| 1 | //===- EarlyCSE.cpp - Simple and fast CSE pass ----------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This pass performs a simple dominator tree walk that eliminates trivially |
| 10 | // redundant instructions. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #include "llvm/Transforms/Scalar/EarlyCSE.h" |
| 15 | #include "llvm/ADT/DenseMapInfo.h" |
| 16 | #include "llvm/ADT/Hashing.h" |
| 17 | #include "llvm/ADT/STLExtras.h" |
| 18 | #include "llvm/ADT/ScopedHashTable.h" |
| 19 | #include "llvm/ADT/SmallVector.h" |
| 20 | #include "llvm/ADT/Statistic.h" |
| 21 | #include "llvm/Analysis/AssumptionCache.h" |
| 22 | #include "llvm/Analysis/GlobalsModRef.h" |
| 23 | #include "llvm/Analysis/GuardUtils.h" |
| 24 | #include "llvm/Analysis/InstructionSimplify.h" |
| 25 | #include "llvm/Analysis/MemorySSA.h" |
| 26 | #include "llvm/Analysis/MemorySSAUpdater.h" |
| 27 | #include "llvm/Analysis/TargetLibraryInfo.h" |
| 28 | #include "llvm/Analysis/TargetTransformInfo.h" |
| 29 | #include "llvm/Analysis/ValueTracking.h" |
| 30 | #include "llvm/IR/BasicBlock.h" |
| 31 | #include "llvm/IR/Constants.h" |
| 32 | #include "llvm/IR/Dominators.h" |
| 33 | #include "llvm/IR/Function.h" |
| 34 | #include "llvm/IR/InstrTypes.h" |
| 35 | #include "llvm/IR/Instruction.h" |
| 36 | #include "llvm/IR/Instructions.h" |
| 37 | #include "llvm/IR/IntrinsicInst.h" |
| 38 | #include "llvm/IR/LLVMContext.h" |
| 39 | #include "llvm/IR/PassManager.h" |
| 40 | #include "llvm/IR/PatternMatch.h" |
| 41 | #include "llvm/IR/Type.h" |
| 42 | #include "llvm/IR/Value.h" |
| 43 | #include "llvm/InitializePasses.h" |
| 44 | #include "llvm/Pass.h" |
| 45 | #include "llvm/Support/Allocator.h" |
| 46 | #include "llvm/Support/AtomicOrdering.h" |
| 47 | #include "llvm/Support/Casting.h" |
| 48 | #include "llvm/Support/Debug.h" |
| 49 | #include "llvm/Support/DebugCounter.h" |
| 50 | #include "llvm/Support/RecyclingAllocator.h" |
| 51 | #include "llvm/Support/raw_ostream.h" |
| 52 | #include "llvm/Transforms/Scalar.h" |
| 53 | #include "llvm/Transforms/Utils/AssumeBundleBuilder.h" |
| 54 | #include "llvm/Transforms/Utils/Local.h" |
| 55 | #include <cassert> |
| 56 | #include <deque> |
| 57 | #include <memory> |
| 58 | #include <utility> |
| 59 | |
| 60 | using namespace llvm; |
| 61 | using namespace llvm::PatternMatch; |
| 62 | |
| 63 | #define DEBUG_TYPE "early-cse" |
| 64 | |
| 65 | STATISTIC(NumSimplify, "Number of instructions simplified or DCE'd" ); |
| 66 | STATISTIC(NumCSE, "Number of instructions CSE'd" ); |
| 67 | STATISTIC(NumCSECVP, "Number of compare instructions CVP'd" ); |
| 68 | STATISTIC(NumCSELoad, "Number of load instructions CSE'd" ); |
| 69 | STATISTIC(NumCSECall, "Number of call instructions CSE'd" ); |
| 70 | STATISTIC(NumCSEGEP, "Number of GEP instructions CSE'd" ); |
| 71 | STATISTIC(NumDSE, "Number of trivial dead stores removed" ); |
| 72 | |
| 73 | DEBUG_COUNTER(CSECounter, "early-cse" , |
| 74 | "Controls which instructions are removed" ); |
| 75 | |
| 76 | static cl::opt<unsigned> EarlyCSEMssaOptCap( |
| 77 | "earlycse-mssa-optimization-cap" , cl::init(Val: 500), cl::Hidden, |
| 78 | cl::desc("Enable imprecision in EarlyCSE in pathological cases, in exchange " |
| 79 | "for faster compile. Caps the MemorySSA clobbering calls." )); |
| 80 | |
| 81 | static cl::opt<bool> EarlyCSEDebugHash( |
| 82 | "earlycse-debug-hash" , cl::init(Val: false), cl::Hidden, |
| 83 | cl::desc("Perform extra assertion checking to verify that SimpleValue's hash " |
| 84 | "function is well-behaved w.r.t. its isEqual predicate" )); |
| 85 | |
| 86 | //===----------------------------------------------------------------------===// |
| 87 | // SimpleValue |
| 88 | //===----------------------------------------------------------------------===// |
| 89 | |
| 90 | namespace { |
| 91 | |
| 92 | /// Struct representing the available values in the scoped hash table. |
| 93 | struct SimpleValue { |
| 94 | Instruction *Inst; |
| 95 | |
| 96 | SimpleValue(Instruction *I) : Inst(I) { |
| 97 | assert((isSentinel() || canHandle(I)) && "Inst can't be handled!" ); |
| 98 | } |
| 99 | |
| 100 | bool isSentinel() const { |
| 101 | return Inst == DenseMapInfo<Instruction *>::getEmptyKey() || |
| 102 | Inst == DenseMapInfo<Instruction *>::getTombstoneKey(); |
| 103 | } |
| 104 | |
| 105 | static bool canHandle(Instruction *Inst) { |
| 106 | // This can only handle non-void readnone functions. |
| 107 | // Also handled are constrained intrinsic that look like the types |
| 108 | // of instruction handled below (UnaryOperator, etc.). |
| 109 | if (CallInst *CI = dyn_cast<CallInst>(Val: Inst)) { |
| 110 | if (Function *F = CI->getCalledFunction()) { |
| 111 | switch (F->getIntrinsicID()) { |
| 112 | case Intrinsic::experimental_constrained_fadd: |
| 113 | case Intrinsic::experimental_constrained_fsub: |
| 114 | case Intrinsic::experimental_constrained_fmul: |
| 115 | case Intrinsic::experimental_constrained_fdiv: |
| 116 | case Intrinsic::experimental_constrained_frem: |
| 117 | case Intrinsic::experimental_constrained_fptosi: |
| 118 | case Intrinsic::experimental_constrained_sitofp: |
| 119 | case Intrinsic::experimental_constrained_fptoui: |
| 120 | case Intrinsic::experimental_constrained_uitofp: |
| 121 | case Intrinsic::experimental_constrained_fcmp: |
| 122 | case Intrinsic::experimental_constrained_fcmps: { |
| 123 | auto *CFP = cast<ConstrainedFPIntrinsic>(Val: CI); |
| 124 | if (CFP->getExceptionBehavior() && |
| 125 | CFP->getExceptionBehavior() == fp::ebStrict) |
| 126 | return false; |
| 127 | // Since we CSE across function calls we must not allow |
| 128 | // the rounding mode to change. |
| 129 | if (CFP->getRoundingMode() && |
| 130 | CFP->getRoundingMode() == RoundingMode::Dynamic) |
| 131 | return false; |
| 132 | return true; |
| 133 | } |
| 134 | } |
| 135 | } |
| 136 | return CI->doesNotAccessMemory() && |
| 137 | // FIXME: Currently the calls which may access the thread id may |
| 138 | // be considered as not accessing the memory. But this is |
| 139 | // problematic for coroutines, since coroutines may resume in a |
| 140 | // different thread. So we disable the optimization here for the |
| 141 | // correctness. However, it may block many other correct |
| 142 | // optimizations. Revert this one when we detect the memory |
| 143 | // accessing kind more precisely. |
| 144 | !CI->getFunction()->isPresplitCoroutine(); |
| 145 | } |
| 146 | return isa<CastInst>(Val: Inst) || isa<UnaryOperator>(Val: Inst) || |
| 147 | isa<BinaryOperator>(Val: Inst) || isa<CmpInst>(Val: Inst) || |
| 148 | isa<SelectInst>(Val: Inst) || isa<ExtractElementInst>(Val: Inst) || |
| 149 | isa<InsertElementInst>(Val: Inst) || isa<ShuffleVectorInst>(Val: Inst) || |
| 150 | isa<ExtractValueInst>(Val: Inst) || isa<InsertValueInst>(Val: Inst) || |
| 151 | isa<FreezeInst>(Val: Inst); |
| 152 | } |
| 153 | }; |
| 154 | |
| 155 | } // end anonymous namespace |
| 156 | |
| 157 | template <> struct llvm::DenseMapInfo<SimpleValue> { |
| 158 | static inline SimpleValue getEmptyKey() { |
| 159 | return DenseMapInfo<Instruction *>::getEmptyKey(); |
| 160 | } |
| 161 | |
| 162 | static inline SimpleValue getTombstoneKey() { |
| 163 | return DenseMapInfo<Instruction *>::getTombstoneKey(); |
| 164 | } |
| 165 | |
| 166 | static unsigned getHashValue(SimpleValue Val); |
| 167 | static bool isEqual(SimpleValue LHS, SimpleValue RHS); |
| 168 | }; |
| 169 | |
| 170 | /// Match a 'select' including an optional 'not's of the condition. |
| 171 | static bool matchSelectWithOptionalNotCond(Value *V, Value *&Cond, Value *&A, |
| 172 | Value *&B, |
| 173 | SelectPatternFlavor &Flavor) { |
| 174 | // Return false if V is not even a select. |
| 175 | if (!match(V, P: m_Select(C: m_Value(V&: Cond), L: m_Value(V&: A), R: m_Value(V&: B)))) |
| 176 | return false; |
| 177 | |
| 178 | // Look through a 'not' of the condition operand by swapping A/B. |
| 179 | Value *CondNot; |
| 180 | if (match(V: Cond, P: m_Not(V: m_Value(V&: CondNot)))) { |
| 181 | Cond = CondNot; |
| 182 | std::swap(a&: A, b&: B); |
| 183 | } |
| 184 | |
| 185 | // Match canonical forms of min/max. We are not using ValueTracking's |
| 186 | // more powerful matchSelectPattern() because it may rely on instruction flags |
| 187 | // such as "nsw". That would be incompatible with the current hashing |
| 188 | // mechanism that may remove flags to increase the likelihood of CSE. |
| 189 | |
| 190 | Flavor = SPF_UNKNOWN; |
| 191 | CmpPredicate Pred; |
| 192 | |
| 193 | if (!match(V: Cond, P: m_ICmp(Pred, L: m_Specific(V: A), R: m_Specific(V: B)))) { |
| 194 | // Check for commuted variants of min/max by swapping predicate. |
| 195 | // If we do not match the standard or commuted patterns, this is not a |
| 196 | // recognized form of min/max, but it is still a select, so return true. |
| 197 | if (!match(V: Cond, P: m_ICmp(Pred, L: m_Specific(V: B), R: m_Specific(V: A)))) |
| 198 | return true; |
| 199 | Pred = ICmpInst::getSwappedPredicate(pred: Pred); |
| 200 | } |
| 201 | |
| 202 | switch (Pred) { |
| 203 | case CmpInst::ICMP_UGT: Flavor = SPF_UMAX; break; |
| 204 | case CmpInst::ICMP_ULT: Flavor = SPF_UMIN; break; |
| 205 | case CmpInst::ICMP_SGT: Flavor = SPF_SMAX; break; |
| 206 | case CmpInst::ICMP_SLT: Flavor = SPF_SMIN; break; |
| 207 | // Non-strict inequalities. |
| 208 | case CmpInst::ICMP_ULE: Flavor = SPF_UMIN; break; |
| 209 | case CmpInst::ICMP_UGE: Flavor = SPF_UMAX; break; |
| 210 | case CmpInst::ICMP_SLE: Flavor = SPF_SMIN; break; |
| 211 | case CmpInst::ICMP_SGE: Flavor = SPF_SMAX; break; |
| 212 | default: break; |
| 213 | } |
| 214 | |
| 215 | return true; |
| 216 | } |
| 217 | |
| 218 | static unsigned hashCallInst(CallInst *CI) { |
| 219 | // Don't CSE convergent calls in different basic blocks, because they |
| 220 | // implicitly depend on the set of threads that is currently executing. |
| 221 | if (CI->isConvergent()) { |
| 222 | return hash_combine(args: CI->getOpcode(), args: CI->getParent(), |
| 223 | args: hash_combine_range(R: CI->operand_values())); |
| 224 | } |
| 225 | return hash_combine(args: CI->getOpcode(), |
| 226 | args: hash_combine_range(R: CI->operand_values())); |
| 227 | } |
| 228 | |
| 229 | static unsigned getHashValueImpl(SimpleValue Val) { |
| 230 | Instruction *Inst = Val.Inst; |
| 231 | // Hash in all of the operands as pointers. |
| 232 | if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Val: Inst)) { |
| 233 | Value *LHS = BinOp->getOperand(i_nocapture: 0); |
| 234 | Value *RHS = BinOp->getOperand(i_nocapture: 1); |
| 235 | if (BinOp->isCommutative() && BinOp->getOperand(i_nocapture: 0) > BinOp->getOperand(i_nocapture: 1)) |
| 236 | std::swap(a&: LHS, b&: RHS); |
| 237 | |
| 238 | return hash_combine(args: BinOp->getOpcode(), args: LHS, args: RHS); |
| 239 | } |
| 240 | |
| 241 | if (CmpInst *CI = dyn_cast<CmpInst>(Val: Inst)) { |
| 242 | // Compares can be commuted by swapping the comparands and |
| 243 | // updating the predicate. Choose the form that has the |
| 244 | // comparands in sorted order, or in the case of a tie, the |
| 245 | // one with the lower predicate. |
| 246 | Value *LHS = CI->getOperand(i_nocapture: 0); |
| 247 | Value *RHS = CI->getOperand(i_nocapture: 1); |
| 248 | CmpInst::Predicate Pred = CI->getPredicate(); |
| 249 | CmpInst::Predicate SwappedPred = CI->getSwappedPredicate(); |
| 250 | if (std::tie(args&: LHS, args&: Pred) > std::tie(args&: RHS, args&: SwappedPred)) { |
| 251 | std::swap(a&: LHS, b&: RHS); |
| 252 | Pred = SwappedPred; |
| 253 | } |
| 254 | return hash_combine(args: Inst->getOpcode(), args: Pred, args: LHS, args: RHS); |
| 255 | } |
| 256 | |
| 257 | // Hash general selects to allow matching commuted true/false operands. |
| 258 | SelectPatternFlavor SPF; |
| 259 | Value *Cond, *A, *B; |
| 260 | if (matchSelectWithOptionalNotCond(V: Inst, Cond, A, B, Flavor&: SPF)) { |
| 261 | // Hash min/max (cmp + select) to allow for commuted operands. |
| 262 | // Min/max may also have non-canonical compare predicate (eg, the compare for |
| 263 | // smin may use 'sgt' rather than 'slt'), and non-canonical operands in the |
| 264 | // compare. |
| 265 | // TODO: We should also detect FP min/max. |
| 266 | if (SPF == SPF_SMIN || SPF == SPF_SMAX || |
| 267 | SPF == SPF_UMIN || SPF == SPF_UMAX) { |
| 268 | if (A > B) |
| 269 | std::swap(a&: A, b&: B); |
| 270 | return hash_combine(args: Inst->getOpcode(), args: SPF, args: A, args: B); |
| 271 | } |
| 272 | |
| 273 | // Hash general selects to allow matching commuted true/false operands. |
| 274 | |
| 275 | // If we do not have a compare as the condition, just hash in the condition. |
| 276 | CmpPredicate Pred; |
| 277 | Value *X, *Y; |
| 278 | if (!match(V: Cond, P: m_Cmp(Pred, L: m_Value(V&: X), R: m_Value(V&: Y)))) |
| 279 | return hash_combine(args: Inst->getOpcode(), args: Cond, args: A, args: B); |
| 280 | |
| 281 | // Similar to cmp normalization (above) - canonicalize the predicate value: |
| 282 | // select (icmp Pred, X, Y), A, B --> select (icmp InvPred, X, Y), B, A |
| 283 | if (CmpInst::getInversePredicate(pred: Pred) < Pred) { |
| 284 | Pred = CmpInst::getInversePredicate(pred: Pred); |
| 285 | std::swap(a&: A, b&: B); |
| 286 | } |
| 287 | return hash_combine(args: Inst->getOpcode(), |
| 288 | args: static_cast<CmpInst::Predicate>(Pred), args: X, args: Y, args: A, args: B); |
| 289 | } |
| 290 | |
| 291 | if (CastInst *CI = dyn_cast<CastInst>(Val: Inst)) |
| 292 | return hash_combine(args: CI->getOpcode(), args: CI->getType(), args: CI->getOperand(i_nocapture: 0)); |
| 293 | |
| 294 | if (FreezeInst *FI = dyn_cast<FreezeInst>(Val: Inst)) |
| 295 | return hash_combine(args: FI->getOpcode(), args: FI->getOperand(i_nocapture: 0)); |
| 296 | |
| 297 | if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(Val: Inst)) |
| 298 | return hash_combine(args: EVI->getOpcode(), args: EVI->getOperand(i_nocapture: 0), |
| 299 | args: hash_combine_range(R: EVI->indices())); |
| 300 | |
| 301 | if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(Val: Inst)) |
| 302 | return hash_combine(args: IVI->getOpcode(), args: IVI->getOperand(i_nocapture: 0), |
| 303 | args: IVI->getOperand(i_nocapture: 1), args: hash_combine_range(R: IVI->indices())); |
| 304 | |
| 305 | assert((isa<CallInst>(Inst) || isa<ExtractElementInst>(Inst) || |
| 306 | isa<InsertElementInst>(Inst) || isa<ShuffleVectorInst>(Inst) || |
| 307 | isa<UnaryOperator>(Inst) || isa<FreezeInst>(Inst)) && |
| 308 | "Invalid/unknown instruction" ); |
| 309 | |
| 310 | // Handle intrinsics with commutative operands. |
| 311 | auto *II = dyn_cast<IntrinsicInst>(Val: Inst); |
| 312 | if (II && II->isCommutative() && II->arg_size() >= 2) { |
| 313 | Value *LHS = II->getArgOperand(i: 0), *RHS = II->getArgOperand(i: 1); |
| 314 | if (LHS > RHS) |
| 315 | std::swap(a&: LHS, b&: RHS); |
| 316 | return hash_combine( |
| 317 | args: II->getOpcode(), args: LHS, args: RHS, |
| 318 | args: hash_combine_range(R: drop_begin(RangeOrContainer: II->operand_values(), N: 2))); |
| 319 | } |
| 320 | |
| 321 | // gc.relocate is 'special' call: its second and third operands are |
| 322 | // not real values, but indices into statepoint's argument list. |
| 323 | // Get values they point to. |
| 324 | if (const GCRelocateInst *GCR = dyn_cast<GCRelocateInst>(Val: Inst)) |
| 325 | return hash_combine(args: GCR->getOpcode(), args: GCR->getOperand(i_nocapture: 0), |
| 326 | args: GCR->getBasePtr(), args: GCR->getDerivedPtr()); |
| 327 | |
| 328 | // Don't CSE convergent calls in different basic blocks, because they |
| 329 | // implicitly depend on the set of threads that is currently executing. |
| 330 | if (CallInst *CI = dyn_cast<CallInst>(Val: Inst)) |
| 331 | return hashCallInst(CI); |
| 332 | |
| 333 | // Mix in the opcode. |
| 334 | return hash_combine(args: Inst->getOpcode(), |
| 335 | args: hash_combine_range(R: Inst->operand_values())); |
| 336 | } |
| 337 | |
| 338 | unsigned DenseMapInfo<SimpleValue>::getHashValue(SimpleValue Val) { |
| 339 | #ifndef NDEBUG |
| 340 | // If -earlycse-debug-hash was specified, return a constant -- this |
| 341 | // will force all hashing to collide, so we'll exhaustively search |
| 342 | // the table for a match, and the assertion in isEqual will fire if |
| 343 | // there's a bug causing equal keys to hash differently. |
| 344 | if (EarlyCSEDebugHash) |
| 345 | return 0; |
| 346 | #endif |
| 347 | return getHashValueImpl(Val); |
| 348 | } |
| 349 | |
| 350 | static bool isEqualImpl(SimpleValue LHS, SimpleValue RHS) { |
| 351 | Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst; |
| 352 | |
| 353 | if (LHS.isSentinel() || RHS.isSentinel()) |
| 354 | return LHSI == RHSI; |
| 355 | |
| 356 | if (LHSI->getOpcode() != RHSI->getOpcode()) |
| 357 | return false; |
| 358 | if (LHSI->isIdenticalToWhenDefined(I: RHSI, /*IntersectAttrs=*/true)) { |
| 359 | // Convergent calls implicitly depend on the set of threads that is |
| 360 | // currently executing, so conservatively return false if they are in |
| 361 | // different basic blocks. |
| 362 | if (CallInst *CI = dyn_cast<CallInst>(Val: LHSI); |
| 363 | CI && CI->isConvergent() && LHSI->getParent() != RHSI->getParent()) |
| 364 | return false; |
| 365 | |
| 366 | return true; |
| 367 | } |
| 368 | |
| 369 | // If we're not strictly identical, we still might be a commutable instruction |
| 370 | if (BinaryOperator *LHSBinOp = dyn_cast<BinaryOperator>(Val: LHSI)) { |
| 371 | if (!LHSBinOp->isCommutative()) |
| 372 | return false; |
| 373 | |
| 374 | assert(isa<BinaryOperator>(RHSI) && |
| 375 | "same opcode, but different instruction type?" ); |
| 376 | BinaryOperator *RHSBinOp = cast<BinaryOperator>(Val: RHSI); |
| 377 | |
| 378 | // Commuted equality |
| 379 | return LHSBinOp->getOperand(i_nocapture: 0) == RHSBinOp->getOperand(i_nocapture: 1) && |
| 380 | LHSBinOp->getOperand(i_nocapture: 1) == RHSBinOp->getOperand(i_nocapture: 0); |
| 381 | } |
| 382 | if (CmpInst *LHSCmp = dyn_cast<CmpInst>(Val: LHSI)) { |
| 383 | assert(isa<CmpInst>(RHSI) && |
| 384 | "same opcode, but different instruction type?" ); |
| 385 | CmpInst *RHSCmp = cast<CmpInst>(Val: RHSI); |
| 386 | // Commuted equality |
| 387 | return LHSCmp->getOperand(i_nocapture: 0) == RHSCmp->getOperand(i_nocapture: 1) && |
| 388 | LHSCmp->getOperand(i_nocapture: 1) == RHSCmp->getOperand(i_nocapture: 0) && |
| 389 | LHSCmp->getSwappedPredicate() == RHSCmp->getPredicate(); |
| 390 | } |
| 391 | |
| 392 | auto *LII = dyn_cast<IntrinsicInst>(Val: LHSI); |
| 393 | auto *RII = dyn_cast<IntrinsicInst>(Val: RHSI); |
| 394 | if (LII && RII && LII->getIntrinsicID() == RII->getIntrinsicID() && |
| 395 | LII->isCommutative() && LII->arg_size() >= 2) { |
| 396 | return LII->getArgOperand(i: 0) == RII->getArgOperand(i: 1) && |
| 397 | LII->getArgOperand(i: 1) == RII->getArgOperand(i: 0) && |
| 398 | std::equal(first1: LII->arg_begin() + 2, last1: LII->arg_end(), |
| 399 | first2: RII->arg_begin() + 2, last2: RII->arg_end()) && |
| 400 | LII->hasSameSpecialState(I2: RII, /*IgnoreAlignment=*/false, |
| 401 | /*IntersectAttrs=*/true); |
| 402 | } |
| 403 | |
| 404 | // See comment above in `getHashValue()`. |
| 405 | if (const GCRelocateInst *GCR1 = dyn_cast<GCRelocateInst>(Val: LHSI)) |
| 406 | if (const GCRelocateInst *GCR2 = dyn_cast<GCRelocateInst>(Val: RHSI)) |
| 407 | return GCR1->getOperand(i_nocapture: 0) == GCR2->getOperand(i_nocapture: 0) && |
| 408 | GCR1->getBasePtr() == GCR2->getBasePtr() && |
| 409 | GCR1->getDerivedPtr() == GCR2->getDerivedPtr(); |
| 410 | |
| 411 | // Min/max can occur with commuted operands, non-canonical predicates, |
| 412 | // and/or non-canonical operands. |
| 413 | // Selects can be non-trivially equivalent via inverted conditions and swaps. |
| 414 | SelectPatternFlavor LSPF, RSPF; |
| 415 | Value *CondL, *CondR, *LHSA, *RHSA, *LHSB, *RHSB; |
| 416 | if (matchSelectWithOptionalNotCond(V: LHSI, Cond&: CondL, A&: LHSA, B&: LHSB, Flavor&: LSPF) && |
| 417 | matchSelectWithOptionalNotCond(V: RHSI, Cond&: CondR, A&: RHSA, B&: RHSB, Flavor&: RSPF)) { |
| 418 | if (LSPF == RSPF) { |
| 419 | // TODO: We should also detect FP min/max. |
| 420 | if (LSPF == SPF_SMIN || LSPF == SPF_SMAX || |
| 421 | LSPF == SPF_UMIN || LSPF == SPF_UMAX) |
| 422 | return ((LHSA == RHSA && LHSB == RHSB) || |
| 423 | (LHSA == RHSB && LHSB == RHSA)); |
| 424 | |
| 425 | // select Cond, A, B <--> select not(Cond), B, A |
| 426 | if (CondL == CondR && LHSA == RHSA && LHSB == RHSB) |
| 427 | return true; |
| 428 | } |
| 429 | |
| 430 | // If the true/false operands are swapped and the conditions are compares |
| 431 | // with inverted predicates, the selects are equal: |
| 432 | // select (icmp Pred, X, Y), A, B <--> select (icmp InvPred, X, Y), B, A |
| 433 | // |
| 434 | // This also handles patterns with a double-negation in the sense of not + |
| 435 | // inverse, because we looked through a 'not' in the matching function and |
| 436 | // swapped A/B: |
| 437 | // select (cmp Pred, X, Y), A, B <--> select (not (cmp InvPred, X, Y)), B, A |
| 438 | // |
| 439 | // This intentionally does NOT handle patterns with a double-negation in |
| 440 | // the sense of not + not, because doing so could result in values |
| 441 | // comparing |
| 442 | // as equal that hash differently in the min/max cases like: |
| 443 | // select (cmp slt, X, Y), X, Y <--> select (not (not (cmp slt, X, Y))), X, Y |
| 444 | // ^ hashes as min ^ would not hash as min |
| 445 | // In the context of the EarlyCSE pass, however, such cases never reach |
| 446 | // this code, as we simplify the double-negation before hashing the second |
| 447 | // select (and so still succeed at CSEing them). |
| 448 | if (LHSA == RHSB && LHSB == RHSA) { |
| 449 | CmpPredicate PredL, PredR; |
| 450 | Value *X, *Y; |
| 451 | if (match(V: CondL, P: m_Cmp(Pred&: PredL, L: m_Value(V&: X), R: m_Value(V&: Y))) && |
| 452 | match(V: CondR, P: m_Cmp(Pred&: PredR, L: m_Specific(V: X), R: m_Specific(V: Y))) && |
| 453 | CmpInst::getInversePredicate(pred: PredL) == PredR) |
| 454 | return true; |
| 455 | } |
| 456 | } |
| 457 | |
| 458 | return false; |
| 459 | } |
| 460 | |
| 461 | bool DenseMapInfo<SimpleValue>::isEqual(SimpleValue LHS, SimpleValue RHS) { |
| 462 | // These comparisons are nontrivial, so assert that equality implies |
| 463 | // hash equality (DenseMap demands this as an invariant). |
| 464 | bool Result = isEqualImpl(LHS, RHS); |
| 465 | assert(!Result || (LHS.isSentinel() && LHS.Inst == RHS.Inst) || |
| 466 | getHashValueImpl(LHS) == getHashValueImpl(RHS)); |
| 467 | return Result; |
| 468 | } |
| 469 | |
| 470 | //===----------------------------------------------------------------------===// |
| 471 | // CallValue |
| 472 | //===----------------------------------------------------------------------===// |
| 473 | |
| 474 | namespace { |
| 475 | |
| 476 | /// Struct representing the available call values in the scoped hash |
| 477 | /// table. |
| 478 | struct CallValue { |
| 479 | Instruction *Inst; |
| 480 | |
| 481 | CallValue(Instruction *I) : Inst(I) { |
| 482 | assert((isSentinel() || canHandle(I)) && "Inst can't be handled!" ); |
| 483 | } |
| 484 | |
| 485 | bool isSentinel() const { |
| 486 | return Inst == DenseMapInfo<Instruction *>::getEmptyKey() || |
| 487 | Inst == DenseMapInfo<Instruction *>::getTombstoneKey(); |
| 488 | } |
| 489 | |
| 490 | static bool canHandle(Instruction *Inst) { |
| 491 | CallInst *CI = dyn_cast<CallInst>(Val: Inst); |
| 492 | if (!CI || (!CI->onlyReadsMemory() && !CI->onlyWritesMemory()) || |
| 493 | // FIXME: Currently the calls which may access the thread id may |
| 494 | // be considered as not accessing the memory. But this is |
| 495 | // problematic for coroutines, since coroutines may resume in a |
| 496 | // different thread. So we disable the optimization here for the |
| 497 | // correctness. However, it may block many other correct |
| 498 | // optimizations. Revert this one when we detect the memory |
| 499 | // accessing kind more precisely. |
| 500 | CI->getFunction()->isPresplitCoroutine()) |
| 501 | return false; |
| 502 | return true; |
| 503 | } |
| 504 | }; |
| 505 | |
| 506 | } // end anonymous namespace |
| 507 | |
| 508 | template <> struct llvm::DenseMapInfo<CallValue> { |
| 509 | static inline CallValue getEmptyKey() { |
| 510 | return DenseMapInfo<Instruction *>::getEmptyKey(); |
| 511 | } |
| 512 | |
| 513 | static inline CallValue getTombstoneKey() { |
| 514 | return DenseMapInfo<Instruction *>::getTombstoneKey(); |
| 515 | } |
| 516 | |
| 517 | static unsigned getHashValue(CallValue Val); |
| 518 | static bool isEqual(CallValue LHS, CallValue RHS); |
| 519 | }; |
| 520 | |
| 521 | unsigned DenseMapInfo<CallValue>::getHashValue(CallValue Val) { |
| 522 | Instruction *Inst = Val.Inst; |
| 523 | |
| 524 | // Hash all of the operands as pointers and mix in the opcode. |
| 525 | return hashCallInst(CI: cast<CallInst>(Val: Inst)); |
| 526 | } |
| 527 | |
| 528 | bool DenseMapInfo<CallValue>::isEqual(CallValue LHS, CallValue RHS) { |
| 529 | if (LHS.isSentinel() || RHS.isSentinel()) |
| 530 | return LHS.Inst == RHS.Inst; |
| 531 | |
| 532 | CallInst *LHSI = cast<CallInst>(Val: LHS.Inst); |
| 533 | CallInst *RHSI = cast<CallInst>(Val: RHS.Inst); |
| 534 | |
| 535 | // Convergent calls implicitly depend on the set of threads that is |
| 536 | // currently executing, so conservatively return false if they are in |
| 537 | // different basic blocks. |
| 538 | if (LHSI->isConvergent() && LHSI->getParent() != RHSI->getParent()) |
| 539 | return false; |
| 540 | |
| 541 | return LHSI->isIdenticalToWhenDefined(I: RHSI, /*IntersectAttrs=*/true); |
| 542 | } |
| 543 | |
| 544 | //===----------------------------------------------------------------------===// |
| 545 | // GEPValue |
| 546 | //===----------------------------------------------------------------------===// |
| 547 | |
| 548 | namespace { |
| 549 | |
| 550 | struct GEPValue { |
| 551 | Instruction *Inst; |
| 552 | std::optional<int64_t> ConstantOffset; |
| 553 | |
| 554 | GEPValue(Instruction *I) : Inst(I) { |
| 555 | assert((isSentinel() || canHandle(I)) && "Inst can't be handled!" ); |
| 556 | } |
| 557 | |
| 558 | GEPValue(Instruction *I, std::optional<int64_t> ConstantOffset) |
| 559 | : Inst(I), ConstantOffset(ConstantOffset) { |
| 560 | assert((isSentinel() || canHandle(I)) && "Inst can't be handled!" ); |
| 561 | } |
| 562 | |
| 563 | bool isSentinel() const { |
| 564 | return Inst == DenseMapInfo<Instruction *>::getEmptyKey() || |
| 565 | Inst == DenseMapInfo<Instruction *>::getTombstoneKey(); |
| 566 | } |
| 567 | |
| 568 | static bool canHandle(Instruction *Inst) { |
| 569 | return isa<GetElementPtrInst>(Val: Inst); |
| 570 | } |
| 571 | }; |
| 572 | |
| 573 | } // namespace |
| 574 | |
| 575 | template <> struct llvm::DenseMapInfo<GEPValue> { |
| 576 | static inline GEPValue getEmptyKey() { |
| 577 | return DenseMapInfo<Instruction *>::getEmptyKey(); |
| 578 | } |
| 579 | |
| 580 | static inline GEPValue getTombstoneKey() { |
| 581 | return DenseMapInfo<Instruction *>::getTombstoneKey(); |
| 582 | } |
| 583 | |
| 584 | static unsigned getHashValue(const GEPValue &Val); |
| 585 | static bool isEqual(const GEPValue &LHS, const GEPValue &RHS); |
| 586 | }; |
| 587 | |
| 588 | unsigned DenseMapInfo<GEPValue>::getHashValue(const GEPValue &Val) { |
| 589 | auto *GEP = cast<GetElementPtrInst>(Val: Val.Inst); |
| 590 | if (Val.ConstantOffset.has_value()) |
| 591 | return hash_combine(args: GEP->getOpcode(), args: GEP->getPointerOperand(), |
| 592 | args: Val.ConstantOffset.value()); |
| 593 | return hash_combine(args: GEP->getOpcode(), |
| 594 | args: hash_combine_range(R: GEP->operand_values())); |
| 595 | } |
| 596 | |
| 597 | bool DenseMapInfo<GEPValue>::isEqual(const GEPValue &LHS, const GEPValue &RHS) { |
| 598 | if (LHS.isSentinel() || RHS.isSentinel()) |
| 599 | return LHS.Inst == RHS.Inst; |
| 600 | auto *LGEP = cast<GetElementPtrInst>(Val: LHS.Inst); |
| 601 | auto *RGEP = cast<GetElementPtrInst>(Val: RHS.Inst); |
| 602 | if (LGEP->getPointerOperand() != RGEP->getPointerOperand()) |
| 603 | return false; |
| 604 | if (LHS.ConstantOffset.has_value() && RHS.ConstantOffset.has_value()) |
| 605 | return LHS.ConstantOffset.value() == RHS.ConstantOffset.value(); |
| 606 | return LGEP->isIdenticalToWhenDefined(I: RGEP); |
| 607 | } |
| 608 | |
| 609 | //===----------------------------------------------------------------------===// |
| 610 | // EarlyCSE implementation |
| 611 | //===----------------------------------------------------------------------===// |
| 612 | |
| 613 | namespace { |
| 614 | |
| 615 | /// A simple and fast domtree-based CSE pass. |
| 616 | /// |
| 617 | /// This pass does a simple depth-first walk over the dominator tree, |
| 618 | /// eliminating trivially redundant instructions and using instsimplify to |
| 619 | /// canonicalize things as it goes. It is intended to be fast and catch obvious |
| 620 | /// cases so that instcombine and other passes are more effective. It is |
| 621 | /// expected that a later pass of GVN will catch the interesting/hard cases. |
| 622 | class EarlyCSE { |
| 623 | public: |
| 624 | const TargetLibraryInfo &TLI; |
| 625 | const TargetTransformInfo &TTI; |
| 626 | DominatorTree &DT; |
| 627 | AssumptionCache &AC; |
| 628 | const SimplifyQuery SQ; |
| 629 | MemorySSA *MSSA; |
| 630 | std::unique_ptr<MemorySSAUpdater> MSSAUpdater; |
| 631 | |
| 632 | using AllocatorTy = |
| 633 | RecyclingAllocator<BumpPtrAllocator, |
| 634 | ScopedHashTableVal<SimpleValue, Value *>>; |
| 635 | using ScopedHTType = |
| 636 | ScopedHashTable<SimpleValue, Value *, DenseMapInfo<SimpleValue>, |
| 637 | AllocatorTy>; |
| 638 | |
| 639 | /// A scoped hash table of the current values of all of our simple |
| 640 | /// scalar expressions. |
| 641 | /// |
| 642 | /// As we walk down the domtree, we look to see if instructions are in this: |
| 643 | /// if so, we replace them with what we find, otherwise we insert them so |
| 644 | /// that dominated values can succeed in their lookup. |
| 645 | ScopedHTType AvailableValues; |
| 646 | |
| 647 | /// A scoped hash table of the current values of previously encountered |
| 648 | /// memory locations. |
| 649 | /// |
| 650 | /// This allows us to get efficient access to dominating loads or stores when |
| 651 | /// we have a fully redundant load. In addition to the most recent load, we |
| 652 | /// keep track of a generation count of the read, which is compared against |
| 653 | /// the current generation count. The current generation count is incremented |
| 654 | /// after every possibly writing memory operation, which ensures that we only |
| 655 | /// CSE loads with other loads that have no intervening store. Ordering |
| 656 | /// events (such as fences or atomic instructions) increment the generation |
| 657 | /// count as well; essentially, we model these as writes to all possible |
| 658 | /// locations. Note that atomic and/or volatile loads and stores can be |
| 659 | /// present the table; it is the responsibility of the consumer to inspect |
| 660 | /// the atomicity/volatility if needed. |
| 661 | struct LoadValue { |
| 662 | Instruction *DefInst = nullptr; |
| 663 | unsigned Generation = 0; |
| 664 | int MatchingId = -1; |
| 665 | bool IsAtomic = false; |
| 666 | bool IsLoad = false; |
| 667 | |
| 668 | LoadValue() = default; |
| 669 | LoadValue(Instruction *Inst, unsigned Generation, unsigned MatchingId, |
| 670 | bool IsAtomic, bool IsLoad) |
| 671 | : DefInst(Inst), Generation(Generation), MatchingId(MatchingId), |
| 672 | IsAtomic(IsAtomic), IsLoad(IsLoad) {} |
| 673 | }; |
| 674 | |
| 675 | using LoadMapAllocator = |
| 676 | RecyclingAllocator<BumpPtrAllocator, |
| 677 | ScopedHashTableVal<Value *, LoadValue>>; |
| 678 | using LoadHTType = |
| 679 | ScopedHashTable<Value *, LoadValue, DenseMapInfo<Value *>, |
| 680 | LoadMapAllocator>; |
| 681 | |
| 682 | LoadHTType AvailableLoads; |
| 683 | |
| 684 | // A scoped hash table mapping memory locations (represented as typed |
| 685 | // addresses) to generation numbers at which that memory location became |
| 686 | // (henceforth indefinitely) invariant. |
| 687 | using InvariantMapAllocator = |
| 688 | RecyclingAllocator<BumpPtrAllocator, |
| 689 | ScopedHashTableVal<MemoryLocation, unsigned>>; |
| 690 | using InvariantHTType = |
| 691 | ScopedHashTable<MemoryLocation, unsigned, DenseMapInfo<MemoryLocation>, |
| 692 | InvariantMapAllocator>; |
| 693 | InvariantHTType AvailableInvariants; |
| 694 | |
| 695 | /// A scoped hash table of the current values of read-only call |
| 696 | /// values. |
| 697 | /// |
| 698 | /// It uses the same generation count as loads. |
| 699 | using CallHTType = |
| 700 | ScopedHashTable<CallValue, std::pair<Instruction *, unsigned>>; |
| 701 | CallHTType AvailableCalls; |
| 702 | |
| 703 | using GEPMapAllocatorTy = |
| 704 | RecyclingAllocator<BumpPtrAllocator, |
| 705 | ScopedHashTableVal<GEPValue, Value *>>; |
| 706 | using GEPHTType = ScopedHashTable<GEPValue, Value *, DenseMapInfo<GEPValue>, |
| 707 | GEPMapAllocatorTy>; |
| 708 | GEPHTType AvailableGEPs; |
| 709 | |
| 710 | /// This is the current generation of the memory value. |
| 711 | unsigned CurrentGeneration = 0; |
| 712 | |
| 713 | /// Set up the EarlyCSE runner for a particular function. |
| 714 | EarlyCSE(const DataLayout &DL, const TargetLibraryInfo &TLI, |
| 715 | const TargetTransformInfo &TTI, DominatorTree &DT, |
| 716 | AssumptionCache &AC, MemorySSA *MSSA) |
| 717 | : TLI(TLI), TTI(TTI), DT(DT), AC(AC), SQ(DL, &TLI, &DT, &AC), MSSA(MSSA), |
| 718 | MSSAUpdater(std::make_unique<MemorySSAUpdater>(args&: MSSA)) {} |
| 719 | |
| 720 | bool run(); |
| 721 | |
| 722 | private: |
| 723 | unsigned ClobberCounter = 0; |
| 724 | // Almost a POD, but needs to call the constructors for the scoped hash |
| 725 | // tables so that a new scope gets pushed on. These are RAII so that the |
| 726 | // scope gets popped when the NodeScope is destroyed. |
| 727 | class NodeScope { |
| 728 | public: |
| 729 | NodeScope(ScopedHTType &AvailableValues, LoadHTType &AvailableLoads, |
| 730 | InvariantHTType &AvailableInvariants, CallHTType &AvailableCalls, |
| 731 | GEPHTType &AvailableGEPs) |
| 732 | : Scope(AvailableValues), LoadScope(AvailableLoads), |
| 733 | InvariantScope(AvailableInvariants), CallScope(AvailableCalls), |
| 734 | GEPScope(AvailableGEPs) {} |
| 735 | NodeScope(const NodeScope &) = delete; |
| 736 | NodeScope &operator=(const NodeScope &) = delete; |
| 737 | |
| 738 | private: |
| 739 | ScopedHTType::ScopeTy Scope; |
| 740 | LoadHTType::ScopeTy LoadScope; |
| 741 | InvariantHTType::ScopeTy InvariantScope; |
| 742 | CallHTType::ScopeTy CallScope; |
| 743 | GEPHTType::ScopeTy GEPScope; |
| 744 | }; |
| 745 | |
| 746 | // Contains all the needed information to create a stack for doing a depth |
| 747 | // first traversal of the tree. This includes scopes for values, loads, and |
| 748 | // calls as well as the generation. There is a child iterator so that the |
| 749 | // children do not need to be store separately. |
| 750 | class StackNode { |
| 751 | public: |
| 752 | StackNode(ScopedHTType &AvailableValues, LoadHTType &AvailableLoads, |
| 753 | InvariantHTType &AvailableInvariants, CallHTType &AvailableCalls, |
| 754 | GEPHTType &AvailableGEPs, unsigned cg, DomTreeNode *n, |
| 755 | DomTreeNode::const_iterator child, |
| 756 | DomTreeNode::const_iterator end) |
| 757 | : CurrentGeneration(cg), ChildGeneration(cg), Node(n), ChildIter(child), |
| 758 | EndIter(end), |
| 759 | Scopes(AvailableValues, AvailableLoads, AvailableInvariants, |
| 760 | AvailableCalls, AvailableGEPs) {} |
| 761 | StackNode(const StackNode &) = delete; |
| 762 | StackNode &operator=(const StackNode &) = delete; |
| 763 | |
| 764 | // Accessors. |
| 765 | unsigned currentGeneration() const { return CurrentGeneration; } |
| 766 | unsigned childGeneration() const { return ChildGeneration; } |
| 767 | void childGeneration(unsigned generation) { ChildGeneration = generation; } |
| 768 | DomTreeNode *node() { return Node; } |
| 769 | DomTreeNode::const_iterator childIter() const { return ChildIter; } |
| 770 | |
| 771 | DomTreeNode *nextChild() { |
| 772 | DomTreeNode *child = *ChildIter; |
| 773 | ++ChildIter; |
| 774 | return child; |
| 775 | } |
| 776 | |
| 777 | DomTreeNode::const_iterator end() const { return EndIter; } |
| 778 | bool isProcessed() const { return Processed; } |
| 779 | void process() { Processed = true; } |
| 780 | |
| 781 | private: |
| 782 | unsigned CurrentGeneration; |
| 783 | unsigned ChildGeneration; |
| 784 | DomTreeNode *Node; |
| 785 | DomTreeNode::const_iterator ChildIter; |
| 786 | DomTreeNode::const_iterator EndIter; |
| 787 | NodeScope Scopes; |
| 788 | bool Processed = false; |
| 789 | }; |
| 790 | |
| 791 | /// Wrapper class to handle memory instructions, including loads, |
| 792 | /// stores and intrinsic loads and stores defined by the target. |
| 793 | class ParseMemoryInst { |
| 794 | public: |
| 795 | ParseMemoryInst(Instruction *Inst, const TargetTransformInfo &TTI) |
| 796 | : Inst(Inst) { |
| 797 | if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Val: Inst)) { |
| 798 | IntrID = II->getIntrinsicID(); |
| 799 | if (TTI.getTgtMemIntrinsic(Inst: II, Info)) |
| 800 | return; |
| 801 | if (isHandledNonTargetIntrinsic(ID: IntrID)) { |
| 802 | switch (IntrID) { |
| 803 | case Intrinsic::masked_load: |
| 804 | Info.PtrVal = Inst->getOperand(i: 0); |
| 805 | Info.MatchingId = Intrinsic::masked_load; |
| 806 | Info.ReadMem = true; |
| 807 | Info.WriteMem = false; |
| 808 | Info.IsVolatile = false; |
| 809 | break; |
| 810 | case Intrinsic::masked_store: |
| 811 | Info.PtrVal = Inst->getOperand(i: 1); |
| 812 | // Use the ID of masked load as the "matching id". This will |
| 813 | // prevent matching non-masked loads/stores with masked ones |
| 814 | // (which could be done), but at the moment, the code here |
| 815 | // does not support matching intrinsics with non-intrinsics, |
| 816 | // so keep the MatchingIds specific to masked instructions |
| 817 | // for now (TODO). |
| 818 | Info.MatchingId = Intrinsic::masked_load; |
| 819 | Info.ReadMem = false; |
| 820 | Info.WriteMem = true; |
| 821 | Info.IsVolatile = false; |
| 822 | break; |
| 823 | } |
| 824 | } |
| 825 | } |
| 826 | } |
| 827 | |
| 828 | Instruction *get() { return Inst; } |
| 829 | const Instruction *get() const { return Inst; } |
| 830 | |
| 831 | bool isLoad() const { |
| 832 | if (IntrID != 0) |
| 833 | return Info.ReadMem; |
| 834 | return isa<LoadInst>(Val: Inst); |
| 835 | } |
| 836 | |
| 837 | bool isStore() const { |
| 838 | if (IntrID != 0) |
| 839 | return Info.WriteMem; |
| 840 | return isa<StoreInst>(Val: Inst); |
| 841 | } |
| 842 | |
| 843 | bool isAtomic() const { |
| 844 | if (IntrID != 0) |
| 845 | return Info.Ordering != AtomicOrdering::NotAtomic; |
| 846 | return Inst->isAtomic(); |
| 847 | } |
| 848 | |
| 849 | bool isUnordered() const { |
| 850 | if (IntrID != 0) |
| 851 | return Info.isUnordered(); |
| 852 | |
| 853 | if (LoadInst *LI = dyn_cast<LoadInst>(Val: Inst)) { |
| 854 | return LI->isUnordered(); |
| 855 | } else if (StoreInst *SI = dyn_cast<StoreInst>(Val: Inst)) { |
| 856 | return SI->isUnordered(); |
| 857 | } |
| 858 | // Conservative answer |
| 859 | return !Inst->isAtomic(); |
| 860 | } |
| 861 | |
| 862 | bool isVolatile() const { |
| 863 | if (IntrID != 0) |
| 864 | return Info.IsVolatile; |
| 865 | |
| 866 | if (LoadInst *LI = dyn_cast<LoadInst>(Val: Inst)) { |
| 867 | return LI->isVolatile(); |
| 868 | } else if (StoreInst *SI = dyn_cast<StoreInst>(Val: Inst)) { |
| 869 | return SI->isVolatile(); |
| 870 | } |
| 871 | // Conservative answer |
| 872 | return true; |
| 873 | } |
| 874 | |
| 875 | bool isInvariantLoad() const { |
| 876 | if (auto *LI = dyn_cast<LoadInst>(Val: Inst)) |
| 877 | return LI->hasMetadata(KindID: LLVMContext::MD_invariant_load); |
| 878 | return false; |
| 879 | } |
| 880 | |
| 881 | bool isValid() const { return getPointerOperand() != nullptr; } |
| 882 | |
| 883 | // For regular (non-intrinsic) loads/stores, this is set to -1. For |
| 884 | // intrinsic loads/stores, the id is retrieved from the corresponding |
| 885 | // field in the MemIntrinsicInfo structure. That field contains |
| 886 | // non-negative values only. |
| 887 | int getMatchingId() const { |
| 888 | if (IntrID != 0) |
| 889 | return Info.MatchingId; |
| 890 | return -1; |
| 891 | } |
| 892 | |
| 893 | Value *getPointerOperand() const { |
| 894 | if (IntrID != 0) |
| 895 | return Info.PtrVal; |
| 896 | return getLoadStorePointerOperand(V: Inst); |
| 897 | } |
| 898 | |
| 899 | Type *getValueType() const { |
| 900 | // TODO: handle target-specific intrinsics. |
| 901 | return Inst->getAccessType(); |
| 902 | } |
| 903 | |
| 904 | bool mayReadFromMemory() const { |
| 905 | if (IntrID != 0) |
| 906 | return Info.ReadMem; |
| 907 | return Inst->mayReadFromMemory(); |
| 908 | } |
| 909 | |
| 910 | bool mayWriteToMemory() const { |
| 911 | if (IntrID != 0) |
| 912 | return Info.WriteMem; |
| 913 | return Inst->mayWriteToMemory(); |
| 914 | } |
| 915 | |
| 916 | private: |
| 917 | Intrinsic::ID IntrID = 0; |
| 918 | MemIntrinsicInfo Info; |
| 919 | Instruction *Inst; |
| 920 | }; |
| 921 | |
| 922 | // This function is to prevent accidentally passing a non-target |
| 923 | // intrinsic ID to TargetTransformInfo. |
| 924 | static bool isHandledNonTargetIntrinsic(Intrinsic::ID ID) { |
| 925 | switch (ID) { |
| 926 | case Intrinsic::masked_load: |
| 927 | case Intrinsic::masked_store: |
| 928 | return true; |
| 929 | } |
| 930 | return false; |
| 931 | } |
| 932 | static bool isHandledNonTargetIntrinsic(const Value *V) { |
| 933 | if (auto *II = dyn_cast<IntrinsicInst>(Val: V)) |
| 934 | return isHandledNonTargetIntrinsic(ID: II->getIntrinsicID()); |
| 935 | return false; |
| 936 | } |
| 937 | |
| 938 | bool processNode(DomTreeNode *Node); |
| 939 | |
| 940 | bool handleBranchCondition(Instruction *CondInst, const BranchInst *BI, |
| 941 | const BasicBlock *BB, const BasicBlock *Pred); |
| 942 | |
| 943 | Value *getMatchingValue(LoadValue &InVal, ParseMemoryInst &MemInst, |
| 944 | unsigned CurrentGeneration); |
| 945 | |
| 946 | bool overridingStores(const ParseMemoryInst &Earlier, |
| 947 | const ParseMemoryInst &Later); |
| 948 | |
| 949 | Value *getOrCreateResult(Instruction *Inst, Type *ExpectedType, |
| 950 | bool CanCreate) const { |
| 951 | // TODO: We could insert relevant casts on type mismatch. |
| 952 | // The load or the store's first operand. |
| 953 | Value *V; |
| 954 | if (auto *II = dyn_cast<IntrinsicInst>(Val: Inst)) { |
| 955 | switch (II->getIntrinsicID()) { |
| 956 | case Intrinsic::masked_load: |
| 957 | V = II; |
| 958 | break; |
| 959 | case Intrinsic::masked_store: |
| 960 | V = II->getOperand(i_nocapture: 0); |
| 961 | break; |
| 962 | default: |
| 963 | return TTI.getOrCreateResultFromMemIntrinsic(Inst: II, ExpectedType, |
| 964 | CanCreate); |
| 965 | } |
| 966 | } else { |
| 967 | V = isa<LoadInst>(Val: Inst) ? Inst : cast<StoreInst>(Val: Inst)->getValueOperand(); |
| 968 | } |
| 969 | |
| 970 | return V->getType() == ExpectedType ? V : nullptr; |
| 971 | } |
| 972 | |
| 973 | /// Return true if the instruction is known to only operate on memory |
| 974 | /// provably invariant in the given "generation". |
| 975 | bool isOperatingOnInvariantMemAt(Instruction *I, unsigned GenAt); |
| 976 | |
| 977 | bool isSameMemGeneration(unsigned EarlierGeneration, unsigned LaterGeneration, |
| 978 | Instruction *EarlierInst, Instruction *LaterInst); |
| 979 | |
| 980 | bool isNonTargetIntrinsicMatch(const IntrinsicInst *Earlier, |
| 981 | const IntrinsicInst *Later) { |
| 982 | auto IsSubmask = [](const Value *Mask0, const Value *Mask1) { |
| 983 | // Is Mask0 a submask of Mask1? |
| 984 | if (Mask0 == Mask1) |
| 985 | return true; |
| 986 | if (isa<UndefValue>(Val: Mask0) || isa<UndefValue>(Val: Mask1)) |
| 987 | return false; |
| 988 | auto *Vec0 = dyn_cast<ConstantVector>(Val: Mask0); |
| 989 | auto *Vec1 = dyn_cast<ConstantVector>(Val: Mask1); |
| 990 | if (!Vec0 || !Vec1) |
| 991 | return false; |
| 992 | if (Vec0->getType() != Vec1->getType()) |
| 993 | return false; |
| 994 | for (int i = 0, e = Vec0->getNumOperands(); i != e; ++i) { |
| 995 | Constant *Elem0 = Vec0->getOperand(i_nocapture: i); |
| 996 | Constant *Elem1 = Vec1->getOperand(i_nocapture: i); |
| 997 | auto *Int0 = dyn_cast<ConstantInt>(Val: Elem0); |
| 998 | if (Int0 && Int0->isZero()) |
| 999 | continue; |
| 1000 | auto *Int1 = dyn_cast<ConstantInt>(Val: Elem1); |
| 1001 | if (Int1 && !Int1->isZero()) |
| 1002 | continue; |
| 1003 | if (isa<UndefValue>(Val: Elem0) || isa<UndefValue>(Val: Elem1)) |
| 1004 | return false; |
| 1005 | if (Elem0 == Elem1) |
| 1006 | continue; |
| 1007 | return false; |
| 1008 | } |
| 1009 | return true; |
| 1010 | }; |
| 1011 | auto PtrOp = [](const IntrinsicInst *II) { |
| 1012 | if (II->getIntrinsicID() == Intrinsic::masked_load) |
| 1013 | return II->getOperand(i_nocapture: 0); |
| 1014 | if (II->getIntrinsicID() == Intrinsic::masked_store) |
| 1015 | return II->getOperand(i_nocapture: 1); |
| 1016 | llvm_unreachable("Unexpected IntrinsicInst" ); |
| 1017 | }; |
| 1018 | auto MaskOp = [](const IntrinsicInst *II) { |
| 1019 | if (II->getIntrinsicID() == Intrinsic::masked_load) |
| 1020 | return II->getOperand(i_nocapture: 1); |
| 1021 | if (II->getIntrinsicID() == Intrinsic::masked_store) |
| 1022 | return II->getOperand(i_nocapture: 2); |
| 1023 | llvm_unreachable("Unexpected IntrinsicInst" ); |
| 1024 | }; |
| 1025 | auto ThruOp = [](const IntrinsicInst *II) { |
| 1026 | if (II->getIntrinsicID() == Intrinsic::masked_load) |
| 1027 | return II->getOperand(i_nocapture: 2); |
| 1028 | llvm_unreachable("Unexpected IntrinsicInst" ); |
| 1029 | }; |
| 1030 | |
| 1031 | if (PtrOp(Earlier) != PtrOp(Later)) |
| 1032 | return false; |
| 1033 | |
| 1034 | Intrinsic::ID IDE = Earlier->getIntrinsicID(); |
| 1035 | Intrinsic::ID IDL = Later->getIntrinsicID(); |
| 1036 | // We could really use specific intrinsic classes for masked loads |
| 1037 | // and stores in IntrinsicInst.h. |
| 1038 | if (IDE == Intrinsic::masked_load && IDL == Intrinsic::masked_load) { |
| 1039 | // Trying to replace later masked load with the earlier one. |
| 1040 | // Check that the pointers are the same, and |
| 1041 | // - masks and pass-throughs are the same, or |
| 1042 | // - replacee's pass-through is "undef" and replacer's mask is a |
| 1043 | // super-set of the replacee's mask. |
| 1044 | if (MaskOp(Earlier) == MaskOp(Later) && ThruOp(Earlier) == ThruOp(Later)) |
| 1045 | return true; |
| 1046 | if (!isa<UndefValue>(Val: ThruOp(Later))) |
| 1047 | return false; |
| 1048 | return IsSubmask(MaskOp(Later), MaskOp(Earlier)); |
| 1049 | } |
| 1050 | if (IDE == Intrinsic::masked_store && IDL == Intrinsic::masked_load) { |
| 1051 | // Trying to replace a load of a stored value with the store's value. |
| 1052 | // Check that the pointers are the same, and |
| 1053 | // - load's mask is a subset of store's mask, and |
| 1054 | // - load's pass-through is "undef". |
| 1055 | if (!IsSubmask(MaskOp(Later), MaskOp(Earlier))) |
| 1056 | return false; |
| 1057 | return isa<UndefValue>(Val: ThruOp(Later)); |
| 1058 | } |
| 1059 | if (IDE == Intrinsic::masked_load && IDL == Intrinsic::masked_store) { |
| 1060 | // Trying to remove a store of the loaded value. |
| 1061 | // Check that the pointers are the same, and |
| 1062 | // - store's mask is a subset of the load's mask. |
| 1063 | return IsSubmask(MaskOp(Later), MaskOp(Earlier)); |
| 1064 | } |
| 1065 | if (IDE == Intrinsic::masked_store && IDL == Intrinsic::masked_store) { |
| 1066 | // Trying to remove a dead store (earlier). |
| 1067 | // Check that the pointers are the same, |
| 1068 | // - the to-be-removed store's mask is a subset of the other store's |
| 1069 | // mask. |
| 1070 | return IsSubmask(MaskOp(Earlier), MaskOp(Later)); |
| 1071 | } |
| 1072 | return false; |
| 1073 | } |
| 1074 | |
| 1075 | void removeMSSA(Instruction &Inst) { |
| 1076 | if (!MSSA) |
| 1077 | return; |
| 1078 | if (VerifyMemorySSA) |
| 1079 | MSSA->verifyMemorySSA(); |
| 1080 | // Removing a store here can leave MemorySSA in an unoptimized state by |
| 1081 | // creating MemoryPhis that have identical arguments and by creating |
| 1082 | // MemoryUses whose defining access is not an actual clobber. The phi case |
| 1083 | // is handled by MemorySSA when passing OptimizePhis = true to |
| 1084 | // removeMemoryAccess. The non-optimized MemoryUse case is lazily updated |
| 1085 | // by MemorySSA's getClobberingMemoryAccess. |
| 1086 | MSSAUpdater->removeMemoryAccess(I: &Inst, OptimizePhis: true); |
| 1087 | } |
| 1088 | }; |
| 1089 | |
| 1090 | } // end anonymous namespace |
| 1091 | |
| 1092 | /// Determine if the memory referenced by LaterInst is from the same heap |
| 1093 | /// version as EarlierInst. |
| 1094 | /// This is currently called in two scenarios: |
| 1095 | /// |
| 1096 | /// load p |
| 1097 | /// ... |
| 1098 | /// load p |
| 1099 | /// |
| 1100 | /// and |
| 1101 | /// |
| 1102 | /// x = load p |
| 1103 | /// ... |
| 1104 | /// store x, p |
| 1105 | /// |
| 1106 | /// in both cases we want to verify that there are no possible writes to the |
| 1107 | /// memory referenced by p between the earlier and later instruction. |
| 1108 | bool EarlyCSE::isSameMemGeneration(unsigned EarlierGeneration, |
| 1109 | unsigned LaterGeneration, |
| 1110 | Instruction *EarlierInst, |
| 1111 | Instruction *LaterInst) { |
| 1112 | // Check the simple memory generation tracking first. |
| 1113 | if (EarlierGeneration == LaterGeneration) |
| 1114 | return true; |
| 1115 | |
| 1116 | if (!MSSA) |
| 1117 | return false; |
| 1118 | |
| 1119 | // If MemorySSA has determined that one of EarlierInst or LaterInst does not |
| 1120 | // read/write memory, then we can safely return true here. |
| 1121 | // FIXME: We could be more aggressive when checking doesNotAccessMemory(), |
| 1122 | // onlyReadsMemory(), mayReadFromMemory(), and mayWriteToMemory() in this pass |
| 1123 | // by also checking the MemorySSA MemoryAccess on the instruction. Initial |
| 1124 | // experiments suggest this isn't worthwhile, at least for C/C++ code compiled |
| 1125 | // with the default optimization pipeline. |
| 1126 | auto *EarlierMA = MSSA->getMemoryAccess(I: EarlierInst); |
| 1127 | if (!EarlierMA) |
| 1128 | return true; |
| 1129 | auto *LaterMA = MSSA->getMemoryAccess(I: LaterInst); |
| 1130 | if (!LaterMA) |
| 1131 | return true; |
| 1132 | |
| 1133 | // Since we know LaterDef dominates LaterInst and EarlierInst dominates |
| 1134 | // LaterInst, if LaterDef dominates EarlierInst then it can't occur between |
| 1135 | // EarlierInst and LaterInst and neither can any other write that potentially |
| 1136 | // clobbers LaterInst. |
| 1137 | MemoryAccess *LaterDef; |
| 1138 | if (ClobberCounter < EarlyCSEMssaOptCap) { |
| 1139 | LaterDef = MSSA->getWalker()->getClobberingMemoryAccess(I: LaterInst); |
| 1140 | ClobberCounter++; |
| 1141 | } else |
| 1142 | LaterDef = LaterMA->getDefiningAccess(); |
| 1143 | |
| 1144 | return MSSA->dominates(A: LaterDef, B: EarlierMA); |
| 1145 | } |
| 1146 | |
| 1147 | bool EarlyCSE::isOperatingOnInvariantMemAt(Instruction *I, unsigned GenAt) { |
| 1148 | // A location loaded from with an invariant_load is assumed to *never* change |
| 1149 | // within the visible scope of the compilation. |
| 1150 | if (auto *LI = dyn_cast<LoadInst>(Val: I)) |
| 1151 | if (LI->hasMetadata(KindID: LLVMContext::MD_invariant_load)) |
| 1152 | return true; |
| 1153 | |
| 1154 | auto MemLocOpt = MemoryLocation::getOrNone(Inst: I); |
| 1155 | if (!MemLocOpt) |
| 1156 | // "target" intrinsic forms of loads aren't currently known to |
| 1157 | // MemoryLocation::get. TODO |
| 1158 | return false; |
| 1159 | MemoryLocation MemLoc = *MemLocOpt; |
| 1160 | if (!AvailableInvariants.count(Key: MemLoc)) |
| 1161 | return false; |
| 1162 | |
| 1163 | // Is the generation at which this became invariant older than the |
| 1164 | // current one? |
| 1165 | return AvailableInvariants.lookup(Key: MemLoc) <= GenAt; |
| 1166 | } |
| 1167 | |
| 1168 | bool EarlyCSE::handleBranchCondition(Instruction *CondInst, |
| 1169 | const BranchInst *BI, const BasicBlock *BB, |
| 1170 | const BasicBlock *Pred) { |
| 1171 | assert(BI->isConditional() && "Should be a conditional branch!" ); |
| 1172 | assert(BI->getCondition() == CondInst && "Wrong condition?" ); |
| 1173 | assert(BI->getSuccessor(0) == BB || BI->getSuccessor(1) == BB); |
| 1174 | auto *TorF = (BI->getSuccessor(i: 0) == BB) |
| 1175 | ? ConstantInt::getTrue(Context&: BB->getContext()) |
| 1176 | : ConstantInt::getFalse(Context&: BB->getContext()); |
| 1177 | auto MatchBinOp = [](Instruction *I, unsigned Opcode, Value *&LHS, |
| 1178 | Value *&RHS) { |
| 1179 | if (Opcode == Instruction::And && |
| 1180 | match(V: I, P: m_LogicalAnd(L: m_Value(V&: LHS), R: m_Value(V&: RHS)))) |
| 1181 | return true; |
| 1182 | else if (Opcode == Instruction::Or && |
| 1183 | match(V: I, P: m_LogicalOr(L: m_Value(V&: LHS), R: m_Value(V&: RHS)))) |
| 1184 | return true; |
| 1185 | return false; |
| 1186 | }; |
| 1187 | // If the condition is AND operation, we can propagate its operands into the |
| 1188 | // true branch. If it is OR operation, we can propagate them into the false |
| 1189 | // branch. |
| 1190 | unsigned PropagateOpcode = |
| 1191 | (BI->getSuccessor(i: 0) == BB) ? Instruction::And : Instruction::Or; |
| 1192 | |
| 1193 | bool MadeChanges = false; |
| 1194 | SmallVector<Instruction *, 4> WorkList; |
| 1195 | SmallPtrSet<Instruction *, 4> Visited; |
| 1196 | WorkList.push_back(Elt: CondInst); |
| 1197 | while (!WorkList.empty()) { |
| 1198 | Instruction *Curr = WorkList.pop_back_val(); |
| 1199 | |
| 1200 | AvailableValues.insert(Key: Curr, Val: TorF); |
| 1201 | LLVM_DEBUG(dbgs() << "EarlyCSE CVP: Add conditional value for '" |
| 1202 | << Curr->getName() << "' as " << *TorF << " in " |
| 1203 | << BB->getName() << "\n" ); |
| 1204 | if (!DebugCounter::shouldExecute(Counter&: CSECounter)) { |
| 1205 | LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n" ); |
| 1206 | } else { |
| 1207 | // Replace all dominated uses with the known value. |
| 1208 | if (unsigned Count = replaceDominatedUsesWith(From: Curr, To: TorF, DT, |
| 1209 | Edge: BasicBlockEdge(Pred, BB))) { |
| 1210 | NumCSECVP += Count; |
| 1211 | MadeChanges = true; |
| 1212 | } |
| 1213 | } |
| 1214 | |
| 1215 | Value *LHS, *RHS; |
| 1216 | if (MatchBinOp(Curr, PropagateOpcode, LHS, RHS)) |
| 1217 | for (auto *Op : { LHS, RHS }) |
| 1218 | if (Instruction *OPI = dyn_cast<Instruction>(Val: Op)) |
| 1219 | if (SimpleValue::canHandle(Inst: OPI) && Visited.insert(Ptr: OPI).second) |
| 1220 | WorkList.push_back(Elt: OPI); |
| 1221 | } |
| 1222 | |
| 1223 | return MadeChanges; |
| 1224 | } |
| 1225 | |
| 1226 | Value *EarlyCSE::getMatchingValue(LoadValue &InVal, ParseMemoryInst &MemInst, |
| 1227 | unsigned CurrentGeneration) { |
| 1228 | if (InVal.DefInst == nullptr) |
| 1229 | return nullptr; |
| 1230 | if (InVal.MatchingId != MemInst.getMatchingId()) |
| 1231 | return nullptr; |
| 1232 | // We don't yet handle removing loads with ordering of any kind. |
| 1233 | if (MemInst.isVolatile() || !MemInst.isUnordered()) |
| 1234 | return nullptr; |
| 1235 | // We can't replace an atomic load with one which isn't also atomic. |
| 1236 | if (MemInst.isLoad() && !InVal.IsAtomic && MemInst.isAtomic()) |
| 1237 | return nullptr; |
| 1238 | // The value V returned from this function is used differently depending |
| 1239 | // on whether MemInst is a load or a store. If it's a load, we will replace |
| 1240 | // MemInst with V, if it's a store, we will check if V is the same as the |
| 1241 | // available value. |
| 1242 | bool MemInstMatching = !MemInst.isLoad(); |
| 1243 | Instruction *Matching = MemInstMatching ? MemInst.get() : InVal.DefInst; |
| 1244 | Instruction *Other = MemInstMatching ? InVal.DefInst : MemInst.get(); |
| 1245 | |
| 1246 | // For stores check the result values before checking memory generation |
| 1247 | // (otherwise isSameMemGeneration may crash). |
| 1248 | Value *Result = |
| 1249 | MemInst.isStore() |
| 1250 | ? getOrCreateResult(Inst: Matching, ExpectedType: Other->getType(), /*CanCreate=*/false) |
| 1251 | : nullptr; |
| 1252 | if (MemInst.isStore() && InVal.DefInst != Result) |
| 1253 | return nullptr; |
| 1254 | |
| 1255 | // Deal with non-target memory intrinsics. |
| 1256 | bool MatchingNTI = isHandledNonTargetIntrinsic(V: Matching); |
| 1257 | bool OtherNTI = isHandledNonTargetIntrinsic(V: Other); |
| 1258 | if (OtherNTI != MatchingNTI) |
| 1259 | return nullptr; |
| 1260 | if (OtherNTI && MatchingNTI) { |
| 1261 | if (!isNonTargetIntrinsicMatch(Earlier: cast<IntrinsicInst>(Val: InVal.DefInst), |
| 1262 | Later: cast<IntrinsicInst>(Val: MemInst.get()))) |
| 1263 | return nullptr; |
| 1264 | } |
| 1265 | |
| 1266 | if (!isOperatingOnInvariantMemAt(I: MemInst.get(), GenAt: InVal.Generation) && |
| 1267 | !isSameMemGeneration(EarlierGeneration: InVal.Generation, LaterGeneration: CurrentGeneration, EarlierInst: InVal.DefInst, |
| 1268 | LaterInst: MemInst.get())) |
| 1269 | return nullptr; |
| 1270 | |
| 1271 | if (!Result) |
| 1272 | Result = getOrCreateResult(Inst: Matching, ExpectedType: Other->getType(), /*CanCreate=*/true); |
| 1273 | return Result; |
| 1274 | } |
| 1275 | |
| 1276 | static void combineIRFlags(Instruction &From, Value *To) { |
| 1277 | if (auto *I = dyn_cast<Instruction>(Val: To)) { |
| 1278 | // If I being poison triggers UB, there is no need to drop those |
| 1279 | // flags. Otherwise, only retain flags present on both I and Inst. |
| 1280 | // TODO: Currently some fast-math flags are not treated as |
| 1281 | // poison-generating even though they should. Until this is fixed, |
| 1282 | // always retain flags present on both I and Inst for floating point |
| 1283 | // instructions. |
| 1284 | if (isa<FPMathOperator>(Val: I) || |
| 1285 | (I->hasPoisonGeneratingFlags() && !programUndefinedIfPoison(Inst: I))) |
| 1286 | I->andIRFlags(V: &From); |
| 1287 | } |
| 1288 | if (isa<CallBase>(Val: &From) && isa<CallBase>(Val: To)) { |
| 1289 | // NB: Intersection of attrs between InVal.first and Inst is overly |
| 1290 | // conservative. Since we only CSE readonly functions that have the same |
| 1291 | // memory state, we can preserve (or possibly in some cases combine) |
| 1292 | // more attributes. Likewise this implies when checking equality of |
| 1293 | // callsite for CSEing, we can probably ignore more attributes. |
| 1294 | // Generally poison generating attributes need to be handled with more |
| 1295 | // care as they can create *new* UB if preserved/combined and violated. |
| 1296 | // Attributes that imply immediate UB on the other hand would have been |
| 1297 | // violated either way. |
| 1298 | bool Success = |
| 1299 | cast<CallBase>(Val: To)->tryIntersectAttributes(Other: cast<CallBase>(Val: &From)); |
| 1300 | assert(Success && "Failed to intersect attributes in callsites that " |
| 1301 | "passed identical check" ); |
| 1302 | // For NDEBUG Compile. |
| 1303 | (void)Success; |
| 1304 | } |
| 1305 | } |
| 1306 | |
| 1307 | bool EarlyCSE::overridingStores(const ParseMemoryInst &Earlier, |
| 1308 | const ParseMemoryInst &Later) { |
| 1309 | // Can we remove Earlier store because of Later store? |
| 1310 | |
| 1311 | assert(Earlier.isUnordered() && !Earlier.isVolatile() && |
| 1312 | "Violated invariant" ); |
| 1313 | if (Earlier.getPointerOperand() != Later.getPointerOperand()) |
| 1314 | return false; |
| 1315 | if (!Earlier.getValueType() || !Later.getValueType() || |
| 1316 | Earlier.getValueType() != Later.getValueType()) |
| 1317 | return false; |
| 1318 | if (Earlier.getMatchingId() != Later.getMatchingId()) |
| 1319 | return false; |
| 1320 | // At the moment, we don't remove ordered stores, but do remove |
| 1321 | // unordered atomic stores. There's no special requirement (for |
| 1322 | // unordered atomics) about removing atomic stores only in favor of |
| 1323 | // other atomic stores since we were going to execute the non-atomic |
| 1324 | // one anyway and the atomic one might never have become visible. |
| 1325 | if (!Earlier.isUnordered() || !Later.isUnordered()) |
| 1326 | return false; |
| 1327 | |
| 1328 | // Deal with non-target memory intrinsics. |
| 1329 | bool ENTI = isHandledNonTargetIntrinsic(V: Earlier.get()); |
| 1330 | bool LNTI = isHandledNonTargetIntrinsic(V: Later.get()); |
| 1331 | if (ENTI && LNTI) |
| 1332 | return isNonTargetIntrinsicMatch(Earlier: cast<IntrinsicInst>(Val: Earlier.get()), |
| 1333 | Later: cast<IntrinsicInst>(Val: Later.get())); |
| 1334 | |
| 1335 | // Because of the check above, at least one of them is false. |
| 1336 | // For now disallow matching intrinsics with non-intrinsics, |
| 1337 | // so assume that the stores match if neither is an intrinsic. |
| 1338 | return ENTI == LNTI; |
| 1339 | } |
| 1340 | |
| 1341 | bool EarlyCSE::processNode(DomTreeNode *Node) { |
| 1342 | bool Changed = false; |
| 1343 | BasicBlock *BB = Node->getBlock(); |
| 1344 | |
| 1345 | // If this block has a single predecessor, then the predecessor is the parent |
| 1346 | // of the domtree node and all of the live out memory values are still current |
| 1347 | // in this block. If this block has multiple predecessors, then they could |
| 1348 | // have invalidated the live-out memory values of our parent value. For now, |
| 1349 | // just be conservative and invalidate memory if this block has multiple |
| 1350 | // predecessors. |
| 1351 | if (!BB->getSinglePredecessor()) |
| 1352 | ++CurrentGeneration; |
| 1353 | |
| 1354 | // If this node has a single predecessor which ends in a conditional branch, |
| 1355 | // we can infer the value of the branch condition given that we took this |
| 1356 | // path. We need the single predecessor to ensure there's not another path |
| 1357 | // which reaches this block where the condition might hold a different |
| 1358 | // value. Since we're adding this to the scoped hash table (like any other |
| 1359 | // def), it will have been popped if we encounter a future merge block. |
| 1360 | if (BasicBlock *Pred = BB->getSinglePredecessor()) { |
| 1361 | auto *BI = dyn_cast<BranchInst>(Val: Pred->getTerminator()); |
| 1362 | if (BI && BI->isConditional()) { |
| 1363 | auto *CondInst = dyn_cast<Instruction>(Val: BI->getCondition()); |
| 1364 | if (CondInst && SimpleValue::canHandle(Inst: CondInst)) |
| 1365 | Changed |= handleBranchCondition(CondInst, BI, BB, Pred); |
| 1366 | } |
| 1367 | } |
| 1368 | |
| 1369 | /// LastStore - Keep track of the last non-volatile store that we saw... for |
| 1370 | /// as long as there in no instruction that reads memory. If we see a store |
| 1371 | /// to the same location, we delete the dead store. This zaps trivial dead |
| 1372 | /// stores which can occur in bitfield code among other things. |
| 1373 | Instruction *LastStore = nullptr; |
| 1374 | |
| 1375 | // See if any instructions in the block can be eliminated. If so, do it. If |
| 1376 | // not, add them to AvailableValues. |
| 1377 | for (Instruction &Inst : make_early_inc_range(Range&: *BB)) { |
| 1378 | // Dead instructions should just be removed. |
| 1379 | if (isInstructionTriviallyDead(I: &Inst, TLI: &TLI)) { |
| 1380 | LLVM_DEBUG(dbgs() << "EarlyCSE DCE: " << Inst << '\n'); |
| 1381 | if (!DebugCounter::shouldExecute(Counter&: CSECounter)) { |
| 1382 | LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n" ); |
| 1383 | continue; |
| 1384 | } |
| 1385 | |
| 1386 | salvageKnowledge(I: &Inst, AC: &AC); |
| 1387 | salvageDebugInfo(I&: Inst); |
| 1388 | removeMSSA(Inst); |
| 1389 | Inst.eraseFromParent(); |
| 1390 | Changed = true; |
| 1391 | ++NumSimplify; |
| 1392 | continue; |
| 1393 | } |
| 1394 | |
| 1395 | // Skip assume intrinsics, they don't really have side effects (although |
| 1396 | // they're marked as such to ensure preservation of control dependencies), |
| 1397 | // and this pass will not bother with its removal. However, we should mark |
| 1398 | // its condition as true for all dominated blocks. |
| 1399 | if (auto *Assume = dyn_cast<AssumeInst>(Val: &Inst)) { |
| 1400 | auto *CondI = dyn_cast<Instruction>(Val: Assume->getArgOperand(i: 0)); |
| 1401 | if (CondI && SimpleValue::canHandle(Inst: CondI)) { |
| 1402 | LLVM_DEBUG(dbgs() << "EarlyCSE considering assumption: " << Inst |
| 1403 | << '\n'); |
| 1404 | AvailableValues.insert(Key: CondI, Val: ConstantInt::getTrue(Context&: BB->getContext())); |
| 1405 | } else |
| 1406 | LLVM_DEBUG(dbgs() << "EarlyCSE skipping assumption: " << Inst << '\n'); |
| 1407 | continue; |
| 1408 | } |
| 1409 | |
| 1410 | // Likewise, noalias intrinsics don't actually write. |
| 1411 | if (match(V: &Inst, |
| 1412 | P: m_Intrinsic<Intrinsic::experimental_noalias_scope_decl>())) { |
| 1413 | LLVM_DEBUG(dbgs() << "EarlyCSE skipping noalias intrinsic: " << Inst |
| 1414 | << '\n'); |
| 1415 | continue; |
| 1416 | } |
| 1417 | |
| 1418 | // Skip sideeffect intrinsics, for the same reason as assume intrinsics. |
| 1419 | if (match(V: &Inst, P: m_Intrinsic<Intrinsic::sideeffect>())) { |
| 1420 | LLVM_DEBUG(dbgs() << "EarlyCSE skipping sideeffect: " << Inst << '\n'); |
| 1421 | continue; |
| 1422 | } |
| 1423 | |
| 1424 | // Skip pseudoprobe intrinsics, for the same reason as assume intrinsics. |
| 1425 | if (match(V: &Inst, P: m_Intrinsic<Intrinsic::pseudoprobe>())) { |
| 1426 | LLVM_DEBUG(dbgs() << "EarlyCSE skipping pseudoprobe: " << Inst << '\n'); |
| 1427 | continue; |
| 1428 | } |
| 1429 | |
| 1430 | // We can skip all invariant.start intrinsics since they only read memory, |
| 1431 | // and we can forward values across it. For invariant starts without |
| 1432 | // invariant ends, we can use the fact that the invariantness never ends to |
| 1433 | // start a scope in the current generaton which is true for all future |
| 1434 | // generations. Also, we dont need to consume the last store since the |
| 1435 | // semantics of invariant.start allow us to perform DSE of the last |
| 1436 | // store, if there was a store following invariant.start. Consider: |
| 1437 | // |
| 1438 | // store 30, i8* p |
| 1439 | // invariant.start(p) |
| 1440 | // store 40, i8* p |
| 1441 | // We can DSE the store to 30, since the store 40 to invariant location p |
| 1442 | // causes undefined behaviour. |
| 1443 | if (match(V: &Inst, P: m_Intrinsic<Intrinsic::invariant_start>())) { |
| 1444 | // If there are any uses, the scope might end. |
| 1445 | if (!Inst.use_empty()) |
| 1446 | continue; |
| 1447 | MemoryLocation MemLoc = |
| 1448 | MemoryLocation::getForArgument(Call: &cast<CallInst>(Val&: Inst), ArgIdx: 1, TLI); |
| 1449 | // Don't start a scope if we already have a better one pushed |
| 1450 | if (!AvailableInvariants.count(Key: MemLoc)) |
| 1451 | AvailableInvariants.insert(Key: MemLoc, Val: CurrentGeneration); |
| 1452 | continue; |
| 1453 | } |
| 1454 | |
| 1455 | if (isGuard(U: &Inst)) { |
| 1456 | if (auto *CondI = |
| 1457 | dyn_cast<Instruction>(Val: cast<CallInst>(Val&: Inst).getArgOperand(i: 0))) { |
| 1458 | if (SimpleValue::canHandle(Inst: CondI)) { |
| 1459 | // Do we already know the actual value of this condition? |
| 1460 | if (auto *KnownCond = AvailableValues.lookup(Key: CondI)) { |
| 1461 | // Is the condition known to be true? |
| 1462 | if (isa<ConstantInt>(Val: KnownCond) && |
| 1463 | cast<ConstantInt>(Val: KnownCond)->isOne()) { |
| 1464 | LLVM_DEBUG(dbgs() |
| 1465 | << "EarlyCSE removing guard: " << Inst << '\n'); |
| 1466 | salvageKnowledge(I: &Inst, AC: &AC); |
| 1467 | removeMSSA(Inst); |
| 1468 | Inst.eraseFromParent(); |
| 1469 | Changed = true; |
| 1470 | continue; |
| 1471 | } else |
| 1472 | // Use the known value if it wasn't true. |
| 1473 | cast<CallInst>(Val&: Inst).setArgOperand(i: 0, v: KnownCond); |
| 1474 | } |
| 1475 | // The condition we're on guarding here is true for all dominated |
| 1476 | // locations. |
| 1477 | AvailableValues.insert(Key: CondI, Val: ConstantInt::getTrue(Context&: BB->getContext())); |
| 1478 | } |
| 1479 | } |
| 1480 | |
| 1481 | // Guard intrinsics read all memory, but don't write any memory. |
| 1482 | // Accordingly, don't update the generation but consume the last store (to |
| 1483 | // avoid an incorrect DSE). |
| 1484 | LastStore = nullptr; |
| 1485 | continue; |
| 1486 | } |
| 1487 | |
| 1488 | // If the instruction can be simplified (e.g. X+0 = X) then replace it with |
| 1489 | // its simpler value. |
| 1490 | if (Value *V = simplifyInstruction(I: &Inst, Q: SQ)) { |
| 1491 | LLVM_DEBUG(dbgs() << "EarlyCSE Simplify: " << Inst << " to: " << *V |
| 1492 | << '\n'); |
| 1493 | if (!DebugCounter::shouldExecute(Counter&: CSECounter)) { |
| 1494 | LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n" ); |
| 1495 | } else { |
| 1496 | bool Killed = false; |
| 1497 | if (!Inst.use_empty()) { |
| 1498 | Inst.replaceAllUsesWith(V); |
| 1499 | Changed = true; |
| 1500 | } |
| 1501 | if (isInstructionTriviallyDead(I: &Inst, TLI: &TLI)) { |
| 1502 | salvageKnowledge(I: &Inst, AC: &AC); |
| 1503 | removeMSSA(Inst); |
| 1504 | Inst.eraseFromParent(); |
| 1505 | Changed = true; |
| 1506 | Killed = true; |
| 1507 | } |
| 1508 | if (Changed) |
| 1509 | ++NumSimplify; |
| 1510 | if (Killed) |
| 1511 | continue; |
| 1512 | } |
| 1513 | } |
| 1514 | |
| 1515 | // Make sure stores prior to a potential unwind are not removed, as the |
| 1516 | // caller may read the memory. |
| 1517 | if (Inst.mayThrow()) |
| 1518 | LastStore = nullptr; |
| 1519 | |
| 1520 | // If this is a simple instruction that we can value number, process it. |
| 1521 | if (SimpleValue::canHandle(Inst: &Inst)) { |
| 1522 | if ([[maybe_unused]] auto *CI = dyn_cast<ConstrainedFPIntrinsic>(Val: &Inst)) { |
| 1523 | assert(CI->getExceptionBehavior() != fp::ebStrict && |
| 1524 | "Unexpected ebStrict from SimpleValue::canHandle()" ); |
| 1525 | assert((!CI->getRoundingMode() || |
| 1526 | CI->getRoundingMode() != RoundingMode::Dynamic) && |
| 1527 | "Unexpected dynamic rounding from SimpleValue::canHandle()" ); |
| 1528 | } |
| 1529 | // See if the instruction has an available value. If so, use it. |
| 1530 | if (Value *V = AvailableValues.lookup(Key: &Inst)) { |
| 1531 | LLVM_DEBUG(dbgs() << "EarlyCSE CSE: " << Inst << " to: " << *V |
| 1532 | << '\n'); |
| 1533 | if (!DebugCounter::shouldExecute(Counter&: CSECounter)) { |
| 1534 | LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n" ); |
| 1535 | continue; |
| 1536 | } |
| 1537 | combineIRFlags(From&: Inst, To: V); |
| 1538 | Inst.replaceAllUsesWith(V); |
| 1539 | salvageKnowledge(I: &Inst, AC: &AC); |
| 1540 | removeMSSA(Inst); |
| 1541 | Inst.eraseFromParent(); |
| 1542 | Changed = true; |
| 1543 | ++NumCSE; |
| 1544 | continue; |
| 1545 | } |
| 1546 | |
| 1547 | // Otherwise, just remember that this value is available. |
| 1548 | AvailableValues.insert(Key: &Inst, Val: &Inst); |
| 1549 | continue; |
| 1550 | } |
| 1551 | |
| 1552 | ParseMemoryInst MemInst(&Inst, TTI); |
| 1553 | // If this is a non-volatile load, process it. |
| 1554 | if (MemInst.isValid() && MemInst.isLoad()) { |
| 1555 | // (conservatively) we can't peak past the ordering implied by this |
| 1556 | // operation, but we can add this load to our set of available values |
| 1557 | if (MemInst.isVolatile() || !MemInst.isUnordered()) { |
| 1558 | LastStore = nullptr; |
| 1559 | ++CurrentGeneration; |
| 1560 | } |
| 1561 | |
| 1562 | if (MemInst.isInvariantLoad()) { |
| 1563 | // If we pass an invariant load, we know that memory location is |
| 1564 | // indefinitely constant from the moment of first dereferenceability. |
| 1565 | // We conservatively treat the invariant_load as that moment. If we |
| 1566 | // pass a invariant load after already establishing a scope, don't |
| 1567 | // restart it since we want to preserve the earliest point seen. |
| 1568 | auto MemLoc = MemoryLocation::get(Inst: &Inst); |
| 1569 | if (!AvailableInvariants.count(Key: MemLoc)) |
| 1570 | AvailableInvariants.insert(Key: MemLoc, Val: CurrentGeneration); |
| 1571 | } |
| 1572 | |
| 1573 | // If we have an available version of this load, and if it is the right |
| 1574 | // generation or the load is known to be from an invariant location, |
| 1575 | // replace this instruction. |
| 1576 | // |
| 1577 | // If either the dominating load or the current load are invariant, then |
| 1578 | // we can assume the current load loads the same value as the dominating |
| 1579 | // load. |
| 1580 | LoadValue InVal = AvailableLoads.lookup(Key: MemInst.getPointerOperand()); |
| 1581 | if (Value *Op = getMatchingValue(InVal, MemInst, CurrentGeneration)) { |
| 1582 | LLVM_DEBUG(dbgs() << "EarlyCSE CSE LOAD: " << Inst |
| 1583 | << " to: " << *InVal.DefInst << '\n'); |
| 1584 | if (!DebugCounter::shouldExecute(Counter&: CSECounter)) { |
| 1585 | LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n" ); |
| 1586 | continue; |
| 1587 | } |
| 1588 | if (InVal.IsLoad) |
| 1589 | if (auto *I = dyn_cast<Instruction>(Val: Op)) |
| 1590 | combineMetadataForCSE(K: I, J: &Inst, DoesKMove: false); |
| 1591 | if (!Inst.use_empty()) |
| 1592 | Inst.replaceAllUsesWith(V: Op); |
| 1593 | salvageKnowledge(I: &Inst, AC: &AC); |
| 1594 | removeMSSA(Inst); |
| 1595 | Inst.eraseFromParent(); |
| 1596 | Changed = true; |
| 1597 | ++NumCSELoad; |
| 1598 | continue; |
| 1599 | } |
| 1600 | |
| 1601 | // Otherwise, remember that we have this instruction. |
| 1602 | AvailableLoads.insert(Key: MemInst.getPointerOperand(), |
| 1603 | Val: LoadValue(&Inst, CurrentGeneration, |
| 1604 | MemInst.getMatchingId(), |
| 1605 | MemInst.isAtomic(), |
| 1606 | MemInst.isLoad())); |
| 1607 | LastStore = nullptr; |
| 1608 | continue; |
| 1609 | } |
| 1610 | |
| 1611 | // If this instruction may read from memory, forget LastStore. Load/store |
| 1612 | // intrinsics will indicate both a read and a write to memory. The target |
| 1613 | // may override this (e.g. so that a store intrinsic does not read from |
| 1614 | // memory, and thus will be treated the same as a regular store for |
| 1615 | // commoning purposes). |
| 1616 | if (Inst.mayReadFromMemory() && |
| 1617 | !(MemInst.isValid() && !MemInst.mayReadFromMemory())) |
| 1618 | LastStore = nullptr; |
| 1619 | |
| 1620 | // If this is a read-only or write-only call, process it. Skip store |
| 1621 | // MemInsts, as they will be more precisely handled later on. Also skip |
| 1622 | // memsets, as DSE may be able to optimize them better by removing the |
| 1623 | // earlier rather than later store. |
| 1624 | if (CallValue::canHandle(Inst: &Inst) && |
| 1625 | (!MemInst.isValid() || !MemInst.isStore()) && !isa<MemSetInst>(Val: &Inst)) { |
| 1626 | // If we have an available version of this call, and if it is the right |
| 1627 | // generation, replace this instruction. |
| 1628 | std::pair<Instruction *, unsigned> InVal = AvailableCalls.lookup(Key: &Inst); |
| 1629 | if (InVal.first != nullptr && |
| 1630 | isSameMemGeneration(EarlierGeneration: InVal.second, LaterGeneration: CurrentGeneration, EarlierInst: InVal.first, |
| 1631 | LaterInst: &Inst) && |
| 1632 | InVal.first->mayReadFromMemory() == Inst.mayReadFromMemory()) { |
| 1633 | LLVM_DEBUG(dbgs() << "EarlyCSE CSE CALL: " << Inst |
| 1634 | << " to: " << *InVal.first << '\n'); |
| 1635 | if (!DebugCounter::shouldExecute(Counter&: CSECounter)) { |
| 1636 | LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n" ); |
| 1637 | continue; |
| 1638 | } |
| 1639 | combineIRFlags(From&: Inst, To: InVal.first); |
| 1640 | if (!Inst.use_empty()) |
| 1641 | Inst.replaceAllUsesWith(V: InVal.first); |
| 1642 | salvageKnowledge(I: &Inst, AC: &AC); |
| 1643 | removeMSSA(Inst); |
| 1644 | Inst.eraseFromParent(); |
| 1645 | Changed = true; |
| 1646 | ++NumCSECall; |
| 1647 | continue; |
| 1648 | } |
| 1649 | |
| 1650 | // Increase memory generation for writes. Do this before inserting |
| 1651 | // the call, so it has the generation after the write occurred. |
| 1652 | if (Inst.mayWriteToMemory()) |
| 1653 | ++CurrentGeneration; |
| 1654 | |
| 1655 | // Otherwise, remember that we have this instruction. |
| 1656 | AvailableCalls.insert(Key: &Inst, Val: std::make_pair(x: &Inst, y&: CurrentGeneration)); |
| 1657 | continue; |
| 1658 | } |
| 1659 | |
| 1660 | // Compare GEP instructions based on offset. |
| 1661 | if (GEPValue::canHandle(Inst: &Inst)) { |
| 1662 | auto *GEP = cast<GetElementPtrInst>(Val: &Inst); |
| 1663 | APInt Offset = APInt(SQ.DL.getIndexTypeSizeInBits(Ty: GEP->getType()), 0); |
| 1664 | GEPValue GEPVal(GEP, GEP->accumulateConstantOffset(DL: SQ.DL, Offset) |
| 1665 | ? Offset.trySExtValue() |
| 1666 | : std::nullopt); |
| 1667 | if (Value *V = AvailableGEPs.lookup(Key: GEPVal)) { |
| 1668 | LLVM_DEBUG(dbgs() << "EarlyCSE CSE GEP: " << Inst << " to: " << *V |
| 1669 | << '\n'); |
| 1670 | combineIRFlags(From&: Inst, To: V); |
| 1671 | Inst.replaceAllUsesWith(V); |
| 1672 | salvageKnowledge(I: &Inst, AC: &AC); |
| 1673 | removeMSSA(Inst); |
| 1674 | Inst.eraseFromParent(); |
| 1675 | Changed = true; |
| 1676 | ++NumCSEGEP; |
| 1677 | continue; |
| 1678 | } |
| 1679 | |
| 1680 | // Otherwise, just remember that we have this GEP. |
| 1681 | AvailableGEPs.insert(Key: GEPVal, Val: &Inst); |
| 1682 | continue; |
| 1683 | } |
| 1684 | |
| 1685 | // A release fence requires that all stores complete before it, but does |
| 1686 | // not prevent the reordering of following loads 'before' the fence. As a |
| 1687 | // result, we don't need to consider it as writing to memory and don't need |
| 1688 | // to advance the generation. We do need to prevent DSE across the fence, |
| 1689 | // but that's handled above. |
| 1690 | if (auto *FI = dyn_cast<FenceInst>(Val: &Inst)) |
| 1691 | if (FI->getOrdering() == AtomicOrdering::Release) { |
| 1692 | assert(Inst.mayReadFromMemory() && "relied on to prevent DSE above" ); |
| 1693 | continue; |
| 1694 | } |
| 1695 | |
| 1696 | // write back DSE - If we write back the same value we just loaded from |
| 1697 | // the same location and haven't passed any intervening writes or ordering |
| 1698 | // operations, we can remove the write. The primary benefit is in allowing |
| 1699 | // the available load table to remain valid and value forward past where |
| 1700 | // the store originally was. |
| 1701 | if (MemInst.isValid() && MemInst.isStore()) { |
| 1702 | LoadValue InVal = AvailableLoads.lookup(Key: MemInst.getPointerOperand()); |
| 1703 | if (InVal.DefInst && |
| 1704 | InVal.DefInst == |
| 1705 | getMatchingValue(InVal, MemInst, CurrentGeneration)) { |
| 1706 | LLVM_DEBUG(dbgs() << "EarlyCSE DSE (writeback): " << Inst << '\n'); |
| 1707 | if (!DebugCounter::shouldExecute(Counter&: CSECounter)) { |
| 1708 | LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n" ); |
| 1709 | continue; |
| 1710 | } |
| 1711 | salvageKnowledge(I: &Inst, AC: &AC); |
| 1712 | removeMSSA(Inst); |
| 1713 | Inst.eraseFromParent(); |
| 1714 | Changed = true; |
| 1715 | ++NumDSE; |
| 1716 | // We can avoid incrementing the generation count since we were able |
| 1717 | // to eliminate this store. |
| 1718 | continue; |
| 1719 | } |
| 1720 | } |
| 1721 | |
| 1722 | // Okay, this isn't something we can CSE at all. Check to see if it is |
| 1723 | // something that could modify memory. If so, our available memory values |
| 1724 | // cannot be used so bump the generation count. |
| 1725 | if (Inst.mayWriteToMemory()) { |
| 1726 | ++CurrentGeneration; |
| 1727 | |
| 1728 | if (MemInst.isValid() && MemInst.isStore()) { |
| 1729 | // We do a trivial form of DSE if there are two stores to the same |
| 1730 | // location with no intervening loads. Delete the earlier store. |
| 1731 | if (LastStore) { |
| 1732 | if (overridingStores(Earlier: ParseMemoryInst(LastStore, TTI), Later: MemInst)) { |
| 1733 | LLVM_DEBUG(dbgs() << "EarlyCSE DEAD STORE: " << *LastStore |
| 1734 | << " due to: " << Inst << '\n'); |
| 1735 | if (!DebugCounter::shouldExecute(Counter&: CSECounter)) { |
| 1736 | LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n" ); |
| 1737 | } else { |
| 1738 | salvageKnowledge(I: &Inst, AC: &AC); |
| 1739 | removeMSSA(Inst&: *LastStore); |
| 1740 | LastStore->eraseFromParent(); |
| 1741 | Changed = true; |
| 1742 | ++NumDSE; |
| 1743 | LastStore = nullptr; |
| 1744 | } |
| 1745 | } |
| 1746 | // fallthrough - we can exploit information about this store |
| 1747 | } |
| 1748 | |
| 1749 | // Okay, we just invalidated anything we knew about loaded values. Try |
| 1750 | // to salvage *something* by remembering that the stored value is a live |
| 1751 | // version of the pointer. It is safe to forward from volatile stores |
| 1752 | // to non-volatile loads, so we don't have to check for volatility of |
| 1753 | // the store. |
| 1754 | AvailableLoads.insert(Key: MemInst.getPointerOperand(), |
| 1755 | Val: LoadValue(&Inst, CurrentGeneration, |
| 1756 | MemInst.getMatchingId(), |
| 1757 | MemInst.isAtomic(), |
| 1758 | MemInst.isLoad())); |
| 1759 | |
| 1760 | // Remember that this was the last unordered store we saw for DSE. We |
| 1761 | // don't yet handle DSE on ordered or volatile stores since we don't |
| 1762 | // have a good way to model the ordering requirement for following |
| 1763 | // passes once the store is removed. We could insert a fence, but |
| 1764 | // since fences are slightly stronger than stores in their ordering, |
| 1765 | // it's not clear this is a profitable transform. Another option would |
| 1766 | // be to merge the ordering with that of the post dominating store. |
| 1767 | if (MemInst.isUnordered() && !MemInst.isVolatile()) |
| 1768 | LastStore = &Inst; |
| 1769 | else |
| 1770 | LastStore = nullptr; |
| 1771 | } |
| 1772 | } |
| 1773 | } |
| 1774 | |
| 1775 | return Changed; |
| 1776 | } |
| 1777 | |
| 1778 | bool EarlyCSE::run() { |
| 1779 | // Note, deque is being used here because there is significant performance |
| 1780 | // gains over vector when the container becomes very large due to the |
| 1781 | // specific access patterns. For more information see the mailing list |
| 1782 | // discussion on this: |
| 1783 | // http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20120116/135228.html |
| 1784 | std::deque<StackNode *> nodesToProcess; |
| 1785 | |
| 1786 | bool Changed = false; |
| 1787 | |
| 1788 | // Process the root node. |
| 1789 | nodesToProcess.push_back(x: new StackNode( |
| 1790 | AvailableValues, AvailableLoads, AvailableInvariants, AvailableCalls, |
| 1791 | AvailableGEPs, CurrentGeneration, DT.getRootNode(), |
| 1792 | DT.getRootNode()->begin(), DT.getRootNode()->end())); |
| 1793 | |
| 1794 | assert(!CurrentGeneration && "Create a new EarlyCSE instance to rerun it." ); |
| 1795 | |
| 1796 | // Process the stack. |
| 1797 | while (!nodesToProcess.empty()) { |
| 1798 | // Grab the first item off the stack. Set the current generation, remove |
| 1799 | // the node from the stack, and process it. |
| 1800 | StackNode *NodeToProcess = nodesToProcess.back(); |
| 1801 | |
| 1802 | // Initialize class members. |
| 1803 | CurrentGeneration = NodeToProcess->currentGeneration(); |
| 1804 | |
| 1805 | // Check if the node needs to be processed. |
| 1806 | if (!NodeToProcess->isProcessed()) { |
| 1807 | // Process the node. |
| 1808 | Changed |= processNode(Node: NodeToProcess->node()); |
| 1809 | NodeToProcess->childGeneration(generation: CurrentGeneration); |
| 1810 | NodeToProcess->process(); |
| 1811 | } else if (NodeToProcess->childIter() != NodeToProcess->end()) { |
| 1812 | // Push the next child onto the stack. |
| 1813 | DomTreeNode *child = NodeToProcess->nextChild(); |
| 1814 | nodesToProcess.push_back(x: new StackNode( |
| 1815 | AvailableValues, AvailableLoads, AvailableInvariants, AvailableCalls, |
| 1816 | AvailableGEPs, NodeToProcess->childGeneration(), child, |
| 1817 | child->begin(), child->end())); |
| 1818 | } else { |
| 1819 | // It has been processed, and there are no more children to process, |
| 1820 | // so delete it and pop it off the stack. |
| 1821 | delete NodeToProcess; |
| 1822 | nodesToProcess.pop_back(); |
| 1823 | } |
| 1824 | } // while (!nodes...) |
| 1825 | |
| 1826 | return Changed; |
| 1827 | } |
| 1828 | |
| 1829 | PreservedAnalyses EarlyCSEPass::run(Function &F, |
| 1830 | FunctionAnalysisManager &AM) { |
| 1831 | auto &TLI = AM.getResult<TargetLibraryAnalysis>(IR&: F); |
| 1832 | auto &TTI = AM.getResult<TargetIRAnalysis>(IR&: F); |
| 1833 | auto &DT = AM.getResult<DominatorTreeAnalysis>(IR&: F); |
| 1834 | auto &AC = AM.getResult<AssumptionAnalysis>(IR&: F); |
| 1835 | auto *MSSA = |
| 1836 | UseMemorySSA ? &AM.getResult<MemorySSAAnalysis>(IR&: F).getMSSA() : nullptr; |
| 1837 | |
| 1838 | EarlyCSE CSE(F.getDataLayout(), TLI, TTI, DT, AC, MSSA); |
| 1839 | |
| 1840 | if (!CSE.run()) |
| 1841 | return PreservedAnalyses::all(); |
| 1842 | |
| 1843 | PreservedAnalyses PA; |
| 1844 | PA.preserveSet<CFGAnalyses>(); |
| 1845 | if (UseMemorySSA) |
| 1846 | PA.preserve<MemorySSAAnalysis>(); |
| 1847 | return PA; |
| 1848 | } |
| 1849 | |
| 1850 | void EarlyCSEPass::printPipeline( |
| 1851 | raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { |
| 1852 | static_cast<PassInfoMixin<EarlyCSEPass> *>(this)->printPipeline( |
| 1853 | OS, MapClassName2PassName); |
| 1854 | OS << '<'; |
| 1855 | if (UseMemorySSA) |
| 1856 | OS << "memssa" ; |
| 1857 | OS << '>'; |
| 1858 | } |
| 1859 | |
| 1860 | namespace { |
| 1861 | |
| 1862 | /// A simple and fast domtree-based CSE pass. |
| 1863 | /// |
| 1864 | /// This pass does a simple depth-first walk over the dominator tree, |
| 1865 | /// eliminating trivially redundant instructions and using instsimplify to |
| 1866 | /// canonicalize things as it goes. It is intended to be fast and catch obvious |
| 1867 | /// cases so that instcombine and other passes are more effective. It is |
| 1868 | /// expected that a later pass of GVN will catch the interesting/hard cases. |
| 1869 | template<bool UseMemorySSA> |
| 1870 | class EarlyCSELegacyCommonPass : public FunctionPass { |
| 1871 | public: |
| 1872 | static char ID; |
| 1873 | |
| 1874 | EarlyCSELegacyCommonPass() : FunctionPass(ID) { |
| 1875 | if (UseMemorySSA) |
| 1876 | initializeEarlyCSEMemSSALegacyPassPass(*PassRegistry::getPassRegistry()); |
| 1877 | else |
| 1878 | initializeEarlyCSELegacyPassPass(*PassRegistry::getPassRegistry()); |
| 1879 | } |
| 1880 | |
| 1881 | bool runOnFunction(Function &F) override { |
| 1882 | if (skipFunction(F)) |
| 1883 | return false; |
| 1884 | |
| 1885 | auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); |
| 1886 | auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); |
| 1887 | auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); |
| 1888 | auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); |
| 1889 | auto *MSSA = |
| 1890 | UseMemorySSA ? &getAnalysis<MemorySSAWrapperPass>().getMSSA() : nullptr; |
| 1891 | |
| 1892 | EarlyCSE CSE(F.getDataLayout(), TLI, TTI, DT, AC, MSSA); |
| 1893 | |
| 1894 | return CSE.run(); |
| 1895 | } |
| 1896 | |
| 1897 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
| 1898 | AU.addRequired<AssumptionCacheTracker>(); |
| 1899 | AU.addRequired<DominatorTreeWrapperPass>(); |
| 1900 | AU.addRequired<TargetLibraryInfoWrapperPass>(); |
| 1901 | AU.addRequired<TargetTransformInfoWrapperPass>(); |
| 1902 | if (UseMemorySSA) { |
| 1903 | AU.addRequired<AAResultsWrapperPass>(); |
| 1904 | AU.addRequired<MemorySSAWrapperPass>(); |
| 1905 | AU.addPreserved<MemorySSAWrapperPass>(); |
| 1906 | } |
| 1907 | AU.addPreserved<GlobalsAAWrapperPass>(); |
| 1908 | AU.addPreserved<AAResultsWrapperPass>(); |
| 1909 | AU.setPreservesCFG(); |
| 1910 | } |
| 1911 | }; |
| 1912 | |
| 1913 | } // end anonymous namespace |
| 1914 | |
| 1915 | using EarlyCSELegacyPass = EarlyCSELegacyCommonPass</*UseMemorySSA=*/false>; |
| 1916 | |
| 1917 | template<> |
| 1918 | char EarlyCSELegacyPass::ID = 0; |
| 1919 | |
| 1920 | INITIALIZE_PASS_BEGIN(EarlyCSELegacyPass, "early-cse" , "Early CSE" , false, |
| 1921 | false) |
| 1922 | INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) |
| 1923 | INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) |
| 1924 | INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) |
| 1925 | INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) |
| 1926 | INITIALIZE_PASS_END(EarlyCSELegacyPass, "early-cse" , "Early CSE" , false, false) |
| 1927 | |
| 1928 | using EarlyCSEMemSSALegacyPass = |
| 1929 | EarlyCSELegacyCommonPass</*UseMemorySSA=*/true>; |
| 1930 | |
| 1931 | template<> |
| 1932 | char EarlyCSEMemSSALegacyPass::ID = 0; |
| 1933 | |
| 1934 | FunctionPass *llvm::createEarlyCSEPass(bool UseMemorySSA) { |
| 1935 | if (UseMemorySSA) |
| 1936 | return new EarlyCSEMemSSALegacyPass(); |
| 1937 | else |
| 1938 | return new EarlyCSELegacyPass(); |
| 1939 | } |
| 1940 | |
| 1941 | INITIALIZE_PASS_BEGIN(EarlyCSEMemSSALegacyPass, "early-cse-memssa" , |
| 1942 | "Early CSE w/ MemorySSA" , false, false) |
| 1943 | INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) |
| 1944 | INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) |
| 1945 | INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) |
| 1946 | INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) |
| 1947 | INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) |
| 1948 | INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) |
| 1949 | INITIALIZE_PASS_END(EarlyCSEMemSSALegacyPass, "early-cse-memssa" , |
| 1950 | "Early CSE w/ MemorySSA" , false, false) |
| 1951 | |