| 1 | //===----- TypeSanitizer.cpp - type-based-aliasing-violation detector -----===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file is a part of TypeSanitizer, a type-based-aliasing-violation |
| 10 | // detector. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #include "llvm/Transforms/Instrumentation/TypeSanitizer.h" |
| 15 | #include "llvm/ADT/SetVector.h" |
| 16 | #include "llvm/ADT/SmallVector.h" |
| 17 | #include "llvm/ADT/Statistic.h" |
| 18 | #include "llvm/ADT/StringExtras.h" |
| 19 | #include "llvm/Analysis/MemoryLocation.h" |
| 20 | #include "llvm/Analysis/TargetLibraryInfo.h" |
| 21 | #include "llvm/IR/DataLayout.h" |
| 22 | #include "llvm/IR/Function.h" |
| 23 | #include "llvm/IR/IRBuilder.h" |
| 24 | #include "llvm/IR/InstIterator.h" |
| 25 | #include "llvm/IR/Instructions.h" |
| 26 | #include "llvm/IR/IntrinsicInst.h" |
| 27 | #include "llvm/IR/Intrinsics.h" |
| 28 | #include "llvm/IR/LLVMContext.h" |
| 29 | #include "llvm/IR/MDBuilder.h" |
| 30 | #include "llvm/IR/Metadata.h" |
| 31 | #include "llvm/IR/Module.h" |
| 32 | #include "llvm/IR/Type.h" |
| 33 | #include "llvm/ProfileData/InstrProf.h" |
| 34 | #include "llvm/Support/CommandLine.h" |
| 35 | #include "llvm/Support/MD5.h" |
| 36 | #include "llvm/Support/Regex.h" |
| 37 | #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| 38 | #include "llvm/Transforms/Utils/Local.h" |
| 39 | #include "llvm/Transforms/Utils/ModuleUtils.h" |
| 40 | |
| 41 | #include <cctype> |
| 42 | |
| 43 | using namespace llvm; |
| 44 | |
| 45 | #define DEBUG_TYPE "tysan" |
| 46 | |
| 47 | static const char *const kTysanModuleCtorName = "tysan.module_ctor" ; |
| 48 | static const char *const kTysanInitName = "__tysan_init" ; |
| 49 | static const char *const kTysanCheckName = "__tysan_check" ; |
| 50 | static const char *const kTysanGVNamePrefix = "__tysan_v1_" ; |
| 51 | |
| 52 | static const char *const kTysanShadowMemoryAddress = |
| 53 | "__tysan_shadow_memory_address" ; |
| 54 | static const char *const kTysanAppMemMask = "__tysan_app_memory_mask" ; |
| 55 | |
| 56 | static cl::opt<bool> |
| 57 | ClWritesAlwaysSetType("tysan-writes-always-set-type" , |
| 58 | cl::desc("Writes always set the type" ), cl::Hidden, |
| 59 | cl::init(Val: false)); |
| 60 | |
| 61 | static cl::opt<bool> ClOutlineInstrumentation( |
| 62 | "tysan-outline-instrumentation" , |
| 63 | cl::desc("Uses function calls for all TySan instrumentation, reducing " |
| 64 | "ELF size" ), |
| 65 | cl::Hidden, cl::init(Val: true)); |
| 66 | |
| 67 | static cl::opt<bool> ClVerifyOutlinedInstrumentation( |
| 68 | "tysan-verify-outlined-instrumentation" , |
| 69 | cl::desc("Check types twice with both inlined instrumentation and " |
| 70 | "function calls. This verifies that they behave the same." ), |
| 71 | cl::Hidden, cl::init(Val: false)); |
| 72 | |
| 73 | STATISTIC(NumInstrumentedAccesses, "Number of instrumented accesses" ); |
| 74 | |
| 75 | namespace { |
| 76 | |
| 77 | /// TypeSanitizer: instrument the code in module to find type-based aliasing |
| 78 | /// violations. |
| 79 | struct TypeSanitizer { |
| 80 | TypeSanitizer(Module &M); |
| 81 | bool sanitizeFunction(Function &F, const TargetLibraryInfo &TLI); |
| 82 | void instrumentGlobals(Module &M); |
| 83 | |
| 84 | private: |
| 85 | typedef SmallDenseMap<const MDNode *, GlobalVariable *, 8> |
| 86 | TypeDescriptorsMapTy; |
| 87 | typedef SmallDenseMap<const MDNode *, std::string, 8> TypeNameMapTy; |
| 88 | |
| 89 | void initializeCallbacks(Module &M); |
| 90 | |
| 91 | Instruction *getShadowBase(Function &F); |
| 92 | Instruction *getAppMemMask(Function &F); |
| 93 | |
| 94 | bool instrumentWithShadowUpdate(IRBuilder<> &IRB, const MDNode *TBAAMD, |
| 95 | Value *Ptr, uint64_t AccessSize, bool IsRead, |
| 96 | bool IsWrite, Value *ShadowBase, |
| 97 | Value *AppMemMask, bool ForceSetType, |
| 98 | bool SanitizeFunction, |
| 99 | TypeDescriptorsMapTy &TypeDescriptors, |
| 100 | const DataLayout &DL); |
| 101 | |
| 102 | /// Memory-related intrinsics/instructions reset the type of the destination |
| 103 | /// memory (including allocas and byval arguments). |
| 104 | bool instrumentMemInst(Value *I, Instruction *ShadowBase, |
| 105 | Instruction *AppMemMask, const DataLayout &DL); |
| 106 | |
| 107 | std::string getAnonymousStructIdentifier(const MDNode *MD, |
| 108 | TypeNameMapTy &TypeNames); |
| 109 | bool generateTypeDescriptor(const MDNode *MD, |
| 110 | TypeDescriptorsMapTy &TypeDescriptors, |
| 111 | TypeNameMapTy &TypeNames, Module &M); |
| 112 | bool generateBaseTypeDescriptor(const MDNode *MD, |
| 113 | TypeDescriptorsMapTy &TypeDescriptors, |
| 114 | TypeNameMapTy &TypeNames, Module &M); |
| 115 | |
| 116 | const Triple TargetTriple; |
| 117 | Regex AnonNameRegex; |
| 118 | Type *IntptrTy; |
| 119 | uint64_t PtrShift; |
| 120 | IntegerType *OrdTy, *U64Ty; |
| 121 | |
| 122 | /// Callbacks to run-time library are computed in initializeCallbacks. |
| 123 | FunctionCallee TysanCheck; |
| 124 | FunctionCallee TysanCtorFunction; |
| 125 | |
| 126 | FunctionCallee TysanIntrumentMemInst; |
| 127 | FunctionCallee TysanInstrumentWithShadowUpdate; |
| 128 | FunctionCallee TysanSetShadowType; |
| 129 | |
| 130 | /// Callback to set types for gloabls. |
| 131 | Function *TysanGlobalsSetTypeFunction; |
| 132 | }; |
| 133 | } // namespace |
| 134 | |
| 135 | TypeSanitizer::TypeSanitizer(Module &M) |
| 136 | : TargetTriple(M.getTargetTriple()), |
| 137 | AnonNameRegex("^_ZTS.*N[1-9][0-9]*_GLOBAL__N" ) { |
| 138 | const DataLayout &DL = M.getDataLayout(); |
| 139 | IntptrTy = DL.getIntPtrType(C&: M.getContext()); |
| 140 | PtrShift = countr_zero(Val: IntptrTy->getPrimitiveSizeInBits() / 8); |
| 141 | |
| 142 | TysanGlobalsSetTypeFunction = M.getFunction(Name: "__tysan_set_globals_types" ); |
| 143 | initializeCallbacks(M); |
| 144 | } |
| 145 | |
| 146 | void TypeSanitizer::initializeCallbacks(Module &M) { |
| 147 | IRBuilder<> IRB(M.getContext()); |
| 148 | OrdTy = IRB.getInt32Ty(); |
| 149 | U64Ty = IRB.getInt64Ty(); |
| 150 | Type *BoolType = IRB.getInt1Ty(); |
| 151 | |
| 152 | AttributeList Attr; |
| 153 | Attr = Attr.addFnAttribute(C&: M.getContext(), Kind: Attribute::NoUnwind); |
| 154 | // Initialize the callbacks. |
| 155 | TysanCheck = |
| 156 | M.getOrInsertFunction(Name: kTysanCheckName, AttributeList: Attr, RetTy: IRB.getVoidTy(), |
| 157 | Args: IRB.getPtrTy(), // Pointer to data to be read. |
| 158 | Args: OrdTy, // Size of the data in bytes. |
| 159 | Args: IRB.getPtrTy(), // Pointer to type descriptor. |
| 160 | Args: OrdTy // Flags. |
| 161 | ); |
| 162 | |
| 163 | TysanCtorFunction = |
| 164 | M.getOrInsertFunction(Name: kTysanModuleCtorName, AttributeList: Attr, RetTy: IRB.getVoidTy()); |
| 165 | |
| 166 | TysanIntrumentMemInst = M.getOrInsertFunction( |
| 167 | Name: "__tysan_instrument_mem_inst" , AttributeList: Attr, RetTy: IRB.getVoidTy(), |
| 168 | Args: IRB.getPtrTy(), // Pointer of data to be written to |
| 169 | Args: IRB.getPtrTy(), // Pointer of data to write |
| 170 | Args: U64Ty, // Size of the data in bytes |
| 171 | Args: BoolType // Do we need to call memmove |
| 172 | ); |
| 173 | |
| 174 | TysanInstrumentWithShadowUpdate = M.getOrInsertFunction( |
| 175 | Name: "__tysan_instrument_with_shadow_update" , AttributeList: Attr, RetTy: IRB.getVoidTy(), |
| 176 | Args: IRB.getPtrTy(), // Pointer to data to be read |
| 177 | Args: IRB.getPtrTy(), // Pointer to type descriptor |
| 178 | Args: BoolType, // Do we need to type check this |
| 179 | Args: U64Ty, // Size of data we access in bytes |
| 180 | Args: OrdTy // Flags |
| 181 | ); |
| 182 | |
| 183 | TysanSetShadowType = M.getOrInsertFunction( |
| 184 | Name: "__tysan_set_shadow_type" , AttributeList: Attr, RetTy: IRB.getVoidTy(), |
| 185 | Args: IRB.getPtrTy(), // Pointer of data to be written to |
| 186 | Args: IRB.getPtrTy(), // Pointer to the new type descriptor |
| 187 | Args: U64Ty // Size of data we access in bytes |
| 188 | ); |
| 189 | } |
| 190 | |
| 191 | void TypeSanitizer::instrumentGlobals(Module &M) { |
| 192 | TysanGlobalsSetTypeFunction = nullptr; |
| 193 | |
| 194 | NamedMDNode *Globals = M.getNamedMetadata(Name: "llvm.tysan.globals" ); |
| 195 | if (!Globals) |
| 196 | return; |
| 197 | |
| 198 | TysanGlobalsSetTypeFunction = Function::Create( |
| 199 | Ty: FunctionType::get(Result: Type::getVoidTy(C&: M.getContext()), isVarArg: false), |
| 200 | Linkage: GlobalValue::InternalLinkage, N: "__tysan_set_globals_types" , M: &M); |
| 201 | BasicBlock *BB = |
| 202 | BasicBlock::Create(Context&: M.getContext(), Name: "" , Parent: TysanGlobalsSetTypeFunction); |
| 203 | ReturnInst::Create(C&: M.getContext(), InsertAtEnd: BB); |
| 204 | |
| 205 | const DataLayout &DL = M.getDataLayout(); |
| 206 | Value *ShadowBase = getShadowBase(F&: *TysanGlobalsSetTypeFunction); |
| 207 | Value *AppMemMask = getAppMemMask(F&: *TysanGlobalsSetTypeFunction); |
| 208 | TypeDescriptorsMapTy TypeDescriptors; |
| 209 | TypeNameMapTy TypeNames; |
| 210 | |
| 211 | for (const auto &GMD : Globals->operands()) { |
| 212 | auto *GV = mdconst::dyn_extract_or_null<GlobalVariable>(MD: GMD->getOperand(I: 0)); |
| 213 | if (!GV) |
| 214 | continue; |
| 215 | const MDNode *TBAAMD = cast<MDNode>(Val: GMD->getOperand(I: 1)); |
| 216 | if (!generateBaseTypeDescriptor(MD: TBAAMD, TypeDescriptors, TypeNames, M)) |
| 217 | continue; |
| 218 | |
| 219 | IRBuilder<> IRB( |
| 220 | TysanGlobalsSetTypeFunction->getEntryBlock().getTerminator()); |
| 221 | Type *AccessTy = GV->getValueType(); |
| 222 | assert(AccessTy->isSized()); |
| 223 | uint64_t AccessSize = DL.getTypeStoreSize(Ty: AccessTy); |
| 224 | instrumentWithShadowUpdate(IRB, TBAAMD, Ptr: GV, AccessSize, IsRead: false, IsWrite: false, |
| 225 | ShadowBase, AppMemMask, ForceSetType: true, SanitizeFunction: false, |
| 226 | TypeDescriptors, DL); |
| 227 | } |
| 228 | |
| 229 | if (TysanGlobalsSetTypeFunction) { |
| 230 | IRBuilder<> IRB(cast<Function>(Val: TysanCtorFunction.getCallee()) |
| 231 | ->getEntryBlock() |
| 232 | .getTerminator()); |
| 233 | IRB.CreateCall(Callee: TysanGlobalsSetTypeFunction, Args: {}); |
| 234 | } |
| 235 | } |
| 236 | |
| 237 | static const char LUT[] = "0123456789abcdef" ; |
| 238 | |
| 239 | static std::string encodeName(StringRef Name) { |
| 240 | size_t Length = Name.size(); |
| 241 | std::string Output = kTysanGVNamePrefix; |
| 242 | Output.reserve(res_arg: Output.size() + 3 * Length); |
| 243 | for (size_t i = 0; i < Length; ++i) { |
| 244 | const unsigned char c = Name[i]; |
| 245 | if (isalnum(c)) { |
| 246 | Output.push_back(c: c); |
| 247 | continue; |
| 248 | } |
| 249 | |
| 250 | if (c == '_') { |
| 251 | Output.append(s: "__" ); |
| 252 | continue; |
| 253 | } |
| 254 | |
| 255 | Output.push_back(c: '_'); |
| 256 | Output.push_back(c: LUT[c >> 4]); |
| 257 | Output.push_back(c: LUT[c & 15]); |
| 258 | } |
| 259 | |
| 260 | return Output; |
| 261 | } |
| 262 | |
| 263 | std::string |
| 264 | TypeSanitizer::getAnonymousStructIdentifier(const MDNode *MD, |
| 265 | TypeNameMapTy &TypeNames) { |
| 266 | MD5 Hash; |
| 267 | |
| 268 | for (int i = 1, e = MD->getNumOperands(); i < e; i += 2) { |
| 269 | const MDNode *MemberNode = dyn_cast<MDNode>(Val: MD->getOperand(I: i)); |
| 270 | if (!MemberNode) |
| 271 | return "" ; |
| 272 | |
| 273 | auto TNI = TypeNames.find(Val: MemberNode); |
| 274 | std::string MemberName; |
| 275 | if (TNI != TypeNames.end()) { |
| 276 | MemberName = TNI->second; |
| 277 | } else { |
| 278 | if (MemberNode->getNumOperands() < 1) |
| 279 | return "" ; |
| 280 | MDString *MemberNameNode = dyn_cast<MDString>(Val: MemberNode->getOperand(I: 0)); |
| 281 | if (!MemberNameNode) |
| 282 | return "" ; |
| 283 | MemberName = MemberNameNode->getString().str(); |
| 284 | if (MemberName.empty()) |
| 285 | MemberName = getAnonymousStructIdentifier(MD: MemberNode, TypeNames); |
| 286 | if (MemberName.empty()) |
| 287 | return "" ; |
| 288 | TypeNames[MemberNode] = MemberName; |
| 289 | } |
| 290 | |
| 291 | Hash.update(Str: MemberName); |
| 292 | Hash.update(Str: "\0" ); |
| 293 | |
| 294 | uint64_t Offset = |
| 295 | mdconst::extract<ConstantInt>(MD: MD->getOperand(I: i + 1))->getZExtValue(); |
| 296 | Hash.update(Str: utostr(X: Offset)); |
| 297 | Hash.update(Str: "\0" ); |
| 298 | } |
| 299 | |
| 300 | MD5::MD5Result HashResult; |
| 301 | Hash.final(Result&: HashResult); |
| 302 | return "__anonymous_" + std::string(HashResult.digest().str()); |
| 303 | } |
| 304 | |
| 305 | bool TypeSanitizer::generateBaseTypeDescriptor( |
| 306 | const MDNode *MD, TypeDescriptorsMapTy &TypeDescriptors, |
| 307 | TypeNameMapTy &TypeNames, Module &M) { |
| 308 | if (MD->getNumOperands() < 1) |
| 309 | return false; |
| 310 | |
| 311 | MDString *NameNode = dyn_cast<MDString>(Val: MD->getOperand(I: 0)); |
| 312 | if (!NameNode) |
| 313 | return false; |
| 314 | |
| 315 | std::string Name = NameNode->getString().str(); |
| 316 | if (Name.empty()) |
| 317 | Name = getAnonymousStructIdentifier(MD, TypeNames); |
| 318 | if (Name.empty()) |
| 319 | return false; |
| 320 | TypeNames[MD] = Name; |
| 321 | std::string EncodedName = encodeName(Name); |
| 322 | |
| 323 | GlobalVariable *GV = |
| 324 | dyn_cast_or_null<GlobalVariable>(Val: M.getNamedValue(Name: EncodedName)); |
| 325 | if (GV) { |
| 326 | TypeDescriptors[MD] = GV; |
| 327 | return true; |
| 328 | } |
| 329 | |
| 330 | SmallVector<std::pair<Constant *, uint64_t>> Members; |
| 331 | for (int i = 1, e = MD->getNumOperands(); i < e; i += 2) { |
| 332 | const MDNode *MemberNode = dyn_cast<MDNode>(Val: MD->getOperand(I: i)); |
| 333 | if (!MemberNode) |
| 334 | return false; |
| 335 | |
| 336 | Constant *Member; |
| 337 | auto TDI = TypeDescriptors.find(Val: MemberNode); |
| 338 | if (TDI != TypeDescriptors.end()) { |
| 339 | Member = TDI->second; |
| 340 | } else { |
| 341 | if (!generateBaseTypeDescriptor(MD: MemberNode, TypeDescriptors, TypeNames, |
| 342 | M)) |
| 343 | return false; |
| 344 | |
| 345 | Member = TypeDescriptors[MemberNode]; |
| 346 | } |
| 347 | |
| 348 | uint64_t Offset = |
| 349 | mdconst::extract<ConstantInt>(MD: MD->getOperand(I: i + 1))->getZExtValue(); |
| 350 | |
| 351 | Members.push_back(Elt: std::make_pair(x&: Member, y&: Offset)); |
| 352 | } |
| 353 | |
| 354 | // The descriptor for a scalar is: |
| 355 | // [2, member count, [type pointer, offset]..., name] |
| 356 | |
| 357 | LLVMContext &C = MD->getContext(); |
| 358 | Constant *NameData = ConstantDataArray::getString(Context&: C, Initializer: NameNode->getString()); |
| 359 | SmallVector<Type *> TDSubTys; |
| 360 | SmallVector<Constant *> TDSubData; |
| 361 | |
| 362 | auto PushTDSub = [&](Constant *C) { |
| 363 | TDSubTys.push_back(Elt: C->getType()); |
| 364 | TDSubData.push_back(Elt: C); |
| 365 | }; |
| 366 | |
| 367 | PushTDSub(ConstantInt::get(Ty: IntptrTy, V: 2)); |
| 368 | PushTDSub(ConstantInt::get(Ty: IntptrTy, V: Members.size())); |
| 369 | |
| 370 | // Types that are in an anonymous namespace are local to this module. |
| 371 | // FIXME: This should really be marked by the frontend in the metadata |
| 372 | // instead of having us guess this from the mangled name. Moreover, the regex |
| 373 | // here can pick up (unlikely) names in the non-reserved namespace (because |
| 374 | // it needs to search into the type to pick up cases where the type in the |
| 375 | // anonymous namespace is a template parameter, etc.). |
| 376 | bool ShouldBeComdat = !AnonNameRegex.match(String: NameNode->getString()); |
| 377 | for (auto &Member : Members) { |
| 378 | PushTDSub(Member.first); |
| 379 | PushTDSub(ConstantInt::get(Ty: IntptrTy, V: Member.second)); |
| 380 | } |
| 381 | |
| 382 | PushTDSub(NameData); |
| 383 | |
| 384 | StructType *TDTy = StructType::get(Context&: C, Elements: TDSubTys); |
| 385 | Constant *TD = ConstantStruct::get(T: TDTy, V: TDSubData); |
| 386 | |
| 387 | GlobalVariable *TDGV = |
| 388 | new GlobalVariable(TDTy, true, |
| 389 | !ShouldBeComdat ? GlobalValue::InternalLinkage |
| 390 | : GlobalValue::LinkOnceODRLinkage, |
| 391 | TD, EncodedName); |
| 392 | M.insertGlobalVariable(GV: TDGV); |
| 393 | |
| 394 | if (ShouldBeComdat) { |
| 395 | if (TargetTriple.isOSBinFormatELF()) { |
| 396 | Comdat *TDComdat = M.getOrInsertComdat(Name: EncodedName); |
| 397 | TDGV->setComdat(TDComdat); |
| 398 | } |
| 399 | appendToUsed(M, Values: TDGV); |
| 400 | } |
| 401 | |
| 402 | TypeDescriptors[MD] = TDGV; |
| 403 | return true; |
| 404 | } |
| 405 | |
| 406 | bool TypeSanitizer::generateTypeDescriptor( |
| 407 | const MDNode *MD, TypeDescriptorsMapTy &TypeDescriptors, |
| 408 | TypeNameMapTy &TypeNames, Module &M) { |
| 409 | // Here we need to generate a type descriptor corresponding to this TBAA |
| 410 | // metadata node. Under the current scheme there are three kinds of TBAA |
| 411 | // metadata nodes: scalar nodes, struct nodes, and struct tag nodes. |
| 412 | |
| 413 | if (MD->getNumOperands() < 3) |
| 414 | return false; |
| 415 | |
| 416 | const MDNode *BaseNode = dyn_cast<MDNode>(Val: MD->getOperand(I: 0)); |
| 417 | if (!BaseNode) |
| 418 | return false; |
| 419 | |
| 420 | // This is a struct tag (element-access) node. |
| 421 | |
| 422 | const MDNode *AccessNode = dyn_cast<MDNode>(Val: MD->getOperand(I: 1)); |
| 423 | if (!AccessNode) |
| 424 | return false; |
| 425 | |
| 426 | Constant *Base; |
| 427 | auto TDI = TypeDescriptors.find(Val: BaseNode); |
| 428 | if (TDI != TypeDescriptors.end()) { |
| 429 | Base = TDI->second; |
| 430 | } else { |
| 431 | if (!generateBaseTypeDescriptor(MD: BaseNode, TypeDescriptors, TypeNames, M)) |
| 432 | return false; |
| 433 | |
| 434 | Base = TypeDescriptors[BaseNode]; |
| 435 | } |
| 436 | |
| 437 | Constant *Access; |
| 438 | TDI = TypeDescriptors.find(Val: AccessNode); |
| 439 | if (TDI != TypeDescriptors.end()) { |
| 440 | Access = TDI->second; |
| 441 | } else { |
| 442 | if (!generateBaseTypeDescriptor(MD: AccessNode, TypeDescriptors, TypeNames, M)) |
| 443 | return false; |
| 444 | |
| 445 | Access = TypeDescriptors[AccessNode]; |
| 446 | } |
| 447 | |
| 448 | uint64_t Offset = |
| 449 | mdconst::extract<ConstantInt>(MD: MD->getOperand(I: 2))->getZExtValue(); |
| 450 | std::string EncodedName = |
| 451 | std::string(Base->getName()) + "_o_" + utostr(X: Offset); |
| 452 | |
| 453 | GlobalVariable *GV = |
| 454 | dyn_cast_or_null<GlobalVariable>(Val: M.getNamedValue(Name: EncodedName)); |
| 455 | if (GV) { |
| 456 | TypeDescriptors[MD] = GV; |
| 457 | return true; |
| 458 | } |
| 459 | |
| 460 | // The descriptor for a scalar is: |
| 461 | // [1, base-type pointer, access-type pointer, offset] |
| 462 | |
| 463 | StructType *TDTy = |
| 464 | StructType::get(elt1: IntptrTy, elts: Base->getType(), elts: Access->getType(), elts: IntptrTy); |
| 465 | Constant *TD = |
| 466 | ConstantStruct::get(T: TDTy, Vs: ConstantInt::get(Ty: IntptrTy, V: 1), Vs: Base, Vs: Access, |
| 467 | Vs: ConstantInt::get(Ty: IntptrTy, V: Offset)); |
| 468 | |
| 469 | bool ShouldBeComdat = cast<GlobalVariable>(Val: Base)->getLinkage() == |
| 470 | GlobalValue::LinkOnceODRLinkage; |
| 471 | |
| 472 | GlobalVariable *TDGV = |
| 473 | new GlobalVariable(TDTy, true, |
| 474 | !ShouldBeComdat ? GlobalValue::InternalLinkage |
| 475 | : GlobalValue::LinkOnceODRLinkage, |
| 476 | TD, EncodedName); |
| 477 | M.insertGlobalVariable(GV: TDGV); |
| 478 | |
| 479 | if (ShouldBeComdat) { |
| 480 | if (TargetTriple.isOSBinFormatELF()) { |
| 481 | Comdat *TDComdat = M.getOrInsertComdat(Name: EncodedName); |
| 482 | TDGV->setComdat(TDComdat); |
| 483 | } |
| 484 | appendToUsed(M, Values: TDGV); |
| 485 | } |
| 486 | |
| 487 | TypeDescriptors[MD] = TDGV; |
| 488 | return true; |
| 489 | } |
| 490 | |
| 491 | Instruction *TypeSanitizer::getShadowBase(Function &F) { |
| 492 | IRBuilder<> IRB(&F.front().front()); |
| 493 | Constant *GlobalShadowAddress = |
| 494 | F.getParent()->getOrInsertGlobal(Name: kTysanShadowMemoryAddress, Ty: IntptrTy); |
| 495 | return IRB.CreateLoad(Ty: IntptrTy, Ptr: GlobalShadowAddress, Name: "shadow.base" ); |
| 496 | } |
| 497 | |
| 498 | Instruction *TypeSanitizer::getAppMemMask(Function &F) { |
| 499 | IRBuilder<> IRB(&F.front().front()); |
| 500 | Value *GlobalAppMemMask = |
| 501 | F.getParent()->getOrInsertGlobal(Name: kTysanAppMemMask, Ty: IntptrTy); |
| 502 | return IRB.CreateLoad(Ty: IntptrTy, Ptr: GlobalAppMemMask, Name: "app.mem.mask" ); |
| 503 | } |
| 504 | |
| 505 | /// Collect all loads and stores, and for what TBAA nodes we need to generate |
| 506 | /// type descriptors. |
| 507 | void collectMemAccessInfo( |
| 508 | Function &F, const TargetLibraryInfo &TLI, |
| 509 | SmallVectorImpl<std::pair<Instruction *, MemoryLocation>> &MemoryAccesses, |
| 510 | SmallSetVector<const MDNode *, 8> &TBAAMetadata, |
| 511 | SmallVectorImpl<Value *> &MemTypeResetInsts) { |
| 512 | // Traverse all instructions, collect loads/stores/returns, check for calls. |
| 513 | for (Instruction &Inst : instructions(F)) { |
| 514 | // Skip memory accesses inserted by another instrumentation. |
| 515 | if (Inst.getMetadata(KindID: LLVMContext::MD_nosanitize)) |
| 516 | continue; |
| 517 | |
| 518 | if (isa<LoadInst>(Val: Inst) || isa<StoreInst>(Val: Inst) || |
| 519 | isa<AtomicCmpXchgInst>(Val: Inst) || isa<AtomicRMWInst>(Val: Inst)) { |
| 520 | MemoryLocation MLoc = MemoryLocation::get(Inst: &Inst); |
| 521 | |
| 522 | // Swift errors are special (we can't introduce extra uses on them). |
| 523 | if (MLoc.Ptr->isSwiftError()) |
| 524 | continue; |
| 525 | |
| 526 | // Skip non-address-space-0 pointers; we don't know how to handle them. |
| 527 | Type *PtrTy = cast<PointerType>(Val: MLoc.Ptr->getType()); |
| 528 | if (PtrTy->getPointerAddressSpace() != 0) |
| 529 | continue; |
| 530 | |
| 531 | if (MLoc.AATags.TBAA) |
| 532 | TBAAMetadata.insert(X: MLoc.AATags.TBAA); |
| 533 | MemoryAccesses.push_back(Elt: std::make_pair(x: &Inst, y&: MLoc)); |
| 534 | } else if (isa<CallInst>(Val: Inst) || isa<InvokeInst>(Val: Inst)) { |
| 535 | if (CallInst *CI = dyn_cast<CallInst>(Val: &Inst)) |
| 536 | maybeMarkSanitizerLibraryCallNoBuiltin(CI, TLI: &TLI); |
| 537 | |
| 538 | if (isa<MemIntrinsic, LifetimeIntrinsic>(Val: Inst)) |
| 539 | MemTypeResetInsts.push_back(Elt: &Inst); |
| 540 | } else if (isa<AllocaInst>(Val: Inst)) { |
| 541 | MemTypeResetInsts.push_back(Elt: &Inst); |
| 542 | } |
| 543 | } |
| 544 | } |
| 545 | |
| 546 | bool TypeSanitizer::sanitizeFunction(Function &F, |
| 547 | const TargetLibraryInfo &TLI) { |
| 548 | if (F.isDeclaration()) |
| 549 | return false; |
| 550 | // This is required to prevent instrumenting call to __tysan_init from within |
| 551 | // the module constructor. |
| 552 | if (&F == TysanCtorFunction.getCallee() || &F == TysanGlobalsSetTypeFunction) |
| 553 | return false; |
| 554 | initializeCallbacks(M&: *F.getParent()); |
| 555 | |
| 556 | // We need to collect all loads and stores, and know for what TBAA nodes we |
| 557 | // need to generate type descriptors. |
| 558 | SmallVector<std::pair<Instruction *, MemoryLocation>> MemoryAccesses; |
| 559 | SmallSetVector<const MDNode *, 8> TBAAMetadata; |
| 560 | SmallVector<Value *> MemTypeResetInsts; |
| 561 | collectMemAccessInfo(F, TLI, MemoryAccesses, TBAAMetadata, MemTypeResetInsts); |
| 562 | |
| 563 | // byval arguments also need their types reset (they're new stack memory, |
| 564 | // just like allocas). |
| 565 | for (auto &A : F.args()) |
| 566 | if (A.hasByValAttr()) |
| 567 | MemTypeResetInsts.push_back(Elt: &A); |
| 568 | |
| 569 | Module &M = *F.getParent(); |
| 570 | TypeDescriptorsMapTy TypeDescriptors; |
| 571 | TypeNameMapTy TypeNames; |
| 572 | bool Res = false; |
| 573 | for (const MDNode *MD : TBAAMetadata) { |
| 574 | if (TypeDescriptors.count(Val: MD)) |
| 575 | continue; |
| 576 | |
| 577 | if (!generateTypeDescriptor(MD, TypeDescriptors, TypeNames, M)) |
| 578 | return Res; // Giving up. |
| 579 | |
| 580 | Res = true; |
| 581 | } |
| 582 | |
| 583 | const DataLayout &DL = F.getParent()->getDataLayout(); |
| 584 | bool SanitizeFunction = F.hasFnAttribute(Kind: Attribute::SanitizeType); |
| 585 | bool NeedsInstrumentation = |
| 586 | MemTypeResetInsts.empty() && MemoryAccesses.empty(); |
| 587 | Instruction *ShadowBase = NeedsInstrumentation ? nullptr : getShadowBase(F); |
| 588 | Instruction *AppMemMask = NeedsInstrumentation ? nullptr : getAppMemMask(F); |
| 589 | for (const auto &[I, MLoc] : MemoryAccesses) { |
| 590 | IRBuilder<> IRB(I); |
| 591 | assert(MLoc.Size.isPrecise()); |
| 592 | if (instrumentWithShadowUpdate( |
| 593 | IRB, TBAAMD: MLoc.AATags.TBAA, Ptr: const_cast<Value *>(MLoc.Ptr), |
| 594 | AccessSize: MLoc.Size.getValue(), IsRead: I->mayReadFromMemory(), IsWrite: I->mayWriteToMemory(), |
| 595 | ShadowBase, AppMemMask, ForceSetType: false, SanitizeFunction, TypeDescriptors, |
| 596 | DL)) { |
| 597 | ++NumInstrumentedAccesses; |
| 598 | Res = true; |
| 599 | } |
| 600 | } |
| 601 | |
| 602 | for (auto Inst : MemTypeResetInsts) |
| 603 | Res |= instrumentMemInst(I: Inst, ShadowBase, AppMemMask, DL); |
| 604 | |
| 605 | return Res; |
| 606 | } |
| 607 | |
| 608 | static Value *convertToShadowDataInt(IRBuilder<> &IRB, Value *Ptr, |
| 609 | Type *IntptrTy, uint64_t PtrShift, |
| 610 | Value *ShadowBase, Value *AppMemMask) { |
| 611 | return IRB.CreateAdd( |
| 612 | LHS: IRB.CreateShl( |
| 613 | LHS: IRB.CreateAnd(LHS: IRB.CreatePtrToInt(V: Ptr, DestTy: IntptrTy, Name: "app.ptr.int" ), |
| 614 | RHS: AppMemMask, Name: "app.ptr.masked" ), |
| 615 | RHS: PtrShift, Name: "app.ptr.shifted" ), |
| 616 | RHS: ShadowBase, Name: "shadow.ptr.int" ); |
| 617 | } |
| 618 | |
| 619 | bool TypeSanitizer::instrumentWithShadowUpdate( |
| 620 | IRBuilder<> &IRB, const MDNode *TBAAMD, Value *Ptr, uint64_t AccessSize, |
| 621 | bool IsRead, bool IsWrite, Value *ShadowBase, Value *AppMemMask, |
| 622 | bool ForceSetType, bool SanitizeFunction, |
| 623 | TypeDescriptorsMapTy &TypeDescriptors, const DataLayout &DL) { |
| 624 | Constant *TDGV; |
| 625 | if (TBAAMD) |
| 626 | TDGV = TypeDescriptors[TBAAMD]; |
| 627 | else |
| 628 | TDGV = Constant::getNullValue(Ty: IRB.getPtrTy()); |
| 629 | |
| 630 | Value *TD = IRB.CreateBitCast(V: TDGV, DestTy: IRB.getPtrTy()); |
| 631 | |
| 632 | if (ClOutlineInstrumentation) { |
| 633 | if (!ForceSetType && (!ClWritesAlwaysSetType || IsRead)) { |
| 634 | // We need to check the type here. If the type is unknown, then the read |
| 635 | // sets the type. If the type is known, then it is checked. If the type |
| 636 | // doesn't match, then we call the runtime type check (which may yet |
| 637 | // determine that the mismatch is okay). |
| 638 | |
| 639 | Constant *Flags = |
| 640 | ConstantInt::get(Ty: OrdTy, V: (int)IsRead | (((int)IsWrite) << 1)); |
| 641 | |
| 642 | IRB.CreateCall(Callee: TysanInstrumentWithShadowUpdate, |
| 643 | Args: {Ptr, TD, |
| 644 | SanitizeFunction ? IRB.getTrue() : IRB.getFalse(), |
| 645 | IRB.getInt64(C: AccessSize), Flags}); |
| 646 | } else if (ForceSetType || IsWrite) { |
| 647 | // In the mode where writes always set the type, for a write (which does |
| 648 | // not also read), we just set the type. |
| 649 | IRB.CreateCall(Callee: TysanSetShadowType, Args: {Ptr, TD, IRB.getInt64(C: AccessSize)}); |
| 650 | } |
| 651 | |
| 652 | return true; |
| 653 | } |
| 654 | |
| 655 | Value *ShadowDataInt = convertToShadowDataInt(IRB, Ptr, IntptrTy, PtrShift, |
| 656 | ShadowBase, AppMemMask); |
| 657 | Type *Int8PtrPtrTy = PointerType::get(C&: IRB.getContext(), AddressSpace: 0); |
| 658 | Value *ShadowData = |
| 659 | IRB.CreateIntToPtr(V: ShadowDataInt, DestTy: Int8PtrPtrTy, Name: "shadow.ptr" ); |
| 660 | |
| 661 | auto SetType = [&]() { |
| 662 | IRB.CreateStore(Val: TD, Ptr: ShadowData); |
| 663 | |
| 664 | // Now fill the remainder of the shadow memory corresponding to the |
| 665 | // remainder of the the bytes of the type with a bad type descriptor. |
| 666 | for (uint64_t i = 1; i < AccessSize; ++i) { |
| 667 | Value *BadShadowData = IRB.CreateIntToPtr( |
| 668 | V: IRB.CreateAdd(LHS: ShadowDataInt, |
| 669 | RHS: ConstantInt::get(Ty: IntptrTy, V: i << PtrShift), |
| 670 | Name: "shadow.byte." + Twine(i) + ".offset" ), |
| 671 | DestTy: Int8PtrPtrTy, Name: "shadow.byte." + Twine(i) + ".ptr" ); |
| 672 | |
| 673 | // This is the TD value, -i, which is used to indicate that the byte is |
| 674 | // i bytes after the first byte of the type. |
| 675 | Value *BadTD = |
| 676 | IRB.CreateIntToPtr(V: ConstantInt::getSigned(Ty: IntptrTy, V: -i), |
| 677 | DestTy: IRB.getPtrTy(), Name: "bad.descriptor" + Twine(i)); |
| 678 | IRB.CreateStore(Val: BadTD, Ptr: BadShadowData); |
| 679 | } |
| 680 | }; |
| 681 | |
| 682 | if (ForceSetType || (ClWritesAlwaysSetType && IsWrite)) { |
| 683 | // In the mode where writes always set the type, for a write (which does |
| 684 | // not also read), we just set the type. |
| 685 | SetType(); |
| 686 | return true; |
| 687 | } |
| 688 | |
| 689 | assert((!ClWritesAlwaysSetType || IsRead) && |
| 690 | "should have handled case above" ); |
| 691 | LLVMContext &C = IRB.getContext(); |
| 692 | MDNode *UnlikelyBW = MDBuilder(C).createBranchWeights(TrueWeight: 1, FalseWeight: 100000); |
| 693 | |
| 694 | if (!SanitizeFunction) { |
| 695 | // If we're not sanitizing this function, then we only care whether we |
| 696 | // need to *set* the type. |
| 697 | Value *LoadedTD = IRB.CreateLoad(Ty: IRB.getPtrTy(), Ptr: ShadowData, Name: "shadow.desc" ); |
| 698 | Value *NullTDCmp = IRB.CreateIsNull(Arg: LoadedTD, Name: "desc.set" ); |
| 699 | Instruction *NullTDTerm = SplitBlockAndInsertIfThen( |
| 700 | Cond: NullTDCmp, SplitBefore: &*IRB.GetInsertPoint(), Unreachable: false, BranchWeights: UnlikelyBW); |
| 701 | IRB.SetInsertPoint(NullTDTerm); |
| 702 | NullTDTerm->getParent()->setName("set.type" ); |
| 703 | SetType(); |
| 704 | return true; |
| 705 | } |
| 706 | // We need to check the type here. If the type is unknown, then the read |
| 707 | // sets the type. If the type is known, then it is checked. If the type |
| 708 | // doesn't match, then we call the runtime (which may yet determine that |
| 709 | // the mismatch is okay). |
| 710 | // |
| 711 | // The checks generated below have the following structure. |
| 712 | // |
| 713 | // ; First we load the descriptor for the load from shadow memory and |
| 714 | // ; compare it against the type descriptor for the current access type. |
| 715 | // %shadow.desc = load ptr %shadow.data |
| 716 | // %bad.desc = icmp ne %shadow.desc, %td |
| 717 | // br %bad.desc, %bad.bb, %good.bb |
| 718 | // |
| 719 | // bad.bb: |
| 720 | // %shadow.desc.null = icmp eq %shadow.desc, null |
| 721 | // br %shadow.desc.null, %null.td.bb, %good.td.bb |
| 722 | // |
| 723 | // null.td.bb: |
| 724 | // ; The typ is unknown, set it if all bytes in the value are also unknown. |
| 725 | // ; To check, we load the shadow data for all bytes of the access. For the |
| 726 | // ; pseudo code below, assume an access of size 1. |
| 727 | // %shadow.data.int = add %shadow.data.int, 0 |
| 728 | // %l = load (inttoptr %shadow.data.int) |
| 729 | // %is.not.null = icmp ne %l, null |
| 730 | // %not.all.unknown = %is.not.null |
| 731 | // br %no.all.unknown, before.set.type.bb |
| 732 | // |
| 733 | // before.set.type.bb: |
| 734 | // ; Call runtime to check mismatch. |
| 735 | // call void @__tysan_check() |
| 736 | // br %set.type.bb |
| 737 | // |
| 738 | // set.type.bb: |
| 739 | // ; Now fill the remainder of the shadow memory corresponding to the |
| 740 | // ; remainder of the the bytes of the type with a bad type descriptor. |
| 741 | // store %TD, %shadow.data |
| 742 | // br %continue.bb |
| 743 | // |
| 744 | // good.td.bb:: |
| 745 | // ; We have a non-trivial mismatch. Call the runtime. |
| 746 | // call void @__tysan_check() |
| 747 | // br %continue.bb |
| 748 | // |
| 749 | // good.bb: |
| 750 | // ; We appear to have the right type. Make sure that all other bytes in |
| 751 | // ; the type are still marked as interior bytes. If not, call the runtime. |
| 752 | // %shadow.data.int = add %shadow.data.int, 0 |
| 753 | // %l = load (inttoptr %shadow.data.int) |
| 754 | // %not.all.interior = icmp sge %l, 0 |
| 755 | // br %not.all.interior, label %check.rt.bb, label %continue.bb |
| 756 | // |
| 757 | // check.rt.bb: |
| 758 | // call void @__tysan_check() |
| 759 | // br %continue.bb |
| 760 | |
| 761 | Constant *Flags = ConstantInt::get(Ty: OrdTy, V: int(IsRead) | (int(IsWrite) << 1)); |
| 762 | |
| 763 | Value *LoadedTD = IRB.CreateLoad(Ty: IRB.getPtrTy(), Ptr: ShadowData, Name: "shadow.desc" ); |
| 764 | Value *BadTDCmp = IRB.CreateICmpNE(LHS: LoadedTD, RHS: TD, Name: "bad.desc" ); |
| 765 | Instruction *BadTDTerm, *GoodTDTerm; |
| 766 | SplitBlockAndInsertIfThenElse(Cond: BadTDCmp, SplitBefore: &*IRB.GetInsertPoint(), ThenTerm: &BadTDTerm, |
| 767 | ElseTerm: &GoodTDTerm, BranchWeights: UnlikelyBW); |
| 768 | IRB.SetInsertPoint(BadTDTerm); |
| 769 | |
| 770 | // We now know that the types did not match (we're on the slow path). If |
| 771 | // the type is unknown, then set it. |
| 772 | Value *NullTDCmp = IRB.CreateIsNull(Arg: LoadedTD); |
| 773 | Instruction *NullTDTerm, *MismatchTerm; |
| 774 | SplitBlockAndInsertIfThenElse(Cond: NullTDCmp, SplitBefore: &*IRB.GetInsertPoint(), ThenTerm: &NullTDTerm, |
| 775 | ElseTerm: &MismatchTerm); |
| 776 | |
| 777 | // If the type is unknown, then set the type. |
| 778 | IRB.SetInsertPoint(NullTDTerm); |
| 779 | |
| 780 | // We're about to set the type. Make sure that all bytes in the value are |
| 781 | // also of unknown type. |
| 782 | Value *Size = ConstantInt::get(Ty: OrdTy, V: AccessSize); |
| 783 | Value *NotAllUnkTD = IRB.getFalse(); |
| 784 | for (uint64_t i = 1; i < AccessSize; ++i) { |
| 785 | Value *UnkShadowData = IRB.CreateIntToPtr( |
| 786 | V: IRB.CreateAdd(LHS: ShadowDataInt, RHS: ConstantInt::get(Ty: IntptrTy, V: i << PtrShift)), |
| 787 | DestTy: Int8PtrPtrTy); |
| 788 | Value *ILdTD = IRB.CreateLoad(Ty: IRB.getPtrTy(), Ptr: UnkShadowData); |
| 789 | NotAllUnkTD = IRB.CreateOr(LHS: NotAllUnkTD, RHS: IRB.CreateIsNotNull(Arg: ILdTD)); |
| 790 | } |
| 791 | |
| 792 | Instruction *BeforeSetType = &*IRB.GetInsertPoint(); |
| 793 | Instruction *BadUTDTerm = |
| 794 | SplitBlockAndInsertIfThen(Cond: NotAllUnkTD, SplitBefore: BeforeSetType, Unreachable: false, BranchWeights: UnlikelyBW); |
| 795 | IRB.SetInsertPoint(BadUTDTerm); |
| 796 | IRB.CreateCall(Callee: TysanCheck, Args: {IRB.CreateBitCast(V: Ptr, DestTy: IRB.getPtrTy()), Size, |
| 797 | (Value *)TD, (Value *)Flags}); |
| 798 | |
| 799 | IRB.SetInsertPoint(BeforeSetType); |
| 800 | SetType(); |
| 801 | |
| 802 | // We have a non-trivial mismatch. Call the runtime. |
| 803 | IRB.SetInsertPoint(MismatchTerm); |
| 804 | IRB.CreateCall(Callee: TysanCheck, Args: {IRB.CreateBitCast(V: Ptr, DestTy: IRB.getPtrTy()), Size, |
| 805 | (Value *)TD, (Value *)Flags}); |
| 806 | |
| 807 | // We appear to have the right type. Make sure that all other bytes in |
| 808 | // the type are still marked as interior bytes. If not, call the runtime. |
| 809 | IRB.SetInsertPoint(GoodTDTerm); |
| 810 | Value *NotAllBadTD = IRB.getFalse(); |
| 811 | for (uint64_t i = 1; i < AccessSize; ++i) { |
| 812 | Value *BadShadowData = IRB.CreateIntToPtr( |
| 813 | V: IRB.CreateAdd(LHS: ShadowDataInt, RHS: ConstantInt::get(Ty: IntptrTy, V: i << PtrShift)), |
| 814 | DestTy: Int8PtrPtrTy); |
| 815 | Value *ILdTD = IRB.CreatePtrToInt( |
| 816 | V: IRB.CreateLoad(Ty: IRB.getPtrTy(), Ptr: BadShadowData), DestTy: IntptrTy); |
| 817 | NotAllBadTD = IRB.CreateOr( |
| 818 | LHS: NotAllBadTD, RHS: IRB.CreateICmpSGE(LHS: ILdTD, RHS: ConstantInt::get(Ty: IntptrTy, V: 0))); |
| 819 | } |
| 820 | |
| 821 | Instruction *BadITDTerm = SplitBlockAndInsertIfThen( |
| 822 | Cond: NotAllBadTD, SplitBefore: &*IRB.GetInsertPoint(), Unreachable: false, BranchWeights: UnlikelyBW); |
| 823 | IRB.SetInsertPoint(BadITDTerm); |
| 824 | IRB.CreateCall(Callee: TysanCheck, Args: {IRB.CreateBitCast(V: Ptr, DestTy: IRB.getPtrTy()), Size, |
| 825 | (Value *)TD, (Value *)Flags}); |
| 826 | return true; |
| 827 | } |
| 828 | |
| 829 | bool TypeSanitizer::instrumentMemInst(Value *V, Instruction *ShadowBase, |
| 830 | Instruction *AppMemMask, |
| 831 | const DataLayout &DL) { |
| 832 | BasicBlock::iterator IP; |
| 833 | BasicBlock *BB; |
| 834 | Function *F; |
| 835 | |
| 836 | if (auto *I = dyn_cast<Instruction>(Val: V)) { |
| 837 | IP = BasicBlock::iterator(I); |
| 838 | BB = I->getParent(); |
| 839 | F = BB->getParent(); |
| 840 | } else { |
| 841 | auto *A = cast<Argument>(Val: V); |
| 842 | F = A->getParent(); |
| 843 | BB = &F->getEntryBlock(); |
| 844 | IP = BB->getFirstInsertionPt(); |
| 845 | |
| 846 | // Find the next insert point after both ShadowBase and AppMemMask. |
| 847 | if (IP->comesBefore(Other: ShadowBase)) |
| 848 | IP = ShadowBase->getNextNode()->getIterator(); |
| 849 | if (IP->comesBefore(Other: AppMemMask)) |
| 850 | IP = AppMemMask->getNextNode()->getIterator(); |
| 851 | } |
| 852 | |
| 853 | Value *Dest, *Size, *Src = nullptr; |
| 854 | bool NeedsMemMove = false; |
| 855 | IRBuilder<> IRB(BB, IP); |
| 856 | |
| 857 | if (auto *A = dyn_cast<Argument>(Val: V)) { |
| 858 | assert(A->hasByValAttr() && "Type reset for non-byval argument?" ); |
| 859 | |
| 860 | Dest = A; |
| 861 | Size = |
| 862 | ConstantInt::get(Ty: IntptrTy, V: DL.getTypeAllocSize(Ty: A->getParamByValType())); |
| 863 | } else { |
| 864 | auto *I = cast<Instruction>(Val: V); |
| 865 | if (auto *MI = dyn_cast<MemIntrinsic>(Val: I)) { |
| 866 | if (MI->getDestAddressSpace() != 0) |
| 867 | return false; |
| 868 | |
| 869 | Dest = MI->getDest(); |
| 870 | Size = MI->getLength(); |
| 871 | |
| 872 | if (auto *MTI = dyn_cast<MemTransferInst>(Val: MI)) { |
| 873 | if (MTI->getSourceAddressSpace() == 0) { |
| 874 | Src = MTI->getSource(); |
| 875 | NeedsMemMove = isa<MemMoveInst>(Val: MTI); |
| 876 | } |
| 877 | } |
| 878 | } else if (auto *II = dyn_cast<LifetimeIntrinsic>(Val: I)) { |
| 879 | auto *AI = dyn_cast<AllocaInst>(Val: II->getArgOperand(i: 0)); |
| 880 | if (!AI) |
| 881 | return false; |
| 882 | |
| 883 | Size = IRB.CreateAllocationSize(DestTy: IntptrTy, AI); |
| 884 | Dest = II->getArgOperand(i: 0); |
| 885 | } else if (auto *AI = dyn_cast<AllocaInst>(Val: I)) { |
| 886 | // We need to clear the types for new stack allocations (or else we might |
| 887 | // read stale type information from a previous function execution). |
| 888 | |
| 889 | IRB.SetInsertPoint(&*std::next(x: BasicBlock::iterator(I))); |
| 890 | IRB.SetInstDebugLocation(I); |
| 891 | |
| 892 | Size = IRB.CreateAllocationSize(DestTy: IntptrTy, AI); |
| 893 | Dest = I; |
| 894 | } else { |
| 895 | return false; |
| 896 | } |
| 897 | } |
| 898 | |
| 899 | if (ClOutlineInstrumentation) { |
| 900 | if (!Src) |
| 901 | Src = ConstantPointerNull::get(T: IRB.getPtrTy()); |
| 902 | |
| 903 | IRB.CreateCall( |
| 904 | Callee: TysanIntrumentMemInst, |
| 905 | Args: {Dest, Src, Size, NeedsMemMove ? IRB.getTrue() : IRB.getFalse()}); |
| 906 | return true; |
| 907 | } else { |
| 908 | if (!ShadowBase) |
| 909 | ShadowBase = getShadowBase(F&: *F); |
| 910 | if (!AppMemMask) |
| 911 | AppMemMask = getAppMemMask(F&: *F); |
| 912 | |
| 913 | Value *ShadowDataInt = IRB.CreateAdd( |
| 914 | LHS: IRB.CreateShl( |
| 915 | LHS: IRB.CreateAnd(LHS: IRB.CreatePtrToInt(V: Dest, DestTy: IntptrTy), RHS: AppMemMask), |
| 916 | RHS: PtrShift), |
| 917 | RHS: ShadowBase); |
| 918 | Value *ShadowData = IRB.CreateIntToPtr(V: ShadowDataInt, DestTy: IRB.getPtrTy()); |
| 919 | |
| 920 | if (!Src) { |
| 921 | IRB.CreateMemSet(Ptr: ShadowData, Val: IRB.getInt8(C: 0), |
| 922 | Size: IRB.CreateShl(LHS: Size, RHS: PtrShift), Align: Align(1ull << PtrShift)); |
| 923 | return true; |
| 924 | } |
| 925 | |
| 926 | Value *SrcShadowDataInt = IRB.CreateAdd( |
| 927 | LHS: IRB.CreateShl( |
| 928 | LHS: IRB.CreateAnd(LHS: IRB.CreatePtrToInt(V: Src, DestTy: IntptrTy), RHS: AppMemMask), |
| 929 | RHS: PtrShift), |
| 930 | RHS: ShadowBase); |
| 931 | Value *SrcShadowData = IRB.CreateIntToPtr(V: SrcShadowDataInt, DestTy: IRB.getPtrTy()); |
| 932 | |
| 933 | if (NeedsMemMove) { |
| 934 | IRB.CreateMemMove(Dst: ShadowData, DstAlign: Align(1ull << PtrShift), Src: SrcShadowData, |
| 935 | SrcAlign: Align(1ull << PtrShift), Size: IRB.CreateShl(LHS: Size, RHS: PtrShift)); |
| 936 | } else { |
| 937 | IRB.CreateMemCpy(Dst: ShadowData, DstAlign: Align(1ull << PtrShift), Src: SrcShadowData, |
| 938 | SrcAlign: Align(1ull << PtrShift), Size: IRB.CreateShl(LHS: Size, RHS: PtrShift)); |
| 939 | } |
| 940 | } |
| 941 | |
| 942 | return true; |
| 943 | } |
| 944 | |
| 945 | PreservedAnalyses TypeSanitizerPass::run(Module &M, |
| 946 | ModuleAnalysisManager &MAM) { |
| 947 | Function *TysanCtorFunction; |
| 948 | std::tie(args&: TysanCtorFunction, args: std::ignore) = |
| 949 | createSanitizerCtorAndInitFunctions(M, CtorName: kTysanModuleCtorName, |
| 950 | InitName: kTysanInitName, /*InitArgTypes=*/{}, |
| 951 | /*InitArgs=*/{}); |
| 952 | |
| 953 | TypeSanitizer TySan(M); |
| 954 | TySan.instrumentGlobals(M); |
| 955 | appendToGlobalCtors(M, F: TysanCtorFunction, Priority: 0); |
| 956 | |
| 957 | auto &FAM = MAM.getResult<FunctionAnalysisManagerModuleProxy>(IR&: M).getManager(); |
| 958 | for (Function &F : M) { |
| 959 | const TargetLibraryInfo &TLI = FAM.getResult<TargetLibraryAnalysis>(IR&: F); |
| 960 | TySan.sanitizeFunction(F, TLI); |
| 961 | if (ClVerifyOutlinedInstrumentation && ClOutlineInstrumentation) { |
| 962 | // Outlined instrumentation is a new option, and so this exists to |
| 963 | // verify there is no difference in behaviour between the options. |
| 964 | // If the outlined instrumentation triggers a verification failure |
| 965 | // when the original inlined instrumentation does not, or vice versa, |
| 966 | // then there is a discrepency which should be investigated. |
| 967 | ClOutlineInstrumentation = false; |
| 968 | TySan.sanitizeFunction(F, TLI); |
| 969 | ClOutlineInstrumentation = true; |
| 970 | } |
| 971 | } |
| 972 | |
| 973 | return PreservedAnalyses::none(); |
| 974 | } |
| 975 | |