |
| 2745 | // <a0|a1|a2, a3|a4|a5, b0|b1|b2, b3|b4|b5> |
| 2746 | // |
| 2747 | // If we have: |
| 2748 | // VectorA: <a0, a1, a2, a3, a4, a5, a6, a7> |
| 2749 | // VectorB: <b0, b1, b2, b3, b4, b5, b6, b7> |
| 2750 | // ReductionFactor: 2 |
| 2751 | // Shards: 2 |
| 2752 | // then a and be each have 2 "shards", resulting in the output being |
| 2753 | // interleaved: |
| 2754 | // <a0|a1, a2|a3, b0|b1, b2|b3, a4|a5, a6|a7, b4|b5, b6|b7> |
| 2755 | // |
| 2756 | // This is convenient for instrumenting horizontal add/sub. |
| 2757 | // For bitwise OR on "vertical" pairs, see maybeHandleSimpleNomemIntrinsic(). |
| 2758 | Value *horizontalReduce(IntrinsicInst &I, unsigned ReductionFactor, |
| 2759 | unsigned Shards, Value *VectorA, Value *VectorB) { |
| 2760 | assert(isa<FixedVectorType>(VectorA->getType())); |
| 2761 | unsigned NumElems = |
| 2762 | cast<FixedVectorType>(Val: VectorA->getType())->getNumElements(); |
| 2763 | |
| 2764 | [[maybe_unused]] unsigned TotalNumElems = NumElems; |
| 2765 | if (VectorB) { |
| 2766 | assert(VectorA->getType() == VectorB->getType()); |
| 2767 | TotalNumElems *= 2; |
| 2768 | } |
| 2769 | |
| 2770 | assert(NumElems % (ReductionFactor * Shards) == 0); |
| 2771 | |
| 2772 | Value *Or = nullptr; |
| 2773 | |
| 2774 | IRBuilder<> IRB(&I); |
| 2775 | for (unsigned i = 0; i < ReductionFactor; i++) { |
| 2776 | SmallVector<int, 16> Mask; |
| 2777 | |
| 2778 | for (unsigned j = 0; j < Shards; j++) { |
| 2779 | unsigned Offset = NumElems / Shards * j; |
| 2780 | |
| 2781 | for (unsigned X = 0; X < NumElems / Shards; X += ReductionFactor) |
| 2782 | Mask.push_back(Elt: Offset + X + i); |
| 2783 | |
| 2784 | if (VectorB) { |
| 2785 | for (unsigned X = 0; X < NumElems / Shards; X += ReductionFactor) |
| 2786 | Mask.push_back(Elt: NumElems + Offset + X + i); |
| 2787 | } |
| 2788 | } |
| 2789 | |
| 2790 | Value *Masked; |
| 2791 | if (VectorB) |
| 2792 | Masked = IRB.CreateShuffleVector(V1: VectorA, V2: VectorB, Mask); |
| 2793 | else |
| 2794 | Masked = IRB.CreateShuffleVector(V: VectorA, Mask); |
| 2795 | |
| 2796 | if (Or) |
| 2797 | Or = IRB.CreateOr(LHS: Or, RHS: Masked); |
| 2798 | else |
| 2799 | Or = Masked; |
| 2800 | } |
| 2801 | |
| 2802 | return Or; |
| 2803 | } |
| 2804 | |
| 2805 | /// Propagate shadow for 1- or 2-vector intrinsics that combine adjacent |
| 2806 | /// fields. |
| 2807 | /// |
| 2808 | /// e.g., <2 x i32> @llvm.aarch64.neon.saddlp.v2i32.v4i16(<4 x i16>) |
| 2809 | /// <16 x i8> @llvm.aarch64.neon.addp.v16i8(<16 x i8>, <16 x i8>) |
| 2810 | void handlePairwiseShadowOrIntrinsic(IntrinsicInst &I, unsigned Shards) { |
| 2811 | assert(I.arg_size() == 1 || I.arg_size() == 2); |
| 2812 | |
| 2813 | assert(I.getType()->isVectorTy()); |
| 2814 | assert(I.getArgOperand(0)->getType()->isVectorTy()); |
| 2815 | |
| 2816 | [[maybe_unused]] FixedVectorType *ParamType = |
| 2817 | cast<FixedVectorType>(Val: I.getArgOperand(i: 0)->getType()); |
| 2818 | assert((I.arg_size() != 2) || |
| 2819 | (ParamType == cast<FixedVectorType>(I.getArgOperand(1)->getType()))); |
| 2820 | [[maybe_unused]] FixedVectorType *ReturnType = |
| 2821 | cast<FixedVectorType>(Val: I.getType()); |
| 2822 | assert(ParamType->getNumElements() * I.arg_size() == |
| 2823 | 2 * ReturnType->getNumElements()); |
| 2824 | |
| 2825 | IRBuilder<> IRB(&I); |
| 2826 | |
| 2827 | // Horizontal OR of shadow |
| 2828 | Value *FirstArgShadow = getShadow(I: &I, i: 0); |
| 2829 | Value *SecondArgShadow = nullptr; |
| 2830 | if (I.arg_size() == 2) |
| 2831 | SecondArgShadow = getShadow(I: &I, i: 1); |
| 2832 | |
| 2833 | Value *OrShadow = horizontalReduce(I, /*ReductionFactor=*/2, Shards, |
| 2834 | VectorA: FirstArgShadow, VectorB: SecondArgShadow); |
| 2835 | |
| 2836 | OrShadow = CreateShadowCast(IRB, V: OrShadow, dstTy: getShadowTy(V: &I)); |
| 2837 | |
| 2838 | setShadow(V: &I, SV: OrShadow); |
| 2839 | setOriginForNaryOp(I); |
| 2840 | } |
| 2841 | |
| 2842 | /// Propagate shadow for 1- or 2-vector intrinsics that combine adjacent |
| 2843 | /// fields, with the parameters reinterpreted to have elements of a specified |
| 2844 | /// width. For example: |
| 2845 | /// @llvm.x86.ssse3.phadd.w(<1 x i64> [[VAR1]], <1 x i64> [[VAR2]]) |
| 2846 | /// conceptually operates on |
| 2847 | /// (<4 x i16> [[VAR1]], <4 x i16> [[VAR2]]) |
| 2848 | /// and can be handled with ReinterpretElemWidth == 16. |
| 2849 | void handlePairwiseShadowOrIntrinsic(IntrinsicInst &I, unsigned Shards, |
| 2850 | int ReinterpretElemWidth) { |
| 2851 | assert(I.arg_size() == 1 || I.arg_size() == 2); |
| 2852 | |
| 2853 | assert(I.getType()->isVectorTy()); |
| 2854 | assert(I.getArgOperand(0)->getType()->isVectorTy()); |
| 2855 | |
| 2856 | FixedVectorType *ParamType = |
| 2857 | cast<FixedVectorType>(Val: I.getArgOperand(i: 0)->getType()); |
| 2858 | assert((I.arg_size() != 2) || |
| 2859 | (ParamType == cast<FixedVectorType>(I.getArgOperand(1)->getType()))); |
| 2860 | |
| 2861 | [[maybe_unused]] FixedVectorType *ReturnType = |
| 2862 | cast<FixedVectorType>(Val: I.getType()); |
| 2863 | assert(ParamType->getNumElements() * I.arg_size() == |
| 2864 | 2 * ReturnType->getNumElements()); |
| 2865 | |
| 2866 | IRBuilder<> IRB(&I); |
| 2867 | |
| 2868 | FixedVectorType *ReinterpretShadowTy = nullptr; |
| 2869 | assert(isAligned(Align(ReinterpretElemWidth), |
| 2870 | ParamType->getPrimitiveSizeInBits())); |
| 2871 | ReinterpretShadowTy = FixedVectorType::get( |
| 2872 | ElementType: IRB.getIntNTy(N: ReinterpretElemWidth), |
| 2873 | NumElts: ParamType->getPrimitiveSizeInBits() / ReinterpretElemWidth); |
| 2874 | |
| 2875 | // Horizontal OR of shadow |
| 2876 | Value *FirstArgShadow = getShadow(I: &I, i: 0); |
| 2877 | FirstArgShadow = IRB.CreateBitCast(V: FirstArgShadow, DestTy: ReinterpretShadowTy); |
| 2878 | |
| 2879 | // If we had two parameters each with an odd number of elements, the total |
| 2880 | // number of elements is even, but we have never seen this in extant |
| 2881 | // instruction sets, so we enforce that each parameter must have an even |
| 2882 | // number of elements. |
| 2883 | assert(isAligned( |
| 2884 | Align(2), |
| 2885 | cast<FixedVectorType>(FirstArgShadow->getType())->getNumElements())); |
| 2886 | |
| 2887 | Value *SecondArgShadow = nullptr; |
| 2888 | if (I.arg_size() == 2) { |
| 2889 | SecondArgShadow = getShadow(I: &I, i: 1); |
| 2890 | SecondArgShadow = IRB.CreateBitCast(V: SecondArgShadow, DestTy: ReinterpretShadowTy); |
| 2891 | } |
| 2892 | |
| 2893 | Value *OrShadow = horizontalReduce(I, /*ReductionFactor=*/2, Shards, |
| 2894 | VectorA: FirstArgShadow, VectorB: SecondArgShadow); |
| 2895 | |
| 2896 | OrShadow = CreateShadowCast(IRB, V: OrShadow, dstTy: getShadowTy(V: &I)); |
| 2897 | |
| 2898 | setShadow(V: &I, SV: OrShadow); |
| 2899 | setOriginForNaryOp(I); |
| 2900 | } |
| 2901 | |
| 2902 | void visitFNeg(UnaryOperator &I) { handleShadowOr(I); } |
| 2903 | |
| 2904 | // Handle multiplication by constant. |
| 2905 | // |
| 2906 | // Handle a special case of multiplication by constant that may have one or |
| 2907 | // more zeros in the lower bits. This makes corresponding number of lower bits |
| 2908 | // of the result zero as well. We model it by shifting the other operand |
| 2909 | // shadow left by the required number of bits. Effectively, we transform |
| 2910 | // (X * (A * 2**B)) to ((X << B) * A) and instrument (X << B) as (Sx << B). |
| 2911 | // We use multiplication by 2**N instead of shift to cover the case of |
| 2912 | // multiplication by 0, which may occur in some elements of a vector operand. |
| 2913 | void handleMulByConstant(BinaryOperator &I, Constant *ConstArg, |
| 2914 | Value *OtherArg) { |
| 2915 | Constant *ShadowMul; |
| 2916 | Type *Ty = ConstArg->getType(); |
| 2917 | if (auto *VTy = dyn_cast<VectorType>(Val: Ty)) { |
| 2918 | unsigned NumElements = cast<FixedVectorType>(Val: VTy)->getNumElements(); |
| 2919 | Type *EltTy = VTy->getElementType(); |
| 2920 | SmallVector<Constant *, 16> Elements; |
| 2921 | for (unsigned Idx = 0; Idx < NumElements; ++Idx) { |
| 2922 | if (ConstantInt *Elt = |
| 2923 | dyn_cast<ConstantInt>(Val: ConstArg->getAggregateElement(Elt: Idx))) { |
| 2924 | const APInt &V = Elt->getValue(); |
| 2925 | APInt V2 = APInt(V.getBitWidth(), 1) << V.countr_zero(); |
| 2926 | Elements.push_back(Elt: ConstantInt::get(Ty: EltTy, V: V2)); |
| 2927 | } else { |
| 2928 | Elements.push_back(Elt: ConstantInt::get(Ty: EltTy, V: 1)); |
| 2929 | } |
| 2930 | } |
| 2931 | ShadowMul = ConstantVector::get(V: Elements); |
| 2932 | } else { |
| 2933 | if (ConstantInt *Elt = dyn_cast<ConstantInt>(Val: ConstArg)) { |
| 2934 | const APInt &V = Elt->getValue(); |
| 2935 | APInt V2 = APInt(V.getBitWidth(), 1) << V.countr_zero(); |
| 2936 | ShadowMul = ConstantInt::get(Ty, V: V2); |
| 2937 | } else { |
| 2938 | ShadowMul = ConstantInt::get(Ty, V: 1); |
| 2939 | } |
| 2940 | } |
| 2941 | |
| 2942 | IRBuilder<> IRB(&I); |
| 2943 | setShadow(V: &I, |
| 2944 | SV: IRB.CreateMul(LHS: getShadow(V: OtherArg), RHS: ShadowMul, Name: "msprop_mul_cst" )); |
| 2945 | setOrigin(V: &I, Origin: getOrigin(V: OtherArg)); |
| 2946 | } |
| 2947 | |
| 2948 | void visitMul(BinaryOperator &I) { |
| 2949 | Constant *constOp0 = dyn_cast<Constant>(Val: I.getOperand(i_nocapture: 0)); |
| 2950 | Constant *constOp1 = dyn_cast<Constant>(Val: I.getOperand(i_nocapture: 1)); |
| 2951 | if (constOp0 && !constOp1) |
| 2952 | handleMulByConstant(I, ConstArg: constOp0, OtherArg: I.getOperand(i_nocapture: 1)); |
| 2953 | else if (constOp1 && !constOp0) |
| 2954 | handleMulByConstant(I, ConstArg: constOp1, OtherArg: I.getOperand(i_nocapture: 0)); |
| 2955 | else |
| 2956 | handleShadowOr(I); |
| 2957 | } |
| 2958 | |
| 2959 | void visitFAdd(BinaryOperator &I) { handleShadowOr(I); } |
| 2960 | void visitFSub(BinaryOperator &I) { handleShadowOr(I); } |
| 2961 | void visitFMul(BinaryOperator &I) { handleShadowOr(I); } |
| 2962 | void visitAdd(BinaryOperator &I) { handleShadowOr(I); } |
| 2963 | void visitSub(BinaryOperator &I) { handleShadowOr(I); } |
| 2964 | void visitXor(BinaryOperator &I) { handleShadowOr(I); } |
| 2965 | |
| 2966 | void handleIntegerDiv(Instruction &I) { |
| 2967 | IRBuilder<> IRB(&I); |
| 2968 | // Strict on the second argument. |
| 2969 | insertCheckShadowOf(Val: I.getOperand(i: 1), OrigIns: &I); |
| 2970 | setShadow(V: &I, SV: getShadow(I: &I, i: 0)); |
| 2971 | setOrigin(V: &I, Origin: getOrigin(I: &I, i: 0)); |
| 2972 | } |
| 2973 | |
| 2974 | void visitUDiv(BinaryOperator &I) { handleIntegerDiv(I); } |
| 2975 | void visitSDiv(BinaryOperator &I) { handleIntegerDiv(I); } |
| 2976 | void visitURem(BinaryOperator &I) { handleIntegerDiv(I); } |
| 2977 | void visitSRem(BinaryOperator &I) { handleIntegerDiv(I); } |
| 2978 | |
| 2979 | // Floating point division is side-effect free. We can not require that the |
| 2980 | // divisor is fully initialized and must propagate shadow. See PR37523. |
| 2981 | void visitFDiv(BinaryOperator &I) { handleShadowOr(I); } |
| 2982 | void visitFRem(BinaryOperator &I) { handleShadowOr(I); } |
| 2983 | |
| 2984 | /// Instrument == and != comparisons. |
| 2985 | /// |
| 2986 | /// Sometimes the comparison result is known even if some of the bits of the |
| 2987 | /// arguments are not. |
| 2988 | void handleEqualityComparison(ICmpInst &I) { |
| 2989 | IRBuilder<> IRB(&I); |
| 2990 | Value *A = I.getOperand(i_nocapture: 0); |
| 2991 | Value *B = I.getOperand(i_nocapture: 1); |
| 2992 | Value *Sa = getShadow(V: A); |
| 2993 | Value *Sb = getShadow(V: B); |
| 2994 | |
| 2995 | // Get rid of pointers and vectors of pointers. |
| 2996 | // For ints (and vectors of ints), types of A and Sa match, |
| 2997 | // and this is a no-op. |
| 2998 | A = IRB.CreatePointerCast(V: A, DestTy: Sa->getType()); |
| 2999 | B = IRB.CreatePointerCast(V: B, DestTy: Sb->getType()); |
| 3000 | |
| 3001 | // A == B <==> (C = A^B) == 0 |
| 3002 | // A != B <==> (C = A^B) != 0 |
| 3003 | // Sc = Sa | Sb |
| 3004 | Value *C = IRB.CreateXor(LHS: A, RHS: B); |
| 3005 | Value *Sc = IRB.CreateOr(LHS: Sa, RHS: Sb); |
| 3006 | // Now dealing with i = (C == 0) comparison (or C != 0, does not matter now) |
| 3007 | // Result is defined if one of the following is true |
| 3008 | // * there is a defined 1 bit in C |
| 3009 | // * C is fully defined |
| 3010 | // Si = !(C & ~Sc) && Sc |
| 3011 | Value *Zero = Constant::getNullValue(Ty: Sc->getType()); |
| 3012 | Value *MinusOne = Constant::getAllOnesValue(Ty: Sc->getType()); |
| 3013 | Value *LHS = IRB.CreateICmpNE(LHS: Sc, RHS: Zero); |
| 3014 | Value *RHS = |
| 3015 | IRB.CreateICmpEQ(LHS: IRB.CreateAnd(LHS: IRB.CreateXor(LHS: Sc, RHS: MinusOne), RHS: C), RHS: Zero); |
| 3016 | Value *Si = IRB.CreateAnd(LHS, RHS); |
| 3017 | Si->setName("_msprop_icmp" ); |
| 3018 | setShadow(V: &I, SV: Si); |
| 3019 | setOriginForNaryOp(I); |
| 3020 | } |
| 3021 | |
| 3022 | /// Instrument relational comparisons. |
| 3023 | /// |
| 3024 | /// This function does exact shadow propagation for all relational |
| 3025 | /// comparisons of integers, pointers and vectors of those. |
| 3026 | /// FIXME: output seems suboptimal when one of the operands is a constant |
| 3027 | void handleRelationalComparisonExact(ICmpInst &I) { |
| 3028 | IRBuilder<> IRB(&I); |
| 3029 | Value *A = I.getOperand(i_nocapture: 0); |
| 3030 | Value *B = I.getOperand(i_nocapture: 1); |
| 3031 | Value *Sa = getShadow(V: A); |
| 3032 | Value *Sb = getShadow(V: B); |
| 3033 | |
| 3034 | // Get rid of pointers and vectors of pointers. |
| 3035 | // For ints (and vectors of ints), types of A and Sa match, |
| 3036 | // and this is a no-op. |
| 3037 | A = IRB.CreatePointerCast(V: A, DestTy: Sa->getType()); |
| 3038 | B = IRB.CreatePointerCast(V: B, DestTy: Sb->getType()); |
| 3039 | |
| 3040 | // Let [a0, a1] be the interval of possible values of A, taking into account |
| 3041 | // its undefined bits. Let [b0, b1] be the interval of possible values of B. |
| 3042 | // Then (A cmp B) is defined iff (a0 cmp b1) == (a1 cmp b0). |
| 3043 | bool IsSigned = I.isSigned(); |
| 3044 | |
| 3045 | auto GetMinMaxUnsigned = [&](Value *V, Value *S) { |
| 3046 | if (IsSigned) { |
| 3047 | // Sign-flip to map from signed range to unsigned range. Relation A vs B |
| 3048 | // should be preserved, if checked with `getUnsignedPredicate()`. |
| 3049 | // Relationship between Amin, Amax, Bmin, Bmax also will not be |
| 3050 | // affected, as they are created by effectively adding/substructing from |
| 3051 | // A (or B) a value, derived from shadow, with no overflow, either |
| 3052 | // before or after sign flip. |
| 3053 | APInt MinVal = |
| 3054 | APInt::getSignedMinValue(numBits: V->getType()->getScalarSizeInBits()); |
| 3055 | V = IRB.CreateXor(LHS: V, RHS: ConstantInt::get(Ty: V->getType(), V: MinVal)); |
| 3056 | } |
| 3057 | // Minimize undefined bits. |
| 3058 | Value *Min = IRB.CreateAnd(LHS: V, RHS: IRB.CreateNot(V: S)); |
| 3059 | Value *Max = IRB.CreateOr(LHS: V, RHS: S); |
| 3060 | return std::make_pair(x&: Min, y&: Max); |
| 3061 | }; |
| 3062 | |
| 3063 | auto [Amin, Amax] = GetMinMaxUnsigned(A, Sa); |
| 3064 | auto [Bmin, Bmax] = GetMinMaxUnsigned(B, Sb); |
| 3065 | Value *S1 = IRB.CreateICmp(P: I.getUnsignedPredicate(), LHS: Amin, RHS: Bmax); |
| 3066 | Value *S2 = IRB.CreateICmp(P: I.getUnsignedPredicate(), LHS: Amax, RHS: Bmin); |
| 3067 | |
| 3068 | Value *Si = IRB.CreateXor(LHS: S1, RHS: S2); |
| 3069 | setShadow(V: &I, SV: Si); |
| 3070 | setOriginForNaryOp(I); |
| 3071 | } |
| 3072 | |
| 3073 | /// Instrument signed relational comparisons. |
| 3074 | /// |
| 3075 | /// Handle sign bit tests: x<0, x>=0, x<=-1, x>-1 by propagating the highest |
| 3076 | /// bit of the shadow. Everything else is delegated to handleShadowOr(). |
| 3077 | void handleSignedRelationalComparison(ICmpInst &I) { |
| 3078 | Constant *constOp; |
| 3079 | Value *op = nullptr; |
| 3080 | CmpInst::Predicate pre; |
| 3081 | if ((constOp = dyn_cast<Constant>(Val: I.getOperand(i_nocapture: 1)))) { |
| 3082 | op = I.getOperand(i_nocapture: 0); |
| 3083 | pre = I.getPredicate(); |
| 3084 | } else if ((constOp = dyn_cast<Constant>(Val: I.getOperand(i_nocapture: 0)))) { |
| 3085 | op = I.getOperand(i_nocapture: 1); |
| 3086 | pre = I.getSwappedPredicate(); |
| 3087 | } else { |
| 3088 | handleShadowOr(I); |
| 3089 | return; |
| 3090 | } |
| 3091 | |
| 3092 | if ((constOp->isNullValue() && |
| 3093 | (pre == CmpInst::ICMP_SLT || pre == CmpInst::ICMP_SGE)) || |
| 3094 | (constOp->isAllOnesValue() && |
| 3095 | (pre == CmpInst::ICMP_SGT || pre == CmpInst::ICMP_SLE))) { |
| 3096 | IRBuilder<> IRB(&I); |
| 3097 | Value *Shadow = IRB.CreateICmpSLT(LHS: getShadow(V: op), RHS: getCleanShadow(V: op), |
| 3098 | Name: "_msprop_icmp_s" ); |
| 3099 | setShadow(V: &I, SV: Shadow); |
| 3100 | setOrigin(V: &I, Origin: getOrigin(V: op)); |
| 3101 | } else { |
| 3102 | handleShadowOr(I); |
| 3103 | } |
| 3104 | } |
| 3105 | |
| 3106 | void visitICmpInst(ICmpInst &I) { |
| 3107 | if (!ClHandleICmp) { |
| 3108 | handleShadowOr(I); |
| 3109 | return; |
| 3110 | } |
| 3111 | if (I.isEquality()) { |
| 3112 | handleEqualityComparison(I); |
| 3113 | return; |
| 3114 | } |
| 3115 | |
| 3116 | assert(I.isRelational()); |
| 3117 | if (ClHandleICmpExact) { |
| 3118 | handleRelationalComparisonExact(I); |
| 3119 | return; |
| 3120 | } |
| 3121 | if (I.isSigned()) { |
| 3122 | handleSignedRelationalComparison(I); |
| 3123 | return; |
| 3124 | } |
| 3125 | |
| 3126 | assert(I.isUnsigned()); |
| 3127 | if ((isa<Constant>(Val: I.getOperand(i_nocapture: 0)) || isa<Constant>(Val: I.getOperand(i_nocapture: 1)))) { |
| 3128 | handleRelationalComparisonExact(I); |
| 3129 | return; |
| 3130 | } |
| 3131 | |
| 3132 | handleShadowOr(I); |
| 3133 | } |
| 3134 | |
| 3135 | void visitFCmpInst(FCmpInst &I) { handleShadowOr(I); } |
| 3136 | |
| 3137 | void handleShift(BinaryOperator &I) { |
| 3138 | IRBuilder<> IRB(&I); |
| 3139 | // If any of the S2 bits are poisoned, the whole thing is poisoned. |
| 3140 | // Otherwise perform the same shift on S1. |
| 3141 | Value *S1 = getShadow(I: &I, i: 0); |
| 3142 | Value *S2 = getShadow(I: &I, i: 1); |
| 3143 | Value *S2Conv = |
| 3144 | IRB.CreateSExt(V: IRB.CreateICmpNE(LHS: S2, RHS: getCleanShadow(V: S2)), DestTy: S2->getType()); |
| 3145 | Value *V2 = I.getOperand(i_nocapture: 1); |
| 3146 | Value *Shift = IRB.CreateBinOp(Opc: I.getOpcode(), LHS: S1, RHS: V2); |
| 3147 | setShadow(V: &I, SV: IRB.CreateOr(LHS: Shift, RHS: S2Conv)); |
| 3148 | setOriginForNaryOp(I); |
| 3149 | } |
| 3150 | |
| 3151 | void visitShl(BinaryOperator &I) { handleShift(I); } |
| 3152 | void visitAShr(BinaryOperator &I) { handleShift(I); } |
| 3153 | void visitLShr(BinaryOperator &I) { handleShift(I); } |
| 3154 | |
| 3155 | void handleFunnelShift(IntrinsicInst &I) { |
| 3156 | IRBuilder<> IRB(&I); |
| 3157 | // If any of the S2 bits are poisoned, the whole thing is poisoned. |
| 3158 | // Otherwise perform the same shift on S0 and S1. |
| 3159 | Value *S0 = getShadow(I: &I, i: 0); |
| 3160 | Value *S1 = getShadow(I: &I, i: 1); |
| 3161 | Value *S2 = getShadow(I: &I, i: 2); |
| 3162 | Value *S2Conv = |
| 3163 | IRB.CreateSExt(V: IRB.CreateICmpNE(LHS: S2, RHS: getCleanShadow(V: S2)), DestTy: S2->getType()); |
| 3164 | Value *V2 = I.getOperand(i_nocapture: 2); |
| 3165 | Value *Shift = IRB.CreateIntrinsic(ID: I.getIntrinsicID(), Types: S2Conv->getType(), |
| 3166 | Args: {S0, S1, V2}); |
| 3167 | setShadow(V: &I, SV: IRB.CreateOr(LHS: Shift, RHS: S2Conv)); |
| 3168 | setOriginForNaryOp(I); |
| 3169 | } |
| 3170 | |
| 3171 | /// Instrument llvm.memmove |
| 3172 | /// |
| 3173 | /// At this point we don't know if llvm.memmove will be inlined or not. |
| 3174 | /// If we don't instrument it and it gets inlined, |
| 3175 | /// our interceptor will not kick in and we will lose the memmove. |
| 3176 | /// If we instrument the call here, but it does not get inlined, |
| 3177 | /// we will memmove the shadow twice: which is bad in case |
| 3178 | /// of overlapping regions. So, we simply lower the intrinsic to a call. |
| 3179 | /// |
| 3180 | /// Similar situation exists for memcpy and memset. |
| 3181 | void visitMemMoveInst(MemMoveInst &I) { |
| 3182 | getShadow(V: I.getArgOperand(i: 1)); // Ensure shadow initialized |
| 3183 | IRBuilder<> IRB(&I); |
| 3184 | IRB.CreateCall(Callee: MS.MemmoveFn, |
| 3185 | Args: {I.getArgOperand(i: 0), I.getArgOperand(i: 1), |
| 3186 | IRB.CreateIntCast(V: I.getArgOperand(i: 2), DestTy: MS.IntptrTy, isSigned: false)}); |
| 3187 | I.eraseFromParent(); |
| 3188 | } |
| 3189 | |
| 3190 | /// Instrument memcpy |
| 3191 | /// |
| 3192 | /// Similar to memmove: avoid copying shadow twice. This is somewhat |
| 3193 | /// unfortunate as it may slowdown small constant memcpys. |
| 3194 | /// FIXME: consider doing manual inline for small constant sizes and proper |
| 3195 | /// alignment. |
| 3196 | /// |
| 3197 | /// Note: This also handles memcpy.inline, which promises no calls to external |
| 3198 | /// functions as an optimization. However, with instrumentation enabled this |
| 3199 | /// is difficult to promise; additionally, we know that the MSan runtime |
| 3200 | /// exists and provides __msan_memcpy(). Therefore, we assume that with |
| 3201 | /// instrumentation it's safe to turn memcpy.inline into a call to |
| 3202 | /// __msan_memcpy(). Should this be wrong, such as when implementing memcpy() |
| 3203 | /// itself, instrumentation should be disabled with the no_sanitize attribute. |
| 3204 | void visitMemCpyInst(MemCpyInst &I) { |
| 3205 | getShadow(V: I.getArgOperand(i: 1)); // Ensure shadow initialized |
| 3206 | IRBuilder<> IRB(&I); |
| 3207 | IRB.CreateCall(Callee: MS.MemcpyFn, |
| 3208 | Args: {I.getArgOperand(i: 0), I.getArgOperand(i: 1), |
| 3209 | IRB.CreateIntCast(V: I.getArgOperand(i: 2), DestTy: MS.IntptrTy, isSigned: false)}); |
| 3210 | I.eraseFromParent(); |
| 3211 | } |
| 3212 | |
| 3213 | // Same as memcpy. |
| 3214 | void visitMemSetInst(MemSetInst &I) { |
| 3215 | IRBuilder<> IRB(&I); |
| 3216 | IRB.CreateCall( |
| 3217 | Callee: MS.MemsetFn, |
| 3218 | Args: {I.getArgOperand(i: 0), |
| 3219 | IRB.CreateIntCast(V: I.getArgOperand(i: 1), DestTy: IRB.getInt32Ty(), isSigned: false), |
| 3220 | IRB.CreateIntCast(V: I.getArgOperand(i: 2), DestTy: MS.IntptrTy, isSigned: false)}); |
| 3221 | I.eraseFromParent(); |
| 3222 | } |
| 3223 | |
| 3224 | void visitVAStartInst(VAStartInst &I) { VAHelper->visitVAStartInst(I); } |
| 3225 | |
| 3226 | void visitVACopyInst(VACopyInst &I) { VAHelper->visitVACopyInst(I); } |
| 3227 | |
| 3228 | /// Handle vector store-like intrinsics. |
| 3229 | /// |
| 3230 | /// Instrument intrinsics that look like a simple SIMD store: writes memory, |
| 3231 | /// has 1 pointer argument and 1 vector argument, returns void. |
| 3232 | bool handleVectorStoreIntrinsic(IntrinsicInst &I) { |
| 3233 | assert(I.arg_size() == 2); |
| 3234 | |
| 3235 | IRBuilder<> IRB(&I); |
| 3236 | Value *Addr = I.getArgOperand(i: 0); |
| 3237 | Value *Shadow = getShadow(I: &I, i: 1); |
| 3238 | Value *ShadowPtr, *OriginPtr; |
| 3239 | |
| 3240 | // We don't know the pointer alignment (could be unaligned SSE store!). |
| 3241 | // Have to assume to worst case. |
| 3242 | std::tie(args&: ShadowPtr, args&: OriginPtr) = getShadowOriginPtr( |
| 3243 | Addr, IRB, ShadowTy: Shadow->getType(), Alignment: Align(1), /*isStore*/ true); |
| 3244 | IRB.CreateAlignedStore(Val: Shadow, Ptr: ShadowPtr, Align: Align(1)); |
| 3245 | |
| 3246 | if (ClCheckAccessAddress) |
| 3247 | insertCheckShadowOf(Val: Addr, OrigIns: &I); |
| 3248 | |
| 3249 | // FIXME: factor out common code from materializeStores |
| 3250 | if (MS.TrackOrigins) |
| 3251 | IRB.CreateStore(Val: getOrigin(I: &I, i: 1), Ptr: OriginPtr); |
| 3252 | return true; |
| 3253 | } |
| 3254 | |
| 3255 | /// Handle vector load-like intrinsics. |
| 3256 | /// |
| 3257 | /// Instrument intrinsics that look like a simple SIMD load: reads memory, |
| 3258 | /// has 1 pointer argument, returns a vector. |
| 3259 | bool handleVectorLoadIntrinsic(IntrinsicInst &I) { |
| 3260 | assert(I.arg_size() == 1); |
| 3261 | |
| 3262 | IRBuilder<> IRB(&I); |
| 3263 | Value *Addr = I.getArgOperand(i: 0); |
| 3264 | |
| 3265 | Type *ShadowTy = getShadowTy(V: &I); |
| 3266 | Value *ShadowPtr = nullptr, *OriginPtr = nullptr; |
| 3267 | if (PropagateShadow) { |
| 3268 | // We don't know the pointer alignment (could be unaligned SSE load!). |
| 3269 | // Have to assume to worst case. |
| 3270 | const Align Alignment = Align(1); |
| 3271 | std::tie(args&: ShadowPtr, args&: OriginPtr) = |
| 3272 | getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false); |
| 3273 | setShadow(V: &I, |
| 3274 | SV: IRB.CreateAlignedLoad(Ty: ShadowTy, Ptr: ShadowPtr, Align: Alignment, Name: "_msld" )); |
| 3275 | } else { |
| 3276 | setShadow(V: &I, SV: getCleanShadow(V: &I)); |
| 3277 | } |
| 3278 | |
| 3279 | if (ClCheckAccessAddress) |
| 3280 | insertCheckShadowOf(Val: Addr, OrigIns: &I); |
| 3281 | |
| 3282 | if (MS.TrackOrigins) { |
| 3283 | if (PropagateShadow) |
| 3284 | setOrigin(V: &I, Origin: IRB.CreateLoad(Ty: MS.OriginTy, Ptr: OriginPtr)); |
| 3285 | else |
| 3286 | setOrigin(V: &I, Origin: getCleanOrigin()); |
| 3287 | } |
| 3288 | return true; |
| 3289 | } |
| 3290 | |
| 3291 | /// Handle (SIMD arithmetic)-like intrinsics. |
| 3292 | /// |
| 3293 | /// Instrument intrinsics with any number of arguments of the same type [*], |
| 3294 | /// equal to the return type, plus a specified number of trailing flags of |
| 3295 | /// any type. |
| 3296 | /// |
| 3297 | /// [*] The type should be simple (no aggregates or pointers; vectors are |
| 3298 | /// fine). |
| 3299 | /// |
| 3300 | /// Caller guarantees that this intrinsic does not access memory. |
| 3301 | /// |
| 3302 | /// TODO: "horizontal"/"pairwise" intrinsics are often incorrectly matched by |
| 3303 | /// by this handler. See horizontalReduce(). |
| 3304 | /// |
| 3305 | /// TODO: permutation intrinsics are also often incorrectly matched. |
| 3306 | [[maybe_unused]] bool |
| 3307 | maybeHandleSimpleNomemIntrinsic(IntrinsicInst &I, |
| 3308 | unsigned int trailingFlags) { |
| 3309 | Type *RetTy = I.getType(); |
| 3310 | if (!(RetTy->isIntOrIntVectorTy() || RetTy->isFPOrFPVectorTy())) |
| 3311 | return false; |
| 3312 | |
| 3313 | unsigned NumArgOperands = I.arg_size(); |
| 3314 | assert(NumArgOperands >= trailingFlags); |
| 3315 | for (unsigned i = 0; i < NumArgOperands - trailingFlags; ++i) { |
| 3316 | Type *Ty = I.getArgOperand(i)->getType(); |
| 3317 | if (Ty != RetTy) |
| 3318 | return false; |
| 3319 | } |
| 3320 | |
| 3321 | IRBuilder<> IRB(&I); |
| 3322 | ShadowAndOriginCombiner SC(this, IRB); |
| 3323 | for (unsigned i = 0; i < NumArgOperands; ++i) |
| 3324 | SC.Add(V: I.getArgOperand(i)); |
| 3325 | SC.Done(I: &I); |
| 3326 | |
| 3327 | return true; |
| 3328 | } |
| 3329 | |
| 3330 | /// Returns whether it was able to heuristically instrument unknown |
| 3331 | /// intrinsics. |
| 3332 | /// |
| 3333 | /// The main purpose of this code is to do something reasonable with all |
| 3334 | /// random intrinsics we might encounter, most importantly - SIMD intrinsics. |
| 3335 | /// We recognize several classes of intrinsics by their argument types and |
| 3336 | /// ModRefBehaviour and apply special instrumentation when we are reasonably |
| 3337 | /// sure that we know what the intrinsic does. |
| 3338 | /// |
| 3339 | /// We special-case intrinsics where this approach fails. See llvm.bswap |
| 3340 | /// handling as an example of that. |
| 3341 | bool maybeHandleUnknownIntrinsicUnlogged(IntrinsicInst &I) { |
| 3342 | unsigned NumArgOperands = I.arg_size(); |
| 3343 | if (NumArgOperands == 0) |
| 3344 | return false; |
| 3345 | |
| 3346 | if (NumArgOperands == 2 && I.getArgOperand(i: 0)->getType()->isPointerTy() && |
| 3347 | I.getArgOperand(i: 1)->getType()->isVectorTy() && |
| 3348 | I.getType()->isVoidTy() && !I.onlyReadsMemory()) { |
| 3349 | // This looks like a vector store. |
| 3350 | return handleVectorStoreIntrinsic(I); |
| 3351 | } |
| 3352 | |
| 3353 | if (NumArgOperands == 1 && I.getArgOperand(i: 0)->getType()->isPointerTy() && |
| 3354 | I.getType()->isVectorTy() && I.onlyReadsMemory()) { |
| 3355 | // This looks like a vector load. |
| 3356 | return handleVectorLoadIntrinsic(I); |
| 3357 | } |
| 3358 | |
| 3359 | if (I.doesNotAccessMemory()) |
| 3360 | if (maybeHandleSimpleNomemIntrinsic(I, /*trailingFlags=*/0)) |
| 3361 | return true; |
| 3362 | |
| 3363 | // FIXME: detect and handle SSE maskstore/maskload? |
| 3364 | // Some cases are now handled in handleAVXMasked{Load,Store}. |
| 3365 | return false; |
| 3366 | } |
| 3367 | |
| 3368 | bool maybeHandleUnknownIntrinsic(IntrinsicInst &I) { |
| 3369 | if (maybeHandleUnknownIntrinsicUnlogged(I)) { |
| 3370 | if (ClDumpHeuristicInstructions) |
| 3371 | dumpInst(I); |
| 3372 | |
| 3373 | LLVM_DEBUG(dbgs() << "UNKNOWN INSTRUCTION HANDLED HEURISTICALLY: " << I |
| 3374 | << "\n" ); |
| 3375 | return true; |
| 3376 | } else |
| 3377 | return false; |
| 3378 | } |
| 3379 | |
| 3380 | void handleInvariantGroup(IntrinsicInst &I) { |
| 3381 | setShadow(V: &I, SV: getShadow(I: &I, i: 0)); |
| 3382 | setOrigin(V: &I, Origin: getOrigin(I: &I, i: 0)); |
| 3383 | } |
| 3384 | |
| 3385 | void handleLifetimeStart(IntrinsicInst &I) { |
| 3386 | if (!PoisonStack) |
| 3387 | return; |
| 3388 | AllocaInst *AI = dyn_cast<AllocaInst>(Val: I.getArgOperand(i: 0)); |
| 3389 | if (AI) |
| 3390 | LifetimeStartList.push_back(Elt: std::make_pair(x: &I, y&: AI)); |
| 3391 | } |
| 3392 | |
| 3393 | void handleBswap(IntrinsicInst &I) { |
| 3394 | IRBuilder<> IRB(&I); |
| 3395 | Value *Op = I.getArgOperand(i: 0); |
| 3396 | Type *OpType = Op->getType(); |
| 3397 | setShadow(V: &I, SV: IRB.CreateIntrinsic(ID: Intrinsic::bswap, Types: ArrayRef(&OpType, 1), |
| 3398 | Args: getShadow(V: Op))); |
| 3399 | setOrigin(V: &I, Origin: getOrigin(V: Op)); |
| 3400 | } |
| 3401 | |
| 3402 | // Uninitialized bits are ok if they appear after the leading/trailing 0's |
| 3403 | // and a 1. If the input is all zero, it is fully initialized iff |
| 3404 | // !is_zero_poison. |
| 3405 | // |
| 3406 | // e.g., for ctlz, with little-endian, if 0/1 are initialized bits with |
| 3407 | // concrete value 0/1, and ? is an uninitialized bit: |
| 3408 | // - 0001 0??? is fully initialized |
| 3409 | // - 000? ???? is fully uninitialized (*) |
| 3410 | // - ???? ???? is fully uninitialized |
| 3411 | // - 0000 0000 is fully uninitialized if is_zero_poison, |
| 3412 | // fully initialized otherwise |
| 3413 | // |
| 3414 | // (*) TODO: arguably, since the number of zeros is in the range [3, 8], we |
| 3415 | // only need to poison 4 bits. |
| 3416 | // |
| 3417 | // OutputShadow = |
| 3418 | // ((ConcreteZerosCount >= ShadowZerosCount) && !AllZeroShadow) |
| 3419 | // || (is_zero_poison && AllZeroSrc) |
| 3420 | void handleCountLeadingTrailingZeros(IntrinsicInst &I) { |
| 3421 | IRBuilder<> IRB(&I); |
| 3422 | Value *Src = I.getArgOperand(i: 0); |
| 3423 | Value *SrcShadow = getShadow(V: Src); |
| 3424 | |
| 3425 | Value *False = IRB.getInt1(V: false); |
| 3426 | Value *ConcreteZerosCount = IRB.CreateIntrinsic( |
| 3427 | RetTy: I.getType(), ID: I.getIntrinsicID(), Args: {Src, /*is_zero_poison=*/False}); |
| 3428 | Value *ShadowZerosCount = IRB.CreateIntrinsic( |
| 3429 | RetTy: I.getType(), ID: I.getIntrinsicID(), Args: {SrcShadow, /*is_zero_poison=*/False}); |
| 3430 | |
| 3431 | Value *CompareConcreteZeros = IRB.CreateICmpUGE( |
| 3432 | LHS: ConcreteZerosCount, RHS: ShadowZerosCount, Name: "_mscz_cmp_zeros" ); |
| 3433 | |
| 3434 | Value *NotAllZeroShadow = |
| 3435 | IRB.CreateIsNotNull(Arg: SrcShadow, Name: "_mscz_shadow_not_null" ); |
| 3436 | Value *OutputShadow = |
| 3437 | IRB.CreateAnd(LHS: CompareConcreteZeros, RHS: NotAllZeroShadow, Name: "_mscz_main" ); |
| 3438 | |
| 3439 | // If zero poison is requested, mix in with the shadow |
| 3440 | Constant *IsZeroPoison = cast<Constant>(Val: I.getOperand(i_nocapture: 1)); |
| 3441 | if (!IsZeroPoison->isZeroValue()) { |
| 3442 | Value *BoolZeroPoison = IRB.CreateIsNull(Arg: Src, Name: "_mscz_bzp" ); |
| 3443 | OutputShadow = IRB.CreateOr(LHS: OutputShadow, RHS: BoolZeroPoison, Name: "_mscz_bs" ); |
| 3444 | } |
| 3445 | |
| 3446 | OutputShadow = IRB.CreateSExt(V: OutputShadow, DestTy: getShadowTy(V: Src), Name: "_mscz_os" ); |
| 3447 | |
| 3448 | setShadow(V: &I, SV: OutputShadow); |
| 3449 | setOriginForNaryOp(I); |
| 3450 | } |
| 3451 | |
| 3452 | /// Handle Arm NEON vector convert intrinsics. |
| 3453 | /// |
| 3454 | /// e.g., <4 x i32> @llvm.aarch64.neon.fcvtpu.v4i32.v4f32(<4 x float>) |
| 3455 | /// i32 @llvm.aarch64.neon.fcvtms.i32.f64 (double) |
| 3456 | /// |
| 3457 | /// For conversions to or from fixed-point, there is a trailing argument to |
| 3458 | /// indicate the fixed-point precision: |
| 3459 | /// - <4 x float> llvm.aarch64.neon.vcvtfxs2fp.v4f32.v4i32(<4 x i32>, i32) |
| 3460 | /// - <4 x i32> llvm.aarch64.neon.vcvtfp2fxu.v4i32.v4f32(<4 x float>, i32) |
| 3461 | /// |
| 3462 | /// For x86 SSE vector convert intrinsics, see |
| 3463 | /// handleSSEVectorConvertIntrinsic(). |
| 3464 | void handleNEONVectorConvertIntrinsic(IntrinsicInst &I, bool FixedPoint) { |
| 3465 | if (FixedPoint) |
| 3466 | assert(I.arg_size() == 2); |
| 3467 | else |
| 3468 | assert(I.arg_size() == 1); |
| 3469 | |
| 3470 | IRBuilder<> IRB(&I); |
| 3471 | Value *S0 = getShadow(I: &I, i: 0); |
| 3472 | |
| 3473 | if (FixedPoint) { |
| 3474 | Value *Precision = I.getOperand(i_nocapture: 1); |
| 3475 | insertCheckShadowOf(Val: Precision, OrigIns: &I); |
| 3476 | } |
| 3477 | |
| 3478 | /// For scalars: |
| 3479 | /// Since they are converting from floating-point to integer, the output is |
| 3480 | /// - fully uninitialized if *any* bit of the input is uninitialized |
| 3481 | /// - fully ininitialized if all bits of the input are ininitialized |
| 3482 | /// We apply the same principle on a per-field basis for vectors. |
| 3483 | Value *OutShadow = IRB.CreateSExt(V: IRB.CreateICmpNE(LHS: S0, RHS: getCleanShadow(V: S0)), |
| 3484 | DestTy: getShadowTy(V: &I)); |
| 3485 | setShadow(V: &I, SV: OutShadow); |
| 3486 | setOriginForNaryOp(I); |
| 3487 | } |
| 3488 | |
| 3489 | /// Some instructions have additional zero-elements in the return type |
| 3490 | /// e.g., <16 x i8> @llvm.x86.avx512.mask.pmov.qb.512(<8 x i64>, ...) |
| 3491 | /// |
| 3492 | /// This function will return a vector type with the same number of elements |
| 3493 | /// as the input, but same per-element width as the return value e.g., |
| 3494 | /// <8 x i8>. |
| 3495 | FixedVectorType *maybeShrinkVectorShadowType(Value *Src, IntrinsicInst &I) { |
| 3496 | assert(isa<FixedVectorType>(getShadowTy(&I))); |
| 3497 | FixedVectorType *ShadowType = cast<FixedVectorType>(Val: getShadowTy(V: &I)); |
| 3498 | |
| 3499 | // TODO: generalize beyond 2x? |
| 3500 | if (ShadowType->getElementCount() == |
| 3501 | cast<VectorType>(Val: Src->getType())->getElementCount() * 2) |
| 3502 | ShadowType = FixedVectorType::getHalfElementsVectorType(VTy: ShadowType); |
| 3503 | |
| 3504 | assert(ShadowType->getElementCount() == |
| 3505 | cast<VectorType>(Src->getType())->getElementCount()); |
| 3506 | |
| 3507 | return ShadowType; |
| 3508 | } |
| 3509 | |
| 3510 | /// Doubles the length of a vector shadow (extending with zeros) if necessary |
| 3511 | /// to match the length of the shadow for the instruction. |
| 3512 | /// If scalar types of the vectors are different, it will use the type of the |
| 3513 | /// input vector. |
| 3514 | /// This is more type-safe than CreateShadowCast(). |
| 3515 | Value *maybeExtendVectorShadowWithZeros(Value *Shadow, IntrinsicInst &I) { |
| 3516 | IRBuilder<> IRB(&I); |
| 3517 | assert(isa<FixedVectorType>(Shadow->getType())); |
| 3518 | assert(isa<FixedVectorType>(I.getType())); |
| 3519 | |
| 3520 | Value *FullShadow = getCleanShadow(V: &I); |
| 3521 | unsigned ShadowNumElems = |
| 3522 | cast<FixedVectorType>(Val: Shadow->getType())->getNumElements(); |
| 3523 | unsigned FullShadowNumElems = |
| 3524 | cast<FixedVectorType>(Val: FullShadow->getType())->getNumElements(); |
| 3525 | |
| 3526 | assert((ShadowNumElems == FullShadowNumElems) || |
| 3527 | (ShadowNumElems * 2 == FullShadowNumElems)); |
| 3528 | |
| 3529 | if (ShadowNumElems == FullShadowNumElems) { |
| 3530 | FullShadow = Shadow; |
| 3531 | } else { |
| 3532 | // TODO: generalize beyond 2x? |
| 3533 | SmallVector<int, 32> ShadowMask(FullShadowNumElems); |
| 3534 | std::iota(first: ShadowMask.begin(), last: ShadowMask.end(), value: 0); |
| 3535 | |
| 3536 | // Append zeros |
| 3537 | FullShadow = |
| 3538 | IRB.CreateShuffleVector(V1: Shadow, V2: getCleanShadow(V: Shadow), Mask: ShadowMask); |
| 3539 | } |
| 3540 | |
| 3541 | return FullShadow; |
| 3542 | } |
| 3543 | |
| 3544 | /// Handle x86 SSE vector conversion. |
| 3545 | /// |
| 3546 | /// e.g., single-precision to half-precision conversion: |
| 3547 | /// <8 x i16> @llvm.x86.vcvtps2ph.256(<8 x float> %a0, i32 0) |
| 3548 | /// <8 x i16> @llvm.x86.vcvtps2ph.128(<4 x float> %a0, i32 0) |
| 3549 | /// |
| 3550 | /// floating-point to integer: |
| 3551 | /// <4 x i32> @llvm.x86.sse2.cvtps2dq(<4 x float>) |
| 3552 | /// <4 x i32> @llvm.x86.sse2.cvtpd2dq(<2 x double>) |
| 3553 | /// |
| 3554 | /// Note: if the output has more elements, they are zero-initialized (and |
| 3555 | /// therefore the shadow will also be initialized). |
| 3556 | /// |
| 3557 | /// This differs from handleSSEVectorConvertIntrinsic() because it |
| 3558 | /// propagates uninitialized shadow (instead of checking the shadow). |
| 3559 | void handleSSEVectorConvertIntrinsicByProp(IntrinsicInst &I, |
| 3560 | bool HasRoundingMode) { |
| 3561 | if (HasRoundingMode) { |
| 3562 | assert(I.arg_size() == 2); |
| 3563 | [[maybe_unused]] Value *RoundingMode = I.getArgOperand(i: 1); |
| 3564 | assert(RoundingMode->getType()->isIntegerTy()); |
| 3565 | } else { |
| 3566 | assert(I.arg_size() == 1); |
| 3567 | } |
| 3568 | |
| 3569 | Value *Src = I.getArgOperand(i: 0); |
| 3570 | assert(Src->getType()->isVectorTy()); |
| 3571 | |
| 3572 | // The return type might have more elements than the input. |
| 3573 | // Temporarily shrink the return type's number of elements. |
| 3574 | VectorType *ShadowType = maybeShrinkVectorShadowType(Src, I); |
| 3575 | |
| 3576 | IRBuilder<> IRB(&I); |
| 3577 | Value *S0 = getShadow(I: &I, i: 0); |
| 3578 | |
| 3579 | /// For scalars: |
| 3580 | /// Since they are converting to and/or from floating-point, the output is: |
| 3581 | /// - fully uninitialized if *any* bit of the input is uninitialized |
| 3582 | /// - fully ininitialized if all bits of the input are ininitialized |
| 3583 | /// We apply the same principle on a per-field basis for vectors. |
| 3584 | Value *Shadow = |
| 3585 | IRB.CreateSExt(V: IRB.CreateICmpNE(LHS: S0, RHS: getCleanShadow(V: S0)), DestTy: ShadowType); |
| 3586 | |
| 3587 | // The return type might have more elements than the input. |
| 3588 | // Extend the return type back to its original width if necessary. |
| 3589 | Value *FullShadow = maybeExtendVectorShadowWithZeros(Shadow, I); |
| 3590 | |
| 3591 | setShadow(V: &I, SV: FullShadow); |
| 3592 | setOriginForNaryOp(I); |
| 3593 | } |
| 3594 | |
| 3595 | // Instrument x86 SSE vector convert intrinsic. |
| 3596 | // |
| 3597 | // This function instruments intrinsics like cvtsi2ss: |
| 3598 | // %Out = int_xxx_cvtyyy(%ConvertOp) |
| 3599 | // or |
| 3600 | // %Out = int_xxx_cvtyyy(%CopyOp, %ConvertOp) |
| 3601 | // Intrinsic converts \p NumUsedElements elements of \p ConvertOp to the same |
| 3602 | // number \p Out elements, and (if has 2 arguments) copies the rest of the |
| 3603 | // elements from \p CopyOp. |
| 3604 | // In most cases conversion involves floating-point value which may trigger a |
| 3605 | // hardware exception when not fully initialized. For this reason we require |
| 3606 | // \p ConvertOp[0:NumUsedElements] to be fully initialized and trap otherwise. |
| 3607 | // We copy the shadow of \p CopyOp[NumUsedElements:] to \p |
| 3608 | // Out[NumUsedElements:]. This means that intrinsics without \p CopyOp always |
| 3609 | // return a fully initialized value. |
| 3610 | // |
| 3611 | // For Arm NEON vector convert intrinsics, see |
| 3612 | // handleNEONVectorConvertIntrinsic(). |
| 3613 | void handleSSEVectorConvertIntrinsic(IntrinsicInst &I, int NumUsedElements, |
| 3614 | bool HasRoundingMode = false) { |
| 3615 | IRBuilder<> IRB(&I); |
| 3616 | Value *CopyOp, *ConvertOp; |
| 3617 | |
| 3618 | assert((!HasRoundingMode || |
| 3619 | isa<ConstantInt>(I.getArgOperand(I.arg_size() - 1))) && |
| 3620 | "Invalid rounding mode" ); |
| 3621 | |
| 3622 | switch (I.arg_size() - HasRoundingMode) { |
| 3623 | case 2: |
| 3624 | CopyOp = I.getArgOperand(i: 0); |
| 3625 | ConvertOp = I.getArgOperand(i: 1); |
| 3626 | break; |
| 3627 | case 1: |
| 3628 | ConvertOp = I.getArgOperand(i: 0); |
| 3629 | CopyOp = nullptr; |
| 3630 | break; |
| 3631 | default: |
| 3632 | llvm_unreachable("Cvt intrinsic with unsupported number of arguments." ); |
| 3633 | } |
| 3634 | |
| 3635 | // The first *NumUsedElements* elements of ConvertOp are converted to the |
| 3636 | // same number of output elements. The rest of the output is copied from |
| 3637 | // CopyOp, or (if not available) filled with zeroes. |
| 3638 | // Combine shadow for elements of ConvertOp that are used in this operation, |
| 3639 | // and insert a check. |
| 3640 | // FIXME: consider propagating shadow of ConvertOp, at least in the case of |
| 3641 | // int->any conversion. |
| 3642 | Value *ConvertShadow = getShadow(V: ConvertOp); |
| 3643 | Value *AggShadow = nullptr; |
| 3644 | if (ConvertOp->getType()->isVectorTy()) { |
| 3645 | AggShadow = IRB.CreateExtractElement( |
| 3646 | Vec: ConvertShadow, Idx: ConstantInt::get(Ty: IRB.getInt32Ty(), V: 0)); |
| 3647 | for (int i = 1; i < NumUsedElements; ++i) { |
| 3648 | Value *MoreShadow = IRB.CreateExtractElement( |
| 3649 | Vec: ConvertShadow, Idx: ConstantInt::get(Ty: IRB.getInt32Ty(), V: i)); |
| 3650 | AggShadow = IRB.CreateOr(LHS: AggShadow, RHS: MoreShadow); |
| 3651 | } |
| 3652 | } else { |
| 3653 | AggShadow = ConvertShadow; |
| 3654 | } |
| 3655 | assert(AggShadow->getType()->isIntegerTy()); |
| 3656 | insertCheckShadow(Shadow: AggShadow, Origin: getOrigin(V: ConvertOp), OrigIns: &I); |
| 3657 | |
| 3658 | // Build result shadow by zero-filling parts of CopyOp shadow that come from |
| 3659 | // ConvertOp. |
| 3660 | if (CopyOp) { |
| 3661 | assert(CopyOp->getType() == I.getType()); |
| 3662 | assert(CopyOp->getType()->isVectorTy()); |
| 3663 | Value *ResultShadow = getShadow(V: CopyOp); |
| 3664 | Type *EltTy = cast<VectorType>(Val: ResultShadow->getType())->getElementType(); |
| 3665 | for (int i = 0; i < NumUsedElements; ++i) { |
| 3666 | ResultShadow = IRB.CreateInsertElement( |
| 3667 | Vec: ResultShadow, NewElt: ConstantInt::getNullValue(Ty: EltTy), |
| 3668 | Idx: ConstantInt::get(Ty: IRB.getInt32Ty(), V: i)); |
| 3669 | } |
| 3670 | setShadow(V: &I, SV: ResultShadow); |
| 3671 | setOrigin(V: &I, Origin: getOrigin(V: CopyOp)); |
| 3672 | } else { |
| 3673 | setShadow(V: &I, SV: getCleanShadow(V: &I)); |
| 3674 | setOrigin(V: &I, Origin: getCleanOrigin()); |
| 3675 | } |
| 3676 | } |
| 3677 | |
| 3678 | // Given a scalar or vector, extract lower 64 bits (or less), and return all |
| 3679 | // zeroes if it is zero, and all ones otherwise. |
| 3680 | Value *Lower64ShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) { |
| 3681 | if (S->getType()->isVectorTy()) |
| 3682 | S = CreateShadowCast(IRB, V: S, dstTy: IRB.getInt64Ty(), /* Signed */ true); |
| 3683 | assert(S->getType()->getPrimitiveSizeInBits() <= 64); |
| 3684 | Value *S2 = IRB.CreateICmpNE(LHS: S, RHS: getCleanShadow(V: S)); |
| 3685 | return CreateShadowCast(IRB, V: S2, dstTy: T, /* Signed */ true); |
| 3686 | } |
| 3687 | |
| 3688 | // Given a vector, extract its first element, and return all |
| 3689 | // zeroes if it is zero, and all ones otherwise. |
| 3690 | Value *LowerElementShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) { |
| 3691 | Value *S1 = IRB.CreateExtractElement(Vec: S, Idx: (uint64_t)0); |
| 3692 | Value *S2 = IRB.CreateICmpNE(LHS: S1, RHS: getCleanShadow(V: S1)); |
| 3693 | return CreateShadowCast(IRB, V: S2, dstTy: T, /* Signed */ true); |
| 3694 | } |
| 3695 | |
| 3696 | Value *VariableShadowExtend(IRBuilder<> &IRB, Value *S) { |
| 3697 | Type *T = S->getType(); |
| 3698 | assert(T->isVectorTy()); |
| 3699 | Value *S2 = IRB.CreateICmpNE(LHS: S, RHS: getCleanShadow(V: S)); |
| 3700 | return IRB.CreateSExt(V: S2, DestTy: T); |
| 3701 | } |
| 3702 | |
| 3703 | // Instrument vector shift intrinsic. |
| 3704 | // |
| 3705 | // This function instruments intrinsics like int_x86_avx2_psll_w. |
| 3706 | // Intrinsic shifts %In by %ShiftSize bits. |
| 3707 | // %ShiftSize may be a vector. In that case the lower 64 bits determine shift |
| 3708 | // size, and the rest is ignored. Behavior is defined even if shift size is |
| 3709 | // greater than register (or field) width. |
| 3710 | void handleVectorShiftIntrinsic(IntrinsicInst &I, bool Variable) { |
| 3711 | assert(I.arg_size() == 2); |
| 3712 | IRBuilder<> IRB(&I); |
| 3713 | // If any of the S2 bits are poisoned, the whole thing is poisoned. |
| 3714 | // Otherwise perform the same shift on S1. |
| 3715 | Value *S1 = getShadow(I: &I, i: 0); |
| 3716 | Value *S2 = getShadow(I: &I, i: 1); |
| 3717 | Value *S2Conv = Variable ? VariableShadowExtend(IRB, S: S2) |
| 3718 | : Lower64ShadowExtend(IRB, S: S2, T: getShadowTy(V: &I)); |
| 3719 | Value *V1 = I.getOperand(i_nocapture: 0); |
| 3720 | Value *V2 = I.getOperand(i_nocapture: 1); |
| 3721 | Value *Shift = IRB.CreateCall(FTy: I.getFunctionType(), Callee: I.getCalledOperand(), |
| 3722 | Args: {IRB.CreateBitCast(V: S1, DestTy: V1->getType()), V2}); |
| 3723 | Shift = IRB.CreateBitCast(V: Shift, DestTy: getShadowTy(V: &I)); |
| 3724 | setShadow(V: &I, SV: IRB.CreateOr(LHS: Shift, RHS: S2Conv)); |
| 3725 | setOriginForNaryOp(I); |
| 3726 | } |
| 3727 | |
| 3728 | // Get an MMX-sized (64-bit) vector type, or optionally, other sized |
| 3729 | // vectors. |
| 3730 | Type *getMMXVectorTy(unsigned EltSizeInBits, |
| 3731 | unsigned X86_MMXSizeInBits = 64) { |
| 3732 | assert(EltSizeInBits != 0 && (X86_MMXSizeInBits % EltSizeInBits) == 0 && |
| 3733 | "Illegal MMX vector element size" ); |
| 3734 | return FixedVectorType::get(ElementType: IntegerType::get(C&: *MS.C, NumBits: EltSizeInBits), |
| 3735 | NumElts: X86_MMXSizeInBits / EltSizeInBits); |
| 3736 | } |
| 3737 | |
| 3738 | // Returns a signed counterpart for an (un)signed-saturate-and-pack |
| 3739 | // intrinsic. |
| 3740 | Intrinsic::ID getSignedPackIntrinsic(Intrinsic::ID id) { |
| 3741 | switch (id) { |
| 3742 | case Intrinsic::x86_sse2_packsswb_128: |
| 3743 | case Intrinsic::x86_sse2_packuswb_128: |
| 3744 | return Intrinsic::x86_sse2_packsswb_128; |
| 3745 | |
| 3746 | case Intrinsic::x86_sse2_packssdw_128: |
| 3747 | case Intrinsic::x86_sse41_packusdw: |
| 3748 | return Intrinsic::x86_sse2_packssdw_128; |
| 3749 | |
| 3750 | case Intrinsic::x86_avx2_packsswb: |
| 3751 | case Intrinsic::x86_avx2_packuswb: |
| 3752 | return Intrinsic::x86_avx2_packsswb; |
| 3753 | |
| 3754 | case Intrinsic::x86_avx2_packssdw: |
| 3755 | case Intrinsic::x86_avx2_packusdw: |
| 3756 | return Intrinsic::x86_avx2_packssdw; |
| 3757 | |
| 3758 | case Intrinsic::x86_mmx_packsswb: |
| 3759 | case Intrinsic::x86_mmx_packuswb: |
| 3760 | return Intrinsic::x86_mmx_packsswb; |
| 3761 | |
| 3762 | case Intrinsic::x86_mmx_packssdw: |
| 3763 | return Intrinsic::x86_mmx_packssdw; |
| 3764 | |
| 3765 | case Intrinsic::x86_avx512_packssdw_512: |
| 3766 | case Intrinsic::x86_avx512_packusdw_512: |
| 3767 | return Intrinsic::x86_avx512_packssdw_512; |
| 3768 | |
| 3769 | case Intrinsic::x86_avx512_packsswb_512: |
| 3770 | case Intrinsic::x86_avx512_packuswb_512: |
| 3771 | return Intrinsic::x86_avx512_packsswb_512; |
| 3772 | |
| 3773 | default: |
| 3774 | llvm_unreachable("unexpected intrinsic id" ); |
| 3775 | } |
| 3776 | } |
| 3777 | |
| 3778 | // Instrument vector pack intrinsic. |
| 3779 | // |
| 3780 | // This function instruments intrinsics like x86_mmx_packsswb, that |
| 3781 | // packs elements of 2 input vectors into half as many bits with saturation. |
| 3782 | // Shadow is propagated with the signed variant of the same intrinsic applied |
| 3783 | // to sext(Sa != zeroinitializer), sext(Sb != zeroinitializer). |
| 3784 | // MMXEltSizeInBits is used only for x86mmx arguments. |
| 3785 | // |
| 3786 | // TODO: consider using GetMinMaxUnsigned() to handle saturation precisely |
| 3787 | void handleVectorPackIntrinsic(IntrinsicInst &I, |
| 3788 | unsigned MMXEltSizeInBits = 0) { |
| 3789 | assert(I.arg_size() == 2); |
| 3790 | IRBuilder<> IRB(&I); |
| 3791 | Value *S1 = getShadow(I: &I, i: 0); |
| 3792 | Value *S2 = getShadow(I: &I, i: 1); |
| 3793 | assert(S1->getType()->isVectorTy()); |
| 3794 | |
| 3795 | // SExt and ICmpNE below must apply to individual elements of input vectors. |
| 3796 | // In case of x86mmx arguments, cast them to appropriate vector types and |
| 3797 | // back. |
| 3798 | Type *T = |
| 3799 | MMXEltSizeInBits ? getMMXVectorTy(EltSizeInBits: MMXEltSizeInBits) : S1->getType(); |
| 3800 | if (MMXEltSizeInBits) { |
| 3801 | S1 = IRB.CreateBitCast(V: S1, DestTy: T); |
| 3802 | S2 = IRB.CreateBitCast(V: S2, DestTy: T); |
| 3803 | } |
| 3804 | Value *S1_ext = |
| 3805 | IRB.CreateSExt(V: IRB.CreateICmpNE(LHS: S1, RHS: Constant::getNullValue(Ty: T)), DestTy: T); |
| 3806 | Value *S2_ext = |
| 3807 | IRB.CreateSExt(V: IRB.CreateICmpNE(LHS: S2, RHS: Constant::getNullValue(Ty: T)), DestTy: T); |
| 3808 | if (MMXEltSizeInBits) { |
| 3809 | S1_ext = IRB.CreateBitCast(V: S1_ext, DestTy: getMMXVectorTy(EltSizeInBits: 64)); |
| 3810 | S2_ext = IRB.CreateBitCast(V: S2_ext, DestTy: getMMXVectorTy(EltSizeInBits: 64)); |
| 3811 | } |
| 3812 | |
| 3813 | Value *S = IRB.CreateIntrinsic(ID: getSignedPackIntrinsic(id: I.getIntrinsicID()), |
| 3814 | Args: {S1_ext, S2_ext}, /*FMFSource=*/nullptr, |
| 3815 | Name: "_msprop_vector_pack" ); |
| 3816 | if (MMXEltSizeInBits) |
| 3817 | S = IRB.CreateBitCast(V: S, DestTy: getShadowTy(V: &I)); |
| 3818 | setShadow(V: &I, SV: S); |
| 3819 | setOriginForNaryOp(I); |
| 3820 | } |
| 3821 | |
| 3822 | // Convert `Mask` into `<n x i1>`. |
| 3823 | Constant *createDppMask(unsigned Width, unsigned Mask) { |
| 3824 | SmallVector<Constant *, 4> R(Width); |
| 3825 | for (auto &M : R) { |
| 3826 | M = ConstantInt::getBool(Context&: F.getContext(), V: Mask & 1); |
| 3827 | Mask >>= 1; |
| 3828 | } |
| 3829 | return ConstantVector::get(V: R); |
| 3830 | } |
| 3831 | |
| 3832 | // Calculate output shadow as array of booleans `<n x i1>`, assuming if any |
| 3833 | // arg is poisoned, entire dot product is poisoned. |
| 3834 | Value *findDppPoisonedOutput(IRBuilder<> &IRB, Value *S, unsigned SrcMask, |
| 3835 | unsigned DstMask) { |
| 3836 | const unsigned Width = |
| 3837 | cast<FixedVectorType>(Val: S->getType())->getNumElements(); |
| 3838 | |
| 3839 | S = IRB.CreateSelect(C: createDppMask(Width, Mask: SrcMask), True: S, |
| 3840 | False: Constant::getNullValue(Ty: S->getType())); |
| 3841 | Value *SElem = IRB.CreateOrReduce(Src: S); |
| 3842 | Value *IsClean = IRB.CreateIsNull(Arg: SElem, Name: "_msdpp" ); |
| 3843 | Value *DstMaskV = createDppMask(Width, Mask: DstMask); |
| 3844 | |
| 3845 | return IRB.CreateSelect( |
| 3846 | C: IsClean, True: Constant::getNullValue(Ty: DstMaskV->getType()), False: DstMaskV); |
| 3847 | } |
| 3848 | |
| 3849 | // See `Intel Intrinsics Guide` for `_dp_p*` instructions. |
| 3850 | // |
| 3851 | // 2 and 4 element versions produce single scalar of dot product, and then |
| 3852 | // puts it into elements of output vector, selected by 4 lowest bits of the |
| 3853 | // mask. Top 4 bits of the mask control which elements of input to use for dot |
| 3854 | // product. |
| 3855 | // |
| 3856 | // 8 element version mask still has only 4 bit for input, and 4 bit for output |
| 3857 | // mask. According to the spec it just operates as 4 element version on first |
| 3858 | // 4 elements of inputs and output, and then on last 4 elements of inputs and |
| 3859 | // output. |
| 3860 | void handleDppIntrinsic(IntrinsicInst &I) { |
| 3861 | IRBuilder<> IRB(&I); |
| 3862 | |
| 3863 | Value *S0 = getShadow(I: &I, i: 0); |
| 3864 | Value *S1 = getShadow(I: &I, i: 1); |
| 3865 | Value *S = IRB.CreateOr(LHS: S0, RHS: S1); |
| 3866 | |
| 3867 | const unsigned Width = |
| 3868 | cast<FixedVectorType>(Val: S->getType())->getNumElements(); |
| 3869 | assert(Width == 2 || Width == 4 || Width == 8); |
| 3870 | |
| 3871 | const unsigned Mask = cast<ConstantInt>(Val: I.getArgOperand(i: 2))->getZExtValue(); |
| 3872 | const unsigned SrcMask = Mask >> 4; |
| 3873 | const unsigned DstMask = Mask & 0xf; |
| 3874 | |
| 3875 | // Calculate shadow as `<n x i1>`. |
| 3876 | Value *SI1 = findDppPoisonedOutput(IRB, S, SrcMask, DstMask); |
| 3877 | if (Width == 8) { |
| 3878 | // First 4 elements of shadow are already calculated. `makeDppShadow` |
| 3879 | // operats on 32 bit masks, so we can just shift masks, and repeat. |
| 3880 | SI1 = IRB.CreateOr( |
| 3881 | LHS: SI1, RHS: findDppPoisonedOutput(IRB, S, SrcMask: SrcMask << 4, DstMask: DstMask << 4)); |
| 3882 | } |
| 3883 | // Extend to real size of shadow, poisoning either all or none bits of an |
| 3884 | // element. |
| 3885 | S = IRB.CreateSExt(V: SI1, DestTy: S->getType(), Name: "_msdpp" ); |
| 3886 | |
| 3887 | setShadow(V: &I, SV: S); |
| 3888 | setOriginForNaryOp(I); |
| 3889 | } |
| 3890 | |
| 3891 | Value *convertBlendvToSelectMask(IRBuilder<> &IRB, Value *C) { |
| 3892 | C = CreateAppToShadowCast(IRB, V: C); |
| 3893 | FixedVectorType *FVT = cast<FixedVectorType>(Val: C->getType()); |
| 3894 | unsigned ElSize = FVT->getElementType()->getPrimitiveSizeInBits(); |
| 3895 | C = IRB.CreateAShr(LHS: C, RHS: ElSize - 1); |
| 3896 | FVT = FixedVectorType::get(ElementType: IRB.getInt1Ty(), NumElts: FVT->getNumElements()); |
| 3897 | return IRB.CreateTrunc(V: C, DestTy: FVT); |
| 3898 | } |
| 3899 | |
| 3900 | // `blendv(f, t, c)` is effectively `select(c[top_bit], t, f)`. |
| 3901 | void handleBlendvIntrinsic(IntrinsicInst &I) { |
| 3902 | Value *C = I.getOperand(i_nocapture: 2); |
| 3903 | Value *T = I.getOperand(i_nocapture: 1); |
| 3904 | Value *F = I.getOperand(i_nocapture: 0); |
| 3905 | |
| 3906 | Value *Sc = getShadow(I: &I, i: 2); |
| 3907 | Value *Oc = MS.TrackOrigins ? getOrigin(V: C) : nullptr; |
| 3908 | |
| 3909 | { |
| 3910 | IRBuilder<> IRB(&I); |
| 3911 | // Extract top bit from condition and its shadow. |
| 3912 | C = convertBlendvToSelectMask(IRB, C); |
| 3913 | Sc = convertBlendvToSelectMask(IRB, C: Sc); |
| 3914 | |
| 3915 | setShadow(V: C, SV: Sc); |
| 3916 | setOrigin(V: C, Origin: Oc); |
| 3917 | } |
| 3918 | |
| 3919 | handleSelectLikeInst(I, B: C, C: T, D: F); |
| 3920 | } |
| 3921 | |
| 3922 | // Instrument sum-of-absolute-differences intrinsic. |
| 3923 | void handleVectorSadIntrinsic(IntrinsicInst &I, bool IsMMX = false) { |
| 3924 | const unsigned SignificantBitsPerResultElement = 16; |
| 3925 | Type *ResTy = IsMMX ? IntegerType::get(C&: *MS.C, NumBits: 64) : I.getType(); |
| 3926 | unsigned ZeroBitsPerResultElement = |
| 3927 | ResTy->getScalarSizeInBits() - SignificantBitsPerResultElement; |
| 3928 | |
| 3929 | IRBuilder<> IRB(&I); |
| 3930 | auto *Shadow0 = getShadow(I: &I, i: 0); |
| 3931 | auto *Shadow1 = getShadow(I: &I, i: 1); |
| 3932 | Value *S = IRB.CreateOr(LHS: Shadow0, RHS: Shadow1); |
| 3933 | S = IRB.CreateBitCast(V: S, DestTy: ResTy); |
| 3934 | S = IRB.CreateSExt(V: IRB.CreateICmpNE(LHS: S, RHS: Constant::getNullValue(Ty: ResTy)), |
| 3935 | DestTy: ResTy); |
| 3936 | S = IRB.CreateLShr(LHS: S, RHS: ZeroBitsPerResultElement); |
| 3937 | S = IRB.CreateBitCast(V: S, DestTy: getShadowTy(V: &I)); |
| 3938 | setShadow(V: &I, SV: S); |
| 3939 | setOriginForNaryOp(I); |
| 3940 | } |
| 3941 | |
| 3942 | // Instrument dot-product / multiply-add(-accumulate)? intrinsics. |
| 3943 | // |
| 3944 | // e.g., Two operands: |
| 3945 | // <4 x i32> @llvm.x86.sse2.pmadd.wd(<8 x i16> %a, <8 x i16> %b) |
| 3946 | // |
| 3947 | // Two operands which require an EltSizeInBits override: |
| 3948 | // <1 x i64> @llvm.x86.mmx.pmadd.wd(<1 x i64> %a, <1 x i64> %b) |
| 3949 | // |
| 3950 | // Three operands: |
| 3951 | // <4 x i32> @llvm.x86.avx512.vpdpbusd.128 |
| 3952 | // (<4 x i32> %s, <16 x i8> %a, <16 x i8> %b) |
| 3953 | // <2 x float> @llvm.aarch64.neon.bfdot.v2f32.v4bf16 |
| 3954 | // (<2 x float> %acc, <4 x bfloat> %a, <4 x bfloat> %b) |
| 3955 | // (these are equivalent to multiply-add on %a and %b, followed by |
| 3956 | // adding/"accumulating" %s. "Accumulation" stores the result in one |
| 3957 | // of the source registers, but this accumulate vs. add distinction |
| 3958 | // is lost when dealing with LLVM intrinsics.) |
| 3959 | // |
| 3960 | // ZeroPurifies means that multiplying a known-zero with an uninitialized |
| 3961 | // value results in an initialized value. This is applicable for integer |
| 3962 | // multiplication, but not floating-point (counter-example: NaN). |
| 3963 | void handleVectorDotProductIntrinsic(IntrinsicInst &I, |
| 3964 | unsigned ReductionFactor, |
| 3965 | bool ZeroPurifies, |
| 3966 | unsigned EltSizeInBits, |
| 3967 | enum OddOrEvenLanes Lanes) { |
| 3968 | IRBuilder<> IRB(&I); |
| 3969 | |
| 3970 | [[maybe_unused]] FixedVectorType *ReturnType = |
| 3971 | cast<FixedVectorType>(Val: I.getType()); |
| 3972 | assert(isa<FixedVectorType>(ReturnType)); |
| 3973 | |
| 3974 | // Vectors A and B, and shadows |
| 3975 | Value *Va = nullptr; |
| 3976 | Value *Vb = nullptr; |
| 3977 | Value *Sa = nullptr; |
| 3978 | Value *Sb = nullptr; |
| 3979 | |
| 3980 | assert(I.arg_size() == 2 || I.arg_size() == 3); |
| 3981 | if (I.arg_size() == 2) { |
| 3982 | assert(Lanes == kBothLanes); |
| 3983 | |
| 3984 | Va = I.getOperand(i_nocapture: 0); |
| 3985 | Vb = I.getOperand(i_nocapture: 1); |
| 3986 | |
| 3987 | Sa = getShadow(I: &I, i: 0); |
| 3988 | Sb = getShadow(I: &I, i: 1); |
| 3989 | } else if (I.arg_size() == 3) { |
| 3990 | // Operand 0 is the accumulator. We will deal with that below. |
| 3991 | Va = I.getOperand(i_nocapture: 1); |
| 3992 | Vb = I.getOperand(i_nocapture: 2); |
| 3993 | |
| 3994 | Sa = getShadow(I: &I, i: 1); |
| 3995 | Sb = getShadow(I: &I, i: 2); |
| 3996 | |
| 3997 | if (Lanes == kEvenLanes || Lanes == kOddLanes) { |
| 3998 | // Convert < S0, S1, S2, S3, S4, S5, S6, S7 > |
| 3999 | // to < S0, S0, S2, S2, S4, S4, S6, S6 > (if even) |
| 4000 | // to < S1, S1, S3, S3, S5, S5, S7, S7 > (if odd) |
| 4001 | // |
| 4002 | // Note: for aarch64.neon.bfmlalb/t, the odd/even-indexed values are |
| 4003 | // zeroed, not duplicated. However, for shadow propagation, this |
| 4004 | // distinction is unimportant because Step 1 below will squeeze |
| 4005 | // each pair of elements (e.g., [S0, S0]) into a single bit, and |
| 4006 | // we only care if it is fully initialized. |
| 4007 | |
| 4008 | FixedVectorType *InputShadowType = cast<FixedVectorType>(Val: Sa->getType()); |
| 4009 | unsigned Width = InputShadowType->getNumElements(); |
| 4010 | |
| 4011 | Sa = IRB.CreateShuffleVector( |
| 4012 | V: Sa, Mask: getPclmulMask(Width, /*OddElements=*/Lanes == kOddLanes)); |
| 4013 | Sb = IRB.CreateShuffleVector( |
| 4014 | V: Sb, Mask: getPclmulMask(Width, /*OddElements=*/Lanes == kOddLanes)); |
| 4015 | } |
| 4016 | } |
| 4017 | |
| 4018 | FixedVectorType *ParamType = cast<FixedVectorType>(Val: Va->getType()); |
| 4019 | assert(ParamType == Vb->getType()); |
| 4020 | |
| 4021 | assert(ParamType->getPrimitiveSizeInBits() == |
| 4022 | ReturnType->getPrimitiveSizeInBits()); |
| 4023 | |
| 4024 | if (I.arg_size() == 3) { |
| 4025 | [[maybe_unused]] auto *AccumulatorType = |
| 4026 | cast<FixedVectorType>(Val: I.getOperand(i_nocapture: 0)->getType()); |
| 4027 | assert(AccumulatorType == ReturnType); |
| 4028 | } |
| 4029 | |
| 4030 | FixedVectorType *ImplicitReturnType = |
| 4031 | cast<FixedVectorType>(Val: getShadowTy(OrigTy: ReturnType)); |
| 4032 | // Step 1: instrument multiplication of corresponding vector elements |
| 4033 | if (EltSizeInBits) { |
| 4034 | ImplicitReturnType = cast<FixedVectorType>( |
| 4035 | Val: getMMXVectorTy(EltSizeInBits: EltSizeInBits * ReductionFactor, |
| 4036 | X86_MMXSizeInBits: ParamType->getPrimitiveSizeInBits())); |
| 4037 | ParamType = cast<FixedVectorType>( |
| 4038 | Val: getMMXVectorTy(EltSizeInBits, X86_MMXSizeInBits: ParamType->getPrimitiveSizeInBits())); |
| 4039 | |
| 4040 | Va = IRB.CreateBitCast(V: Va, DestTy: ParamType); |
| 4041 | Vb = IRB.CreateBitCast(V: Vb, DestTy: ParamType); |
| 4042 | |
| 4043 | Sa = IRB.CreateBitCast(V: Sa, DestTy: getShadowTy(OrigTy: ParamType)); |
| 4044 | Sb = IRB.CreateBitCast(V: Sb, DestTy: getShadowTy(OrigTy: ParamType)); |
| 4045 | } else { |
| 4046 | assert(ParamType->getNumElements() == |
| 4047 | ReturnType->getNumElements() * ReductionFactor); |
| 4048 | } |
| 4049 | |
| 4050 | // Each element of the vector is represented by a single bit (poisoned or |
| 4051 | // not) e.g., <8 x i1>. |
| 4052 | Value *SaNonZero = IRB.CreateIsNotNull(Arg: Sa); |
| 4053 | Value *SbNonZero = IRB.CreateIsNotNull(Arg: Sb); |
| 4054 | Value *And; |
| 4055 | if (ZeroPurifies) { |
| 4056 | // Multiplying an *initialized* zero by an uninitialized element results |
| 4057 | // in an initialized zero element. |
| 4058 | // |
| 4059 | // This is analogous to bitwise AND, where "AND" of 0 and a poisoned value |
| 4060 | // results in an unpoisoned value. |
| 4061 | Value *VaInt = Va; |
| 4062 | Value *VbInt = Vb; |
| 4063 | if (!Va->getType()->isIntegerTy()) { |
| 4064 | VaInt = CreateAppToShadowCast(IRB, V: Va); |
| 4065 | VbInt = CreateAppToShadowCast(IRB, V: Vb); |
| 4066 | } |
| 4067 | |
| 4068 | // We check for non-zero on a per-element basis, not per-bit. |
| 4069 | Value *VaNonZero = IRB.CreateIsNotNull(Arg: VaInt); |
| 4070 | Value *VbNonZero = IRB.CreateIsNotNull(Arg: VbInt); |
| 4071 | |
| 4072 | And = handleBitwiseAnd(IRB, V1: VaNonZero, V2: VbNonZero, S1: SaNonZero, S2: SbNonZero); |
| 4073 | } else { |
| 4074 | And = IRB.CreateOr(Ops: {SaNonZero, SbNonZero}); |
| 4075 | } |
| 4076 | |
| 4077 | // Extend <8 x i1> to <8 x i16>. |
| 4078 | // (The real pmadd intrinsic would have computed intermediate values of |
| 4079 | // <8 x i32>, but that is irrelevant for our shadow purposes because we |
| 4080 | // consider each element to be either fully initialized or fully |
| 4081 | // uninitialized.) |
| 4082 | And = IRB.CreateSExt(V: And, DestTy: Sa->getType()); |
| 4083 | |
| 4084 | // Step 2: instrument horizontal add |
| 4085 | // We don't need bit-precise horizontalReduce because we only want to check |
| 4086 | // if each pair/quad of elements is fully zero. |
| 4087 | // Cast to <4 x i32>. |
| 4088 | Value *Horizontal = IRB.CreateBitCast(V: And, DestTy: ImplicitReturnType); |
| 4089 | |
| 4090 | // Compute <4 x i1>, then extend back to <4 x i32>. |
| 4091 | Value *OutShadow = IRB.CreateSExt( |
| 4092 | V: IRB.CreateICmpNE(LHS: Horizontal, |
| 4093 | RHS: Constant::getNullValue(Ty: Horizontal->getType())), |
| 4094 | DestTy: ImplicitReturnType); |
| 4095 | |
| 4096 | // Cast it back to the required fake return type (if MMX: <1 x i64>; for |
| 4097 | // AVX, it is already correct). |
| 4098 | if (EltSizeInBits) |
| 4099 | OutShadow = CreateShadowCast(IRB, V: OutShadow, dstTy: getShadowTy(V: &I)); |
| 4100 | |
| 4101 | // Step 3 (if applicable): instrument accumulator |
| 4102 | if (I.arg_size() == 3) |
| 4103 | OutShadow = IRB.CreateOr(LHS: OutShadow, RHS: getShadow(I: &I, i: 0)); |
| 4104 | |
| 4105 | setShadow(V: &I, SV: OutShadow); |
| 4106 | setOriginForNaryOp(I); |
| 4107 | } |
| 4108 | |
| 4109 | // Instrument compare-packed intrinsic. |
| 4110 | // |
| 4111 | // x86 has the predicate as the third operand, which is ImmArg e.g., |
| 4112 | // - <4 x double> @llvm.x86.avx.cmp.pd.256(<4 x double>, <4 x double>, i8) |
| 4113 | // - <2 x double> @llvm.x86.sse2.cmp.pd(<2 x double>, <2 x double>, i8) |
| 4114 | // |
| 4115 | // while Arm has separate intrinsics for >= and > e.g., |
| 4116 | // - <2 x i32> @llvm.aarch64.neon.facge.v2i32.v2f32 |
| 4117 | // (<2 x float> %A, <2 x float>) |
| 4118 | // - <2 x i32> @llvm.aarch64.neon.facgt.v2i32.v2f32 |
| 4119 | // (<2 x float> %A, <2 x float>) |
| 4120 | void handleVectorComparePackedIntrinsic(IntrinsicInst &I, |
| 4121 | bool PredicateAsOperand) { |
| 4122 | if (PredicateAsOperand) { |
| 4123 | assert(I.arg_size() == 3); |
| 4124 | assert(I.paramHasAttr(2, Attribute::ImmArg)); |
| 4125 | } else |
| 4126 | assert(I.arg_size() == 2); |
| 4127 | |
| 4128 | IRBuilder<> IRB(&I); |
| 4129 | |
| 4130 | // Basically, an or followed by sext(icmp ne 0) to end up with all-zeros or |
| 4131 | // all-ones shadow. |
| 4132 | Type *ResTy = getShadowTy(V: &I); |
| 4133 | auto *Shadow0 = getShadow(I: &I, i: 0); |
| 4134 | auto *Shadow1 = getShadow(I: &I, i: 1); |
| 4135 | Value *S0 = IRB.CreateOr(LHS: Shadow0, RHS: Shadow1); |
| 4136 | Value *S = IRB.CreateSExt( |
| 4137 | V: IRB.CreateICmpNE(LHS: S0, RHS: Constant::getNullValue(Ty: ResTy)), DestTy: ResTy); |
| 4138 | setShadow(V: &I, SV: S); |
| 4139 | setOriginForNaryOp(I); |
| 4140 | } |
| 4141 | |
| 4142 | // Instrument compare-scalar intrinsic. |
| 4143 | // This handles both cmp* intrinsics which return the result in the first |
| 4144 | // element of a vector, and comi* which return the result as i32. |
| 4145 | void handleVectorCompareScalarIntrinsic(IntrinsicInst &I) { |
| 4146 | IRBuilder<> IRB(&I); |
| 4147 | auto *Shadow0 = getShadow(I: &I, i: 0); |
| 4148 | auto *Shadow1 = getShadow(I: &I, i: 1); |
| 4149 | Value *S0 = IRB.CreateOr(LHS: Shadow0, RHS: Shadow1); |
| 4150 | Value *S = LowerElementShadowExtend(IRB, S: S0, T: getShadowTy(V: &I)); |
| 4151 | setShadow(V: &I, SV: S); |
| 4152 | setOriginForNaryOp(I); |
| 4153 | } |
| 4154 | |
| 4155 | // Instrument generic vector reduction intrinsics |
| 4156 | // by ORing together all their fields. |
| 4157 | // |
| 4158 | // If AllowShadowCast is true, the return type does not need to be the same |
| 4159 | // type as the fields |
| 4160 | // e.g., declare i32 @llvm.aarch64.neon.uaddv.i32.v16i8(<16 x i8>) |
| 4161 | void handleVectorReduceIntrinsic(IntrinsicInst &I, bool AllowShadowCast) { |
| 4162 | assert(I.arg_size() == 1); |
| 4163 | |
| 4164 | IRBuilder<> IRB(&I); |
| 4165 | Value *S = IRB.CreateOrReduce(Src: getShadow(I: &I, i: 0)); |
| 4166 | if (AllowShadowCast) |
| 4167 | S = CreateShadowCast(IRB, V: S, dstTy: getShadowTy(V: &I)); |
| 4168 | else |
| 4169 | assert(S->getType() == getShadowTy(&I)); |
| 4170 | setShadow(V: &I, SV: S); |
| 4171 | setOriginForNaryOp(I); |
| 4172 | } |
| 4173 | |
| 4174 | // Similar to handleVectorReduceIntrinsic but with an initial starting value. |
| 4175 | // e.g., call float @llvm.vector.reduce.fadd.f32.v2f32(float %a0, <2 x float> |
| 4176 | // %a1) |
| 4177 | // shadow = shadow[a0] | shadow[a1.0] | shadow[a1.1] |
| 4178 | // |
| 4179 | // The type of the return value, initial starting value, and elements of the |
| 4180 | // vector must be identical. |
| 4181 | void handleVectorReduceWithStarterIntrinsic(IntrinsicInst &I) { |
| 4182 | assert(I.arg_size() == 2); |
| 4183 | |
| 4184 | IRBuilder<> IRB(&I); |
| 4185 | Value *Shadow0 = getShadow(I: &I, i: 0); |
| 4186 | Value *Shadow1 = IRB.CreateOrReduce(Src: getShadow(I: &I, i: 1)); |
| 4187 | assert(Shadow0->getType() == Shadow1->getType()); |
| 4188 | Value *S = IRB.CreateOr(LHS: Shadow0, RHS: Shadow1); |
| 4189 | assert(S->getType() == getShadowTy(&I)); |
| 4190 | setShadow(V: &I, SV: S); |
| 4191 | setOriginForNaryOp(I); |
| 4192 | } |
| 4193 | |
| 4194 | // Instrument vector.reduce.or intrinsic. |
| 4195 | // Valid (non-poisoned) set bits in the operand pull low the |
| 4196 | // corresponding shadow bits. |
| 4197 | void handleVectorReduceOrIntrinsic(IntrinsicInst &I) { |
| 4198 | assert(I.arg_size() == 1); |
| 4199 | |
| 4200 | IRBuilder<> IRB(&I); |
| 4201 | Value *OperandShadow = getShadow(I: &I, i: 0); |
| 4202 | Value *OperandUnsetBits = IRB.CreateNot(V: I.getOperand(i_nocapture: 0)); |
| 4203 | Value *OperandUnsetOrPoison = IRB.CreateOr(LHS: OperandUnsetBits, RHS: OperandShadow); |
| 4204 | // Bit N is clean if any field's bit N is 1 and unpoison |
| 4205 | Value *OutShadowMask = IRB.CreateAndReduce(Src: OperandUnsetOrPoison); |
| 4206 | // Otherwise, it is clean if every field's bit N is unpoison |
| 4207 | Value *OrShadow = IRB.CreateOrReduce(Src: OperandShadow); |
| 4208 | Value *S = IRB.CreateAnd(LHS: OutShadowMask, RHS: OrShadow); |
| 4209 | |
| 4210 | setShadow(V: &I, SV: S); |
| 4211 | setOrigin(V: &I, Origin: getOrigin(I: &I, i: 0)); |
| 4212 | } |
| 4213 | |
| 4214 | // Instrument vector.reduce.and intrinsic. |
| 4215 | // Valid (non-poisoned) unset bits in the operand pull down the |
| 4216 | // corresponding shadow bits. |
| 4217 | void handleVectorReduceAndIntrinsic(IntrinsicInst &I) { |
| 4218 | assert(I.arg_size() == 1); |
| 4219 | |
| 4220 | IRBuilder<> IRB(&I); |
| 4221 | Value *OperandShadow = getShadow(I: &I, i: 0); |
| 4222 | Value *OperandSetOrPoison = IRB.CreateOr(LHS: I.getOperand(i_nocapture: 0), RHS: OperandShadow); |
| 4223 | // Bit N is clean if any field's bit N is 0 and unpoison |
| 4224 | Value *OutShadowMask = IRB.CreateAndReduce(Src: OperandSetOrPoison); |
| 4225 | // Otherwise, it is clean if every field's bit N is unpoison |
| 4226 | Value *OrShadow = IRB.CreateOrReduce(Src: OperandShadow); |
| 4227 | Value *S = IRB.CreateAnd(LHS: OutShadowMask, RHS: OrShadow); |
| 4228 | |
| 4229 | setShadow(V: &I, SV: S); |
| 4230 | setOrigin(V: &I, Origin: getOrigin(I: &I, i: 0)); |
| 4231 | } |
| 4232 | |
| 4233 | void handleStmxcsr(IntrinsicInst &I) { |
| 4234 | IRBuilder<> IRB(&I); |
| 4235 | Value *Addr = I.getArgOperand(i: 0); |
| 4236 | Type *Ty = IRB.getInt32Ty(); |
| 4237 | Value *ShadowPtr = |
| 4238 | getShadowOriginPtr(Addr, IRB, ShadowTy: Ty, Alignment: Align(1), /*isStore*/ true).first; |
| 4239 | |
| 4240 | IRB.CreateStore(Val: getCleanShadow(OrigTy: Ty), Ptr: ShadowPtr); |
| 4241 | |
| 4242 | if (ClCheckAccessAddress) |
| 4243 | insertCheckShadowOf(Val: Addr, OrigIns: &I); |
| 4244 | } |
| 4245 | |
| 4246 | void handleLdmxcsr(IntrinsicInst &I) { |
| 4247 | if (!InsertChecks) |
| 4248 | return; |
| 4249 | |
| 4250 | IRBuilder<> IRB(&I); |
| 4251 | Value *Addr = I.getArgOperand(i: 0); |
| 4252 | Type *Ty = IRB.getInt32Ty(); |
| 4253 | const Align Alignment = Align(1); |
| 4254 | Value *ShadowPtr, *OriginPtr; |
| 4255 | std::tie(args&: ShadowPtr, args&: OriginPtr) = |
| 4256 | getShadowOriginPtr(Addr, IRB, ShadowTy: Ty, Alignment, /*isStore*/ false); |
| 4257 | |
| 4258 | if (ClCheckAccessAddress) |
| 4259 | insertCheckShadowOf(Val: Addr, OrigIns: &I); |
| 4260 | |
| 4261 | Value *Shadow = IRB.CreateAlignedLoad(Ty, Ptr: ShadowPtr, Align: Alignment, Name: "_ldmxcsr" ); |
| 4262 | Value *Origin = MS.TrackOrigins ? IRB.CreateLoad(Ty: MS.OriginTy, Ptr: OriginPtr) |
| 4263 | : getCleanOrigin(); |
| 4264 | insertCheckShadow(Shadow, Origin, OrigIns: &I); |
| 4265 | } |
| 4266 | |
| 4267 | void handleMaskedExpandLoad(IntrinsicInst &I) { |
| 4268 | IRBuilder<> IRB(&I); |
| 4269 | Value *Ptr = I.getArgOperand(i: 0); |
| 4270 | MaybeAlign Align = I.getParamAlign(ArgNo: 0); |
| 4271 | Value *Mask = I.getArgOperand(i: 1); |
| 4272 | Value *PassThru = I.getArgOperand(i: 2); |
| 4273 | |
| 4274 | if (ClCheckAccessAddress) { |
| 4275 | insertCheckShadowOf(Val: Ptr, OrigIns: &I); |
| 4276 | insertCheckShadowOf(Val: Mask, OrigIns: &I); |
| 4277 | } |
| 4278 | |
| 4279 | if (!PropagateShadow) { |
| 4280 | setShadow(V: &I, SV: getCleanShadow(V: &I)); |
| 4281 | setOrigin(V: &I, Origin: getCleanOrigin()); |
| 4282 | return; |
| 4283 | } |
| 4284 | |
| 4285 | Type *ShadowTy = getShadowTy(V: &I); |
| 4286 | Type *ElementShadowTy = cast<VectorType>(Val: ShadowTy)->getElementType(); |
| 4287 | auto [ShadowPtr, OriginPtr] = |
| 4288 | getShadowOriginPtr(Addr: Ptr, IRB, ShadowTy: ElementShadowTy, Alignment: Align, /*isStore*/ false); |
| 4289 | |
| 4290 | Value *Shadow = |
| 4291 | IRB.CreateMaskedExpandLoad(Ty: ShadowTy, Ptr: ShadowPtr, Align, Mask, |
| 4292 | PassThru: getShadow(V: PassThru), Name: "_msmaskedexpload" ); |
| 4293 | |
| 4294 | setShadow(V: &I, SV: Shadow); |
| 4295 | |
| 4296 | // TODO: Store origins. |
| 4297 | setOrigin(V: &I, Origin: getCleanOrigin()); |
| 4298 | } |
| 4299 | |
| 4300 | void handleMaskedCompressStore(IntrinsicInst &I) { |
| 4301 | IRBuilder<> IRB(&I); |
| 4302 | Value *Values = I.getArgOperand(i: 0); |
| 4303 | Value *Ptr = I.getArgOperand(i: 1); |
| 4304 | MaybeAlign Align = I.getParamAlign(ArgNo: 1); |
| 4305 | Value *Mask = I.getArgOperand(i: 2); |
| 4306 | |
| 4307 | if (ClCheckAccessAddress) { |
| 4308 | insertCheckShadowOf(Val: Ptr, OrigIns: &I); |
| 4309 | insertCheckShadowOf(Val: Mask, OrigIns: &I); |
| 4310 | } |
| 4311 | |
| 4312 | Value *Shadow = getShadow(V: Values); |
| 4313 | Type *ElementShadowTy = |
| 4314 | getShadowTy(OrigTy: cast<VectorType>(Val: Values->getType())->getElementType()); |
| 4315 | auto [ShadowPtr, OriginPtrs] = |
| 4316 | getShadowOriginPtr(Addr: Ptr, IRB, ShadowTy: ElementShadowTy, Alignment: Align, /*isStore*/ true); |
| 4317 | |
| 4318 | IRB.CreateMaskedCompressStore(Val: Shadow, Ptr: ShadowPtr, Align, Mask); |
| 4319 | |
| 4320 | // TODO: Store origins. |
| 4321 | } |
| 4322 | |
| 4323 | void handleMaskedGather(IntrinsicInst &I) { |
| 4324 | IRBuilder<> IRB(&I); |
| 4325 | Value *Ptrs = I.getArgOperand(i: 0); |
| 4326 | const Align Alignment = I.getParamAlign(ArgNo: 0).valueOrOne(); |
| 4327 | Value *Mask = I.getArgOperand(i: 1); |
| 4328 | Value *PassThru = I.getArgOperand(i: 2); |
| 4329 | |
| 4330 | Type *PtrsShadowTy = getShadowTy(V: Ptrs); |
| 4331 | if (ClCheckAccessAddress) { |
| 4332 | insertCheckShadowOf(Val: Mask, OrigIns: &I); |
| 4333 | Value *MaskedPtrShadow = IRB.CreateSelect( |
| 4334 | C: Mask, True: getShadow(V: Ptrs), False: Constant::getNullValue(Ty: (PtrsShadowTy)), |
| 4335 | Name: "_msmaskedptrs" ); |
| 4336 | insertCheckShadow(Shadow: MaskedPtrShadow, Origin: getOrigin(V: Ptrs), OrigIns: &I); |
| 4337 | } |
| 4338 | |
| 4339 | if (!PropagateShadow) { |
| 4340 | setShadow(V: &I, SV: getCleanShadow(V: &I)); |
| 4341 | setOrigin(V: &I, Origin: getCleanOrigin()); |
| 4342 | return; |
| 4343 | } |
| 4344 | |
| 4345 | Type *ShadowTy = getShadowTy(V: &I); |
| 4346 | Type *ElementShadowTy = cast<VectorType>(Val: ShadowTy)->getElementType(); |
| 4347 | auto [ShadowPtrs, OriginPtrs] = getShadowOriginPtr( |
| 4348 | Addr: Ptrs, IRB, ShadowTy: ElementShadowTy, Alignment, /*isStore*/ false); |
| 4349 | |
| 4350 | Value *Shadow = |
| 4351 | IRB.CreateMaskedGather(Ty: ShadowTy, Ptrs: ShadowPtrs, Alignment, Mask, |
| 4352 | PassThru: getShadow(V: PassThru), Name: "_msmaskedgather" ); |
| 4353 | |
| 4354 | setShadow(V: &I, SV: Shadow); |
| 4355 | |
| 4356 | // TODO: Store origins. |
| 4357 | setOrigin(V: &I, Origin: getCleanOrigin()); |
| 4358 | } |
| 4359 | |
| 4360 | void handleMaskedScatter(IntrinsicInst &I) { |
| 4361 | IRBuilder<> IRB(&I); |
| 4362 | Value *Values = I.getArgOperand(i: 0); |
| 4363 | Value *Ptrs = I.getArgOperand(i: 1); |
| 4364 | const Align Alignment = I.getParamAlign(ArgNo: 1).valueOrOne(); |
| 4365 | Value *Mask = I.getArgOperand(i: 2); |
| 4366 | |
| 4367 | Type *PtrsShadowTy = getShadowTy(V: Ptrs); |
| 4368 | if (ClCheckAccessAddress) { |
| 4369 | insertCheckShadowOf(Val: Mask, OrigIns: &I); |
| 4370 | Value *MaskedPtrShadow = IRB.CreateSelect( |
| 4371 | C: Mask, True: getShadow(V: Ptrs), False: Constant::getNullValue(Ty: (PtrsShadowTy)), |
| 4372 | Name: "_msmaskedptrs" ); |
| 4373 | insertCheckShadow(Shadow: MaskedPtrShadow, Origin: getOrigin(V: Ptrs), OrigIns: &I); |
| 4374 | } |
| 4375 | |
| 4376 | Value *Shadow = getShadow(V: Values); |
| 4377 | Type *ElementShadowTy = |
| 4378 | getShadowTy(OrigTy: cast<VectorType>(Val: Values->getType())->getElementType()); |
| 4379 | auto [ShadowPtrs, OriginPtrs] = getShadowOriginPtr( |
| 4380 | Addr: Ptrs, IRB, ShadowTy: ElementShadowTy, Alignment, /*isStore*/ true); |
| 4381 | |
| 4382 | IRB.CreateMaskedScatter(Val: Shadow, Ptrs: ShadowPtrs, Alignment, Mask); |
| 4383 | |
| 4384 | // TODO: Store origin. |
| 4385 | } |
| 4386 | |
| 4387 | // Intrinsic::masked_store |
| 4388 | // |
| 4389 | // Note: handleAVXMaskedStore handles AVX/AVX2 variants, though AVX512 masked |
| 4390 | // stores are lowered to Intrinsic::masked_store. |
| 4391 | void handleMaskedStore(IntrinsicInst &I) { |
| 4392 | IRBuilder<> IRB(&I); |
| 4393 | Value *V = I.getArgOperand(i: 0); |
| 4394 | Value *Ptr = I.getArgOperand(i: 1); |
| 4395 | const Align Alignment = I.getParamAlign(ArgNo: 1).valueOrOne(); |
| 4396 | Value *Mask = I.getArgOperand(i: 2); |
| 4397 | Value *Shadow = getShadow(V); |
| 4398 | |
| 4399 | if (ClCheckAccessAddress) { |
| 4400 | insertCheckShadowOf(Val: Ptr, OrigIns: &I); |
| 4401 | insertCheckShadowOf(Val: Mask, OrigIns: &I); |
| 4402 | } |
| 4403 | |
| 4404 | Value *ShadowPtr; |
| 4405 | Value *OriginPtr; |
| 4406 | std::tie(args&: ShadowPtr, args&: OriginPtr) = getShadowOriginPtr( |
| 4407 | Addr: Ptr, IRB, ShadowTy: Shadow->getType(), Alignment, /*isStore*/ true); |
| 4408 | |
| 4409 | IRB.CreateMaskedStore(Val: Shadow, Ptr: ShadowPtr, Alignment, Mask); |
| 4410 | |
| 4411 | if (!MS.TrackOrigins) |
| 4412 | return; |
| 4413 | |
| 4414 | auto &DL = F.getDataLayout(); |
| 4415 | paintOrigin(IRB, Origin: getOrigin(V), OriginPtr, |
| 4416 | TS: DL.getTypeStoreSize(Ty: Shadow->getType()), |
| 4417 | Alignment: std::max(a: Alignment, b: kMinOriginAlignment)); |
| 4418 | } |
| 4419 | |
| 4420 | // Intrinsic::masked_load |
| 4421 | // |
| 4422 | // Note: handleAVXMaskedLoad handles AVX/AVX2 variants, though AVX512 masked |
| 4423 | // loads are lowered to Intrinsic::masked_load. |
| 4424 | void handleMaskedLoad(IntrinsicInst &I) { |
| 4425 | IRBuilder<> IRB(&I); |
| 4426 | Value *Ptr = I.getArgOperand(i: 0); |
| 4427 | const Align Alignment = I.getParamAlign(ArgNo: 0).valueOrOne(); |
| 4428 | Value *Mask = I.getArgOperand(i: 1); |
| 4429 | Value *PassThru = I.getArgOperand(i: 2); |
| 4430 | |
| 4431 | if (ClCheckAccessAddress) { |
| 4432 | insertCheckShadowOf(Val: Ptr, OrigIns: &I); |
| 4433 | insertCheckShadowOf(Val: Mask, OrigIns: &I); |
| 4434 | } |
| 4435 | |
| 4436 | if (!PropagateShadow) { |
| 4437 | setShadow(V: &I, SV: getCleanShadow(V: &I)); |
| 4438 | setOrigin(V: &I, Origin: getCleanOrigin()); |
| 4439 | return; |
| 4440 | } |
| 4441 | |
| 4442 | Type *ShadowTy = getShadowTy(V: &I); |
| 4443 | Value *ShadowPtr, *OriginPtr; |
| 4444 | std::tie(args&: ShadowPtr, args&: OriginPtr) = |
| 4445 | getShadowOriginPtr(Addr: Ptr, IRB, ShadowTy, Alignment, /*isStore*/ false); |
| 4446 | setShadow(V: &I, SV: IRB.CreateMaskedLoad(Ty: ShadowTy, Ptr: ShadowPtr, Alignment, Mask, |
| 4447 | PassThru: getShadow(V: PassThru), Name: "_msmaskedld" )); |
| 4448 | |
| 4449 | if (!MS.TrackOrigins) |
| 4450 | return; |
| 4451 | |
| 4452 | // Choose between PassThru's and the loaded value's origins. |
| 4453 | Value *MaskedPassThruShadow = IRB.CreateAnd( |
| 4454 | LHS: getShadow(V: PassThru), RHS: IRB.CreateSExt(V: IRB.CreateNeg(V: Mask), DestTy: ShadowTy)); |
| 4455 | |
| 4456 | Value *NotNull = convertToBool(V: MaskedPassThruShadow, IRB, name: "_mscmp" ); |
| 4457 | |
| 4458 | Value *PtrOrigin = IRB.CreateLoad(Ty: MS.OriginTy, Ptr: OriginPtr); |
| 4459 | Value *Origin = IRB.CreateSelect(C: NotNull, True: getOrigin(V: PassThru), False: PtrOrigin); |
| 4460 | |
| 4461 | setOrigin(V: &I, Origin); |
| 4462 | } |
| 4463 | |
| 4464 | // e.g., void @llvm.x86.avx.maskstore.ps.256(ptr, <8 x i32>, <8 x float>) |
| 4465 | // dst mask src |
| 4466 | // |
| 4467 | // AVX512 masked stores are lowered to Intrinsic::masked_load and are handled |
| 4468 | // by handleMaskedStore. |
| 4469 | // |
| 4470 | // This function handles AVX and AVX2 masked stores; these use the MSBs of a |
| 4471 | // vector of integers, unlike the LLVM masked intrinsics, which require a |
| 4472 | // vector of booleans. X86InstCombineIntrinsic.cpp::simplifyX86MaskedLoad |
| 4473 | // mentions that the x86 backend does not know how to efficiently convert |
| 4474 | // from a vector of booleans back into the AVX mask format; therefore, they |
| 4475 | // (and we) do not reduce AVX/AVX2 masked intrinsics into LLVM masked |
| 4476 | // intrinsics. |
| 4477 | void handleAVXMaskedStore(IntrinsicInst &I) { |
| 4478 | assert(I.arg_size() == 3); |
| 4479 | |
| 4480 | IRBuilder<> IRB(&I); |
| 4481 | |
| 4482 | Value *Dst = I.getArgOperand(i: 0); |
| 4483 | assert(Dst->getType()->isPointerTy() && "Destination is not a pointer!" ); |
| 4484 | |
| 4485 | Value *Mask = I.getArgOperand(i: 1); |
| 4486 | assert(isa<VectorType>(Mask->getType()) && "Mask is not a vector!" ); |
| 4487 | |
| 4488 | Value *Src = I.getArgOperand(i: 2); |
| 4489 | assert(isa<VectorType>(Src->getType()) && "Source is not a vector!" ); |
| 4490 | |
| 4491 | const Align Alignment = Align(1); |
| 4492 | |
| 4493 | Value *SrcShadow = getShadow(V: Src); |
| 4494 | |
| 4495 | if (ClCheckAccessAddress) { |
| 4496 | insertCheckShadowOf(Val: Dst, OrigIns: &I); |
| 4497 | insertCheckShadowOf(Val: Mask, OrigIns: &I); |
| 4498 | } |
| 4499 | |
| 4500 | Value *DstShadowPtr; |
| 4501 | Value *DstOriginPtr; |
| 4502 | std::tie(args&: DstShadowPtr, args&: DstOriginPtr) = getShadowOriginPtr( |
| 4503 | Addr: Dst, IRB, ShadowTy: SrcShadow->getType(), Alignment, /*isStore*/ true); |
| 4504 | |
| 4505 | SmallVector<Value *, 2> ShadowArgs; |
| 4506 | ShadowArgs.append(NumInputs: 1, Elt: DstShadowPtr); |
| 4507 | ShadowArgs.append(NumInputs: 1, Elt: Mask); |
| 4508 | // The intrinsic may require floating-point but shadows can be arbitrary |
| 4509 | // bit patterns, of which some would be interpreted as "invalid" |
| 4510 | // floating-point values (NaN etc.); we assume the intrinsic will happily |
| 4511 | // copy them. |
| 4512 | ShadowArgs.append(NumInputs: 1, Elt: IRB.CreateBitCast(V: SrcShadow, DestTy: Src->getType())); |
| 4513 | |
| 4514 | CallInst *CI = |
| 4515 | IRB.CreateIntrinsic(RetTy: IRB.getVoidTy(), ID: I.getIntrinsicID(), Args: ShadowArgs); |
| 4516 | setShadow(V: &I, SV: CI); |
| 4517 | |
| 4518 | if (!MS.TrackOrigins) |
| 4519 | return; |
| 4520 | |
| 4521 | // Approximation only |
| 4522 | auto &DL = F.getDataLayout(); |
| 4523 | paintOrigin(IRB, Origin: getOrigin(V: Src), OriginPtr: DstOriginPtr, |
| 4524 | TS: DL.getTypeStoreSize(Ty: SrcShadow->getType()), |
| 4525 | Alignment: std::max(a: Alignment, b: kMinOriginAlignment)); |
| 4526 | } |
| 4527 | |
| 4528 | // e.g., <8 x float> @llvm.x86.avx.maskload.ps.256(ptr, <8 x i32>) |
| 4529 | // return src mask |
| 4530 | // |
| 4531 | // Masked-off values are replaced with 0, which conveniently also represents |
| 4532 | // initialized memory. |
| 4533 | // |
| 4534 | // AVX512 masked stores are lowered to Intrinsic::masked_load and are handled |
| 4535 | // by handleMaskedStore. |
| 4536 | // |
| 4537 | // We do not combine this with handleMaskedLoad; see comment in |
| 4538 | // handleAVXMaskedStore for the rationale. |
| 4539 | // |
| 4540 | // This is subtly different than handleIntrinsicByApplyingToShadow(I, 1) |
| 4541 | // because we need to apply getShadowOriginPtr, not getShadow, to the first |
| 4542 | // parameter. |
| 4543 | void handleAVXMaskedLoad(IntrinsicInst &I) { |
| 4544 | assert(I.arg_size() == 2); |
| 4545 | |
| 4546 | IRBuilder<> IRB(&I); |
| 4547 | |
| 4548 | Value *Src = I.getArgOperand(i: 0); |
| 4549 | assert(Src->getType()->isPointerTy() && "Source is not a pointer!" ); |
| 4550 | |
| 4551 | Value *Mask = I.getArgOperand(i: 1); |
| 4552 | assert(isa<VectorType>(Mask->getType()) && "Mask is not a vector!" ); |
| 4553 | |
| 4554 | const Align Alignment = Align(1); |
| 4555 | |
| 4556 | if (ClCheckAccessAddress) { |
| 4557 | insertCheckShadowOf(Val: Mask, OrigIns: &I); |
| 4558 | } |
| 4559 | |
| 4560 | Type *SrcShadowTy = getShadowTy(V: Src); |
| 4561 | Value *SrcShadowPtr, *SrcOriginPtr; |
| 4562 | std::tie(args&: SrcShadowPtr, args&: SrcOriginPtr) = |
| 4563 | getShadowOriginPtr(Addr: Src, IRB, ShadowTy: SrcShadowTy, Alignment, /*isStore*/ false); |
| 4564 | |
| 4565 | SmallVector<Value *, 2> ShadowArgs; |
| 4566 | ShadowArgs.append(NumInputs: 1, Elt: SrcShadowPtr); |
| 4567 | ShadowArgs.append(NumInputs: 1, Elt: Mask); |
| 4568 | |
| 4569 | CallInst *CI = |
| 4570 | IRB.CreateIntrinsic(RetTy: I.getType(), ID: I.getIntrinsicID(), Args: ShadowArgs); |
| 4571 | // The AVX masked load intrinsics do not have integer variants. We use the |
| 4572 | // floating-point variants, which will happily copy the shadows even if |
| 4573 | // they are interpreted as "invalid" floating-point values (NaN etc.). |
| 4574 | setShadow(V: &I, SV: IRB.CreateBitCast(V: CI, DestTy: getShadowTy(V: &I))); |
| 4575 | |
| 4576 | if (!MS.TrackOrigins) |
| 4577 | return; |
| 4578 | |
| 4579 | // The "pass-through" value is always zero (initialized). To the extent |
| 4580 | // that that results in initialized aligned 4-byte chunks, the origin value |
| 4581 | // is ignored. It is therefore correct to simply copy the origin from src. |
| 4582 | Value *PtrSrcOrigin = IRB.CreateLoad(Ty: MS.OriginTy, Ptr: SrcOriginPtr); |
| 4583 | setOrigin(V: &I, Origin: PtrSrcOrigin); |
| 4584 | } |
| 4585 | |
| 4586 | // Test whether the mask indices are initialized, only checking the bits that |
| 4587 | // are actually used. |
| 4588 | // |
| 4589 | // e.g., if Idx is <32 x i16>, only (log2(32) == 5) bits of each index are |
| 4590 | // used/checked. |
| 4591 | void maskedCheckAVXIndexShadow(IRBuilder<> &IRB, Value *Idx, Instruction *I) { |
| 4592 | assert(isFixedIntVector(Idx)); |
| 4593 | auto IdxVectorSize = |
| 4594 | cast<FixedVectorType>(Val: Idx->getType())->getNumElements(); |
| 4595 | assert(isPowerOf2_64(IdxVectorSize)); |
| 4596 | |
| 4597 | // Compiler isn't smart enough, let's help it |
| 4598 | if (isa<Constant>(Val: Idx)) |
| 4599 | return; |
| 4600 | |
| 4601 | auto *IdxShadow = getShadow(V: Idx); |
| 4602 | Value *Truncated = IRB.CreateTrunc( |
| 4603 | V: IdxShadow, |
| 4604 | DestTy: FixedVectorType::get(ElementType: Type::getIntNTy(C&: *MS.C, N: Log2_64(Value: IdxVectorSize)), |
| 4605 | NumElts: IdxVectorSize)); |
| 4606 | insertCheckShadow(Shadow: Truncated, Origin: getOrigin(V: Idx), OrigIns: I); |
| 4607 | } |
| 4608 | |
| 4609 | // Instrument AVX permutation intrinsic. |
| 4610 | // We apply the same permutation (argument index 1) to the shadow. |
| 4611 | void handleAVXVpermilvar(IntrinsicInst &I) { |
| 4612 | IRBuilder<> IRB(&I); |
| 4613 | Value *Shadow = getShadow(I: &I, i: 0); |
| 4614 | maskedCheckAVXIndexShadow(IRB, Idx: I.getArgOperand(i: 1), I: &I); |
| 4615 | |
| 4616 | // Shadows are integer-ish types but some intrinsics require a |
| 4617 | // different (e.g., floating-point) type. |
| 4618 | Shadow = IRB.CreateBitCast(V: Shadow, DestTy: I.getArgOperand(i: 0)->getType()); |
| 4619 | CallInst *CI = IRB.CreateIntrinsic(RetTy: I.getType(), ID: I.getIntrinsicID(), |
| 4620 | Args: {Shadow, I.getArgOperand(i: 1)}); |
| 4621 | |
| 4622 | setShadow(V: &I, SV: IRB.CreateBitCast(V: CI, DestTy: getShadowTy(V: &I))); |
| 4623 | setOriginForNaryOp(I); |
| 4624 | } |
| 4625 | |
| 4626 | // Instrument AVX permutation intrinsic. |
| 4627 | // We apply the same permutation (argument index 1) to the shadows. |
| 4628 | void handleAVXVpermi2var(IntrinsicInst &I) { |
| 4629 | assert(I.arg_size() == 3); |
| 4630 | assert(isa<FixedVectorType>(I.getArgOperand(0)->getType())); |
| 4631 | assert(isa<FixedVectorType>(I.getArgOperand(1)->getType())); |
| 4632 | assert(isa<FixedVectorType>(I.getArgOperand(2)->getType())); |
| 4633 | [[maybe_unused]] auto ArgVectorSize = |
| 4634 | cast<FixedVectorType>(Val: I.getArgOperand(i: 0)->getType())->getNumElements(); |
| 4635 | assert(cast<FixedVectorType>(I.getArgOperand(1)->getType()) |
| 4636 | ->getNumElements() == ArgVectorSize); |
| 4637 | assert(cast<FixedVectorType>(I.getArgOperand(2)->getType()) |
| 4638 | ->getNumElements() == ArgVectorSize); |
| 4639 | assert(I.getArgOperand(0)->getType() == I.getArgOperand(2)->getType()); |
| 4640 | assert(I.getType() == I.getArgOperand(0)->getType()); |
| 4641 | assert(I.getArgOperand(1)->getType()->isIntOrIntVectorTy()); |
| 4642 | IRBuilder<> IRB(&I); |
| 4643 | Value *AShadow = getShadow(I: &I, i: 0); |
| 4644 | Value *Idx = I.getArgOperand(i: 1); |
| 4645 | Value *BShadow = getShadow(I: &I, i: 2); |
| 4646 | |
| 4647 | maskedCheckAVXIndexShadow(IRB, Idx, I: &I); |
| 4648 | |
| 4649 | // Shadows are integer-ish types but some intrinsics require a |
| 4650 | // different (e.g., floating-point) type. |
| 4651 | AShadow = IRB.CreateBitCast(V: AShadow, DestTy: I.getArgOperand(i: 0)->getType()); |
| 4652 | BShadow = IRB.CreateBitCast(V: BShadow, DestTy: I.getArgOperand(i: 2)->getType()); |
| 4653 | CallInst *CI = IRB.CreateIntrinsic(RetTy: I.getType(), ID: I.getIntrinsicID(), |
| 4654 | Args: {AShadow, Idx, BShadow}); |
| 4655 | setShadow(V: &I, SV: IRB.CreateBitCast(V: CI, DestTy: getShadowTy(V: &I))); |
| 4656 | setOriginForNaryOp(I); |
| 4657 | } |
| 4658 | |
| 4659 | [[maybe_unused]] static bool isFixedIntVectorTy(const Type *T) { |
| 4660 | return isa<FixedVectorType>(Val: T) && T->isIntOrIntVectorTy(); |
| 4661 | } |
| 4662 | |
| 4663 | [[maybe_unused]] static bool isFixedFPVectorTy(const Type *T) { |
| 4664 | return isa<FixedVectorType>(Val: T) && T->isFPOrFPVectorTy(); |
| 4665 | } |
| 4666 | |
| 4667 | [[maybe_unused]] static bool isFixedIntVector(const Value *V) { |
| 4668 | return isFixedIntVectorTy(T: V->getType()); |
| 4669 | } |
| 4670 | |
| 4671 | [[maybe_unused]] static bool isFixedFPVector(const Value *V) { |
| 4672 | return isFixedFPVectorTy(T: V->getType()); |
| 4673 | } |
| 4674 | |
| 4675 | // e.g., <16 x i32> @llvm.x86.avx512.mask.cvtps2dq.512 |
| 4676 | // (<16 x float> a, <16 x i32> writethru, i16 mask, |
| 4677 | // i32 rounding) |
| 4678 | // |
| 4679 | // Inconveniently, some similar intrinsics have a different operand order: |
| 4680 | // <16 x i16> @llvm.x86.avx512.mask.vcvtps2ph.512 |
| 4681 | // (<16 x float> a, i32 rounding, <16 x i16> writethru, |
| 4682 | // i16 mask) |
| 4683 | // |
| 4684 | // If the return type has more elements than A, the excess elements are |
| 4685 | // zeroed (and the corresponding shadow is initialized). |
| 4686 | // <8 x i16> @llvm.x86.avx512.mask.vcvtps2ph.128 |
| 4687 | // (<4 x float> a, i32 rounding, <8 x i16> writethru, |
| 4688 | // i8 mask) |
| 4689 | // |
| 4690 | // dst[i] = mask[i] ? convert(a[i]) : writethru[i] |
| 4691 | // dst_shadow[i] = mask[i] ? all_or_nothing(a_shadow[i]) : writethru_shadow[i] |
| 4692 | // where all_or_nothing(x) is fully uninitialized if x has any |
| 4693 | // uninitialized bits |
| 4694 | void handleAVX512VectorConvertFPToInt(IntrinsicInst &I, bool LastMask) { |
| 4695 | IRBuilder<> IRB(&I); |
| 4696 | |
| 4697 | assert(I.arg_size() == 4); |
| 4698 | Value *A = I.getOperand(i_nocapture: 0); |
| 4699 | Value *WriteThrough; |
| 4700 | Value *Mask; |
| 4701 | Value *RoundingMode; |
| 4702 | if (LastMask) { |
| 4703 | WriteThrough = I.getOperand(i_nocapture: 2); |
| 4704 | Mask = I.getOperand(i_nocapture: 3); |
| 4705 | RoundingMode = I.getOperand(i_nocapture: 1); |
| 4706 | } else { |
| 4707 | WriteThrough = I.getOperand(i_nocapture: 1); |
| 4708 | Mask = I.getOperand(i_nocapture: 2); |
| 4709 | RoundingMode = I.getOperand(i_nocapture: 3); |
| 4710 | } |
| 4711 | |
| 4712 | assert(isFixedFPVector(A)); |
| 4713 | assert(isFixedIntVector(WriteThrough)); |
| 4714 | |
| 4715 | unsigned ANumElements = |
| 4716 | cast<FixedVectorType>(Val: A->getType())->getNumElements(); |
| 4717 | [[maybe_unused]] unsigned WriteThruNumElements = |
| 4718 | cast<FixedVectorType>(Val: WriteThrough->getType())->getNumElements(); |
| 4719 | assert(ANumElements == WriteThruNumElements || |
| 4720 | ANumElements * 2 == WriteThruNumElements); |
| 4721 | |
| 4722 | assert(Mask->getType()->isIntegerTy()); |
| 4723 | unsigned MaskNumElements = Mask->getType()->getScalarSizeInBits(); |
| 4724 | assert(ANumElements == MaskNumElements || |
| 4725 | ANumElements * 2 == MaskNumElements); |
| 4726 | |
| 4727 | assert(WriteThruNumElements == MaskNumElements); |
| 4728 | |
| 4729 | // Some bits of the mask may be unused, though it's unusual to have partly |
| 4730 | // uninitialized bits. |
| 4731 | insertCheckShadowOf(Val: Mask, OrigIns: &I); |
| 4732 | |
| 4733 | assert(RoundingMode->getType()->isIntegerTy()); |
| 4734 | // Only some bits of the rounding mode are used, though it's very |
| 4735 | // unusual to have uninitialized bits there (more commonly, it's a |
| 4736 | // constant). |
| 4737 | insertCheckShadowOf(Val: RoundingMode, OrigIns: &I); |
| 4738 | |
| 4739 | assert(I.getType() == WriteThrough->getType()); |
| 4740 | |
| 4741 | Value *AShadow = getShadow(V: A); |
| 4742 | AShadow = maybeExtendVectorShadowWithZeros(Shadow: AShadow, I); |
| 4743 | |
| 4744 | if (ANumElements * 2 == MaskNumElements) { |
| 4745 | // Ensure that the irrelevant bits of the mask are zero, hence selecting |
| 4746 | // from the zeroed shadow instead of the writethrough's shadow. |
| 4747 | Mask = |
| 4748 | IRB.CreateTrunc(V: Mask, DestTy: IRB.getIntNTy(N: ANumElements), Name: "_ms_mask_trunc" ); |
| 4749 | Mask = |
| 4750 | IRB.CreateZExt(V: Mask, DestTy: IRB.getIntNTy(N: MaskNumElements), Name: "_ms_mask_zext" ); |
| 4751 | } |
| 4752 | |
| 4753 | // Convert i16 mask to <16 x i1> |
| 4754 | Mask = IRB.CreateBitCast( |
| 4755 | V: Mask, DestTy: FixedVectorType::get(ElementType: IRB.getInt1Ty(), NumElts: MaskNumElements), |
| 4756 | Name: "_ms_mask_bitcast" ); |
| 4757 | |
| 4758 | /// For floating-point to integer conversion, the output is: |
| 4759 | /// - fully uninitialized if *any* bit of the input is uninitialized |
| 4760 | /// - fully ininitialized if all bits of the input are ininitialized |
| 4761 | /// We apply the same principle on a per-element basis for vectors. |
| 4762 | /// |
| 4763 | /// We use the scalar width of the return type instead of A's. |
| 4764 | AShadow = IRB.CreateSExt( |
| 4765 | V: IRB.CreateICmpNE(LHS: AShadow, RHS: getCleanShadow(OrigTy: AShadow->getType())), |
| 4766 | DestTy: getShadowTy(V: &I), Name: "_ms_a_shadow" ); |
| 4767 | |
| 4768 | Value *WriteThroughShadow = getShadow(V: WriteThrough); |
| 4769 | Value *Shadow = IRB.CreateSelect(C: Mask, True: AShadow, False: WriteThroughShadow, |
| 4770 | Name: "_ms_writethru_select" ); |
| 4771 | |
| 4772 | setShadow(V: &I, SV: Shadow); |
| 4773 | setOriginForNaryOp(I); |
| 4774 | } |
| 4775 | |
| 4776 | // Instrument BMI / BMI2 intrinsics. |
| 4777 | // All of these intrinsics are Z = I(X, Y) |
| 4778 | // where the types of all operands and the result match, and are either i32 or |
| 4779 | // i64. The following instrumentation happens to work for all of them: |
| 4780 | // Sz = I(Sx, Y) | (sext (Sy != 0)) |
| 4781 | void handleBmiIntrinsic(IntrinsicInst &I) { |
| 4782 | IRBuilder<> IRB(&I); |
| 4783 | Type *ShadowTy = getShadowTy(V: &I); |
| 4784 | |
| 4785 | // If any bit of the mask operand is poisoned, then the whole thing is. |
| 4786 | Value *SMask = getShadow(I: &I, i: 1); |
| 4787 | SMask = IRB.CreateSExt(V: IRB.CreateICmpNE(LHS: SMask, RHS: getCleanShadow(OrigTy: ShadowTy)), |
| 4788 | DestTy: ShadowTy); |
| 4789 | // Apply the same intrinsic to the shadow of the first operand. |
| 4790 | Value *S = IRB.CreateCall(Callee: I.getCalledFunction(), |
| 4791 | Args: {getShadow(I: &I, i: 0), I.getOperand(i_nocapture: 1)}); |
| 4792 | S = IRB.CreateOr(LHS: SMask, RHS: S); |
| 4793 | setShadow(V: &I, SV: S); |
| 4794 | setOriginForNaryOp(I); |
| 4795 | } |
| 4796 | |
| 4797 | static SmallVector<int, 8> getPclmulMask(unsigned Width, bool OddElements) { |
| 4798 | SmallVector<int, 8> Mask; |
| 4799 | for (unsigned X = OddElements ? 1 : 0; X < Width; X += 2) { |
| 4800 | Mask.append(NumInputs: 2, Elt: X); |
| 4801 | } |
| 4802 | return Mask; |
| 4803 | } |
| 4804 | |
| 4805 | // Instrument pclmul intrinsics. |
| 4806 | // These intrinsics operate either on odd or on even elements of the input |
| 4807 | // vectors, depending on the constant in the 3rd argument, ignoring the rest. |
| 4808 | // Replace the unused elements with copies of the used ones, ex: |
| 4809 | // (0, 1, 2, 3) -> (0, 0, 2, 2) (even case) |
| 4810 | // or |
| 4811 | // (0, 1, 2, 3) -> (1, 1, 3, 3) (odd case) |
| 4812 | // and then apply the usual shadow combining logic. |
| 4813 | void handlePclmulIntrinsic(IntrinsicInst &I) { |
| 4814 | IRBuilder<> IRB(&I); |
| 4815 | unsigned Width = |
| 4816 | cast<FixedVectorType>(Val: I.getArgOperand(i: 0)->getType())->getNumElements(); |
| 4817 | assert(isa<ConstantInt>(I.getArgOperand(2)) && |
| 4818 | "pclmul 3rd operand must be a constant" ); |
| 4819 | unsigned Imm = cast<ConstantInt>(Val: I.getArgOperand(i: 2))->getZExtValue(); |
| 4820 | Value *Shuf0 = IRB.CreateShuffleVector(V: getShadow(I: &I, i: 0), |
| 4821 | Mask: getPclmulMask(Width, OddElements: Imm & 0x01)); |
| 4822 | Value *Shuf1 = IRB.CreateShuffleVector(V: getShadow(I: &I, i: 1), |
| 4823 | Mask: getPclmulMask(Width, OddElements: Imm & 0x10)); |
| 4824 | ShadowAndOriginCombiner SOC(this, IRB); |
| 4825 | SOC.Add(OpShadow: Shuf0, OpOrigin: getOrigin(I: &I, i: 0)); |
| 4826 | SOC.Add(OpShadow: Shuf1, OpOrigin: getOrigin(I: &I, i: 1)); |
| 4827 | SOC.Done(I: &I); |
| 4828 | } |
| 4829 | |
| 4830 | // Instrument _mm_*_sd|ss intrinsics |
| 4831 | void handleUnarySdSsIntrinsic(IntrinsicInst &I) { |
| 4832 | IRBuilder<> IRB(&I); |
| 4833 | unsigned Width = |
| 4834 | cast<FixedVectorType>(Val: I.getArgOperand(i: 0)->getType())->getNumElements(); |
| 4835 | Value *First = getShadow(I: &I, i: 0); |
| 4836 | Value *Second = getShadow(I: &I, i: 1); |
| 4837 | // First element of second operand, remaining elements of first operand |
| 4838 | SmallVector<int, 16> Mask; |
| 4839 | Mask.push_back(Elt: Width); |
| 4840 | for (unsigned i = 1; i < Width; i++) |
| 4841 | Mask.push_back(Elt: i); |
| 4842 | Value *Shadow = IRB.CreateShuffleVector(V1: First, V2: Second, Mask); |
| 4843 | |
| 4844 | setShadow(V: &I, SV: Shadow); |
| 4845 | setOriginForNaryOp(I); |
| 4846 | } |
| 4847 | |
| 4848 | void handleVtestIntrinsic(IntrinsicInst &I) { |
| 4849 | IRBuilder<> IRB(&I); |
| 4850 | Value *Shadow0 = getShadow(I: &I, i: 0); |
| 4851 | Value *Shadow1 = getShadow(I: &I, i: 1); |
| 4852 | Value *Or = IRB.CreateOr(LHS: Shadow0, RHS: Shadow1); |
| 4853 | Value *NZ = IRB.CreateICmpNE(LHS: Or, RHS: Constant::getNullValue(Ty: Or->getType())); |
| 4854 | Value *Scalar = convertShadowToScalar(V: NZ, IRB); |
| 4855 | Value *Shadow = IRB.CreateZExt(V: Scalar, DestTy: getShadowTy(V: &I)); |
| 4856 | |
| 4857 | setShadow(V: &I, SV: Shadow); |
| 4858 | setOriginForNaryOp(I); |
| 4859 | } |
| 4860 | |
| 4861 | void handleBinarySdSsIntrinsic(IntrinsicInst &I) { |
| 4862 | IRBuilder<> IRB(&I); |
| 4863 | unsigned Width = |
| 4864 | cast<FixedVectorType>(Val: I.getArgOperand(i: 0)->getType())->getNumElements(); |
| 4865 | Value *First = getShadow(I: &I, i: 0); |
| 4866 | Value *Second = getShadow(I: &I, i: 1); |
| 4867 | Value *OrShadow = IRB.CreateOr(LHS: First, RHS: Second); |
| 4868 | // First element of both OR'd together, remaining elements of first operand |
| 4869 | SmallVector<int, 16> Mask; |
| 4870 | Mask.push_back(Elt: Width); |
| 4871 | for (unsigned i = 1; i < Width; i++) |
| 4872 | Mask.push_back(Elt: i); |
| 4873 | Value *Shadow = IRB.CreateShuffleVector(V1: First, V2: OrShadow, Mask); |
| 4874 | |
| 4875 | setShadow(V: &I, SV: Shadow); |
| 4876 | setOriginForNaryOp(I); |
| 4877 | } |
| 4878 | |
| 4879 | // _mm_round_ps / _mm_round_ps. |
| 4880 | // Similar to maybeHandleSimpleNomemIntrinsic except |
| 4881 | // the second argument is guaranteed to be a constant integer. |
| 4882 | void handleRoundPdPsIntrinsic(IntrinsicInst &I) { |
| 4883 | assert(I.getArgOperand(0)->getType() == I.getType()); |
| 4884 | assert(I.arg_size() == 2); |
| 4885 | assert(isa<ConstantInt>(I.getArgOperand(1))); |
| 4886 | |
| 4887 | IRBuilder<> IRB(&I); |
| 4888 | ShadowAndOriginCombiner SC(this, IRB); |
| 4889 | SC.Add(V: I.getArgOperand(i: 0)); |
| 4890 | SC.Done(I: &I); |
| 4891 | } |
| 4892 | |
| 4893 | // Instrument @llvm.abs intrinsic. |
| 4894 | // |
| 4895 | // e.g., i32 @llvm.abs.i32 (i32 <Src>, i1 <is_int_min_poison>) |
| 4896 | // <4 x i32> @llvm.abs.v4i32(<4 x i32> <Src>, i1 <is_int_min_poison>) |
| 4897 | void handleAbsIntrinsic(IntrinsicInst &I) { |
| 4898 | assert(I.arg_size() == 2); |
| 4899 | Value *Src = I.getArgOperand(i: 0); |
| 4900 | Value *IsIntMinPoison = I.getArgOperand(i: 1); |
| 4901 | |
| 4902 | assert(I.getType()->isIntOrIntVectorTy()); |
| 4903 | |
| 4904 | assert(Src->getType() == I.getType()); |
| 4905 | |
| 4906 | assert(IsIntMinPoison->getType()->isIntegerTy()); |
| 4907 | assert(IsIntMinPoison->getType()->getIntegerBitWidth() == 1); |
| 4908 | |
| 4909 | IRBuilder<> IRB(&I); |
| 4910 | Value *SrcShadow = getShadow(V: Src); |
| 4911 | |
| 4912 | APInt MinVal = |
| 4913 | APInt::getSignedMinValue(numBits: Src->getType()->getScalarSizeInBits()); |
| 4914 | Value *MinValVec = ConstantInt::get(Ty: Src->getType(), V: MinVal); |
| 4915 | Value *SrcIsMin = IRB.CreateICmp(P: CmpInst::ICMP_EQ, LHS: Src, RHS: MinValVec); |
| 4916 | |
| 4917 | Value *PoisonedShadow = getPoisonedShadow(V: Src); |
| 4918 | Value *PoisonedIfIntMinShadow = |
| 4919 | IRB.CreateSelect(C: SrcIsMin, True: PoisonedShadow, False: SrcShadow); |
| 4920 | Value *Shadow = |
| 4921 | IRB.CreateSelect(C: IsIntMinPoison, True: PoisonedIfIntMinShadow, False: SrcShadow); |
| 4922 | |
| 4923 | setShadow(V: &I, SV: Shadow); |
| 4924 | setOrigin(V: &I, Origin: getOrigin(I: &I, i: 0)); |
| 4925 | } |
| 4926 | |
| 4927 | void handleIsFpClass(IntrinsicInst &I) { |
| 4928 | IRBuilder<> IRB(&I); |
| 4929 | Value *Shadow = getShadow(I: &I, i: 0); |
| 4930 | setShadow(V: &I, SV: IRB.CreateICmpNE(LHS: Shadow, RHS: getCleanShadow(V: Shadow))); |
| 4931 | setOrigin(V: &I, Origin: getOrigin(I: &I, i: 0)); |
| 4932 | } |
| 4933 | |
| 4934 | void handleArithmeticWithOverflow(IntrinsicInst &I) { |
| 4935 | IRBuilder<> IRB(&I); |
| 4936 | Value *Shadow0 = getShadow(I: &I, i: 0); |
| 4937 | Value *Shadow1 = getShadow(I: &I, i: 1); |
| 4938 | Value *ShadowElt0 = IRB.CreateOr(LHS: Shadow0, RHS: Shadow1); |
| 4939 | Value *ShadowElt1 = |
| 4940 | IRB.CreateICmpNE(LHS: ShadowElt0, RHS: getCleanShadow(V: ShadowElt0)); |
| 4941 | |
| 4942 | Value *Shadow = PoisonValue::get(T: getShadowTy(V: &I)); |
| 4943 | Shadow = IRB.CreateInsertValue(Agg: Shadow, Val: ShadowElt0, Idxs: 0); |
| 4944 | Shadow = IRB.CreateInsertValue(Agg: Shadow, Val: ShadowElt1, Idxs: 1); |
| 4945 | |
| 4946 | setShadow(V: &I, SV: Shadow); |
| 4947 | setOriginForNaryOp(I); |
| 4948 | } |
| 4949 | |
| 4950 | Value *extractLowerShadow(IRBuilder<> &IRB, Value *V) { |
| 4951 | assert(isa<FixedVectorType>(V->getType())); |
| 4952 | assert(cast<FixedVectorType>(V->getType())->getNumElements() > 0); |
| 4953 | Value *Shadow = getShadow(V); |
| 4954 | return IRB.CreateExtractElement(Vec: Shadow, |
| 4955 | Idx: ConstantInt::get(Ty: IRB.getInt32Ty(), V: 0)); |
| 4956 | } |
| 4957 | |
| 4958 | // Handle llvm.x86.avx512.mask.pmov{,s,us}.*.512 |
| 4959 | // |
| 4960 | // e.g., call <16 x i8> @llvm.x86.avx512.mask.pmov.qb.512 |
| 4961 | // (<8 x i64>, <16 x i8>, i8) |
| 4962 | // A WriteThru Mask |
| 4963 | // |
| 4964 | // call <16 x i8> @llvm.x86.avx512.mask.pmovs.db.512 |
| 4965 | // (<16 x i32>, <16 x i8>, i16) |
| 4966 | // |
| 4967 | // Dst[i] = Mask[i] ? truncate_or_saturate(A[i]) : WriteThru[i] |
| 4968 | // Dst_shadow[i] = Mask[i] ? truncate(A_shadow[i]) : WriteThru_shadow[i] |
| 4969 | // |
| 4970 | // If Dst has more elements than A, the excess elements are zeroed (and the |
| 4971 | // corresponding shadow is initialized). |
| 4972 | // |
| 4973 | // Note: for PMOV (truncation), handleIntrinsicByApplyingToShadow is precise |
| 4974 | // and is much faster than this handler. |
| 4975 | void handleAVX512VectorDownConvert(IntrinsicInst &I) { |
| 4976 | IRBuilder<> IRB(&I); |
| 4977 | |
| 4978 | assert(I.arg_size() == 3); |
| 4979 | Value *A = I.getOperand(i_nocapture: 0); |
| 4980 | Value *WriteThrough = I.getOperand(i_nocapture: 1); |
| 4981 | Value *Mask = I.getOperand(i_nocapture: 2); |
| 4982 | |
| 4983 | assert(isFixedIntVector(A)); |
| 4984 | assert(isFixedIntVector(WriteThrough)); |
| 4985 | |
| 4986 | unsigned ANumElements = |
| 4987 | cast<FixedVectorType>(Val: A->getType())->getNumElements(); |
| 4988 | unsigned OutputNumElements = |
| 4989 | cast<FixedVectorType>(Val: WriteThrough->getType())->getNumElements(); |
| 4990 | assert(ANumElements == OutputNumElements || |
| 4991 | ANumElements * 2 == OutputNumElements); |
| 4992 | |
| 4993 | assert(Mask->getType()->isIntegerTy()); |
| 4994 | assert(Mask->getType()->getScalarSizeInBits() == ANumElements); |
| 4995 | insertCheckShadowOf(Val: Mask, OrigIns: &I); |
| 4996 | |
| 4997 | assert(I.getType() == WriteThrough->getType()); |
| 4998 | |
| 4999 | // Widen the mask, if necessary, to have one bit per element of the output |
| 5000 | // vector. |
| 5001 | // We want the extra bits to have '1's, so that the CreateSelect will |
| 5002 | // select the values from AShadow instead of WriteThroughShadow ("maskless" |
| 5003 | // versions of the intrinsics are sometimes implemented using an all-1's |
| 5004 | // mask and an undefined value for WriteThroughShadow). We accomplish this |
| 5005 | // by using bitwise NOT before and after the ZExt. |
| 5006 | if (ANumElements != OutputNumElements) { |
| 5007 | Mask = IRB.CreateNot(V: Mask); |
| 5008 | Mask = IRB.CreateZExt(V: Mask, DestTy: Type::getIntNTy(C&: *MS.C, N: OutputNumElements), |
| 5009 | Name: "_ms_widen_mask" ); |
| 5010 | Mask = IRB.CreateNot(V: Mask); |
| 5011 | } |
| 5012 | Mask = IRB.CreateBitCast( |
| 5013 | V: Mask, DestTy: FixedVectorType::get(ElementType: IRB.getInt1Ty(), NumElts: OutputNumElements)); |
| 5014 | |
| 5015 | Value *AShadow = getShadow(V: A); |
| 5016 | |
| 5017 | // The return type might have more elements than the input. |
| 5018 | // Temporarily shrink the return type's number of elements. |
| 5019 | VectorType *ShadowType = maybeShrinkVectorShadowType(Src: A, I); |
| 5020 | |
| 5021 | // PMOV truncates; PMOVS/PMOVUS uses signed/unsigned saturation. |
| 5022 | // This handler treats them all as truncation, which leads to some rare |
| 5023 | // false positives in the cases where the truncated bytes could |
| 5024 | // unambiguously saturate the value e.g., if A = ??????10 ???????? |
| 5025 | // (big-endian), the unsigned saturated byte conversion is 11111111 i.e., |
| 5026 | // fully defined, but the truncated byte is ????????. |
| 5027 | // |
| 5028 | // TODO: use GetMinMaxUnsigned() to handle saturation precisely. |
| 5029 | AShadow = IRB.CreateTrunc(V: AShadow, DestTy: ShadowType, Name: "_ms_trunc_shadow" ); |
| 5030 | AShadow = maybeExtendVectorShadowWithZeros(Shadow: AShadow, I); |
| 5031 | |
| 5032 | Value *WriteThroughShadow = getShadow(V: WriteThrough); |
| 5033 | |
| 5034 | Value *Shadow = IRB.CreateSelect(C: Mask, True: AShadow, False: WriteThroughShadow); |
| 5035 | setShadow(V: &I, SV: Shadow); |
| 5036 | setOriginForNaryOp(I); |
| 5037 | } |
| 5038 | |
| 5039 | // Handle llvm.x86.avx512.* instructions that take a vector of floating-point |
| 5040 | // values and perform an operation whose shadow propagation should be handled |
| 5041 | // as all-or-nothing [*], with masking provided by a vector and a mask |
| 5042 | // supplied as an integer. |
| 5043 | // |
| 5044 | // [*] if all bits of a vector element are initialized, the output is fully |
| 5045 | // initialized; otherwise, the output is fully uninitialized |
| 5046 | // |
| 5047 | // e.g., <16 x float> @llvm.x86.avx512.rsqrt14.ps.512 |
| 5048 | // (<16 x float>, <16 x float>, i16) |
| 5049 | // A WriteThru Mask |
| 5050 | // |
| 5051 | // <2 x double> @llvm.x86.avx512.rcp14.pd.128 |
| 5052 | // (<2 x double>, <2 x double>, i8) |
| 5053 | // |
| 5054 | // <8 x double> @llvm.x86.avx512.mask.rndscale.pd.512 |
| 5055 | // (<8 x double>, i32, <8 x double>, i8, i32) |
| 5056 | // A Imm WriteThru Mask Rounding |
| 5057 | // |
| 5058 | // All operands other than A and WriteThru (e.g., Mask, Imm, Rounding) must |
| 5059 | // be fully initialized. |
| 5060 | // |
| 5061 | // Dst[i] = Mask[i] ? some_op(A[i]) : WriteThru[i] |
| 5062 | // Dst_shadow[i] = Mask[i] ? all_or_nothing(A_shadow[i]) : WriteThru_shadow[i] |
| 5063 | void handleAVX512VectorGenericMaskedFP(IntrinsicInst &I, unsigned AIndex, |
| 5064 | unsigned WriteThruIndex, |
| 5065 | unsigned MaskIndex) { |
| 5066 | IRBuilder<> IRB(&I); |
| 5067 | |
| 5068 | unsigned NumArgs = I.arg_size(); |
| 5069 | assert(AIndex < NumArgs); |
| 5070 | assert(WriteThruIndex < NumArgs); |
| 5071 | assert(MaskIndex < NumArgs); |
| 5072 | assert(AIndex != WriteThruIndex); |
| 5073 | assert(AIndex != MaskIndex); |
| 5074 | assert(WriteThruIndex != MaskIndex); |
| 5075 | |
| 5076 | Value *A = I.getOperand(i_nocapture: AIndex); |
| 5077 | Value *WriteThru = I.getOperand(i_nocapture: WriteThruIndex); |
| 5078 | Value *Mask = I.getOperand(i_nocapture: MaskIndex); |
| 5079 | |
| 5080 | assert(isFixedFPVector(A)); |
| 5081 | assert(isFixedFPVector(WriteThru)); |
| 5082 | |
| 5083 | [[maybe_unused]] unsigned ANumElements = |
| 5084 | cast<FixedVectorType>(Val: A->getType())->getNumElements(); |
| 5085 | unsigned OutputNumElements = |
| 5086 | cast<FixedVectorType>(Val: WriteThru->getType())->getNumElements(); |
| 5087 | assert(ANumElements == OutputNumElements); |
| 5088 | |
| 5089 | for (unsigned i = 0; i < NumArgs; ++i) { |
| 5090 | if (i != AIndex && i != WriteThruIndex) { |
| 5091 | // Imm, Mask, Rounding etc. are "control" data, hence we require that |
| 5092 | // they be fully initialized. |
| 5093 | assert(I.getOperand(i)->getType()->isIntegerTy()); |
| 5094 | insertCheckShadowOf(Val: I.getOperand(i_nocapture: i), OrigIns: &I); |
| 5095 | } |
| 5096 | } |
| 5097 | |
| 5098 | // The mask has 1 bit per element of A, but a minimum of 8 bits. |
| 5099 | if (Mask->getType()->getScalarSizeInBits() == 8 && ANumElements < 8) |
| 5100 | Mask = IRB.CreateTrunc(V: Mask, DestTy: Type::getIntNTy(C&: *MS.C, N: ANumElements)); |
| 5101 | assert(Mask->getType()->getScalarSizeInBits() == ANumElements); |
| 5102 | |
| 5103 | assert(I.getType() == WriteThru->getType()); |
| 5104 | |
| 5105 | Mask = IRB.CreateBitCast( |
| 5106 | V: Mask, DestTy: FixedVectorType::get(ElementType: IRB.getInt1Ty(), NumElts: OutputNumElements)); |
| 5107 | |
| 5108 | Value *AShadow = getShadow(V: A); |
| 5109 | |
| 5110 | // All-or-nothing shadow |
| 5111 | AShadow = IRB.CreateSExt(V: IRB.CreateICmpNE(LHS: AShadow, RHS: getCleanShadow(V: AShadow)), |
| 5112 | DestTy: AShadow->getType()); |
| 5113 | |
| 5114 | Value *WriteThruShadow = getShadow(V: WriteThru); |
| 5115 | |
| 5116 | Value *Shadow = IRB.CreateSelect(C: Mask, True: AShadow, False: WriteThruShadow); |
| 5117 | setShadow(V: &I, SV: Shadow); |
| 5118 | |
| 5119 | setOriginForNaryOp(I); |
| 5120 | } |
| 5121 | |
| 5122 | // For sh.* compiler intrinsics: |
| 5123 | // llvm.x86.avx512fp16.mask.{add/sub/mul/div/max/min}.sh.round |
| 5124 | // (<8 x half>, <8 x half>, <8 x half>, i8, i32) |
| 5125 | // A B WriteThru Mask RoundingMode |
| 5126 | // |
| 5127 | // DstShadow[0] = Mask[0] ? (AShadow[0] | BShadow[0]) : WriteThruShadow[0] |
| 5128 | // DstShadow[1..7] = AShadow[1..7] |
| 5129 | void visitGenericScalarHalfwordInst(IntrinsicInst &I) { |
| 5130 | IRBuilder<> IRB(&I); |
| 5131 | |
| 5132 | assert(I.arg_size() == 5); |
| 5133 | Value *A = I.getOperand(i_nocapture: 0); |
| 5134 | Value *B = I.getOperand(i_nocapture: 1); |
| 5135 | Value *WriteThrough = I.getOperand(i_nocapture: 2); |
| 5136 | Value *Mask = I.getOperand(i_nocapture: 3); |
| 5137 | Value *RoundingMode = I.getOperand(i_nocapture: 4); |
| 5138 | |
| 5139 | // Technically, we could probably just check whether the LSB is |
| 5140 | // initialized, but intuitively it feels like a partly uninitialized mask |
| 5141 | // is unintended, and we should warn the user immediately. |
| 5142 | insertCheckShadowOf(Val: Mask, OrigIns: &I); |
| 5143 | insertCheckShadowOf(Val: RoundingMode, OrigIns: &I); |
| 5144 | |
| 5145 | assert(isa<FixedVectorType>(A->getType())); |
| 5146 | unsigned NumElements = |
| 5147 | cast<FixedVectorType>(Val: A->getType())->getNumElements(); |
| 5148 | assert(NumElements == 8); |
| 5149 | assert(A->getType() == B->getType()); |
| 5150 | assert(B->getType() == WriteThrough->getType()); |
| 5151 | assert(Mask->getType()->getPrimitiveSizeInBits() == NumElements); |
| 5152 | assert(RoundingMode->getType()->isIntegerTy()); |
| 5153 | |
| 5154 | Value *ALowerShadow = extractLowerShadow(IRB, V: A); |
| 5155 | Value *BLowerShadow = extractLowerShadow(IRB, V: B); |
| 5156 | |
| 5157 | Value *ABLowerShadow = IRB.CreateOr(LHS: ALowerShadow, RHS: BLowerShadow); |
| 5158 | |
| 5159 | Value *WriteThroughLowerShadow = extractLowerShadow(IRB, V: WriteThrough); |
| 5160 | |
| 5161 | Mask = IRB.CreateBitCast( |
| 5162 | V: Mask, DestTy: FixedVectorType::get(ElementType: IRB.getInt1Ty(), NumElts: NumElements)); |
| 5163 | Value *MaskLower = |
| 5164 | IRB.CreateExtractElement(Vec: Mask, Idx: ConstantInt::get(Ty: IRB.getInt32Ty(), V: 0)); |
| 5165 | |
| 5166 | Value *AShadow = getShadow(V: A); |
| 5167 | Value *DstLowerShadow = |
| 5168 | IRB.CreateSelect(C: MaskLower, True: ABLowerShadow, False: WriteThroughLowerShadow); |
| 5169 | Value *DstShadow = IRB.CreateInsertElement( |
| 5170 | Vec: AShadow, NewElt: DstLowerShadow, Idx: ConstantInt::get(Ty: IRB.getInt32Ty(), V: 0), |
| 5171 | Name: "_msprop" ); |
| 5172 | |
| 5173 | setShadow(V: &I, SV: DstShadow); |
| 5174 | setOriginForNaryOp(I); |
| 5175 | } |
| 5176 | |
| 5177 | // Approximately handle AVX Galois Field Affine Transformation |
| 5178 | // |
| 5179 | // e.g., |
| 5180 | // <16 x i8> @llvm.x86.vgf2p8affineqb.128(<16 x i8>, <16 x i8>, i8) |
| 5181 | // <32 x i8> @llvm.x86.vgf2p8affineqb.256(<32 x i8>, <32 x i8>, i8) |
| 5182 | // <64 x i8> @llvm.x86.vgf2p8affineqb.512(<64 x i8>, <64 x i8>, i8) |
| 5183 | // Out A x b |
| 5184 | // where A and x are packed matrices, b is a vector, |
| 5185 | // Out = A * x + b in GF(2) |
| 5186 | // |
| 5187 | // Multiplication in GF(2) is equivalent to bitwise AND. However, the matrix |
| 5188 | // computation also includes a parity calculation. |
| 5189 | // |
| 5190 | // For the bitwise AND of bits V1 and V2, the exact shadow is: |
| 5191 | // Out_Shadow = (V1_Shadow & V2_Shadow) |
| 5192 | // | (V1 & V2_Shadow) |
| 5193 | // | (V1_Shadow & V2 ) |
| 5194 | // |
| 5195 | // We approximate the shadow of gf2p8affineqb using: |
| 5196 | // Out_Shadow = gf2p8affineqb(x_Shadow, A_shadow, 0) |
| 5197 | // | gf2p8affineqb(x, A_shadow, 0) |
| 5198 | // | gf2p8affineqb(x_Shadow, A, 0) |
| 5199 | // | set1_epi8(b_Shadow) |
| 5200 | // |
| 5201 | // This approximation has false negatives: if an intermediate dot-product |
| 5202 | // contains an even number of 1's, the parity is 0. |
| 5203 | // It has no false positives. |
| 5204 | void handleAVXGF2P8Affine(IntrinsicInst &I) { |
| 5205 | IRBuilder<> IRB(&I); |
| 5206 | |
| 5207 | assert(I.arg_size() == 3); |
| 5208 | Value *A = I.getOperand(i_nocapture: 0); |
| 5209 | Value *X = I.getOperand(i_nocapture: 1); |
| 5210 | Value *B = I.getOperand(i_nocapture: 2); |
| 5211 | |
| 5212 | assert(isFixedIntVector(A)); |
| 5213 | assert(cast<VectorType>(A->getType()) |
| 5214 | ->getElementType() |
| 5215 | ->getScalarSizeInBits() == 8); |
| 5216 | |
| 5217 | assert(A->getType() == X->getType()); |
| 5218 | |
| 5219 | assert(B->getType()->isIntegerTy()); |
| 5220 | assert(B->getType()->getScalarSizeInBits() == 8); |
| 5221 | |
| 5222 | assert(I.getType() == A->getType()); |
| 5223 | |
| 5224 | Value *AShadow = getShadow(V: A); |
| 5225 | Value *XShadow = getShadow(V: X); |
| 5226 | Value *BZeroShadow = getCleanShadow(V: B); |
| 5227 | |
| 5228 | CallInst *AShadowXShadow = IRB.CreateIntrinsic( |
| 5229 | RetTy: I.getType(), ID: I.getIntrinsicID(), Args: {XShadow, AShadow, BZeroShadow}); |
| 5230 | CallInst *AShadowX = IRB.CreateIntrinsic(RetTy: I.getType(), ID: I.getIntrinsicID(), |
| 5231 | Args: {X, AShadow, BZeroShadow}); |
| 5232 | CallInst *XShadowA = IRB.CreateIntrinsic(RetTy: I.getType(), ID: I.getIntrinsicID(), |
| 5233 | Args: {XShadow, A, BZeroShadow}); |
| 5234 | |
| 5235 | unsigned NumElements = cast<FixedVectorType>(Val: I.getType())->getNumElements(); |
| 5236 | Value *BShadow = getShadow(V: B); |
| 5237 | Value *BBroadcastShadow = getCleanShadow(V: AShadow); |
| 5238 | // There is no LLVM IR intrinsic for _mm512_set1_epi8. |
| 5239 | // This loop generates a lot of LLVM IR, which we expect that CodeGen will |
| 5240 | // lower appropriately (e.g., VPBROADCASTB). |
| 5241 | // Besides, b is often a constant, in which case it is fully initialized. |
| 5242 | for (unsigned i = 0; i < NumElements; i++) |
| 5243 | BBroadcastShadow = IRB.CreateInsertElement(Vec: BBroadcastShadow, NewElt: BShadow, Idx: i); |
| 5244 | |
| 5245 | setShadow(V: &I, SV: IRB.CreateOr( |
| 5246 | Ops: {AShadowXShadow, AShadowX, XShadowA, BBroadcastShadow})); |
| 5247 | setOriginForNaryOp(I); |
| 5248 | } |
| 5249 | |
| 5250 | // Handle Arm NEON vector load intrinsics (vld*). |
| 5251 | // |
| 5252 | // The WithLane instructions (ld[234]lane) are similar to: |
| 5253 | // call {<4 x i32>, <4 x i32>, <4 x i32>} |
| 5254 | // @llvm.aarch64.neon.ld3lane.v4i32.p0 |
| 5255 | // (<4 x i32> %L1, <4 x i32> %L2, <4 x i32> %L3, i64 %lane, ptr |
| 5256 | // %A) |
| 5257 | // |
| 5258 | // The non-WithLane instructions (ld[234], ld1x[234], ld[234]r) are similar |
| 5259 | // to: |
| 5260 | // call {<8 x i8>, <8 x i8>} @llvm.aarch64.neon.ld2.v8i8.p0(ptr %A) |
| 5261 | void handleNEONVectorLoad(IntrinsicInst &I, bool WithLane) { |
| 5262 | unsigned int numArgs = I.arg_size(); |
| 5263 | |
| 5264 | // Return type is a struct of vectors of integers or floating-point |
| 5265 | assert(I.getType()->isStructTy()); |
| 5266 | [[maybe_unused]] StructType *RetTy = cast<StructType>(Val: I.getType()); |
| 5267 | assert(RetTy->getNumElements() > 0); |
| 5268 | assert(RetTy->getElementType(0)->isIntOrIntVectorTy() || |
| 5269 | RetTy->getElementType(0)->isFPOrFPVectorTy()); |
| 5270 | for (unsigned int i = 0; i < RetTy->getNumElements(); i++) |
| 5271 | assert(RetTy->getElementType(i) == RetTy->getElementType(0)); |
| 5272 | |
| 5273 | if (WithLane) { |
| 5274 | // 2, 3 or 4 vectors, plus lane number, plus input pointer |
| 5275 | assert(4 <= numArgs && numArgs <= 6); |
| 5276 | |
| 5277 | // Return type is a struct of the input vectors |
| 5278 | assert(RetTy->getNumElements() + 2 == numArgs); |
| 5279 | for (unsigned int i = 0; i < RetTy->getNumElements(); i++) |
| 5280 | assert(I.getArgOperand(i)->getType() == RetTy->getElementType(0)); |
| 5281 | } else { |
| 5282 | assert(numArgs == 1); |
| 5283 | } |
| 5284 | |
| 5285 | IRBuilder<> IRB(&I); |
| 5286 | |
| 5287 | SmallVector<Value *, 6> ShadowArgs; |
| 5288 | if (WithLane) { |
| 5289 | for (unsigned int i = 0; i < numArgs - 2; i++) |
| 5290 | ShadowArgs.push_back(Elt: getShadow(V: I.getArgOperand(i))); |
| 5291 | |
| 5292 | // Lane number, passed verbatim |
| 5293 | Value *LaneNumber = I.getArgOperand(i: numArgs - 2); |
| 5294 | ShadowArgs.push_back(Elt: LaneNumber); |
| 5295 | |
| 5296 | // TODO: blend shadow of lane number into output shadow? |
| 5297 | insertCheckShadowOf(Val: LaneNumber, OrigIns: &I); |
| 5298 | } |
| 5299 | |
| 5300 | Value *Src = I.getArgOperand(i: numArgs - 1); |
| 5301 | assert(Src->getType()->isPointerTy() && "Source is not a pointer!" ); |
| 5302 | |
| 5303 | Type *SrcShadowTy = getShadowTy(V: Src); |
| 5304 | auto [SrcShadowPtr, SrcOriginPtr] = |
| 5305 | getShadowOriginPtr(Addr: Src, IRB, ShadowTy: SrcShadowTy, Alignment: Align(1), /*isStore*/ false); |
| 5306 | ShadowArgs.push_back(Elt: SrcShadowPtr); |
| 5307 | |
| 5308 | // The NEON vector load instructions handled by this function all have |
| 5309 | // integer variants. It is easier to use those rather than trying to cast |
| 5310 | // a struct of vectors of floats into a struct of vectors of integers. |
| 5311 | CallInst *CI = |
| 5312 | IRB.CreateIntrinsic(RetTy: getShadowTy(V: &I), ID: I.getIntrinsicID(), Args: ShadowArgs); |
| 5313 | setShadow(V: &I, SV: CI); |
| 5314 | |
| 5315 | if (!MS.TrackOrigins) |
| 5316 | return; |
| 5317 | |
| 5318 | Value *PtrSrcOrigin = IRB.CreateLoad(Ty: MS.OriginTy, Ptr: SrcOriginPtr); |
| 5319 | setOrigin(V: &I, Origin: PtrSrcOrigin); |
| 5320 | } |
| 5321 | |
| 5322 | /// Handle Arm NEON vector store intrinsics (vst{2,3,4}, vst1x_{2,3,4}, |
| 5323 | /// and vst{2,3,4}lane). |
| 5324 | /// |
| 5325 | /// Arm NEON vector store intrinsics have the output address (pointer) as the |
| 5326 | /// last argument, with the initial arguments being the inputs (and lane |
| 5327 | /// number for vst{2,3,4}lane). They return void. |
| 5328 | /// |
| 5329 | /// - st4 interleaves the output e.g., st4 (inA, inB, inC, inD, outP) writes |
| 5330 | /// abcdabcdabcdabcd... into *outP |
| 5331 | /// - st1_x4 is non-interleaved e.g., st1_x4 (inA, inB, inC, inD, outP) |
| 5332 | /// writes aaaa...bbbb...cccc...dddd... into *outP |
| 5333 | /// - st4lane has arguments of (inA, inB, inC, inD, lane, outP) |
| 5334 | /// These instructions can all be instrumented with essentially the same |
| 5335 | /// MSan logic, simply by applying the corresponding intrinsic to the shadow. |
| 5336 | void handleNEONVectorStoreIntrinsic(IntrinsicInst &I, bool useLane) { |
| 5337 | IRBuilder<> IRB(&I); |
| 5338 | |
| 5339 | // Don't use getNumOperands() because it includes the callee |
| 5340 | int numArgOperands = I.arg_size(); |
| 5341 | |
| 5342 | // The last arg operand is the output (pointer) |
| 5343 | assert(numArgOperands >= 1); |
| 5344 | Value *Addr = I.getArgOperand(i: numArgOperands - 1); |
| 5345 | assert(Addr->getType()->isPointerTy()); |
| 5346 | int skipTrailingOperands = 1; |
| 5347 | |
| 5348 | if (ClCheckAccessAddress) |
| 5349 | insertCheckShadowOf(Val: Addr, OrigIns: &I); |
| 5350 | |
| 5351 | // Second-last operand is the lane number (for vst{2,3,4}lane) |
| 5352 | if (useLane) { |
| 5353 | skipTrailingOperands++; |
| 5354 | assert(numArgOperands >= static_cast<int>(skipTrailingOperands)); |
| 5355 | assert(isa<IntegerType>( |
| 5356 | I.getArgOperand(numArgOperands - skipTrailingOperands)->getType())); |
| 5357 | } |
| 5358 | |
| 5359 | SmallVector<Value *, 8> ShadowArgs; |
| 5360 | // All the initial operands are the inputs |
| 5361 | for (int i = 0; i < numArgOperands - skipTrailingOperands; i++) { |
| 5362 | assert(isa<FixedVectorType>(I.getArgOperand(i)->getType())); |
| 5363 | Value *Shadow = getShadow(I: &I, i); |
| 5364 | ShadowArgs.append(NumInputs: 1, Elt: Shadow); |
| 5365 | } |
| 5366 | |
| 5367 | // MSan's GetShadowTy assumes the LHS is the type we want the shadow for |
| 5368 | // e.g., for: |
| 5369 | // [[TMP5:%.*]] = bitcast <16 x i8> [[TMP2]] to i128 |
| 5370 | // we know the type of the output (and its shadow) is <16 x i8>. |
| 5371 | // |
| 5372 | // Arm NEON VST is unusual because the last argument is the output address: |
| 5373 | // define void @st2_16b(<16 x i8> %A, <16 x i8> %B, ptr %P) { |
| 5374 | // call void @llvm.aarch64.neon.st2.v16i8.p0 |
| 5375 | // (<16 x i8> [[A]], <16 x i8> [[B]], ptr [[P]]) |
| 5376 | // and we have no type information about P's operand. We must manually |
| 5377 | // compute the type (<16 x i8> x 2). |
| 5378 | FixedVectorType *OutputVectorTy = FixedVectorType::get( |
| 5379 | ElementType: cast<FixedVectorType>(Val: I.getArgOperand(i: 0)->getType())->getElementType(), |
| 5380 | NumElts: cast<FixedVectorType>(Val: I.getArgOperand(i: 0)->getType())->getNumElements() * |
| 5381 | (numArgOperands - skipTrailingOperands)); |
| 5382 | Type *OutputShadowTy = getShadowTy(OrigTy: OutputVectorTy); |
| 5383 | |
| 5384 | if (useLane) |
| 5385 | ShadowArgs.append(NumInputs: 1, |
| 5386 | Elt: I.getArgOperand(i: numArgOperands - skipTrailingOperands)); |
| 5387 | |
| 5388 | Value *OutputShadowPtr, *OutputOriginPtr; |
| 5389 | // AArch64 NEON does not need alignment (unless OS requires it) |
| 5390 | std::tie(args&: OutputShadowPtr, args&: OutputOriginPtr) = getShadowOriginPtr( |
| 5391 | Addr, IRB, ShadowTy: OutputShadowTy, Alignment: Align(1), /*isStore*/ true); |
| 5392 | ShadowArgs.append(NumInputs: 1, Elt: OutputShadowPtr); |
| 5393 | |
| 5394 | CallInst *CI = |
| 5395 | IRB.CreateIntrinsic(RetTy: IRB.getVoidTy(), ID: I.getIntrinsicID(), Args: ShadowArgs); |
| 5396 | setShadow(V: &I, SV: CI); |
| 5397 | |
| 5398 | if (MS.TrackOrigins) { |
| 5399 | // TODO: if we modelled the vst* instruction more precisely, we could |
| 5400 | // more accurately track the origins (e.g., if both inputs are |
| 5401 | // uninitialized for vst2, we currently blame the second input, even |
| 5402 | // though part of the output depends only on the first input). |
| 5403 | // |
| 5404 | // This is particularly imprecise for vst{2,3,4}lane, since only one |
| 5405 | // lane of each input is actually copied to the output. |
| 5406 | OriginCombiner OC(this, IRB); |
| 5407 | for (int i = 0; i < numArgOperands - skipTrailingOperands; i++) |
| 5408 | OC.Add(V: I.getArgOperand(i)); |
| 5409 | |
| 5410 | const DataLayout &DL = F.getDataLayout(); |
| 5411 | OC.DoneAndStoreOrigin(TS: DL.getTypeStoreSize(Ty: OutputVectorTy), |
| 5412 | OriginPtr: OutputOriginPtr); |
| 5413 | } |
| 5414 | } |
| 5415 | |
| 5416 | // <4 x i32> @llvm.aarch64.neon.smmla.v4i32.v16i8 |
| 5417 | // (<4 x i32> %R, <16 x i8> %X, <16 x i8> %Y) |
| 5418 | // <4 x i32> @llvm.aarch64.neon.ummla.v4i32.v16i8 |
| 5419 | // (<4 x i32> %R, <16 x i8> %X, <16 x i8> %Y) |
| 5420 | // <4 x i32> @llvm.aarch64.neon.usmmla.v4i32.v16i8 |
| 5421 | // (<4 x i32> R%, <16 x i8> %X, <16 x i8> %Y) |
| 5422 | // |
| 5423 | // Note: |
| 5424 | // - < 4 x *> is a 2x2 matrix |
| 5425 | // - <16 x *> is a 2x8 matrix and 8x2 matrix respectively |
| 5426 | // |
| 5427 | // The general shadow propagation approach is: |
| 5428 | // 1) get the shadows of the input matrices %X and %Y |
| 5429 | // 2) change the shadow values to 0x1 if the corresponding value is fully |
| 5430 | // initialized, and 0x0 otherwise |
| 5431 | // 3) perform a matrix multiplication on the shadows of %X and %Y. The output |
| 5432 | // will be a 2x2 matrix; for each element, a value of 0x8 means all the |
| 5433 | // corresponding inputs were clean. |
| 5434 | // 4) blend in the shadow of %R |
| 5435 | // |
| 5436 | // TODO: consider allowing multiplication of zero with an uninitialized value |
| 5437 | // to result in an initialized value. |
| 5438 | // |
| 5439 | // TODO: handle floating-point matrix multiply using ummla on the shadows: |
| 5440 | // case Intrinsic::aarch64_neon_bfmmla: |
| 5441 | // handleNEONMatrixMultiply(I, /*ARows=*/ 2, /*ACols=*/ 4, |
| 5442 | // /*BRows=*/ 4, /*BCols=*/ 2); |
| 5443 | // |
| 5444 | void handleNEONMatrixMultiply(IntrinsicInst &I, unsigned int ARows, |
| 5445 | unsigned int ACols, unsigned int BRows, |
| 5446 | unsigned int BCols) { |
| 5447 | IRBuilder<> IRB(&I); |
| 5448 | |
| 5449 | assert(I.arg_size() == 3); |
| 5450 | Value *R = I.getArgOperand(i: 0); |
| 5451 | Value *A = I.getArgOperand(i: 1); |
| 5452 | Value *B = I.getArgOperand(i: 2); |
| 5453 | |
| 5454 | assert(I.getType() == R->getType()); |
| 5455 | |
| 5456 | assert(isa<FixedVectorType>(R->getType())); |
| 5457 | assert(isa<FixedVectorType>(A->getType())); |
| 5458 | assert(isa<FixedVectorType>(B->getType())); |
| 5459 | |
| 5460 | [[maybe_unused]] FixedVectorType *RTy = cast<FixedVectorType>(Val: R->getType()); |
| 5461 | [[maybe_unused]] FixedVectorType *ATy = cast<FixedVectorType>(Val: A->getType()); |
| 5462 | [[maybe_unused]] FixedVectorType *BTy = cast<FixedVectorType>(Val: B->getType()); |
| 5463 | |
| 5464 | assert(ACols == BRows); |
| 5465 | assert(ATy->getNumElements() == ARows * ACols); |
| 5466 | assert(BTy->getNumElements() == BRows * BCols); |
| 5467 | assert(RTy->getNumElements() == ARows * BCols); |
| 5468 | |
| 5469 | LLVM_DEBUG(dbgs() << "### R: " << *RTy->getElementType() << "\n" ); |
| 5470 | LLVM_DEBUG(dbgs() << "### A: " << *ATy->getElementType() << "\n" ); |
| 5471 | if (RTy->getElementType()->isIntegerTy()) { |
| 5472 | // Types are not identical e.g., <4 x i32> %R, <16 x i8> %A |
| 5473 | assert(ATy->getElementType()->isIntegerTy()); |
| 5474 | } else { |
| 5475 | assert(RTy->getElementType()->isFloatingPointTy()); |
| 5476 | assert(ATy->getElementType()->isFloatingPointTy()); |
| 5477 | } |
| 5478 | assert(ATy->getElementType() == BTy->getElementType()); |
| 5479 | |
| 5480 | Value *ShadowR = getShadow(I: &I, i: 0); |
| 5481 | Value *ShadowA = getShadow(I: &I, i: 1); |
| 5482 | Value *ShadowB = getShadow(I: &I, i: 2); |
| 5483 | |
| 5484 | // If the value is fully initialized, the shadow will be 000...001. |
| 5485 | // Otherwise, the shadow will be all zero. |
| 5486 | // (This is the opposite of how we typically handle shadows.) |
| 5487 | ShadowA = IRB.CreateZExt(V: IRB.CreateICmpEQ(LHS: ShadowA, RHS: getCleanShadow(V: A)), |
| 5488 | DestTy: ShadowA->getType()); |
| 5489 | ShadowB = IRB.CreateZExt(V: IRB.CreateICmpEQ(LHS: ShadowB, RHS: getCleanShadow(V: B)), |
| 5490 | DestTy: ShadowB->getType()); |
| 5491 | |
| 5492 | Value *ShadowAB = IRB.CreateIntrinsic( |
| 5493 | RetTy: I.getType(), ID: I.getIntrinsicID(), Args: {getCleanShadow(V: R), ShadowA, ShadowB}); |
| 5494 | |
| 5495 | Value *FullyInit = ConstantVector::getSplat( |
| 5496 | EC: RTy->getElementCount(), |
| 5497 | Elt: ConstantInt::get(Ty: cast<VectorType>(Val: getShadowTy(V: R))->getElementType(), |
| 5498 | V: ACols)); |
| 5499 | |
| 5500 | ShadowAB = IRB.CreateSExt(V: IRB.CreateICmpNE(LHS: ShadowAB, RHS: FullyInit), |
| 5501 | DestTy: ShadowAB->getType()); |
| 5502 | |
| 5503 | ShadowR = IRB.CreateSExt(V: IRB.CreateICmpNE(LHS: ShadowR, RHS: getCleanShadow(V: R)), |
| 5504 | DestTy: ShadowR->getType()); |
| 5505 | |
| 5506 | setShadow(V: &I, SV: IRB.CreateOr(LHS: ShadowAB, RHS: ShadowR)); |
| 5507 | setOriginForNaryOp(I); |
| 5508 | } |
| 5509 | |
| 5510 | /// Handle intrinsics by applying the intrinsic to the shadows. |
| 5511 | /// |
| 5512 | /// The trailing arguments are passed verbatim to the intrinsic, though any |
| 5513 | /// uninitialized trailing arguments can also taint the shadow e.g., for an |
| 5514 | /// intrinsic with one trailing verbatim argument: |
| 5515 | /// out = intrinsic(var1, var2, opType) |
| 5516 | /// we compute: |
| 5517 | /// shadow[out] = |
| 5518 | /// intrinsic(shadow[var1], shadow[var2], opType) | shadow[opType] |
| 5519 | /// |
| 5520 | /// Typically, shadowIntrinsicID will be specified by the caller to be |
| 5521 | /// I.getIntrinsicID(), but the caller can choose to replace it with another |
| 5522 | /// intrinsic of the same type. |
| 5523 | /// |
| 5524 | /// CAUTION: this assumes that the intrinsic will handle arbitrary |
| 5525 | /// bit-patterns (for example, if the intrinsic accepts floats for |
| 5526 | /// var1, we require that it doesn't care if inputs are NaNs). |
| 5527 | /// |
| 5528 | /// For example, this can be applied to the Arm NEON vector table intrinsics |
| 5529 | /// (tbl{1,2,3,4}). |
| 5530 | /// |
| 5531 | /// The origin is approximated using setOriginForNaryOp. |
| 5532 | void handleIntrinsicByApplyingToShadow(IntrinsicInst &I, |
| 5533 | Intrinsic::ID shadowIntrinsicID, |
| 5534 | unsigned int trailingVerbatimArgs) { |
| 5535 | IRBuilder<> IRB(&I); |
| 5536 | |
| 5537 | assert(trailingVerbatimArgs < I.arg_size()); |
| 5538 | |
| 5539 | SmallVector<Value *, 8> ShadowArgs; |
| 5540 | // Don't use getNumOperands() because it includes the callee |
| 5541 | for (unsigned int i = 0; i < I.arg_size() - trailingVerbatimArgs; i++) { |
| 5542 | Value *Shadow = getShadow(I: &I, i); |
| 5543 | |
| 5544 | // Shadows are integer-ish types but some intrinsics require a |
| 5545 | // different (e.g., floating-point) type. |
| 5546 | ShadowArgs.push_back( |
| 5547 | Elt: IRB.CreateBitCast(V: Shadow, DestTy: I.getArgOperand(i)->getType())); |
| 5548 | } |
| 5549 | |
| 5550 | for (unsigned int i = I.arg_size() - trailingVerbatimArgs; i < I.arg_size(); |
| 5551 | i++) { |
| 5552 | Value *Arg = I.getArgOperand(i); |
| 5553 | ShadowArgs.push_back(Elt: Arg); |
| 5554 | } |
| 5555 | |
| 5556 | CallInst *CI = |
| 5557 | IRB.CreateIntrinsic(RetTy: I.getType(), ID: shadowIntrinsicID, Args: ShadowArgs); |
| 5558 | Value *CombinedShadow = CI; |
| 5559 | |
| 5560 | // Combine the computed shadow with the shadow of trailing args |
| 5561 | for (unsigned int i = I.arg_size() - trailingVerbatimArgs; i < I.arg_size(); |
| 5562 | i++) { |
| 5563 | Value *Shadow = |
| 5564 | CreateShadowCast(IRB, V: getShadow(I: &I, i), dstTy: CombinedShadow->getType()); |
| 5565 | CombinedShadow = IRB.CreateOr(LHS: Shadow, RHS: CombinedShadow, Name: "_msprop" ); |
| 5566 | } |
| 5567 | |
| 5568 | setShadow(V: &I, SV: IRB.CreateBitCast(V: CombinedShadow, DestTy: getShadowTy(V: &I))); |
| 5569 | |
| 5570 | setOriginForNaryOp(I); |
| 5571 | } |
| 5572 | |
| 5573 | // Approximation only |
| 5574 | // |
| 5575 | // e.g., <16 x i8> @llvm.aarch64.neon.pmull64(i64, i64) |
| 5576 | void handleNEONVectorMultiplyIntrinsic(IntrinsicInst &I) { |
| 5577 | assert(I.arg_size() == 2); |
| 5578 | |
| 5579 | handleShadowOr(I); |
| 5580 | } |
| 5581 | |
| 5582 | bool maybeHandleCrossPlatformIntrinsic(IntrinsicInst &I) { |
| 5583 | switch (I.getIntrinsicID()) { |
| 5584 | case Intrinsic::uadd_with_overflow: |
| 5585 | case Intrinsic::sadd_with_overflow: |
| 5586 | case Intrinsic::usub_with_overflow: |
| 5587 | case Intrinsic::ssub_with_overflow: |
| 5588 | case Intrinsic::umul_with_overflow: |
| 5589 | case Intrinsic::smul_with_overflow: |
| 5590 | handleArithmeticWithOverflow(I); |
| 5591 | break; |
| 5592 | case Intrinsic::abs: |
| 5593 | handleAbsIntrinsic(I); |
| 5594 | break; |
| 5595 | case Intrinsic::bitreverse: |
| 5596 | handleIntrinsicByApplyingToShadow(I, shadowIntrinsicID: I.getIntrinsicID(), |
| 5597 | /*trailingVerbatimArgs*/ 0); |
| 5598 | break; |
| 5599 | case Intrinsic::is_fpclass: |
| 5600 | handleIsFpClass(I); |
| 5601 | break; |
| 5602 | case Intrinsic::lifetime_start: |
| 5603 | handleLifetimeStart(I); |
| 5604 | break; |
| 5605 | case Intrinsic::launder_invariant_group: |
| 5606 | case Intrinsic::strip_invariant_group: |
| 5607 | handleInvariantGroup(I); |
| 5608 | break; |
| 5609 | case Intrinsic::bswap: |
| 5610 | handleBswap(I); |
| 5611 | break; |
| 5612 | case Intrinsic::ctlz: |
| 5613 | case Intrinsic::cttz: |
| 5614 | handleCountLeadingTrailingZeros(I); |
| 5615 | break; |
| 5616 | case Intrinsic::masked_compressstore: |
| 5617 | handleMaskedCompressStore(I); |
| 5618 | break; |
| 5619 | case Intrinsic::masked_expandload: |
| 5620 | handleMaskedExpandLoad(I); |
| 5621 | break; |
| 5622 | case Intrinsic::masked_gather: |
| 5623 | handleMaskedGather(I); |
| 5624 | break; |
| 5625 | case Intrinsic::masked_scatter: |
| 5626 | handleMaskedScatter(I); |
| 5627 | break; |
| 5628 | case Intrinsic::masked_store: |
| 5629 | handleMaskedStore(I); |
| 5630 | break; |
| 5631 | case Intrinsic::masked_load: |
| 5632 | handleMaskedLoad(I); |
| 5633 | break; |
| 5634 | case Intrinsic::vector_reduce_and: |
| 5635 | handleVectorReduceAndIntrinsic(I); |
| 5636 | break; |
| 5637 | case Intrinsic::vector_reduce_or: |
| 5638 | handleVectorReduceOrIntrinsic(I); |
| 5639 | break; |
| 5640 | |
| 5641 | case Intrinsic::vector_reduce_add: |
| 5642 | case Intrinsic::vector_reduce_xor: |
| 5643 | case Intrinsic::vector_reduce_mul: |
| 5644 | // Signed/Unsigned Min/Max |
| 5645 | // TODO: handling similarly to AND/OR may be more precise. |
| 5646 | case Intrinsic::vector_reduce_smax: |
| 5647 | case Intrinsic::vector_reduce_smin: |
| 5648 | case Intrinsic::vector_reduce_umax: |
| 5649 | case Intrinsic::vector_reduce_umin: |
| 5650 | // TODO: this has no false positives, but arguably we should check that all |
| 5651 | // the bits are initialized. |
| 5652 | case Intrinsic::vector_reduce_fmax: |
| 5653 | case Intrinsic::vector_reduce_fmin: |
| 5654 | handleVectorReduceIntrinsic(I, /*AllowShadowCast=*/false); |
| 5655 | break; |
| 5656 | |
| 5657 | case Intrinsic::vector_reduce_fadd: |
| 5658 | case Intrinsic::vector_reduce_fmul: |
| 5659 | handleVectorReduceWithStarterIntrinsic(I); |
| 5660 | break; |
| 5661 | |
| 5662 | case Intrinsic::scmp: |
| 5663 | case Intrinsic::ucmp: { |
| 5664 | handleShadowOr(I); |
| 5665 | break; |
| 5666 | } |
| 5667 | |
| 5668 | case Intrinsic::fshl: |
| 5669 | case Intrinsic::fshr: |
| 5670 | handleFunnelShift(I); |
| 5671 | break; |
| 5672 | |
| 5673 | case Intrinsic::is_constant: |
| 5674 | // The result of llvm.is.constant() is always defined. |
| 5675 | setShadow(V: &I, SV: getCleanShadow(V: &I)); |
| 5676 | setOrigin(V: &I, Origin: getCleanOrigin()); |
| 5677 | break; |
| 5678 | |
| 5679 | default: |
| 5680 | return false; |
| 5681 | } |
| 5682 | |
| 5683 | return true; |
| 5684 | } |
| 5685 | |
| 5686 | bool maybeHandleX86SIMDIntrinsic(IntrinsicInst &I) { |
| 5687 | switch (I.getIntrinsicID()) { |
| 5688 | case Intrinsic::x86_sse_stmxcsr: |
| 5689 | handleStmxcsr(I); |
| 5690 | break; |
| 5691 | case Intrinsic::x86_sse_ldmxcsr: |
| 5692 | handleLdmxcsr(I); |
| 5693 | break; |
| 5694 | |
| 5695 | // Convert Scalar Double Precision Floating-Point Value |
| 5696 | // to Unsigned Doubleword Integer |
| 5697 | // etc. |
| 5698 | case Intrinsic::x86_avx512_vcvtsd2usi64: |
| 5699 | case Intrinsic::x86_avx512_vcvtsd2usi32: |
| 5700 | case Intrinsic::x86_avx512_vcvtss2usi64: |
| 5701 | case Intrinsic::x86_avx512_vcvtss2usi32: |
| 5702 | case Intrinsic::x86_avx512_cvttss2usi64: |
| 5703 | case Intrinsic::x86_avx512_cvttss2usi: |
| 5704 | case Intrinsic::x86_avx512_cvttsd2usi64: |
| 5705 | case Intrinsic::x86_avx512_cvttsd2usi: |
| 5706 | case Intrinsic::x86_avx512_cvtusi2ss: |
| 5707 | case Intrinsic::x86_avx512_cvtusi642sd: |
| 5708 | case Intrinsic::x86_avx512_cvtusi642ss: |
| 5709 | handleSSEVectorConvertIntrinsic(I, NumUsedElements: 1, HasRoundingMode: true); |
| 5710 | break; |
| 5711 | case Intrinsic::x86_sse2_cvtsd2si64: |
| 5712 | case Intrinsic::x86_sse2_cvtsd2si: |
| 5713 | case Intrinsic::x86_sse2_cvtsd2ss: |
| 5714 | case Intrinsic::x86_sse2_cvttsd2si64: |
| 5715 | case Intrinsic::x86_sse2_cvttsd2si: |
| 5716 | case Intrinsic::x86_sse_cvtss2si64: |
| 5717 | case Intrinsic::x86_sse_cvtss2si: |
| 5718 | case Intrinsic::x86_sse_cvttss2si64: |
| 5719 | case Intrinsic::x86_sse_cvttss2si: |
| 5720 | handleSSEVectorConvertIntrinsic(I, NumUsedElements: 1); |
| 5721 | break; |
| 5722 | case Intrinsic::x86_sse_cvtps2pi: |
| 5723 | case Intrinsic::x86_sse_cvttps2pi: |
| 5724 | handleSSEVectorConvertIntrinsic(I, NumUsedElements: 2); |
| 5725 | break; |
| 5726 | |
| 5727 | // TODO: |
| 5728 | // <1 x i64> @llvm.x86.sse.cvtpd2pi(<2 x double>) |
| 5729 | // <2 x double> @llvm.x86.sse.cvtpi2pd(<1 x i64>) |
| 5730 | // <4 x float> @llvm.x86.sse.cvtpi2ps(<4 x float>, <1 x i64>) |
| 5731 | |
| 5732 | case Intrinsic::x86_vcvtps2ph_128: |
| 5733 | case Intrinsic::x86_vcvtps2ph_256: { |
| 5734 | handleSSEVectorConvertIntrinsicByProp(I, /*HasRoundingMode=*/true); |
| 5735 | break; |
| 5736 | } |
| 5737 | |
| 5738 | // Convert Packed Single Precision Floating-Point Values |
| 5739 | // to Packed Signed Doubleword Integer Values |
| 5740 | // |
| 5741 | // <16 x i32> @llvm.x86.avx512.mask.cvtps2dq.512 |
| 5742 | // (<16 x float>, <16 x i32>, i16, i32) |
| 5743 | case Intrinsic::x86_avx512_mask_cvtps2dq_512: |
| 5744 | handleAVX512VectorConvertFPToInt(I, /*LastMask=*/false); |
| 5745 | break; |
| 5746 | |
| 5747 | // Convert Packed Double Precision Floating-Point Values |
| 5748 | // to Packed Single Precision Floating-Point Values |
| 5749 | case Intrinsic::x86_sse2_cvtpd2ps: |
| 5750 | case Intrinsic::x86_sse2_cvtps2dq: |
| 5751 | case Intrinsic::x86_sse2_cvtpd2dq: |
| 5752 | case Intrinsic::x86_sse2_cvttps2dq: |
| 5753 | case Intrinsic::x86_sse2_cvttpd2dq: |
| 5754 | case Intrinsic::x86_avx_cvt_pd2_ps_256: |
| 5755 | case Intrinsic::x86_avx_cvt_ps2dq_256: |
| 5756 | case Intrinsic::x86_avx_cvt_pd2dq_256: |
| 5757 | case Intrinsic::x86_avx_cvtt_ps2dq_256: |
| 5758 | case Intrinsic::x86_avx_cvtt_pd2dq_256: { |
| 5759 | handleSSEVectorConvertIntrinsicByProp(I, /*HasRoundingMode=*/false); |
| 5760 | break; |
| 5761 | } |
| 5762 | |
| 5763 | // Convert Single-Precision FP Value to 16-bit FP Value |
| 5764 | // <16 x i16> @llvm.x86.avx512.mask.vcvtps2ph.512 |
| 5765 | // (<16 x float>, i32, <16 x i16>, i16) |
| 5766 | // <8 x i16> @llvm.x86.avx512.mask.vcvtps2ph.128 |
| 5767 | // (<4 x float>, i32, <8 x i16>, i8) |
| 5768 | // <8 x i16> @llvm.x86.avx512.mask.vcvtps2ph.256 |
| 5769 | // (<8 x float>, i32, <8 x i16>, i8) |
| 5770 | case Intrinsic::x86_avx512_mask_vcvtps2ph_512: |
| 5771 | case Intrinsic::x86_avx512_mask_vcvtps2ph_256: |
| 5772 | case Intrinsic::x86_avx512_mask_vcvtps2ph_128: |
| 5773 | handleAVX512VectorConvertFPToInt(I, /*LastMask=*/true); |
| 5774 | break; |
| 5775 | |
| 5776 | // Shift Packed Data (Left Logical, Right Arithmetic, Right Logical) |
| 5777 | case Intrinsic::x86_avx512_psll_w_512: |
| 5778 | case Intrinsic::x86_avx512_psll_d_512: |
| 5779 | case Intrinsic::x86_avx512_psll_q_512: |
| 5780 | case Intrinsic::x86_avx512_pslli_w_512: |
| 5781 | case Intrinsic::x86_avx512_pslli_d_512: |
| 5782 | case Intrinsic::x86_avx512_pslli_q_512: |
| 5783 | case Intrinsic::x86_avx512_psrl_w_512: |
| 5784 | case Intrinsic::x86_avx512_psrl_d_512: |
| 5785 | case Intrinsic::x86_avx512_psrl_q_512: |
| 5786 | case Intrinsic::x86_avx512_psra_w_512: |
| 5787 | case Intrinsic::x86_avx512_psra_d_512: |
| 5788 | case Intrinsic::x86_avx512_psra_q_512: |
| 5789 | case Intrinsic::x86_avx512_psrli_w_512: |
| 5790 | case Intrinsic::x86_avx512_psrli_d_512: |
| 5791 | case Intrinsic::x86_avx512_psrli_q_512: |
| 5792 | case Intrinsic::x86_avx512_psrai_w_512: |
| 5793 | case Intrinsic::x86_avx512_psrai_d_512: |
| 5794 | case Intrinsic::x86_avx512_psrai_q_512: |
| 5795 | case Intrinsic::x86_avx512_psra_q_256: |
| 5796 | case Intrinsic::x86_avx512_psra_q_128: |
| 5797 | case Intrinsic::x86_avx512_psrai_q_256: |
| 5798 | case Intrinsic::x86_avx512_psrai_q_128: |
| 5799 | case Intrinsic::x86_avx2_psll_w: |
| 5800 | case Intrinsic::x86_avx2_psll_d: |
| 5801 | case Intrinsic::x86_avx2_psll_q: |
| 5802 | case Intrinsic::x86_avx2_pslli_w: |
| 5803 | case Intrinsic::x86_avx2_pslli_d: |
| 5804 | case Intrinsic::x86_avx2_pslli_q: |
| 5805 | case Intrinsic::x86_avx2_psrl_w: |
| 5806 | case Intrinsic::x86_avx2_psrl_d: |
| 5807 | case Intrinsic::x86_avx2_psrl_q: |
| 5808 | case Intrinsic::x86_avx2_psra_w: |
| 5809 | case Intrinsic::x86_avx2_psra_d: |
| 5810 | case Intrinsic::x86_avx2_psrli_w: |
| 5811 | case Intrinsic::x86_avx2_psrli_d: |
| 5812 | case Intrinsic::x86_avx2_psrli_q: |
| 5813 | case Intrinsic::x86_avx2_psrai_w: |
| 5814 | case Intrinsic::x86_avx2_psrai_d: |
| 5815 | case Intrinsic::x86_sse2_psll_w: |
| 5816 | case Intrinsic::x86_sse2_psll_d: |
| 5817 | case Intrinsic::x86_sse2_psll_q: |
| 5818 | case Intrinsic::x86_sse2_pslli_w: |
| 5819 | case Intrinsic::x86_sse2_pslli_d: |
| 5820 | case Intrinsic::x86_sse2_pslli_q: |
| 5821 | case Intrinsic::x86_sse2_psrl_w: |
| 5822 | case Intrinsic::x86_sse2_psrl_d: |
| 5823 | case Intrinsic::x86_sse2_psrl_q: |
| 5824 | case Intrinsic::x86_sse2_psra_w: |
| 5825 | case Intrinsic::x86_sse2_psra_d: |
| 5826 | case Intrinsic::x86_sse2_psrli_w: |
| 5827 | case Intrinsic::x86_sse2_psrli_d: |
| 5828 | case Intrinsic::x86_sse2_psrli_q: |
| 5829 | case Intrinsic::x86_sse2_psrai_w: |
| 5830 | case Intrinsic::x86_sse2_psrai_d: |
| 5831 | case Intrinsic::x86_mmx_psll_w: |
| 5832 | case Intrinsic::x86_mmx_psll_d: |
| 5833 | case Intrinsic::x86_mmx_psll_q: |
| 5834 | case Intrinsic::x86_mmx_pslli_w: |
| 5835 | case Intrinsic::x86_mmx_pslli_d: |
| 5836 | case Intrinsic::x86_mmx_pslli_q: |
| 5837 | case Intrinsic::x86_mmx_psrl_w: |
| 5838 | case Intrinsic::x86_mmx_psrl_d: |
| 5839 | case Intrinsic::x86_mmx_psrl_q: |
| 5840 | case Intrinsic::x86_mmx_psra_w: |
| 5841 | case Intrinsic::x86_mmx_psra_d: |
| 5842 | case Intrinsic::x86_mmx_psrli_w: |
| 5843 | case Intrinsic::x86_mmx_psrli_d: |
| 5844 | case Intrinsic::x86_mmx_psrli_q: |
| 5845 | case Intrinsic::x86_mmx_psrai_w: |
| 5846 | case Intrinsic::x86_mmx_psrai_d: |
| 5847 | handleVectorShiftIntrinsic(I, /* Variable */ false); |
| 5848 | break; |
| 5849 | case Intrinsic::x86_avx2_psllv_d: |
| 5850 | case Intrinsic::x86_avx2_psllv_d_256: |
| 5851 | case Intrinsic::x86_avx512_psllv_d_512: |
| 5852 | case Intrinsic::x86_avx2_psllv_q: |
| 5853 | case Intrinsic::x86_avx2_psllv_q_256: |
| 5854 | case Intrinsic::x86_avx512_psllv_q_512: |
| 5855 | case Intrinsic::x86_avx2_psrlv_d: |
| 5856 | case Intrinsic::x86_avx2_psrlv_d_256: |
| 5857 | case Intrinsic::x86_avx512_psrlv_d_512: |
| 5858 | case Intrinsic::x86_avx2_psrlv_q: |
| 5859 | case Intrinsic::x86_avx2_psrlv_q_256: |
| 5860 | case Intrinsic::x86_avx512_psrlv_q_512: |
| 5861 | case Intrinsic::x86_avx2_psrav_d: |
| 5862 | case Intrinsic::x86_avx2_psrav_d_256: |
| 5863 | case Intrinsic::x86_avx512_psrav_d_512: |
| 5864 | case Intrinsic::x86_avx512_psrav_q_128: |
| 5865 | case Intrinsic::x86_avx512_psrav_q_256: |
| 5866 | case Intrinsic::x86_avx512_psrav_q_512: |
| 5867 | handleVectorShiftIntrinsic(I, /* Variable */ true); |
| 5868 | break; |
| 5869 | |
| 5870 | // Pack with Signed/Unsigned Saturation |
| 5871 | case Intrinsic::x86_sse2_packsswb_128: |
| 5872 | case Intrinsic::x86_sse2_packssdw_128: |
| 5873 | case Intrinsic::x86_sse2_packuswb_128: |
| 5874 | case Intrinsic::x86_sse41_packusdw: |
| 5875 | case Intrinsic::x86_avx2_packsswb: |
| 5876 | case Intrinsic::x86_avx2_packssdw: |
| 5877 | case Intrinsic::x86_avx2_packuswb: |
| 5878 | case Intrinsic::x86_avx2_packusdw: |
| 5879 | // e.g., <64 x i8> @llvm.x86.avx512.packsswb.512 |
| 5880 | // (<32 x i16> %a, <32 x i16> %b) |
| 5881 | // <32 x i16> @llvm.x86.avx512.packssdw.512 |
| 5882 | // (<16 x i32> %a, <16 x i32> %b) |
| 5883 | // Note: AVX512 masked variants are auto-upgraded by LLVM. |
| 5884 | case Intrinsic::x86_avx512_packsswb_512: |
| 5885 | case Intrinsic::x86_avx512_packssdw_512: |
| 5886 | case Intrinsic::x86_avx512_packuswb_512: |
| 5887 | case Intrinsic::x86_avx512_packusdw_512: |
| 5888 | handleVectorPackIntrinsic(I); |
| 5889 | break; |
| 5890 | |
| 5891 | case Intrinsic::x86_sse41_pblendvb: |
| 5892 | case Intrinsic::x86_sse41_blendvpd: |
| 5893 | case Intrinsic::x86_sse41_blendvps: |
| 5894 | case Intrinsic::x86_avx_blendv_pd_256: |
| 5895 | case Intrinsic::x86_avx_blendv_ps_256: |
| 5896 | case Intrinsic::x86_avx2_pblendvb: |
| 5897 | handleBlendvIntrinsic(I); |
| 5898 | break; |
| 5899 | |
| 5900 | case Intrinsic::x86_avx_dp_ps_256: |
| 5901 | case Intrinsic::x86_sse41_dppd: |
| 5902 | case Intrinsic::x86_sse41_dpps: |
| 5903 | handleDppIntrinsic(I); |
| 5904 | break; |
| 5905 | |
| 5906 | case Intrinsic::x86_mmx_packsswb: |
| 5907 | case Intrinsic::x86_mmx_packuswb: |
| 5908 | handleVectorPackIntrinsic(I, MMXEltSizeInBits: 16); |
| 5909 | break; |
| 5910 | |
| 5911 | case Intrinsic::x86_mmx_packssdw: |
| 5912 | handleVectorPackIntrinsic(I, MMXEltSizeInBits: 32); |
| 5913 | break; |
| 5914 | |
| 5915 | case Intrinsic::x86_mmx_psad_bw: |
| 5916 | handleVectorSadIntrinsic(I, IsMMX: true); |
| 5917 | break; |
| 5918 | case Intrinsic::x86_sse2_psad_bw: |
| 5919 | case Intrinsic::x86_avx2_psad_bw: |
| 5920 | handleVectorSadIntrinsic(I); |
| 5921 | break; |
| 5922 | |
| 5923 | // Multiply and Add Packed Words |
| 5924 | // < 4 x i32> @llvm.x86.sse2.pmadd.wd(<8 x i16>, <8 x i16>) |
| 5925 | // < 8 x i32> @llvm.x86.avx2.pmadd.wd(<16 x i16>, <16 x i16>) |
| 5926 | // <16 x i32> @llvm.x86.avx512.pmaddw.d.512(<32 x i16>, <32 x i16>) |
| 5927 | // |
| 5928 | // Multiply and Add Packed Signed and Unsigned Bytes |
| 5929 | // < 8 x i16> @llvm.x86.ssse3.pmadd.ub.sw.128(<16 x i8>, <16 x i8>) |
| 5930 | // <16 x i16> @llvm.x86.avx2.pmadd.ub.sw(<32 x i8>, <32 x i8>) |
| 5931 | // <32 x i16> @llvm.x86.avx512.pmaddubs.w.512(<64 x i8>, <64 x i8>) |
| 5932 | // |
| 5933 | // These intrinsics are auto-upgraded into non-masked forms: |
| 5934 | // < 4 x i32> @llvm.x86.avx512.mask.pmaddw.d.128 |
| 5935 | // (<8 x i16>, <8 x i16>, <4 x i32>, i8) |
| 5936 | // < 8 x i32> @llvm.x86.avx512.mask.pmaddw.d.256 |
| 5937 | // (<16 x i16>, <16 x i16>, <8 x i32>, i8) |
| 5938 | // <16 x i32> @llvm.x86.avx512.mask.pmaddw.d.512 |
| 5939 | // (<32 x i16>, <32 x i16>, <16 x i32>, i16) |
| 5940 | // < 8 x i16> @llvm.x86.avx512.mask.pmaddubs.w.128 |
| 5941 | // (<16 x i8>, <16 x i8>, <8 x i16>, i8) |
| 5942 | // <16 x i16> @llvm.x86.avx512.mask.pmaddubs.w.256 |
| 5943 | // (<32 x i8>, <32 x i8>, <16 x i16>, i16) |
| 5944 | // <32 x i16> @llvm.x86.avx512.mask.pmaddubs.w.512 |
| 5945 | // (<64 x i8>, <64 x i8>, <32 x i16>, i32) |
| 5946 | case Intrinsic::x86_sse2_pmadd_wd: |
| 5947 | case Intrinsic::x86_avx2_pmadd_wd: |
| 5948 | case Intrinsic::x86_avx512_pmaddw_d_512: |
| 5949 | case Intrinsic::x86_ssse3_pmadd_ub_sw_128: |
| 5950 | case Intrinsic::x86_avx2_pmadd_ub_sw: |
| 5951 | case Intrinsic::x86_avx512_pmaddubs_w_512: |
| 5952 | handleVectorDotProductIntrinsic(I, /*ReductionFactor=*/2, |
| 5953 | /*ZeroPurifies=*/true, |
| 5954 | /*EltSizeInBits=*/0, |
| 5955 | /*Lanes=*/kBothLanes); |
| 5956 | break; |
| 5957 | |
| 5958 | // <1 x i64> @llvm.x86.ssse3.pmadd.ub.sw(<1 x i64>, <1 x i64>) |
| 5959 | case Intrinsic::x86_ssse3_pmadd_ub_sw: |
| 5960 | handleVectorDotProductIntrinsic(I, /*ReductionFactor=*/2, |
| 5961 | /*ZeroPurifies=*/true, |
| 5962 | /*EltSizeInBits=*/8, |
| 5963 | /*Lanes=*/kBothLanes); |
| 5964 | break; |
| 5965 | |
| 5966 | // <1 x i64> @llvm.x86.mmx.pmadd.wd(<1 x i64>, <1 x i64>) |
| 5967 | case Intrinsic::x86_mmx_pmadd_wd: |
| 5968 | handleVectorDotProductIntrinsic(I, /*ReductionFactor=*/2, |
| 5969 | /*ZeroPurifies=*/true, |
| 5970 | /*EltSizeInBits=*/16, |
| 5971 | /*Lanes=*/kBothLanes); |
| 5972 | break; |
| 5973 | |
| 5974 | // BFloat16 multiply-add to single-precision |
| 5975 | // <4 x float> llvm.aarch64.neon.bfmlalt |
| 5976 | // (<4 x float>, <8 x bfloat>, <8 x bfloat>) |
| 5977 | case Intrinsic::aarch64_neon_bfmlalt: |
| 5978 | handleVectorDotProductIntrinsic(I, /*ReductionFactor=*/2, |
| 5979 | /*ZeroPurifies=*/false, |
| 5980 | /*EltSizeInBits=*/0, |
| 5981 | /*Lanes=*/kOddLanes); |
| 5982 | break; |
| 5983 | |
| 5984 | // <4 x float> llvm.aarch64.neon.bfmlalb |
| 5985 | // (<4 x float>, <8 x bfloat>, <8 x bfloat>) |
| 5986 | case Intrinsic::aarch64_neon_bfmlalb: |
| 5987 | handleVectorDotProductIntrinsic(I, /*ReductionFactor=*/2, |
| 5988 | /*ZeroPurifies=*/false, |
| 5989 | /*EltSizeInBits=*/0, |
| 5990 | /*Lanes=*/kEvenLanes); |
| 5991 | break; |
| 5992 | |
| 5993 | // AVX Vector Neural Network Instructions: bytes |
| 5994 | // |
| 5995 | // Multiply and Add Signed Bytes |
| 5996 | // < 4 x i32> @llvm.x86.avx2.vpdpbssd.128 |
| 5997 | // (< 4 x i32>, <16 x i8>, <16 x i8>) |
| 5998 | // < 8 x i32> @llvm.x86.avx2.vpdpbssd.256 |
| 5999 | // (< 8 x i32>, <32 x i8>, <32 x i8>) |
| 6000 | // <16 x i32> @llvm.x86.avx10.vpdpbssd.512 |
| 6001 | // (<16 x i32>, <64 x i8>, <64 x i8>) |
| 6002 | // |
| 6003 | // Multiply and Add Signed Bytes With Saturation |
| 6004 | // < 4 x i32> @llvm.x86.avx2.vpdpbssds.128 |
| 6005 | // (< 4 x i32>, <16 x i8>, <16 x i8>) |
| 6006 | // < 8 x i32> @llvm.x86.avx2.vpdpbssds.256 |
| 6007 | // (< 8 x i32>, <32 x i8>, <32 x i8>) |
| 6008 | // <16 x i32> @llvm.x86.avx10.vpdpbssds.512 |
| 6009 | // (<16 x i32>, <64 x i8>, <64 x i8>) |
| 6010 | // |
| 6011 | // Multiply and Add Signed and Unsigned Bytes |
| 6012 | // < 4 x i32> @llvm.x86.avx2.vpdpbsud.128 |
| 6013 | // (< 4 x i32>, <16 x i8>, <16 x i8>) |
| 6014 | // < 8 x i32> @llvm.x86.avx2.vpdpbsud.256 |
| 6015 | // (< 8 x i32>, <32 x i8>, <32 x i8>) |
| 6016 | // <16 x i32> @llvm.x86.avx10.vpdpbsud.512 |
| 6017 | // (<16 x i32>, <64 x i8>, <64 x i8>) |
| 6018 | // |
| 6019 | // Multiply and Add Signed and Unsigned Bytes With Saturation |
| 6020 | // < 4 x i32> @llvm.x86.avx2.vpdpbsuds.128 |
| 6021 | // (< 4 x i32>, <16 x i8>, <16 x i8>) |
| 6022 | // < 8 x i32> @llvm.x86.avx2.vpdpbsuds.256 |
| 6023 | // (< 8 x i32>, <32 x i8>, <32 x i8>) |
| 6024 | // <16 x i32> @llvm.x86.avx512.vpdpbusds.512 |
| 6025 | // (<16 x i32>, <64 x i8>, <64 x i8>) |
| 6026 | // |
| 6027 | // Multiply and Add Unsigned and Signed Bytes |
| 6028 | // < 4 x i32> @llvm.x86.avx512.vpdpbusd.128 |
| 6029 | // (< 4 x i32>, <16 x i8>, <16 x i8>) |
| 6030 | // < 8 x i32> @llvm.x86.avx512.vpdpbusd.256 |
| 6031 | // (< 8 x i32>, <32 x i8>, <32 x i8>) |
| 6032 | // <16 x i32> @llvm.x86.avx512.vpdpbusd.512 |
| 6033 | // (<16 x i32>, <64 x i8>, <64 x i8>) |
| 6034 | // |
| 6035 | // Multiply and Add Unsigned and Signed Bytes With Saturation |
| 6036 | // < 4 x i32> @llvm.x86.avx512.vpdpbusds.128 |
| 6037 | // (< 4 x i32>, <16 x i8>, <16 x i8>) |
| 6038 | // < 8 x i32> @llvm.x86.avx512.vpdpbusds.256 |
| 6039 | // (< 8 x i32>, <32 x i8>, <32 x i8>) |
| 6040 | // <16 x i32> @llvm.x86.avx10.vpdpbsuds.512 |
| 6041 | // (<16 x i32>, <64 x i8>, <64 x i8>) |
| 6042 | // |
| 6043 | // Multiply and Add Unsigned Bytes |
| 6044 | // < 4 x i32> @llvm.x86.avx2.vpdpbuud.128 |
| 6045 | // (< 4 x i32>, <16 x i8>, <16 x i8>) |
| 6046 | // < 8 x i32> @llvm.x86.avx2.vpdpbuud.256 |
| 6047 | // (< 8 x i32>, <32 x i8>, <32 x i8>) |
| 6048 | // <16 x i32> @llvm.x86.avx10.vpdpbuud.512 |
| 6049 | // (<16 x i32>, <64 x i8>, <64 x i8>) |
| 6050 | // |
| 6051 | // Multiply and Add Unsigned Bytes With Saturation |
| 6052 | // < 4 x i32> @llvm.x86.avx2.vpdpbuuds.128 |
| 6053 | // (< 4 x i32>, <16 x i8>, <16 x i8>) |
| 6054 | // < 8 x i32> @llvm.x86.avx2.vpdpbuuds.256 |
| 6055 | // (< 8 x i32>, <32 x i8>, <32 x i8>) |
| 6056 | // <16 x i32> @llvm.x86.avx10.vpdpbuuds.512 |
| 6057 | // (<16 x i32>, <64 x i8>, <64 x i8>) |
| 6058 | // |
| 6059 | // These intrinsics are auto-upgraded into non-masked forms: |
| 6060 | // <4 x i32> @llvm.x86.avx512.mask.vpdpbusd.128 |
| 6061 | // (<4 x i32>, <16 x i8>, <16 x i8>, i8) |
| 6062 | // <4 x i32> @llvm.x86.avx512.maskz.vpdpbusd.128 |
| 6063 | // (<4 x i32>, <16 x i8>, <16 x i8>, i8) |
| 6064 | // <8 x i32> @llvm.x86.avx512.mask.vpdpbusd.256 |
| 6065 | // (<8 x i32>, <32 x i8>, <32 x i8>, i8) |
| 6066 | // <8 x i32> @llvm.x86.avx512.maskz.vpdpbusd.256 |
| 6067 | // (<8 x i32>, <32 x i8>, <32 x i8>, i8) |
| 6068 | // <16 x i32> @llvm.x86.avx512.mask.vpdpbusd.512 |
| 6069 | // (<16 x i32>, <64 x i8>, <64 x i8>, i16) |
| 6070 | // <16 x i32> @llvm.x86.avx512.maskz.vpdpbusd.512 |
| 6071 | // (<16 x i32>, <64 x i8>, <64 x i8>, i16) |
| 6072 | // |
| 6073 | // <4 x i32> @llvm.x86.avx512.mask.vpdpbusds.128 |
| 6074 | // (<4 x i32>, <16 x i8>, <16 x i8>, i8) |
| 6075 | // <4 x i32> @llvm.x86.avx512.maskz.vpdpbusds.128 |
| 6076 | // (<4 x i32>, <16 x i8>, <16 x i8>, i8) |
| 6077 | // <8 x i32> @llvm.x86.avx512.mask.vpdpbusds.256 |
| 6078 | // (<8 x i32>, <32 x i8>, <32 x i8>, i8) |
| 6079 | // <8 x i32> @llvm.x86.avx512.maskz.vpdpbusds.256 |
| 6080 | // (<8 x i32>, <32 x i8>, <32 x i8>, i8) |
| 6081 | // <16 x i32> @llvm.x86.avx512.mask.vpdpbusds.512 |
| 6082 | // (<16 x i32>, <64 x i8>, <64 x i8>, i16) |
| 6083 | // <16 x i32> @llvm.x86.avx512.maskz.vpdpbusds.512 |
| 6084 | // (<16 x i32>, <64 x i8>, <64 x i8>, i16) |
| 6085 | case Intrinsic::x86_avx512_vpdpbusd_128: |
| 6086 | case Intrinsic::x86_avx512_vpdpbusd_256: |
| 6087 | case Intrinsic::x86_avx512_vpdpbusd_512: |
| 6088 | case Intrinsic::x86_avx512_vpdpbusds_128: |
| 6089 | case Intrinsic::x86_avx512_vpdpbusds_256: |
| 6090 | case Intrinsic::x86_avx512_vpdpbusds_512: |
| 6091 | case Intrinsic::x86_avx2_vpdpbssd_128: |
| 6092 | case Intrinsic::x86_avx2_vpdpbssd_256: |
| 6093 | case Intrinsic::x86_avx10_vpdpbssd_512: |
| 6094 | case Intrinsic::x86_avx2_vpdpbssds_128: |
| 6095 | case Intrinsic::x86_avx2_vpdpbssds_256: |
| 6096 | case Intrinsic::x86_avx10_vpdpbssds_512: |
| 6097 | case Intrinsic::x86_avx2_vpdpbsud_128: |
| 6098 | case Intrinsic::x86_avx2_vpdpbsud_256: |
| 6099 | case Intrinsic::x86_avx10_vpdpbsud_512: |
| 6100 | case Intrinsic::x86_avx2_vpdpbsuds_128: |
| 6101 | case Intrinsic::x86_avx2_vpdpbsuds_256: |
| 6102 | case Intrinsic::x86_avx10_vpdpbsuds_512: |
| 6103 | case Intrinsic::x86_avx2_vpdpbuud_128: |
| 6104 | case Intrinsic::x86_avx2_vpdpbuud_256: |
| 6105 | case Intrinsic::x86_avx10_vpdpbuud_512: |
| 6106 | case Intrinsic::x86_avx2_vpdpbuuds_128: |
| 6107 | case Intrinsic::x86_avx2_vpdpbuuds_256: |
| 6108 | case Intrinsic::x86_avx10_vpdpbuuds_512: |
| 6109 | handleVectorDotProductIntrinsic(I, /*ReductionFactor=*/4, |
| 6110 | /*ZeroPurifies=*/true, |
| 6111 | /*EltSizeInBits=*/0, |
| 6112 | /*Lanes=*/kBothLanes); |
| 6113 | break; |
| 6114 | |
| 6115 | // AVX Vector Neural Network Instructions: words |
| 6116 | // |
| 6117 | // Multiply and Add Signed Word Integers |
| 6118 | // < 4 x i32> @llvm.x86.avx512.vpdpwssd.128 |
| 6119 | // (< 4 x i32>, < 8 x i16>, < 8 x i16>) |
| 6120 | // < 8 x i32> @llvm.x86.avx512.vpdpwssd.256 |
| 6121 | // (< 8 x i32>, <16 x i16>, <16 x i16>) |
| 6122 | // <16 x i32> @llvm.x86.avx512.vpdpwssd.512 |
| 6123 | // (<16 x i32>, <32 x i16>, <32 x i16>) |
| 6124 | // |
| 6125 | // Multiply and Add Signed Word Integers With Saturation |
| 6126 | // < 4 x i32> @llvm.x86.avx512.vpdpwssds.128 |
| 6127 | // (< 4 x i32>, < 8 x i16>, < 8 x i16>) |
| 6128 | // < 8 x i32> @llvm.x86.avx512.vpdpwssds.256 |
| 6129 | // (< 8 x i32>, <16 x i16>, <16 x i16>) |
| 6130 | // <16 x i32> @llvm.x86.avx512.vpdpwssds.512 |
| 6131 | // (<16 x i32>, <32 x i16>, <32 x i16>) |
| 6132 | // |
| 6133 | // Multiply and Add Signed and Unsigned Word Integers |
| 6134 | // < 4 x i32> @llvm.x86.avx2.vpdpwsud.128 |
| 6135 | // (< 4 x i32>, < 8 x i16>, < 8 x i16>) |
| 6136 | // < 8 x i32> @llvm.x86.avx2.vpdpwsud.256 |
| 6137 | // (< 8 x i32>, <16 x i16>, <16 x i16>) |
| 6138 | // <16 x i32> @llvm.x86.avx10.vpdpwsud.512 |
| 6139 | // (<16 x i32>, <32 x i16>, <32 x i16>) |
| 6140 | // |
| 6141 | // Multiply and Add Signed and Unsigned Word Integers With Saturation |
| 6142 | // < 4 x i32> @llvm.x86.avx2.vpdpwsuds.128 |
| 6143 | // (< 4 x i32>, < 8 x i16>, < 8 x i16>) |
| 6144 | // < 8 x i32> @llvm.x86.avx2.vpdpwsuds.256 |
| 6145 | // (< 8 x i32>, <16 x i16>, <16 x i16>) |
| 6146 | // <16 x i32> @llvm.x86.avx10.vpdpwsuds.512 |
| 6147 | // (<16 x i32>, <32 x i16>, <32 x i16>) |
| 6148 | // |
| 6149 | // Multiply and Add Unsigned and Signed Word Integers |
| 6150 | // < 4 x i32> @llvm.x86.avx2.vpdpwusd.128 |
| 6151 | // (< 4 x i32>, < 8 x i16>, < 8 x i16>) |
| 6152 | // < 8 x i32> @llvm.x86.avx2.vpdpwusd.256 |
| 6153 | // (< 8 x i32>, <16 x i16>, <16 x i16>) |
| 6154 | // <16 x i32> @llvm.x86.avx10.vpdpwusd.512 |
| 6155 | // (<16 x i32>, <32 x i16>, <32 x i16>) |
| 6156 | // |
| 6157 | // Multiply and Add Unsigned and Signed Word Integers With Saturation |
| 6158 | // < 4 x i32> @llvm.x86.avx2.vpdpwusds.128 |
| 6159 | // (< 4 x i32>, < 8 x i16>, < 8 x i16>) |
| 6160 | // < 8 x i32> @llvm.x86.avx2.vpdpwusds.256 |
| 6161 | // (< 8 x i32>, <16 x i16>, <16 x i16>) |
| 6162 | // <16 x i32> @llvm.x86.avx10.vpdpwusds.512 |
| 6163 | // (<16 x i32>, <32 x i16>, <32 x i16>) |
| 6164 | // |
| 6165 | // Multiply and Add Unsigned and Unsigned Word Integers |
| 6166 | // < 4 x i32> @llvm.x86.avx2.vpdpwuud.128 |
| 6167 | // (< 4 x i32>, < 8 x i16>, < 8 x i16>) |
| 6168 | // < 8 x i32> @llvm.x86.avx2.vpdpwuud.256 |
| 6169 | // (< 8 x i32>, <16 x i16>, <16 x i16>) |
| 6170 | // <16 x i32> @llvm.x86.avx10.vpdpwuud.512 |
| 6171 | // (<16 x i32>, <32 x i16>, <32 x i16>) |
| 6172 | // |
| 6173 | // Multiply and Add Unsigned and Unsigned Word Integers With Saturation |
| 6174 | // < 4 x i32> @llvm.x86.avx2.vpdpwuuds.128 |
| 6175 | // (< 4 x i32>, < 8 x i16>, < 8 x i16>) |
| 6176 | // < 8 x i32> @llvm.x86.avx2.vpdpwuuds.256 |
| 6177 | // (< 8 x i32>, <16 x i16>, <16 x i16>) |
| 6178 | // <16 x i32> @llvm.x86.avx10.vpdpwuuds.512 |
| 6179 | // (<16 x i32>, <32 x i16>, <32 x i16>) |
| 6180 | // |
| 6181 | // These intrinsics are auto-upgraded into non-masked forms: |
| 6182 | // <4 x i32> @llvm.x86.avx512.mask.vpdpwssd.128 |
| 6183 | // (<4 x i32>, <8 x i16>, <8 x i16>, i8) |
| 6184 | // <4 x i32> @llvm.x86.avx512.maskz.vpdpwssd.128 |
| 6185 | // (<4 x i32>, <8 x i16>, <8 x i16>, i8) |
| 6186 | // <8 x i32> @llvm.x86.avx512.mask.vpdpwssd.256 |
| 6187 | // (<8 x i32>, <16 x i16>, <16 x i16>, i8) |
| 6188 | // <8 x i32> @llvm.x86.avx512.maskz.vpdpwssd.256 |
| 6189 | // (<8 x i32>, <16 x i16>, <16 x i16>, i8) |
| 6190 | // <16 x i32> @llvm.x86.avx512.mask.vpdpwssd.512 |
| 6191 | // (<16 x i32>, <32 x i16>, <32 x i16>, i16) |
| 6192 | // <16 x i32> @llvm.x86.avx512.maskz.vpdpwssd.512 |
| 6193 | // (<16 x i32>, <32 x i16>, <32 x i16>, i16) |
| 6194 | // |
| 6195 | // <4 x i32> @llvm.x86.avx512.mask.vpdpwssds.128 |
| 6196 | // (<4 x i32>, <8 x i16>, <8 x i16>, i8) |
| 6197 | // <4 x i32> @llvm.x86.avx512.maskz.vpdpwssds.128 |
| 6198 | // (<4 x i32>, <8 x i16>, <8 x i16>, i8) |
| 6199 | // <8 x i32> @llvm.x86.avx512.mask.vpdpwssds.256 |
| 6200 | // (<8 x i32>, <16 x i16>, <16 x i16>, i8) |
| 6201 | // <8 x i32> @llvm.x86.avx512.maskz.vpdpwssds.256 |
| 6202 | // (<8 x i32>, <16 x i16>, <16 x i16>, i8) |
| 6203 | // <16 x i32> @llvm.x86.avx512.mask.vpdpwssds.512 |
| 6204 | // (<16 x i32>, <32 x i16>, <32 x i16>, i16) |
| 6205 | // <16 x i32> @llvm.x86.avx512.maskz.vpdpwssds.512 |
| 6206 | // (<16 x i32>, <32 x i16>, <32 x i16>, i16) |
| 6207 | case Intrinsic::x86_avx512_vpdpwssd_128: |
| 6208 | case Intrinsic::x86_avx512_vpdpwssd_256: |
| 6209 | case Intrinsic::x86_avx512_vpdpwssd_512: |
| 6210 | case Intrinsic::x86_avx512_vpdpwssds_128: |
| 6211 | case Intrinsic::x86_avx512_vpdpwssds_256: |
| 6212 | case Intrinsic::x86_avx512_vpdpwssds_512: |
| 6213 | case Intrinsic::x86_avx2_vpdpwsud_128: |
| 6214 | case Intrinsic::x86_avx2_vpdpwsud_256: |
| 6215 | case Intrinsic::x86_avx10_vpdpwsud_512: |
| 6216 | case Intrinsic::x86_avx2_vpdpwsuds_128: |
| 6217 | case Intrinsic::x86_avx2_vpdpwsuds_256: |
| 6218 | case Intrinsic::x86_avx10_vpdpwsuds_512: |
| 6219 | case Intrinsic::x86_avx2_vpdpwusd_128: |
| 6220 | case Intrinsic::x86_avx2_vpdpwusd_256: |
| 6221 | case Intrinsic::x86_avx10_vpdpwusd_512: |
| 6222 | case Intrinsic::x86_avx2_vpdpwusds_128: |
| 6223 | case Intrinsic::x86_avx2_vpdpwusds_256: |
| 6224 | case Intrinsic::x86_avx10_vpdpwusds_512: |
| 6225 | case Intrinsic::x86_avx2_vpdpwuud_128: |
| 6226 | case Intrinsic::x86_avx2_vpdpwuud_256: |
| 6227 | case Intrinsic::x86_avx10_vpdpwuud_512: |
| 6228 | case Intrinsic::x86_avx2_vpdpwuuds_128: |
| 6229 | case Intrinsic::x86_avx2_vpdpwuuds_256: |
| 6230 | case Intrinsic::x86_avx10_vpdpwuuds_512: |
| 6231 | handleVectorDotProductIntrinsic(I, /*ReductionFactor=*/2, |
| 6232 | /*ZeroPurifies=*/true, |
| 6233 | /*EltSizeInBits=*/0, |
| 6234 | /*Lanes=*/kBothLanes); |
| 6235 | break; |
| 6236 | |
| 6237 | // Dot Product of BF16 Pairs Accumulated Into Packed Single |
| 6238 | // Precision |
| 6239 | // <4 x float> @llvm.x86.avx512bf16.dpbf16ps.128 |
| 6240 | // (<4 x float>, <8 x bfloat>, <8 x bfloat>) |
| 6241 | // <8 x float> @llvm.x86.avx512bf16.dpbf16ps.256 |
| 6242 | // (<8 x float>, <16 x bfloat>, <16 x bfloat>) |
| 6243 | // <16 x float> @llvm.x86.avx512bf16.dpbf16ps.512 |
| 6244 | // (<16 x float>, <32 x bfloat>, <32 x bfloat>) |
| 6245 | case Intrinsic::x86_avx512bf16_dpbf16ps_128: |
| 6246 | case Intrinsic::x86_avx512bf16_dpbf16ps_256: |
| 6247 | case Intrinsic::x86_avx512bf16_dpbf16ps_512: |
| 6248 | handleVectorDotProductIntrinsic(I, /*ReductionFactor=*/2, |
| 6249 | /*ZeroPurifies=*/false, |
| 6250 | /*EltSizeInBits=*/0, |
| 6251 | /*Lanes=*/kBothLanes); |
| 6252 | break; |
| 6253 | |
| 6254 | case Intrinsic::x86_sse_cmp_ss: |
| 6255 | case Intrinsic::x86_sse2_cmp_sd: |
| 6256 | case Intrinsic::x86_sse_comieq_ss: |
| 6257 | case Intrinsic::x86_sse_comilt_ss: |
| 6258 | case Intrinsic::x86_sse_comile_ss: |
| 6259 | case Intrinsic::x86_sse_comigt_ss: |
| 6260 | case Intrinsic::x86_sse_comige_ss: |
| 6261 | case Intrinsic::x86_sse_comineq_ss: |
| 6262 | case Intrinsic::x86_sse_ucomieq_ss: |
| 6263 | case Intrinsic::x86_sse_ucomilt_ss: |
| 6264 | case Intrinsic::x86_sse_ucomile_ss: |
| 6265 | case Intrinsic::x86_sse_ucomigt_ss: |
| 6266 | case Intrinsic::x86_sse_ucomige_ss: |
| 6267 | case Intrinsic::x86_sse_ucomineq_ss: |
| 6268 | case Intrinsic::x86_sse2_comieq_sd: |
| 6269 | case Intrinsic::x86_sse2_comilt_sd: |
| 6270 | case Intrinsic::x86_sse2_comile_sd: |
| 6271 | case Intrinsic::x86_sse2_comigt_sd: |
| 6272 | case Intrinsic::x86_sse2_comige_sd: |
| 6273 | case Intrinsic::x86_sse2_comineq_sd: |
| 6274 | case Intrinsic::x86_sse2_ucomieq_sd: |
| 6275 | case Intrinsic::x86_sse2_ucomilt_sd: |
| 6276 | case Intrinsic::x86_sse2_ucomile_sd: |
| 6277 | case Intrinsic::x86_sse2_ucomigt_sd: |
| 6278 | case Intrinsic::x86_sse2_ucomige_sd: |
| 6279 | case Intrinsic::x86_sse2_ucomineq_sd: |
| 6280 | handleVectorCompareScalarIntrinsic(I); |
| 6281 | break; |
| 6282 | |
| 6283 | case Intrinsic::x86_avx_cmp_pd_256: |
| 6284 | case Intrinsic::x86_avx_cmp_ps_256: |
| 6285 | case Intrinsic::x86_sse2_cmp_pd: |
| 6286 | case Intrinsic::x86_sse_cmp_ps: |
| 6287 | handleVectorComparePackedIntrinsic(I, /*PredicateAsOperand=*/true); |
| 6288 | break; |
| 6289 | |
| 6290 | case Intrinsic::x86_bmi_bextr_32: |
| 6291 | case Intrinsic::x86_bmi_bextr_64: |
| 6292 | case Intrinsic::x86_bmi_bzhi_32: |
| 6293 | case Intrinsic::x86_bmi_bzhi_64: |
| 6294 | case Intrinsic::x86_bmi_pdep_32: |
| 6295 | case Intrinsic::x86_bmi_pdep_64: |
| 6296 | case Intrinsic::x86_bmi_pext_32: |
| 6297 | case Intrinsic::x86_bmi_pext_64: |
| 6298 | handleBmiIntrinsic(I); |
| 6299 | break; |
| 6300 | |
| 6301 | case Intrinsic::x86_pclmulqdq: |
| 6302 | case Intrinsic::x86_pclmulqdq_256: |
| 6303 | case Intrinsic::x86_pclmulqdq_512: |
| 6304 | handlePclmulIntrinsic(I); |
| 6305 | break; |
| 6306 | |
| 6307 | case Intrinsic::x86_avx_round_pd_256: |
| 6308 | case Intrinsic::x86_avx_round_ps_256: |
| 6309 | case Intrinsic::x86_sse41_round_pd: |
| 6310 | case Intrinsic::x86_sse41_round_ps: |
| 6311 | handleRoundPdPsIntrinsic(I); |
| 6312 | break; |
| 6313 | |
| 6314 | case Intrinsic::x86_sse41_round_sd: |
| 6315 | case Intrinsic::x86_sse41_round_ss: |
| 6316 | handleUnarySdSsIntrinsic(I); |
| 6317 | break; |
| 6318 | |
| 6319 | case Intrinsic::x86_sse2_max_sd: |
| 6320 | case Intrinsic::x86_sse_max_ss: |
| 6321 | case Intrinsic::x86_sse2_min_sd: |
| 6322 | case Intrinsic::x86_sse_min_ss: |
| 6323 | handleBinarySdSsIntrinsic(I); |
| 6324 | break; |
| 6325 | |
| 6326 | case Intrinsic::x86_avx_vtestc_pd: |
| 6327 | case Intrinsic::x86_avx_vtestc_pd_256: |
| 6328 | case Intrinsic::x86_avx_vtestc_ps: |
| 6329 | case Intrinsic::x86_avx_vtestc_ps_256: |
| 6330 | case Intrinsic::x86_avx_vtestnzc_pd: |
| 6331 | case Intrinsic::x86_avx_vtestnzc_pd_256: |
| 6332 | case Intrinsic::x86_avx_vtestnzc_ps: |
| 6333 | case Intrinsic::x86_avx_vtestnzc_ps_256: |
| 6334 | case Intrinsic::x86_avx_vtestz_pd: |
| 6335 | case Intrinsic::x86_avx_vtestz_pd_256: |
| 6336 | case Intrinsic::x86_avx_vtestz_ps: |
| 6337 | case Intrinsic::x86_avx_vtestz_ps_256: |
| 6338 | case Intrinsic::x86_avx_ptestc_256: |
| 6339 | case Intrinsic::x86_avx_ptestnzc_256: |
| 6340 | case Intrinsic::x86_avx_ptestz_256: |
| 6341 | case Intrinsic::x86_sse41_ptestc: |
| 6342 | case Intrinsic::x86_sse41_ptestnzc: |
| 6343 | case Intrinsic::x86_sse41_ptestz: |
| 6344 | handleVtestIntrinsic(I); |
| 6345 | break; |
| 6346 | |
| 6347 | // Packed Horizontal Add/Subtract |
| 6348 | case Intrinsic::x86_ssse3_phadd_w: |
| 6349 | case Intrinsic::x86_ssse3_phadd_w_128: |
| 6350 | case Intrinsic::x86_ssse3_phsub_w: |
| 6351 | case Intrinsic::x86_ssse3_phsub_w_128: |
| 6352 | handlePairwiseShadowOrIntrinsic(I, /*Shards=*/1, |
| 6353 | /*ReinterpretElemWidth=*/16); |
| 6354 | break; |
| 6355 | |
| 6356 | case Intrinsic::x86_avx2_phadd_w: |
| 6357 | case Intrinsic::x86_avx2_phsub_w: |
| 6358 | handlePairwiseShadowOrIntrinsic(I, /*Shards=*/2, |
| 6359 | /*ReinterpretElemWidth=*/16); |
| 6360 | break; |
| 6361 | |
| 6362 | // Packed Horizontal Add/Subtract |
| 6363 | case Intrinsic::x86_ssse3_phadd_d: |
| 6364 | case Intrinsic::x86_ssse3_phadd_d_128: |
| 6365 | case Intrinsic::x86_ssse3_phsub_d: |
| 6366 | case Intrinsic::x86_ssse3_phsub_d_128: |
| 6367 | handlePairwiseShadowOrIntrinsic(I, /*Shards=*/1, |
| 6368 | /*ReinterpretElemWidth=*/32); |
| 6369 | break; |
| 6370 | |
| 6371 | case Intrinsic::x86_avx2_phadd_d: |
| 6372 | case Intrinsic::x86_avx2_phsub_d: |
| 6373 | handlePairwiseShadowOrIntrinsic(I, /*Shards=*/2, |
| 6374 | /*ReinterpretElemWidth=*/32); |
| 6375 | break; |
| 6376 | |
| 6377 | // Packed Horizontal Add/Subtract and Saturate |
| 6378 | case Intrinsic::x86_ssse3_phadd_sw: |
| 6379 | case Intrinsic::x86_ssse3_phadd_sw_128: |
| 6380 | case Intrinsic::x86_ssse3_phsub_sw: |
| 6381 | case Intrinsic::x86_ssse3_phsub_sw_128: |
| 6382 | handlePairwiseShadowOrIntrinsic(I, /*Shards=*/1, |
| 6383 | /*ReinterpretElemWidth=*/16); |
| 6384 | break; |
| 6385 | |
| 6386 | case Intrinsic::x86_avx2_phadd_sw: |
| 6387 | case Intrinsic::x86_avx2_phsub_sw: |
| 6388 | handlePairwiseShadowOrIntrinsic(I, /*Shards=*/2, |
| 6389 | /*ReinterpretElemWidth=*/16); |
| 6390 | break; |
| 6391 | |
| 6392 | // Packed Single/Double Precision Floating-Point Horizontal Add |
| 6393 | case Intrinsic::x86_sse3_hadd_ps: |
| 6394 | case Intrinsic::x86_sse3_hadd_pd: |
| 6395 | case Intrinsic::x86_sse3_hsub_ps: |
| 6396 | case Intrinsic::x86_sse3_hsub_pd: |
| 6397 | handlePairwiseShadowOrIntrinsic(I, /*Shards=*/1); |
| 6398 | break; |
| 6399 | |
| 6400 | case Intrinsic::x86_avx_hadd_pd_256: |
| 6401 | case Intrinsic::x86_avx_hadd_ps_256: |
| 6402 | case Intrinsic::x86_avx_hsub_pd_256: |
| 6403 | case Intrinsic::x86_avx_hsub_ps_256: |
| 6404 | handlePairwiseShadowOrIntrinsic(I, /*Shards=*/2); |
| 6405 | break; |
| 6406 | |
| 6407 | case Intrinsic::x86_avx_maskstore_ps: |
| 6408 | case Intrinsic::x86_avx_maskstore_pd: |
| 6409 | case Intrinsic::x86_avx_maskstore_ps_256: |
| 6410 | case Intrinsic::x86_avx_maskstore_pd_256: |
| 6411 | case Intrinsic::x86_avx2_maskstore_d: |
| 6412 | case Intrinsic::x86_avx2_maskstore_q: |
| 6413 | case Intrinsic::x86_avx2_maskstore_d_256: |
| 6414 | case Intrinsic::x86_avx2_maskstore_q_256: { |
| 6415 | handleAVXMaskedStore(I); |
| 6416 | break; |
| 6417 | } |
| 6418 | |
| 6419 | case Intrinsic::x86_avx_maskload_ps: |
| 6420 | case Intrinsic::x86_avx_maskload_pd: |
| 6421 | case Intrinsic::x86_avx_maskload_ps_256: |
| 6422 | case Intrinsic::x86_avx_maskload_pd_256: |
| 6423 | case Intrinsic::x86_avx2_maskload_d: |
| 6424 | case Intrinsic::x86_avx2_maskload_q: |
| 6425 | case Intrinsic::x86_avx2_maskload_d_256: |
| 6426 | case Intrinsic::x86_avx2_maskload_q_256: { |
| 6427 | handleAVXMaskedLoad(I); |
| 6428 | break; |
| 6429 | } |
| 6430 | |
| 6431 | // Packed |
| 6432 | case Intrinsic::x86_avx512fp16_add_ph_512: |
| 6433 | case Intrinsic::x86_avx512fp16_sub_ph_512: |
| 6434 | case Intrinsic::x86_avx512fp16_mul_ph_512: |
| 6435 | case Intrinsic::x86_avx512fp16_div_ph_512: |
| 6436 | case Intrinsic::x86_avx512fp16_max_ph_512: |
| 6437 | case Intrinsic::x86_avx512fp16_min_ph_512: |
| 6438 | case Intrinsic::x86_avx512_min_ps_512: |
| 6439 | case Intrinsic::x86_avx512_min_pd_512: |
| 6440 | case Intrinsic::x86_avx512_max_ps_512: |
| 6441 | case Intrinsic::x86_avx512_max_pd_512: { |
| 6442 | // These AVX512 variants contain the rounding mode as a trailing flag. |
| 6443 | // Earlier variants do not have a trailing flag and are already handled |
| 6444 | // by maybeHandleSimpleNomemIntrinsic(I, 0) via |
| 6445 | // maybeHandleUnknownIntrinsic. |
| 6446 | [[maybe_unused]] bool Success = |
| 6447 | maybeHandleSimpleNomemIntrinsic(I, /*trailingFlags=*/1); |
| 6448 | assert(Success); |
| 6449 | break; |
| 6450 | } |
| 6451 | |
| 6452 | case Intrinsic::x86_avx_vpermilvar_pd: |
| 6453 | case Intrinsic::x86_avx_vpermilvar_pd_256: |
| 6454 | case Intrinsic::x86_avx512_vpermilvar_pd_512: |
| 6455 | case Intrinsic::x86_avx_vpermilvar_ps: |
| 6456 | case Intrinsic::x86_avx_vpermilvar_ps_256: |
| 6457 | case Intrinsic::x86_avx512_vpermilvar_ps_512: { |
| 6458 | handleAVXVpermilvar(I); |
| 6459 | break; |
| 6460 | } |
| 6461 | |
| 6462 | case Intrinsic::x86_avx512_vpermi2var_d_128: |
| 6463 | case Intrinsic::x86_avx512_vpermi2var_d_256: |
| 6464 | case Intrinsic::x86_avx512_vpermi2var_d_512: |
| 6465 | case Intrinsic::x86_avx512_vpermi2var_hi_128: |
| 6466 | case Intrinsic::x86_avx512_vpermi2var_hi_256: |
| 6467 | case Intrinsic::x86_avx512_vpermi2var_hi_512: |
| 6468 | case Intrinsic::x86_avx512_vpermi2var_pd_128: |
| 6469 | case Intrinsic::x86_avx512_vpermi2var_pd_256: |
| 6470 | case Intrinsic::x86_avx512_vpermi2var_pd_512: |
| 6471 | case Intrinsic::x86_avx512_vpermi2var_ps_128: |
| 6472 | case Intrinsic::x86_avx512_vpermi2var_ps_256: |
| 6473 | case Intrinsic::x86_avx512_vpermi2var_ps_512: |
| 6474 | case Intrinsic::x86_avx512_vpermi2var_q_128: |
| 6475 | case Intrinsic::x86_avx512_vpermi2var_q_256: |
| 6476 | case Intrinsic::x86_avx512_vpermi2var_q_512: |
| 6477 | case Intrinsic::x86_avx512_vpermi2var_qi_128: |
| 6478 | case Intrinsic::x86_avx512_vpermi2var_qi_256: |
| 6479 | case Intrinsic::x86_avx512_vpermi2var_qi_512: |
| 6480 | handleAVXVpermi2var(I); |
| 6481 | break; |
| 6482 | |
| 6483 | // Packed Shuffle |
| 6484 | // llvm.x86.sse.pshuf.w(<1 x i64>, i8) |
| 6485 | // llvm.x86.ssse3.pshuf.b(<1 x i64>, <1 x i64>) |
| 6486 | // llvm.x86.ssse3.pshuf.b.128(<16 x i8>, <16 x i8>) |
| 6487 | // llvm.x86.avx2.pshuf.b(<32 x i8>, <32 x i8>) |
| 6488 | // llvm.x86.avx512.pshuf.b.512(<64 x i8>, <64 x i8>) |
| 6489 | // |
| 6490 | // The following intrinsics are auto-upgraded: |
| 6491 | // llvm.x86.sse2.pshuf.d(<4 x i32>, i8) |
| 6492 | // llvm.x86.sse2.gpshufh.w(<8 x i16>, i8) |
| 6493 | // llvm.x86.sse2.pshufl.w(<8 x i16>, i8) |
| 6494 | case Intrinsic::x86_avx2_pshuf_b: |
| 6495 | case Intrinsic::x86_sse_pshuf_w: |
| 6496 | case Intrinsic::x86_ssse3_pshuf_b_128: |
| 6497 | case Intrinsic::x86_ssse3_pshuf_b: |
| 6498 | case Intrinsic::x86_avx512_pshuf_b_512: |
| 6499 | handleIntrinsicByApplyingToShadow(I, shadowIntrinsicID: I.getIntrinsicID(), |
| 6500 | /*trailingVerbatimArgs=*/1); |
| 6501 | break; |
| 6502 | |
| 6503 | // AVX512 PMOV: Packed MOV, with truncation |
| 6504 | // Precisely handled by applying the same intrinsic to the shadow |
| 6505 | case Intrinsic::x86_avx512_mask_pmov_dw_512: |
| 6506 | case Intrinsic::x86_avx512_mask_pmov_db_512: |
| 6507 | case Intrinsic::x86_avx512_mask_pmov_qb_512: |
| 6508 | case Intrinsic::x86_avx512_mask_pmov_qw_512: { |
| 6509 | // Intrinsic::x86_avx512_mask_pmov_{qd,wb}_512 were removed in |
| 6510 | // f608dc1f5775ee880e8ea30e2d06ab5a4a935c22 |
| 6511 | handleIntrinsicByApplyingToShadow(I, shadowIntrinsicID: I.getIntrinsicID(), |
| 6512 | /*trailingVerbatimArgs=*/1); |
| 6513 | break; |
| 6514 | } |
| 6515 | |
| 6516 | // AVX512 PMVOV{S,US}: Packed MOV, with signed/unsigned saturation |
| 6517 | // Approximately handled using the corresponding truncation intrinsic |
| 6518 | // TODO: improve handleAVX512VectorDownConvert to precisely model saturation |
| 6519 | case Intrinsic::x86_avx512_mask_pmovs_dw_512: |
| 6520 | case Intrinsic::x86_avx512_mask_pmovus_dw_512: { |
| 6521 | handleIntrinsicByApplyingToShadow(I, |
| 6522 | shadowIntrinsicID: Intrinsic::x86_avx512_mask_pmov_dw_512, |
| 6523 | /* trailingVerbatimArgs=*/1); |
| 6524 | break; |
| 6525 | } |
| 6526 | |
| 6527 | case Intrinsic::x86_avx512_mask_pmovs_db_512: |
| 6528 | case Intrinsic::x86_avx512_mask_pmovus_db_512: { |
| 6529 | handleIntrinsicByApplyingToShadow(I, |
| 6530 | shadowIntrinsicID: Intrinsic::x86_avx512_mask_pmov_db_512, |
| 6531 | /* trailingVerbatimArgs=*/1); |
| 6532 | break; |
| 6533 | } |
| 6534 | |
| 6535 | case Intrinsic::x86_avx512_mask_pmovs_qb_512: |
| 6536 | case Intrinsic::x86_avx512_mask_pmovus_qb_512: { |
| 6537 | handleIntrinsicByApplyingToShadow(I, |
| 6538 | shadowIntrinsicID: Intrinsic::x86_avx512_mask_pmov_qb_512, |
| 6539 | /* trailingVerbatimArgs=*/1); |
| 6540 | break; |
| 6541 | } |
| 6542 | |
| 6543 | case Intrinsic::x86_avx512_mask_pmovs_qw_512: |
| 6544 | case Intrinsic::x86_avx512_mask_pmovus_qw_512: { |
| 6545 | handleIntrinsicByApplyingToShadow(I, |
| 6546 | shadowIntrinsicID: Intrinsic::x86_avx512_mask_pmov_qw_512, |
| 6547 | /* trailingVerbatimArgs=*/1); |
| 6548 | break; |
| 6549 | } |
| 6550 | |
| 6551 | case Intrinsic::x86_avx512_mask_pmovs_qd_512: |
| 6552 | case Intrinsic::x86_avx512_mask_pmovus_qd_512: |
| 6553 | case Intrinsic::x86_avx512_mask_pmovs_wb_512: |
| 6554 | case Intrinsic::x86_avx512_mask_pmovus_wb_512: { |
| 6555 | // Since Intrinsic::x86_avx512_mask_pmov_{qd,wb}_512 do not exist, we |
| 6556 | // cannot use handleIntrinsicByApplyingToShadow. Instead, we call the |
| 6557 | // slow-path handler. |
| 6558 | handleAVX512VectorDownConvert(I); |
| 6559 | break; |
| 6560 | } |
| 6561 | |
| 6562 | // AVX512/AVX10 Reciprocal |
| 6563 | // <16 x float> @llvm.x86.avx512.rsqrt14.ps.512 |
| 6564 | // (<16 x float>, <16 x float>, i16) |
| 6565 | // <8 x float> @llvm.x86.avx512.rsqrt14.ps.256 |
| 6566 | // (<8 x float>, <8 x float>, i8) |
| 6567 | // <4 x float> @llvm.x86.avx512.rsqrt14.ps.128 |
| 6568 | // (<4 x float>, <4 x float>, i8) |
| 6569 | // |
| 6570 | // <8 x double> @llvm.x86.avx512.rsqrt14.pd.512 |
| 6571 | // (<8 x double>, <8 x double>, i8) |
| 6572 | // <4 x double> @llvm.x86.avx512.rsqrt14.pd.256 |
| 6573 | // (<4 x double>, <4 x double>, i8) |
| 6574 | // <2 x double> @llvm.x86.avx512.rsqrt14.pd.128 |
| 6575 | // (<2 x double>, <2 x double>, i8) |
| 6576 | // |
| 6577 | // <32 x bfloat> @llvm.x86.avx10.mask.rsqrt.bf16.512 |
| 6578 | // (<32 x bfloat>, <32 x bfloat>, i32) |
| 6579 | // <16 x bfloat> @llvm.x86.avx10.mask.rsqrt.bf16.256 |
| 6580 | // (<16 x bfloat>, <16 x bfloat>, i16) |
| 6581 | // <8 x bfloat> @llvm.x86.avx10.mask.rsqrt.bf16.128 |
| 6582 | // (<8 x bfloat>, <8 x bfloat>, i8) |
| 6583 | // |
| 6584 | // <32 x half> @llvm.x86.avx512fp16.mask.rsqrt.ph.512 |
| 6585 | // (<32 x half>, <32 x half>, i32) |
| 6586 | // <16 x half> @llvm.x86.avx512fp16.mask.rsqrt.ph.256 |
| 6587 | // (<16 x half>, <16 x half>, i16) |
| 6588 | // <8 x half> @llvm.x86.avx512fp16.mask.rsqrt.ph.128 |
| 6589 | // (<8 x half>, <8 x half>, i8) |
| 6590 | // |
| 6591 | // TODO: 3-operand variants are not handled: |
| 6592 | // <2 x double> @llvm.x86.avx512.rsqrt14.sd |
| 6593 | // (<2 x double>, <2 x double>, <2 x double>, i8) |
| 6594 | // <4 x float> @llvm.x86.avx512.rsqrt14.ss |
| 6595 | // (<4 x float>, <4 x float>, <4 x float>, i8) |
| 6596 | // <8 x half> @llvm.x86.avx512fp16.mask.rsqrt.sh |
| 6597 | // (<8 x half>, <8 x half>, <8 x half>, i8) |
| 6598 | case Intrinsic::x86_avx512_rsqrt14_ps_512: |
| 6599 | case Intrinsic::x86_avx512_rsqrt14_ps_256: |
| 6600 | case Intrinsic::x86_avx512_rsqrt14_ps_128: |
| 6601 | case Intrinsic::x86_avx512_rsqrt14_pd_512: |
| 6602 | case Intrinsic::x86_avx512_rsqrt14_pd_256: |
| 6603 | case Intrinsic::x86_avx512_rsqrt14_pd_128: |
| 6604 | case Intrinsic::x86_avx10_mask_rsqrt_bf16_512: |
| 6605 | case Intrinsic::x86_avx10_mask_rsqrt_bf16_256: |
| 6606 | case Intrinsic::x86_avx10_mask_rsqrt_bf16_128: |
| 6607 | case Intrinsic::x86_avx512fp16_mask_rsqrt_ph_512: |
| 6608 | case Intrinsic::x86_avx512fp16_mask_rsqrt_ph_256: |
| 6609 | case Intrinsic::x86_avx512fp16_mask_rsqrt_ph_128: |
| 6610 | handleAVX512VectorGenericMaskedFP(I, /*AIndex=*/0, /*WriteThruIndex=*/1, |
| 6611 | /*MaskIndex=*/2); |
| 6612 | break; |
| 6613 | |
| 6614 | // AVX512/AVX10 Reciprocal Square Root |
| 6615 | // <16 x float> @llvm.x86.avx512.rcp14.ps.512 |
| 6616 | // (<16 x float>, <16 x float>, i16) |
| 6617 | // <8 x float> @llvm.x86.avx512.rcp14.ps.256 |
| 6618 | // (<8 x float>, <8 x float>, i8) |
| 6619 | // <4 x float> @llvm.x86.avx512.rcp14.ps.128 |
| 6620 | // (<4 x float>, <4 x float>, i8) |
| 6621 | // |
| 6622 | // <8 x double> @llvm.x86.avx512.rcp14.pd.512 |
| 6623 | // (<8 x double>, <8 x double>, i8) |
| 6624 | // <4 x double> @llvm.x86.avx512.rcp14.pd.256 |
| 6625 | // (<4 x double>, <4 x double>, i8) |
| 6626 | // <2 x double> @llvm.x86.avx512.rcp14.pd.128 |
| 6627 | // (<2 x double>, <2 x double>, i8) |
| 6628 | // |
| 6629 | // <32 x bfloat> @llvm.x86.avx10.mask.rcp.bf16.512 |
| 6630 | // (<32 x bfloat>, <32 x bfloat>, i32) |
| 6631 | // <16 x bfloat> @llvm.x86.avx10.mask.rcp.bf16.256 |
| 6632 | // (<16 x bfloat>, <16 x bfloat>, i16) |
| 6633 | // <8 x bfloat> @llvm.x86.avx10.mask.rcp.bf16.128 |
| 6634 | // (<8 x bfloat>, <8 x bfloat>, i8) |
| 6635 | // |
| 6636 | // <32 x half> @llvm.x86.avx512fp16.mask.rcp.ph.512 |
| 6637 | // (<32 x half>, <32 x half>, i32) |
| 6638 | // <16 x half> @llvm.x86.avx512fp16.mask.rcp.ph.256 |
| 6639 | // (<16 x half>, <16 x half>, i16) |
| 6640 | // <8 x half> @llvm.x86.avx512fp16.mask.rcp.ph.128 |
| 6641 | // (<8 x half>, <8 x half>, i8) |
| 6642 | // |
| 6643 | // TODO: 3-operand variants are not handled: |
| 6644 | // <2 x double> @llvm.x86.avx512.rcp14.sd |
| 6645 | // (<2 x double>, <2 x double>, <2 x double>, i8) |
| 6646 | // <4 x float> @llvm.x86.avx512.rcp14.ss |
| 6647 | // (<4 x float>, <4 x float>, <4 x float>, i8) |
| 6648 | // <8 x half> @llvm.x86.avx512fp16.mask.rcp.sh |
| 6649 | // (<8 x half>, <8 x half>, <8 x half>, i8) |
| 6650 | case Intrinsic::x86_avx512_rcp14_ps_512: |
| 6651 | case Intrinsic::x86_avx512_rcp14_ps_256: |
| 6652 | case Intrinsic::x86_avx512_rcp14_ps_128: |
| 6653 | case Intrinsic::x86_avx512_rcp14_pd_512: |
| 6654 | case Intrinsic::x86_avx512_rcp14_pd_256: |
| 6655 | case Intrinsic::x86_avx512_rcp14_pd_128: |
| 6656 | case Intrinsic::x86_avx10_mask_rcp_bf16_512: |
| 6657 | case Intrinsic::x86_avx10_mask_rcp_bf16_256: |
| 6658 | case Intrinsic::x86_avx10_mask_rcp_bf16_128: |
| 6659 | case Intrinsic::x86_avx512fp16_mask_rcp_ph_512: |
| 6660 | case Intrinsic::x86_avx512fp16_mask_rcp_ph_256: |
| 6661 | case Intrinsic::x86_avx512fp16_mask_rcp_ph_128: |
| 6662 | handleAVX512VectorGenericMaskedFP(I, /*AIndex=*/0, /*WriteThruIndex=*/1, |
| 6663 | /*MaskIndex=*/2); |
| 6664 | break; |
| 6665 | |
| 6666 | // <32 x half> @llvm.x86.avx512fp16.mask.rndscale.ph.512 |
| 6667 | // (<32 x half>, i32, <32 x half>, i32, i32) |
| 6668 | // <16 x half> @llvm.x86.avx512fp16.mask.rndscale.ph.256 |
| 6669 | // (<16 x half>, i32, <16 x half>, i32, i16) |
| 6670 | // <8 x half> @llvm.x86.avx512fp16.mask.rndscale.ph.128 |
| 6671 | // (<8 x half>, i32, <8 x half>, i32, i8) |
| 6672 | // |
| 6673 | // <16 x float> @llvm.x86.avx512.mask.rndscale.ps.512 |
| 6674 | // (<16 x float>, i32, <16 x float>, i16, i32) |
| 6675 | // <8 x float> @llvm.x86.avx512.mask.rndscale.ps.256 |
| 6676 | // (<8 x float>, i32, <8 x float>, i8) |
| 6677 | // <4 x float> @llvm.x86.avx512.mask.rndscale.ps.128 |
| 6678 | // (<4 x float>, i32, <4 x float>, i8) |
| 6679 | // |
| 6680 | // <8 x double> @llvm.x86.avx512.mask.rndscale.pd.512 |
| 6681 | // (<8 x double>, i32, <8 x double>, i8, i32) |
| 6682 | // A Imm WriteThru Mask Rounding |
| 6683 | // <4 x double> @llvm.x86.avx512.mask.rndscale.pd.256 |
| 6684 | // (<4 x double>, i32, <4 x double>, i8) |
| 6685 | // <2 x double> @llvm.x86.avx512.mask.rndscale.pd.128 |
| 6686 | // (<2 x double>, i32, <2 x double>, i8) |
| 6687 | // A Imm WriteThru Mask |
| 6688 | // |
| 6689 | // <32 x bfloat> @llvm.x86.avx10.mask.rndscale.bf16.512 |
| 6690 | // (<32 x bfloat>, i32, <32 x bfloat>, i32) |
| 6691 | // <16 x bfloat> @llvm.x86.avx10.mask.rndscale.bf16.256 |
| 6692 | // (<16 x bfloat>, i32, <16 x bfloat>, i16) |
| 6693 | // <8 x bfloat> @llvm.x86.avx10.mask.rndscale.bf16.128 |
| 6694 | // (<8 x bfloat>, i32, <8 x bfloat>, i8) |
| 6695 | // |
| 6696 | // Not supported: three vectors |
| 6697 | // - <8 x half> @llvm.x86.avx512fp16.mask.rndscale.sh |
| 6698 | // (<8 x half>, <8 x half>,<8 x half>, i8, i32, i32) |
| 6699 | // - <4 x float> @llvm.x86.avx512.mask.rndscale.ss |
| 6700 | // (<4 x float>, <4 x float>, <4 x float>, i8, i32, i32) |
| 6701 | // - <2 x double> @llvm.x86.avx512.mask.rndscale.sd |
| 6702 | // (<2 x double>, <2 x double>, <2 x double>, i8, i32, |
| 6703 | // i32) |
| 6704 | // A B WriteThru Mask Imm |
| 6705 | // Rounding |
| 6706 | case Intrinsic::x86_avx512fp16_mask_rndscale_ph_512: |
| 6707 | case Intrinsic::x86_avx512fp16_mask_rndscale_ph_256: |
| 6708 | case Intrinsic::x86_avx512fp16_mask_rndscale_ph_128: |
| 6709 | case Intrinsic::x86_avx512_mask_rndscale_ps_512: |
| 6710 | case Intrinsic::x86_avx512_mask_rndscale_ps_256: |
| 6711 | case Intrinsic::x86_avx512_mask_rndscale_ps_128: |
| 6712 | case Intrinsic::x86_avx512_mask_rndscale_pd_512: |
| 6713 | case Intrinsic::x86_avx512_mask_rndscale_pd_256: |
| 6714 | case Intrinsic::x86_avx512_mask_rndscale_pd_128: |
| 6715 | case Intrinsic::x86_avx10_mask_rndscale_bf16_512: |
| 6716 | case Intrinsic::x86_avx10_mask_rndscale_bf16_256: |
| 6717 | case Intrinsic::x86_avx10_mask_rndscale_bf16_128: |
| 6718 | handleAVX512VectorGenericMaskedFP(I, /*AIndex=*/0, /*WriteThruIndex=*/2, |
| 6719 | /*MaskIndex=*/3); |
| 6720 | break; |
| 6721 | |
| 6722 | // AVX512 FP16 Arithmetic |
| 6723 | case Intrinsic::x86_avx512fp16_mask_add_sh_round: |
| 6724 | case Intrinsic::x86_avx512fp16_mask_sub_sh_round: |
| 6725 | case Intrinsic::x86_avx512fp16_mask_mul_sh_round: |
| 6726 | case Intrinsic::x86_avx512fp16_mask_div_sh_round: |
| 6727 | case Intrinsic::x86_avx512fp16_mask_max_sh_round: |
| 6728 | case Intrinsic::x86_avx512fp16_mask_min_sh_round: { |
| 6729 | visitGenericScalarHalfwordInst(I); |
| 6730 | break; |
| 6731 | } |
| 6732 | |
| 6733 | // AVX Galois Field New Instructions |
| 6734 | case Intrinsic::x86_vgf2p8affineqb_128: |
| 6735 | case Intrinsic::x86_vgf2p8affineqb_256: |
| 6736 | case Intrinsic::x86_vgf2p8affineqb_512: |
| 6737 | handleAVXGF2P8Affine(I); |
| 6738 | break; |
| 6739 | |
| 6740 | default: |
| 6741 | return false; |
| 6742 | } |
| 6743 | |
| 6744 | return true; |
| 6745 | } |
| 6746 | |
| 6747 | bool maybeHandleArmSIMDIntrinsic(IntrinsicInst &I) { |
| 6748 | switch (I.getIntrinsicID()) { |
| 6749 | // Two operands e.g., |
| 6750 | // - <8 x i8> @llvm.aarch64.neon.rshrn.v8i8 (<8 x i16>, i32) |
| 6751 | // - <4 x i16> @llvm.aarch64.neon.uqrshl.v4i16(<4 x i16>, <4 x i16>) |
| 6752 | case Intrinsic::aarch64_neon_rshrn: |
| 6753 | case Intrinsic::aarch64_neon_sqrshl: |
| 6754 | case Intrinsic::aarch64_neon_sqrshrn: |
| 6755 | case Intrinsic::aarch64_neon_sqrshrun: |
| 6756 | case Intrinsic::aarch64_neon_sqshl: |
| 6757 | case Intrinsic::aarch64_neon_sqshlu: |
| 6758 | case Intrinsic::aarch64_neon_sqshrn: |
| 6759 | case Intrinsic::aarch64_neon_sqshrun: |
| 6760 | case Intrinsic::aarch64_neon_srshl: |
| 6761 | case Intrinsic::aarch64_neon_sshl: |
| 6762 | case Intrinsic::aarch64_neon_uqrshl: |
| 6763 | case Intrinsic::aarch64_neon_uqrshrn: |
| 6764 | case Intrinsic::aarch64_neon_uqshl: |
| 6765 | case Intrinsic::aarch64_neon_uqshrn: |
| 6766 | case Intrinsic::aarch64_neon_urshl: |
| 6767 | case Intrinsic::aarch64_neon_ushl: |
| 6768 | handleVectorShiftIntrinsic(I, /* Variable */ false); |
| 6769 | break; |
| 6770 | |
| 6771 | // Vector Shift Left/Right and Insert |
| 6772 | // |
| 6773 | // Three operands e.g., |
| 6774 | // - <4 x i16> @llvm.aarch64.neon.vsli.v4i16 |
| 6775 | // (<4 x i16> %a, <4 x i16> %b, i32 %n) |
| 6776 | // - <16 x i8> @llvm.aarch64.neon.vsri.v16i8 |
| 6777 | // (<16 x i8> %a, <16 x i8> %b, i32 %n) |
| 6778 | // |
| 6779 | // %b is shifted by %n bits, and the "missing" bits are filled in with %a |
| 6780 | // (instead of zero-extending/sign-extending). |
| 6781 | case Intrinsic::aarch64_neon_vsli: |
| 6782 | case Intrinsic::aarch64_neon_vsri: |
| 6783 | handleIntrinsicByApplyingToShadow(I, shadowIntrinsicID: I.getIntrinsicID(), |
| 6784 | /*trailingVerbatimArgs=*/1); |
| 6785 | break; |
| 6786 | |
| 6787 | // TODO: handling max/min similarly to AND/OR may be more precise |
| 6788 | // Floating-Point Maximum/Minimum Pairwise |
| 6789 | case Intrinsic::aarch64_neon_fmaxp: |
| 6790 | case Intrinsic::aarch64_neon_fminp: |
| 6791 | // Floating-Point Maximum/Minimum Number Pairwise |
| 6792 | case Intrinsic::aarch64_neon_fmaxnmp: |
| 6793 | case Intrinsic::aarch64_neon_fminnmp: |
| 6794 | // Signed/Unsigned Maximum/Minimum Pairwise |
| 6795 | case Intrinsic::aarch64_neon_smaxp: |
| 6796 | case Intrinsic::aarch64_neon_sminp: |
| 6797 | case Intrinsic::aarch64_neon_umaxp: |
| 6798 | case Intrinsic::aarch64_neon_uminp: |
| 6799 | // Add Pairwise |
| 6800 | case Intrinsic::aarch64_neon_addp: |
| 6801 | // Floating-point Add Pairwise |
| 6802 | case Intrinsic::aarch64_neon_faddp: |
| 6803 | // Add Long Pairwise |
| 6804 | case Intrinsic::aarch64_neon_saddlp: |
| 6805 | case Intrinsic::aarch64_neon_uaddlp: { |
| 6806 | handlePairwiseShadowOrIntrinsic(I, /*Shards=*/1); |
| 6807 | break; |
| 6808 | } |
| 6809 | |
| 6810 | // Floating-point Convert to integer, rounding to nearest with ties to Away |
| 6811 | case Intrinsic::aarch64_neon_fcvtas: |
| 6812 | case Intrinsic::aarch64_neon_fcvtau: |
| 6813 | // Floating-point convert to integer, rounding toward minus infinity |
| 6814 | case Intrinsic::aarch64_neon_fcvtms: |
| 6815 | case Intrinsic::aarch64_neon_fcvtmu: |
| 6816 | // Floating-point convert to integer, rounding to nearest with ties to even |
| 6817 | case Intrinsic::aarch64_neon_fcvtns: |
| 6818 | case Intrinsic::aarch64_neon_fcvtnu: |
| 6819 | // Floating-point convert to integer, rounding toward plus infinity |
| 6820 | case Intrinsic::aarch64_neon_fcvtps: |
| 6821 | case Intrinsic::aarch64_neon_fcvtpu: |
| 6822 | // Floating-point Convert to integer, rounding toward Zero |
| 6823 | case Intrinsic::aarch64_neon_fcvtzs: |
| 6824 | case Intrinsic::aarch64_neon_fcvtzu: |
| 6825 | // Floating-point convert to lower precision narrow, rounding to odd |
| 6826 | case Intrinsic::aarch64_neon_fcvtxn: |
| 6827 | // Vector Conversions Between Half-Precision and Single-Precision |
| 6828 | case Intrinsic::aarch64_neon_vcvthf2fp: |
| 6829 | case Intrinsic::aarch64_neon_vcvtfp2hf: |
| 6830 | handleNEONVectorConvertIntrinsic(I, /*FixedPoint=*/false); |
| 6831 | break; |
| 6832 | |
| 6833 | // Vector Conversions Between Fixed-Point and Floating-Point |
| 6834 | case Intrinsic::aarch64_neon_vcvtfxs2fp: |
| 6835 | case Intrinsic::aarch64_neon_vcvtfp2fxs: |
| 6836 | case Intrinsic::aarch64_neon_vcvtfxu2fp: |
| 6837 | case Intrinsic::aarch64_neon_vcvtfp2fxu: |
| 6838 | handleNEONVectorConvertIntrinsic(I, /*FixedPoint=*/true); |
| 6839 | break; |
| 6840 | |
| 6841 | // TODO: bfloat conversions |
| 6842 | // - bfloat @llvm.aarch64.neon.bfcvt(float) |
| 6843 | // - <8 x bfloat> @llvm.aarch64.neon.bfcvtn(<4 x float>) |
| 6844 | // - <8 x bfloat> @llvm.aarch64.neon.bfcvtn2(<8 x bfloat>, <4 x float>) |
| 6845 | |
| 6846 | // Add reduction to scalar |
| 6847 | case Intrinsic::aarch64_neon_faddv: |
| 6848 | case Intrinsic::aarch64_neon_saddv: |
| 6849 | case Intrinsic::aarch64_neon_uaddv: |
| 6850 | // Signed/Unsigned min/max (Vector) |
| 6851 | // TODO: handling similarly to AND/OR may be more precise. |
| 6852 | case Intrinsic::aarch64_neon_smaxv: |
| 6853 | case Intrinsic::aarch64_neon_sminv: |
| 6854 | case Intrinsic::aarch64_neon_umaxv: |
| 6855 | case Intrinsic::aarch64_neon_uminv: |
| 6856 | // Floating-point min/max (vector) |
| 6857 | // The f{min,max}"nm"v variants handle NaN differently than f{min,max}v, |
| 6858 | // but our shadow propagation is the same. |
| 6859 | case Intrinsic::aarch64_neon_fmaxv: |
| 6860 | case Intrinsic::aarch64_neon_fminv: |
| 6861 | case Intrinsic::aarch64_neon_fmaxnmv: |
| 6862 | case Intrinsic::aarch64_neon_fminnmv: |
| 6863 | // Sum long across vector |
| 6864 | case Intrinsic::aarch64_neon_saddlv: |
| 6865 | case Intrinsic::aarch64_neon_uaddlv: |
| 6866 | handleVectorReduceIntrinsic(I, /*AllowShadowCast=*/true); |
| 6867 | break; |
| 6868 | |
| 6869 | case Intrinsic::aarch64_neon_ld1x2: |
| 6870 | case Intrinsic::aarch64_neon_ld1x3: |
| 6871 | case Intrinsic::aarch64_neon_ld1x4: |
| 6872 | case Intrinsic::aarch64_neon_ld2: |
| 6873 | case Intrinsic::aarch64_neon_ld3: |
| 6874 | case Intrinsic::aarch64_neon_ld4: |
| 6875 | case Intrinsic::aarch64_neon_ld2r: |
| 6876 | case Intrinsic::aarch64_neon_ld3r: |
| 6877 | case Intrinsic::aarch64_neon_ld4r: { |
| 6878 | handleNEONVectorLoad(I, /*WithLane=*/false); |
| 6879 | break; |
| 6880 | } |
| 6881 | |
| 6882 | case Intrinsic::aarch64_neon_ld2lane: |
| 6883 | case Intrinsic::aarch64_neon_ld3lane: |
| 6884 | case Intrinsic::aarch64_neon_ld4lane: { |
| 6885 | handleNEONVectorLoad(I, /*WithLane=*/true); |
| 6886 | break; |
| 6887 | } |
| 6888 | |
| 6889 | // Saturating extract narrow |
| 6890 | case Intrinsic::aarch64_neon_sqxtn: |
| 6891 | case Intrinsic::aarch64_neon_sqxtun: |
| 6892 | case Intrinsic::aarch64_neon_uqxtn: |
| 6893 | // These only have one argument, but we (ab)use handleShadowOr because it |
| 6894 | // does work on single argument intrinsics and will typecast the shadow |
| 6895 | // (and update the origin). |
| 6896 | handleShadowOr(I); |
| 6897 | break; |
| 6898 | |
| 6899 | case Intrinsic::aarch64_neon_st1x2: |
| 6900 | case Intrinsic::aarch64_neon_st1x3: |
| 6901 | case Intrinsic::aarch64_neon_st1x4: |
| 6902 | case Intrinsic::aarch64_neon_st2: |
| 6903 | case Intrinsic::aarch64_neon_st3: |
| 6904 | case Intrinsic::aarch64_neon_st4: { |
| 6905 | handleNEONVectorStoreIntrinsic(I, useLane: false); |
| 6906 | break; |
| 6907 | } |
| 6908 | |
| 6909 | case Intrinsic::aarch64_neon_st2lane: |
| 6910 | case Intrinsic::aarch64_neon_st3lane: |
| 6911 | case Intrinsic::aarch64_neon_st4lane: { |
| 6912 | handleNEONVectorStoreIntrinsic(I, useLane: true); |
| 6913 | break; |
| 6914 | } |
| 6915 | |
| 6916 | // Arm NEON vector table intrinsics have the source/table register(s) as |
| 6917 | // arguments, followed by the index register. They return the output. |
| 6918 | // |
| 6919 | // 'TBL writes a zero if an index is out-of-range, while TBX leaves the |
| 6920 | // original value unchanged in the destination register.' |
| 6921 | // Conveniently, zero denotes a clean shadow, which means out-of-range |
| 6922 | // indices for TBL will initialize the user data with zero and also clean |
| 6923 | // the shadow. (For TBX, neither the user data nor the shadow will be |
| 6924 | // updated, which is also correct.) |
| 6925 | case Intrinsic::aarch64_neon_tbl1: |
| 6926 | case Intrinsic::aarch64_neon_tbl2: |
| 6927 | case Intrinsic::aarch64_neon_tbl3: |
| 6928 | case Intrinsic::aarch64_neon_tbl4: |
| 6929 | case Intrinsic::aarch64_neon_tbx1: |
| 6930 | case Intrinsic::aarch64_neon_tbx2: |
| 6931 | case Intrinsic::aarch64_neon_tbx3: |
| 6932 | case Intrinsic::aarch64_neon_tbx4: { |
| 6933 | // The last trailing argument (index register) should be handled verbatim |
| 6934 | handleIntrinsicByApplyingToShadow( |
| 6935 | I, /*shadowIntrinsicID=*/I.getIntrinsicID(), |
| 6936 | /*trailingVerbatimArgs*/ 1); |
| 6937 | break; |
| 6938 | } |
| 6939 | |
| 6940 | case Intrinsic::aarch64_neon_fmulx: |
| 6941 | case Intrinsic::aarch64_neon_pmul: |
| 6942 | case Intrinsic::aarch64_neon_pmull: |
| 6943 | case Intrinsic::aarch64_neon_smull: |
| 6944 | case Intrinsic::aarch64_neon_pmull64: |
| 6945 | case Intrinsic::aarch64_neon_umull: { |
| 6946 | handleNEONVectorMultiplyIntrinsic(I); |
| 6947 | break; |
| 6948 | } |
| 6949 | |
| 6950 | case Intrinsic::aarch64_neon_smmla: |
| 6951 | case Intrinsic::aarch64_neon_ummla: |
| 6952 | case Intrinsic::aarch64_neon_usmmla: |
| 6953 | handleNEONMatrixMultiply(I, /*ARows=*/2, /*ACols=*/8, /*BRows=*/8, |
| 6954 | /*BCols=*/2); |
| 6955 | break; |
| 6956 | |
| 6957 | // <2 x i32> @llvm.aarch64.neon.{u,s,us}dot.v2i32.v8i8 |
| 6958 | // (<2 x i32> %acc, <8 x i8> %a, <8 x i8> %b) |
| 6959 | // <4 x i32> @llvm.aarch64.neon.{u,s,us}dot.v4i32.v16i8 |
| 6960 | // (<4 x i32> %acc, <16 x i8> %a, <16 x i8> %b) |
| 6961 | case Intrinsic::aarch64_neon_sdot: |
| 6962 | case Intrinsic::aarch64_neon_udot: |
| 6963 | case Intrinsic::aarch64_neon_usdot: |
| 6964 | handleVectorDotProductIntrinsic(I, /*ReductionFactor=*/4, |
| 6965 | /*ZeroPurifies=*/true, |
| 6966 | /*EltSizeInBits=*/0, |
| 6967 | /*Lanes=*/kBothLanes); |
| 6968 | break; |
| 6969 | |
| 6970 | // <2 x float> @llvm.aarch64.neon.bfdot.v2f32.v4bf16 |
| 6971 | // (<2 x float> %acc, <4 x bfloat> %a, <4 x bfloat> %b) |
| 6972 | // <4 x float> @llvm.aarch64.neon.bfdot.v4f32.v8bf16 |
| 6973 | // (<4 x float> %acc, <8 x bfloat> %a, <8 x bfloat> %b) |
| 6974 | case Intrinsic::aarch64_neon_bfdot: |
| 6975 | handleVectorDotProductIntrinsic(I, /*ReductionFactor=*/2, |
| 6976 | /*ZeroPurifies=*/false, |
| 6977 | /*EltSizeInBits=*/0, |
| 6978 | /*Lanes=*/kBothLanes); |
| 6979 | break; |
| 6980 | |
| 6981 | default: |
| 6982 | return false; |
| 6983 | } |
| 6984 | |
| 6985 | return true; |
| 6986 | } |
| 6987 | |
| 6988 | void visitIntrinsicInst(IntrinsicInst &I) { |
| 6989 | if (maybeHandleCrossPlatformIntrinsic(I)) |
| 6990 | return; |
| 6991 | |
| 6992 | if (maybeHandleX86SIMDIntrinsic(I)) |
| 6993 | return; |
| 6994 | |
| 6995 | if (maybeHandleArmSIMDIntrinsic(I)) |
| 6996 | return; |
| 6997 | |
| 6998 | if (maybeHandleUnknownIntrinsic(I)) |
| 6999 | return; |
| 7000 | |
| 7001 | visitInstruction(I); |
| 7002 | } |
| 7003 | |
| 7004 | void visitLibAtomicLoad(CallBase &CB) { |
| 7005 | // Since we use getNextNode here, we can't have CB terminate the BB. |
| 7006 | assert(isa<CallInst>(CB)); |
| 7007 | |
| 7008 | IRBuilder<> IRB(&CB); |
| 7009 | Value *Size = CB.getArgOperand(i: 0); |
| 7010 | Value *SrcPtr = CB.getArgOperand(i: 1); |
| 7011 | Value *DstPtr = CB.getArgOperand(i: 2); |
| 7012 | Value *Ordering = CB.getArgOperand(i: 3); |
| 7013 | // Convert the call to have at least Acquire ordering to make sure |
| 7014 | // the shadow operations aren't reordered before it. |
| 7015 | Value *NewOrdering = |
| 7016 | IRB.CreateExtractElement(Vec: makeAddAcquireOrderingTable(IRB), Idx: Ordering); |
| 7017 | CB.setArgOperand(i: 3, v: NewOrdering); |
| 7018 | |
| 7019 | NextNodeIRBuilder NextIRB(&CB); |
| 7020 | Value *SrcShadowPtr, *SrcOriginPtr; |
| 7021 | std::tie(args&: SrcShadowPtr, args&: SrcOriginPtr) = |
| 7022 | getShadowOriginPtr(Addr: SrcPtr, IRB&: NextIRB, ShadowTy: NextIRB.getInt8Ty(), Alignment: Align(1), |
| 7023 | /*isStore*/ false); |
| 7024 | Value *DstShadowPtr = |
| 7025 | getShadowOriginPtr(Addr: DstPtr, IRB&: NextIRB, ShadowTy: NextIRB.getInt8Ty(), Alignment: Align(1), |
| 7026 | /*isStore*/ true) |
| 7027 | .first; |
| 7028 | |
| 7029 | NextIRB.CreateMemCpy(Dst: DstShadowPtr, DstAlign: Align(1), Src: SrcShadowPtr, SrcAlign: Align(1), Size); |
| 7030 | if (MS.TrackOrigins) { |
| 7031 | Value *SrcOrigin = NextIRB.CreateAlignedLoad(Ty: MS.OriginTy, Ptr: SrcOriginPtr, |
| 7032 | Align: kMinOriginAlignment); |
| 7033 | Value *NewOrigin = updateOrigin(V: SrcOrigin, IRB&: NextIRB); |
| 7034 | NextIRB.CreateCall(Callee: MS.MsanSetOriginFn, Args: {DstPtr, Size, NewOrigin}); |
| 7035 | } |
| 7036 | } |
| 7037 | |
| 7038 | void visitLibAtomicStore(CallBase &CB) { |
| 7039 | IRBuilder<> IRB(&CB); |
| 7040 | Value *Size = CB.getArgOperand(i: 0); |
| 7041 | Value *DstPtr = CB.getArgOperand(i: 2); |
| 7042 | Value *Ordering = CB.getArgOperand(i: 3); |
| 7043 | // Convert the call to have at least Release ordering to make sure |
| 7044 | // the shadow operations aren't reordered after it. |
| 7045 | Value *NewOrdering = |
| 7046 | IRB.CreateExtractElement(Vec: makeAddReleaseOrderingTable(IRB), Idx: Ordering); |
| 7047 | CB.setArgOperand(i: 3, v: NewOrdering); |
| 7048 | |
| 7049 | Value *DstShadowPtr = |
| 7050 | getShadowOriginPtr(Addr: DstPtr, IRB, ShadowTy: IRB.getInt8Ty(), Alignment: Align(1), |
| 7051 | /*isStore*/ true) |
| 7052 | .first; |
| 7053 | |
| 7054 | // Atomic store always paints clean shadow/origin. See file header. |
| 7055 | IRB.CreateMemSet(Ptr: DstShadowPtr, Val: getCleanShadow(OrigTy: IRB.getInt8Ty()), Size, |
| 7056 | Align: Align(1)); |
| 7057 | } |
| 7058 | |
| 7059 | void visitCallBase(CallBase &CB) { |
| 7060 | assert(!CB.getMetadata(LLVMContext::MD_nosanitize)); |
| 7061 | if (CB.isInlineAsm()) { |
| 7062 | // For inline asm (either a call to asm function, or callbr instruction), |
| 7063 | // do the usual thing: check argument shadow and mark all outputs as |
| 7064 | // clean. Note that any side effects of the inline asm that are not |
| 7065 | // immediately visible in its constraints are not handled. |
| 7066 | if (ClHandleAsmConservative) |
| 7067 | visitAsmInstruction(I&: CB); |
| 7068 | else |
| 7069 | visitInstruction(I&: CB); |
| 7070 | return; |
| 7071 | } |
| 7072 | LibFunc LF; |
| 7073 | if (TLI->getLibFunc(CB, F&: LF)) { |
| 7074 | // libatomic.a functions need to have special handling because there isn't |
| 7075 | // a good way to intercept them or compile the library with |
| 7076 | // instrumentation. |
| 7077 | switch (LF) { |
| 7078 | case LibFunc_atomic_load: |
| 7079 | if (!isa<CallInst>(Val: CB)) { |
| 7080 | llvm::errs() << "MSAN -- cannot instrument invoke of libatomic load." |
| 7081 | "Ignoring!\n" ; |
| 7082 | break; |
| 7083 | } |
| 7084 | visitLibAtomicLoad(CB); |
| 7085 | return; |
| 7086 | case LibFunc_atomic_store: |
| 7087 | visitLibAtomicStore(CB); |
| 7088 | return; |
| 7089 | default: |
| 7090 | break; |
| 7091 | } |
| 7092 | } |
| 7093 | |
| 7094 | if (auto *Call = dyn_cast<CallInst>(Val: &CB)) { |
| 7095 | assert(!isa<IntrinsicInst>(Call) && "intrinsics are handled elsewhere" ); |
| 7096 | |
| 7097 | // We are going to insert code that relies on the fact that the callee |
| 7098 | // will become a non-readonly function after it is instrumented by us. To |
| 7099 | // prevent this code from being optimized out, mark that function |
| 7100 | // non-readonly in advance. |
| 7101 | // TODO: We can likely do better than dropping memory() completely here. |
| 7102 | AttributeMask B; |
| 7103 | B.addAttribute(Val: Attribute::Memory).addAttribute(Val: Attribute::Speculatable); |
| 7104 | |
| 7105 | Call->removeFnAttrs(AttrsToRemove: B); |
| 7106 | if (Function *Func = Call->getCalledFunction()) { |
| 7107 | Func->removeFnAttrs(Attrs: B); |
| 7108 | } |
| 7109 | |
| 7110 | maybeMarkSanitizerLibraryCallNoBuiltin(CI: Call, TLI); |
| 7111 | } |
| 7112 | IRBuilder<> IRB(&CB); |
| 7113 | bool MayCheckCall = MS.EagerChecks; |
| 7114 | if (Function *Func = CB.getCalledFunction()) { |
| 7115 | // __sanitizer_unaligned_{load,store} functions may be called by users |
| 7116 | // and always expects shadows in the TLS. So don't check them. |
| 7117 | MayCheckCall &= !Func->getName().starts_with(Prefix: "__sanitizer_unaligned_" ); |
| 7118 | } |
| 7119 | |
| 7120 | unsigned ArgOffset = 0; |
| 7121 | LLVM_DEBUG(dbgs() << " CallSite: " << CB << "\n" ); |
| 7122 | for (const auto &[i, A] : llvm::enumerate(First: CB.args())) { |
| 7123 | if (!A->getType()->isSized()) { |
| 7124 | LLVM_DEBUG(dbgs() << "Arg " << i << " is not sized: " << CB << "\n" ); |
| 7125 | continue; |
| 7126 | } |
| 7127 | |
| 7128 | if (A->getType()->isScalableTy()) { |
| 7129 | LLVM_DEBUG(dbgs() << "Arg " << i << " is vscale: " << CB << "\n" ); |
| 7130 | // Handle as noundef, but don't reserve tls slots. |
| 7131 | insertCheckShadowOf(Val: A, OrigIns: &CB); |
| 7132 | continue; |
| 7133 | } |
| 7134 | |
| 7135 | unsigned Size = 0; |
| 7136 | const DataLayout &DL = F.getDataLayout(); |
| 7137 | |
| 7138 | bool ByVal = CB.paramHasAttr(ArgNo: i, Kind: Attribute::ByVal); |
| 7139 | bool NoUndef = CB.paramHasAttr(ArgNo: i, Kind: Attribute::NoUndef); |
| 7140 | bool EagerCheck = MayCheckCall && !ByVal && NoUndef; |
| 7141 | |
| 7142 | if (EagerCheck) { |
| 7143 | insertCheckShadowOf(Val: A, OrigIns: &CB); |
| 7144 | Size = DL.getTypeAllocSize(Ty: A->getType()); |
| 7145 | } else { |
| 7146 | [[maybe_unused]] Value *Store = nullptr; |
| 7147 | // Compute the Shadow for arg even if it is ByVal, because |
| 7148 | // in that case getShadow() will copy the actual arg shadow to |
| 7149 | // __msan_param_tls. |
| 7150 | Value *ArgShadow = getShadow(V: A); |
| 7151 | Value *ArgShadowBase = getShadowPtrForArgument(IRB, ArgOffset); |
| 7152 | LLVM_DEBUG(dbgs() << " Arg#" << i << ": " << *A |
| 7153 | << " Shadow: " << *ArgShadow << "\n" ); |
| 7154 | if (ByVal) { |
| 7155 | // ByVal requires some special handling as it's too big for a single |
| 7156 | // load |
| 7157 | assert(A->getType()->isPointerTy() && |
| 7158 | "ByVal argument is not a pointer!" ); |
| 7159 | Size = DL.getTypeAllocSize(Ty: CB.getParamByValType(ArgNo: i)); |
| 7160 | if (ArgOffset + Size > kParamTLSSize) |
| 7161 | break; |
| 7162 | const MaybeAlign ParamAlignment(CB.getParamAlign(ArgNo: i)); |
| 7163 | MaybeAlign Alignment = std::nullopt; |
| 7164 | if (ParamAlignment) |
| 7165 | Alignment = std::min(a: *ParamAlignment, b: kShadowTLSAlignment); |
| 7166 | Value *AShadowPtr, *AOriginPtr; |
| 7167 | std::tie(args&: AShadowPtr, args&: AOriginPtr) = |
| 7168 | getShadowOriginPtr(Addr: A, IRB, ShadowTy: IRB.getInt8Ty(), Alignment, |
| 7169 | /*isStore*/ false); |
| 7170 | if (!PropagateShadow) { |
| 7171 | Store = IRB.CreateMemSet(Ptr: ArgShadowBase, |
| 7172 | Val: Constant::getNullValue(Ty: IRB.getInt8Ty()), |
| 7173 | Size, Align: Alignment); |
| 7174 | } else { |
| 7175 | Store = IRB.CreateMemCpy(Dst: ArgShadowBase, DstAlign: Alignment, Src: AShadowPtr, |
| 7176 | SrcAlign: Alignment, Size); |
| 7177 | if (MS.TrackOrigins) { |
| 7178 | Value *ArgOriginBase = getOriginPtrForArgument(IRB, ArgOffset); |
| 7179 | // FIXME: OriginSize should be: |
| 7180 | // alignTo(A % kMinOriginAlignment + Size, kMinOriginAlignment) |
| 7181 | unsigned OriginSize = alignTo(Size, A: kMinOriginAlignment); |
| 7182 | IRB.CreateMemCpy( |
| 7183 | Dst: ArgOriginBase, |
| 7184 | /* by origin_tls[ArgOffset] */ DstAlign: kMinOriginAlignment, |
| 7185 | Src: AOriginPtr, |
| 7186 | /* by getShadowOriginPtr */ SrcAlign: kMinOriginAlignment, Size: OriginSize); |
| 7187 | } |
| 7188 | } |
| 7189 | } else { |
| 7190 | // Any other parameters mean we need bit-grained tracking of uninit |
| 7191 | // data |
| 7192 | Size = DL.getTypeAllocSize(Ty: A->getType()); |
| 7193 | if (ArgOffset + Size > kParamTLSSize) |
| 7194 | break; |
| 7195 | Store = IRB.CreateAlignedStore(Val: ArgShadow, Ptr: ArgShadowBase, |
| 7196 | Align: kShadowTLSAlignment); |
| 7197 | Constant *Cst = dyn_cast<Constant>(Val: ArgShadow); |
| 7198 | if (MS.TrackOrigins && !(Cst && Cst->isNullValue())) { |
| 7199 | IRB.CreateStore(Val: getOrigin(V: A), |
| 7200 | Ptr: getOriginPtrForArgument(IRB, ArgOffset)); |
| 7201 | } |
| 7202 | } |
| 7203 | assert(Store != nullptr); |
| 7204 | LLVM_DEBUG(dbgs() << " Param:" << *Store << "\n" ); |
| 7205 | } |
| 7206 | assert(Size != 0); |
| 7207 | ArgOffset += alignTo(Size, A: kShadowTLSAlignment); |
| 7208 | } |
| 7209 | LLVM_DEBUG(dbgs() << " done with call args\n" ); |
| 7210 | |
| 7211 | FunctionType *FT = CB.getFunctionType(); |
| 7212 | if (FT->isVarArg()) { |
| 7213 | VAHelper->visitCallBase(CB, IRB); |
| 7214 | } |
| 7215 | |
| 7216 | // Now, get the shadow for the RetVal. |
| 7217 | if (!CB.getType()->isSized()) |
| 7218 | return; |
| 7219 | // Don't emit the epilogue for musttail call returns. |
| 7220 | if (isa<CallInst>(Val: CB) && cast<CallInst>(Val&: CB).isMustTailCall()) |
| 7221 | return; |
| 7222 | |
| 7223 | if (MayCheckCall && CB.hasRetAttr(Kind: Attribute::NoUndef)) { |
| 7224 | setShadow(V: &CB, SV: getCleanShadow(V: &CB)); |
| 7225 | setOrigin(V: &CB, Origin: getCleanOrigin()); |
| 7226 | return; |
| 7227 | } |
| 7228 | |
| 7229 | IRBuilder<> IRBBefore(&CB); |
| 7230 | // Until we have full dynamic coverage, make sure the retval shadow is 0. |
| 7231 | Value *Base = getShadowPtrForRetval(IRB&: IRBBefore); |
| 7232 | IRBBefore.CreateAlignedStore(Val: getCleanShadow(V: &CB), Ptr: Base, |
| 7233 | Align: kShadowTLSAlignment); |
| 7234 | BasicBlock::iterator NextInsn; |
| 7235 | if (isa<CallInst>(Val: CB)) { |
| 7236 | NextInsn = ++CB.getIterator(); |
| 7237 | assert(NextInsn != CB.getParent()->end()); |
| 7238 | } else { |
| 7239 | BasicBlock *NormalDest = cast<InvokeInst>(Val&: CB).getNormalDest(); |
| 7240 | if (!NormalDest->getSinglePredecessor()) { |
| 7241 | // FIXME: this case is tricky, so we are just conservative here. |
| 7242 | // Perhaps we need to split the edge between this BB and NormalDest, |
| 7243 | // but a naive attempt to use SplitEdge leads to a crash. |
| 7244 | setShadow(V: &CB, SV: getCleanShadow(V: &CB)); |
| 7245 | setOrigin(V: &CB, Origin: getCleanOrigin()); |
| 7246 | return; |
| 7247 | } |
| 7248 | // FIXME: NextInsn is likely in a basic block that has not been visited |
| 7249 | // yet. Anything inserted there will be instrumented by MSan later! |
| 7250 | NextInsn = NormalDest->getFirstInsertionPt(); |
| 7251 | assert(NextInsn != NormalDest->end() && |
| 7252 | "Could not find insertion point for retval shadow load" ); |
| 7253 | } |
| 7254 | IRBuilder<> IRBAfter(&*NextInsn); |
| 7255 | Value *RetvalShadow = IRBAfter.CreateAlignedLoad( |
| 7256 | Ty: getShadowTy(V: &CB), Ptr: getShadowPtrForRetval(IRB&: IRBAfter), Align: kShadowTLSAlignment, |
| 7257 | Name: "_msret" ); |
| 7258 | setShadow(V: &CB, SV: RetvalShadow); |
| 7259 | if (MS.TrackOrigins) |
| 7260 | setOrigin(V: &CB, Origin: IRBAfter.CreateLoad(Ty: MS.OriginTy, Ptr: getOriginPtrForRetval())); |
| 7261 | } |
| 7262 | |
| 7263 | bool isAMustTailRetVal(Value *RetVal) { |
| 7264 | if (auto *I = dyn_cast<BitCastInst>(Val: RetVal)) { |
| 7265 | RetVal = I->getOperand(i_nocapture: 0); |
| 7266 | } |
| 7267 | if (auto *I = dyn_cast<CallInst>(Val: RetVal)) { |
| 7268 | return I->isMustTailCall(); |
| 7269 | } |
| 7270 | return false; |
| 7271 | } |
| 7272 | |
| 7273 | void visitReturnInst(ReturnInst &I) { |
| 7274 | IRBuilder<> IRB(&I); |
| 7275 | Value *RetVal = I.getReturnValue(); |
| 7276 | if (!RetVal) |
| 7277 | return; |
| 7278 | // Don't emit the epilogue for musttail call returns. |
| 7279 | if (isAMustTailRetVal(RetVal)) |
| 7280 | return; |
| 7281 | Value *ShadowPtr = getShadowPtrForRetval(IRB); |
| 7282 | bool HasNoUndef = F.hasRetAttribute(Kind: Attribute::NoUndef); |
| 7283 | bool StoreShadow = !(MS.EagerChecks && HasNoUndef); |
| 7284 | // FIXME: Consider using SpecialCaseList to specify a list of functions that |
| 7285 | // must always return fully initialized values. For now, we hardcode "main". |
| 7286 | bool EagerCheck = (MS.EagerChecks && HasNoUndef) || (F.getName() == "main" ); |
| 7287 | |
| 7288 | Value *Shadow = getShadow(V: RetVal); |
| 7289 | bool StoreOrigin = true; |
| 7290 | if (EagerCheck) { |
| 7291 | insertCheckShadowOf(Val: RetVal, OrigIns: &I); |
| 7292 | Shadow = getCleanShadow(V: RetVal); |
| 7293 | StoreOrigin = false; |
| 7294 | } |
| 7295 | |
| 7296 | // The caller may still expect information passed over TLS if we pass our |
| 7297 | // check |
| 7298 | if (StoreShadow) { |
| 7299 | IRB.CreateAlignedStore(Val: Shadow, Ptr: ShadowPtr, Align: kShadowTLSAlignment); |
| 7300 | if (MS.TrackOrigins && StoreOrigin) |
| 7301 | IRB.CreateStore(Val: getOrigin(V: RetVal), Ptr: getOriginPtrForRetval()); |
| 7302 | } |
| 7303 | } |
| 7304 | |
| 7305 | void visitPHINode(PHINode &I) { |
| 7306 | IRBuilder<> IRB(&I); |
| 7307 | if (!PropagateShadow) { |
| 7308 | setShadow(V: &I, SV: getCleanShadow(V: &I)); |
| 7309 | setOrigin(V: &I, Origin: getCleanOrigin()); |
| 7310 | return; |
| 7311 | } |
| 7312 | |
| 7313 | ShadowPHINodes.push_back(Elt: &I); |
| 7314 | setShadow(V: &I, SV: IRB.CreatePHI(Ty: getShadowTy(V: &I), NumReservedValues: I.getNumIncomingValues(), |
| 7315 | Name: "_msphi_s" )); |
| 7316 | if (MS.TrackOrigins) |
| 7317 | setOrigin( |
| 7318 | V: &I, Origin: IRB.CreatePHI(Ty: MS.OriginTy, NumReservedValues: I.getNumIncomingValues(), Name: "_msphi_o" )); |
| 7319 | } |
| 7320 | |
| 7321 | Value *getLocalVarIdptr(AllocaInst &I) { |
| 7322 | ConstantInt *IntConst = |
| 7323 | ConstantInt::get(Ty: Type::getInt32Ty(C&: (*F.getParent()).getContext()), V: 0); |
| 7324 | return new GlobalVariable(*F.getParent(), IntConst->getType(), |
| 7325 | /*isConstant=*/false, GlobalValue::PrivateLinkage, |
| 7326 | IntConst); |
| 7327 | } |
| 7328 | |
| 7329 | Value *getLocalVarDescription(AllocaInst &I) { |
| 7330 | return createPrivateConstGlobalForString(M&: *F.getParent(), Str: I.getName()); |
| 7331 | } |
| 7332 | |
| 7333 | void poisonAllocaUserspace(AllocaInst &I, IRBuilder<> &IRB, Value *Len) { |
| 7334 | if (PoisonStack && ClPoisonStackWithCall) { |
| 7335 | IRB.CreateCall(Callee: MS.MsanPoisonStackFn, Args: {&I, Len}); |
| 7336 | } else { |
| 7337 | Value *ShadowBase, *OriginBase; |
| 7338 | std::tie(args&: ShadowBase, args&: OriginBase) = getShadowOriginPtr( |
| 7339 | Addr: &I, IRB, ShadowTy: IRB.getInt8Ty(), Alignment: Align(1), /*isStore*/ true); |
| 7340 | |
| 7341 | Value *PoisonValue = IRB.getInt8(C: PoisonStack ? ClPoisonStackPattern : 0); |
| 7342 | IRB.CreateMemSet(Ptr: ShadowBase, Val: PoisonValue, Size: Len, Align: I.getAlign()); |
| 7343 | } |
| 7344 | |
| 7345 | if (PoisonStack && MS.TrackOrigins) { |
| 7346 | Value *Idptr = getLocalVarIdptr(I); |
| 7347 | if (ClPrintStackNames) { |
| 7348 | Value *Descr = getLocalVarDescription(I); |
| 7349 | IRB.CreateCall(Callee: MS.MsanSetAllocaOriginWithDescriptionFn, |
| 7350 | Args: {&I, Len, Idptr, Descr}); |
| 7351 | } else { |
| 7352 | IRB.CreateCall(Callee: MS.MsanSetAllocaOriginNoDescriptionFn, Args: {&I, Len, Idptr}); |
| 7353 | } |
| 7354 | } |
| 7355 | } |
| 7356 | |
| 7357 | void poisonAllocaKmsan(AllocaInst &I, IRBuilder<> &IRB, Value *Len) { |
| 7358 | Value *Descr = getLocalVarDescription(I); |
| 7359 | if (PoisonStack) { |
| 7360 | IRB.CreateCall(Callee: MS.MsanPoisonAllocaFn, Args: {&I, Len, Descr}); |
| 7361 | } else { |
| 7362 | IRB.CreateCall(Callee: MS.MsanUnpoisonAllocaFn, Args: {&I, Len}); |
| 7363 | } |
| 7364 | } |
| 7365 | |
| 7366 | void instrumentAlloca(AllocaInst &I, Instruction *InsPoint = nullptr) { |
| 7367 | if (!InsPoint) |
| 7368 | InsPoint = &I; |
| 7369 | NextNodeIRBuilder IRB(InsPoint); |
| 7370 | Value *Len = IRB.CreateAllocationSize(DestTy: MS.IntptrTy, AI: &I); |
| 7371 | |
| 7372 | if (MS.CompileKernel) |
| 7373 | poisonAllocaKmsan(I, IRB, Len); |
| 7374 | else |
| 7375 | poisonAllocaUserspace(I, IRB, Len); |
| 7376 | } |
| 7377 | |
| 7378 | void visitAllocaInst(AllocaInst &I) { |
| 7379 | setShadow(V: &I, SV: getCleanShadow(V: &I)); |
| 7380 | setOrigin(V: &I, Origin: getCleanOrigin()); |
| 7381 | // We'll get to this alloca later unless it's poisoned at the corresponding |
| 7382 | // llvm.lifetime.start. |
| 7383 | AllocaSet.insert(X: &I); |
| 7384 | } |
| 7385 | |
| 7386 | void visitSelectInst(SelectInst &I) { |
| 7387 | // a = select b, c, d |
| 7388 | Value *B = I.getCondition(); |
| 7389 | Value *C = I.getTrueValue(); |
| 7390 | Value *D = I.getFalseValue(); |
| 7391 | |
| 7392 | handleSelectLikeInst(I, B, C, D); |
| 7393 | } |
| 7394 | |
| 7395 | void handleSelectLikeInst(Instruction &I, Value *B, Value *C, Value *D) { |
| 7396 | IRBuilder<> IRB(&I); |
| 7397 | |
| 7398 | Value *Sb = getShadow(V: B); |
| 7399 | Value *Sc = getShadow(V: C); |
| 7400 | Value *Sd = getShadow(V: D); |
| 7401 | |
| 7402 | Value *Ob = MS.TrackOrigins ? getOrigin(V: B) : nullptr; |
| 7403 | Value *Oc = MS.TrackOrigins ? getOrigin(V: C) : nullptr; |
| 7404 | Value *Od = MS.TrackOrigins ? getOrigin(V: D) : nullptr; |
| 7405 | |
| 7406 | // Result shadow if condition shadow is 0. |
| 7407 | Value *Sa0 = IRB.CreateSelect(C: B, True: Sc, False: Sd); |
| 7408 | Value *Sa1; |
| 7409 | if (I.getType()->isAggregateType()) { |
| 7410 | // To avoid "sign extending" i1 to an arbitrary aggregate type, we just do |
| 7411 | // an extra "select". This results in much more compact IR. |
| 7412 | // Sa = select Sb, poisoned, (select b, Sc, Sd) |
| 7413 | Sa1 = getPoisonedShadow(ShadowTy: getShadowTy(OrigTy: I.getType())); |
| 7414 | } else if (isScalableNonVectorType(Ty: I.getType())) { |
| 7415 | // This is intended to handle target("aarch64.svcount"), which can't be |
| 7416 | // handled in the else branch because of incompatibility with CreateXor |
| 7417 | // ("The supported LLVM operations on this type are limited to load, |
| 7418 | // store, phi, select and alloca instructions"). |
| 7419 | |
| 7420 | // TODO: this currently underapproximates. Use Arm SVE EOR in the else |
| 7421 | // branch as needed instead. |
| 7422 | Sa1 = getCleanShadow(OrigTy: getShadowTy(OrigTy: I.getType())); |
| 7423 | } else { |
| 7424 | // Sa = select Sb, [ (c^d) | Sc | Sd ], [ b ? Sc : Sd ] |
| 7425 | // If Sb (condition is poisoned), look for bits in c and d that are equal |
| 7426 | // and both unpoisoned. |
| 7427 | // If !Sb (condition is unpoisoned), simply pick one of Sc and Sd. |
| 7428 | |
| 7429 | // Cast arguments to shadow-compatible type. |
| 7430 | C = CreateAppToShadowCast(IRB, V: C); |
| 7431 | D = CreateAppToShadowCast(IRB, V: D); |
| 7432 | |
| 7433 | // Result shadow if condition shadow is 1. |
| 7434 | Sa1 = IRB.CreateOr(Ops: {IRB.CreateXor(LHS: C, RHS: D), Sc, Sd}); |
| 7435 | } |
| 7436 | Value *Sa = IRB.CreateSelect(C: Sb, True: Sa1, False: Sa0, Name: "_msprop_select" ); |
| 7437 | setShadow(V: &I, SV: Sa); |
| 7438 | if (MS.TrackOrigins) { |
| 7439 | // Origins are always i32, so any vector conditions must be flattened. |
| 7440 | // FIXME: consider tracking vector origins for app vectors? |
| 7441 | if (B->getType()->isVectorTy()) { |
| 7442 | B = convertToBool(V: B, IRB); |
| 7443 | Sb = convertToBool(V: Sb, IRB); |
| 7444 | } |
| 7445 | // a = select b, c, d |
| 7446 | // Oa = Sb ? Ob : (b ? Oc : Od) |
| 7447 | setOrigin(V: &I, Origin: IRB.CreateSelect(C: Sb, True: Ob, False: IRB.CreateSelect(C: B, True: Oc, False: Od))); |
| 7448 | } |
| 7449 | } |
| 7450 | |
| 7451 | void visitLandingPadInst(LandingPadInst &I) { |
| 7452 | // Do nothing. |
| 7453 | // See https://github.com/google/sanitizers/issues/504 |
| 7454 | setShadow(V: &I, SV: getCleanShadow(V: &I)); |
| 7455 | setOrigin(V: &I, Origin: getCleanOrigin()); |
| 7456 | } |
| 7457 | |
| 7458 | void visitCatchSwitchInst(CatchSwitchInst &I) { |
| 7459 | setShadow(V: &I, SV: getCleanShadow(V: &I)); |
| 7460 | setOrigin(V: &I, Origin: getCleanOrigin()); |
| 7461 | } |
| 7462 | |
| 7463 | void visitFuncletPadInst(FuncletPadInst &I) { |
| 7464 | setShadow(V: &I, SV: getCleanShadow(V: &I)); |
| 7465 | setOrigin(V: &I, Origin: getCleanOrigin()); |
| 7466 | } |
| 7467 | |
| 7468 | void visitGetElementPtrInst(GetElementPtrInst &I) { handleShadowOr(I); } |
| 7469 | |
| 7470 | void (ExtractValueInst &I) { |
| 7471 | IRBuilder<> IRB(&I); |
| 7472 | Value *Agg = I.getAggregateOperand(); |
| 7473 | LLVM_DEBUG(dbgs() << "ExtractValue: " << I << "\n" ); |
| 7474 | Value *AggShadow = getShadow(V: Agg); |
| 7475 | LLVM_DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n" ); |
| 7476 | Value *ResShadow = IRB.CreateExtractValue(Agg: AggShadow, Idxs: I.getIndices()); |
| 7477 | LLVM_DEBUG(dbgs() << " ResShadow: " << *ResShadow << "\n" ); |
| 7478 | setShadow(V: &I, SV: ResShadow); |
| 7479 | setOriginForNaryOp(I); |
| 7480 | } |
| 7481 | |
| 7482 | void visitInsertValueInst(InsertValueInst &I) { |
| 7483 | IRBuilder<> IRB(&I); |
| 7484 | LLVM_DEBUG(dbgs() << "InsertValue: " << I << "\n" ); |
| 7485 | Value *AggShadow = getShadow(V: I.getAggregateOperand()); |
| 7486 | Value *InsShadow = getShadow(V: I.getInsertedValueOperand()); |
| 7487 | LLVM_DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n" ); |
| 7488 | LLVM_DEBUG(dbgs() << " InsShadow: " << *InsShadow << "\n" ); |
| 7489 | Value *Res = IRB.CreateInsertValue(Agg: AggShadow, Val: InsShadow, Idxs: I.getIndices()); |
| 7490 | LLVM_DEBUG(dbgs() << " Res: " << *Res << "\n" ); |
| 7491 | setShadow(V: &I, SV: Res); |
| 7492 | setOriginForNaryOp(I); |
| 7493 | } |
| 7494 | |
| 7495 | void dumpInst(Instruction &I) { |
| 7496 | if (CallInst *CI = dyn_cast<CallInst>(Val: &I)) { |
| 7497 | errs() << "ZZZ call " << CI->getCalledFunction()->getName() << "\n" ; |
| 7498 | } else { |
| 7499 | errs() << "ZZZ " << I.getOpcodeName() << "\n" ; |
| 7500 | } |
| 7501 | errs() << "QQQ " << I << "\n" ; |
| 7502 | } |
| 7503 | |
| 7504 | void visitResumeInst(ResumeInst &I) { |
| 7505 | LLVM_DEBUG(dbgs() << "Resume: " << I << "\n" ); |
| 7506 | // Nothing to do here. |
| 7507 | } |
| 7508 | |
| 7509 | void visitCleanupReturnInst(CleanupReturnInst &CRI) { |
| 7510 | LLVM_DEBUG(dbgs() << "CleanupReturn: " << CRI << "\n" ); |
| 7511 | // Nothing to do here. |
| 7512 | } |
| 7513 | |
| 7514 | void visitCatchReturnInst(CatchReturnInst &CRI) { |
| 7515 | LLVM_DEBUG(dbgs() << "CatchReturn: " << CRI << "\n" ); |
| 7516 | // Nothing to do here. |
| 7517 | } |
| 7518 | |
| 7519 | void instrumentAsmArgument(Value *Operand, Type *ElemTy, Instruction &I, |
| 7520 | IRBuilder<> &IRB, const DataLayout &DL, |
| 7521 | bool isOutput) { |
| 7522 | // For each assembly argument, we check its value for being initialized. |
| 7523 | // If the argument is a pointer, we assume it points to a single element |
| 7524 | // of the corresponding type (or to a 8-byte word, if the type is unsized). |
| 7525 | // Each such pointer is instrumented with a call to the runtime library. |
| 7526 | Type *OpType = Operand->getType(); |
| 7527 | // Check the operand value itself. |
| 7528 | insertCheckShadowOf(Val: Operand, OrigIns: &I); |
| 7529 | if (!OpType->isPointerTy() || !isOutput) { |
| 7530 | assert(!isOutput); |
| 7531 | return; |
| 7532 | } |
| 7533 | if (!ElemTy->isSized()) |
| 7534 | return; |
| 7535 | auto Size = DL.getTypeStoreSize(Ty: ElemTy); |
| 7536 | Value *SizeVal = IRB.CreateTypeSize(Ty: MS.IntptrTy, Size); |
| 7537 | if (MS.CompileKernel) { |
| 7538 | IRB.CreateCall(Callee: MS.MsanInstrumentAsmStoreFn, Args: {Operand, SizeVal}); |
| 7539 | } else { |
| 7540 | // ElemTy, derived from elementtype(), does not encode the alignment of |
| 7541 | // the pointer. Conservatively assume that the shadow memory is unaligned. |
| 7542 | // When Size is large, avoid StoreInst as it would expand to many |
| 7543 | // instructions. |
| 7544 | auto [ShadowPtr, _] = |
| 7545 | getShadowOriginPtrUserspace(Addr: Operand, IRB, ShadowTy: IRB.getInt8Ty(), Alignment: Align(1)); |
| 7546 | if (Size <= 32) |
| 7547 | IRB.CreateAlignedStore(Val: getCleanShadow(OrigTy: ElemTy), Ptr: ShadowPtr, Align: Align(1)); |
| 7548 | else |
| 7549 | IRB.CreateMemSet(Ptr: ShadowPtr, Val: ConstantInt::getNullValue(Ty: IRB.getInt8Ty()), |
| 7550 | Size: SizeVal, Align: Align(1)); |
| 7551 | } |
| 7552 | } |
| 7553 | |
| 7554 | /// Get the number of output arguments returned by pointers. |
| 7555 | int getNumOutputArgs(InlineAsm *IA, CallBase *CB) { |
| 7556 | int NumRetOutputs = 0; |
| 7557 | int NumOutputs = 0; |
| 7558 | Type *RetTy = cast<Value>(Val: CB)->getType(); |
| 7559 | if (!RetTy->isVoidTy()) { |
| 7560 | // Register outputs are returned via the CallInst return value. |
| 7561 | auto *ST = dyn_cast<StructType>(Val: RetTy); |
| 7562 | if (ST) |
| 7563 | NumRetOutputs = ST->getNumElements(); |
| 7564 | else |
| 7565 | NumRetOutputs = 1; |
| 7566 | } |
| 7567 | InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints(); |
| 7568 | for (const InlineAsm::ConstraintInfo &Info : Constraints) { |
| 7569 | switch (Info.Type) { |
| 7570 | case InlineAsm::isOutput: |
| 7571 | NumOutputs++; |
| 7572 | break; |
| 7573 | default: |
| 7574 | break; |
| 7575 | } |
| 7576 | } |
| 7577 | return NumOutputs - NumRetOutputs; |
| 7578 | } |
| 7579 | |
| 7580 | void visitAsmInstruction(Instruction &I) { |
| 7581 | // Conservative inline assembly handling: check for poisoned shadow of |
| 7582 | // asm() arguments, then unpoison the result and all the memory locations |
| 7583 | // pointed to by those arguments. |
| 7584 | // An inline asm() statement in C++ contains lists of input and output |
| 7585 | // arguments used by the assembly code. These are mapped to operands of the |
| 7586 | // CallInst as follows: |
| 7587 | // - nR register outputs ("=r) are returned by value in a single structure |
| 7588 | // (SSA value of the CallInst); |
| 7589 | // - nO other outputs ("=m" and others) are returned by pointer as first |
| 7590 | // nO operands of the CallInst; |
| 7591 | // - nI inputs ("r", "m" and others) are passed to CallInst as the |
| 7592 | // remaining nI operands. |
| 7593 | // The total number of asm() arguments in the source is nR+nO+nI, and the |
| 7594 | // corresponding CallInst has nO+nI+1 operands (the last operand is the |
| 7595 | // function to be called). |
| 7596 | const DataLayout &DL = F.getDataLayout(); |
| 7597 | CallBase *CB = cast<CallBase>(Val: &I); |
| 7598 | IRBuilder<> IRB(&I); |
| 7599 | InlineAsm *IA = cast<InlineAsm>(Val: CB->getCalledOperand()); |
| 7600 | int OutputArgs = getNumOutputArgs(IA, CB); |
| 7601 | // The last operand of a CallInst is the function itself. |
| 7602 | int NumOperands = CB->getNumOperands() - 1; |
| 7603 | |
| 7604 | // Check input arguments. Doing so before unpoisoning output arguments, so |
| 7605 | // that we won't overwrite uninit values before checking them. |
| 7606 | for (int i = OutputArgs; i < NumOperands; i++) { |
| 7607 | Value *Operand = CB->getOperand(i_nocapture: i); |
| 7608 | instrumentAsmArgument(Operand, ElemTy: CB->getParamElementType(ArgNo: i), I, IRB, DL, |
| 7609 | /*isOutput*/ false); |
| 7610 | } |
| 7611 | // Unpoison output arguments. This must happen before the actual InlineAsm |
| 7612 | // call, so that the shadow for memory published in the asm() statement |
| 7613 | // remains valid. |
| 7614 | for (int i = 0; i < OutputArgs; i++) { |
| 7615 | Value *Operand = CB->getOperand(i_nocapture: i); |
| 7616 | instrumentAsmArgument(Operand, ElemTy: CB->getParamElementType(ArgNo: i), I, IRB, DL, |
| 7617 | /*isOutput*/ true); |
| 7618 | } |
| 7619 | |
| 7620 | setShadow(V: &I, SV: getCleanShadow(V: &I)); |
| 7621 | setOrigin(V: &I, Origin: getCleanOrigin()); |
| 7622 | } |
| 7623 | |
| 7624 | void visitFreezeInst(FreezeInst &I) { |
| 7625 | // Freeze always returns a fully defined value. |
| 7626 | setShadow(V: &I, SV: getCleanShadow(V: &I)); |
| 7627 | setOrigin(V: &I, Origin: getCleanOrigin()); |
| 7628 | } |
| 7629 | |
| 7630 | void visitInstruction(Instruction &I) { |
| 7631 | // Everything else: stop propagating and check for poisoned shadow. |
| 7632 | if (ClDumpStrictInstructions) |
| 7633 | dumpInst(I); |
| 7634 | LLVM_DEBUG(dbgs() << "DEFAULT: " << I << "\n" ); |
| 7635 | for (size_t i = 0, n = I.getNumOperands(); i < n; i++) { |
| 7636 | Value *Operand = I.getOperand(i); |
| 7637 | if (Operand->getType()->isSized()) |
| 7638 | insertCheckShadowOf(Val: Operand, OrigIns: &I); |
| 7639 | } |
| 7640 | setShadow(V: &I, SV: getCleanShadow(V: &I)); |
| 7641 | setOrigin(V: &I, Origin: getCleanOrigin()); |
| 7642 | } |
| 7643 | }; |
| 7644 | |
| 7645 | struct VarArgHelperBase : public VarArgHelper { |
| 7646 | Function &F; |
| 7647 | MemorySanitizer &MS; |
| 7648 | MemorySanitizerVisitor &MSV; |
| 7649 | SmallVector<CallInst *, 16> VAStartInstrumentationList; |
| 7650 | const unsigned VAListTagSize; |
| 7651 | |
| 7652 | VarArgHelperBase(Function &F, MemorySanitizer &MS, |
| 7653 | MemorySanitizerVisitor &MSV, unsigned VAListTagSize) |
| 7654 | : F(F), MS(MS), MSV(MSV), VAListTagSize(VAListTagSize) {} |
| 7655 | |
| 7656 | Value *getShadowAddrForVAArgument(IRBuilder<> &IRB, unsigned ArgOffset) { |
| 7657 | Value *Base = IRB.CreatePointerCast(V: MS.VAArgTLS, DestTy: MS.IntptrTy); |
| 7658 | return IRB.CreateAdd(LHS: Base, RHS: ConstantInt::get(Ty: MS.IntptrTy, V: ArgOffset)); |
| 7659 | } |
| 7660 | |
| 7661 | /// Compute the shadow address for a given va_arg. |
| 7662 | Value *getShadowPtrForVAArgument(IRBuilder<> &IRB, unsigned ArgOffset) { |
| 7663 | return IRB.CreatePtrAdd( |
| 7664 | Ptr: MS.VAArgTLS, Offset: ConstantInt::get(Ty: MS.IntptrTy, V: ArgOffset), Name: "_msarg_va_s" ); |
| 7665 | } |
| 7666 | |
| 7667 | /// Compute the shadow address for a given va_arg. |
| 7668 | Value *getShadowPtrForVAArgument(IRBuilder<> &IRB, unsigned ArgOffset, |
| 7669 | unsigned ArgSize) { |
| 7670 | // Make sure we don't overflow __msan_va_arg_tls. |
| 7671 | if (ArgOffset + ArgSize > kParamTLSSize) |
| 7672 | return nullptr; |
| 7673 | return getShadowPtrForVAArgument(IRB, ArgOffset); |
| 7674 | } |
| 7675 | |
| 7676 | /// Compute the origin address for a given va_arg. |
| 7677 | Value *getOriginPtrForVAArgument(IRBuilder<> &IRB, int ArgOffset) { |
| 7678 | // getOriginPtrForVAArgument() is always called after |
| 7679 | // getShadowPtrForVAArgument(), so __msan_va_arg_origin_tls can never |
| 7680 | // overflow. |
| 7681 | return IRB.CreatePtrAdd(Ptr: MS.VAArgOriginTLS, |
| 7682 | Offset: ConstantInt::get(Ty: MS.IntptrTy, V: ArgOffset), |
| 7683 | Name: "_msarg_va_o" ); |
| 7684 | } |
| 7685 | |
| 7686 | void CleanUnusedTLS(IRBuilder<> &IRB, Value *ShadowBase, |
| 7687 | unsigned BaseOffset) { |
| 7688 | // The tails of __msan_va_arg_tls is not large enough to fit full |
| 7689 | // value shadow, but it will be copied to backup anyway. Make it |
| 7690 | // clean. |
| 7691 | if (BaseOffset >= kParamTLSSize) |
| 7692 | return; |
| 7693 | Value *TailSize = |
| 7694 | ConstantInt::getSigned(Ty: IRB.getInt32Ty(), V: kParamTLSSize - BaseOffset); |
| 7695 | IRB.CreateMemSet(Ptr: ShadowBase, Val: ConstantInt::getNullValue(Ty: IRB.getInt8Ty()), |
| 7696 | Size: TailSize, Align: Align(8)); |
| 7697 | } |
| 7698 | |
| 7699 | void unpoisonVAListTagForInst(IntrinsicInst &I) { |
| 7700 | IRBuilder<> IRB(&I); |
| 7701 | Value *VAListTag = I.getArgOperand(i: 0); |
| 7702 | const Align Alignment = Align(8); |
| 7703 | auto [ShadowPtr, OriginPtr] = MSV.getShadowOriginPtr( |
| 7704 | Addr: VAListTag, IRB, ShadowTy: IRB.getInt8Ty(), Alignment, /*isStore*/ true); |
| 7705 | // Unpoison the whole __va_list_tag. |
| 7706 | IRB.CreateMemSet(Ptr: ShadowPtr, Val: Constant::getNullValue(Ty: IRB.getInt8Ty()), |
| 7707 | Size: VAListTagSize, Align: Alignment, isVolatile: false); |
| 7708 | } |
| 7709 | |
| 7710 | void visitVAStartInst(VAStartInst &I) override { |
| 7711 | if (F.getCallingConv() == CallingConv::Win64) |
| 7712 | return; |
| 7713 | VAStartInstrumentationList.push_back(Elt: &I); |
| 7714 | unpoisonVAListTagForInst(I); |
| 7715 | } |
| 7716 | |
| 7717 | void visitVACopyInst(VACopyInst &I) override { |
| 7718 | if (F.getCallingConv() == CallingConv::Win64) |
| 7719 | return; |
| 7720 | unpoisonVAListTagForInst(I); |
| 7721 | } |
| 7722 | }; |
| 7723 | |
| 7724 | /// AMD64-specific implementation of VarArgHelper. |
| 7725 | struct VarArgAMD64Helper : public VarArgHelperBase { |
| 7726 | // An unfortunate workaround for asymmetric lowering of va_arg stuff. |
| 7727 | // See a comment in visitCallBase for more details. |
| 7728 | static const unsigned AMD64GpEndOffset = 48; // AMD64 ABI Draft 0.99.6 p3.5.7 |
| 7729 | static const unsigned AMD64FpEndOffsetSSE = 176; |
| 7730 | // If SSE is disabled, fp_offset in va_list is zero. |
| 7731 | static const unsigned AMD64FpEndOffsetNoSSE = AMD64GpEndOffset; |
| 7732 | |
| 7733 | unsigned AMD64FpEndOffset; |
| 7734 | AllocaInst *VAArgTLSCopy = nullptr; |
| 7735 | AllocaInst *VAArgTLSOriginCopy = nullptr; |
| 7736 | Value *VAArgOverflowSize = nullptr; |
| 7737 | |
| 7738 | enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory }; |
| 7739 | |
| 7740 | VarArgAMD64Helper(Function &F, MemorySanitizer &MS, |
| 7741 | MemorySanitizerVisitor &MSV) |
| 7742 | : VarArgHelperBase(F, MS, MSV, /*VAListTagSize=*/24) { |
| 7743 | AMD64FpEndOffset = AMD64FpEndOffsetSSE; |
| 7744 | for (const auto &Attr : F.getAttributes().getFnAttrs()) { |
| 7745 | if (Attr.isStringAttribute() && |
| 7746 | (Attr.getKindAsString() == "target-features" )) { |
| 7747 | if (Attr.getValueAsString().contains(Other: "-sse" )) |
| 7748 | AMD64FpEndOffset = AMD64FpEndOffsetNoSSE; |
| 7749 | break; |
| 7750 | } |
| 7751 | } |
| 7752 | } |
| 7753 | |
| 7754 | ArgKind classifyArgument(Value *arg) { |
| 7755 | // A very rough approximation of X86_64 argument classification rules. |
| 7756 | Type *T = arg->getType(); |
| 7757 | if (T->isX86_FP80Ty()) |
| 7758 | return AK_Memory; |
| 7759 | if (T->isFPOrFPVectorTy()) |
| 7760 | return AK_FloatingPoint; |
| 7761 | if (T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64) |
| 7762 | return AK_GeneralPurpose; |
| 7763 | if (T->isPointerTy()) |
| 7764 | return AK_GeneralPurpose; |
| 7765 | return AK_Memory; |
| 7766 | } |
| 7767 | |
| 7768 | // For VarArg functions, store the argument shadow in an ABI-specific format |
| 7769 | // that corresponds to va_list layout. |
| 7770 | // We do this because Clang lowers va_arg in the frontend, and this pass |
| 7771 | // only sees the low level code that deals with va_list internals. |
| 7772 | // A much easier alternative (provided that Clang emits va_arg instructions) |
| 7773 | // would have been to associate each live instance of va_list with a copy of |
| 7774 | // MSanParamTLS, and extract shadow on va_arg() call in the argument list |
| 7775 | // order. |
| 7776 | void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { |
| 7777 | unsigned GpOffset = 0; |
| 7778 | unsigned FpOffset = AMD64GpEndOffset; |
| 7779 | unsigned OverflowOffset = AMD64FpEndOffset; |
| 7780 | const DataLayout &DL = F.getDataLayout(); |
| 7781 | |
| 7782 | for (const auto &[ArgNo, A] : llvm::enumerate(First: CB.args())) { |
| 7783 | bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams(); |
| 7784 | bool IsByVal = CB.paramHasAttr(ArgNo, Kind: Attribute::ByVal); |
| 7785 | if (IsByVal) { |
| 7786 | // ByVal arguments always go to the overflow area. |
| 7787 | // Fixed arguments passed through the overflow area will be stepped |
| 7788 | // over by va_start, so don't count them towards the offset. |
| 7789 | if (IsFixed) |
| 7790 | continue; |
| 7791 | assert(A->getType()->isPointerTy()); |
| 7792 | Type *RealTy = CB.getParamByValType(ArgNo); |
| 7793 | uint64_t ArgSize = DL.getTypeAllocSize(Ty: RealTy); |
| 7794 | uint64_t AlignedSize = alignTo(Value: ArgSize, Align: 8); |
| 7795 | unsigned BaseOffset = OverflowOffset; |
| 7796 | Value *ShadowBase = getShadowPtrForVAArgument(IRB, ArgOffset: OverflowOffset); |
| 7797 | Value *OriginBase = nullptr; |
| 7798 | if (MS.TrackOrigins) |
| 7799 | OriginBase = getOriginPtrForVAArgument(IRB, ArgOffset: OverflowOffset); |
| 7800 | OverflowOffset += AlignedSize; |
| 7801 | |
| 7802 | if (OverflowOffset > kParamTLSSize) { |
| 7803 | CleanUnusedTLS(IRB, ShadowBase, BaseOffset); |
| 7804 | continue; // We have no space to copy shadow there. |
| 7805 | } |
| 7806 | |
| 7807 | Value *ShadowPtr, *OriginPtr; |
| 7808 | std::tie(args&: ShadowPtr, args&: OriginPtr) = |
| 7809 | MSV.getShadowOriginPtr(Addr: A, IRB, ShadowTy: IRB.getInt8Ty(), Alignment: kShadowTLSAlignment, |
| 7810 | /*isStore*/ false); |
| 7811 | IRB.CreateMemCpy(Dst: ShadowBase, DstAlign: kShadowTLSAlignment, Src: ShadowPtr, |
| 7812 | SrcAlign: kShadowTLSAlignment, Size: ArgSize); |
| 7813 | if (MS.TrackOrigins) |
| 7814 | IRB.CreateMemCpy(Dst: OriginBase, DstAlign: kShadowTLSAlignment, Src: OriginPtr, |
| 7815 | SrcAlign: kShadowTLSAlignment, Size: ArgSize); |
| 7816 | } else { |
| 7817 | ArgKind AK = classifyArgument(arg: A); |
| 7818 | if (AK == AK_GeneralPurpose && GpOffset >= AMD64GpEndOffset) |
| 7819 | AK = AK_Memory; |
| 7820 | if (AK == AK_FloatingPoint && FpOffset >= AMD64FpEndOffset) |
| 7821 | AK = AK_Memory; |
| 7822 | Value *ShadowBase, *OriginBase = nullptr; |
| 7823 | switch (AK) { |
| 7824 | case AK_GeneralPurpose: |
| 7825 | ShadowBase = getShadowPtrForVAArgument(IRB, ArgOffset: GpOffset); |
| 7826 | if (MS.TrackOrigins) |
| 7827 | OriginBase = getOriginPtrForVAArgument(IRB, ArgOffset: GpOffset); |
| 7828 | GpOffset += 8; |
| 7829 | assert(GpOffset <= kParamTLSSize); |
| 7830 | break; |
| 7831 | case AK_FloatingPoint: |
| 7832 | ShadowBase = getShadowPtrForVAArgument(IRB, ArgOffset: FpOffset); |
| 7833 | if (MS.TrackOrigins) |
| 7834 | OriginBase = getOriginPtrForVAArgument(IRB, ArgOffset: FpOffset); |
| 7835 | FpOffset += 16; |
| 7836 | assert(FpOffset <= kParamTLSSize); |
| 7837 | break; |
| 7838 | case AK_Memory: |
| 7839 | if (IsFixed) |
| 7840 | continue; |
| 7841 | uint64_t ArgSize = DL.getTypeAllocSize(Ty: A->getType()); |
| 7842 | uint64_t AlignedSize = alignTo(Value: ArgSize, Align: 8); |
| 7843 | unsigned BaseOffset = OverflowOffset; |
| 7844 | ShadowBase = getShadowPtrForVAArgument(IRB, ArgOffset: OverflowOffset); |
| 7845 | if (MS.TrackOrigins) { |
| 7846 | OriginBase = getOriginPtrForVAArgument(IRB, ArgOffset: OverflowOffset); |
| 7847 | } |
| 7848 | OverflowOffset += AlignedSize; |
| 7849 | if (OverflowOffset > kParamTLSSize) { |
| 7850 | // We have no space to copy shadow there. |
| 7851 | CleanUnusedTLS(IRB, ShadowBase, BaseOffset); |
| 7852 | continue; |
| 7853 | } |
| 7854 | } |
| 7855 | // Take fixed arguments into account for GpOffset and FpOffset, |
| 7856 | // but don't actually store shadows for them. |
| 7857 | // TODO(glider): don't call get*PtrForVAArgument() for them. |
| 7858 | if (IsFixed) |
| 7859 | continue; |
| 7860 | Value *Shadow = MSV.getShadow(V: A); |
| 7861 | IRB.CreateAlignedStore(Val: Shadow, Ptr: ShadowBase, Align: kShadowTLSAlignment); |
| 7862 | if (MS.TrackOrigins) { |
| 7863 | Value *Origin = MSV.getOrigin(V: A); |
| 7864 | TypeSize StoreSize = DL.getTypeStoreSize(Ty: Shadow->getType()); |
| 7865 | MSV.paintOrigin(IRB, Origin, OriginPtr: OriginBase, TS: StoreSize, |
| 7866 | Alignment: std::max(a: kShadowTLSAlignment, b: kMinOriginAlignment)); |
| 7867 | } |
| 7868 | } |
| 7869 | } |
| 7870 | Constant *OverflowSize = |
| 7871 | ConstantInt::get(Ty: IRB.getInt64Ty(), V: OverflowOffset - AMD64FpEndOffset); |
| 7872 | IRB.CreateStore(Val: OverflowSize, Ptr: MS.VAArgOverflowSizeTLS); |
| 7873 | } |
| 7874 | |
| 7875 | void finalizeInstrumentation() override { |
| 7876 | assert(!VAArgOverflowSize && !VAArgTLSCopy && |
| 7877 | "finalizeInstrumentation called twice" ); |
| 7878 | if (!VAStartInstrumentationList.empty()) { |
| 7879 | // If there is a va_start in this function, make a backup copy of |
| 7880 | // va_arg_tls somewhere in the function entry block. |
| 7881 | IRBuilder<> IRB(MSV.FnPrologueEnd); |
| 7882 | VAArgOverflowSize = |
| 7883 | IRB.CreateLoad(Ty: IRB.getInt64Ty(), Ptr: MS.VAArgOverflowSizeTLS); |
| 7884 | Value *CopySize = IRB.CreateAdd( |
| 7885 | LHS: ConstantInt::get(Ty: MS.IntptrTy, V: AMD64FpEndOffset), RHS: VAArgOverflowSize); |
| 7886 | VAArgTLSCopy = IRB.CreateAlloca(Ty: Type::getInt8Ty(C&: *MS.C), ArraySize: CopySize); |
| 7887 | VAArgTLSCopy->setAlignment(kShadowTLSAlignment); |
| 7888 | IRB.CreateMemSet(Ptr: VAArgTLSCopy, Val: Constant::getNullValue(Ty: IRB.getInt8Ty()), |
| 7889 | Size: CopySize, Align: kShadowTLSAlignment, isVolatile: false); |
| 7890 | |
| 7891 | Value *SrcSize = IRB.CreateBinaryIntrinsic( |
| 7892 | ID: Intrinsic::umin, LHS: CopySize, |
| 7893 | RHS: ConstantInt::get(Ty: MS.IntptrTy, V: kParamTLSSize)); |
| 7894 | IRB.CreateMemCpy(Dst: VAArgTLSCopy, DstAlign: kShadowTLSAlignment, Src: MS.VAArgTLS, |
| 7895 | SrcAlign: kShadowTLSAlignment, Size: SrcSize); |
| 7896 | if (MS.TrackOrigins) { |
| 7897 | VAArgTLSOriginCopy = IRB.CreateAlloca(Ty: Type::getInt8Ty(C&: *MS.C), ArraySize: CopySize); |
| 7898 | VAArgTLSOriginCopy->setAlignment(kShadowTLSAlignment); |
| 7899 | IRB.CreateMemCpy(Dst: VAArgTLSOriginCopy, DstAlign: kShadowTLSAlignment, |
| 7900 | Src: MS.VAArgOriginTLS, SrcAlign: kShadowTLSAlignment, Size: SrcSize); |
| 7901 | } |
| 7902 | } |
| 7903 | |
| 7904 | // Instrument va_start. |
| 7905 | // Copy va_list shadow from the backup copy of the TLS contents. |
| 7906 | for (CallInst *OrigInst : VAStartInstrumentationList) { |
| 7907 | NextNodeIRBuilder IRB(OrigInst); |
| 7908 | Value *VAListTag = OrigInst->getArgOperand(i: 0); |
| 7909 | |
| 7910 | Value *RegSaveAreaPtrPtr = |
| 7911 | IRB.CreatePtrAdd(Ptr: VAListTag, Offset: ConstantInt::get(Ty: MS.IntptrTy, V: 16)); |
| 7912 | Value *RegSaveAreaPtr = IRB.CreateLoad(Ty: MS.PtrTy, Ptr: RegSaveAreaPtrPtr); |
| 7913 | Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; |
| 7914 | const Align Alignment = Align(16); |
| 7915 | std::tie(args&: RegSaveAreaShadowPtr, args&: RegSaveAreaOriginPtr) = |
| 7916 | MSV.getShadowOriginPtr(Addr: RegSaveAreaPtr, IRB, ShadowTy: IRB.getInt8Ty(), |
| 7917 | Alignment, /*isStore*/ true); |
| 7918 | IRB.CreateMemCpy(Dst: RegSaveAreaShadowPtr, DstAlign: Alignment, Src: VAArgTLSCopy, SrcAlign: Alignment, |
| 7919 | Size: AMD64FpEndOffset); |
| 7920 | if (MS.TrackOrigins) |
| 7921 | IRB.CreateMemCpy(Dst: RegSaveAreaOriginPtr, DstAlign: Alignment, Src: VAArgTLSOriginCopy, |
| 7922 | SrcAlign: Alignment, Size: AMD64FpEndOffset); |
| 7923 | Value *OverflowArgAreaPtrPtr = |
| 7924 | IRB.CreatePtrAdd(Ptr: VAListTag, Offset: ConstantInt::get(Ty: MS.IntptrTy, V: 8)); |
| 7925 | Value *OverflowArgAreaPtr = |
| 7926 | IRB.CreateLoad(Ty: MS.PtrTy, Ptr: OverflowArgAreaPtrPtr); |
| 7927 | Value *OverflowArgAreaShadowPtr, *OverflowArgAreaOriginPtr; |
| 7928 | std::tie(args&: OverflowArgAreaShadowPtr, args&: OverflowArgAreaOriginPtr) = |
| 7929 | MSV.getShadowOriginPtr(Addr: OverflowArgAreaPtr, IRB, ShadowTy: IRB.getInt8Ty(), |
| 7930 | Alignment, /*isStore*/ true); |
| 7931 | Value *SrcPtr = IRB.CreateConstGEP1_32(Ty: IRB.getInt8Ty(), Ptr: VAArgTLSCopy, |
| 7932 | Idx0: AMD64FpEndOffset); |
| 7933 | IRB.CreateMemCpy(Dst: OverflowArgAreaShadowPtr, DstAlign: Alignment, Src: SrcPtr, SrcAlign: Alignment, |
| 7934 | Size: VAArgOverflowSize); |
| 7935 | if (MS.TrackOrigins) { |
| 7936 | SrcPtr = IRB.CreateConstGEP1_32(Ty: IRB.getInt8Ty(), Ptr: VAArgTLSOriginCopy, |
| 7937 | Idx0: AMD64FpEndOffset); |
| 7938 | IRB.CreateMemCpy(Dst: OverflowArgAreaOriginPtr, DstAlign: Alignment, Src: SrcPtr, SrcAlign: Alignment, |
| 7939 | Size: VAArgOverflowSize); |
| 7940 | } |
| 7941 | } |
| 7942 | } |
| 7943 | }; |
| 7944 | |
| 7945 | /// AArch64-specific implementation of VarArgHelper. |
| 7946 | struct VarArgAArch64Helper : public VarArgHelperBase { |
| 7947 | static const unsigned kAArch64GrArgSize = 64; |
| 7948 | static const unsigned kAArch64VrArgSize = 128; |
| 7949 | |
| 7950 | static const unsigned AArch64GrBegOffset = 0; |
| 7951 | static const unsigned AArch64GrEndOffset = kAArch64GrArgSize; |
| 7952 | // Make VR space aligned to 16 bytes. |
| 7953 | static const unsigned AArch64VrBegOffset = AArch64GrEndOffset; |
| 7954 | static const unsigned AArch64VrEndOffset = |
| 7955 | AArch64VrBegOffset + kAArch64VrArgSize; |
| 7956 | static const unsigned AArch64VAEndOffset = AArch64VrEndOffset; |
| 7957 | |
| 7958 | AllocaInst *VAArgTLSCopy = nullptr; |
| 7959 | Value *VAArgOverflowSize = nullptr; |
| 7960 | |
| 7961 | enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory }; |
| 7962 | |
| 7963 | VarArgAArch64Helper(Function &F, MemorySanitizer &MS, |
| 7964 | MemorySanitizerVisitor &MSV) |
| 7965 | : VarArgHelperBase(F, MS, MSV, /*VAListTagSize=*/32) {} |
| 7966 | |
| 7967 | // A very rough approximation of aarch64 argument classification rules. |
| 7968 | std::pair<ArgKind, uint64_t> classifyArgument(Type *T) { |
| 7969 | if (T->isIntOrPtrTy() && T->getPrimitiveSizeInBits() <= 64) |
| 7970 | return {AK_GeneralPurpose, 1}; |
| 7971 | if (T->isFloatingPointTy() && T->getPrimitiveSizeInBits() <= 128) |
| 7972 | return {AK_FloatingPoint, 1}; |
| 7973 | |
| 7974 | if (T->isArrayTy()) { |
| 7975 | auto R = classifyArgument(T: T->getArrayElementType()); |
| 7976 | R.second *= T->getScalarType()->getArrayNumElements(); |
| 7977 | return R; |
| 7978 | } |
| 7979 | |
| 7980 | if (const FixedVectorType *FV = dyn_cast<FixedVectorType>(Val: T)) { |
| 7981 | auto R = classifyArgument(T: FV->getScalarType()); |
| 7982 | R.second *= FV->getNumElements(); |
| 7983 | return R; |
| 7984 | } |
| 7985 | |
| 7986 | LLVM_DEBUG(errs() << "Unknown vararg type: " << *T << "\n" ); |
| 7987 | return {AK_Memory, 0}; |
| 7988 | } |
| 7989 | |
| 7990 | // The instrumentation stores the argument shadow in a non ABI-specific |
| 7991 | // format because it does not know which argument is named (since Clang, |
| 7992 | // like x86_64 case, lowers the va_args in the frontend and this pass only |
| 7993 | // sees the low level code that deals with va_list internals). |
| 7994 | // The first seven GR registers are saved in the first 56 bytes of the |
| 7995 | // va_arg tls arra, followed by the first 8 FP/SIMD registers, and then |
| 7996 | // the remaining arguments. |
| 7997 | // Using constant offset within the va_arg TLS array allows fast copy |
| 7998 | // in the finalize instrumentation. |
| 7999 | void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { |
| 8000 | unsigned GrOffset = AArch64GrBegOffset; |
| 8001 | unsigned VrOffset = AArch64VrBegOffset; |
| 8002 | unsigned OverflowOffset = AArch64VAEndOffset; |
| 8003 | |
| 8004 | const DataLayout &DL = F.getDataLayout(); |
| 8005 | for (const auto &[ArgNo, A] : llvm::enumerate(First: CB.args())) { |
| 8006 | bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams(); |
| 8007 | auto [AK, RegNum] = classifyArgument(T: A->getType()); |
| 8008 | if (AK == AK_GeneralPurpose && |
| 8009 | (GrOffset + RegNum * 8) > AArch64GrEndOffset) |
| 8010 | AK = AK_Memory; |
| 8011 | if (AK == AK_FloatingPoint && |
| 8012 | (VrOffset + RegNum * 16) > AArch64VrEndOffset) |
| 8013 | AK = AK_Memory; |
| 8014 | Value *Base; |
| 8015 | switch (AK) { |
| 8016 | case AK_GeneralPurpose: |
| 8017 | Base = getShadowPtrForVAArgument(IRB, ArgOffset: GrOffset); |
| 8018 | GrOffset += 8 * RegNum; |
| 8019 | break; |
| 8020 | case AK_FloatingPoint: |
| 8021 | Base = getShadowPtrForVAArgument(IRB, ArgOffset: VrOffset); |
| 8022 | VrOffset += 16 * RegNum; |
| 8023 | break; |
| 8024 | case AK_Memory: |
| 8025 | // Don't count fixed arguments in the overflow area - va_start will |
| 8026 | // skip right over them. |
| 8027 | if (IsFixed) |
| 8028 | continue; |
| 8029 | uint64_t ArgSize = DL.getTypeAllocSize(Ty: A->getType()); |
| 8030 | uint64_t AlignedSize = alignTo(Value: ArgSize, Align: 8); |
| 8031 | unsigned BaseOffset = OverflowOffset; |
| 8032 | Base = getShadowPtrForVAArgument(IRB, ArgOffset: BaseOffset); |
| 8033 | OverflowOffset += AlignedSize; |
| 8034 | if (OverflowOffset > kParamTLSSize) { |
| 8035 | // We have no space to copy shadow there. |
| 8036 | CleanUnusedTLS(IRB, ShadowBase: Base, BaseOffset); |
| 8037 | continue; |
| 8038 | } |
| 8039 | break; |
| 8040 | } |
| 8041 | // Count Gp/Vr fixed arguments to their respective offsets, but don't |
| 8042 | // bother to actually store a shadow. |
| 8043 | if (IsFixed) |
| 8044 | continue; |
| 8045 | IRB.CreateAlignedStore(Val: MSV.getShadow(V: A), Ptr: Base, Align: kShadowTLSAlignment); |
| 8046 | } |
| 8047 | Constant *OverflowSize = |
| 8048 | ConstantInt::get(Ty: IRB.getInt64Ty(), V: OverflowOffset - AArch64VAEndOffset); |
| 8049 | IRB.CreateStore(Val: OverflowSize, Ptr: MS.VAArgOverflowSizeTLS); |
| 8050 | } |
| 8051 | |
| 8052 | // Retrieve a va_list field of 'void*' size. |
| 8053 | Value *getVAField64(IRBuilder<> &IRB, Value *VAListTag, int offset) { |
| 8054 | Value *SaveAreaPtrPtr = |
| 8055 | IRB.CreatePtrAdd(Ptr: VAListTag, Offset: ConstantInt::get(Ty: MS.IntptrTy, V: offset)); |
| 8056 | return IRB.CreateLoad(Ty: Type::getInt64Ty(C&: *MS.C), Ptr: SaveAreaPtrPtr); |
| 8057 | } |
| 8058 | |
| 8059 | // Retrieve a va_list field of 'int' size. |
| 8060 | Value *getVAField32(IRBuilder<> &IRB, Value *VAListTag, int offset) { |
| 8061 | Value *SaveAreaPtr = |
| 8062 | IRB.CreatePtrAdd(Ptr: VAListTag, Offset: ConstantInt::get(Ty: MS.IntptrTy, V: offset)); |
| 8063 | Value *SaveArea32 = IRB.CreateLoad(Ty: IRB.getInt32Ty(), Ptr: SaveAreaPtr); |
| 8064 | return IRB.CreateSExt(V: SaveArea32, DestTy: MS.IntptrTy); |
| 8065 | } |
| 8066 | |
| 8067 | void finalizeInstrumentation() override { |
| 8068 | assert(!VAArgOverflowSize && !VAArgTLSCopy && |
| 8069 | "finalizeInstrumentation called twice" ); |
| 8070 | if (!VAStartInstrumentationList.empty()) { |
| 8071 | // If there is a va_start in this function, make a backup copy of |
| 8072 | // va_arg_tls somewhere in the function entry block. |
| 8073 | IRBuilder<> IRB(MSV.FnPrologueEnd); |
| 8074 | VAArgOverflowSize = |
| 8075 | IRB.CreateLoad(Ty: IRB.getInt64Ty(), Ptr: MS.VAArgOverflowSizeTLS); |
| 8076 | Value *CopySize = IRB.CreateAdd( |
| 8077 | LHS: ConstantInt::get(Ty: MS.IntptrTy, V: AArch64VAEndOffset), RHS: VAArgOverflowSize); |
| 8078 | VAArgTLSCopy = IRB.CreateAlloca(Ty: Type::getInt8Ty(C&: *MS.C), ArraySize: CopySize); |
| 8079 | VAArgTLSCopy->setAlignment(kShadowTLSAlignment); |
| 8080 | IRB.CreateMemSet(Ptr: VAArgTLSCopy, Val: Constant::getNullValue(Ty: IRB.getInt8Ty()), |
| 8081 | Size: CopySize, Align: kShadowTLSAlignment, isVolatile: false); |
| 8082 | |
| 8083 | Value *SrcSize = IRB.CreateBinaryIntrinsic( |
| 8084 | ID: Intrinsic::umin, LHS: CopySize, |
| 8085 | RHS: ConstantInt::get(Ty: MS.IntptrTy, V: kParamTLSSize)); |
| 8086 | IRB.CreateMemCpy(Dst: VAArgTLSCopy, DstAlign: kShadowTLSAlignment, Src: MS.VAArgTLS, |
| 8087 | SrcAlign: kShadowTLSAlignment, Size: SrcSize); |
| 8088 | } |
| 8089 | |
| 8090 | Value *GrArgSize = ConstantInt::get(Ty: MS.IntptrTy, V: kAArch64GrArgSize); |
| 8091 | Value *VrArgSize = ConstantInt::get(Ty: MS.IntptrTy, V: kAArch64VrArgSize); |
| 8092 | |
| 8093 | // Instrument va_start, copy va_list shadow from the backup copy of |
| 8094 | // the TLS contents. |
| 8095 | for (CallInst *OrigInst : VAStartInstrumentationList) { |
| 8096 | NextNodeIRBuilder IRB(OrigInst); |
| 8097 | |
| 8098 | Value *VAListTag = OrigInst->getArgOperand(i: 0); |
| 8099 | |
| 8100 | // The variadic ABI for AArch64 creates two areas to save the incoming |
| 8101 | // argument registers (one for 64-bit general register xn-x7 and another |
| 8102 | // for 128-bit FP/SIMD vn-v7). |
| 8103 | // We need then to propagate the shadow arguments on both regions |
| 8104 | // 'va::__gr_top + va::__gr_offs' and 'va::__vr_top + va::__vr_offs'. |
| 8105 | // The remaining arguments are saved on shadow for 'va::stack'. |
| 8106 | // One caveat is it requires only to propagate the non-named arguments, |
| 8107 | // however on the call site instrumentation 'all' the arguments are |
| 8108 | // saved. So to copy the shadow values from the va_arg TLS array |
| 8109 | // we need to adjust the offset for both GR and VR fields based on |
| 8110 | // the __{gr,vr}_offs value (since they are stores based on incoming |
| 8111 | // named arguments). |
| 8112 | Type *RegSaveAreaPtrTy = IRB.getPtrTy(); |
| 8113 | |
| 8114 | // Read the stack pointer from the va_list. |
| 8115 | Value *StackSaveAreaPtr = |
| 8116 | IRB.CreateIntToPtr(V: getVAField64(IRB, VAListTag, offset: 0), DestTy: RegSaveAreaPtrTy); |
| 8117 | |
| 8118 | // Read both the __gr_top and __gr_off and add them up. |
| 8119 | Value *GrTopSaveAreaPtr = getVAField64(IRB, VAListTag, offset: 8); |
| 8120 | Value *GrOffSaveArea = getVAField32(IRB, VAListTag, offset: 24); |
| 8121 | |
| 8122 | Value *GrRegSaveAreaPtr = IRB.CreateIntToPtr( |
| 8123 | V: IRB.CreateAdd(LHS: GrTopSaveAreaPtr, RHS: GrOffSaveArea), DestTy: RegSaveAreaPtrTy); |
| 8124 | |
| 8125 | // Read both the __vr_top and __vr_off and add them up. |
| 8126 | Value *VrTopSaveAreaPtr = getVAField64(IRB, VAListTag, offset: 16); |
| 8127 | Value *VrOffSaveArea = getVAField32(IRB, VAListTag, offset: 28); |
| 8128 | |
| 8129 | Value *VrRegSaveAreaPtr = IRB.CreateIntToPtr( |
| 8130 | V: IRB.CreateAdd(LHS: VrTopSaveAreaPtr, RHS: VrOffSaveArea), DestTy: RegSaveAreaPtrTy); |
| 8131 | |
| 8132 | // It does not know how many named arguments is being used and, on the |
| 8133 | // callsite all the arguments were saved. Since __gr_off is defined as |
| 8134 | // '0 - ((8 - named_gr) * 8)', the idea is to just propagate the variadic |
| 8135 | // argument by ignoring the bytes of shadow from named arguments. |
| 8136 | Value *GrRegSaveAreaShadowPtrOff = |
| 8137 | IRB.CreateAdd(LHS: GrArgSize, RHS: GrOffSaveArea); |
| 8138 | |
| 8139 | Value *GrRegSaveAreaShadowPtr = |
| 8140 | MSV.getShadowOriginPtr(Addr: GrRegSaveAreaPtr, IRB, ShadowTy: IRB.getInt8Ty(), |
| 8141 | Alignment: Align(8), /*isStore*/ true) |
| 8142 | .first; |
| 8143 | |
| 8144 | Value *GrSrcPtr = |
| 8145 | IRB.CreateInBoundsPtrAdd(Ptr: VAArgTLSCopy, Offset: GrRegSaveAreaShadowPtrOff); |
| 8146 | Value *GrCopySize = IRB.CreateSub(LHS: GrArgSize, RHS: GrRegSaveAreaShadowPtrOff); |
| 8147 | |
| 8148 | IRB.CreateMemCpy(Dst: GrRegSaveAreaShadowPtr, DstAlign: Align(8), Src: GrSrcPtr, SrcAlign: Align(8), |
| 8149 | Size: GrCopySize); |
| 8150 | |
| 8151 | // Again, but for FP/SIMD values. |
| 8152 | Value *VrRegSaveAreaShadowPtrOff = |
| 8153 | IRB.CreateAdd(LHS: VrArgSize, RHS: VrOffSaveArea); |
| 8154 | |
| 8155 | Value *VrRegSaveAreaShadowPtr = |
| 8156 | MSV.getShadowOriginPtr(Addr: VrRegSaveAreaPtr, IRB, ShadowTy: IRB.getInt8Ty(), |
| 8157 | Alignment: Align(8), /*isStore*/ true) |
| 8158 | .first; |
| 8159 | |
| 8160 | Value *VrSrcPtr = IRB.CreateInBoundsPtrAdd( |
| 8161 | Ptr: IRB.CreateInBoundsPtrAdd(Ptr: VAArgTLSCopy, |
| 8162 | Offset: IRB.getInt32(C: AArch64VrBegOffset)), |
| 8163 | Offset: VrRegSaveAreaShadowPtrOff); |
| 8164 | Value *VrCopySize = IRB.CreateSub(LHS: VrArgSize, RHS: VrRegSaveAreaShadowPtrOff); |
| 8165 | |
| 8166 | IRB.CreateMemCpy(Dst: VrRegSaveAreaShadowPtr, DstAlign: Align(8), Src: VrSrcPtr, SrcAlign: Align(8), |
| 8167 | Size: VrCopySize); |
| 8168 | |
| 8169 | // And finally for remaining arguments. |
| 8170 | Value *StackSaveAreaShadowPtr = |
| 8171 | MSV.getShadowOriginPtr(Addr: StackSaveAreaPtr, IRB, ShadowTy: IRB.getInt8Ty(), |
| 8172 | Alignment: Align(16), /*isStore*/ true) |
| 8173 | .first; |
| 8174 | |
| 8175 | Value *StackSrcPtr = IRB.CreateInBoundsPtrAdd( |
| 8176 | Ptr: VAArgTLSCopy, Offset: IRB.getInt32(C: AArch64VAEndOffset)); |
| 8177 | |
| 8178 | IRB.CreateMemCpy(Dst: StackSaveAreaShadowPtr, DstAlign: Align(16), Src: StackSrcPtr, |
| 8179 | SrcAlign: Align(16), Size: VAArgOverflowSize); |
| 8180 | } |
| 8181 | } |
| 8182 | }; |
| 8183 | |
| 8184 | /// PowerPC64-specific implementation of VarArgHelper. |
| 8185 | struct VarArgPowerPC64Helper : public VarArgHelperBase { |
| 8186 | AllocaInst *VAArgTLSCopy = nullptr; |
| 8187 | Value *VAArgSize = nullptr; |
| 8188 | |
| 8189 | VarArgPowerPC64Helper(Function &F, MemorySanitizer &MS, |
| 8190 | MemorySanitizerVisitor &MSV) |
| 8191 | : VarArgHelperBase(F, MS, MSV, /*VAListTagSize=*/8) {} |
| 8192 | |
| 8193 | void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { |
| 8194 | // For PowerPC, we need to deal with alignment of stack arguments - |
| 8195 | // they are mostly aligned to 8 bytes, but vectors and i128 arrays |
| 8196 | // are aligned to 16 bytes, byvals can be aligned to 8 or 16 bytes, |
| 8197 | // For that reason, we compute current offset from stack pointer (which is |
| 8198 | // always properly aligned), and offset for the first vararg, then subtract |
| 8199 | // them. |
| 8200 | unsigned VAArgBase; |
| 8201 | Triple TargetTriple(F.getParent()->getTargetTriple()); |
| 8202 | // Parameter save area starts at 48 bytes from frame pointer for ABIv1, |
| 8203 | // and 32 bytes for ABIv2. This is usually determined by target |
| 8204 | // endianness, but in theory could be overridden by function attribute. |
| 8205 | if (TargetTriple.isPPC64ELFv2ABI()) |
| 8206 | VAArgBase = 32; |
| 8207 | else |
| 8208 | VAArgBase = 48; |
| 8209 | unsigned VAArgOffset = VAArgBase; |
| 8210 | const DataLayout &DL = F.getDataLayout(); |
| 8211 | for (const auto &[ArgNo, A] : llvm::enumerate(First: CB.args())) { |
| 8212 | bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams(); |
| 8213 | bool IsByVal = CB.paramHasAttr(ArgNo, Kind: Attribute::ByVal); |
| 8214 | if (IsByVal) { |
| 8215 | assert(A->getType()->isPointerTy()); |
| 8216 | Type *RealTy = CB.getParamByValType(ArgNo); |
| 8217 | uint64_t ArgSize = DL.getTypeAllocSize(Ty: RealTy); |
| 8218 | Align ArgAlign = CB.getParamAlign(ArgNo).value_or(u: Align(8)); |
| 8219 | if (ArgAlign < 8) |
| 8220 | ArgAlign = Align(8); |
| 8221 | VAArgOffset = alignTo(Size: VAArgOffset, A: ArgAlign); |
| 8222 | if (!IsFixed) { |
| 8223 | Value *Base = |
| 8224 | getShadowPtrForVAArgument(IRB, ArgOffset: VAArgOffset - VAArgBase, ArgSize); |
| 8225 | if (Base) { |
| 8226 | Value *AShadowPtr, *AOriginPtr; |
| 8227 | std::tie(args&: AShadowPtr, args&: AOriginPtr) = |
| 8228 | MSV.getShadowOriginPtr(Addr: A, IRB, ShadowTy: IRB.getInt8Ty(), |
| 8229 | Alignment: kShadowTLSAlignment, /*isStore*/ false); |
| 8230 | |
| 8231 | IRB.CreateMemCpy(Dst: Base, DstAlign: kShadowTLSAlignment, Src: AShadowPtr, |
| 8232 | SrcAlign: kShadowTLSAlignment, Size: ArgSize); |
| 8233 | } |
| 8234 | } |
| 8235 | VAArgOffset += alignTo(Size: ArgSize, A: Align(8)); |
| 8236 | } else { |
| 8237 | Value *Base; |
| 8238 | uint64_t ArgSize = DL.getTypeAllocSize(Ty: A->getType()); |
| 8239 | Align ArgAlign = Align(8); |
| 8240 | if (A->getType()->isArrayTy()) { |
| 8241 | // Arrays are aligned to element size, except for long double |
| 8242 | // arrays, which are aligned to 8 bytes. |
| 8243 | Type *ElementTy = A->getType()->getArrayElementType(); |
| 8244 | if (!ElementTy->isPPC_FP128Ty()) |
| 8245 | ArgAlign = Align(DL.getTypeAllocSize(Ty: ElementTy)); |
| 8246 | } else if (A->getType()->isVectorTy()) { |
| 8247 | // Vectors are naturally aligned. |
| 8248 | ArgAlign = Align(ArgSize); |
| 8249 | } |
| 8250 | if (ArgAlign < 8) |
| 8251 | ArgAlign = Align(8); |
| 8252 | VAArgOffset = alignTo(Size: VAArgOffset, A: ArgAlign); |
| 8253 | if (DL.isBigEndian()) { |
| 8254 | // Adjusting the shadow for argument with size < 8 to match the |
| 8255 | // placement of bits in big endian system |
| 8256 | if (ArgSize < 8) |
| 8257 | VAArgOffset += (8 - ArgSize); |
| 8258 | } |
| 8259 | if (!IsFixed) { |
| 8260 | Base = |
| 8261 | getShadowPtrForVAArgument(IRB, ArgOffset: VAArgOffset - VAArgBase, ArgSize); |
| 8262 | if (Base) |
| 8263 | IRB.CreateAlignedStore(Val: MSV.getShadow(V: A), Ptr: Base, Align: kShadowTLSAlignment); |
| 8264 | } |
| 8265 | VAArgOffset += ArgSize; |
| 8266 | VAArgOffset = alignTo(Size: VAArgOffset, A: Align(8)); |
| 8267 | } |
| 8268 | if (IsFixed) |
| 8269 | VAArgBase = VAArgOffset; |
| 8270 | } |
| 8271 | |
| 8272 | Constant *TotalVAArgSize = |
| 8273 | ConstantInt::get(Ty: MS.IntptrTy, V: VAArgOffset - VAArgBase); |
| 8274 | // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of |
| 8275 | // a new class member i.e. it is the total size of all VarArgs. |
| 8276 | IRB.CreateStore(Val: TotalVAArgSize, Ptr: MS.VAArgOverflowSizeTLS); |
| 8277 | } |
| 8278 | |
| 8279 | void finalizeInstrumentation() override { |
| 8280 | assert(!VAArgSize && !VAArgTLSCopy && |
| 8281 | "finalizeInstrumentation called twice" ); |
| 8282 | IRBuilder<> IRB(MSV.FnPrologueEnd); |
| 8283 | VAArgSize = IRB.CreateLoad(Ty: IRB.getInt64Ty(), Ptr: MS.VAArgOverflowSizeTLS); |
| 8284 | Value *CopySize = VAArgSize; |
| 8285 | |
| 8286 | if (!VAStartInstrumentationList.empty()) { |
| 8287 | // If there is a va_start in this function, make a backup copy of |
| 8288 | // va_arg_tls somewhere in the function entry block. |
| 8289 | |
| 8290 | VAArgTLSCopy = IRB.CreateAlloca(Ty: Type::getInt8Ty(C&: *MS.C), ArraySize: CopySize); |
| 8291 | VAArgTLSCopy->setAlignment(kShadowTLSAlignment); |
| 8292 | IRB.CreateMemSet(Ptr: VAArgTLSCopy, Val: Constant::getNullValue(Ty: IRB.getInt8Ty()), |
| 8293 | Size: CopySize, Align: kShadowTLSAlignment, isVolatile: false); |
| 8294 | |
| 8295 | Value *SrcSize = IRB.CreateBinaryIntrinsic( |
| 8296 | ID: Intrinsic::umin, LHS: CopySize, |
| 8297 | RHS: ConstantInt::get(Ty: IRB.getInt64Ty(), V: kParamTLSSize)); |
| 8298 | IRB.CreateMemCpy(Dst: VAArgTLSCopy, DstAlign: kShadowTLSAlignment, Src: MS.VAArgTLS, |
| 8299 | SrcAlign: kShadowTLSAlignment, Size: SrcSize); |
| 8300 | } |
| 8301 | |
| 8302 | // Instrument va_start. |
| 8303 | // Copy va_list shadow from the backup copy of the TLS contents. |
| 8304 | for (CallInst *OrigInst : VAStartInstrumentationList) { |
| 8305 | NextNodeIRBuilder IRB(OrigInst); |
| 8306 | Value *VAListTag = OrigInst->getArgOperand(i: 0); |
| 8307 | Value *RegSaveAreaPtrPtr = IRB.CreatePtrToInt(V: VAListTag, DestTy: MS.IntptrTy); |
| 8308 | |
| 8309 | RegSaveAreaPtrPtr = IRB.CreateIntToPtr(V: RegSaveAreaPtrPtr, DestTy: MS.PtrTy); |
| 8310 | |
| 8311 | Value *RegSaveAreaPtr = IRB.CreateLoad(Ty: MS.PtrTy, Ptr: RegSaveAreaPtrPtr); |
| 8312 | Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; |
| 8313 | const DataLayout &DL = F.getDataLayout(); |
| 8314 | unsigned IntptrSize = DL.getTypeStoreSize(Ty: MS.IntptrTy); |
| 8315 | const Align Alignment = Align(IntptrSize); |
| 8316 | std::tie(args&: RegSaveAreaShadowPtr, args&: RegSaveAreaOriginPtr) = |
| 8317 | MSV.getShadowOriginPtr(Addr: RegSaveAreaPtr, IRB, ShadowTy: IRB.getInt8Ty(), |
| 8318 | Alignment, /*isStore*/ true); |
| 8319 | IRB.CreateMemCpy(Dst: RegSaveAreaShadowPtr, DstAlign: Alignment, Src: VAArgTLSCopy, SrcAlign: Alignment, |
| 8320 | Size: CopySize); |
| 8321 | } |
| 8322 | } |
| 8323 | }; |
| 8324 | |
| 8325 | /// PowerPC32-specific implementation of VarArgHelper. |
| 8326 | struct VarArgPowerPC32Helper : public VarArgHelperBase { |
| 8327 | AllocaInst *VAArgTLSCopy = nullptr; |
| 8328 | Value *VAArgSize = nullptr; |
| 8329 | |
| 8330 | VarArgPowerPC32Helper(Function &F, MemorySanitizer &MS, |
| 8331 | MemorySanitizerVisitor &MSV) |
| 8332 | : VarArgHelperBase(F, MS, MSV, /*VAListTagSize=*/12) {} |
| 8333 | |
| 8334 | void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { |
| 8335 | unsigned VAArgBase; |
| 8336 | // Parameter save area is 8 bytes from frame pointer in PPC32 |
| 8337 | VAArgBase = 8; |
| 8338 | unsigned VAArgOffset = VAArgBase; |
| 8339 | const DataLayout &DL = F.getDataLayout(); |
| 8340 | unsigned IntptrSize = DL.getTypeStoreSize(Ty: MS.IntptrTy); |
| 8341 | for (const auto &[ArgNo, A] : llvm::enumerate(First: CB.args())) { |
| 8342 | bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams(); |
| 8343 | bool IsByVal = CB.paramHasAttr(ArgNo, Kind: Attribute::ByVal); |
| 8344 | if (IsByVal) { |
| 8345 | assert(A->getType()->isPointerTy()); |
| 8346 | Type *RealTy = CB.getParamByValType(ArgNo); |
| 8347 | uint64_t ArgSize = DL.getTypeAllocSize(Ty: RealTy); |
| 8348 | Align ArgAlign = CB.getParamAlign(ArgNo).value_or(u: Align(IntptrSize)); |
| 8349 | if (ArgAlign < IntptrSize) |
| 8350 | ArgAlign = Align(IntptrSize); |
| 8351 | VAArgOffset = alignTo(Size: VAArgOffset, A: ArgAlign); |
| 8352 | if (!IsFixed) { |
| 8353 | Value *Base = |
| 8354 | getShadowPtrForVAArgument(IRB, ArgOffset: VAArgOffset - VAArgBase, ArgSize); |
| 8355 | if (Base) { |
| 8356 | Value *AShadowPtr, *AOriginPtr; |
| 8357 | std::tie(args&: AShadowPtr, args&: AOriginPtr) = |
| 8358 | MSV.getShadowOriginPtr(Addr: A, IRB, ShadowTy: IRB.getInt8Ty(), |
| 8359 | Alignment: kShadowTLSAlignment, /*isStore*/ false); |
| 8360 | |
| 8361 | IRB.CreateMemCpy(Dst: Base, DstAlign: kShadowTLSAlignment, Src: AShadowPtr, |
| 8362 | SrcAlign: kShadowTLSAlignment, Size: ArgSize); |
| 8363 | } |
| 8364 | } |
| 8365 | VAArgOffset += alignTo(Size: ArgSize, A: Align(IntptrSize)); |
| 8366 | } else { |
| 8367 | Value *Base; |
| 8368 | Type *ArgTy = A->getType(); |
| 8369 | |
| 8370 | // On PPC 32 floating point variable arguments are stored in separate |
| 8371 | // area: fp_save_area = reg_save_area + 4*8. We do not copy shaodow for |
| 8372 | // them as they will be found when checking call arguments. |
| 8373 | if (!ArgTy->isFloatingPointTy()) { |
| 8374 | uint64_t ArgSize = DL.getTypeAllocSize(Ty: ArgTy); |
| 8375 | Align ArgAlign = Align(IntptrSize); |
| 8376 | if (ArgTy->isArrayTy()) { |
| 8377 | // Arrays are aligned to element size, except for long double |
| 8378 | // arrays, which are aligned to 8 bytes. |
| 8379 | Type *ElementTy = ArgTy->getArrayElementType(); |
| 8380 | if (!ElementTy->isPPC_FP128Ty()) |
| 8381 | ArgAlign = Align(DL.getTypeAllocSize(Ty: ElementTy)); |
| 8382 | } else if (ArgTy->isVectorTy()) { |
| 8383 | // Vectors are naturally aligned. |
| 8384 | ArgAlign = Align(ArgSize); |
| 8385 | } |
| 8386 | if (ArgAlign < IntptrSize) |
| 8387 | ArgAlign = Align(IntptrSize); |
| 8388 | VAArgOffset = alignTo(Size: VAArgOffset, A: ArgAlign); |
| 8389 | if (DL.isBigEndian()) { |
| 8390 | // Adjusting the shadow for argument with size < IntptrSize to match |
| 8391 | // the placement of bits in big endian system |
| 8392 | if (ArgSize < IntptrSize) |
| 8393 | VAArgOffset += (IntptrSize - ArgSize); |
| 8394 | } |
| 8395 | if (!IsFixed) { |
| 8396 | Base = getShadowPtrForVAArgument(IRB, ArgOffset: VAArgOffset - VAArgBase, |
| 8397 | ArgSize); |
| 8398 | if (Base) |
| 8399 | IRB.CreateAlignedStore(Val: MSV.getShadow(V: A), Ptr: Base, |
| 8400 | Align: kShadowTLSAlignment); |
| 8401 | } |
| 8402 | VAArgOffset += ArgSize; |
| 8403 | VAArgOffset = alignTo(Size: VAArgOffset, A: Align(IntptrSize)); |
| 8404 | } |
| 8405 | } |
| 8406 | } |
| 8407 | |
| 8408 | Constant *TotalVAArgSize = |
| 8409 | ConstantInt::get(Ty: MS.IntptrTy, V: VAArgOffset - VAArgBase); |
| 8410 | // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of |
| 8411 | // a new class member i.e. it is the total size of all VarArgs. |
| 8412 | IRB.CreateStore(Val: TotalVAArgSize, Ptr: MS.VAArgOverflowSizeTLS); |
| 8413 | } |
| 8414 | |
| 8415 | void finalizeInstrumentation() override { |
| 8416 | assert(!VAArgSize && !VAArgTLSCopy && |
| 8417 | "finalizeInstrumentation called twice" ); |
| 8418 | IRBuilder<> IRB(MSV.FnPrologueEnd); |
| 8419 | VAArgSize = IRB.CreateLoad(Ty: MS.IntptrTy, Ptr: MS.VAArgOverflowSizeTLS); |
| 8420 | Value *CopySize = VAArgSize; |
| 8421 | |
| 8422 | if (!VAStartInstrumentationList.empty()) { |
| 8423 | // If there is a va_start in this function, make a backup copy of |
| 8424 | // va_arg_tls somewhere in the function entry block. |
| 8425 | |
| 8426 | VAArgTLSCopy = IRB.CreateAlloca(Ty: Type::getInt8Ty(C&: *MS.C), ArraySize: CopySize); |
| 8427 | VAArgTLSCopy->setAlignment(kShadowTLSAlignment); |
| 8428 | IRB.CreateMemSet(Ptr: VAArgTLSCopy, Val: Constant::getNullValue(Ty: IRB.getInt8Ty()), |
| 8429 | Size: CopySize, Align: kShadowTLSAlignment, isVolatile: false); |
| 8430 | |
| 8431 | Value *SrcSize = IRB.CreateBinaryIntrinsic( |
| 8432 | ID: Intrinsic::umin, LHS: CopySize, |
| 8433 | RHS: ConstantInt::get(Ty: MS.IntptrTy, V: kParamTLSSize)); |
| 8434 | IRB.CreateMemCpy(Dst: VAArgTLSCopy, DstAlign: kShadowTLSAlignment, Src: MS.VAArgTLS, |
| 8435 | SrcAlign: kShadowTLSAlignment, Size: SrcSize); |
| 8436 | } |
| 8437 | |
| 8438 | // Instrument va_start. |
| 8439 | // Copy va_list shadow from the backup copy of the TLS contents. |
| 8440 | for (CallInst *OrigInst : VAStartInstrumentationList) { |
| 8441 | NextNodeIRBuilder IRB(OrigInst); |
| 8442 | Value *VAListTag = OrigInst->getArgOperand(i: 0); |
| 8443 | Value *RegSaveAreaPtrPtr = IRB.CreatePtrToInt(V: VAListTag, DestTy: MS.IntptrTy); |
| 8444 | Value *RegSaveAreaSize = CopySize; |
| 8445 | |
| 8446 | // In PPC32 va_list_tag is a struct |
| 8447 | RegSaveAreaPtrPtr = |
| 8448 | IRB.CreateAdd(LHS: RegSaveAreaPtrPtr, RHS: ConstantInt::get(Ty: MS.IntptrTy, V: 8)); |
| 8449 | |
| 8450 | // On PPC 32 reg_save_area can only hold 32 bytes of data |
| 8451 | RegSaveAreaSize = IRB.CreateBinaryIntrinsic( |
| 8452 | ID: Intrinsic::umin, LHS: CopySize, RHS: ConstantInt::get(Ty: MS.IntptrTy, V: 32)); |
| 8453 | |
| 8454 | RegSaveAreaPtrPtr = IRB.CreateIntToPtr(V: RegSaveAreaPtrPtr, DestTy: MS.PtrTy); |
| 8455 | Value *RegSaveAreaPtr = IRB.CreateLoad(Ty: MS.PtrTy, Ptr: RegSaveAreaPtrPtr); |
| 8456 | |
| 8457 | const DataLayout &DL = F.getDataLayout(); |
| 8458 | unsigned IntptrSize = DL.getTypeStoreSize(Ty: MS.IntptrTy); |
| 8459 | const Align Alignment = Align(IntptrSize); |
| 8460 | |
| 8461 | { // Copy reg save area |
| 8462 | Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; |
| 8463 | std::tie(args&: RegSaveAreaShadowPtr, args&: RegSaveAreaOriginPtr) = |
| 8464 | MSV.getShadowOriginPtr(Addr: RegSaveAreaPtr, IRB, ShadowTy: IRB.getInt8Ty(), |
| 8465 | Alignment, /*isStore*/ true); |
| 8466 | IRB.CreateMemCpy(Dst: RegSaveAreaShadowPtr, DstAlign: Alignment, Src: VAArgTLSCopy, |
| 8467 | SrcAlign: Alignment, Size: RegSaveAreaSize); |
| 8468 | |
| 8469 | RegSaveAreaShadowPtr = |
| 8470 | IRB.CreatePtrToInt(V: RegSaveAreaShadowPtr, DestTy: MS.IntptrTy); |
| 8471 | Value *FPSaveArea = IRB.CreateAdd(LHS: RegSaveAreaShadowPtr, |
| 8472 | RHS: ConstantInt::get(Ty: MS.IntptrTy, V: 32)); |
| 8473 | FPSaveArea = IRB.CreateIntToPtr(V: FPSaveArea, DestTy: MS.PtrTy); |
| 8474 | // We fill fp shadow with zeroes as uninitialized fp args should have |
| 8475 | // been found during call base check |
| 8476 | IRB.CreateMemSet(Ptr: FPSaveArea, Val: ConstantInt::getNullValue(Ty: IRB.getInt8Ty()), |
| 8477 | Size: ConstantInt::get(Ty: MS.IntptrTy, V: 32), Align: Alignment); |
| 8478 | } |
| 8479 | |
| 8480 | { // Copy overflow area |
| 8481 | // RegSaveAreaSize is min(CopySize, 32) -> no overflow can occur |
| 8482 | Value *OverflowAreaSize = IRB.CreateSub(LHS: CopySize, RHS: RegSaveAreaSize); |
| 8483 | |
| 8484 | Value *OverflowAreaPtrPtr = IRB.CreatePtrToInt(V: VAListTag, DestTy: MS.IntptrTy); |
| 8485 | OverflowAreaPtrPtr = |
| 8486 | IRB.CreateAdd(LHS: OverflowAreaPtrPtr, RHS: ConstantInt::get(Ty: MS.IntptrTy, V: 4)); |
| 8487 | OverflowAreaPtrPtr = IRB.CreateIntToPtr(V: OverflowAreaPtrPtr, DestTy: MS.PtrTy); |
| 8488 | |
| 8489 | Value *OverflowAreaPtr = IRB.CreateLoad(Ty: MS.PtrTy, Ptr: OverflowAreaPtrPtr); |
| 8490 | |
| 8491 | Value *OverflowAreaShadowPtr, *OverflowAreaOriginPtr; |
| 8492 | std::tie(args&: OverflowAreaShadowPtr, args&: OverflowAreaOriginPtr) = |
| 8493 | MSV.getShadowOriginPtr(Addr: OverflowAreaPtr, IRB, ShadowTy: IRB.getInt8Ty(), |
| 8494 | Alignment, /*isStore*/ true); |
| 8495 | |
| 8496 | Value *OverflowVAArgTLSCopyPtr = |
| 8497 | IRB.CreatePtrToInt(V: VAArgTLSCopy, DestTy: MS.IntptrTy); |
| 8498 | OverflowVAArgTLSCopyPtr = |
| 8499 | IRB.CreateAdd(LHS: OverflowVAArgTLSCopyPtr, RHS: RegSaveAreaSize); |
| 8500 | |
| 8501 | OverflowVAArgTLSCopyPtr = |
| 8502 | IRB.CreateIntToPtr(V: OverflowVAArgTLSCopyPtr, DestTy: MS.PtrTy); |
| 8503 | IRB.CreateMemCpy(Dst: OverflowAreaShadowPtr, DstAlign: Alignment, |
| 8504 | Src: OverflowVAArgTLSCopyPtr, SrcAlign: Alignment, Size: OverflowAreaSize); |
| 8505 | } |
| 8506 | } |
| 8507 | } |
| 8508 | }; |
| 8509 | |
| 8510 | /// SystemZ-specific implementation of VarArgHelper. |
| 8511 | struct VarArgSystemZHelper : public VarArgHelperBase { |
| 8512 | static const unsigned SystemZGpOffset = 16; |
| 8513 | static const unsigned SystemZGpEndOffset = 56; |
| 8514 | static const unsigned SystemZFpOffset = 128; |
| 8515 | static const unsigned SystemZFpEndOffset = 160; |
| 8516 | static const unsigned SystemZMaxVrArgs = 8; |
| 8517 | static const unsigned SystemZRegSaveAreaSize = 160; |
| 8518 | static const unsigned SystemZOverflowOffset = 160; |
| 8519 | static const unsigned SystemZVAListTagSize = 32; |
| 8520 | static const unsigned SystemZOverflowArgAreaPtrOffset = 16; |
| 8521 | static const unsigned SystemZRegSaveAreaPtrOffset = 24; |
| 8522 | |
| 8523 | bool IsSoftFloatABI; |
| 8524 | AllocaInst *VAArgTLSCopy = nullptr; |
| 8525 | AllocaInst *VAArgTLSOriginCopy = nullptr; |
| 8526 | Value *VAArgOverflowSize = nullptr; |
| 8527 | |
| 8528 | enum class ArgKind { |
| 8529 | GeneralPurpose, |
| 8530 | FloatingPoint, |
| 8531 | Vector, |
| 8532 | Memory, |
| 8533 | Indirect, |
| 8534 | }; |
| 8535 | |
| 8536 | enum class ShadowExtension { None, Zero, Sign }; |
| 8537 | |
| 8538 | VarArgSystemZHelper(Function &F, MemorySanitizer &MS, |
| 8539 | MemorySanitizerVisitor &MSV) |
| 8540 | : VarArgHelperBase(F, MS, MSV, SystemZVAListTagSize), |
| 8541 | IsSoftFloatABI(F.getFnAttribute(Kind: "use-soft-float" ).getValueAsBool()) {} |
| 8542 | |
| 8543 | ArgKind classifyArgument(Type *T) { |
| 8544 | // T is a SystemZABIInfo::classifyArgumentType() output, and there are |
| 8545 | // only a few possibilities of what it can be. In particular, enums, single |
| 8546 | // element structs and large types have already been taken care of. |
| 8547 | |
| 8548 | // Some i128 and fp128 arguments are converted to pointers only in the |
| 8549 | // back end. |
| 8550 | if (T->isIntegerTy(Bitwidth: 128) || T->isFP128Ty()) |
| 8551 | return ArgKind::Indirect; |
| 8552 | if (T->isFloatingPointTy()) |
| 8553 | return IsSoftFloatABI ? ArgKind::GeneralPurpose : ArgKind::FloatingPoint; |
| 8554 | if (T->isIntegerTy() || T->isPointerTy()) |
| 8555 | return ArgKind::GeneralPurpose; |
| 8556 | if (T->isVectorTy()) |
| 8557 | return ArgKind::Vector; |
| 8558 | return ArgKind::Memory; |
| 8559 | } |
| 8560 | |
| 8561 | ShadowExtension getShadowExtension(const CallBase &CB, unsigned ArgNo) { |
| 8562 | // ABI says: "One of the simple integer types no more than 64 bits wide. |
| 8563 | // ... If such an argument is shorter than 64 bits, replace it by a full |
| 8564 | // 64-bit integer representing the same number, using sign or zero |
| 8565 | // extension". Shadow for an integer argument has the same type as the |
| 8566 | // argument itself, so it can be sign or zero extended as well. |
| 8567 | bool ZExt = CB.paramHasAttr(ArgNo, Kind: Attribute::ZExt); |
| 8568 | bool SExt = CB.paramHasAttr(ArgNo, Kind: Attribute::SExt); |
| 8569 | if (ZExt) { |
| 8570 | assert(!SExt); |
| 8571 | return ShadowExtension::Zero; |
| 8572 | } |
| 8573 | if (SExt) { |
| 8574 | assert(!ZExt); |
| 8575 | return ShadowExtension::Sign; |
| 8576 | } |
| 8577 | return ShadowExtension::None; |
| 8578 | } |
| 8579 | |
| 8580 | void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { |
| 8581 | unsigned GpOffset = SystemZGpOffset; |
| 8582 | unsigned FpOffset = SystemZFpOffset; |
| 8583 | unsigned VrIndex = 0; |
| 8584 | unsigned OverflowOffset = SystemZOverflowOffset; |
| 8585 | const DataLayout &DL = F.getDataLayout(); |
| 8586 | for (const auto &[ArgNo, A] : llvm::enumerate(First: CB.args())) { |
| 8587 | bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams(); |
| 8588 | // SystemZABIInfo does not produce ByVal parameters. |
| 8589 | assert(!CB.paramHasAttr(ArgNo, Attribute::ByVal)); |
| 8590 | Type *T = A->getType(); |
| 8591 | ArgKind AK = classifyArgument(T); |
| 8592 | if (AK == ArgKind::Indirect) { |
| 8593 | T = MS.PtrTy; |
| 8594 | AK = ArgKind::GeneralPurpose; |
| 8595 | } |
| 8596 | if (AK == ArgKind::GeneralPurpose && GpOffset >= SystemZGpEndOffset) |
| 8597 | AK = ArgKind::Memory; |
| 8598 | if (AK == ArgKind::FloatingPoint && FpOffset >= SystemZFpEndOffset) |
| 8599 | AK = ArgKind::Memory; |
| 8600 | if (AK == ArgKind::Vector && (VrIndex >= SystemZMaxVrArgs || !IsFixed)) |
| 8601 | AK = ArgKind::Memory; |
| 8602 | Value *ShadowBase = nullptr; |
| 8603 | Value *OriginBase = nullptr; |
| 8604 | ShadowExtension SE = ShadowExtension::None; |
| 8605 | switch (AK) { |
| 8606 | case ArgKind::GeneralPurpose: { |
| 8607 | // Always keep track of GpOffset, but store shadow only for varargs. |
| 8608 | uint64_t ArgSize = 8; |
| 8609 | if (GpOffset + ArgSize <= kParamTLSSize) { |
| 8610 | if (!IsFixed) { |
| 8611 | SE = getShadowExtension(CB, ArgNo); |
| 8612 | uint64_t GapSize = 0; |
| 8613 | if (SE == ShadowExtension::None) { |
| 8614 | uint64_t ArgAllocSize = DL.getTypeAllocSize(Ty: T); |
| 8615 | assert(ArgAllocSize <= ArgSize); |
| 8616 | GapSize = ArgSize - ArgAllocSize; |
| 8617 | } |
| 8618 | ShadowBase = getShadowAddrForVAArgument(IRB, ArgOffset: GpOffset + GapSize); |
| 8619 | if (MS.TrackOrigins) |
| 8620 | OriginBase = getOriginPtrForVAArgument(IRB, ArgOffset: GpOffset + GapSize); |
| 8621 | } |
| 8622 | GpOffset += ArgSize; |
| 8623 | } else { |
| 8624 | GpOffset = kParamTLSSize; |
| 8625 | } |
| 8626 | break; |
| 8627 | } |
| 8628 | case ArgKind::FloatingPoint: { |
| 8629 | // Always keep track of FpOffset, but store shadow only for varargs. |
| 8630 | uint64_t ArgSize = 8; |
| 8631 | if (FpOffset + ArgSize <= kParamTLSSize) { |
| 8632 | if (!IsFixed) { |
| 8633 | // PoP says: "A short floating-point datum requires only the |
| 8634 | // left-most 32 bit positions of a floating-point register". |
| 8635 | // Therefore, in contrast to AK_GeneralPurpose and AK_Memory, |
| 8636 | // don't extend shadow and don't mind the gap. |
| 8637 | ShadowBase = getShadowAddrForVAArgument(IRB, ArgOffset: FpOffset); |
| 8638 | if (MS.TrackOrigins) |
| 8639 | OriginBase = getOriginPtrForVAArgument(IRB, ArgOffset: FpOffset); |
| 8640 | } |
| 8641 | FpOffset += ArgSize; |
| 8642 | } else { |
| 8643 | FpOffset = kParamTLSSize; |
| 8644 | } |
| 8645 | break; |
| 8646 | } |
| 8647 | case ArgKind::Vector: { |
| 8648 | // Keep track of VrIndex. No need to store shadow, since vector varargs |
| 8649 | // go through AK_Memory. |
| 8650 | assert(IsFixed); |
| 8651 | VrIndex++; |
| 8652 | break; |
| 8653 | } |
| 8654 | case ArgKind::Memory: { |
| 8655 | // Keep track of OverflowOffset and store shadow only for varargs. |
| 8656 | // Ignore fixed args, since we need to copy only the vararg portion of |
| 8657 | // the overflow area shadow. |
| 8658 | if (!IsFixed) { |
| 8659 | uint64_t ArgAllocSize = DL.getTypeAllocSize(Ty: T); |
| 8660 | uint64_t ArgSize = alignTo(Value: ArgAllocSize, Align: 8); |
| 8661 | if (OverflowOffset + ArgSize <= kParamTLSSize) { |
| 8662 | SE = getShadowExtension(CB, ArgNo); |
| 8663 | uint64_t GapSize = |
| 8664 | SE == ShadowExtension::None ? ArgSize - ArgAllocSize : 0; |
| 8665 | ShadowBase = |
| 8666 | getShadowAddrForVAArgument(IRB, ArgOffset: OverflowOffset + GapSize); |
| 8667 | if (MS.TrackOrigins) |
| 8668 | OriginBase = |
| 8669 | getOriginPtrForVAArgument(IRB, ArgOffset: OverflowOffset + GapSize); |
| 8670 | OverflowOffset += ArgSize; |
| 8671 | } else { |
| 8672 | OverflowOffset = kParamTLSSize; |
| 8673 | } |
| 8674 | } |
| 8675 | break; |
| 8676 | } |
| 8677 | case ArgKind::Indirect: |
| 8678 | llvm_unreachable("Indirect must be converted to GeneralPurpose" ); |
| 8679 | } |
| 8680 | if (ShadowBase == nullptr) |
| 8681 | continue; |
| 8682 | Value *Shadow = MSV.getShadow(V: A); |
| 8683 | if (SE != ShadowExtension::None) |
| 8684 | Shadow = MSV.CreateShadowCast(IRB, V: Shadow, dstTy: IRB.getInt64Ty(), |
| 8685 | /*Signed*/ SE == ShadowExtension::Sign); |
| 8686 | ShadowBase = IRB.CreateIntToPtr(V: ShadowBase, DestTy: MS.PtrTy, Name: "_msarg_va_s" ); |
| 8687 | IRB.CreateStore(Val: Shadow, Ptr: ShadowBase); |
| 8688 | if (MS.TrackOrigins) { |
| 8689 | Value *Origin = MSV.getOrigin(V: A); |
| 8690 | TypeSize StoreSize = DL.getTypeStoreSize(Ty: Shadow->getType()); |
| 8691 | MSV.paintOrigin(IRB, Origin, OriginPtr: OriginBase, TS: StoreSize, |
| 8692 | Alignment: kMinOriginAlignment); |
| 8693 | } |
| 8694 | } |
| 8695 | Constant *OverflowSize = ConstantInt::get( |
| 8696 | Ty: IRB.getInt64Ty(), V: OverflowOffset - SystemZOverflowOffset); |
| 8697 | IRB.CreateStore(Val: OverflowSize, Ptr: MS.VAArgOverflowSizeTLS); |
| 8698 | } |
| 8699 | |
| 8700 | void copyRegSaveArea(IRBuilder<> &IRB, Value *VAListTag) { |
| 8701 | Value *RegSaveAreaPtrPtr = IRB.CreateIntToPtr( |
| 8702 | V: IRB.CreateAdd( |
| 8703 | LHS: IRB.CreatePtrToInt(V: VAListTag, DestTy: MS.IntptrTy), |
| 8704 | RHS: ConstantInt::get(Ty: MS.IntptrTy, V: SystemZRegSaveAreaPtrOffset)), |
| 8705 | DestTy: MS.PtrTy); |
| 8706 | Value *RegSaveAreaPtr = IRB.CreateLoad(Ty: MS.PtrTy, Ptr: RegSaveAreaPtrPtr); |
| 8707 | Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; |
| 8708 | const Align Alignment = Align(8); |
| 8709 | std::tie(args&: RegSaveAreaShadowPtr, args&: RegSaveAreaOriginPtr) = |
| 8710 | MSV.getShadowOriginPtr(Addr: RegSaveAreaPtr, IRB, ShadowTy: IRB.getInt8Ty(), Alignment, |
| 8711 | /*isStore*/ true); |
| 8712 | // TODO(iii): copy only fragments filled by visitCallBase() |
| 8713 | // TODO(iii): support packed-stack && !use-soft-float |
| 8714 | // For use-soft-float functions, it is enough to copy just the GPRs. |
| 8715 | unsigned RegSaveAreaSize = |
| 8716 | IsSoftFloatABI ? SystemZGpEndOffset : SystemZRegSaveAreaSize; |
| 8717 | IRB.CreateMemCpy(Dst: RegSaveAreaShadowPtr, DstAlign: Alignment, Src: VAArgTLSCopy, SrcAlign: Alignment, |
| 8718 | Size: RegSaveAreaSize); |
| 8719 | if (MS.TrackOrigins) |
| 8720 | IRB.CreateMemCpy(Dst: RegSaveAreaOriginPtr, DstAlign: Alignment, Src: VAArgTLSOriginCopy, |
| 8721 | SrcAlign: Alignment, Size: RegSaveAreaSize); |
| 8722 | } |
| 8723 | |
| 8724 | // FIXME: This implementation limits OverflowOffset to kParamTLSSize, so we |
| 8725 | // don't know real overflow size and can't clear shadow beyond kParamTLSSize. |
| 8726 | void copyOverflowArea(IRBuilder<> &IRB, Value *VAListTag) { |
| 8727 | Value *OverflowArgAreaPtrPtr = IRB.CreateIntToPtr( |
| 8728 | V: IRB.CreateAdd( |
| 8729 | LHS: IRB.CreatePtrToInt(V: VAListTag, DestTy: MS.IntptrTy), |
| 8730 | RHS: ConstantInt::get(Ty: MS.IntptrTy, V: SystemZOverflowArgAreaPtrOffset)), |
| 8731 | DestTy: MS.PtrTy); |
| 8732 | Value *OverflowArgAreaPtr = IRB.CreateLoad(Ty: MS.PtrTy, Ptr: OverflowArgAreaPtrPtr); |
| 8733 | Value *OverflowArgAreaShadowPtr, *OverflowArgAreaOriginPtr; |
| 8734 | const Align Alignment = Align(8); |
| 8735 | std::tie(args&: OverflowArgAreaShadowPtr, args&: OverflowArgAreaOriginPtr) = |
| 8736 | MSV.getShadowOriginPtr(Addr: OverflowArgAreaPtr, IRB, ShadowTy: IRB.getInt8Ty(), |
| 8737 | Alignment, /*isStore*/ true); |
| 8738 | Value *SrcPtr = IRB.CreateConstGEP1_32(Ty: IRB.getInt8Ty(), Ptr: VAArgTLSCopy, |
| 8739 | Idx0: SystemZOverflowOffset); |
| 8740 | IRB.CreateMemCpy(Dst: OverflowArgAreaShadowPtr, DstAlign: Alignment, Src: SrcPtr, SrcAlign: Alignment, |
| 8741 | Size: VAArgOverflowSize); |
| 8742 | if (MS.TrackOrigins) { |
| 8743 | SrcPtr = IRB.CreateConstGEP1_32(Ty: IRB.getInt8Ty(), Ptr: VAArgTLSOriginCopy, |
| 8744 | Idx0: SystemZOverflowOffset); |
| 8745 | IRB.CreateMemCpy(Dst: OverflowArgAreaOriginPtr, DstAlign: Alignment, Src: SrcPtr, SrcAlign: Alignment, |
| 8746 | Size: VAArgOverflowSize); |
| 8747 | } |
| 8748 | } |
| 8749 | |
| 8750 | void finalizeInstrumentation() override { |
| 8751 | assert(!VAArgOverflowSize && !VAArgTLSCopy && |
| 8752 | "finalizeInstrumentation called twice" ); |
| 8753 | if (!VAStartInstrumentationList.empty()) { |
| 8754 | // If there is a va_start in this function, make a backup copy of |
| 8755 | // va_arg_tls somewhere in the function entry block. |
| 8756 | IRBuilder<> IRB(MSV.FnPrologueEnd); |
| 8757 | VAArgOverflowSize = |
| 8758 | IRB.CreateLoad(Ty: IRB.getInt64Ty(), Ptr: MS.VAArgOverflowSizeTLS); |
| 8759 | Value *CopySize = |
| 8760 | IRB.CreateAdd(LHS: ConstantInt::get(Ty: MS.IntptrTy, V: SystemZOverflowOffset), |
| 8761 | RHS: VAArgOverflowSize); |
| 8762 | VAArgTLSCopy = IRB.CreateAlloca(Ty: Type::getInt8Ty(C&: *MS.C), ArraySize: CopySize); |
| 8763 | VAArgTLSCopy->setAlignment(kShadowTLSAlignment); |
| 8764 | IRB.CreateMemSet(Ptr: VAArgTLSCopy, Val: Constant::getNullValue(Ty: IRB.getInt8Ty()), |
| 8765 | Size: CopySize, Align: kShadowTLSAlignment, isVolatile: false); |
| 8766 | |
| 8767 | Value *SrcSize = IRB.CreateBinaryIntrinsic( |
| 8768 | ID: Intrinsic::umin, LHS: CopySize, |
| 8769 | RHS: ConstantInt::get(Ty: MS.IntptrTy, V: kParamTLSSize)); |
| 8770 | IRB.CreateMemCpy(Dst: VAArgTLSCopy, DstAlign: kShadowTLSAlignment, Src: MS.VAArgTLS, |
| 8771 | SrcAlign: kShadowTLSAlignment, Size: SrcSize); |
| 8772 | if (MS.TrackOrigins) { |
| 8773 | VAArgTLSOriginCopy = IRB.CreateAlloca(Ty: Type::getInt8Ty(C&: *MS.C), ArraySize: CopySize); |
| 8774 | VAArgTLSOriginCopy->setAlignment(kShadowTLSAlignment); |
| 8775 | IRB.CreateMemCpy(Dst: VAArgTLSOriginCopy, DstAlign: kShadowTLSAlignment, |
| 8776 | Src: MS.VAArgOriginTLS, SrcAlign: kShadowTLSAlignment, Size: SrcSize); |
| 8777 | } |
| 8778 | } |
| 8779 | |
| 8780 | // Instrument va_start. |
| 8781 | // Copy va_list shadow from the backup copy of the TLS contents. |
| 8782 | for (CallInst *OrigInst : VAStartInstrumentationList) { |
| 8783 | NextNodeIRBuilder IRB(OrigInst); |
| 8784 | Value *VAListTag = OrigInst->getArgOperand(i: 0); |
| 8785 | copyRegSaveArea(IRB, VAListTag); |
| 8786 | copyOverflowArea(IRB, VAListTag); |
| 8787 | } |
| 8788 | } |
| 8789 | }; |
| 8790 | |
| 8791 | /// i386-specific implementation of VarArgHelper. |
| 8792 | struct VarArgI386Helper : public VarArgHelperBase { |
| 8793 | AllocaInst *VAArgTLSCopy = nullptr; |
| 8794 | Value *VAArgSize = nullptr; |
| 8795 | |
| 8796 | VarArgI386Helper(Function &F, MemorySanitizer &MS, |
| 8797 | MemorySanitizerVisitor &MSV) |
| 8798 | : VarArgHelperBase(F, MS, MSV, /*VAListTagSize=*/4) {} |
| 8799 | |
| 8800 | void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { |
| 8801 | const DataLayout &DL = F.getDataLayout(); |
| 8802 | unsigned IntptrSize = DL.getTypeStoreSize(Ty: MS.IntptrTy); |
| 8803 | unsigned VAArgOffset = 0; |
| 8804 | for (const auto &[ArgNo, A] : llvm::enumerate(First: CB.args())) { |
| 8805 | bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams(); |
| 8806 | bool IsByVal = CB.paramHasAttr(ArgNo, Kind: Attribute::ByVal); |
| 8807 | if (IsByVal) { |
| 8808 | assert(A->getType()->isPointerTy()); |
| 8809 | Type *RealTy = CB.getParamByValType(ArgNo); |
| 8810 | uint64_t ArgSize = DL.getTypeAllocSize(Ty: RealTy); |
| 8811 | Align ArgAlign = CB.getParamAlign(ArgNo).value_or(u: Align(IntptrSize)); |
| 8812 | if (ArgAlign < IntptrSize) |
| 8813 | ArgAlign = Align(IntptrSize); |
| 8814 | VAArgOffset = alignTo(Size: VAArgOffset, A: ArgAlign); |
| 8815 | if (!IsFixed) { |
| 8816 | Value *Base = getShadowPtrForVAArgument(IRB, ArgOffset: VAArgOffset, ArgSize); |
| 8817 | if (Base) { |
| 8818 | Value *AShadowPtr, *AOriginPtr; |
| 8819 | std::tie(args&: AShadowPtr, args&: AOriginPtr) = |
| 8820 | MSV.getShadowOriginPtr(Addr: A, IRB, ShadowTy: IRB.getInt8Ty(), |
| 8821 | Alignment: kShadowTLSAlignment, /*isStore*/ false); |
| 8822 | |
| 8823 | IRB.CreateMemCpy(Dst: Base, DstAlign: kShadowTLSAlignment, Src: AShadowPtr, |
| 8824 | SrcAlign: kShadowTLSAlignment, Size: ArgSize); |
| 8825 | } |
| 8826 | VAArgOffset += alignTo(Size: ArgSize, A: Align(IntptrSize)); |
| 8827 | } |
| 8828 | } else { |
| 8829 | Value *Base; |
| 8830 | uint64_t ArgSize = DL.getTypeAllocSize(Ty: A->getType()); |
| 8831 | Align ArgAlign = Align(IntptrSize); |
| 8832 | VAArgOffset = alignTo(Size: VAArgOffset, A: ArgAlign); |
| 8833 | if (DL.isBigEndian()) { |
| 8834 | // Adjusting the shadow for argument with size < IntptrSize to match |
| 8835 | // the placement of bits in big endian system |
| 8836 | if (ArgSize < IntptrSize) |
| 8837 | VAArgOffset += (IntptrSize - ArgSize); |
| 8838 | } |
| 8839 | if (!IsFixed) { |
| 8840 | Base = getShadowPtrForVAArgument(IRB, ArgOffset: VAArgOffset, ArgSize); |
| 8841 | if (Base) |
| 8842 | IRB.CreateAlignedStore(Val: MSV.getShadow(V: A), Ptr: Base, Align: kShadowTLSAlignment); |
| 8843 | VAArgOffset += ArgSize; |
| 8844 | VAArgOffset = alignTo(Size: VAArgOffset, A: Align(IntptrSize)); |
| 8845 | } |
| 8846 | } |
| 8847 | } |
| 8848 | |
| 8849 | Constant *TotalVAArgSize = ConstantInt::get(Ty: MS.IntptrTy, V: VAArgOffset); |
| 8850 | // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of |
| 8851 | // a new class member i.e. it is the total size of all VarArgs. |
| 8852 | IRB.CreateStore(Val: TotalVAArgSize, Ptr: MS.VAArgOverflowSizeTLS); |
| 8853 | } |
| 8854 | |
| 8855 | void finalizeInstrumentation() override { |
| 8856 | assert(!VAArgSize && !VAArgTLSCopy && |
| 8857 | "finalizeInstrumentation called twice" ); |
| 8858 | IRBuilder<> IRB(MSV.FnPrologueEnd); |
| 8859 | VAArgSize = IRB.CreateLoad(Ty: MS.IntptrTy, Ptr: MS.VAArgOverflowSizeTLS); |
| 8860 | Value *CopySize = VAArgSize; |
| 8861 | |
| 8862 | if (!VAStartInstrumentationList.empty()) { |
| 8863 | // If there is a va_start in this function, make a backup copy of |
| 8864 | // va_arg_tls somewhere in the function entry block. |
| 8865 | VAArgTLSCopy = IRB.CreateAlloca(Ty: Type::getInt8Ty(C&: *MS.C), ArraySize: CopySize); |
| 8866 | VAArgTLSCopy->setAlignment(kShadowTLSAlignment); |
| 8867 | IRB.CreateMemSet(Ptr: VAArgTLSCopy, Val: Constant::getNullValue(Ty: IRB.getInt8Ty()), |
| 8868 | Size: CopySize, Align: kShadowTLSAlignment, isVolatile: false); |
| 8869 | |
| 8870 | Value *SrcSize = IRB.CreateBinaryIntrinsic( |
| 8871 | ID: Intrinsic::umin, LHS: CopySize, |
| 8872 | RHS: ConstantInt::get(Ty: MS.IntptrTy, V: kParamTLSSize)); |
| 8873 | IRB.CreateMemCpy(Dst: VAArgTLSCopy, DstAlign: kShadowTLSAlignment, Src: MS.VAArgTLS, |
| 8874 | SrcAlign: kShadowTLSAlignment, Size: SrcSize); |
| 8875 | } |
| 8876 | |
| 8877 | // Instrument va_start. |
| 8878 | // Copy va_list shadow from the backup copy of the TLS contents. |
| 8879 | for (CallInst *OrigInst : VAStartInstrumentationList) { |
| 8880 | NextNodeIRBuilder IRB(OrigInst); |
| 8881 | Value *VAListTag = OrigInst->getArgOperand(i: 0); |
| 8882 | Type *RegSaveAreaPtrTy = PointerType::getUnqual(C&: *MS.C); |
| 8883 | Value *RegSaveAreaPtrPtr = |
| 8884 | IRB.CreateIntToPtr(V: IRB.CreatePtrToInt(V: VAListTag, DestTy: MS.IntptrTy), |
| 8885 | DestTy: PointerType::get(C&: *MS.C, AddressSpace: 0)); |
| 8886 | Value *RegSaveAreaPtr = |
| 8887 | IRB.CreateLoad(Ty: RegSaveAreaPtrTy, Ptr: RegSaveAreaPtrPtr); |
| 8888 | Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; |
| 8889 | const DataLayout &DL = F.getDataLayout(); |
| 8890 | unsigned IntptrSize = DL.getTypeStoreSize(Ty: MS.IntptrTy); |
| 8891 | const Align Alignment = Align(IntptrSize); |
| 8892 | std::tie(args&: RegSaveAreaShadowPtr, args&: RegSaveAreaOriginPtr) = |
| 8893 | MSV.getShadowOriginPtr(Addr: RegSaveAreaPtr, IRB, ShadowTy: IRB.getInt8Ty(), |
| 8894 | Alignment, /*isStore*/ true); |
| 8895 | IRB.CreateMemCpy(Dst: RegSaveAreaShadowPtr, DstAlign: Alignment, Src: VAArgTLSCopy, SrcAlign: Alignment, |
| 8896 | Size: CopySize); |
| 8897 | } |
| 8898 | } |
| 8899 | }; |
| 8900 | |
| 8901 | /// Implementation of VarArgHelper that is used for ARM32, MIPS, RISCV, |
| 8902 | /// LoongArch64. |
| 8903 | struct VarArgGenericHelper : public VarArgHelperBase { |
| 8904 | AllocaInst *VAArgTLSCopy = nullptr; |
| 8905 | Value *VAArgSize = nullptr; |
| 8906 | |
| 8907 | VarArgGenericHelper(Function &F, MemorySanitizer &MS, |
| 8908 | MemorySanitizerVisitor &MSV, const unsigned VAListTagSize) |
| 8909 | : VarArgHelperBase(F, MS, MSV, VAListTagSize) {} |
| 8910 | |
| 8911 | void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { |
| 8912 | unsigned VAArgOffset = 0; |
| 8913 | const DataLayout &DL = F.getDataLayout(); |
| 8914 | unsigned IntptrSize = DL.getTypeStoreSize(Ty: MS.IntptrTy); |
| 8915 | for (const auto &[ArgNo, A] : llvm::enumerate(First: CB.args())) { |
| 8916 | bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams(); |
| 8917 | if (IsFixed) |
| 8918 | continue; |
| 8919 | uint64_t ArgSize = DL.getTypeAllocSize(Ty: A->getType()); |
| 8920 | if (DL.isBigEndian()) { |
| 8921 | // Adjusting the shadow for argument with size < IntptrSize to match the |
| 8922 | // placement of bits in big endian system |
| 8923 | if (ArgSize < IntptrSize) |
| 8924 | VAArgOffset += (IntptrSize - ArgSize); |
| 8925 | } |
| 8926 | Value *Base = getShadowPtrForVAArgument(IRB, ArgOffset: VAArgOffset, ArgSize); |
| 8927 | VAArgOffset += ArgSize; |
| 8928 | VAArgOffset = alignTo(Value: VAArgOffset, Align: IntptrSize); |
| 8929 | if (!Base) |
| 8930 | continue; |
| 8931 | IRB.CreateAlignedStore(Val: MSV.getShadow(V: A), Ptr: Base, Align: kShadowTLSAlignment); |
| 8932 | } |
| 8933 | |
| 8934 | Constant *TotalVAArgSize = ConstantInt::get(Ty: MS.IntptrTy, V: VAArgOffset); |
| 8935 | // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of |
| 8936 | // a new class member i.e. it is the total size of all VarArgs. |
| 8937 | IRB.CreateStore(Val: TotalVAArgSize, Ptr: MS.VAArgOverflowSizeTLS); |
| 8938 | } |
| 8939 | |
| 8940 | void finalizeInstrumentation() override { |
| 8941 | assert(!VAArgSize && !VAArgTLSCopy && |
| 8942 | "finalizeInstrumentation called twice" ); |
| 8943 | IRBuilder<> IRB(MSV.FnPrologueEnd); |
| 8944 | VAArgSize = IRB.CreateLoad(Ty: MS.IntptrTy, Ptr: MS.VAArgOverflowSizeTLS); |
| 8945 | Value *CopySize = VAArgSize; |
| 8946 | |
| 8947 | if (!VAStartInstrumentationList.empty()) { |
| 8948 | // If there is a va_start in this function, make a backup copy of |
| 8949 | // va_arg_tls somewhere in the function entry block. |
| 8950 | VAArgTLSCopy = IRB.CreateAlloca(Ty: Type::getInt8Ty(C&: *MS.C), ArraySize: CopySize); |
| 8951 | VAArgTLSCopy->setAlignment(kShadowTLSAlignment); |
| 8952 | IRB.CreateMemSet(Ptr: VAArgTLSCopy, Val: Constant::getNullValue(Ty: IRB.getInt8Ty()), |
| 8953 | Size: CopySize, Align: kShadowTLSAlignment, isVolatile: false); |
| 8954 | |
| 8955 | Value *SrcSize = IRB.CreateBinaryIntrinsic( |
| 8956 | ID: Intrinsic::umin, LHS: CopySize, |
| 8957 | RHS: ConstantInt::get(Ty: MS.IntptrTy, V: kParamTLSSize)); |
| 8958 | IRB.CreateMemCpy(Dst: VAArgTLSCopy, DstAlign: kShadowTLSAlignment, Src: MS.VAArgTLS, |
| 8959 | SrcAlign: kShadowTLSAlignment, Size: SrcSize); |
| 8960 | } |
| 8961 | |
| 8962 | // Instrument va_start. |
| 8963 | // Copy va_list shadow from the backup copy of the TLS contents. |
| 8964 | for (CallInst *OrigInst : VAStartInstrumentationList) { |
| 8965 | NextNodeIRBuilder IRB(OrigInst); |
| 8966 | Value *VAListTag = OrigInst->getArgOperand(i: 0); |
| 8967 | Type *RegSaveAreaPtrTy = PointerType::getUnqual(C&: *MS.C); |
| 8968 | Value *RegSaveAreaPtrPtr = |
| 8969 | IRB.CreateIntToPtr(V: IRB.CreatePtrToInt(V: VAListTag, DestTy: MS.IntptrTy), |
| 8970 | DestTy: PointerType::get(C&: *MS.C, AddressSpace: 0)); |
| 8971 | Value *RegSaveAreaPtr = |
| 8972 | IRB.CreateLoad(Ty: RegSaveAreaPtrTy, Ptr: RegSaveAreaPtrPtr); |
| 8973 | Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; |
| 8974 | const DataLayout &DL = F.getDataLayout(); |
| 8975 | unsigned IntptrSize = DL.getTypeStoreSize(Ty: MS.IntptrTy); |
| 8976 | const Align Alignment = Align(IntptrSize); |
| 8977 | std::tie(args&: RegSaveAreaShadowPtr, args&: RegSaveAreaOriginPtr) = |
| 8978 | MSV.getShadowOriginPtr(Addr: RegSaveAreaPtr, IRB, ShadowTy: IRB.getInt8Ty(), |
| 8979 | Alignment, /*isStore*/ true); |
| 8980 | IRB.CreateMemCpy(Dst: RegSaveAreaShadowPtr, DstAlign: Alignment, Src: VAArgTLSCopy, SrcAlign: Alignment, |
| 8981 | Size: CopySize); |
| 8982 | } |
| 8983 | } |
| 8984 | }; |
| 8985 | |
| 8986 | // ARM32, Loongarch64, MIPS and RISCV share the same calling conventions |
| 8987 | // regarding VAArgs. |
| 8988 | using VarArgARM32Helper = VarArgGenericHelper; |
| 8989 | using VarArgRISCVHelper = VarArgGenericHelper; |
| 8990 | using VarArgMIPSHelper = VarArgGenericHelper; |
| 8991 | using VarArgLoongArch64Helper = VarArgGenericHelper; |
| 8992 | |
| 8993 | /// A no-op implementation of VarArgHelper. |
| 8994 | struct VarArgNoOpHelper : public VarArgHelper { |
| 8995 | VarArgNoOpHelper(Function &F, MemorySanitizer &MS, |
| 8996 | MemorySanitizerVisitor &MSV) {} |
| 8997 | |
| 8998 | void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override {} |
| 8999 | |
| 9000 | void visitVAStartInst(VAStartInst &I) override {} |
| 9001 | |
| 9002 | void visitVACopyInst(VACopyInst &I) override {} |
| 9003 | |
| 9004 | void finalizeInstrumentation() override {} |
| 9005 | }; |
| 9006 | |
| 9007 | } // end anonymous namespace |
| 9008 | |
| 9009 | static VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan, |
| 9010 | MemorySanitizerVisitor &Visitor) { |
| 9011 | // VarArg handling is only implemented on AMD64. False positives are possible |
| 9012 | // on other platforms. |
| 9013 | Triple TargetTriple(Func.getParent()->getTargetTriple()); |
| 9014 | |
| 9015 | if (TargetTriple.getArch() == Triple::x86) |
| 9016 | return new VarArgI386Helper(Func, Msan, Visitor); |
| 9017 | |
| 9018 | if (TargetTriple.getArch() == Triple::x86_64) |
| 9019 | return new VarArgAMD64Helper(Func, Msan, Visitor); |
| 9020 | |
| 9021 | if (TargetTriple.isARM()) |
| 9022 | return new VarArgARM32Helper(Func, Msan, Visitor, /*VAListTagSize=*/4); |
| 9023 | |
| 9024 | if (TargetTriple.isAArch64()) |
| 9025 | return new VarArgAArch64Helper(Func, Msan, Visitor); |
| 9026 | |
| 9027 | if (TargetTriple.isSystemZ()) |
| 9028 | return new VarArgSystemZHelper(Func, Msan, Visitor); |
| 9029 | |
| 9030 | // On PowerPC32 VAListTag is a struct |
| 9031 | // {char, char, i16 padding, char *, char *} |
| 9032 | if (TargetTriple.isPPC32()) |
| 9033 | return new VarArgPowerPC32Helper(Func, Msan, Visitor); |
| 9034 | |
| 9035 | if (TargetTriple.isPPC64()) |
| 9036 | return new VarArgPowerPC64Helper(Func, Msan, Visitor); |
| 9037 | |
| 9038 | if (TargetTriple.isRISCV32()) |
| 9039 | return new VarArgRISCVHelper(Func, Msan, Visitor, /*VAListTagSize=*/4); |
| 9040 | |
| 9041 | if (TargetTriple.isRISCV64()) |
| 9042 | return new VarArgRISCVHelper(Func, Msan, Visitor, /*VAListTagSize=*/8); |
| 9043 | |
| 9044 | if (TargetTriple.isMIPS32()) |
| 9045 | return new VarArgMIPSHelper(Func, Msan, Visitor, /*VAListTagSize=*/4); |
| 9046 | |
| 9047 | if (TargetTriple.isMIPS64()) |
| 9048 | return new VarArgMIPSHelper(Func, Msan, Visitor, /*VAListTagSize=*/8); |
| 9049 | |
| 9050 | if (TargetTriple.isLoongArch64()) |
| 9051 | return new VarArgLoongArch64Helper(Func, Msan, Visitor, |
| 9052 | /*VAListTagSize=*/8); |
| 9053 | |
| 9054 | return new VarArgNoOpHelper(Func, Msan, Visitor); |
| 9055 | } |
| 9056 | |
| 9057 | bool MemorySanitizer::sanitizeFunction(Function &F, TargetLibraryInfo &TLI) { |
| 9058 | if (!CompileKernel && F.getName() == kMsanModuleCtorName) |
| 9059 | return false; |
| 9060 | |
| 9061 | if (F.hasFnAttribute(Kind: Attribute::DisableSanitizerInstrumentation)) |
| 9062 | return false; |
| 9063 | |
| 9064 | MemorySanitizerVisitor Visitor(F, *this, TLI); |
| 9065 | |
| 9066 | // Clear out memory attributes. |
| 9067 | AttributeMask B; |
| 9068 | B.addAttribute(Val: Attribute::Memory).addAttribute(Val: Attribute::Speculatable); |
| 9069 | F.removeFnAttrs(Attrs: B); |
| 9070 | |
| 9071 | return Visitor.runOnFunction(); |
| 9072 | } |
| 9073 | |