| 1 | //===- LoopLoadElimination.cpp - Loop Load Elimination Pass ---------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file implement a loop-aware load elimination pass. |
| 10 | // |
| 11 | // It uses LoopAccessAnalysis to identify loop-carried dependences with a |
| 12 | // distance of one between stores and loads. These form the candidates for the |
| 13 | // transformation. The source value of each store then propagated to the user |
| 14 | // of the corresponding load. This makes the load dead. |
| 15 | // |
| 16 | // The pass can also version the loop and add memchecks in order to prove that |
| 17 | // may-aliasing stores can't change the value in memory before it's read by the |
| 18 | // load. |
| 19 | // |
| 20 | //===----------------------------------------------------------------------===// |
| 21 | |
| 22 | #include "llvm/Transforms/Scalar/LoopLoadElimination.h" |
| 23 | #include "llvm/ADT/APInt.h" |
| 24 | #include "llvm/ADT/DenseMap.h" |
| 25 | #include "llvm/ADT/DepthFirstIterator.h" |
| 26 | #include "llvm/ADT/STLExtras.h" |
| 27 | #include "llvm/ADT/SmallPtrSet.h" |
| 28 | #include "llvm/ADT/SmallVector.h" |
| 29 | #include "llvm/ADT/Statistic.h" |
| 30 | #include "llvm/Analysis/AssumptionCache.h" |
| 31 | #include "llvm/Analysis/BlockFrequencyInfo.h" |
| 32 | #include "llvm/Analysis/GlobalsModRef.h" |
| 33 | #include "llvm/Analysis/LazyBlockFrequencyInfo.h" |
| 34 | #include "llvm/Analysis/LoopAccessAnalysis.h" |
| 35 | #include "llvm/Analysis/LoopAnalysisManager.h" |
| 36 | #include "llvm/Analysis/LoopInfo.h" |
| 37 | #include "llvm/Analysis/ProfileSummaryInfo.h" |
| 38 | #include "llvm/Analysis/ScalarEvolution.h" |
| 39 | #include "llvm/Analysis/ScalarEvolutionExpressions.h" |
| 40 | #include "llvm/Analysis/TargetLibraryInfo.h" |
| 41 | #include "llvm/Analysis/TargetTransformInfo.h" |
| 42 | #include "llvm/IR/DataLayout.h" |
| 43 | #include "llvm/IR/Dominators.h" |
| 44 | #include "llvm/IR/Instructions.h" |
| 45 | #include "llvm/IR/PassManager.h" |
| 46 | #include "llvm/IR/Type.h" |
| 47 | #include "llvm/IR/Value.h" |
| 48 | #include "llvm/Support/Casting.h" |
| 49 | #include "llvm/Support/CommandLine.h" |
| 50 | #include "llvm/Support/Debug.h" |
| 51 | #include "llvm/Support/raw_ostream.h" |
| 52 | #include "llvm/Transforms/Utils/LoopSimplify.h" |
| 53 | #include "llvm/Transforms/Utils/LoopVersioning.h" |
| 54 | #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" |
| 55 | #include "llvm/Transforms/Utils/SizeOpts.h" |
| 56 | #include <algorithm> |
| 57 | #include <cassert> |
| 58 | #include <forward_list> |
| 59 | #include <tuple> |
| 60 | #include <utility> |
| 61 | |
| 62 | using namespace llvm; |
| 63 | |
| 64 | #define LLE_OPTION "loop-load-elim" |
| 65 | #define DEBUG_TYPE LLE_OPTION |
| 66 | |
| 67 | static cl::opt<unsigned> CheckPerElim( |
| 68 | "runtime-check-per-loop-load-elim" , cl::Hidden, |
| 69 | cl::desc("Max number of memchecks allowed per eliminated load on average" ), |
| 70 | cl::init(Val: 1)); |
| 71 | |
| 72 | static cl::opt<unsigned> LoadElimSCEVCheckThreshold( |
| 73 | "loop-load-elimination-scev-check-threshold" , cl::init(Val: 8), cl::Hidden, |
| 74 | cl::desc("The maximum number of SCEV checks allowed for Loop " |
| 75 | "Load Elimination" )); |
| 76 | |
| 77 | STATISTIC(NumLoopLoadEliminted, "Number of loads eliminated by LLE" ); |
| 78 | |
| 79 | namespace { |
| 80 | |
| 81 | /// Represent a store-to-forwarding candidate. |
| 82 | struct StoreToLoadForwardingCandidate { |
| 83 | LoadInst *Load; |
| 84 | StoreInst *Store; |
| 85 | |
| 86 | StoreToLoadForwardingCandidate(LoadInst *Load, StoreInst *Store) |
| 87 | : Load(Load), Store(Store) {} |
| 88 | |
| 89 | /// Return true if the dependence from the store to the load has an |
| 90 | /// absolute distance of one. |
| 91 | /// E.g. A[i+1] = A[i] (or A[i-1] = A[i] for descending loop) |
| 92 | bool isDependenceDistanceOfOne(PredicatedScalarEvolution &PSE, Loop *L, |
| 93 | const DominatorTree &DT) const { |
| 94 | Value *LoadPtr = Load->getPointerOperand(); |
| 95 | Value *StorePtr = Store->getPointerOperand(); |
| 96 | Type *LoadType = getLoadStoreType(I: Load); |
| 97 | auto &DL = Load->getDataLayout(); |
| 98 | |
| 99 | assert(LoadPtr->getType()->getPointerAddressSpace() == |
| 100 | StorePtr->getType()->getPointerAddressSpace() && |
| 101 | DL.getTypeSizeInBits(LoadType) == |
| 102 | DL.getTypeSizeInBits(getLoadStoreType(Store)) && |
| 103 | "Should be a known dependence" ); |
| 104 | |
| 105 | int64_t StrideLoad = |
| 106 | getPtrStride(PSE, AccessTy: LoadType, Ptr: LoadPtr, Lp: L, DT).value_or(u: 0); |
| 107 | int64_t StrideStore = |
| 108 | getPtrStride(PSE, AccessTy: LoadType, Ptr: StorePtr, Lp: L, DT).value_or(u: 0); |
| 109 | if (!StrideLoad || !StrideStore || StrideLoad != StrideStore) |
| 110 | return false; |
| 111 | |
| 112 | // TODO: This check for stride values other than 1 and -1 can be eliminated. |
| 113 | // However, doing so may cause the LoopAccessAnalysis to overcompensate, |
| 114 | // generating numerous non-wrap runtime checks that may undermine the |
| 115 | // benefits of load elimination. To safely implement support for non-unit |
| 116 | // strides, we would need to ensure either that the processed case does not |
| 117 | // require these additional checks, or improve the LAA to handle them more |
| 118 | // efficiently, or potentially both. |
| 119 | if (std::abs(i: StrideLoad) != 1) |
| 120 | return false; |
| 121 | |
| 122 | unsigned TypeByteSize = DL.getTypeAllocSize(Ty: LoadType); |
| 123 | |
| 124 | auto *LoadPtrSCEV = cast<SCEVAddRecExpr>(Val: PSE.getSCEV(V: LoadPtr)); |
| 125 | auto *StorePtrSCEV = cast<SCEVAddRecExpr>(Val: PSE.getSCEV(V: StorePtr)); |
| 126 | |
| 127 | // We don't need to check non-wrapping here because forward/backward |
| 128 | // dependence wouldn't be valid if these weren't monotonic accesses. |
| 129 | auto *Dist = dyn_cast<SCEVConstant>( |
| 130 | Val: PSE.getSE()->getMinusSCEV(LHS: StorePtrSCEV, RHS: LoadPtrSCEV)); |
| 131 | if (!Dist) |
| 132 | return false; |
| 133 | const APInt &Val = Dist->getAPInt(); |
| 134 | return Val == TypeByteSize * StrideLoad; |
| 135 | } |
| 136 | |
| 137 | Value *getLoadPtr() const { return Load->getPointerOperand(); } |
| 138 | |
| 139 | #ifndef NDEBUG |
| 140 | friend raw_ostream &operator<<(raw_ostream &OS, |
| 141 | const StoreToLoadForwardingCandidate &Cand) { |
| 142 | OS << *Cand.Store << " -->\n" ; |
| 143 | OS.indent(2) << *Cand.Load << "\n" ; |
| 144 | return OS; |
| 145 | } |
| 146 | #endif |
| 147 | }; |
| 148 | |
| 149 | } // end anonymous namespace |
| 150 | |
| 151 | /// Check if the store dominates all latches, so as long as there is no |
| 152 | /// intervening store this value will be loaded in the next iteration. |
| 153 | static bool doesStoreDominatesAllLatches(BasicBlock *StoreBlock, Loop *L, |
| 154 | DominatorTree *DT) { |
| 155 | SmallVector<BasicBlock *, 8> Latches; |
| 156 | L->getLoopLatches(LoopLatches&: Latches); |
| 157 | return llvm::all_of(Range&: Latches, P: [&](const BasicBlock *Latch) { |
| 158 | return DT->dominates(A: StoreBlock, B: Latch); |
| 159 | }); |
| 160 | } |
| 161 | |
| 162 | /// Return true if the load is not executed on all paths in the loop. |
| 163 | static bool isLoadConditional(LoadInst *Load, Loop *L) { |
| 164 | return Load->getParent() != L->getHeader(); |
| 165 | } |
| 166 | |
| 167 | namespace { |
| 168 | |
| 169 | /// The per-loop class that does most of the work. |
| 170 | class LoadEliminationForLoop { |
| 171 | public: |
| 172 | LoadEliminationForLoop(Loop *L, LoopInfo *LI, const LoopAccessInfo &LAI, |
| 173 | DominatorTree *DT, BlockFrequencyInfo *BFI, |
| 174 | ProfileSummaryInfo* PSI) |
| 175 | : L(L), LI(LI), LAI(LAI), DT(DT), BFI(BFI), PSI(PSI), PSE(LAI.getPSE()) {} |
| 176 | |
| 177 | /// Look through the loop-carried and loop-independent dependences in |
| 178 | /// this loop and find store->load dependences. |
| 179 | /// |
| 180 | /// Note that no candidate is returned if LAA has failed to analyze the loop |
| 181 | /// (e.g. if it's not bottom-tested, contains volatile memops, etc.) |
| 182 | std::forward_list<StoreToLoadForwardingCandidate> |
| 183 | findStoreToLoadDependences(const LoopAccessInfo &LAI) { |
| 184 | std::forward_list<StoreToLoadForwardingCandidate> Candidates; |
| 185 | |
| 186 | const auto &DepChecker = LAI.getDepChecker(); |
| 187 | const auto *Deps = DepChecker.getDependences(); |
| 188 | if (!Deps) |
| 189 | return Candidates; |
| 190 | |
| 191 | // Find store->load dependences (consequently true dep). Both lexically |
| 192 | // forward and backward dependences qualify. Disqualify loads that have |
| 193 | // other unknown dependences. |
| 194 | |
| 195 | SmallPtrSet<Instruction *, 4> LoadsWithUnknownDependence; |
| 196 | |
| 197 | for (const auto &Dep : *Deps) { |
| 198 | Instruction *Source = Dep.getSource(DepChecker); |
| 199 | Instruction *Destination = Dep.getDestination(DepChecker); |
| 200 | |
| 201 | if (Dep.Type == MemoryDepChecker::Dependence::Unknown || |
| 202 | Dep.Type == MemoryDepChecker::Dependence::IndirectUnsafe) { |
| 203 | if (isa<LoadInst>(Val: Source)) |
| 204 | LoadsWithUnknownDependence.insert(Ptr: Source); |
| 205 | if (isa<LoadInst>(Val: Destination)) |
| 206 | LoadsWithUnknownDependence.insert(Ptr: Destination); |
| 207 | continue; |
| 208 | } |
| 209 | |
| 210 | if (Dep.isBackward()) |
| 211 | // Note that the designations source and destination follow the program |
| 212 | // order, i.e. source is always first. (The direction is given by the |
| 213 | // DepType.) |
| 214 | std::swap(a&: Source, b&: Destination); |
| 215 | else |
| 216 | assert(Dep.isForward() && "Needs to be a forward dependence" ); |
| 217 | |
| 218 | auto *Store = dyn_cast<StoreInst>(Val: Source); |
| 219 | if (!Store) |
| 220 | continue; |
| 221 | auto *Load = dyn_cast<LoadInst>(Val: Destination); |
| 222 | if (!Load) |
| 223 | continue; |
| 224 | |
| 225 | // Only propagate if the stored values are bit/pointer castable. |
| 226 | if (!CastInst::isBitOrNoopPointerCastable( |
| 227 | SrcTy: getLoadStoreType(I: Store), DestTy: getLoadStoreType(I: Load), |
| 228 | DL: Store->getDataLayout())) |
| 229 | continue; |
| 230 | |
| 231 | Candidates.emplace_front(args&: Load, args&: Store); |
| 232 | } |
| 233 | |
| 234 | if (!LoadsWithUnknownDependence.empty()) |
| 235 | Candidates.remove_if(pred: [&](const StoreToLoadForwardingCandidate &C) { |
| 236 | return LoadsWithUnknownDependence.count(Ptr: C.Load); |
| 237 | }); |
| 238 | |
| 239 | return Candidates; |
| 240 | } |
| 241 | |
| 242 | /// Return the index of the instruction according to program order. |
| 243 | unsigned getInstrIndex(Instruction *Inst) { |
| 244 | auto I = InstOrder.find(Val: Inst); |
| 245 | assert(I != InstOrder.end() && "No index for instruction" ); |
| 246 | return I->second; |
| 247 | } |
| 248 | |
| 249 | /// If a load has multiple candidates associated (i.e. different |
| 250 | /// stores), it means that it could be forwarding from multiple stores |
| 251 | /// depending on control flow. Remove these candidates. |
| 252 | /// |
| 253 | /// Here, we rely on LAA to include the relevant loop-independent dependences. |
| 254 | /// LAA is known to omit these in the very simple case when the read and the |
| 255 | /// write within an alias set always takes place using the *same* pointer. |
| 256 | /// |
| 257 | /// However, we know that this is not the case here, i.e. we can rely on LAA |
| 258 | /// to provide us with loop-independent dependences for the cases we're |
| 259 | /// interested. Consider the case for example where a loop-independent |
| 260 | /// dependece S1->S2 invalidates the forwarding S3->S2. |
| 261 | /// |
| 262 | /// A[i] = ... (S1) |
| 263 | /// ... = A[i] (S2) |
| 264 | /// A[i+1] = ... (S3) |
| 265 | /// |
| 266 | /// LAA will perform dependence analysis here because there are two |
| 267 | /// *different* pointers involved in the same alias set (&A[i] and &A[i+1]). |
| 268 | void removeDependencesFromMultipleStores( |
| 269 | std::forward_list<StoreToLoadForwardingCandidate> &Candidates) { |
| 270 | // If Store is nullptr it means that we have multiple stores forwarding to |
| 271 | // this store. |
| 272 | using LoadToSingleCandT = |
| 273 | DenseMap<LoadInst *, const StoreToLoadForwardingCandidate *>; |
| 274 | LoadToSingleCandT LoadToSingleCand; |
| 275 | |
| 276 | for (const auto &Cand : Candidates) { |
| 277 | bool NewElt; |
| 278 | LoadToSingleCandT::iterator Iter; |
| 279 | |
| 280 | std::tie(args&: Iter, args&: NewElt) = |
| 281 | LoadToSingleCand.insert(KV: std::make_pair(x: Cand.Load, y: &Cand)); |
| 282 | if (!NewElt) { |
| 283 | const StoreToLoadForwardingCandidate *&OtherCand = Iter->second; |
| 284 | // Already multiple stores forward to this load. |
| 285 | if (OtherCand == nullptr) |
| 286 | continue; |
| 287 | |
| 288 | // Handle the very basic case when the two stores are in the same block |
| 289 | // so deciding which one forwards is easy. The later one forwards as |
| 290 | // long as they both have a dependence distance of one to the load. |
| 291 | if (Cand.Store->getParent() == OtherCand->Store->getParent() && |
| 292 | Cand.isDependenceDistanceOfOne(PSE, L, DT: *DT) && |
| 293 | OtherCand->isDependenceDistanceOfOne(PSE, L, DT: *DT)) { |
| 294 | // They are in the same block, the later one will forward to the load. |
| 295 | if (getInstrIndex(Inst: OtherCand->Store) < getInstrIndex(Inst: Cand.Store)) |
| 296 | OtherCand = &Cand; |
| 297 | } else |
| 298 | OtherCand = nullptr; |
| 299 | } |
| 300 | } |
| 301 | |
| 302 | Candidates.remove_if(pred: [&](const StoreToLoadForwardingCandidate &Cand) { |
| 303 | if (LoadToSingleCand[Cand.Load] != &Cand) { |
| 304 | LLVM_DEBUG( |
| 305 | dbgs() << "Removing from candidates: \n" |
| 306 | << Cand |
| 307 | << " The load may have multiple stores forwarding to " |
| 308 | << "it\n" ); |
| 309 | return true; |
| 310 | } |
| 311 | return false; |
| 312 | }); |
| 313 | } |
| 314 | |
| 315 | /// Given two pointers operations by their RuntimePointerChecking |
| 316 | /// indices, return true if they require an alias check. |
| 317 | /// |
| 318 | /// We need a check if one is a pointer for a candidate load and the other is |
| 319 | /// a pointer for a possibly intervening store. |
| 320 | bool needsChecking(unsigned PtrIdx1, unsigned PtrIdx2, |
| 321 | const SmallPtrSetImpl<Value *> &PtrsWrittenOnFwdingPath, |
| 322 | const SmallPtrSetImpl<Value *> &CandLoadPtrs) { |
| 323 | Value *Ptr1 = |
| 324 | LAI.getRuntimePointerChecking()->getPointerInfo(PtrIdx: PtrIdx1).PointerValue; |
| 325 | Value *Ptr2 = |
| 326 | LAI.getRuntimePointerChecking()->getPointerInfo(PtrIdx: PtrIdx2).PointerValue; |
| 327 | return ((PtrsWrittenOnFwdingPath.count(Ptr: Ptr1) && CandLoadPtrs.count(Ptr: Ptr2)) || |
| 328 | (PtrsWrittenOnFwdingPath.count(Ptr: Ptr2) && CandLoadPtrs.count(Ptr: Ptr1))); |
| 329 | } |
| 330 | |
| 331 | /// Return pointers that are possibly written to on the path from a |
| 332 | /// forwarding store to a load. |
| 333 | /// |
| 334 | /// These pointers need to be alias-checked against the forwarding candidates. |
| 335 | SmallPtrSet<Value *, 4> findPointersWrittenOnForwardingPath( |
| 336 | const SmallVectorImpl<StoreToLoadForwardingCandidate> &Candidates) { |
| 337 | // From FirstStore to LastLoad neither of the elimination candidate loads |
| 338 | // should overlap with any of the stores. |
| 339 | // |
| 340 | // E.g.: |
| 341 | // |
| 342 | // st1 C[i] |
| 343 | // ld1 B[i] <-------, |
| 344 | // ld0 A[i] <----, | * LastLoad |
| 345 | // ... | | |
| 346 | // st2 E[i] | | |
| 347 | // st3 B[i+1] -- | -' * FirstStore |
| 348 | // st0 A[i+1] ---' |
| 349 | // st4 D[i] |
| 350 | // |
| 351 | // st0 forwards to ld0 if the accesses in st4 and st1 don't overlap with |
| 352 | // ld0. |
| 353 | |
| 354 | LoadInst *LastLoad = |
| 355 | llvm::max_element(Range: Candidates, |
| 356 | C: [&](const StoreToLoadForwardingCandidate &A, |
| 357 | const StoreToLoadForwardingCandidate &B) { |
| 358 | return getInstrIndex(Inst: A.Load) < |
| 359 | getInstrIndex(Inst: B.Load); |
| 360 | }) |
| 361 | ->Load; |
| 362 | StoreInst *FirstStore = |
| 363 | llvm::min_element(Range: Candidates, |
| 364 | C: [&](const StoreToLoadForwardingCandidate &A, |
| 365 | const StoreToLoadForwardingCandidate &B) { |
| 366 | return getInstrIndex(Inst: A.Store) < |
| 367 | getInstrIndex(Inst: B.Store); |
| 368 | }) |
| 369 | ->Store; |
| 370 | |
| 371 | // We're looking for stores after the first forwarding store until the end |
| 372 | // of the loop, then from the beginning of the loop until the last |
| 373 | // forwarded-to load. Collect the pointer for the stores. |
| 374 | SmallPtrSet<Value *, 4> PtrsWrittenOnFwdingPath; |
| 375 | |
| 376 | auto InsertStorePtr = [&](Instruction *I) { |
| 377 | if (auto *S = dyn_cast<StoreInst>(Val: I)) |
| 378 | PtrsWrittenOnFwdingPath.insert(Ptr: S->getPointerOperand()); |
| 379 | }; |
| 380 | const auto &MemInstrs = LAI.getDepChecker().getMemoryInstructions(); |
| 381 | std::for_each(first: MemInstrs.begin() + getInstrIndex(Inst: FirstStore) + 1, |
| 382 | last: MemInstrs.end(), f: InsertStorePtr); |
| 383 | std::for_each(first: MemInstrs.begin(), last: &MemInstrs[getInstrIndex(Inst: LastLoad)], |
| 384 | f: InsertStorePtr); |
| 385 | |
| 386 | return PtrsWrittenOnFwdingPath; |
| 387 | } |
| 388 | |
| 389 | /// Determine the pointer alias checks to prove that there are no |
| 390 | /// intervening stores. |
| 391 | SmallVector<RuntimePointerCheck, 4> collectMemchecks( |
| 392 | const SmallVectorImpl<StoreToLoadForwardingCandidate> &Candidates) { |
| 393 | |
| 394 | SmallPtrSet<Value *, 4> PtrsWrittenOnFwdingPath = |
| 395 | findPointersWrittenOnForwardingPath(Candidates); |
| 396 | |
| 397 | // Collect the pointers of the candidate loads. |
| 398 | SmallPtrSet<Value *, 4> CandLoadPtrs; |
| 399 | for (const auto &Candidate : Candidates) |
| 400 | CandLoadPtrs.insert(Ptr: Candidate.getLoadPtr()); |
| 401 | |
| 402 | const auto &AllChecks = LAI.getRuntimePointerChecking()->getChecks(); |
| 403 | SmallVector<RuntimePointerCheck, 4> Checks; |
| 404 | |
| 405 | copy_if(Range: AllChecks, Out: std::back_inserter(x&: Checks), |
| 406 | P: [&](const RuntimePointerCheck &Check) { |
| 407 | for (auto PtrIdx1 : Check.first->Members) |
| 408 | for (auto PtrIdx2 : Check.second->Members) |
| 409 | if (needsChecking(PtrIdx1, PtrIdx2, PtrsWrittenOnFwdingPath, |
| 410 | CandLoadPtrs)) |
| 411 | return true; |
| 412 | return false; |
| 413 | }); |
| 414 | |
| 415 | LLVM_DEBUG(dbgs() << "\nPointer Checks (count: " << Checks.size() |
| 416 | << "):\n" ); |
| 417 | LLVM_DEBUG(LAI.getRuntimePointerChecking()->printChecks(dbgs(), Checks)); |
| 418 | |
| 419 | return Checks; |
| 420 | } |
| 421 | |
| 422 | /// Perform the transformation for a candidate. |
| 423 | void |
| 424 | propagateStoredValueToLoadUsers(const StoreToLoadForwardingCandidate &Cand, |
| 425 | SCEVExpander &SEE) { |
| 426 | // loop: |
| 427 | // %x = load %gep_i |
| 428 | // = ... %x |
| 429 | // store %y, %gep_i_plus_1 |
| 430 | // |
| 431 | // => |
| 432 | // |
| 433 | // ph: |
| 434 | // %x.initial = load %gep_0 |
| 435 | // loop: |
| 436 | // %x.storeforward = phi [%x.initial, %ph] [%y, %loop] |
| 437 | // %x = load %gep_i <---- now dead |
| 438 | // = ... %x.storeforward |
| 439 | // store %y, %gep_i_plus_1 |
| 440 | |
| 441 | Value *Ptr = Cand.Load->getPointerOperand(); |
| 442 | auto *PtrSCEV = cast<SCEVAddRecExpr>(Val: PSE.getSCEV(V: Ptr)); |
| 443 | auto *PH = L->getLoopPreheader(); |
| 444 | assert(PH && "Preheader should exist!" ); |
| 445 | Value *InitialPtr = SEE.expandCodeFor(SH: PtrSCEV->getStart(), Ty: Ptr->getType(), |
| 446 | I: PH->getTerminator()); |
| 447 | Instruction *Initial = |
| 448 | new LoadInst(Cand.Load->getType(), InitialPtr, "load_initial" , |
| 449 | /* isVolatile */ false, Cand.Load->getAlign(), |
| 450 | PH->getTerminator()->getIterator()); |
| 451 | // We don't give any debug location to Initial, because it is inserted |
| 452 | // into the loop's preheader. A debug location inside the loop will cause |
| 453 | // a misleading stepping when debugging. The test update-debugloc-store |
| 454 | // -forwarded.ll checks this. |
| 455 | Initial->setDebugLoc(DebugLoc::getDropped()); |
| 456 | |
| 457 | PHINode *PHI = PHINode::Create(Ty: Initial->getType(), NumReservedValues: 2, NameStr: "store_forwarded" ); |
| 458 | PHI->insertBefore(InsertPos: L->getHeader()->begin()); |
| 459 | PHI->addIncoming(V: Initial, BB: PH); |
| 460 | |
| 461 | Type *LoadType = Initial->getType(); |
| 462 | Type *StoreType = Cand.Store->getValueOperand()->getType(); |
| 463 | auto &DL = Cand.Load->getDataLayout(); |
| 464 | (void)DL; |
| 465 | |
| 466 | assert(DL.getTypeSizeInBits(LoadType) == DL.getTypeSizeInBits(StoreType) && |
| 467 | "The type sizes should match!" ); |
| 468 | |
| 469 | Value *StoreValue = Cand.Store->getValueOperand(); |
| 470 | if (LoadType != StoreType) { |
| 471 | StoreValue = CastInst::CreateBitOrPointerCast(S: StoreValue, Ty: LoadType, |
| 472 | Name: "store_forward_cast" , |
| 473 | InsertBefore: Cand.Store->getIterator()); |
| 474 | // Because it casts the old `load` value and is used by the new `phi` |
| 475 | // which replaces the old `load`, we give the `load`'s debug location |
| 476 | // to it. |
| 477 | cast<Instruction>(Val: StoreValue)->setDebugLoc(Cand.Load->getDebugLoc()); |
| 478 | } |
| 479 | |
| 480 | PHI->addIncoming(V: StoreValue, BB: L->getLoopLatch()); |
| 481 | |
| 482 | Cand.Load->replaceAllUsesWith(V: PHI); |
| 483 | PHI->setDebugLoc(Cand.Load->getDebugLoc()); |
| 484 | } |
| 485 | |
| 486 | /// Top-level driver for each loop: find store->load forwarding |
| 487 | /// candidates, add run-time checks and perform transformation. |
| 488 | bool processLoop() { |
| 489 | LLVM_DEBUG(dbgs() << "\nIn \"" << L->getHeader()->getParent()->getName() |
| 490 | << "\" checking " << *L << "\n" ); |
| 491 | |
| 492 | // Look for store-to-load forwarding cases across the |
| 493 | // backedge. E.g.: |
| 494 | // |
| 495 | // loop: |
| 496 | // %x = load %gep_i |
| 497 | // = ... %x |
| 498 | // store %y, %gep_i_plus_1 |
| 499 | // |
| 500 | // => |
| 501 | // |
| 502 | // ph: |
| 503 | // %x.initial = load %gep_0 |
| 504 | // loop: |
| 505 | // %x.storeforward = phi [%x.initial, %ph] [%y, %loop] |
| 506 | // %x = load %gep_i <---- now dead |
| 507 | // = ... %x.storeforward |
| 508 | // store %y, %gep_i_plus_1 |
| 509 | |
| 510 | // First start with store->load dependences. |
| 511 | auto StoreToLoadDependences = findStoreToLoadDependences(LAI); |
| 512 | if (StoreToLoadDependences.empty()) |
| 513 | return false; |
| 514 | |
| 515 | // Generate an index for each load and store according to the original |
| 516 | // program order. This will be used later. |
| 517 | InstOrder = LAI.getDepChecker().generateInstructionOrderMap(); |
| 518 | |
| 519 | // To keep things simple for now, remove those where the load is potentially |
| 520 | // fed by multiple stores. |
| 521 | removeDependencesFromMultipleStores(Candidates&: StoreToLoadDependences); |
| 522 | if (StoreToLoadDependences.empty()) |
| 523 | return false; |
| 524 | |
| 525 | // Filter the candidates further. |
| 526 | SmallVector<StoreToLoadForwardingCandidate, 4> Candidates; |
| 527 | for (const StoreToLoadForwardingCandidate &Cand : StoreToLoadDependences) { |
| 528 | LLVM_DEBUG(dbgs() << "Candidate " << Cand); |
| 529 | |
| 530 | // Make sure that the stored values is available everywhere in the loop in |
| 531 | // the next iteration. |
| 532 | if (!doesStoreDominatesAllLatches(StoreBlock: Cand.Store->getParent(), L, DT)) |
| 533 | continue; |
| 534 | |
| 535 | // If the load is conditional we can't hoist its 0-iteration instance to |
| 536 | // the preheader because that would make it unconditional. Thus we would |
| 537 | // access a memory location that the original loop did not access. |
| 538 | if (isLoadConditional(Load: Cand.Load, L)) |
| 539 | continue; |
| 540 | |
| 541 | // Check whether the SCEV difference is the same as the induction step, |
| 542 | // thus we load the value in the next iteration. |
| 543 | if (!Cand.isDependenceDistanceOfOne(PSE, L, DT: *DT)) |
| 544 | continue; |
| 545 | |
| 546 | assert(isa<SCEVAddRecExpr>(PSE.getSCEV(Cand.Load->getPointerOperand())) && |
| 547 | "Loading from something other than indvar?" ); |
| 548 | assert( |
| 549 | isa<SCEVAddRecExpr>(PSE.getSCEV(Cand.Store->getPointerOperand())) && |
| 550 | "Storing to something other than indvar?" ); |
| 551 | |
| 552 | Candidates.push_back(Elt: Cand); |
| 553 | LLVM_DEBUG( |
| 554 | dbgs() |
| 555 | << Candidates.size() |
| 556 | << ". Valid store-to-load forwarding across the loop backedge\n" ); |
| 557 | } |
| 558 | if (Candidates.empty()) |
| 559 | return false; |
| 560 | |
| 561 | // Check intervening may-alias stores. These need runtime checks for alias |
| 562 | // disambiguation. |
| 563 | SmallVector<RuntimePointerCheck, 4> Checks = collectMemchecks(Candidates); |
| 564 | |
| 565 | // Too many checks are likely to outweigh the benefits of forwarding. |
| 566 | if (Checks.size() > Candidates.size() * CheckPerElim) { |
| 567 | LLVM_DEBUG(dbgs() << "Too many run-time checks needed.\n" ); |
| 568 | return false; |
| 569 | } |
| 570 | |
| 571 | if (LAI.getPSE().getPredicate().getComplexity() > |
| 572 | LoadElimSCEVCheckThreshold) { |
| 573 | LLVM_DEBUG(dbgs() << "Too many SCEV run-time checks needed.\n" ); |
| 574 | return false; |
| 575 | } |
| 576 | |
| 577 | if (!L->isLoopSimplifyForm()) { |
| 578 | LLVM_DEBUG(dbgs() << "Loop is not is loop-simplify form" ); |
| 579 | return false; |
| 580 | } |
| 581 | |
| 582 | if (!Checks.empty() || !LAI.getPSE().getPredicate().isAlwaysTrue()) { |
| 583 | if (LAI.hasConvergentOp()) { |
| 584 | LLVM_DEBUG(dbgs() << "Versioning is needed but not allowed with " |
| 585 | "convergent calls\n" ); |
| 586 | return false; |
| 587 | } |
| 588 | |
| 589 | auto * = L->getHeader(); |
| 590 | if (llvm::shouldOptimizeForSize(BB: HeaderBB, PSI, BFI, |
| 591 | QueryType: PGSOQueryType::IRPass)) { |
| 592 | LLVM_DEBUG( |
| 593 | dbgs() << "Versioning is needed but not allowed when optimizing " |
| 594 | "for size.\n" ); |
| 595 | return false; |
| 596 | } |
| 597 | |
| 598 | // Point of no-return, start the transformation. First, version the loop |
| 599 | // if necessary. |
| 600 | |
| 601 | LoopVersioning LV(LAI, Checks, L, LI, DT, PSE.getSE()); |
| 602 | LV.versionLoop(); |
| 603 | |
| 604 | // After versioning, some of the candidates' pointers could stop being |
| 605 | // SCEVAddRecs. We need to filter them out. |
| 606 | auto NoLongerGoodCandidate = [this]( |
| 607 | const StoreToLoadForwardingCandidate &Cand) { |
| 608 | return !isa<SCEVAddRecExpr>( |
| 609 | Val: PSE.getSCEV(V: Cand.Load->getPointerOperand())) || |
| 610 | !isa<SCEVAddRecExpr>( |
| 611 | Val: PSE.getSCEV(V: Cand.Store->getPointerOperand())); |
| 612 | }; |
| 613 | llvm::erase_if(C&: Candidates, P: NoLongerGoodCandidate); |
| 614 | } |
| 615 | |
| 616 | // Next, propagate the value stored by the store to the users of the load. |
| 617 | // Also for the first iteration, generate the initial value of the load. |
| 618 | SCEVExpander SEE(*PSE.getSE(), "storeforward" ); |
| 619 | for (const auto &Cand : Candidates) |
| 620 | propagateStoredValueToLoadUsers(Cand, SEE); |
| 621 | NumLoopLoadEliminted += Candidates.size(); |
| 622 | |
| 623 | return true; |
| 624 | } |
| 625 | |
| 626 | private: |
| 627 | Loop *L; |
| 628 | |
| 629 | /// Maps the load/store instructions to their index according to |
| 630 | /// program order. |
| 631 | DenseMap<Instruction *, unsigned> InstOrder; |
| 632 | |
| 633 | // Analyses used. |
| 634 | LoopInfo *LI; |
| 635 | const LoopAccessInfo &LAI; |
| 636 | DominatorTree *DT; |
| 637 | BlockFrequencyInfo *BFI; |
| 638 | ProfileSummaryInfo *PSI; |
| 639 | PredicatedScalarEvolution PSE; |
| 640 | }; |
| 641 | |
| 642 | } // end anonymous namespace |
| 643 | |
| 644 | static bool eliminateLoadsAcrossLoops(Function &F, LoopInfo &LI, |
| 645 | DominatorTree &DT, |
| 646 | BlockFrequencyInfo *BFI, |
| 647 | ProfileSummaryInfo *PSI, |
| 648 | ScalarEvolution *SE, AssumptionCache *AC, |
| 649 | LoopAccessInfoManager &LAIs) { |
| 650 | // Build up a worklist of inner-loops to transform to avoid iterator |
| 651 | // invalidation. |
| 652 | // FIXME: This logic comes from other passes that actually change the loop |
| 653 | // nest structure. It isn't clear this is necessary (or useful) for a pass |
| 654 | // which merely optimizes the use of loads in a loop. |
| 655 | SmallVector<Loop *, 8> Worklist; |
| 656 | |
| 657 | bool Changed = false; |
| 658 | |
| 659 | for (Loop *TopLevelLoop : LI) |
| 660 | for (Loop *L : depth_first(G: TopLevelLoop)) { |
| 661 | Changed |= simplifyLoop(L, DT: &DT, LI: &LI, SE, AC, /*MSSAU*/ nullptr, PreserveLCSSA: false); |
| 662 | // We only handle inner-most loops. |
| 663 | if (L->isInnermost()) |
| 664 | Worklist.push_back(Elt: L); |
| 665 | } |
| 666 | |
| 667 | // Now walk the identified inner loops. |
| 668 | for (Loop *L : Worklist) { |
| 669 | // Match historical behavior |
| 670 | if (!L->isRotatedForm() || !L->getExitingBlock()) |
| 671 | continue; |
| 672 | // The actual work is performed by LoadEliminationForLoop. |
| 673 | LoadEliminationForLoop LEL(L, &LI, LAIs.getInfo(L&: *L), &DT, BFI, PSI); |
| 674 | Changed |= LEL.processLoop(); |
| 675 | if (Changed) |
| 676 | LAIs.clear(); |
| 677 | } |
| 678 | return Changed; |
| 679 | } |
| 680 | |
| 681 | PreservedAnalyses LoopLoadEliminationPass::run(Function &F, |
| 682 | FunctionAnalysisManager &AM) { |
| 683 | auto &LI = AM.getResult<LoopAnalysis>(IR&: F); |
| 684 | // There are no loops in the function. Return before computing other expensive |
| 685 | // analyses. |
| 686 | if (LI.empty()) |
| 687 | return PreservedAnalyses::all(); |
| 688 | auto &SE = AM.getResult<ScalarEvolutionAnalysis>(IR&: F); |
| 689 | auto &DT = AM.getResult<DominatorTreeAnalysis>(IR&: F); |
| 690 | auto &AC = AM.getResult<AssumptionAnalysis>(IR&: F); |
| 691 | auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(IR&: F); |
| 692 | auto *PSI = MAMProxy.getCachedResult<ProfileSummaryAnalysis>(IR&: *F.getParent()); |
| 693 | auto *BFI = (PSI && PSI->hasProfileSummary()) ? |
| 694 | &AM.getResult<BlockFrequencyAnalysis>(IR&: F) : nullptr; |
| 695 | LoopAccessInfoManager &LAIs = AM.getResult<LoopAccessAnalysis>(IR&: F); |
| 696 | |
| 697 | bool Changed = eliminateLoadsAcrossLoops(F, LI, DT, BFI, PSI, SE: &SE, AC: &AC, LAIs); |
| 698 | |
| 699 | if (!Changed) |
| 700 | return PreservedAnalyses::all(); |
| 701 | |
| 702 | PreservedAnalyses PA; |
| 703 | PA.preserve<DominatorTreeAnalysis>(); |
| 704 | PA.preserve<LoopAnalysis>(); |
| 705 | return PA; |
| 706 | } |
| 707 | |