| 1 | //===- SROA.cpp - Scalar Replacement Of Aggregates ------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | /// \file |
| 9 | /// This transformation implements the well known scalar replacement of |
| 10 | /// aggregates transformation. It tries to identify promotable elements of an |
| 11 | /// aggregate alloca, and promote them to registers. It will also try to |
| 12 | /// convert uses of an element (or set of elements) of an alloca into a vector |
| 13 | /// or bitfield-style integer scalar if appropriate. |
| 14 | /// |
| 15 | /// It works to do this with minimal slicing of the alloca so that regions |
| 16 | /// which are merely transferred in and out of external memory remain unchanged |
| 17 | /// and are not decomposed to scalar code. |
| 18 | /// |
| 19 | /// Because this also performs alloca promotion, it can be thought of as also |
| 20 | /// serving the purpose of SSA formation. The algorithm iterates on the |
| 21 | /// function until all opportunities for promotion have been realized. |
| 22 | /// |
| 23 | //===----------------------------------------------------------------------===// |
| 24 | |
| 25 | #include "llvm/Transforms/Scalar/SROA.h" |
| 26 | #include "llvm/ADT/APInt.h" |
| 27 | #include "llvm/ADT/ArrayRef.h" |
| 28 | #include "llvm/ADT/DenseMap.h" |
| 29 | #include "llvm/ADT/MapVector.h" |
| 30 | #include "llvm/ADT/PointerIntPair.h" |
| 31 | #include "llvm/ADT/STLExtras.h" |
| 32 | #include "llvm/ADT/SetVector.h" |
| 33 | #include "llvm/ADT/SmallBitVector.h" |
| 34 | #include "llvm/ADT/SmallPtrSet.h" |
| 35 | #include "llvm/ADT/SmallVector.h" |
| 36 | #include "llvm/ADT/Statistic.h" |
| 37 | #include "llvm/ADT/StringRef.h" |
| 38 | #include "llvm/ADT/Twine.h" |
| 39 | #include "llvm/ADT/iterator.h" |
| 40 | #include "llvm/ADT/iterator_range.h" |
| 41 | #include "llvm/Analysis/AssumptionCache.h" |
| 42 | #include "llvm/Analysis/DomTreeUpdater.h" |
| 43 | #include "llvm/Analysis/GlobalsModRef.h" |
| 44 | #include "llvm/Analysis/Loads.h" |
| 45 | #include "llvm/Analysis/PtrUseVisitor.h" |
| 46 | #include "llvm/Analysis/ValueTracking.h" |
| 47 | #include "llvm/Config/llvm-config.h" |
| 48 | #include "llvm/IR/BasicBlock.h" |
| 49 | #include "llvm/IR/Constant.h" |
| 50 | #include "llvm/IR/ConstantFolder.h" |
| 51 | #include "llvm/IR/Constants.h" |
| 52 | #include "llvm/IR/DIBuilder.h" |
| 53 | #include "llvm/IR/DataLayout.h" |
| 54 | #include "llvm/IR/DebugInfo.h" |
| 55 | #include "llvm/IR/DebugInfoMetadata.h" |
| 56 | #include "llvm/IR/DerivedTypes.h" |
| 57 | #include "llvm/IR/Dominators.h" |
| 58 | #include "llvm/IR/Function.h" |
| 59 | #include "llvm/IR/GlobalAlias.h" |
| 60 | #include "llvm/IR/IRBuilder.h" |
| 61 | #include "llvm/IR/InstVisitor.h" |
| 62 | #include "llvm/IR/Instruction.h" |
| 63 | #include "llvm/IR/Instructions.h" |
| 64 | #include "llvm/IR/IntrinsicInst.h" |
| 65 | #include "llvm/IR/Intrinsics.h" |
| 66 | #include "llvm/IR/LLVMContext.h" |
| 67 | #include "llvm/IR/Metadata.h" |
| 68 | #include "llvm/IR/Module.h" |
| 69 | #include "llvm/IR/Operator.h" |
| 70 | #include "llvm/IR/PassManager.h" |
| 71 | #include "llvm/IR/Type.h" |
| 72 | #include "llvm/IR/Use.h" |
| 73 | #include "llvm/IR/User.h" |
| 74 | #include "llvm/IR/Value.h" |
| 75 | #include "llvm/IR/ValueHandle.h" |
| 76 | #include "llvm/InitializePasses.h" |
| 77 | #include "llvm/Pass.h" |
| 78 | #include "llvm/Support/Casting.h" |
| 79 | #include "llvm/Support/CommandLine.h" |
| 80 | #include "llvm/Support/Compiler.h" |
| 81 | #include "llvm/Support/Debug.h" |
| 82 | #include "llvm/Support/ErrorHandling.h" |
| 83 | #include "llvm/Support/raw_ostream.h" |
| 84 | #include "llvm/Transforms/Scalar.h" |
| 85 | #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| 86 | #include "llvm/Transforms/Utils/Local.h" |
| 87 | #include "llvm/Transforms/Utils/PromoteMemToReg.h" |
| 88 | #include "llvm/Transforms/Utils/SSAUpdater.h" |
| 89 | #include <algorithm> |
| 90 | #include <cassert> |
| 91 | #include <cstddef> |
| 92 | #include <cstdint> |
| 93 | #include <cstring> |
| 94 | #include <iterator> |
| 95 | #include <queue> |
| 96 | #include <string> |
| 97 | #include <tuple> |
| 98 | #include <utility> |
| 99 | #include <variant> |
| 100 | #include <vector> |
| 101 | |
| 102 | using namespace llvm; |
| 103 | |
| 104 | #define DEBUG_TYPE "sroa" |
| 105 | |
| 106 | STATISTIC(NumAllocasAnalyzed, "Number of allocas analyzed for replacement" ); |
| 107 | STATISTIC(NumAllocaPartitions, "Number of alloca partitions formed" ); |
| 108 | STATISTIC(MaxPartitionsPerAlloca, "Maximum number of partitions per alloca" ); |
| 109 | STATISTIC(NumAllocaPartitionUses, "Number of alloca partition uses rewritten" ); |
| 110 | STATISTIC(MaxUsesPerAllocaPartition, "Maximum number of uses of a partition" ); |
| 111 | STATISTIC(NumNewAllocas, "Number of new, smaller allocas introduced" ); |
| 112 | STATISTIC(NumPromoted, "Number of allocas promoted to SSA values" ); |
| 113 | STATISTIC(NumLoadsSpeculated, "Number of loads speculated to allow promotion" ); |
| 114 | STATISTIC(NumLoadsPredicated, |
| 115 | "Number of loads rewritten into predicated loads to allow promotion" ); |
| 116 | STATISTIC( |
| 117 | NumStoresPredicated, |
| 118 | "Number of stores rewritten into predicated loads to allow promotion" ); |
| 119 | STATISTIC(NumDeleted, "Number of instructions deleted" ); |
| 120 | STATISTIC(NumVectorized, "Number of vectorized aggregates" ); |
| 121 | |
| 122 | namespace llvm { |
| 123 | /// Disable running mem2reg during SROA in order to test or debug SROA. |
| 124 | static cl::opt<bool> SROASkipMem2Reg("sroa-skip-mem2reg" , cl::init(Val: false), |
| 125 | cl::Hidden); |
| 126 | extern cl::opt<bool> ProfcheckDisableMetadataFixes; |
| 127 | } // namespace llvm |
| 128 | |
| 129 | namespace { |
| 130 | |
| 131 | class AllocaSliceRewriter; |
| 132 | class AllocaSlices; |
| 133 | class Partition; |
| 134 | |
| 135 | class SelectHandSpeculativity { |
| 136 | unsigned char Storage = 0; // None are speculatable by default. |
| 137 | using TrueVal = Bitfield::Element<bool, 0, 1>; // Low 0'th bit. |
| 138 | using FalseVal = Bitfield::Element<bool, 1, 1>; // Low 1'th bit. |
| 139 | public: |
| 140 | SelectHandSpeculativity() = default; |
| 141 | SelectHandSpeculativity &setAsSpeculatable(bool isTrueVal); |
| 142 | bool isSpeculatable(bool isTrueVal) const; |
| 143 | bool areAllSpeculatable() const; |
| 144 | bool areAnySpeculatable() const; |
| 145 | bool areNoneSpeculatable() const; |
| 146 | // For interop as int half of PointerIntPair. |
| 147 | explicit operator intptr_t() const { return static_cast<intptr_t>(Storage); } |
| 148 | explicit SelectHandSpeculativity(intptr_t Storage_) : Storage(Storage_) {} |
| 149 | }; |
| 150 | static_assert(sizeof(SelectHandSpeculativity) == sizeof(unsigned char)); |
| 151 | |
| 152 | using PossiblySpeculatableLoad = |
| 153 | PointerIntPair<LoadInst *, 2, SelectHandSpeculativity>; |
| 154 | using UnspeculatableStore = StoreInst *; |
| 155 | using RewriteableMemOp = |
| 156 | std::variant<PossiblySpeculatableLoad, UnspeculatableStore>; |
| 157 | using RewriteableMemOps = SmallVector<RewriteableMemOp, 2>; |
| 158 | |
| 159 | /// An optimization pass providing Scalar Replacement of Aggregates. |
| 160 | /// |
| 161 | /// This pass takes allocations which can be completely analyzed (that is, they |
| 162 | /// don't escape) and tries to turn them into scalar SSA values. There are |
| 163 | /// a few steps to this process. |
| 164 | /// |
| 165 | /// 1) It takes allocations of aggregates and analyzes the ways in which they |
| 166 | /// are used to try to split them into smaller allocations, ideally of |
| 167 | /// a single scalar data type. It will split up memcpy and memset accesses |
| 168 | /// as necessary and try to isolate individual scalar accesses. |
| 169 | /// 2) It will transform accesses into forms which are suitable for SSA value |
| 170 | /// promotion. This can be replacing a memset with a scalar store of an |
| 171 | /// integer value, or it can involve speculating operations on a PHI or |
| 172 | /// select to be a PHI or select of the results. |
| 173 | /// 3) Finally, this will try to detect a pattern of accesses which map cleanly |
| 174 | /// onto insert and extract operations on a vector value, and convert them to |
| 175 | /// this form. By doing so, it will enable promotion of vector aggregates to |
| 176 | /// SSA vector values. |
| 177 | class SROA { |
| 178 | LLVMContext *const C; |
| 179 | DomTreeUpdater *const DTU; |
| 180 | AssumptionCache *const AC; |
| 181 | const bool PreserveCFG; |
| 182 | |
| 183 | /// Worklist of alloca instructions to simplify. |
| 184 | /// |
| 185 | /// Each alloca in the function is added to this. Each new alloca formed gets |
| 186 | /// added to it as well to recursively simplify unless that alloca can be |
| 187 | /// directly promoted. Finally, each time we rewrite a use of an alloca other |
| 188 | /// the one being actively rewritten, we add it back onto the list if not |
| 189 | /// already present to ensure it is re-visited. |
| 190 | SmallSetVector<AllocaInst *, 16> Worklist; |
| 191 | |
| 192 | /// A collection of instructions to delete. |
| 193 | /// We try to batch deletions to simplify code and make things a bit more |
| 194 | /// efficient. We also make sure there is no dangling pointers. |
| 195 | SmallVector<WeakVH, 8> DeadInsts; |
| 196 | |
| 197 | /// Post-promotion worklist. |
| 198 | /// |
| 199 | /// Sometimes we discover an alloca which has a high probability of becoming |
| 200 | /// viable for SROA after a round of promotion takes place. In those cases, |
| 201 | /// the alloca is enqueued here for re-processing. |
| 202 | /// |
| 203 | /// Note that we have to be very careful to clear allocas out of this list in |
| 204 | /// the event they are deleted. |
| 205 | SmallSetVector<AllocaInst *, 16> PostPromotionWorklist; |
| 206 | |
| 207 | /// A collection of alloca instructions we can directly promote. |
| 208 | SetVector<AllocaInst *, SmallVector<AllocaInst *>, |
| 209 | SmallPtrSet<AllocaInst *, 16>, 16> |
| 210 | PromotableAllocas; |
| 211 | |
| 212 | /// A worklist of PHIs to speculate prior to promoting allocas. |
| 213 | /// |
| 214 | /// All of these PHIs have been checked for the safety of speculation and by |
| 215 | /// being speculated will allow promoting allocas currently in the promotable |
| 216 | /// queue. |
| 217 | SmallSetVector<PHINode *, 8> SpeculatablePHIs; |
| 218 | |
| 219 | /// A worklist of select instructions to rewrite prior to promoting |
| 220 | /// allocas. |
| 221 | SmallMapVector<SelectInst *, RewriteableMemOps, 8> SelectsToRewrite; |
| 222 | |
| 223 | /// Select instructions that use an alloca and are subsequently loaded can be |
| 224 | /// rewritten to load both input pointers and then select between the result, |
| 225 | /// allowing the load of the alloca to be promoted. |
| 226 | /// From this: |
| 227 | /// %P2 = select i1 %cond, ptr %Alloca, ptr %Other |
| 228 | /// %V = load <type>, ptr %P2 |
| 229 | /// to: |
| 230 | /// %V1 = load <type>, ptr %Alloca -> will be mem2reg'd |
| 231 | /// %V2 = load <type>, ptr %Other |
| 232 | /// %V = select i1 %cond, <type> %V1, <type> %V2 |
| 233 | /// |
| 234 | /// We can do this to a select if its only uses are loads |
| 235 | /// and if either the operand to the select can be loaded unconditionally, |
| 236 | /// or if we are allowed to perform CFG modifications. |
| 237 | /// If found an intervening bitcast with a single use of the load, |
| 238 | /// allow the promotion. |
| 239 | static std::optional<RewriteableMemOps> |
| 240 | isSafeSelectToSpeculate(SelectInst &SI, bool PreserveCFG); |
| 241 | |
| 242 | public: |
| 243 | SROA(LLVMContext *C, DomTreeUpdater *DTU, AssumptionCache *AC, |
| 244 | SROAOptions PreserveCFG_) |
| 245 | : C(C), DTU(DTU), AC(AC), |
| 246 | PreserveCFG(PreserveCFG_ == SROAOptions::PreserveCFG) {} |
| 247 | |
| 248 | /// Main run method used by both the SROAPass and by the legacy pass. |
| 249 | std::pair<bool /*Changed*/, bool /*CFGChanged*/> runSROA(Function &F); |
| 250 | |
| 251 | private: |
| 252 | friend class AllocaSliceRewriter; |
| 253 | |
| 254 | bool presplitLoadsAndStores(AllocaInst &AI, AllocaSlices &AS); |
| 255 | std::pair<AllocaInst *, uint64_t> |
| 256 | rewritePartition(AllocaInst &AI, AllocaSlices &AS, Partition &P); |
| 257 | bool splitAlloca(AllocaInst &AI, AllocaSlices &AS); |
| 258 | bool propagateStoredValuesToLoads(AllocaInst &AI, AllocaSlices &AS); |
| 259 | std::pair<bool /*Changed*/, bool /*CFGChanged*/> runOnAlloca(AllocaInst &AI); |
| 260 | void clobberUse(Use &U); |
| 261 | bool deleteDeadInstructions(SmallPtrSetImpl<AllocaInst *> &DeletedAllocas); |
| 262 | bool promoteAllocas(); |
| 263 | }; |
| 264 | |
| 265 | } // end anonymous namespace |
| 266 | |
| 267 | /// Calculate the fragment of a variable to use when slicing a store |
| 268 | /// based on the slice dimensions, existing fragment, and base storage |
| 269 | /// fragment. |
| 270 | /// Results: |
| 271 | /// UseFrag - Use Target as the new fragment. |
| 272 | /// UseNoFrag - The new slice already covers the whole variable. |
| 273 | /// Skip - The new alloca slice doesn't include this variable. |
| 274 | /// FIXME: Can we use calculateFragmentIntersect instead? |
| 275 | namespace { |
| 276 | enum FragCalcResult { UseFrag, UseNoFrag, Skip }; |
| 277 | } |
| 278 | static FragCalcResult |
| 279 | calculateFragment(DILocalVariable *Variable, |
| 280 | uint64_t NewStorageSliceOffsetInBits, |
| 281 | uint64_t NewStorageSliceSizeInBits, |
| 282 | std::optional<DIExpression::FragmentInfo> StorageFragment, |
| 283 | std::optional<DIExpression::FragmentInfo> CurrentFragment, |
| 284 | DIExpression::FragmentInfo &Target) { |
| 285 | // If the base storage describes part of the variable apply the offset and |
| 286 | // the size constraint. |
| 287 | if (StorageFragment) { |
| 288 | Target.SizeInBits = |
| 289 | std::min(a: NewStorageSliceSizeInBits, b: StorageFragment->SizeInBits); |
| 290 | Target.OffsetInBits = |
| 291 | NewStorageSliceOffsetInBits + StorageFragment->OffsetInBits; |
| 292 | } else { |
| 293 | Target.SizeInBits = NewStorageSliceSizeInBits; |
| 294 | Target.OffsetInBits = NewStorageSliceOffsetInBits; |
| 295 | } |
| 296 | |
| 297 | // If this slice extracts the entirety of an independent variable from a |
| 298 | // larger alloca, do not produce a fragment expression, as the variable is |
| 299 | // not fragmented. |
| 300 | if (!CurrentFragment) { |
| 301 | if (auto Size = Variable->getSizeInBits()) { |
| 302 | // Treat the current fragment as covering the whole variable. |
| 303 | CurrentFragment = DIExpression::FragmentInfo(*Size, 0); |
| 304 | if (Target == CurrentFragment) |
| 305 | return UseNoFrag; |
| 306 | } |
| 307 | } |
| 308 | |
| 309 | // No additional work to do if there isn't a fragment already, or there is |
| 310 | // but it already exactly describes the new assignment. |
| 311 | if (!CurrentFragment || *CurrentFragment == Target) |
| 312 | return UseFrag; |
| 313 | |
| 314 | // Reject the target fragment if it doesn't fit wholly within the current |
| 315 | // fragment. TODO: We could instead chop up the target to fit in the case of |
| 316 | // a partial overlap. |
| 317 | if (Target.startInBits() < CurrentFragment->startInBits() || |
| 318 | Target.endInBits() > CurrentFragment->endInBits()) |
| 319 | return Skip; |
| 320 | |
| 321 | // Target fits within the current fragment, return it. |
| 322 | return UseFrag; |
| 323 | } |
| 324 | |
| 325 | static DebugVariable getAggregateVariable(DbgVariableRecord *DVR) { |
| 326 | return DebugVariable(DVR->getVariable(), std::nullopt, |
| 327 | DVR->getDebugLoc().getInlinedAt()); |
| 328 | } |
| 329 | |
| 330 | /// Find linked dbg.assign and generate a new one with the correct |
| 331 | /// FragmentInfo. Link Inst to the new dbg.assign. If Value is nullptr the |
| 332 | /// value component is copied from the old dbg.assign to the new. |
| 333 | /// \param OldAlloca Alloca for the variable before splitting. |
| 334 | /// \param IsSplit True if the store (not necessarily alloca) |
| 335 | /// is being split. |
| 336 | /// \param OldAllocaOffsetInBits Offset of the slice taken from OldAlloca. |
| 337 | /// \param SliceSizeInBits New number of bits being written to. |
| 338 | /// \param OldInst Instruction that is being split. |
| 339 | /// \param Inst New instruction performing this part of the |
| 340 | /// split store. |
| 341 | /// \param Dest Store destination. |
| 342 | /// \param Value Stored value. |
| 343 | /// \param DL Datalayout. |
| 344 | static void migrateDebugInfo(AllocaInst *OldAlloca, bool IsSplit, |
| 345 | uint64_t OldAllocaOffsetInBits, |
| 346 | uint64_t SliceSizeInBits, Instruction *OldInst, |
| 347 | Instruction *Inst, Value *Dest, Value *Value, |
| 348 | const DataLayout &DL) { |
| 349 | // If we want allocas to be migrated using this helper then we need to ensure |
| 350 | // that the BaseFragments map code still works. A simple solution would be |
| 351 | // to choose to always clone alloca dbg_assigns (rather than sometimes |
| 352 | // "stealing" them). |
| 353 | assert(!isa<AllocaInst>(Inst) && "Unexpected alloca" ); |
| 354 | |
| 355 | auto DVRAssignMarkerRange = at::getDVRAssignmentMarkers(Inst: OldInst); |
| 356 | // Nothing to do if OldInst has no linked dbg.assign intrinsics. |
| 357 | if (DVRAssignMarkerRange.empty()) |
| 358 | return; |
| 359 | |
| 360 | LLVM_DEBUG(dbgs() << " migrateDebugInfo\n" ); |
| 361 | LLVM_DEBUG(dbgs() << " OldAlloca: " << *OldAlloca << "\n" ); |
| 362 | LLVM_DEBUG(dbgs() << " IsSplit: " << IsSplit << "\n" ); |
| 363 | LLVM_DEBUG(dbgs() << " OldAllocaOffsetInBits: " << OldAllocaOffsetInBits |
| 364 | << "\n" ); |
| 365 | LLVM_DEBUG(dbgs() << " SliceSizeInBits: " << SliceSizeInBits << "\n" ); |
| 366 | LLVM_DEBUG(dbgs() << " OldInst: " << *OldInst << "\n" ); |
| 367 | LLVM_DEBUG(dbgs() << " Inst: " << *Inst << "\n" ); |
| 368 | LLVM_DEBUG(dbgs() << " Dest: " << *Dest << "\n" ); |
| 369 | if (Value) |
| 370 | LLVM_DEBUG(dbgs() << " Value: " << *Value << "\n" ); |
| 371 | |
| 372 | /// Map of aggregate variables to their fragment associated with OldAlloca. |
| 373 | DenseMap<DebugVariable, std::optional<DIExpression::FragmentInfo>> |
| 374 | BaseFragments; |
| 375 | for (auto *DVR : at::getDVRAssignmentMarkers(Inst: OldAlloca)) |
| 376 | BaseFragments[getAggregateVariable(DVR)] = |
| 377 | DVR->getExpression()->getFragmentInfo(); |
| 378 | |
| 379 | // The new inst needs a DIAssignID unique metadata tag (if OldInst has |
| 380 | // one). It shouldn't already have one: assert this assumption. |
| 381 | assert(!Inst->getMetadata(LLVMContext::MD_DIAssignID)); |
| 382 | DIAssignID *NewID = nullptr; |
| 383 | auto &Ctx = Inst->getContext(); |
| 384 | DIBuilder DIB(*OldInst->getModule(), /*AllowUnresolved*/ false); |
| 385 | assert(OldAlloca->isStaticAlloca()); |
| 386 | |
| 387 | auto MigrateDbgAssign = [&](DbgVariableRecord *DbgAssign) { |
| 388 | LLVM_DEBUG(dbgs() << " existing dbg.assign is: " << *DbgAssign |
| 389 | << "\n" ); |
| 390 | auto *Expr = DbgAssign->getExpression(); |
| 391 | bool SetKillLocation = false; |
| 392 | |
| 393 | if (IsSplit) { |
| 394 | std::optional<DIExpression::FragmentInfo> BaseFragment; |
| 395 | { |
| 396 | auto R = BaseFragments.find(Val: getAggregateVariable(DVR: DbgAssign)); |
| 397 | if (R == BaseFragments.end()) |
| 398 | return; |
| 399 | BaseFragment = R->second; |
| 400 | } |
| 401 | std::optional<DIExpression::FragmentInfo> CurrentFragment = |
| 402 | Expr->getFragmentInfo(); |
| 403 | DIExpression::FragmentInfo NewFragment; |
| 404 | FragCalcResult Result = calculateFragment( |
| 405 | Variable: DbgAssign->getVariable(), NewStorageSliceOffsetInBits: OldAllocaOffsetInBits, NewStorageSliceSizeInBits: SliceSizeInBits, |
| 406 | StorageFragment: BaseFragment, CurrentFragment, Target&: NewFragment); |
| 407 | |
| 408 | if (Result == Skip) |
| 409 | return; |
| 410 | if (Result == UseFrag && !(NewFragment == CurrentFragment)) { |
| 411 | if (CurrentFragment) { |
| 412 | // Rewrite NewFragment to be relative to the existing one (this is |
| 413 | // what createFragmentExpression wants). CalculateFragment has |
| 414 | // already resolved the size for us. FIXME: Should it return the |
| 415 | // relative fragment too? |
| 416 | NewFragment.OffsetInBits -= CurrentFragment->OffsetInBits; |
| 417 | } |
| 418 | // Add the new fragment info to the existing expression if possible. |
| 419 | if (auto E = DIExpression::createFragmentExpression( |
| 420 | Expr, OffsetInBits: NewFragment.OffsetInBits, SizeInBits: NewFragment.SizeInBits)) { |
| 421 | Expr = *E; |
| 422 | } else { |
| 423 | // Otherwise, add the new fragment info to an empty expression and |
| 424 | // discard the value component of this dbg.assign as the value cannot |
| 425 | // be computed with the new fragment. |
| 426 | Expr = *DIExpression::createFragmentExpression( |
| 427 | Expr: DIExpression::get(Context&: Expr->getContext(), Elements: {}), |
| 428 | OffsetInBits: NewFragment.OffsetInBits, SizeInBits: NewFragment.SizeInBits); |
| 429 | SetKillLocation = true; |
| 430 | } |
| 431 | } |
| 432 | } |
| 433 | |
| 434 | // If we haven't created a DIAssignID ID do that now and attach it to Inst. |
| 435 | if (!NewID) { |
| 436 | NewID = DIAssignID::getDistinct(Context&: Ctx); |
| 437 | Inst->setMetadata(KindID: LLVMContext::MD_DIAssignID, Node: NewID); |
| 438 | } |
| 439 | |
| 440 | DbgVariableRecord *NewAssign; |
| 441 | if (IsSplit) { |
| 442 | ::Value *NewValue = Value ? Value : DbgAssign->getValue(); |
| 443 | NewAssign = cast<DbgVariableRecord>(Val: cast<DbgRecord *>( |
| 444 | Val: DIB.insertDbgAssign(LinkedInstr: Inst, Val: NewValue, SrcVar: DbgAssign->getVariable(), ValExpr: Expr, |
| 445 | Addr: Dest, AddrExpr: DIExpression::get(Context&: Expr->getContext(), Elements: {}), |
| 446 | DL: DbgAssign->getDebugLoc()))); |
| 447 | } else { |
| 448 | // The store is not split, simply steal the existing dbg_assign. |
| 449 | NewAssign = DbgAssign; |
| 450 | NewAssign->setAssignId(NewID); // FIXME: Can we avoid generating new IDs? |
| 451 | NewAssign->setAddress(Dest); |
| 452 | if (Value) |
| 453 | NewAssign->replaceVariableLocationOp(OpIdx: 0u, NewValue: Value); |
| 454 | assert(Expr == NewAssign->getExpression()); |
| 455 | } |
| 456 | |
| 457 | // If we've updated the value but the original dbg.assign has an arglist |
| 458 | // then kill it now - we can't use the requested new value. |
| 459 | // We can't replace the DIArgList with the new value as it'd leave |
| 460 | // the DIExpression in an invalid state (DW_OP_LLVM_arg operands without |
| 461 | // an arglist). And we can't keep the DIArgList in case the linked store |
| 462 | // is being split - in which case the DIArgList + expression may no longer |
| 463 | // be computing the correct value. |
| 464 | // This should be a very rare situation as it requires the value being |
| 465 | // stored to differ from the dbg.assign (i.e., the value has been |
| 466 | // represented differently in the debug intrinsic for some reason). |
| 467 | SetKillLocation |= |
| 468 | Value && (DbgAssign->hasArgList() || |
| 469 | !DbgAssign->getExpression()->isSingleLocationExpression()); |
| 470 | if (SetKillLocation) |
| 471 | NewAssign->setKillLocation(); |
| 472 | |
| 473 | // We could use more precision here at the cost of some additional (code) |
| 474 | // complexity - if the original dbg.assign was adjacent to its store, we |
| 475 | // could position this new dbg.assign adjacent to its store rather than the |
| 476 | // old dbg.assgn. That would result in interleaved dbg.assigns rather than |
| 477 | // what we get now: |
| 478 | // split store !1 |
| 479 | // split store !2 |
| 480 | // dbg.assign !1 |
| 481 | // dbg.assign !2 |
| 482 | // This (current behaviour) results results in debug assignments being |
| 483 | // noted as slightly offset (in code) from the store. In practice this |
| 484 | // should have little effect on the debugging experience due to the fact |
| 485 | // that all the split stores should get the same line number. |
| 486 | if (NewAssign != DbgAssign) { |
| 487 | NewAssign->moveBefore(MoveBefore: DbgAssign->getIterator()); |
| 488 | NewAssign->setDebugLoc(DbgAssign->getDebugLoc()); |
| 489 | } |
| 490 | LLVM_DEBUG(dbgs() << "Created new assign: " << *NewAssign << "\n" ); |
| 491 | }; |
| 492 | |
| 493 | for_each(Range&: DVRAssignMarkerRange, F: MigrateDbgAssign); |
| 494 | } |
| 495 | |
| 496 | namespace { |
| 497 | |
| 498 | /// A custom IRBuilder inserter which prefixes all names, but only in |
| 499 | /// Assert builds. |
| 500 | class IRBuilderPrefixedInserter final : public IRBuilderDefaultInserter { |
| 501 | std::string Prefix; |
| 502 | |
| 503 | Twine getNameWithPrefix(const Twine &Name) const { |
| 504 | return Name.isTriviallyEmpty() ? Name : Prefix + Name; |
| 505 | } |
| 506 | |
| 507 | public: |
| 508 | void SetNamePrefix(const Twine &P) { Prefix = P.str(); } |
| 509 | |
| 510 | void InsertHelper(Instruction *I, const Twine &Name, |
| 511 | BasicBlock::iterator InsertPt) const override { |
| 512 | IRBuilderDefaultInserter::InsertHelper(I, Name: getNameWithPrefix(Name), |
| 513 | InsertPt); |
| 514 | } |
| 515 | }; |
| 516 | |
| 517 | /// Provide a type for IRBuilder that drops names in release builds. |
| 518 | using IRBuilderTy = IRBuilder<ConstantFolder, IRBuilderPrefixedInserter>; |
| 519 | |
| 520 | /// A used slice of an alloca. |
| 521 | /// |
| 522 | /// This structure represents a slice of an alloca used by some instruction. It |
| 523 | /// stores both the begin and end offsets of this use, a pointer to the use |
| 524 | /// itself, and a flag indicating whether we can classify the use as splittable |
| 525 | /// or not when forming partitions of the alloca. |
| 526 | class Slice { |
| 527 | /// The beginning offset of the range. |
| 528 | uint64_t BeginOffset = 0; |
| 529 | |
| 530 | /// The ending offset, not included in the range. |
| 531 | uint64_t EndOffset = 0; |
| 532 | |
| 533 | /// Storage for both the use of this slice and whether it can be |
| 534 | /// split. |
| 535 | PointerIntPair<Use *, 1, bool> UseAndIsSplittable; |
| 536 | |
| 537 | public: |
| 538 | Slice() = default; |
| 539 | |
| 540 | Slice(uint64_t BeginOffset, uint64_t EndOffset, Use *U, bool IsSplittable, |
| 541 | Value *ProtectedFieldDisc) |
| 542 | : BeginOffset(BeginOffset), EndOffset(EndOffset), |
| 543 | UseAndIsSplittable(U, IsSplittable), |
| 544 | ProtectedFieldDisc(ProtectedFieldDisc) {} |
| 545 | |
| 546 | uint64_t beginOffset() const { return BeginOffset; } |
| 547 | uint64_t endOffset() const { return EndOffset; } |
| 548 | |
| 549 | bool isSplittable() const { return UseAndIsSplittable.getInt(); } |
| 550 | void makeUnsplittable() { UseAndIsSplittable.setInt(false); } |
| 551 | |
| 552 | Use *getUse() const { return UseAndIsSplittable.getPointer(); } |
| 553 | |
| 554 | bool isDead() const { return getUse() == nullptr; } |
| 555 | void kill() { UseAndIsSplittable.setPointer(nullptr); } |
| 556 | |
| 557 | // When this access is via an llvm.protected.field.ptr intrinsic, contains |
| 558 | // the second argument to the intrinsic, the discriminator. |
| 559 | Value *ProtectedFieldDisc; |
| 560 | |
| 561 | /// Support for ordering ranges. |
| 562 | /// |
| 563 | /// This provides an ordering over ranges such that start offsets are |
| 564 | /// always increasing, and within equal start offsets, the end offsets are |
| 565 | /// decreasing. Thus the spanning range comes first in a cluster with the |
| 566 | /// same start position. |
| 567 | bool operator<(const Slice &RHS) const { |
| 568 | if (beginOffset() < RHS.beginOffset()) |
| 569 | return true; |
| 570 | if (beginOffset() > RHS.beginOffset()) |
| 571 | return false; |
| 572 | if (isSplittable() != RHS.isSplittable()) |
| 573 | return !isSplittable(); |
| 574 | if (endOffset() > RHS.endOffset()) |
| 575 | return true; |
| 576 | return false; |
| 577 | } |
| 578 | |
| 579 | /// Support comparison with a single offset to allow binary searches. |
| 580 | [[maybe_unused]] friend bool operator<(const Slice &LHS, uint64_t RHSOffset) { |
| 581 | return LHS.beginOffset() < RHSOffset; |
| 582 | } |
| 583 | [[maybe_unused]] friend bool operator<(uint64_t LHSOffset, const Slice &RHS) { |
| 584 | return LHSOffset < RHS.beginOffset(); |
| 585 | } |
| 586 | |
| 587 | bool operator==(const Slice &RHS) const { |
| 588 | return isSplittable() == RHS.isSplittable() && |
| 589 | beginOffset() == RHS.beginOffset() && endOffset() == RHS.endOffset(); |
| 590 | } |
| 591 | bool operator!=(const Slice &RHS) const { return !operator==(RHS); } |
| 592 | }; |
| 593 | |
| 594 | /// Representation of the alloca slices. |
| 595 | /// |
| 596 | /// This class represents the slices of an alloca which are formed by its |
| 597 | /// various uses. If a pointer escapes, we can't fully build a representation |
| 598 | /// for the slices used and we reflect that in this structure. The uses are |
| 599 | /// stored, sorted by increasing beginning offset and with unsplittable slices |
| 600 | /// starting at a particular offset before splittable slices. |
| 601 | class AllocaSlices { |
| 602 | public: |
| 603 | /// Construct the slices of a particular alloca. |
| 604 | AllocaSlices(const DataLayout &DL, AllocaInst &AI); |
| 605 | |
| 606 | /// Test whether a pointer to the allocation escapes our analysis. |
| 607 | /// |
| 608 | /// If this is true, the slices are never fully built and should be |
| 609 | /// ignored. |
| 610 | bool isEscaped() const { return PointerEscapingInstr; } |
| 611 | bool isEscapedReadOnly() const { return PointerEscapingInstrReadOnly; } |
| 612 | |
| 613 | /// Support for iterating over the slices. |
| 614 | /// @{ |
| 615 | using iterator = SmallVectorImpl<Slice>::iterator; |
| 616 | using range = iterator_range<iterator>; |
| 617 | |
| 618 | iterator begin() { return Slices.begin(); } |
| 619 | iterator end() { return Slices.end(); } |
| 620 | |
| 621 | using const_iterator = SmallVectorImpl<Slice>::const_iterator; |
| 622 | using const_range = iterator_range<const_iterator>; |
| 623 | |
| 624 | const_iterator begin() const { return Slices.begin(); } |
| 625 | const_iterator end() const { return Slices.end(); } |
| 626 | /// @} |
| 627 | |
| 628 | /// Erase a range of slices. |
| 629 | void erase(iterator Start, iterator Stop) { Slices.erase(CS: Start, CE: Stop); } |
| 630 | |
| 631 | /// Insert new slices for this alloca. |
| 632 | /// |
| 633 | /// This moves the slices into the alloca's slices collection, and re-sorts |
| 634 | /// everything so that the usual ordering properties of the alloca's slices |
| 635 | /// hold. |
| 636 | void insert(ArrayRef<Slice> NewSlices) { |
| 637 | int OldSize = Slices.size(); |
| 638 | Slices.append(in_start: NewSlices.begin(), in_end: NewSlices.end()); |
| 639 | auto SliceI = Slices.begin() + OldSize; |
| 640 | std::stable_sort(first: SliceI, last: Slices.end()); |
| 641 | std::inplace_merge(first: Slices.begin(), middle: SliceI, last: Slices.end()); |
| 642 | } |
| 643 | |
| 644 | // Forward declare the iterator and range accessor for walking the |
| 645 | // partitions. |
| 646 | class partition_iterator; |
| 647 | iterator_range<partition_iterator> partitions(); |
| 648 | |
| 649 | /// Access the dead users for this alloca. |
| 650 | ArrayRef<Instruction *> getDeadUsers() const { return DeadUsers; } |
| 651 | |
| 652 | /// Access the users for this alloca that are llvm.protected.field.ptr |
| 653 | /// intrinsics. |
| 654 | ArrayRef<IntrinsicInst *> getPFPUsers() const { return PFPUsers; } |
| 655 | |
| 656 | /// Access Uses that should be dropped if the alloca is promotable. |
| 657 | ArrayRef<Use *> getDeadUsesIfPromotable() const { |
| 658 | return DeadUseIfPromotable; |
| 659 | } |
| 660 | |
| 661 | /// Access the dead operands referring to this alloca. |
| 662 | /// |
| 663 | /// These are operands which have cannot actually be used to refer to the |
| 664 | /// alloca as they are outside its range and the user doesn't correct for |
| 665 | /// that. These mostly consist of PHI node inputs and the like which we just |
| 666 | /// need to replace with undef. |
| 667 | ArrayRef<Use *> getDeadOperands() const { return DeadOperands; } |
| 668 | |
| 669 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 670 | void print(raw_ostream &OS, const_iterator I, StringRef Indent = " " ) const; |
| 671 | void printSlice(raw_ostream &OS, const_iterator I, |
| 672 | StringRef Indent = " " ) const; |
| 673 | void printUse(raw_ostream &OS, const_iterator I, |
| 674 | StringRef Indent = " " ) const; |
| 675 | void print(raw_ostream &OS) const; |
| 676 | void dump(const_iterator I) const; |
| 677 | void dump() const; |
| 678 | #endif |
| 679 | |
| 680 | private: |
| 681 | template <typename DerivedT, typename RetT = void> class BuilderBase; |
| 682 | class SliceBuilder; |
| 683 | |
| 684 | friend class AllocaSlices::SliceBuilder; |
| 685 | |
| 686 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 687 | /// Handle to alloca instruction to simplify method interfaces. |
| 688 | AllocaInst &AI; |
| 689 | #endif |
| 690 | |
| 691 | /// The instruction responsible for this alloca not having a known set |
| 692 | /// of slices. |
| 693 | /// |
| 694 | /// When an instruction (potentially) escapes the pointer to the alloca, we |
| 695 | /// store a pointer to that here and abort trying to form slices of the |
| 696 | /// alloca. This will be null if the alloca slices are analyzed successfully. |
| 697 | Instruction *PointerEscapingInstr; |
| 698 | Instruction *PointerEscapingInstrReadOnly; |
| 699 | |
| 700 | /// The slices of the alloca. |
| 701 | /// |
| 702 | /// We store a vector of the slices formed by uses of the alloca here. This |
| 703 | /// vector is sorted by increasing begin offset, and then the unsplittable |
| 704 | /// slices before the splittable ones. See the Slice inner class for more |
| 705 | /// details. |
| 706 | SmallVector<Slice, 8> Slices; |
| 707 | |
| 708 | /// Instructions which will become dead if we rewrite the alloca. |
| 709 | /// |
| 710 | /// Note that these are not separated by slice. This is because we expect an |
| 711 | /// alloca to be completely rewritten or not rewritten at all. If rewritten, |
| 712 | /// all these instructions can simply be removed and replaced with poison as |
| 713 | /// they come from outside of the allocated space. |
| 714 | SmallVector<Instruction *, 8> DeadUsers; |
| 715 | |
| 716 | /// Users that are llvm.protected.field.ptr intrinsics. These will be RAUW'd |
| 717 | /// to their first argument if we rewrite the alloca. |
| 718 | SmallVector<IntrinsicInst *, 0> PFPUsers; |
| 719 | |
| 720 | /// Uses which will become dead if can promote the alloca. |
| 721 | SmallVector<Use *, 8> DeadUseIfPromotable; |
| 722 | |
| 723 | /// Operands which will become dead if we rewrite the alloca. |
| 724 | /// |
| 725 | /// These are operands that in their particular use can be replaced with |
| 726 | /// poison when we rewrite the alloca. These show up in out-of-bounds inputs |
| 727 | /// to PHI nodes and the like. They aren't entirely dead (there might be |
| 728 | /// a GEP back into the bounds using it elsewhere) and nor is the PHI, but we |
| 729 | /// want to swap this particular input for poison to simplify the use lists of |
| 730 | /// the alloca. |
| 731 | SmallVector<Use *, 8> DeadOperands; |
| 732 | }; |
| 733 | |
| 734 | /// A partition of the slices. |
| 735 | /// |
| 736 | /// An ephemeral representation for a range of slices which can be viewed as |
| 737 | /// a partition of the alloca. This range represents a span of the alloca's |
| 738 | /// memory which cannot be split, and provides access to all of the slices |
| 739 | /// overlapping some part of the partition. |
| 740 | /// |
| 741 | /// Objects of this type are produced by traversing the alloca's slices, but |
| 742 | /// are only ephemeral and not persistent. |
| 743 | class Partition { |
| 744 | private: |
| 745 | friend class AllocaSlices; |
| 746 | friend class AllocaSlices::partition_iterator; |
| 747 | |
| 748 | using iterator = AllocaSlices::iterator; |
| 749 | |
| 750 | /// The beginning and ending offsets of the alloca for this |
| 751 | /// partition. |
| 752 | uint64_t BeginOffset = 0, EndOffset = 0; |
| 753 | |
| 754 | /// The start and end iterators of this partition. |
| 755 | iterator SI, SJ; |
| 756 | |
| 757 | /// A collection of split slice tails overlapping the partition. |
| 758 | SmallVector<Slice *, 4> SplitTails; |
| 759 | |
| 760 | /// Raw constructor builds an empty partition starting and ending at |
| 761 | /// the given iterator. |
| 762 | Partition(iterator SI) : SI(SI), SJ(SI) {} |
| 763 | |
| 764 | public: |
| 765 | /// The start offset of this partition. |
| 766 | /// |
| 767 | /// All of the contained slices start at or after this offset. |
| 768 | uint64_t beginOffset() const { return BeginOffset; } |
| 769 | |
| 770 | /// The end offset of this partition. |
| 771 | /// |
| 772 | /// All of the contained slices end at or before this offset. |
| 773 | uint64_t endOffset() const { return EndOffset; } |
| 774 | |
| 775 | /// The size of the partition. |
| 776 | /// |
| 777 | /// Note that this can never be zero. |
| 778 | uint64_t size() const { |
| 779 | assert(BeginOffset < EndOffset && "Partitions must span some bytes!" ); |
| 780 | return EndOffset - BeginOffset; |
| 781 | } |
| 782 | |
| 783 | /// Test whether this partition contains no slices, and merely spans |
| 784 | /// a region occupied by split slices. |
| 785 | bool empty() const { return SI == SJ; } |
| 786 | |
| 787 | /// \name Iterate slices that start within the partition. |
| 788 | /// These may be splittable or unsplittable. They have a begin offset >= the |
| 789 | /// partition begin offset. |
| 790 | /// @{ |
| 791 | // FIXME: We should probably define a "concat_iterator" helper and use that |
| 792 | // to stitch together pointee_iterators over the split tails and the |
| 793 | // contiguous iterators of the partition. That would give a much nicer |
| 794 | // interface here. We could then additionally expose filtered iterators for |
| 795 | // split, unsplit, and unsplittable splices based on the usage patterns. |
| 796 | iterator begin() const { return SI; } |
| 797 | iterator end() const { return SJ; } |
| 798 | /// @} |
| 799 | |
| 800 | /// Get the sequence of split slice tails. |
| 801 | /// |
| 802 | /// These tails are of slices which start before this partition but are |
| 803 | /// split and overlap into the partition. We accumulate these while forming |
| 804 | /// partitions. |
| 805 | ArrayRef<Slice *> splitSliceTails() const { return SplitTails; } |
| 806 | }; |
| 807 | |
| 808 | } // end anonymous namespace |
| 809 | |
| 810 | /// An iterator over partitions of the alloca's slices. |
| 811 | /// |
| 812 | /// This iterator implements the core algorithm for partitioning the alloca's |
| 813 | /// slices. It is a forward iterator as we don't support backtracking for |
| 814 | /// efficiency reasons, and re-use a single storage area to maintain the |
| 815 | /// current set of split slices. |
| 816 | /// |
| 817 | /// It is templated on the slice iterator type to use so that it can operate |
| 818 | /// with either const or non-const slice iterators. |
| 819 | class AllocaSlices::partition_iterator |
| 820 | : public iterator_facade_base<partition_iterator, std::forward_iterator_tag, |
| 821 | Partition> { |
| 822 | friend class AllocaSlices; |
| 823 | |
| 824 | /// Most of the state for walking the partitions is held in a class |
| 825 | /// with a nice interface for examining them. |
| 826 | Partition P; |
| 827 | |
| 828 | /// We need to keep the end of the slices to know when to stop. |
| 829 | AllocaSlices::iterator SE; |
| 830 | |
| 831 | /// We also need to keep track of the maximum split end offset seen. |
| 832 | /// FIXME: Do we really? |
| 833 | uint64_t MaxSplitSliceEndOffset = 0; |
| 834 | |
| 835 | /// Sets the partition to be empty at given iterator, and sets the |
| 836 | /// end iterator. |
| 837 | partition_iterator(AllocaSlices::iterator SI, AllocaSlices::iterator SE) |
| 838 | : P(SI), SE(SE) { |
| 839 | // If not already at the end, advance our state to form the initial |
| 840 | // partition. |
| 841 | if (SI != SE) |
| 842 | advance(); |
| 843 | } |
| 844 | |
| 845 | /// Advance the iterator to the next partition. |
| 846 | /// |
| 847 | /// Requires that the iterator not be at the end of the slices. |
| 848 | void advance() { |
| 849 | assert((P.SI != SE || !P.SplitTails.empty()) && |
| 850 | "Cannot advance past the end of the slices!" ); |
| 851 | |
| 852 | // Clear out any split uses which have ended. |
| 853 | if (!P.SplitTails.empty()) { |
| 854 | if (P.EndOffset >= MaxSplitSliceEndOffset) { |
| 855 | // If we've finished all splits, this is easy. |
| 856 | P.SplitTails.clear(); |
| 857 | MaxSplitSliceEndOffset = 0; |
| 858 | } else { |
| 859 | // Remove the uses which have ended in the prior partition. This |
| 860 | // cannot change the max split slice end because we just checked that |
| 861 | // the prior partition ended prior to that max. |
| 862 | llvm::erase_if(C&: P.SplitTails, |
| 863 | P: [&](Slice *S) { return S->endOffset() <= P.EndOffset; }); |
| 864 | assert(llvm::any_of(P.SplitTails, |
| 865 | [&](Slice *S) { |
| 866 | return S->endOffset() == MaxSplitSliceEndOffset; |
| 867 | }) && |
| 868 | "Could not find the current max split slice offset!" ); |
| 869 | assert(llvm::all_of(P.SplitTails, |
| 870 | [&](Slice *S) { |
| 871 | return S->endOffset() <= MaxSplitSliceEndOffset; |
| 872 | }) && |
| 873 | "Max split slice end offset is not actually the max!" ); |
| 874 | } |
| 875 | } |
| 876 | |
| 877 | // If P.SI is already at the end, then we've cleared the split tail and |
| 878 | // now have an end iterator. |
| 879 | if (P.SI == SE) { |
| 880 | assert(P.SplitTails.empty() && "Failed to clear the split slices!" ); |
| 881 | return; |
| 882 | } |
| 883 | |
| 884 | // If we had a non-empty partition previously, set up the state for |
| 885 | // subsequent partitions. |
| 886 | if (P.SI != P.SJ) { |
| 887 | // Accumulate all the splittable slices which started in the old |
| 888 | // partition into the split list. |
| 889 | for (Slice &S : P) |
| 890 | if (S.isSplittable() && S.endOffset() > P.EndOffset) { |
| 891 | P.SplitTails.push_back(Elt: &S); |
| 892 | MaxSplitSliceEndOffset = |
| 893 | std::max(a: S.endOffset(), b: MaxSplitSliceEndOffset); |
| 894 | } |
| 895 | |
| 896 | // Start from the end of the previous partition. |
| 897 | P.SI = P.SJ; |
| 898 | |
| 899 | // If P.SI is now at the end, we at most have a tail of split slices. |
| 900 | if (P.SI == SE) { |
| 901 | P.BeginOffset = P.EndOffset; |
| 902 | P.EndOffset = MaxSplitSliceEndOffset; |
| 903 | return; |
| 904 | } |
| 905 | |
| 906 | // If the we have split slices and the next slice is after a gap and is |
| 907 | // not splittable immediately form an empty partition for the split |
| 908 | // slices up until the next slice begins. |
| 909 | if (!P.SplitTails.empty() && P.SI->beginOffset() != P.EndOffset && |
| 910 | !P.SI->isSplittable()) { |
| 911 | P.BeginOffset = P.EndOffset; |
| 912 | P.EndOffset = P.SI->beginOffset(); |
| 913 | return; |
| 914 | } |
| 915 | } |
| 916 | |
| 917 | // OK, we need to consume new slices. Set the end offset based on the |
| 918 | // current slice, and step SJ past it. The beginning offset of the |
| 919 | // partition is the beginning offset of the next slice unless we have |
| 920 | // pre-existing split slices that are continuing, in which case we begin |
| 921 | // at the prior end offset. |
| 922 | P.BeginOffset = P.SplitTails.empty() ? P.SI->beginOffset() : P.EndOffset; |
| 923 | P.EndOffset = P.SI->endOffset(); |
| 924 | ++P.SJ; |
| 925 | |
| 926 | // There are two strategies to form a partition based on whether the |
| 927 | // partition starts with an unsplittable slice or a splittable slice. |
| 928 | if (!P.SI->isSplittable()) { |
| 929 | // When we're forming an unsplittable region, it must always start at |
| 930 | // the first slice and will extend through its end. |
| 931 | assert(P.BeginOffset == P.SI->beginOffset()); |
| 932 | |
| 933 | // Form a partition including all of the overlapping slices with this |
| 934 | // unsplittable slice. |
| 935 | while (P.SJ != SE && P.SJ->beginOffset() < P.EndOffset) { |
| 936 | if (!P.SJ->isSplittable()) |
| 937 | P.EndOffset = std::max(a: P.EndOffset, b: P.SJ->endOffset()); |
| 938 | ++P.SJ; |
| 939 | } |
| 940 | |
| 941 | // We have a partition across a set of overlapping unsplittable |
| 942 | // partitions. |
| 943 | return; |
| 944 | } |
| 945 | |
| 946 | // If we're starting with a splittable slice, then we need to form |
| 947 | // a synthetic partition spanning it and any other overlapping splittable |
| 948 | // splices. |
| 949 | assert(P.SI->isSplittable() && "Forming a splittable partition!" ); |
| 950 | |
| 951 | // Collect all of the overlapping splittable slices. |
| 952 | while (P.SJ != SE && P.SJ->beginOffset() < P.EndOffset && |
| 953 | P.SJ->isSplittable()) { |
| 954 | P.EndOffset = std::max(a: P.EndOffset, b: P.SJ->endOffset()); |
| 955 | ++P.SJ; |
| 956 | } |
| 957 | |
| 958 | // Back upiP.EndOffset if we ended the span early when encountering an |
| 959 | // unsplittable slice. This synthesizes the early end offset of |
| 960 | // a partition spanning only splittable slices. |
| 961 | if (P.SJ != SE && P.SJ->beginOffset() < P.EndOffset) { |
| 962 | assert(!P.SJ->isSplittable()); |
| 963 | P.EndOffset = P.SJ->beginOffset(); |
| 964 | } |
| 965 | } |
| 966 | |
| 967 | public: |
| 968 | bool operator==(const partition_iterator &RHS) const { |
| 969 | assert(SE == RHS.SE && |
| 970 | "End iterators don't match between compared partition iterators!" ); |
| 971 | |
| 972 | // The observed positions of partitions is marked by the P.SI iterator and |
| 973 | // the emptiness of the split slices. The latter is only relevant when |
| 974 | // P.SI == SE, as the end iterator will additionally have an empty split |
| 975 | // slices list, but the prior may have the same P.SI and a tail of split |
| 976 | // slices. |
| 977 | if (P.SI == RHS.P.SI && P.SplitTails.empty() == RHS.P.SplitTails.empty()) { |
| 978 | assert(P.SJ == RHS.P.SJ && |
| 979 | "Same set of slices formed two different sized partitions!" ); |
| 980 | assert(P.SplitTails.size() == RHS.P.SplitTails.size() && |
| 981 | "Same slice position with differently sized non-empty split " |
| 982 | "slice tails!" ); |
| 983 | return true; |
| 984 | } |
| 985 | return false; |
| 986 | } |
| 987 | |
| 988 | partition_iterator &operator++() { |
| 989 | advance(); |
| 990 | return *this; |
| 991 | } |
| 992 | |
| 993 | Partition &operator*() { return P; } |
| 994 | }; |
| 995 | |
| 996 | /// A forward range over the partitions of the alloca's slices. |
| 997 | /// |
| 998 | /// This accesses an iterator range over the partitions of the alloca's |
| 999 | /// slices. It computes these partitions on the fly based on the overlapping |
| 1000 | /// offsets of the slices and the ability to split them. It will visit "empty" |
| 1001 | /// partitions to cover regions of the alloca only accessed via split |
| 1002 | /// slices. |
| 1003 | iterator_range<AllocaSlices::partition_iterator> AllocaSlices::partitions() { |
| 1004 | return make_range(x: partition_iterator(begin(), end()), |
| 1005 | y: partition_iterator(end(), end())); |
| 1006 | } |
| 1007 | |
| 1008 | static Value *foldSelectInst(SelectInst &SI) { |
| 1009 | // If the condition being selected on is a constant or the same value is |
| 1010 | // being selected between, fold the select. Yes this does (rarely) happen |
| 1011 | // early on. |
| 1012 | if (ConstantInt *CI = dyn_cast<ConstantInt>(Val: SI.getCondition())) |
| 1013 | return SI.getOperand(i_nocapture: 1 + CI->isZero()); |
| 1014 | if (SI.getOperand(i_nocapture: 1) == SI.getOperand(i_nocapture: 2)) |
| 1015 | return SI.getOperand(i_nocapture: 1); |
| 1016 | |
| 1017 | return nullptr; |
| 1018 | } |
| 1019 | |
| 1020 | /// A helper that folds a PHI node or a select. |
| 1021 | static Value *foldPHINodeOrSelectInst(Instruction &I) { |
| 1022 | if (PHINode *PN = dyn_cast<PHINode>(Val: &I)) { |
| 1023 | // If PN merges together the same value, return that value. |
| 1024 | return PN->hasConstantValue(); |
| 1025 | } |
| 1026 | return foldSelectInst(SI&: cast<SelectInst>(Val&: I)); |
| 1027 | } |
| 1028 | |
| 1029 | /// Builder for the alloca slices. |
| 1030 | /// |
| 1031 | /// This class builds a set of alloca slices by recursively visiting the uses |
| 1032 | /// of an alloca and making a slice for each load and store at each offset. |
| 1033 | class AllocaSlices::SliceBuilder : public PtrUseVisitor<SliceBuilder> { |
| 1034 | friend class PtrUseVisitor<SliceBuilder>; |
| 1035 | friend class InstVisitor<SliceBuilder>; |
| 1036 | |
| 1037 | using Base = PtrUseVisitor<SliceBuilder>; |
| 1038 | |
| 1039 | const uint64_t AllocSize; |
| 1040 | AllocaSlices &AS; |
| 1041 | |
| 1042 | SmallDenseMap<Instruction *, unsigned> MemTransferSliceMap; |
| 1043 | SmallDenseMap<Instruction *, uint64_t> PHIOrSelectSizes; |
| 1044 | |
| 1045 | /// Set to de-duplicate dead instructions found in the use walk. |
| 1046 | SmallPtrSet<Instruction *, 4> VisitedDeadInsts; |
| 1047 | |
| 1048 | // When this access is via an llvm.protected.field.ptr intrinsic, contains |
| 1049 | // the second argument to the intrinsic, the discriminator. |
| 1050 | Value *ProtectedFieldDisc = nullptr; |
| 1051 | |
| 1052 | public: |
| 1053 | SliceBuilder(const DataLayout &DL, AllocaInst &AI, AllocaSlices &AS) |
| 1054 | : PtrUseVisitor<SliceBuilder>(DL), |
| 1055 | AllocSize(AI.getAllocationSize(DL)->getFixedValue()), AS(AS) {} |
| 1056 | |
| 1057 | private: |
| 1058 | void markAsDead(Instruction &I) { |
| 1059 | if (VisitedDeadInsts.insert(Ptr: &I).second) |
| 1060 | AS.DeadUsers.push_back(Elt: &I); |
| 1061 | } |
| 1062 | |
| 1063 | void insertUse(Instruction &I, const APInt &Offset, uint64_t Size, |
| 1064 | bool IsSplittable = false) { |
| 1065 | // Completely skip uses which have a zero size or start either before or |
| 1066 | // past the end of the allocation. |
| 1067 | if (Size == 0 || Offset.uge(RHS: AllocSize)) { |
| 1068 | LLVM_DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte use @" |
| 1069 | << Offset |
| 1070 | << " which has zero size or starts outside of the " |
| 1071 | << AllocSize << " byte alloca:\n" |
| 1072 | << " alloca: " << AS.AI << "\n" |
| 1073 | << " use: " << I << "\n" ); |
| 1074 | return markAsDead(I); |
| 1075 | } |
| 1076 | |
| 1077 | uint64_t BeginOffset = Offset.getZExtValue(); |
| 1078 | uint64_t EndOffset = BeginOffset + Size; |
| 1079 | |
| 1080 | // Clamp the end offset to the end of the allocation. Note that this is |
| 1081 | // formulated to handle even the case where "BeginOffset + Size" overflows. |
| 1082 | // This may appear superficially to be something we could ignore entirely, |
| 1083 | // but that is not so! There may be widened loads or PHI-node uses where |
| 1084 | // some instructions are dead but not others. We can't completely ignore |
| 1085 | // them, and so have to record at least the information here. |
| 1086 | assert(AllocSize >= BeginOffset); // Established above. |
| 1087 | if (Size > AllocSize - BeginOffset) { |
| 1088 | LLVM_DEBUG(dbgs() << "WARNING: Clamping a " << Size << " byte use @" |
| 1089 | << Offset << " to remain within the " << AllocSize |
| 1090 | << " byte alloca:\n" |
| 1091 | << " alloca: " << AS.AI << "\n" |
| 1092 | << " use: " << I << "\n" ); |
| 1093 | EndOffset = AllocSize; |
| 1094 | } |
| 1095 | |
| 1096 | AS.Slices.push_back( |
| 1097 | Elt: Slice(BeginOffset, EndOffset, U, IsSplittable, ProtectedFieldDisc)); |
| 1098 | } |
| 1099 | |
| 1100 | void visitBitCastInst(BitCastInst &BC) { |
| 1101 | if (BC.use_empty()) |
| 1102 | return markAsDead(I&: BC); |
| 1103 | |
| 1104 | return Base::visitBitCastInst(BC); |
| 1105 | } |
| 1106 | |
| 1107 | void visitAddrSpaceCastInst(AddrSpaceCastInst &ASC) { |
| 1108 | if (ASC.use_empty()) |
| 1109 | return markAsDead(I&: ASC); |
| 1110 | |
| 1111 | return Base::visitAddrSpaceCastInst(ASC); |
| 1112 | } |
| 1113 | |
| 1114 | void visitGetElementPtrInst(GetElementPtrInst &GEPI) { |
| 1115 | if (GEPI.use_empty()) |
| 1116 | return markAsDead(I&: GEPI); |
| 1117 | |
| 1118 | return Base::visitGetElementPtrInst(GEPI); |
| 1119 | } |
| 1120 | |
| 1121 | void handleLoadOrStore(Type *Ty, Instruction &I, const APInt &Offset, |
| 1122 | uint64_t Size, bool IsVolatile) { |
| 1123 | // We allow splitting of non-volatile loads and stores where the type is an |
| 1124 | // integer type. These may be used to implement 'memcpy' or other "transfer |
| 1125 | // of bits" patterns. |
| 1126 | bool IsSplittable = |
| 1127 | Ty->isIntegerTy() && !IsVolatile && DL.typeSizeEqualsStoreSize(Ty); |
| 1128 | |
| 1129 | insertUse(I, Offset, Size, IsSplittable); |
| 1130 | } |
| 1131 | |
| 1132 | void visitLoadInst(LoadInst &LI) { |
| 1133 | assert((!LI.isSimple() || LI.getType()->isSingleValueType()) && |
| 1134 | "All simple FCA loads should have been pre-split" ); |
| 1135 | |
| 1136 | // If there is a load with an unknown offset, we can still perform store |
| 1137 | // to load forwarding for other known-offset loads. |
| 1138 | if (!IsOffsetKnown) |
| 1139 | return PI.setEscapedReadOnly(&LI); |
| 1140 | |
| 1141 | TypeSize Size = DL.getTypeStoreSize(Ty: LI.getType()); |
| 1142 | if (Size.isScalable()) { |
| 1143 | unsigned VScale = LI.getFunction()->getVScaleValue(); |
| 1144 | if (!VScale) |
| 1145 | return PI.setAborted(&LI); |
| 1146 | |
| 1147 | Size = TypeSize::getFixed(ExactSize: Size.getKnownMinValue() * VScale); |
| 1148 | } |
| 1149 | |
| 1150 | return handleLoadOrStore(Ty: LI.getType(), I&: LI, Offset, Size: Size.getFixedValue(), |
| 1151 | IsVolatile: LI.isVolatile()); |
| 1152 | } |
| 1153 | |
| 1154 | void visitStoreInst(StoreInst &SI) { |
| 1155 | Value *ValOp = SI.getValueOperand(); |
| 1156 | if (ValOp == *U) |
| 1157 | return PI.setEscapedAndAborted(&SI); |
| 1158 | if (!IsOffsetKnown) |
| 1159 | return PI.setAborted(&SI); |
| 1160 | |
| 1161 | TypeSize StoreSize = DL.getTypeStoreSize(Ty: ValOp->getType()); |
| 1162 | if (StoreSize.isScalable()) { |
| 1163 | unsigned VScale = SI.getFunction()->getVScaleValue(); |
| 1164 | if (!VScale) |
| 1165 | return PI.setAborted(&SI); |
| 1166 | |
| 1167 | StoreSize = TypeSize::getFixed(ExactSize: StoreSize.getKnownMinValue() * VScale); |
| 1168 | } |
| 1169 | |
| 1170 | uint64_t Size = StoreSize.getFixedValue(); |
| 1171 | |
| 1172 | // If this memory access can be shown to *statically* extend outside the |
| 1173 | // bounds of the allocation, it's behavior is undefined, so simply |
| 1174 | // ignore it. Note that this is more strict than the generic clamping |
| 1175 | // behavior of insertUse. We also try to handle cases which might run the |
| 1176 | // risk of overflow. |
| 1177 | // FIXME: We should instead consider the pointer to have escaped if this |
| 1178 | // function is being instrumented for addressing bugs or race conditions. |
| 1179 | if (Size > AllocSize || Offset.ugt(RHS: AllocSize - Size)) { |
| 1180 | LLVM_DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte store @" |
| 1181 | << Offset << " which extends past the end of the " |
| 1182 | << AllocSize << " byte alloca:\n" |
| 1183 | << " alloca: " << AS.AI << "\n" |
| 1184 | << " use: " << SI << "\n" ); |
| 1185 | return markAsDead(I&: SI); |
| 1186 | } |
| 1187 | |
| 1188 | assert((!SI.isSimple() || ValOp->getType()->isSingleValueType()) && |
| 1189 | "All simple FCA stores should have been pre-split" ); |
| 1190 | handleLoadOrStore(Ty: ValOp->getType(), I&: SI, Offset, Size, IsVolatile: SI.isVolatile()); |
| 1191 | } |
| 1192 | |
| 1193 | void visitMemSetInst(MemSetInst &II) { |
| 1194 | assert(II.getRawDest() == *U && "Pointer use is not the destination?" ); |
| 1195 | ConstantInt *Length = dyn_cast<ConstantInt>(Val: II.getLength()); |
| 1196 | if ((Length && Length->getValue() == 0) || |
| 1197 | (IsOffsetKnown && Offset.uge(RHS: AllocSize))) |
| 1198 | // Zero-length mem transfer intrinsics can be ignored entirely. |
| 1199 | return markAsDead(I&: II); |
| 1200 | |
| 1201 | if (!IsOffsetKnown) |
| 1202 | return PI.setAborted(&II); |
| 1203 | |
| 1204 | insertUse(I&: II, Offset, |
| 1205 | Size: Length ? Length->getLimitedValue() |
| 1206 | : AllocSize - Offset.getLimitedValue(), |
| 1207 | IsSplittable: (bool)Length); |
| 1208 | } |
| 1209 | |
| 1210 | void visitMemTransferInst(MemTransferInst &II) { |
| 1211 | ConstantInt *Length = dyn_cast<ConstantInt>(Val: II.getLength()); |
| 1212 | if (Length && Length->getValue() == 0) |
| 1213 | // Zero-length mem transfer intrinsics can be ignored entirely. |
| 1214 | return markAsDead(I&: II); |
| 1215 | |
| 1216 | // Because we can visit these intrinsics twice, also check to see if the |
| 1217 | // first time marked this instruction as dead. If so, skip it. |
| 1218 | if (VisitedDeadInsts.count(Ptr: &II)) |
| 1219 | return; |
| 1220 | |
| 1221 | if (!IsOffsetKnown) |
| 1222 | return PI.setAborted(&II); |
| 1223 | |
| 1224 | // This side of the transfer is completely out-of-bounds, and so we can |
| 1225 | // nuke the entire transfer. However, we also need to nuke the other side |
| 1226 | // if already added to our partitions. |
| 1227 | // FIXME: Yet another place we really should bypass this when |
| 1228 | // instrumenting for ASan. |
| 1229 | if (Offset.uge(RHS: AllocSize)) { |
| 1230 | SmallDenseMap<Instruction *, unsigned>::iterator MTPI = |
| 1231 | MemTransferSliceMap.find(Val: &II); |
| 1232 | if (MTPI != MemTransferSliceMap.end()) |
| 1233 | AS.Slices[MTPI->second].kill(); |
| 1234 | return markAsDead(I&: II); |
| 1235 | } |
| 1236 | |
| 1237 | uint64_t RawOffset = Offset.getLimitedValue(); |
| 1238 | uint64_t Size = Length ? Length->getLimitedValue() : AllocSize - RawOffset; |
| 1239 | |
| 1240 | // Check for the special case where the same exact value is used for both |
| 1241 | // source and dest. |
| 1242 | if (*U == II.getRawDest() && *U == II.getRawSource()) { |
| 1243 | // For non-volatile transfers this is a no-op. |
| 1244 | if (!II.isVolatile()) |
| 1245 | return markAsDead(I&: II); |
| 1246 | |
| 1247 | return insertUse(I&: II, Offset, Size, /*IsSplittable=*/false); |
| 1248 | } |
| 1249 | |
| 1250 | // If we have seen both source and destination for a mem transfer, then |
| 1251 | // they both point to the same alloca. |
| 1252 | bool Inserted; |
| 1253 | SmallDenseMap<Instruction *, unsigned>::iterator MTPI; |
| 1254 | std::tie(args&: MTPI, args&: Inserted) = |
| 1255 | MemTransferSliceMap.insert(KV: std::make_pair(x: &II, y: AS.Slices.size())); |
| 1256 | unsigned PrevIdx = MTPI->second; |
| 1257 | if (!Inserted) { |
| 1258 | Slice &PrevP = AS.Slices[PrevIdx]; |
| 1259 | |
| 1260 | // Check if the begin offsets match and this is a non-volatile transfer. |
| 1261 | // In that case, we can completely elide the transfer. |
| 1262 | if (!II.isVolatile() && PrevP.beginOffset() == RawOffset) { |
| 1263 | PrevP.kill(); |
| 1264 | return markAsDead(I&: II); |
| 1265 | } |
| 1266 | |
| 1267 | // Otherwise we have an offset transfer within the same alloca. We can't |
| 1268 | // split those. |
| 1269 | PrevP.makeUnsplittable(); |
| 1270 | } |
| 1271 | |
| 1272 | // Insert the use now that we've fixed up the splittable nature. |
| 1273 | insertUse(I&: II, Offset, Size, /*IsSplittable=*/Inserted && Length); |
| 1274 | |
| 1275 | // Check that we ended up with a valid index in the map. |
| 1276 | assert(AS.Slices[PrevIdx].getUse()->getUser() == &II && |
| 1277 | "Map index doesn't point back to a slice with this user." ); |
| 1278 | } |
| 1279 | |
| 1280 | // Disable SRoA for any intrinsics except for lifetime invariants. |
| 1281 | // FIXME: What about debug intrinsics? This matches old behavior, but |
| 1282 | // doesn't make sense. |
| 1283 | void visitIntrinsicInst(IntrinsicInst &II) { |
| 1284 | if (II.isDroppable()) { |
| 1285 | AS.DeadUseIfPromotable.push_back(Elt: U); |
| 1286 | return; |
| 1287 | } |
| 1288 | |
| 1289 | if (!IsOffsetKnown) |
| 1290 | return PI.setAborted(&II); |
| 1291 | |
| 1292 | if (II.isLifetimeStartOrEnd()) { |
| 1293 | insertUse(I&: II, Offset, Size: AllocSize, IsSplittable: true); |
| 1294 | return; |
| 1295 | } |
| 1296 | |
| 1297 | if (II.getIntrinsicID() == Intrinsic::protected_field_ptr) { |
| 1298 | // We only handle loads and stores as users of llvm.protected.field.ptr. |
| 1299 | // Other uses may add items to the worklist, which will cause |
| 1300 | // ProtectedFieldDisc to be tracked incorrectly. |
| 1301 | AS.PFPUsers.push_back(Elt: &II); |
| 1302 | ProtectedFieldDisc = II.getArgOperand(i: 1); |
| 1303 | for (Use &U : II.uses()) { |
| 1304 | this->U = &U; |
| 1305 | if (auto *LI = dyn_cast<LoadInst>(Val: U.getUser())) |
| 1306 | visitLoadInst(LI&: *LI); |
| 1307 | else if (auto *SI = dyn_cast<StoreInst>(Val: U.getUser())) |
| 1308 | visitStoreInst(SI&: *SI); |
| 1309 | else |
| 1310 | PI.setAborted(&II); |
| 1311 | if (PI.isAborted()) |
| 1312 | break; |
| 1313 | } |
| 1314 | ProtectedFieldDisc = nullptr; |
| 1315 | return; |
| 1316 | } |
| 1317 | |
| 1318 | Base::visitIntrinsicInst(II); |
| 1319 | } |
| 1320 | |
| 1321 | Instruction *hasUnsafePHIOrSelectUse(Instruction *Root, uint64_t &Size) { |
| 1322 | // We consider any PHI or select that results in a direct load or store of |
| 1323 | // the same offset to be a viable use for slicing purposes. These uses |
| 1324 | // are considered unsplittable and the size is the maximum loaded or stored |
| 1325 | // size. |
| 1326 | SmallPtrSet<Instruction *, 4> Visited; |
| 1327 | SmallVector<std::pair<Instruction *, Instruction *>, 4> Uses; |
| 1328 | Visited.insert(Ptr: Root); |
| 1329 | Uses.push_back(Elt: std::make_pair(x: cast<Instruction>(Val&: *U), y&: Root)); |
| 1330 | const DataLayout &DL = Root->getDataLayout(); |
| 1331 | // If there are no loads or stores, the access is dead. We mark that as |
| 1332 | // a size zero access. |
| 1333 | Size = 0; |
| 1334 | do { |
| 1335 | Instruction *I, *UsedI; |
| 1336 | std::tie(args&: UsedI, args&: I) = Uses.pop_back_val(); |
| 1337 | |
| 1338 | if (LoadInst *LI = dyn_cast<LoadInst>(Val: I)) { |
| 1339 | TypeSize LoadSize = DL.getTypeStoreSize(Ty: LI->getType()); |
| 1340 | if (LoadSize.isScalable()) { |
| 1341 | PI.setAborted(LI); |
| 1342 | return nullptr; |
| 1343 | } |
| 1344 | Size = std::max(a: Size, b: LoadSize.getFixedValue()); |
| 1345 | continue; |
| 1346 | } |
| 1347 | if (StoreInst *SI = dyn_cast<StoreInst>(Val: I)) { |
| 1348 | Value *Op = SI->getOperand(i_nocapture: 0); |
| 1349 | if (Op == UsedI) |
| 1350 | return SI; |
| 1351 | TypeSize StoreSize = DL.getTypeStoreSize(Ty: Op->getType()); |
| 1352 | if (StoreSize.isScalable()) { |
| 1353 | PI.setAborted(SI); |
| 1354 | return nullptr; |
| 1355 | } |
| 1356 | Size = std::max(a: Size, b: StoreSize.getFixedValue()); |
| 1357 | continue; |
| 1358 | } |
| 1359 | |
| 1360 | if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Val: I)) { |
| 1361 | if (!GEP->hasAllZeroIndices()) |
| 1362 | return GEP; |
| 1363 | } else if (!isa<BitCastInst>(Val: I) && !isa<PHINode>(Val: I) && |
| 1364 | !isa<SelectInst>(Val: I) && !isa<AddrSpaceCastInst>(Val: I)) { |
| 1365 | return I; |
| 1366 | } |
| 1367 | |
| 1368 | for (User *U : I->users()) |
| 1369 | if (Visited.insert(Ptr: cast<Instruction>(Val: U)).second) |
| 1370 | Uses.push_back(Elt: std::make_pair(x&: I, y: cast<Instruction>(Val: U))); |
| 1371 | } while (!Uses.empty()); |
| 1372 | |
| 1373 | return nullptr; |
| 1374 | } |
| 1375 | |
| 1376 | void visitPHINodeOrSelectInst(Instruction &I) { |
| 1377 | assert(isa<PHINode>(I) || isa<SelectInst>(I)); |
| 1378 | if (I.use_empty()) |
| 1379 | return markAsDead(I); |
| 1380 | |
| 1381 | // If this is a PHI node before a catchswitch, we cannot insert any non-PHI |
| 1382 | // instructions in this BB, which may be required during rewriting. Bail out |
| 1383 | // on these cases. |
| 1384 | if (isa<PHINode>(Val: I) && !I.getParent()->hasInsertionPt()) |
| 1385 | return PI.setAborted(&I); |
| 1386 | |
| 1387 | // TODO: We could use simplifyInstruction here to fold PHINodes and |
| 1388 | // SelectInsts. However, doing so requires to change the current |
| 1389 | // dead-operand-tracking mechanism. For instance, suppose neither loading |
| 1390 | // from %U nor %other traps. Then "load (select undef, %U, %other)" does not |
| 1391 | // trap either. However, if we simply replace %U with undef using the |
| 1392 | // current dead-operand-tracking mechanism, "load (select undef, undef, |
| 1393 | // %other)" may trap because the select may return the first operand |
| 1394 | // "undef". |
| 1395 | if (Value *Result = foldPHINodeOrSelectInst(I)) { |
| 1396 | if (Result == *U) |
| 1397 | // If the result of the constant fold will be the pointer, recurse |
| 1398 | // through the PHI/select as if we had RAUW'ed it. |
| 1399 | enqueueUsers(I); |
| 1400 | else |
| 1401 | // Otherwise the operand to the PHI/select is dead, and we can replace |
| 1402 | // it with poison. |
| 1403 | AS.DeadOperands.push_back(Elt: U); |
| 1404 | |
| 1405 | return; |
| 1406 | } |
| 1407 | |
| 1408 | if (!IsOffsetKnown) |
| 1409 | return PI.setAborted(&I); |
| 1410 | |
| 1411 | // See if we already have computed info on this node. |
| 1412 | uint64_t &Size = PHIOrSelectSizes[&I]; |
| 1413 | if (!Size) { |
| 1414 | // This is a new PHI/Select, check for an unsafe use of it. |
| 1415 | if (Instruction *UnsafeI = hasUnsafePHIOrSelectUse(Root: &I, Size)) |
| 1416 | return PI.setAborted(UnsafeI); |
| 1417 | } |
| 1418 | |
| 1419 | // For PHI and select operands outside the alloca, we can't nuke the entire |
| 1420 | // phi or select -- the other side might still be relevant, so we special |
| 1421 | // case them here and use a separate structure to track the operands |
| 1422 | // themselves which should be replaced with poison. |
| 1423 | // FIXME: This should instead be escaped in the event we're instrumenting |
| 1424 | // for address sanitization. |
| 1425 | if (Offset.uge(RHS: AllocSize)) { |
| 1426 | AS.DeadOperands.push_back(Elt: U); |
| 1427 | return; |
| 1428 | } |
| 1429 | |
| 1430 | insertUse(I, Offset, Size); |
| 1431 | } |
| 1432 | |
| 1433 | void visitPHINode(PHINode &PN) { visitPHINodeOrSelectInst(I&: PN); } |
| 1434 | |
| 1435 | void visitSelectInst(SelectInst &SI) { visitPHINodeOrSelectInst(I&: SI); } |
| 1436 | |
| 1437 | /// Disable SROA entirely if there are unhandled users of the alloca. |
| 1438 | void visitInstruction(Instruction &I) { PI.setAborted(&I); } |
| 1439 | |
| 1440 | void visitCallBase(CallBase &CB) { |
| 1441 | // If the call operand is read-only and only does a read-only or address |
| 1442 | // capture, then we mark it as EscapedReadOnly. |
| 1443 | if (CB.isDataOperand(U) && |
| 1444 | !capturesFullProvenance(CC: CB.getCaptureInfo(OpNo: U->getOperandNo())) && |
| 1445 | CB.onlyReadsMemory(OpNo: U->getOperandNo())) { |
| 1446 | PI.setEscapedReadOnly(&CB); |
| 1447 | return; |
| 1448 | } |
| 1449 | |
| 1450 | Base::visitCallBase(CB); |
| 1451 | } |
| 1452 | }; |
| 1453 | |
| 1454 | AllocaSlices::AllocaSlices(const DataLayout &DL, AllocaInst &AI) |
| 1455 | : |
| 1456 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 1457 | AI(AI), |
| 1458 | #endif |
| 1459 | PointerEscapingInstr(nullptr), PointerEscapingInstrReadOnly(nullptr) { |
| 1460 | SliceBuilder PB(DL, AI, *this); |
| 1461 | SliceBuilder::PtrInfo PtrI = PB.visitPtr(I&: AI); |
| 1462 | if (PtrI.isEscaped() || PtrI.isAborted()) { |
| 1463 | // FIXME: We should sink the escape vs. abort info into the caller nicely, |
| 1464 | // possibly by just storing the PtrInfo in the AllocaSlices. |
| 1465 | PointerEscapingInstr = PtrI.getEscapingInst() ? PtrI.getEscapingInst() |
| 1466 | : PtrI.getAbortingInst(); |
| 1467 | assert(PointerEscapingInstr && "Did not track a bad instruction" ); |
| 1468 | return; |
| 1469 | } |
| 1470 | PointerEscapingInstrReadOnly = PtrI.getEscapedReadOnlyInst(); |
| 1471 | |
| 1472 | llvm::erase_if(C&: Slices, P: [](const Slice &S) { return S.isDead(); }); |
| 1473 | |
| 1474 | // Sort the uses. This arranges for the offsets to be in ascending order, |
| 1475 | // and the sizes to be in descending order. |
| 1476 | llvm::stable_sort(Range&: Slices); |
| 1477 | } |
| 1478 | |
| 1479 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 1480 | |
| 1481 | void AllocaSlices::print(raw_ostream &OS, const_iterator I, |
| 1482 | StringRef Indent) const { |
| 1483 | printSlice(OS, I, Indent); |
| 1484 | OS << "\n" ; |
| 1485 | printUse(OS, I, Indent); |
| 1486 | } |
| 1487 | |
| 1488 | void AllocaSlices::printSlice(raw_ostream &OS, const_iterator I, |
| 1489 | StringRef Indent) const { |
| 1490 | OS << Indent << "[" << I->beginOffset() << "," << I->endOffset() << ")" |
| 1491 | << " slice #" << (I - begin()) |
| 1492 | << (I->isSplittable() ? " (splittable)" : "" ); |
| 1493 | } |
| 1494 | |
| 1495 | void AllocaSlices::printUse(raw_ostream &OS, const_iterator I, |
| 1496 | StringRef Indent) const { |
| 1497 | OS << Indent << " used by: " << *I->getUse()->getUser() << "\n" ; |
| 1498 | } |
| 1499 | |
| 1500 | void AllocaSlices::print(raw_ostream &OS) const { |
| 1501 | if (PointerEscapingInstr) { |
| 1502 | OS << "Can't analyze slices for alloca: " << AI << "\n" |
| 1503 | << " A pointer to this alloca escaped by:\n" |
| 1504 | << " " << *PointerEscapingInstr << "\n" ; |
| 1505 | return; |
| 1506 | } |
| 1507 | |
| 1508 | if (PointerEscapingInstrReadOnly) |
| 1509 | OS << "Escapes into ReadOnly: " << *PointerEscapingInstrReadOnly << "\n" ; |
| 1510 | |
| 1511 | OS << "Slices of alloca: " << AI << "\n" ; |
| 1512 | for (const_iterator I = begin(), E = end(); I != E; ++I) |
| 1513 | print(OS, I); |
| 1514 | } |
| 1515 | |
| 1516 | LLVM_DUMP_METHOD void AllocaSlices::dump(const_iterator I) const { |
| 1517 | print(dbgs(), I); |
| 1518 | } |
| 1519 | LLVM_DUMP_METHOD void AllocaSlices::dump() const { print(dbgs()); } |
| 1520 | |
| 1521 | #endif // !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 1522 | |
| 1523 | /// Walk the range of a partitioning looking for a common type to cover this |
| 1524 | /// sequence of slices. |
| 1525 | static std::pair<Type *, IntegerType *> |
| 1526 | findCommonType(AllocaSlices::const_iterator B, AllocaSlices::const_iterator E, |
| 1527 | uint64_t EndOffset) { |
| 1528 | Type *Ty = nullptr; |
| 1529 | bool TyIsCommon = true; |
| 1530 | IntegerType *ITy = nullptr; |
| 1531 | |
| 1532 | // Note that we need to look at *every* alloca slice's Use to ensure we |
| 1533 | // always get consistent results regardless of the order of slices. |
| 1534 | for (AllocaSlices::const_iterator I = B; I != E; ++I) { |
| 1535 | Use *U = I->getUse(); |
| 1536 | if (isa<IntrinsicInst>(Val: *U->getUser())) |
| 1537 | continue; |
| 1538 | if (I->beginOffset() != B->beginOffset() || I->endOffset() != EndOffset) |
| 1539 | continue; |
| 1540 | |
| 1541 | Type *UserTy = nullptr; |
| 1542 | if (LoadInst *LI = dyn_cast<LoadInst>(Val: U->getUser())) { |
| 1543 | UserTy = LI->getType(); |
| 1544 | } else if (StoreInst *SI = dyn_cast<StoreInst>(Val: U->getUser())) { |
| 1545 | UserTy = SI->getValueOperand()->getType(); |
| 1546 | } |
| 1547 | |
| 1548 | if (IntegerType *UserITy = dyn_cast_or_null<IntegerType>(Val: UserTy)) { |
| 1549 | // If the type is larger than the partition, skip it. We only encounter |
| 1550 | // this for split integer operations where we want to use the type of the |
| 1551 | // entity causing the split. Also skip if the type is not a byte width |
| 1552 | // multiple. |
| 1553 | if (UserITy->getBitWidth() % 8 != 0 || |
| 1554 | UserITy->getBitWidth() / 8 > (EndOffset - B->beginOffset())) |
| 1555 | continue; |
| 1556 | |
| 1557 | // Track the largest bitwidth integer type used in this way in case there |
| 1558 | // is no common type. |
| 1559 | if (!ITy || ITy->getBitWidth() < UserITy->getBitWidth()) |
| 1560 | ITy = UserITy; |
| 1561 | } |
| 1562 | |
| 1563 | // To avoid depending on the order of slices, Ty and TyIsCommon must not |
| 1564 | // depend on types skipped above. |
| 1565 | if (!UserTy || (Ty && Ty != UserTy)) |
| 1566 | TyIsCommon = false; // Give up on anything but an iN type. |
| 1567 | else |
| 1568 | Ty = UserTy; |
| 1569 | } |
| 1570 | |
| 1571 | return {TyIsCommon ? Ty : nullptr, ITy}; |
| 1572 | } |
| 1573 | |
| 1574 | /// PHI instructions that use an alloca and are subsequently loaded can be |
| 1575 | /// rewritten to load both input pointers in the pred blocks and then PHI the |
| 1576 | /// results, allowing the load of the alloca to be promoted. |
| 1577 | /// From this: |
| 1578 | /// %P2 = phi [i32* %Alloca, i32* %Other] |
| 1579 | /// %V = load i32* %P2 |
| 1580 | /// to: |
| 1581 | /// %V1 = load i32* %Alloca -> will be mem2reg'd |
| 1582 | /// ... |
| 1583 | /// %V2 = load i32* %Other |
| 1584 | /// ... |
| 1585 | /// %V = phi [i32 %V1, i32 %V2] |
| 1586 | /// |
| 1587 | /// We can do this to a select if its only uses are loads and if the operands |
| 1588 | /// to the select can be loaded unconditionally. |
| 1589 | /// |
| 1590 | /// FIXME: This should be hoisted into a generic utility, likely in |
| 1591 | /// Transforms/Util/Local.h |
| 1592 | static bool isSafePHIToSpeculate(PHINode &PN) { |
| 1593 | const DataLayout &DL = PN.getDataLayout(); |
| 1594 | |
| 1595 | // For now, we can only do this promotion if the load is in the same block |
| 1596 | // as the PHI, and if there are no stores between the phi and load. |
| 1597 | // TODO: Allow recursive phi users. |
| 1598 | // TODO: Allow stores. |
| 1599 | BasicBlock *BB = PN.getParent(); |
| 1600 | Align MaxAlign; |
| 1601 | uint64_t APWidth = DL.getIndexTypeSizeInBits(Ty: PN.getType()); |
| 1602 | Type *LoadType = nullptr; |
| 1603 | for (User *U : PN.users()) { |
| 1604 | LoadInst *LI = dyn_cast<LoadInst>(Val: U); |
| 1605 | if (!LI || !LI->isSimple()) |
| 1606 | return false; |
| 1607 | |
| 1608 | // For now we only allow loads in the same block as the PHI. This is |
| 1609 | // a common case that happens when instcombine merges two loads through |
| 1610 | // a PHI. |
| 1611 | if (LI->getParent() != BB) |
| 1612 | return false; |
| 1613 | |
| 1614 | if (LoadType) { |
| 1615 | if (LoadType != LI->getType()) |
| 1616 | return false; |
| 1617 | } else { |
| 1618 | LoadType = LI->getType(); |
| 1619 | } |
| 1620 | |
| 1621 | // Ensure that there are no instructions between the PHI and the load that |
| 1622 | // could store. |
| 1623 | for (BasicBlock::iterator BBI(PN); &*BBI != LI; ++BBI) |
| 1624 | if (BBI->mayWriteToMemory()) |
| 1625 | return false; |
| 1626 | |
| 1627 | MaxAlign = std::max(a: MaxAlign, b: LI->getAlign()); |
| 1628 | } |
| 1629 | |
| 1630 | if (!LoadType) |
| 1631 | return false; |
| 1632 | |
| 1633 | APInt LoadSize = |
| 1634 | APInt(APWidth, DL.getTypeStoreSize(Ty: LoadType).getFixedValue()); |
| 1635 | |
| 1636 | // We can only transform this if it is safe to push the loads into the |
| 1637 | // predecessor blocks. The only thing to watch out for is that we can't put |
| 1638 | // a possibly trapping load in the predecessor if it is a critical edge. |
| 1639 | for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) { |
| 1640 | Instruction *TI = PN.getIncomingBlock(i: Idx)->getTerminator(); |
| 1641 | Value *InVal = PN.getIncomingValue(i: Idx); |
| 1642 | |
| 1643 | // If the value is produced by the terminator of the predecessor (an |
| 1644 | // invoke) or it has side-effects, there is no valid place to put a load |
| 1645 | // in the predecessor. |
| 1646 | if (TI == InVal || TI->mayHaveSideEffects()) |
| 1647 | return false; |
| 1648 | |
| 1649 | // If the predecessor has a single successor, then the edge isn't |
| 1650 | // critical. |
| 1651 | if (TI->getNumSuccessors() == 1) |
| 1652 | continue; |
| 1653 | |
| 1654 | // If this pointer is always safe to load, or if we can prove that there |
| 1655 | // is already a load in the block, then we can move the load to the pred |
| 1656 | // block. |
| 1657 | if (isSafeToLoadUnconditionally(V: InVal, Alignment: MaxAlign, Size: LoadSize, DL, ScanFrom: TI)) |
| 1658 | continue; |
| 1659 | |
| 1660 | return false; |
| 1661 | } |
| 1662 | |
| 1663 | return true; |
| 1664 | } |
| 1665 | |
| 1666 | static void speculatePHINodeLoads(IRBuilderTy &IRB, PHINode &PN) { |
| 1667 | LLVM_DEBUG(dbgs() << " original: " << PN << "\n" ); |
| 1668 | |
| 1669 | LoadInst *SomeLoad = cast<LoadInst>(Val: PN.user_back()); |
| 1670 | Type *LoadTy = SomeLoad->getType(); |
| 1671 | IRB.SetInsertPoint(&PN); |
| 1672 | PHINode *NewPN = IRB.CreatePHI(Ty: LoadTy, NumReservedValues: PN.getNumIncomingValues(), |
| 1673 | Name: PN.getName() + ".sroa.speculated" ); |
| 1674 | |
| 1675 | // Get the AA tags and alignment to use from one of the loads. It does not |
| 1676 | // matter which one we get and if any differ. |
| 1677 | AAMDNodes AATags = SomeLoad->getAAMetadata(); |
| 1678 | Align Alignment = SomeLoad->getAlign(); |
| 1679 | |
| 1680 | // Rewrite all loads of the PN to use the new PHI. |
| 1681 | while (!PN.use_empty()) { |
| 1682 | LoadInst *LI = cast<LoadInst>(Val: PN.user_back()); |
| 1683 | LI->replaceAllUsesWith(V: NewPN); |
| 1684 | LI->eraseFromParent(); |
| 1685 | } |
| 1686 | |
| 1687 | // Inject loads into all of the pred blocks. |
| 1688 | DenseMap<BasicBlock *, Value *> InjectedLoads; |
| 1689 | for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) { |
| 1690 | BasicBlock *Pred = PN.getIncomingBlock(i: Idx); |
| 1691 | Value *InVal = PN.getIncomingValue(i: Idx); |
| 1692 | |
| 1693 | // A PHI node is allowed to have multiple (duplicated) entries for the same |
| 1694 | // basic block, as long as the value is the same. So if we already injected |
| 1695 | // a load in the predecessor, then we should reuse the same load for all |
| 1696 | // duplicated entries. |
| 1697 | if (Value *V = InjectedLoads.lookup(Val: Pred)) { |
| 1698 | NewPN->addIncoming(V, BB: Pred); |
| 1699 | continue; |
| 1700 | } |
| 1701 | |
| 1702 | Instruction *TI = Pred->getTerminator(); |
| 1703 | IRB.SetInsertPoint(TI); |
| 1704 | |
| 1705 | LoadInst *Load = IRB.CreateAlignedLoad( |
| 1706 | Ty: LoadTy, Ptr: InVal, Align: Alignment, |
| 1707 | Name: (PN.getName() + ".sroa.speculate.load." + Pred->getName())); |
| 1708 | ++NumLoadsSpeculated; |
| 1709 | if (AATags) |
| 1710 | Load->setAAMetadata(AATags); |
| 1711 | NewPN->addIncoming(V: Load, BB: Pred); |
| 1712 | InjectedLoads[Pred] = Load; |
| 1713 | } |
| 1714 | |
| 1715 | LLVM_DEBUG(dbgs() << " speculated to: " << *NewPN << "\n" ); |
| 1716 | PN.eraseFromParent(); |
| 1717 | } |
| 1718 | |
| 1719 | SelectHandSpeculativity & |
| 1720 | SelectHandSpeculativity::setAsSpeculatable(bool isTrueVal) { |
| 1721 | if (isTrueVal) |
| 1722 | Bitfield::set<SelectHandSpeculativity::TrueVal>(Packed&: Storage, Value: true); |
| 1723 | else |
| 1724 | Bitfield::set<SelectHandSpeculativity::FalseVal>(Packed&: Storage, Value: true); |
| 1725 | return *this; |
| 1726 | } |
| 1727 | |
| 1728 | bool SelectHandSpeculativity::isSpeculatable(bool isTrueVal) const { |
| 1729 | return isTrueVal ? Bitfield::get<SelectHandSpeculativity::TrueVal>(Packed: Storage) |
| 1730 | : Bitfield::get<SelectHandSpeculativity::FalseVal>(Packed: Storage); |
| 1731 | } |
| 1732 | |
| 1733 | bool SelectHandSpeculativity::areAllSpeculatable() const { |
| 1734 | return isSpeculatable(/*isTrueVal=*/true) && |
| 1735 | isSpeculatable(/*isTrueVal=*/false); |
| 1736 | } |
| 1737 | |
| 1738 | bool SelectHandSpeculativity::areAnySpeculatable() const { |
| 1739 | return isSpeculatable(/*isTrueVal=*/true) || |
| 1740 | isSpeculatable(/*isTrueVal=*/false); |
| 1741 | } |
| 1742 | bool SelectHandSpeculativity::areNoneSpeculatable() const { |
| 1743 | return !areAnySpeculatable(); |
| 1744 | } |
| 1745 | |
| 1746 | static SelectHandSpeculativity |
| 1747 | isSafeLoadOfSelectToSpeculate(LoadInst &LI, SelectInst &SI, bool PreserveCFG) { |
| 1748 | assert(LI.isSimple() && "Only for simple loads" ); |
| 1749 | SelectHandSpeculativity Spec; |
| 1750 | |
| 1751 | const DataLayout &DL = SI.getDataLayout(); |
| 1752 | for (Value *Value : {SI.getTrueValue(), SI.getFalseValue()}) |
| 1753 | if (isSafeToLoadUnconditionally(V: Value, Ty: LI.getType(), Alignment: LI.getAlign(), DL, |
| 1754 | ScanFrom: &LI)) |
| 1755 | Spec.setAsSpeculatable(/*isTrueVal=*/Value == SI.getTrueValue()); |
| 1756 | else if (PreserveCFG) |
| 1757 | return Spec; |
| 1758 | |
| 1759 | return Spec; |
| 1760 | } |
| 1761 | |
| 1762 | std::optional<RewriteableMemOps> |
| 1763 | SROA::isSafeSelectToSpeculate(SelectInst &SI, bool PreserveCFG) { |
| 1764 | RewriteableMemOps Ops; |
| 1765 | |
| 1766 | for (User *U : SI.users()) { |
| 1767 | if (auto *BC = dyn_cast<BitCastInst>(Val: U); BC && BC->hasOneUse()) |
| 1768 | U = *BC->user_begin(); |
| 1769 | |
| 1770 | if (auto *Store = dyn_cast<StoreInst>(Val: U)) { |
| 1771 | // Note that atomic stores can be transformed; atomic semantics do not |
| 1772 | // have any meaning for a local alloca. Stores are not speculatable, |
| 1773 | // however, so if we can't turn it into a predicated store, we are done. |
| 1774 | if (Store->isVolatile() || PreserveCFG) |
| 1775 | return {}; // Give up on this `select`. |
| 1776 | Ops.emplace_back(Args&: Store); |
| 1777 | continue; |
| 1778 | } |
| 1779 | |
| 1780 | auto *LI = dyn_cast<LoadInst>(Val: U); |
| 1781 | |
| 1782 | // Note that atomic loads can be transformed; |
| 1783 | // atomic semantics do not have any meaning for a local alloca. |
| 1784 | if (!LI || LI->isVolatile()) |
| 1785 | return {}; // Give up on this `select`. |
| 1786 | |
| 1787 | PossiblySpeculatableLoad Load(LI); |
| 1788 | if (!LI->isSimple()) { |
| 1789 | // If the `load` is not simple, we can't speculatively execute it, |
| 1790 | // but we could handle this via a CFG modification. But can we? |
| 1791 | if (PreserveCFG) |
| 1792 | return {}; // Give up on this `select`. |
| 1793 | Ops.emplace_back(Args&: Load); |
| 1794 | continue; |
| 1795 | } |
| 1796 | |
| 1797 | SelectHandSpeculativity Spec = |
| 1798 | isSafeLoadOfSelectToSpeculate(LI&: *LI, SI, PreserveCFG); |
| 1799 | if (PreserveCFG && !Spec.areAllSpeculatable()) |
| 1800 | return {}; // Give up on this `select`. |
| 1801 | |
| 1802 | Load.setInt(Spec); |
| 1803 | Ops.emplace_back(Args&: Load); |
| 1804 | } |
| 1805 | |
| 1806 | return Ops; |
| 1807 | } |
| 1808 | |
| 1809 | static void speculateSelectInstLoads(SelectInst &SI, LoadInst &LI, |
| 1810 | IRBuilderTy &IRB) { |
| 1811 | LLVM_DEBUG(dbgs() << " original load: " << SI << "\n" ); |
| 1812 | |
| 1813 | Value *TV = SI.getTrueValue(); |
| 1814 | Value *FV = SI.getFalseValue(); |
| 1815 | // Replace the given load of the select with a select of two loads. |
| 1816 | |
| 1817 | assert(LI.isSimple() && "We only speculate simple loads" ); |
| 1818 | |
| 1819 | IRB.SetInsertPoint(&LI); |
| 1820 | |
| 1821 | LoadInst *TL = |
| 1822 | IRB.CreateAlignedLoad(Ty: LI.getType(), Ptr: TV, Align: LI.getAlign(), |
| 1823 | Name: LI.getName() + ".sroa.speculate.load.true" ); |
| 1824 | LoadInst *FL = |
| 1825 | IRB.CreateAlignedLoad(Ty: LI.getType(), Ptr: FV, Align: LI.getAlign(), |
| 1826 | Name: LI.getName() + ".sroa.speculate.load.false" ); |
| 1827 | NumLoadsSpeculated += 2; |
| 1828 | |
| 1829 | // Transfer alignment and AA info if present. |
| 1830 | TL->setAlignment(LI.getAlign()); |
| 1831 | FL->setAlignment(LI.getAlign()); |
| 1832 | |
| 1833 | AAMDNodes Tags = LI.getAAMetadata(); |
| 1834 | if (Tags) { |
| 1835 | TL->setAAMetadata(Tags); |
| 1836 | FL->setAAMetadata(Tags); |
| 1837 | } |
| 1838 | |
| 1839 | Value *V = IRB.CreateSelect(C: SI.getCondition(), True: TL, False: FL, |
| 1840 | Name: LI.getName() + ".sroa.speculated" , |
| 1841 | MDFrom: ProfcheckDisableMetadataFixes ? nullptr : &SI); |
| 1842 | |
| 1843 | LLVM_DEBUG(dbgs() << " speculated to: " << *V << "\n" ); |
| 1844 | LI.replaceAllUsesWith(V); |
| 1845 | } |
| 1846 | |
| 1847 | template <typename T> |
| 1848 | static void rewriteMemOpOfSelect(SelectInst &SI, T &I, |
| 1849 | SelectHandSpeculativity Spec, |
| 1850 | DomTreeUpdater &DTU) { |
| 1851 | assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && "Only for load and store!" ); |
| 1852 | LLVM_DEBUG(dbgs() << " original mem op: " << I << "\n" ); |
| 1853 | BasicBlock *Head = I.getParent(); |
| 1854 | Instruction *ThenTerm = nullptr; |
| 1855 | Instruction *ElseTerm = nullptr; |
| 1856 | if (Spec.areNoneSpeculatable()) |
| 1857 | SplitBlockAndInsertIfThenElse(SI.getCondition(), &I, &ThenTerm, &ElseTerm, |
| 1858 | SI.getMetadata(KindID: LLVMContext::MD_prof), &DTU); |
| 1859 | else { |
| 1860 | SplitBlockAndInsertIfThen(SI.getCondition(), &I, /*Unreachable=*/false, |
| 1861 | SI.getMetadata(KindID: LLVMContext::MD_prof), &DTU, |
| 1862 | /*LI=*/nullptr, /*ThenBlock=*/nullptr); |
| 1863 | if (Spec.isSpeculatable(/*isTrueVal=*/true)) |
| 1864 | cast<BranchInst>(Val: Head->getTerminator())->swapSuccessors(); |
| 1865 | } |
| 1866 | auto *HeadBI = cast<BranchInst>(Val: Head->getTerminator()); |
| 1867 | Spec = {}; // Do not use `Spec` beyond this point. |
| 1868 | BasicBlock *Tail = I.getParent(); |
| 1869 | Tail->setName(Head->getName() + ".cont" ); |
| 1870 | PHINode *PN; |
| 1871 | if (isa<LoadInst>(I)) |
| 1872 | PN = PHINode::Create(Ty: I.getType(), NumReservedValues: 2, NameStr: "" , InsertBefore: I.getIterator()); |
| 1873 | for (BasicBlock *SuccBB : successors(BB: Head)) { |
| 1874 | bool IsThen = SuccBB == HeadBI->getSuccessor(i: 0); |
| 1875 | int SuccIdx = IsThen ? 0 : 1; |
| 1876 | auto *NewMemOpBB = SuccBB == Tail ? Head : SuccBB; |
| 1877 | auto &CondMemOp = cast<T>(*I.clone()); |
| 1878 | if (NewMemOpBB != Head) { |
| 1879 | NewMemOpBB->setName(Head->getName() + (IsThen ? ".then" : ".else" )); |
| 1880 | if (isa<LoadInst>(I)) |
| 1881 | ++NumLoadsPredicated; |
| 1882 | else |
| 1883 | ++NumStoresPredicated; |
| 1884 | } else { |
| 1885 | CondMemOp.dropUBImplyingAttrsAndMetadata(); |
| 1886 | ++NumLoadsSpeculated; |
| 1887 | } |
| 1888 | CondMemOp.insertBefore(NewMemOpBB->getTerminator()->getIterator()); |
| 1889 | Value *Ptr = SI.getOperand(i_nocapture: 1 + SuccIdx); |
| 1890 | CondMemOp.setOperand(I.getPointerOperandIndex(), Ptr); |
| 1891 | if (isa<LoadInst>(I)) { |
| 1892 | CondMemOp.setName(I.getName() + (IsThen ? ".then" : ".else" ) + ".val" ); |
| 1893 | PN->addIncoming(V: &CondMemOp, BB: NewMemOpBB); |
| 1894 | } else |
| 1895 | LLVM_DEBUG(dbgs() << " to: " << CondMemOp << "\n" ); |
| 1896 | } |
| 1897 | if (isa<LoadInst>(I)) { |
| 1898 | PN->takeName(V: &I); |
| 1899 | LLVM_DEBUG(dbgs() << " to: " << *PN << "\n" ); |
| 1900 | I.replaceAllUsesWith(PN); |
| 1901 | } |
| 1902 | } |
| 1903 | |
| 1904 | static void rewriteMemOpOfSelect(SelectInst &SelInst, Instruction &I, |
| 1905 | SelectHandSpeculativity Spec, |
| 1906 | DomTreeUpdater &DTU) { |
| 1907 | if (auto *LI = dyn_cast<LoadInst>(Val: &I)) |
| 1908 | rewriteMemOpOfSelect(SI&: SelInst, I&: *LI, Spec, DTU); |
| 1909 | else if (auto *SI = dyn_cast<StoreInst>(Val: &I)) |
| 1910 | rewriteMemOpOfSelect(SI&: SelInst, I&: *SI, Spec, DTU); |
| 1911 | else |
| 1912 | llvm_unreachable_internal(msg: "Only for load and store." ); |
| 1913 | } |
| 1914 | |
| 1915 | static bool rewriteSelectInstMemOps(SelectInst &SI, |
| 1916 | const RewriteableMemOps &Ops, |
| 1917 | IRBuilderTy &IRB, DomTreeUpdater *DTU) { |
| 1918 | bool CFGChanged = false; |
| 1919 | LLVM_DEBUG(dbgs() << " original select: " << SI << "\n" ); |
| 1920 | |
| 1921 | for (const RewriteableMemOp &Op : Ops) { |
| 1922 | SelectHandSpeculativity Spec; |
| 1923 | Instruction *I; |
| 1924 | if (auto *const *US = std::get_if<UnspeculatableStore>(ptr: &Op)) { |
| 1925 | I = *US; |
| 1926 | } else { |
| 1927 | auto PSL = std::get<PossiblySpeculatableLoad>(v: Op); |
| 1928 | I = PSL.getPointer(); |
| 1929 | Spec = PSL.getInt(); |
| 1930 | } |
| 1931 | if (Spec.areAllSpeculatable()) { |
| 1932 | speculateSelectInstLoads(SI, LI&: cast<LoadInst>(Val&: *I), IRB); |
| 1933 | } else { |
| 1934 | assert(DTU && "Should not get here when not allowed to modify the CFG!" ); |
| 1935 | rewriteMemOpOfSelect(SelInst&: SI, I&: *I, Spec, DTU&: *DTU); |
| 1936 | CFGChanged = true; |
| 1937 | } |
| 1938 | I->eraseFromParent(); |
| 1939 | } |
| 1940 | |
| 1941 | for (User *U : make_early_inc_range(Range: SI.users())) |
| 1942 | cast<BitCastInst>(Val: U)->eraseFromParent(); |
| 1943 | SI.eraseFromParent(); |
| 1944 | return CFGChanged; |
| 1945 | } |
| 1946 | |
| 1947 | /// Compute an adjusted pointer from Ptr by Offset bytes where the |
| 1948 | /// resulting pointer has PointerTy. |
| 1949 | static Value *getAdjustedPtr(IRBuilderTy &IRB, const DataLayout &DL, Value *Ptr, |
| 1950 | APInt Offset, Type *PointerTy, |
| 1951 | const Twine &NamePrefix) { |
| 1952 | if (Offset != 0) |
| 1953 | Ptr = IRB.CreateInBoundsPtrAdd(Ptr, Offset: IRB.getInt(AI: Offset), |
| 1954 | Name: NamePrefix + "sroa_idx" ); |
| 1955 | return IRB.CreatePointerBitCastOrAddrSpaceCast(V: Ptr, DestTy: PointerTy, |
| 1956 | Name: NamePrefix + "sroa_cast" ); |
| 1957 | } |
| 1958 | |
| 1959 | /// Compute the adjusted alignment for a load or store from an offset. |
| 1960 | static Align getAdjustedAlignment(Instruction *I, uint64_t Offset) { |
| 1961 | return commonAlignment(A: getLoadStoreAlignment(I), Offset); |
| 1962 | } |
| 1963 | |
| 1964 | /// Test whether we can convert a value from the old to the new type. |
| 1965 | /// |
| 1966 | /// This predicate should be used to guard calls to convertValue in order to |
| 1967 | /// ensure that we only try to convert viable values. The strategy is that we |
| 1968 | /// will peel off single element struct and array wrappings to get to an |
| 1969 | /// underlying value, and convert that value. |
| 1970 | static bool canConvertValue(const DataLayout &DL, Type *OldTy, Type *NewTy, |
| 1971 | unsigned VScale = 0) { |
| 1972 | if (OldTy == NewTy) |
| 1973 | return true; |
| 1974 | |
| 1975 | // For integer types, we can't handle any bit-width differences. This would |
| 1976 | // break both vector conversions with extension and introduce endianness |
| 1977 | // issues when in conjunction with loads and stores. |
| 1978 | if (isa<IntegerType>(Val: OldTy) && isa<IntegerType>(Val: NewTy)) { |
| 1979 | assert(cast<IntegerType>(OldTy)->getBitWidth() != |
| 1980 | cast<IntegerType>(NewTy)->getBitWidth() && |
| 1981 | "We can't have the same bitwidth for different int types" ); |
| 1982 | return false; |
| 1983 | } |
| 1984 | |
| 1985 | TypeSize NewSize = DL.getTypeSizeInBits(Ty: NewTy); |
| 1986 | TypeSize OldSize = DL.getTypeSizeInBits(Ty: OldTy); |
| 1987 | |
| 1988 | if ((isa<ScalableVectorType>(Val: NewTy) && isa<FixedVectorType>(Val: OldTy)) || |
| 1989 | (isa<ScalableVectorType>(Val: OldTy) && isa<FixedVectorType>(Val: NewTy))) { |
| 1990 | // Conversion is only possible when the size of scalable vectors is known. |
| 1991 | if (!VScale) |
| 1992 | return false; |
| 1993 | |
| 1994 | // For ptr-to-int and int-to-ptr casts, the pointer side is resolved within |
| 1995 | // a single domain (either fixed or scalable). Any additional conversion |
| 1996 | // between fixed and scalable types is handled through integer types. |
| 1997 | auto OldVTy = OldTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(OldTy) : OldTy; |
| 1998 | auto NewVTy = NewTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(NewTy) : NewTy; |
| 1999 | |
| 2000 | if (isa<ScalableVectorType>(Val: NewTy)) { |
| 2001 | if (!VectorType::getWithSizeAndScalar(SizeTy: cast<VectorType>(Val: NewVTy), EltTy: OldVTy)) |
| 2002 | return false; |
| 2003 | |
| 2004 | NewSize = TypeSize::getFixed(ExactSize: NewSize.getKnownMinValue() * VScale); |
| 2005 | } else { |
| 2006 | if (!VectorType::getWithSizeAndScalar(SizeTy: cast<VectorType>(Val: OldVTy), EltTy: NewVTy)) |
| 2007 | return false; |
| 2008 | |
| 2009 | OldSize = TypeSize::getFixed(ExactSize: OldSize.getKnownMinValue() * VScale); |
| 2010 | } |
| 2011 | } |
| 2012 | |
| 2013 | if (NewSize != OldSize) |
| 2014 | return false; |
| 2015 | if (!NewTy->isSingleValueType() || !OldTy->isSingleValueType()) |
| 2016 | return false; |
| 2017 | |
| 2018 | // We can convert pointers to integers and vice-versa. Same for vectors |
| 2019 | // of pointers and integers. |
| 2020 | OldTy = OldTy->getScalarType(); |
| 2021 | NewTy = NewTy->getScalarType(); |
| 2022 | if (NewTy->isPointerTy() || OldTy->isPointerTy()) { |
| 2023 | if (NewTy->isPointerTy() && OldTy->isPointerTy()) { |
| 2024 | unsigned OldAS = OldTy->getPointerAddressSpace(); |
| 2025 | unsigned NewAS = NewTy->getPointerAddressSpace(); |
| 2026 | // Convert pointers if they are pointers from the same address space or |
| 2027 | // different integral (not non-integral) address spaces with the same |
| 2028 | // pointer size. |
| 2029 | return OldAS == NewAS || |
| 2030 | (!DL.isNonIntegralAddressSpace(AddrSpace: OldAS) && |
| 2031 | !DL.isNonIntegralAddressSpace(AddrSpace: NewAS) && |
| 2032 | DL.getPointerSize(AS: OldAS) == DL.getPointerSize(AS: NewAS)); |
| 2033 | } |
| 2034 | |
| 2035 | // We can convert integers to integral pointers, but not to non-integral |
| 2036 | // pointers. |
| 2037 | if (OldTy->isIntegerTy()) |
| 2038 | return !DL.isNonIntegralPointerType(Ty: NewTy); |
| 2039 | |
| 2040 | // We can convert integral pointers to integers, but non-integral pointers |
| 2041 | // need to remain pointers. |
| 2042 | if (!DL.isNonIntegralPointerType(Ty: OldTy)) |
| 2043 | return NewTy->isIntegerTy(); |
| 2044 | |
| 2045 | return false; |
| 2046 | } |
| 2047 | |
| 2048 | if (OldTy->isTargetExtTy() || NewTy->isTargetExtTy()) |
| 2049 | return false; |
| 2050 | |
| 2051 | return true; |
| 2052 | } |
| 2053 | |
| 2054 | /// Test whether the given slice use can be promoted to a vector. |
| 2055 | /// |
| 2056 | /// This function is called to test each entry in a partition which is slated |
| 2057 | /// for a single slice. |
| 2058 | static bool isVectorPromotionViableForSlice(Partition &P, const Slice &S, |
| 2059 | VectorType *Ty, |
| 2060 | uint64_t ElementSize, |
| 2061 | const DataLayout &DL, |
| 2062 | unsigned VScale) { |
| 2063 | // First validate the slice offsets. |
| 2064 | uint64_t BeginOffset = |
| 2065 | std::max(a: S.beginOffset(), b: P.beginOffset()) - P.beginOffset(); |
| 2066 | uint64_t BeginIndex = BeginOffset / ElementSize; |
| 2067 | if (BeginIndex * ElementSize != BeginOffset || |
| 2068 | BeginIndex >= cast<FixedVectorType>(Val: Ty)->getNumElements()) |
| 2069 | return false; |
| 2070 | uint64_t EndOffset = std::min(a: S.endOffset(), b: P.endOffset()) - P.beginOffset(); |
| 2071 | uint64_t EndIndex = EndOffset / ElementSize; |
| 2072 | if (EndIndex * ElementSize != EndOffset || |
| 2073 | EndIndex > cast<FixedVectorType>(Val: Ty)->getNumElements()) |
| 2074 | return false; |
| 2075 | |
| 2076 | assert(EndIndex > BeginIndex && "Empty vector!" ); |
| 2077 | uint64_t NumElements = EndIndex - BeginIndex; |
| 2078 | Type *SliceTy = (NumElements == 1) |
| 2079 | ? Ty->getElementType() |
| 2080 | : FixedVectorType::get(ElementType: Ty->getElementType(), NumElts: NumElements); |
| 2081 | |
| 2082 | Type *SplitIntTy = |
| 2083 | Type::getIntNTy(C&: Ty->getContext(), N: NumElements * ElementSize * 8); |
| 2084 | |
| 2085 | Use *U = S.getUse(); |
| 2086 | |
| 2087 | if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(Val: U->getUser())) { |
| 2088 | if (MI->isVolatile()) |
| 2089 | return false; |
| 2090 | if (!S.isSplittable()) |
| 2091 | return false; // Skip any unsplittable intrinsics. |
| 2092 | } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Val: U->getUser())) { |
| 2093 | if (!II->isLifetimeStartOrEnd() && !II->isDroppable()) |
| 2094 | return false; |
| 2095 | } else if (LoadInst *LI = dyn_cast<LoadInst>(Val: U->getUser())) { |
| 2096 | if (LI->isVolatile()) |
| 2097 | return false; |
| 2098 | Type *LTy = LI->getType(); |
| 2099 | // Disable vector promotion when there are loads or stores of an FCA. |
| 2100 | if (LTy->isStructTy()) |
| 2101 | return false; |
| 2102 | if (P.beginOffset() > S.beginOffset() || P.endOffset() < S.endOffset()) { |
| 2103 | assert(LTy->isIntegerTy()); |
| 2104 | LTy = SplitIntTy; |
| 2105 | } |
| 2106 | if (!canConvertValue(DL, OldTy: SliceTy, NewTy: LTy, VScale)) |
| 2107 | return false; |
| 2108 | } else if (StoreInst *SI = dyn_cast<StoreInst>(Val: U->getUser())) { |
| 2109 | if (SI->isVolatile()) |
| 2110 | return false; |
| 2111 | Type *STy = SI->getValueOperand()->getType(); |
| 2112 | // Disable vector promotion when there are loads or stores of an FCA. |
| 2113 | if (STy->isStructTy()) |
| 2114 | return false; |
| 2115 | if (P.beginOffset() > S.beginOffset() || P.endOffset() < S.endOffset()) { |
| 2116 | assert(STy->isIntegerTy()); |
| 2117 | STy = SplitIntTy; |
| 2118 | } |
| 2119 | if (!canConvertValue(DL, OldTy: STy, NewTy: SliceTy, VScale)) |
| 2120 | return false; |
| 2121 | } else { |
| 2122 | return false; |
| 2123 | } |
| 2124 | |
| 2125 | return true; |
| 2126 | } |
| 2127 | |
| 2128 | /// Test whether any vector type in \p CandidateTys is viable for promotion. |
| 2129 | /// |
| 2130 | /// This implements the necessary checking for \c isVectorPromotionViable over |
| 2131 | /// all slices of the alloca for the given VectorType. |
| 2132 | static VectorType * |
| 2133 | checkVectorTypesForPromotion(Partition &P, const DataLayout &DL, |
| 2134 | SmallVectorImpl<VectorType *> &CandidateTys, |
| 2135 | bool HaveCommonEltTy, Type *CommonEltTy, |
| 2136 | bool HaveVecPtrTy, bool HaveCommonVecPtrTy, |
| 2137 | VectorType *CommonVecPtrTy, unsigned VScale) { |
| 2138 | // If we didn't find a vector type, nothing to do here. |
| 2139 | if (CandidateTys.empty()) |
| 2140 | return nullptr; |
| 2141 | |
| 2142 | // Pointer-ness is sticky, if we had a vector-of-pointers candidate type, |
| 2143 | // then we should choose it, not some other alternative. |
| 2144 | // But, we can't perform a no-op pointer address space change via bitcast, |
| 2145 | // so if we didn't have a common pointer element type, bail. |
| 2146 | if (HaveVecPtrTy && !HaveCommonVecPtrTy) |
| 2147 | return nullptr; |
| 2148 | |
| 2149 | // Try to pick the "best" element type out of the choices. |
| 2150 | if (!HaveCommonEltTy && HaveVecPtrTy) { |
| 2151 | // If there was a pointer element type, there's really only one choice. |
| 2152 | CandidateTys.clear(); |
| 2153 | CandidateTys.push_back(Elt: CommonVecPtrTy); |
| 2154 | } else if (!HaveCommonEltTy && !HaveVecPtrTy) { |
| 2155 | // Integer-ify vector types. |
| 2156 | for (VectorType *&VTy : CandidateTys) { |
| 2157 | if (!VTy->getElementType()->isIntegerTy()) |
| 2158 | VTy = cast<VectorType>(Val: VTy->getWithNewType(EltTy: IntegerType::getIntNTy( |
| 2159 | C&: VTy->getContext(), N: VTy->getScalarSizeInBits()))); |
| 2160 | } |
| 2161 | |
| 2162 | // Rank the remaining candidate vector types. This is easy because we know |
| 2163 | // they're all integer vectors. We sort by ascending number of elements. |
| 2164 | auto RankVectorTypesComp = [&DL](VectorType *RHSTy, VectorType *LHSTy) { |
| 2165 | (void)DL; |
| 2166 | assert(DL.getTypeSizeInBits(RHSTy).getFixedValue() == |
| 2167 | DL.getTypeSizeInBits(LHSTy).getFixedValue() && |
| 2168 | "Cannot have vector types of different sizes!" ); |
| 2169 | assert(RHSTy->getElementType()->isIntegerTy() && |
| 2170 | "All non-integer types eliminated!" ); |
| 2171 | assert(LHSTy->getElementType()->isIntegerTy() && |
| 2172 | "All non-integer types eliminated!" ); |
| 2173 | return cast<FixedVectorType>(Val: RHSTy)->getNumElements() < |
| 2174 | cast<FixedVectorType>(Val: LHSTy)->getNumElements(); |
| 2175 | }; |
| 2176 | auto RankVectorTypesEq = [&DL](VectorType *RHSTy, VectorType *LHSTy) { |
| 2177 | (void)DL; |
| 2178 | assert(DL.getTypeSizeInBits(RHSTy).getFixedValue() == |
| 2179 | DL.getTypeSizeInBits(LHSTy).getFixedValue() && |
| 2180 | "Cannot have vector types of different sizes!" ); |
| 2181 | assert(RHSTy->getElementType()->isIntegerTy() && |
| 2182 | "All non-integer types eliminated!" ); |
| 2183 | assert(LHSTy->getElementType()->isIntegerTy() && |
| 2184 | "All non-integer types eliminated!" ); |
| 2185 | return cast<FixedVectorType>(Val: RHSTy)->getNumElements() == |
| 2186 | cast<FixedVectorType>(Val: LHSTy)->getNumElements(); |
| 2187 | }; |
| 2188 | llvm::sort(C&: CandidateTys, Comp: RankVectorTypesComp); |
| 2189 | CandidateTys.erase(CS: llvm::unique(R&: CandidateTys, P: RankVectorTypesEq), |
| 2190 | CE: CandidateTys.end()); |
| 2191 | } else { |
| 2192 | // The only way to have the same element type in every vector type is to |
| 2193 | // have the same vector type. Check that and remove all but one. |
| 2194 | #ifndef NDEBUG |
| 2195 | for (VectorType *VTy : CandidateTys) { |
| 2196 | assert(VTy->getElementType() == CommonEltTy && |
| 2197 | "Unaccounted for element type!" ); |
| 2198 | assert(VTy == CandidateTys[0] && |
| 2199 | "Different vector types with the same element type!" ); |
| 2200 | } |
| 2201 | #endif |
| 2202 | CandidateTys.resize(N: 1); |
| 2203 | } |
| 2204 | |
| 2205 | // FIXME: hack. Do we have a named constant for this? |
| 2206 | // SDAG SDNode can't have more than 65535 operands. |
| 2207 | llvm::erase_if(C&: CandidateTys, P: [](VectorType *VTy) { |
| 2208 | return cast<FixedVectorType>(Val: VTy)->getNumElements() > |
| 2209 | std::numeric_limits<unsigned short>::max(); |
| 2210 | }); |
| 2211 | |
| 2212 | // Find a vector type viable for promotion by iterating over all slices. |
| 2213 | auto *VTy = llvm::find_if(Range&: CandidateTys, P: [&](VectorType *VTy) -> bool { |
| 2214 | uint64_t ElementSize = |
| 2215 | DL.getTypeSizeInBits(Ty: VTy->getElementType()).getFixedValue(); |
| 2216 | |
| 2217 | // While the definition of LLVM vectors is bitpacked, we don't support sizes |
| 2218 | // that aren't byte sized. |
| 2219 | if (ElementSize % 8) |
| 2220 | return false; |
| 2221 | assert((DL.getTypeSizeInBits(VTy).getFixedValue() % 8) == 0 && |
| 2222 | "vector size not a multiple of element size?" ); |
| 2223 | ElementSize /= 8; |
| 2224 | |
| 2225 | for (const Slice &S : P) |
| 2226 | if (!isVectorPromotionViableForSlice(P, S, Ty: VTy, ElementSize, DL, VScale)) |
| 2227 | return false; |
| 2228 | |
| 2229 | for (const Slice *S : P.splitSliceTails()) |
| 2230 | if (!isVectorPromotionViableForSlice(P, S: *S, Ty: VTy, ElementSize, DL, VScale)) |
| 2231 | return false; |
| 2232 | |
| 2233 | return true; |
| 2234 | }); |
| 2235 | return VTy != CandidateTys.end() ? *VTy : nullptr; |
| 2236 | } |
| 2237 | |
| 2238 | static VectorType *createAndCheckVectorTypesForPromotion( |
| 2239 | SetVector<Type *> &OtherTys, ArrayRef<VectorType *> CandidateTysCopy, |
| 2240 | function_ref<void(Type *)> CheckCandidateType, Partition &P, |
| 2241 | const DataLayout &DL, SmallVectorImpl<VectorType *> &CandidateTys, |
| 2242 | bool &HaveCommonEltTy, Type *&CommonEltTy, bool &HaveVecPtrTy, |
| 2243 | bool &HaveCommonVecPtrTy, VectorType *&CommonVecPtrTy, unsigned VScale) { |
| 2244 | [[maybe_unused]] VectorType *OriginalElt = |
| 2245 | CandidateTysCopy.size() ? CandidateTysCopy[0] : nullptr; |
| 2246 | // Consider additional vector types where the element type size is a |
| 2247 | // multiple of load/store element size. |
| 2248 | for (Type *Ty : OtherTys) { |
| 2249 | if (!VectorType::isValidElementType(ElemTy: Ty)) |
| 2250 | continue; |
| 2251 | unsigned TypeSize = DL.getTypeSizeInBits(Ty).getFixedValue(); |
| 2252 | // Make a copy of CandidateTys and iterate through it, because we |
| 2253 | // might append to CandidateTys in the loop. |
| 2254 | for (VectorType *const VTy : CandidateTysCopy) { |
| 2255 | // The elements in the copy should remain invariant throughout the loop |
| 2256 | assert(CandidateTysCopy[0] == OriginalElt && "Different Element" ); |
| 2257 | unsigned VectorSize = DL.getTypeSizeInBits(Ty: VTy).getFixedValue(); |
| 2258 | unsigned ElementSize = |
| 2259 | DL.getTypeSizeInBits(Ty: VTy->getElementType()).getFixedValue(); |
| 2260 | if (TypeSize != VectorSize && TypeSize != ElementSize && |
| 2261 | VectorSize % TypeSize == 0) { |
| 2262 | VectorType *NewVTy = VectorType::get(ElementType: Ty, NumElements: VectorSize / TypeSize, Scalable: false); |
| 2263 | CheckCandidateType(NewVTy); |
| 2264 | } |
| 2265 | } |
| 2266 | } |
| 2267 | |
| 2268 | return checkVectorTypesForPromotion( |
| 2269 | P, DL, CandidateTys, HaveCommonEltTy, CommonEltTy, HaveVecPtrTy, |
| 2270 | HaveCommonVecPtrTy, CommonVecPtrTy, VScale); |
| 2271 | } |
| 2272 | |
| 2273 | /// Test whether the given alloca partitioning and range of slices can be |
| 2274 | /// promoted to a vector. |
| 2275 | /// |
| 2276 | /// This is a quick test to check whether we can rewrite a particular alloca |
| 2277 | /// partition (and its newly formed alloca) into a vector alloca with only |
| 2278 | /// whole-vector loads and stores such that it could be promoted to a vector |
| 2279 | /// SSA value. We only can ensure this for a limited set of operations, and we |
| 2280 | /// don't want to do the rewrites unless we are confident that the result will |
| 2281 | /// be promotable, so we have an early test here. |
| 2282 | static VectorType *isVectorPromotionViable(Partition &P, const DataLayout &DL, |
| 2283 | unsigned VScale) { |
| 2284 | // Collect the candidate types for vector-based promotion. Also track whether |
| 2285 | // we have different element types. |
| 2286 | SmallVector<VectorType *, 4> CandidateTys; |
| 2287 | SetVector<Type *> LoadStoreTys; |
| 2288 | SetVector<Type *> DeferredTys; |
| 2289 | Type *CommonEltTy = nullptr; |
| 2290 | VectorType *CommonVecPtrTy = nullptr; |
| 2291 | bool HaveVecPtrTy = false; |
| 2292 | bool HaveCommonEltTy = true; |
| 2293 | bool HaveCommonVecPtrTy = true; |
| 2294 | auto CheckCandidateType = [&](Type *Ty) { |
| 2295 | if (auto *VTy = dyn_cast<FixedVectorType>(Val: Ty)) { |
| 2296 | // Return if bitcast to vectors is different for total size in bits. |
| 2297 | if (!CandidateTys.empty()) { |
| 2298 | VectorType *V = CandidateTys[0]; |
| 2299 | if (DL.getTypeSizeInBits(Ty: VTy).getFixedValue() != |
| 2300 | DL.getTypeSizeInBits(Ty: V).getFixedValue()) { |
| 2301 | CandidateTys.clear(); |
| 2302 | return; |
| 2303 | } |
| 2304 | } |
| 2305 | CandidateTys.push_back(Elt: VTy); |
| 2306 | Type *EltTy = VTy->getElementType(); |
| 2307 | |
| 2308 | if (!CommonEltTy) |
| 2309 | CommonEltTy = EltTy; |
| 2310 | else if (CommonEltTy != EltTy) |
| 2311 | HaveCommonEltTy = false; |
| 2312 | |
| 2313 | if (EltTy->isPointerTy()) { |
| 2314 | HaveVecPtrTy = true; |
| 2315 | if (!CommonVecPtrTy) |
| 2316 | CommonVecPtrTy = VTy; |
| 2317 | else if (CommonVecPtrTy != VTy) |
| 2318 | HaveCommonVecPtrTy = false; |
| 2319 | } |
| 2320 | } |
| 2321 | }; |
| 2322 | |
| 2323 | // Put load and store types into a set for de-duplication. |
| 2324 | for (const Slice &S : P) { |
| 2325 | Type *Ty; |
| 2326 | if (auto *LI = dyn_cast<LoadInst>(Val: S.getUse()->getUser())) |
| 2327 | Ty = LI->getType(); |
| 2328 | else if (auto *SI = dyn_cast<StoreInst>(Val: S.getUse()->getUser())) |
| 2329 | Ty = SI->getValueOperand()->getType(); |
| 2330 | else |
| 2331 | continue; |
| 2332 | |
| 2333 | auto CandTy = Ty->getScalarType(); |
| 2334 | if (CandTy->isPointerTy() && (S.beginOffset() != P.beginOffset() || |
| 2335 | S.endOffset() != P.endOffset())) { |
| 2336 | DeferredTys.insert(X: Ty); |
| 2337 | continue; |
| 2338 | } |
| 2339 | |
| 2340 | LoadStoreTys.insert(X: Ty); |
| 2341 | // Consider any loads or stores that are the exact size of the slice. |
| 2342 | if (S.beginOffset() == P.beginOffset() && S.endOffset() == P.endOffset()) |
| 2343 | CheckCandidateType(Ty); |
| 2344 | } |
| 2345 | |
| 2346 | SmallVector<VectorType *, 4> CandidateTysCopy = CandidateTys; |
| 2347 | if (auto *VTy = createAndCheckVectorTypesForPromotion( |
| 2348 | OtherTys&: LoadStoreTys, CandidateTysCopy, CheckCandidateType, P, DL, |
| 2349 | CandidateTys, HaveCommonEltTy, CommonEltTy, HaveVecPtrTy, |
| 2350 | HaveCommonVecPtrTy, CommonVecPtrTy, VScale)) |
| 2351 | return VTy; |
| 2352 | |
| 2353 | CandidateTys.clear(); |
| 2354 | return createAndCheckVectorTypesForPromotion( |
| 2355 | OtherTys&: DeferredTys, CandidateTysCopy, CheckCandidateType, P, DL, CandidateTys, |
| 2356 | HaveCommonEltTy, CommonEltTy, HaveVecPtrTy, HaveCommonVecPtrTy, |
| 2357 | CommonVecPtrTy, VScale); |
| 2358 | } |
| 2359 | |
| 2360 | /// Test whether a slice of an alloca is valid for integer widening. |
| 2361 | /// |
| 2362 | /// This implements the necessary checking for the \c isIntegerWideningViable |
| 2363 | /// test below on a single slice of the alloca. |
| 2364 | static bool isIntegerWideningViableForSlice(const Slice &S, |
| 2365 | uint64_t AllocBeginOffset, |
| 2366 | Type *AllocaTy, |
| 2367 | const DataLayout &DL, |
| 2368 | bool &WholeAllocaOp) { |
| 2369 | uint64_t Size = DL.getTypeStoreSize(Ty: AllocaTy).getFixedValue(); |
| 2370 | |
| 2371 | uint64_t RelBegin = S.beginOffset() - AllocBeginOffset; |
| 2372 | uint64_t RelEnd = S.endOffset() - AllocBeginOffset; |
| 2373 | |
| 2374 | Use *U = S.getUse(); |
| 2375 | |
| 2376 | // Lifetime intrinsics operate over the whole alloca whose sizes are usually |
| 2377 | // larger than other load/store slices (RelEnd > Size). But lifetime are |
| 2378 | // always promotable and should not impact other slices' promotability of the |
| 2379 | // partition. |
| 2380 | if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Val: U->getUser())) { |
| 2381 | if (II->isLifetimeStartOrEnd() || II->isDroppable()) |
| 2382 | return true; |
| 2383 | } |
| 2384 | |
| 2385 | // We can't reasonably handle cases where the load or store extends past |
| 2386 | // the end of the alloca's type and into its padding. |
| 2387 | if (RelEnd > Size) |
| 2388 | return false; |
| 2389 | |
| 2390 | if (LoadInst *LI = dyn_cast<LoadInst>(Val: U->getUser())) { |
| 2391 | if (LI->isVolatile()) |
| 2392 | return false; |
| 2393 | // We can't handle loads that extend past the allocated memory. |
| 2394 | TypeSize LoadSize = DL.getTypeStoreSize(Ty: LI->getType()); |
| 2395 | if (!LoadSize.isFixed() || LoadSize.getFixedValue() > Size) |
| 2396 | return false; |
| 2397 | // So far, AllocaSliceRewriter does not support widening split slice tails |
| 2398 | // in rewriteIntegerLoad. |
| 2399 | if (S.beginOffset() < AllocBeginOffset) |
| 2400 | return false; |
| 2401 | // Note that we don't count vector loads or stores as whole-alloca |
| 2402 | // operations which enable integer widening because we would prefer to use |
| 2403 | // vector widening instead. |
| 2404 | if (!isa<VectorType>(Val: LI->getType()) && RelBegin == 0 && RelEnd == Size) |
| 2405 | WholeAllocaOp = true; |
| 2406 | if (IntegerType *ITy = dyn_cast<IntegerType>(Val: LI->getType())) { |
| 2407 | if (ITy->getBitWidth() < DL.getTypeStoreSizeInBits(Ty: ITy).getFixedValue()) |
| 2408 | return false; |
| 2409 | } else if (RelBegin != 0 || RelEnd != Size || |
| 2410 | !canConvertValue(DL, OldTy: AllocaTy, NewTy: LI->getType())) { |
| 2411 | // Non-integer loads need to be convertible from the alloca type so that |
| 2412 | // they are promotable. |
| 2413 | return false; |
| 2414 | } |
| 2415 | } else if (StoreInst *SI = dyn_cast<StoreInst>(Val: U->getUser())) { |
| 2416 | Type *ValueTy = SI->getValueOperand()->getType(); |
| 2417 | if (SI->isVolatile()) |
| 2418 | return false; |
| 2419 | // We can't handle stores that extend past the allocated memory. |
| 2420 | TypeSize StoreSize = DL.getTypeStoreSize(Ty: ValueTy); |
| 2421 | if (!StoreSize.isFixed() || StoreSize.getFixedValue() > Size) |
| 2422 | return false; |
| 2423 | // So far, AllocaSliceRewriter does not support widening split slice tails |
| 2424 | // in rewriteIntegerStore. |
| 2425 | if (S.beginOffset() < AllocBeginOffset) |
| 2426 | return false; |
| 2427 | // Note that we don't count vector loads or stores as whole-alloca |
| 2428 | // operations which enable integer widening because we would prefer to use |
| 2429 | // vector widening instead. |
| 2430 | if (!isa<VectorType>(Val: ValueTy) && RelBegin == 0 && RelEnd == Size) |
| 2431 | WholeAllocaOp = true; |
| 2432 | if (IntegerType *ITy = dyn_cast<IntegerType>(Val: ValueTy)) { |
| 2433 | if (ITy->getBitWidth() < DL.getTypeStoreSizeInBits(Ty: ITy).getFixedValue()) |
| 2434 | return false; |
| 2435 | } else if (RelBegin != 0 || RelEnd != Size || |
| 2436 | !canConvertValue(DL, OldTy: ValueTy, NewTy: AllocaTy)) { |
| 2437 | // Non-integer stores need to be convertible to the alloca type so that |
| 2438 | // they are promotable. |
| 2439 | return false; |
| 2440 | } |
| 2441 | } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(Val: U->getUser())) { |
| 2442 | if (MI->isVolatile() || !isa<Constant>(Val: MI->getLength())) |
| 2443 | return false; |
| 2444 | if (!S.isSplittable()) |
| 2445 | return false; // Skip any unsplittable intrinsics. |
| 2446 | } else { |
| 2447 | return false; |
| 2448 | } |
| 2449 | |
| 2450 | return true; |
| 2451 | } |
| 2452 | |
| 2453 | /// Test whether the given alloca partition's integer operations can be |
| 2454 | /// widened to promotable ones. |
| 2455 | /// |
| 2456 | /// This is a quick test to check whether we can rewrite the integer loads and |
| 2457 | /// stores to a particular alloca into wider loads and stores and be able to |
| 2458 | /// promote the resulting alloca. |
| 2459 | static bool isIntegerWideningViable(Partition &P, Type *AllocaTy, |
| 2460 | const DataLayout &DL) { |
| 2461 | uint64_t SizeInBits = DL.getTypeSizeInBits(Ty: AllocaTy).getFixedValue(); |
| 2462 | // Don't create integer types larger than the maximum bitwidth. |
| 2463 | if (SizeInBits > IntegerType::MAX_INT_BITS) |
| 2464 | return false; |
| 2465 | |
| 2466 | // Don't try to handle allocas with bit-padding. |
| 2467 | if (SizeInBits != DL.getTypeStoreSizeInBits(Ty: AllocaTy).getFixedValue()) |
| 2468 | return false; |
| 2469 | |
| 2470 | // We need to ensure that an integer type with the appropriate bitwidth can |
| 2471 | // be converted to the alloca type, whatever that is. We don't want to force |
| 2472 | // the alloca itself to have an integer type if there is a more suitable one. |
| 2473 | Type *IntTy = Type::getIntNTy(C&: AllocaTy->getContext(), N: SizeInBits); |
| 2474 | if (!canConvertValue(DL, OldTy: AllocaTy, NewTy: IntTy) || |
| 2475 | !canConvertValue(DL, OldTy: IntTy, NewTy: AllocaTy)) |
| 2476 | return false; |
| 2477 | |
| 2478 | // While examining uses, we ensure that the alloca has a covering load or |
| 2479 | // store. We don't want to widen the integer operations only to fail to |
| 2480 | // promote due to some other unsplittable entry (which we may make splittable |
| 2481 | // later). However, if there are only splittable uses, go ahead and assume |
| 2482 | // that we cover the alloca. |
| 2483 | // FIXME: We shouldn't consider split slices that happen to start in the |
| 2484 | // partition here... |
| 2485 | bool WholeAllocaOp = P.empty() && DL.isLegalInteger(Width: SizeInBits); |
| 2486 | |
| 2487 | for (const Slice &S : P) |
| 2488 | if (!isIntegerWideningViableForSlice(S, AllocBeginOffset: P.beginOffset(), AllocaTy, DL, |
| 2489 | WholeAllocaOp)) |
| 2490 | return false; |
| 2491 | |
| 2492 | for (const Slice *S : P.splitSliceTails()) |
| 2493 | if (!isIntegerWideningViableForSlice(S: *S, AllocBeginOffset: P.beginOffset(), AllocaTy, DL, |
| 2494 | WholeAllocaOp)) |
| 2495 | return false; |
| 2496 | |
| 2497 | return WholeAllocaOp; |
| 2498 | } |
| 2499 | |
| 2500 | static Value *(const DataLayout &DL, IRBuilderTy &IRB, Value *V, |
| 2501 | IntegerType *Ty, uint64_t Offset, |
| 2502 | const Twine &Name) { |
| 2503 | LLVM_DEBUG(dbgs() << " start: " << *V << "\n" ); |
| 2504 | IntegerType *IntTy = cast<IntegerType>(Val: V->getType()); |
| 2505 | assert(DL.getTypeStoreSize(Ty).getFixedValue() + Offset <= |
| 2506 | DL.getTypeStoreSize(IntTy).getFixedValue() && |
| 2507 | "Element extends past full value" ); |
| 2508 | uint64_t ShAmt = 8 * Offset; |
| 2509 | if (DL.isBigEndian()) |
| 2510 | ShAmt = 8 * (DL.getTypeStoreSize(Ty: IntTy).getFixedValue() - |
| 2511 | DL.getTypeStoreSize(Ty).getFixedValue() - Offset); |
| 2512 | if (ShAmt) { |
| 2513 | V = IRB.CreateLShr(LHS: V, RHS: ShAmt, Name: Name + ".shift" ); |
| 2514 | LLVM_DEBUG(dbgs() << " shifted: " << *V << "\n" ); |
| 2515 | } |
| 2516 | assert(Ty->getBitWidth() <= IntTy->getBitWidth() && |
| 2517 | "Cannot extract to a larger integer!" ); |
| 2518 | if (Ty != IntTy) { |
| 2519 | V = IRB.CreateTrunc(V, DestTy: Ty, Name: Name + ".trunc" ); |
| 2520 | LLVM_DEBUG(dbgs() << " trunced: " << *V << "\n" ); |
| 2521 | } |
| 2522 | return V; |
| 2523 | } |
| 2524 | |
| 2525 | static Value *insertInteger(const DataLayout &DL, IRBuilderTy &IRB, Value *Old, |
| 2526 | Value *V, uint64_t Offset, const Twine &Name) { |
| 2527 | IntegerType *IntTy = cast<IntegerType>(Val: Old->getType()); |
| 2528 | IntegerType *Ty = cast<IntegerType>(Val: V->getType()); |
| 2529 | assert(Ty->getBitWidth() <= IntTy->getBitWidth() && |
| 2530 | "Cannot insert a larger integer!" ); |
| 2531 | LLVM_DEBUG(dbgs() << " start: " << *V << "\n" ); |
| 2532 | if (Ty != IntTy) { |
| 2533 | V = IRB.CreateZExt(V, DestTy: IntTy, Name: Name + ".ext" ); |
| 2534 | LLVM_DEBUG(dbgs() << " extended: " << *V << "\n" ); |
| 2535 | } |
| 2536 | assert(DL.getTypeStoreSize(Ty).getFixedValue() + Offset <= |
| 2537 | DL.getTypeStoreSize(IntTy).getFixedValue() && |
| 2538 | "Element store outside of alloca store" ); |
| 2539 | uint64_t ShAmt = 8 * Offset; |
| 2540 | if (DL.isBigEndian()) |
| 2541 | ShAmt = 8 * (DL.getTypeStoreSize(Ty: IntTy).getFixedValue() - |
| 2542 | DL.getTypeStoreSize(Ty).getFixedValue() - Offset); |
| 2543 | if (ShAmt) { |
| 2544 | V = IRB.CreateShl(LHS: V, RHS: ShAmt, Name: Name + ".shift" ); |
| 2545 | LLVM_DEBUG(dbgs() << " shifted: " << *V << "\n" ); |
| 2546 | } |
| 2547 | |
| 2548 | if (ShAmt || Ty->getBitWidth() < IntTy->getBitWidth()) { |
| 2549 | APInt Mask = ~Ty->getMask().zext(width: IntTy->getBitWidth()).shl(shiftAmt: ShAmt); |
| 2550 | Old = IRB.CreateAnd(LHS: Old, RHS: Mask, Name: Name + ".mask" ); |
| 2551 | LLVM_DEBUG(dbgs() << " masked: " << *Old << "\n" ); |
| 2552 | V = IRB.CreateOr(LHS: Old, RHS: V, Name: Name + ".insert" ); |
| 2553 | LLVM_DEBUG(dbgs() << " inserted: " << *V << "\n" ); |
| 2554 | } |
| 2555 | return V; |
| 2556 | } |
| 2557 | |
| 2558 | static Value *(IRBuilderTy &IRB, Value *V, unsigned BeginIndex, |
| 2559 | unsigned EndIndex, const Twine &Name) { |
| 2560 | auto *VecTy = cast<FixedVectorType>(Val: V->getType()); |
| 2561 | unsigned NumElements = EndIndex - BeginIndex; |
| 2562 | assert(NumElements <= VecTy->getNumElements() && "Too many elements!" ); |
| 2563 | |
| 2564 | if (NumElements == VecTy->getNumElements()) |
| 2565 | return V; |
| 2566 | |
| 2567 | if (NumElements == 1) { |
| 2568 | V = IRB.CreateExtractElement(Vec: V, Idx: IRB.getInt32(C: BeginIndex), |
| 2569 | Name: Name + ".extract" ); |
| 2570 | LLVM_DEBUG(dbgs() << " extract: " << *V << "\n" ); |
| 2571 | return V; |
| 2572 | } |
| 2573 | |
| 2574 | auto Mask = llvm::to_vector<8>(Range: llvm::seq<int>(Begin: BeginIndex, End: EndIndex)); |
| 2575 | V = IRB.CreateShuffleVector(V, Mask, Name: Name + ".extract" ); |
| 2576 | LLVM_DEBUG(dbgs() << " shuffle: " << *V << "\n" ); |
| 2577 | return V; |
| 2578 | } |
| 2579 | |
| 2580 | static Value *insertVector(IRBuilderTy &IRB, Value *Old, Value *V, |
| 2581 | unsigned BeginIndex, const Twine &Name) { |
| 2582 | VectorType *VecTy = cast<VectorType>(Val: Old->getType()); |
| 2583 | assert(VecTy && "Can only insert a vector into a vector" ); |
| 2584 | |
| 2585 | VectorType *Ty = dyn_cast<VectorType>(Val: V->getType()); |
| 2586 | if (!Ty) { |
| 2587 | // Single element to insert. |
| 2588 | V = IRB.CreateInsertElement(Vec: Old, NewElt: V, Idx: IRB.getInt32(C: BeginIndex), |
| 2589 | Name: Name + ".insert" ); |
| 2590 | LLVM_DEBUG(dbgs() << " insert: " << *V << "\n" ); |
| 2591 | return V; |
| 2592 | } |
| 2593 | |
| 2594 | unsigned NumSubElements = cast<FixedVectorType>(Val: Ty)->getNumElements(); |
| 2595 | unsigned NumElements = cast<FixedVectorType>(Val: VecTy)->getNumElements(); |
| 2596 | |
| 2597 | assert(NumSubElements <= NumElements && "Too many elements!" ); |
| 2598 | if (NumSubElements == NumElements) { |
| 2599 | assert(V->getType() == VecTy && "Vector type mismatch" ); |
| 2600 | return V; |
| 2601 | } |
| 2602 | unsigned EndIndex = BeginIndex + NumSubElements; |
| 2603 | |
| 2604 | // When inserting a smaller vector into the larger to store, we first |
| 2605 | // use a shuffle vector to widen it with undef elements, and then |
| 2606 | // a second shuffle vector to select between the loaded vector and the |
| 2607 | // incoming vector. |
| 2608 | SmallVector<int, 8> Mask; |
| 2609 | Mask.reserve(N: NumElements); |
| 2610 | for (unsigned Idx = 0; Idx != NumElements; ++Idx) |
| 2611 | if (Idx >= BeginIndex && Idx < EndIndex) |
| 2612 | Mask.push_back(Elt: Idx - BeginIndex); |
| 2613 | else |
| 2614 | Mask.push_back(Elt: -1); |
| 2615 | V = IRB.CreateShuffleVector(V, Mask, Name: Name + ".expand" ); |
| 2616 | LLVM_DEBUG(dbgs() << " shuffle: " << *V << "\n" ); |
| 2617 | |
| 2618 | Mask.clear(); |
| 2619 | for (unsigned Idx = 0; Idx != NumElements; ++Idx) |
| 2620 | if (Idx >= BeginIndex && Idx < EndIndex) |
| 2621 | Mask.push_back(Elt: Idx); |
| 2622 | else |
| 2623 | Mask.push_back(Elt: Idx + NumElements); |
| 2624 | V = IRB.CreateShuffleVector(V1: V, V2: Old, Mask, Name: Name + "blend" ); |
| 2625 | LLVM_DEBUG(dbgs() << " blend: " << *V << "\n" ); |
| 2626 | return V; |
| 2627 | } |
| 2628 | |
| 2629 | /// This function takes two vector values and combines them into a single vector |
| 2630 | /// by concatenating their elements. The function handles: |
| 2631 | /// |
| 2632 | /// 1. Element type mismatch: If either vector's element type differs from |
| 2633 | /// NewAIEltType, the function bitcasts the vector to use NewAIEltType while |
| 2634 | /// preserving the total bit width (adjusting the number of elements |
| 2635 | /// accordingly). |
| 2636 | /// |
| 2637 | /// 2. Size mismatch: After transforming the vectors to have the desired element |
| 2638 | /// type, if the two vectors have different numbers of elements, the smaller |
| 2639 | /// vector is extended with poison values to match the size of the larger |
| 2640 | /// vector before concatenation. |
| 2641 | /// |
| 2642 | /// 3. Concatenation: The vectors are merged using a shuffle operation that |
| 2643 | /// places all elements of V0 first, followed by all elements of V1. |
| 2644 | /// |
| 2645 | /// \param V0 The first vector to merge (must be a vector type) |
| 2646 | /// \param V1 The second vector to merge (must be a vector type) |
| 2647 | /// \param DL The data layout for size calculations |
| 2648 | /// \param NewAIEltTy The desired element type for the result vector |
| 2649 | /// \param Builder IRBuilder for creating new instructions |
| 2650 | /// \return A new vector containing all elements from V0 followed by all |
| 2651 | /// elements from V1 |
| 2652 | static Value *mergeTwoVectors(Value *V0, Value *V1, const DataLayout &DL, |
| 2653 | Type *NewAIEltTy, IRBuilder<> &Builder) { |
| 2654 | // V0 and V1 are vectors |
| 2655 | // Create a new vector type with combined elements |
| 2656 | // Use ShuffleVector to concatenate the vectors |
| 2657 | auto *VecType0 = cast<FixedVectorType>(Val: V0->getType()); |
| 2658 | auto *VecType1 = cast<FixedVectorType>(Val: V1->getType()); |
| 2659 | |
| 2660 | // If V0/V1 element types are different from NewAllocaElementType, |
| 2661 | // we need to introduce bitcasts before merging them |
| 2662 | auto BitcastIfNeeded = [&](Value *&V, FixedVectorType *&VecType, |
| 2663 | const char *DebugName) { |
| 2664 | Type *EltType = VecType->getElementType(); |
| 2665 | if (EltType != NewAIEltTy) { |
| 2666 | // Calculate new number of elements to maintain same bit width |
| 2667 | unsigned TotalBits = |
| 2668 | VecType->getNumElements() * DL.getTypeSizeInBits(Ty: EltType); |
| 2669 | unsigned NewNumElts = TotalBits / DL.getTypeSizeInBits(Ty: NewAIEltTy); |
| 2670 | |
| 2671 | auto *NewVecType = FixedVectorType::get(ElementType: NewAIEltTy, NumElts: NewNumElts); |
| 2672 | V = Builder.CreateBitCast(V, DestTy: NewVecType); |
| 2673 | VecType = NewVecType; |
| 2674 | LLVM_DEBUG(dbgs() << " bitcast " << DebugName << ": " << *V << "\n" ); |
| 2675 | } |
| 2676 | }; |
| 2677 | |
| 2678 | BitcastIfNeeded(V0, VecType0, "V0" ); |
| 2679 | BitcastIfNeeded(V1, VecType1, "V1" ); |
| 2680 | |
| 2681 | unsigned NumElts0 = VecType0->getNumElements(); |
| 2682 | unsigned NumElts1 = VecType1->getNumElements(); |
| 2683 | |
| 2684 | SmallVector<int, 16> ShuffleMask; |
| 2685 | |
| 2686 | if (NumElts0 == NumElts1) { |
| 2687 | for (unsigned i = 0; i < NumElts0 + NumElts1; ++i) |
| 2688 | ShuffleMask.push_back(Elt: i); |
| 2689 | } else { |
| 2690 | // If two vectors have different sizes, we need to extend |
| 2691 | // the smaller vector to the size of the larger vector. |
| 2692 | unsigned SmallSize = std::min(a: NumElts0, b: NumElts1); |
| 2693 | unsigned LargeSize = std::max(a: NumElts0, b: NumElts1); |
| 2694 | bool IsV0Smaller = NumElts0 < NumElts1; |
| 2695 | Value *&ExtendedVec = IsV0Smaller ? V0 : V1; |
| 2696 | SmallVector<int, 16> ExtendMask; |
| 2697 | for (unsigned i = 0; i < SmallSize; ++i) |
| 2698 | ExtendMask.push_back(Elt: i); |
| 2699 | for (unsigned i = SmallSize; i < LargeSize; ++i) |
| 2700 | ExtendMask.push_back(Elt: PoisonMaskElem); |
| 2701 | ExtendedVec = Builder.CreateShuffleVector( |
| 2702 | V1: ExtendedVec, V2: PoisonValue::get(T: ExtendedVec->getType()), Mask: ExtendMask); |
| 2703 | LLVM_DEBUG(dbgs() << " shufflevector: " << *ExtendedVec << "\n" ); |
| 2704 | for (unsigned i = 0; i < NumElts0; ++i) |
| 2705 | ShuffleMask.push_back(Elt: i); |
| 2706 | for (unsigned i = 0; i < NumElts1; ++i) |
| 2707 | ShuffleMask.push_back(Elt: LargeSize + i); |
| 2708 | } |
| 2709 | |
| 2710 | return Builder.CreateShuffleVector(V1: V0, V2: V1, Mask: ShuffleMask); |
| 2711 | } |
| 2712 | |
| 2713 | namespace { |
| 2714 | |
| 2715 | /// Visitor to rewrite instructions using p particular slice of an alloca |
| 2716 | /// to use a new alloca. |
| 2717 | /// |
| 2718 | /// Also implements the rewriting to vector-based accesses when the partition |
| 2719 | /// passes the isVectorPromotionViable predicate. Most of the rewriting logic |
| 2720 | /// lives here. |
| 2721 | class AllocaSliceRewriter : public InstVisitor<AllocaSliceRewriter, bool> { |
| 2722 | // Befriend the base class so it can delegate to private visit methods. |
| 2723 | friend class InstVisitor<AllocaSliceRewriter, bool>; |
| 2724 | |
| 2725 | using Base = InstVisitor<AllocaSliceRewriter, bool>; |
| 2726 | |
| 2727 | const DataLayout &DL; |
| 2728 | AllocaSlices &AS; |
| 2729 | SROA &Pass; |
| 2730 | AllocaInst &OldAI, &NewAI; |
| 2731 | const uint64_t NewAllocaBeginOffset, NewAllocaEndOffset; |
| 2732 | Type *NewAllocaTy; |
| 2733 | |
| 2734 | // This is a convenience and flag variable that will be null unless the new |
| 2735 | // alloca's integer operations should be widened to this integer type due to |
| 2736 | // passing isIntegerWideningViable above. If it is non-null, the desired |
| 2737 | // integer type will be stored here for easy access during rewriting. |
| 2738 | IntegerType *IntTy; |
| 2739 | |
| 2740 | // If we are rewriting an alloca partition which can be written as pure |
| 2741 | // vector operations, we stash extra information here. When VecTy is |
| 2742 | // non-null, we have some strict guarantees about the rewritten alloca: |
| 2743 | // - The new alloca is exactly the size of the vector type here. |
| 2744 | // - The accesses all either map to the entire vector or to a single |
| 2745 | // element. |
| 2746 | // - The set of accessing instructions is only one of those handled above |
| 2747 | // in isVectorPromotionViable. Generally these are the same access kinds |
| 2748 | // which are promotable via mem2reg. |
| 2749 | VectorType *VecTy; |
| 2750 | Type *ElementTy; |
| 2751 | uint64_t ElementSize; |
| 2752 | |
| 2753 | // The original offset of the slice currently being rewritten relative to |
| 2754 | // the original alloca. |
| 2755 | uint64_t BeginOffset = 0; |
| 2756 | uint64_t EndOffset = 0; |
| 2757 | |
| 2758 | // The new offsets of the slice currently being rewritten relative to the |
| 2759 | // original alloca. |
| 2760 | uint64_t NewBeginOffset = 0, NewEndOffset = 0; |
| 2761 | |
| 2762 | uint64_t SliceSize = 0; |
| 2763 | bool IsSplittable = false; |
| 2764 | bool IsSplit = false; |
| 2765 | Use *OldUse = nullptr; |
| 2766 | Instruction *OldPtr = nullptr; |
| 2767 | |
| 2768 | // Track post-rewrite users which are PHI nodes and Selects. |
| 2769 | SmallSetVector<PHINode *, 8> &PHIUsers; |
| 2770 | SmallSetVector<SelectInst *, 8> &SelectUsers; |
| 2771 | |
| 2772 | // Utility IR builder, whose name prefix is setup for each visited use, and |
| 2773 | // the insertion point is set to point to the user. |
| 2774 | IRBuilderTy IRB; |
| 2775 | |
| 2776 | // Return the new alloca, addrspacecasted if required to avoid changing the |
| 2777 | // addrspace of a volatile access. |
| 2778 | Value *getPtrToNewAI(unsigned AddrSpace, bool IsVolatile) { |
| 2779 | if (!IsVolatile || AddrSpace == NewAI.getType()->getPointerAddressSpace()) |
| 2780 | return &NewAI; |
| 2781 | |
| 2782 | Type *AccessTy = IRB.getPtrTy(AddrSpace); |
| 2783 | return IRB.CreateAddrSpaceCast(V: &NewAI, DestTy: AccessTy); |
| 2784 | } |
| 2785 | |
| 2786 | public: |
| 2787 | AllocaSliceRewriter(const DataLayout &DL, AllocaSlices &AS, SROA &Pass, |
| 2788 | AllocaInst &OldAI, AllocaInst &NewAI, Type *NewAllocaTy, |
| 2789 | uint64_t NewAllocaBeginOffset, |
| 2790 | uint64_t NewAllocaEndOffset, bool IsIntegerPromotable, |
| 2791 | VectorType *PromotableVecTy, |
| 2792 | SmallSetVector<PHINode *, 8> &PHIUsers, |
| 2793 | SmallSetVector<SelectInst *, 8> &SelectUsers) |
| 2794 | : DL(DL), AS(AS), Pass(Pass), OldAI(OldAI), NewAI(NewAI), |
| 2795 | NewAllocaBeginOffset(NewAllocaBeginOffset), |
| 2796 | NewAllocaEndOffset(NewAllocaEndOffset), NewAllocaTy(NewAllocaTy), |
| 2797 | IntTy(IsIntegerPromotable |
| 2798 | ? Type::getIntNTy( |
| 2799 | C&: NewAI.getContext(), |
| 2800 | N: DL.getTypeSizeInBits(Ty: NewAllocaTy).getFixedValue()) |
| 2801 | : nullptr), |
| 2802 | VecTy(PromotableVecTy), |
| 2803 | ElementTy(VecTy ? VecTy->getElementType() : nullptr), |
| 2804 | ElementSize(VecTy ? DL.getTypeSizeInBits(Ty: ElementTy).getFixedValue() / 8 |
| 2805 | : 0), |
| 2806 | PHIUsers(PHIUsers), SelectUsers(SelectUsers), |
| 2807 | IRB(NewAI.getContext(), ConstantFolder()) { |
| 2808 | if (VecTy) { |
| 2809 | assert((DL.getTypeSizeInBits(ElementTy).getFixedValue() % 8) == 0 && |
| 2810 | "Only multiple-of-8 sized vector elements are viable" ); |
| 2811 | ++NumVectorized; |
| 2812 | } |
| 2813 | assert((!IntTy && !VecTy) || (IntTy && !VecTy) || (!IntTy && VecTy)); |
| 2814 | } |
| 2815 | |
| 2816 | bool visit(AllocaSlices::const_iterator I) { |
| 2817 | bool CanSROA = true; |
| 2818 | BeginOffset = I->beginOffset(); |
| 2819 | EndOffset = I->endOffset(); |
| 2820 | IsSplittable = I->isSplittable(); |
| 2821 | IsSplit = |
| 2822 | BeginOffset < NewAllocaBeginOffset || EndOffset > NewAllocaEndOffset; |
| 2823 | LLVM_DEBUG(dbgs() << " rewriting " << (IsSplit ? "split " : "" )); |
| 2824 | LLVM_DEBUG(AS.printSlice(dbgs(), I, "" )); |
| 2825 | LLVM_DEBUG(dbgs() << "\n" ); |
| 2826 | |
| 2827 | // Compute the intersecting offset range. |
| 2828 | assert(BeginOffset < NewAllocaEndOffset); |
| 2829 | assert(EndOffset > NewAllocaBeginOffset); |
| 2830 | NewBeginOffset = std::max(a: BeginOffset, b: NewAllocaBeginOffset); |
| 2831 | NewEndOffset = std::min(a: EndOffset, b: NewAllocaEndOffset); |
| 2832 | |
| 2833 | SliceSize = NewEndOffset - NewBeginOffset; |
| 2834 | LLVM_DEBUG(dbgs() << " Begin:(" << BeginOffset << ", " << EndOffset |
| 2835 | << ") NewBegin:(" << NewBeginOffset << ", " |
| 2836 | << NewEndOffset << ") NewAllocaBegin:(" |
| 2837 | << NewAllocaBeginOffset << ", " << NewAllocaEndOffset |
| 2838 | << ")\n" ); |
| 2839 | assert(IsSplit || NewBeginOffset == BeginOffset); |
| 2840 | OldUse = I->getUse(); |
| 2841 | OldPtr = cast<Instruction>(Val: OldUse->get()); |
| 2842 | |
| 2843 | Instruction *OldUserI = cast<Instruction>(Val: OldUse->getUser()); |
| 2844 | IRB.SetInsertPoint(OldUserI); |
| 2845 | IRB.SetCurrentDebugLocation(OldUserI->getDebugLoc()); |
| 2846 | IRB.getInserter().SetNamePrefix(Twine(NewAI.getName()) + "." + |
| 2847 | Twine(BeginOffset) + "." ); |
| 2848 | |
| 2849 | CanSROA &= visit(I: cast<Instruction>(Val: OldUse->getUser())); |
| 2850 | if (VecTy || IntTy) |
| 2851 | assert(CanSROA); |
| 2852 | return CanSROA; |
| 2853 | } |
| 2854 | |
| 2855 | /// Attempts to rewrite a partition using tree-structured merge optimization. |
| 2856 | /// |
| 2857 | /// This function analyzes a partition to determine if it can be optimized |
| 2858 | /// using a tree-structured merge pattern, where multiple non-overlapping |
| 2859 | /// stores completely fill an alloca. And there is no load from the alloca in |
| 2860 | /// the middle of the stores. Such patterns can be optimized by eliminating |
| 2861 | /// the intermediate stores and directly constructing the final vector by |
| 2862 | /// using shufflevectors. |
| 2863 | /// |
| 2864 | /// Example transformation: |
| 2865 | /// Before: (stores do not have to be in order) |
| 2866 | /// %alloca = alloca <8 x float> |
| 2867 | /// store <2 x float> %val0, ptr %alloca ; offset 0-1 |
| 2868 | /// store <2 x float> %val2, ptr %alloca+16 ; offset 4-5 |
| 2869 | /// store <2 x float> %val1, ptr %alloca+8 ; offset 2-3 |
| 2870 | /// store <2 x float> %val3, ptr %alloca+24 ; offset 6-7 |
| 2871 | /// |
| 2872 | /// After: |
| 2873 | /// %alloca = alloca <8 x float> |
| 2874 | /// %shuffle0 = shufflevector %val0, %val1, <4 x i32> <i32 0, i32 1, i32 2, |
| 2875 | /// i32 3> |
| 2876 | /// %shuffle1 = shufflevector %val2, %val3, <4 x i32> <i32 0, i32 1, i32 2, |
| 2877 | /// i32 3> |
| 2878 | /// %shuffle2 = shufflevector %shuffle0, %shuffle1, <8 x i32> <i32 0, i32 1, |
| 2879 | /// i32 2, i32 3, i32 4, i32 5, i32 6, i32 7> |
| 2880 | /// store %shuffle2, ptr %alloca |
| 2881 | /// |
| 2882 | /// The optimization looks for partitions that: |
| 2883 | /// 1. Have no overlapping split slice tails |
| 2884 | /// 2. Contain non-overlapping stores that cover the entire alloca |
| 2885 | /// 3. Have exactly one load that reads the complete alloca structure and not |
| 2886 | /// in the middle of the stores (TODO: maybe we can relax the constraint |
| 2887 | /// about reading the entire alloca structure) |
| 2888 | /// |
| 2889 | /// \param P The partition to analyze and potentially rewrite |
| 2890 | /// \return An optional vector of values that were deleted during the rewrite |
| 2891 | /// process, or std::nullopt if the partition cannot be optimized |
| 2892 | /// using tree-structured merge |
| 2893 | std::optional<SmallVector<Value *, 4>> |
| 2894 | rewriteTreeStructuredMerge(Partition &P) { |
| 2895 | // No tail slices that overlap with the partition |
| 2896 | if (P.splitSliceTails().size() > 0) |
| 2897 | return std::nullopt; |
| 2898 | |
| 2899 | SmallVector<Value *, 4> DeletedValues; |
| 2900 | LoadInst *TheLoad = nullptr; |
| 2901 | |
| 2902 | // Structure to hold store information |
| 2903 | struct StoreInfo { |
| 2904 | StoreInst *Store; |
| 2905 | uint64_t BeginOffset; |
| 2906 | uint64_t EndOffset; |
| 2907 | Value *StoredValue; |
| 2908 | StoreInfo(StoreInst *SI, uint64_t Begin, uint64_t End, Value *Val) |
| 2909 | : Store(SI), BeginOffset(Begin), EndOffset(End), StoredValue(Val) {} |
| 2910 | }; |
| 2911 | |
| 2912 | SmallVector<StoreInfo, 4> StoreInfos; |
| 2913 | |
| 2914 | // If the new alloca is a fixed vector type, we use its element type as the |
| 2915 | // allocated element type, otherwise we use i8 as the allocated element |
| 2916 | Type *AllocatedEltTy = |
| 2917 | isa<FixedVectorType>(Val: NewAllocaTy) |
| 2918 | ? cast<FixedVectorType>(Val: NewAllocaTy)->getElementType() |
| 2919 | : Type::getInt8Ty(C&: NewAI.getContext()); |
| 2920 | unsigned AllocatedEltTySize = DL.getTypeSizeInBits(Ty: AllocatedEltTy); |
| 2921 | |
| 2922 | // Helper to check if a type is |
| 2923 | // 1. A fixed vector type |
| 2924 | // 2. The element type is not a pointer |
| 2925 | // 3. The element type size is byte-aligned |
| 2926 | // We only handle the cases that the ld/st meet these conditions |
| 2927 | auto IsTypeValidForTreeStructuredMerge = [&](Type *Ty) -> bool { |
| 2928 | auto *FixedVecTy = dyn_cast<FixedVectorType>(Val: Ty); |
| 2929 | return FixedVecTy && |
| 2930 | DL.getTypeSizeInBits(Ty: FixedVecTy->getElementType()) % 8 == 0 && |
| 2931 | !FixedVecTy->getElementType()->isPointerTy(); |
| 2932 | }; |
| 2933 | |
| 2934 | for (Slice &S : P) { |
| 2935 | auto *User = cast<Instruction>(Val: S.getUse()->getUser()); |
| 2936 | if (auto *LI = dyn_cast<LoadInst>(Val: User)) { |
| 2937 | // Do not handle the case if |
| 2938 | // 1. There is more than one load |
| 2939 | // 2. The load is volatile |
| 2940 | // 3. The load does not read the entire alloca structure |
| 2941 | // 4. The load does not meet the conditions in the helper function |
| 2942 | if (TheLoad || !IsTypeValidForTreeStructuredMerge(LI->getType()) || |
| 2943 | S.beginOffset() != NewAllocaBeginOffset || |
| 2944 | S.endOffset() != NewAllocaEndOffset || LI->isVolatile()) |
| 2945 | return std::nullopt; |
| 2946 | TheLoad = LI; |
| 2947 | } else if (auto *SI = dyn_cast<StoreInst>(Val: User)) { |
| 2948 | // Do not handle the case if |
| 2949 | // 1. The store does not meet the conditions in the helper function |
| 2950 | // 2. The store is volatile |
| 2951 | // 3. The total store size is not a multiple of the allocated element |
| 2952 | // type size |
| 2953 | if (!IsTypeValidForTreeStructuredMerge( |
| 2954 | SI->getValueOperand()->getType()) || |
| 2955 | SI->isVolatile()) |
| 2956 | return std::nullopt; |
| 2957 | auto *VecTy = cast<FixedVectorType>(Val: SI->getValueOperand()->getType()); |
| 2958 | unsigned NumElts = VecTy->getNumElements(); |
| 2959 | unsigned EltSize = DL.getTypeSizeInBits(Ty: VecTy->getElementType()); |
| 2960 | if (NumElts * EltSize % AllocatedEltTySize != 0) |
| 2961 | return std::nullopt; |
| 2962 | StoreInfos.emplace_back(Args&: SI, Args: S.beginOffset(), Args: S.endOffset(), |
| 2963 | Args: SI->getValueOperand()); |
| 2964 | } else { |
| 2965 | // If we have instructions other than load and store, we cannot do the |
| 2966 | // tree structured merge |
| 2967 | return std::nullopt; |
| 2968 | } |
| 2969 | } |
| 2970 | // If we do not have any load, we cannot do the tree structured merge |
| 2971 | if (!TheLoad) |
| 2972 | return std::nullopt; |
| 2973 | |
| 2974 | // If we do not have multiple stores, we cannot do the tree structured merge |
| 2975 | if (StoreInfos.size() < 2) |
| 2976 | return std::nullopt; |
| 2977 | |
| 2978 | // Stores should not overlap and should cover the whole alloca |
| 2979 | // Sort by begin offset |
| 2980 | llvm::sort(C&: StoreInfos, Comp: [](const StoreInfo &A, const StoreInfo &B) { |
| 2981 | return A.BeginOffset < B.BeginOffset; |
| 2982 | }); |
| 2983 | |
| 2984 | // Check for overlaps and coverage |
| 2985 | uint64_t ExpectedStart = NewAllocaBeginOffset; |
| 2986 | for (auto &StoreInfo : StoreInfos) { |
| 2987 | uint64_t BeginOff = StoreInfo.BeginOffset; |
| 2988 | uint64_t EndOff = StoreInfo.EndOffset; |
| 2989 | |
| 2990 | // Check for gap or overlap |
| 2991 | if (BeginOff != ExpectedStart) |
| 2992 | return std::nullopt; |
| 2993 | |
| 2994 | ExpectedStart = EndOff; |
| 2995 | } |
| 2996 | // Check that stores cover the entire alloca |
| 2997 | if (ExpectedStart != NewAllocaEndOffset) |
| 2998 | return std::nullopt; |
| 2999 | |
| 3000 | // Stores should be in the same basic block |
| 3001 | // The load should not be in the middle of the stores |
| 3002 | // Note: |
| 3003 | // If the load is in a different basic block with the stores, we can still |
| 3004 | // do the tree structured merge. This is because we do not have the |
| 3005 | // store->load forwarding here. The merged vector will be stored back to |
| 3006 | // NewAI and the new load will load from NewAI. The forwarding will be |
| 3007 | // handled later when we try to promote NewAI. |
| 3008 | BasicBlock *LoadBB = TheLoad->getParent(); |
| 3009 | BasicBlock *StoreBB = StoreInfos[0].Store->getParent(); |
| 3010 | |
| 3011 | for (auto &StoreInfo : StoreInfos) { |
| 3012 | if (StoreInfo.Store->getParent() != StoreBB) |
| 3013 | return std::nullopt; |
| 3014 | if (LoadBB == StoreBB && !StoreInfo.Store->comesBefore(Other: TheLoad)) |
| 3015 | return std::nullopt; |
| 3016 | } |
| 3017 | |
| 3018 | // If we reach here, the partition can be merged with a tree structured |
| 3019 | // merge |
| 3020 | LLVM_DEBUG({ |
| 3021 | dbgs() << "Tree structured merge rewrite:\n Load: " << *TheLoad |
| 3022 | << "\n Ordered stores:\n" ; |
| 3023 | for (auto [i, Info] : enumerate(StoreInfos)) |
| 3024 | dbgs() << " [" << i << "] Range[" << Info.BeginOffset << ", " |
| 3025 | << Info.EndOffset << ") \tStore: " << *Info.Store |
| 3026 | << "\tValue: " << *Info.StoredValue << "\n" ; |
| 3027 | }); |
| 3028 | |
| 3029 | // Instead of having these stores, we merge all the stored values into a |
| 3030 | // vector and store the merged value into the alloca |
| 3031 | std::queue<Value *> VecElements; |
| 3032 | IRBuilder<> Builder(StoreInfos.back().Store); |
| 3033 | for (const auto &Info : StoreInfos) { |
| 3034 | DeletedValues.push_back(Elt: Info.Store); |
| 3035 | VecElements.push(x: Info.StoredValue); |
| 3036 | } |
| 3037 | |
| 3038 | LLVM_DEBUG(dbgs() << " Rewrite stores into shufflevectors:\n" ); |
| 3039 | while (VecElements.size() > 1) { |
| 3040 | const auto NumElts = VecElements.size(); |
| 3041 | for ([[maybe_unused]] const auto _ : llvm::seq(Size: NumElts / 2)) { |
| 3042 | Value *V0 = VecElements.front(); |
| 3043 | VecElements.pop(); |
| 3044 | Value *V1 = VecElements.front(); |
| 3045 | VecElements.pop(); |
| 3046 | Value *Merged = mergeTwoVectors(V0, V1, DL, NewAIEltTy: AllocatedEltTy, Builder); |
| 3047 | LLVM_DEBUG(dbgs() << " shufflevector: " << *Merged << "\n" ); |
| 3048 | VecElements.push(x: Merged); |
| 3049 | } |
| 3050 | if (NumElts % 2 == 1) { |
| 3051 | Value *V = VecElements.front(); |
| 3052 | VecElements.pop(); |
| 3053 | VecElements.push(x: V); |
| 3054 | } |
| 3055 | } |
| 3056 | |
| 3057 | // Store the merged value into the alloca |
| 3058 | Value *MergedValue = VecElements.front(); |
| 3059 | Builder.CreateAlignedStore(Val: MergedValue, Ptr: &NewAI, Align: getSliceAlign()); |
| 3060 | |
| 3061 | IRBuilder<> LoadBuilder(TheLoad); |
| 3062 | TheLoad->replaceAllUsesWith(V: LoadBuilder.CreateAlignedLoad( |
| 3063 | Ty: TheLoad->getType(), Ptr: &NewAI, Align: getSliceAlign(), isVolatile: TheLoad->isVolatile(), |
| 3064 | Name: TheLoad->getName() + ".sroa.new.load" )); |
| 3065 | DeletedValues.push_back(Elt: TheLoad); |
| 3066 | |
| 3067 | return DeletedValues; |
| 3068 | } |
| 3069 | |
| 3070 | private: |
| 3071 | // Make sure the other visit overloads are visible. |
| 3072 | using Base::visit; |
| 3073 | |
| 3074 | // Every instruction which can end up as a user must have a rewrite rule. |
| 3075 | bool visitInstruction(Instruction &I) { |
| 3076 | LLVM_DEBUG(dbgs() << " !!!! Cannot rewrite: " << I << "\n" ); |
| 3077 | llvm_unreachable("No rewrite rule for this instruction!" ); |
| 3078 | } |
| 3079 | |
| 3080 | Value *getNewAllocaSlicePtr(IRBuilderTy &IRB, Type *PointerTy) { |
| 3081 | // Note that the offset computation can use BeginOffset or NewBeginOffset |
| 3082 | // interchangeably for unsplit slices. |
| 3083 | assert(IsSplit || BeginOffset == NewBeginOffset); |
| 3084 | uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset; |
| 3085 | |
| 3086 | StringRef OldName = OldPtr->getName(); |
| 3087 | // Skip through the last '.sroa.' component of the name. |
| 3088 | size_t LastSROAPrefix = OldName.rfind(Str: ".sroa." ); |
| 3089 | if (LastSROAPrefix != StringRef::npos) { |
| 3090 | OldName = OldName.substr(Start: LastSROAPrefix + strlen(s: ".sroa." )); |
| 3091 | // Look for an SROA slice index. |
| 3092 | size_t IndexEnd = OldName.find_first_not_of(Chars: "0123456789" ); |
| 3093 | if (IndexEnd != StringRef::npos && OldName[IndexEnd] == '.') { |
| 3094 | // Strip the index and look for the offset. |
| 3095 | OldName = OldName.substr(Start: IndexEnd + 1); |
| 3096 | size_t OffsetEnd = OldName.find_first_not_of(Chars: "0123456789" ); |
| 3097 | if (OffsetEnd != StringRef::npos && OldName[OffsetEnd] == '.') |
| 3098 | // Strip the offset. |
| 3099 | OldName = OldName.substr(Start: OffsetEnd + 1); |
| 3100 | } |
| 3101 | } |
| 3102 | // Strip any SROA suffixes as well. |
| 3103 | OldName = OldName.substr(Start: 0, N: OldName.find(Str: ".sroa_" )); |
| 3104 | |
| 3105 | return getAdjustedPtr(IRB, DL, Ptr: &NewAI, |
| 3106 | Offset: APInt(DL.getIndexTypeSizeInBits(Ty: PointerTy), Offset), |
| 3107 | PointerTy, NamePrefix: Twine(OldName) + "." ); |
| 3108 | } |
| 3109 | |
| 3110 | /// Compute suitable alignment to access this slice of the *new* |
| 3111 | /// alloca. |
| 3112 | /// |
| 3113 | /// You can optionally pass a type to this routine and if that type's ABI |
| 3114 | /// alignment is itself suitable, this will return zero. |
| 3115 | Align getSliceAlign() { |
| 3116 | return commonAlignment(A: NewAI.getAlign(), |
| 3117 | Offset: NewBeginOffset - NewAllocaBeginOffset); |
| 3118 | } |
| 3119 | |
| 3120 | unsigned getIndex(uint64_t Offset) { |
| 3121 | assert(VecTy && "Can only call getIndex when rewriting a vector" ); |
| 3122 | uint64_t RelOffset = Offset - NewAllocaBeginOffset; |
| 3123 | assert(RelOffset / ElementSize < UINT32_MAX && "Index out of bounds" ); |
| 3124 | uint32_t Index = RelOffset / ElementSize; |
| 3125 | assert(Index * ElementSize == RelOffset); |
| 3126 | return Index; |
| 3127 | } |
| 3128 | |
| 3129 | void deleteIfTriviallyDead(Value *V) { |
| 3130 | Instruction *I = cast<Instruction>(Val: V); |
| 3131 | if (isInstructionTriviallyDead(I)) |
| 3132 | Pass.DeadInsts.push_back(Elt: I); |
| 3133 | } |
| 3134 | |
| 3135 | Value *rewriteVectorizedLoadInst(LoadInst &LI) { |
| 3136 | unsigned BeginIndex = getIndex(Offset: NewBeginOffset); |
| 3137 | unsigned EndIndex = getIndex(Offset: NewEndOffset); |
| 3138 | assert(EndIndex > BeginIndex && "Empty vector!" ); |
| 3139 | |
| 3140 | LoadInst *Load = |
| 3141 | IRB.CreateAlignedLoad(Ty: NewAllocaTy, Ptr: &NewAI, Align: NewAI.getAlign(), Name: "load" ); |
| 3142 | |
| 3143 | Load->copyMetadata(SrcInst: LI, WL: {LLVMContext::MD_mem_parallel_loop_access, |
| 3144 | LLVMContext::MD_access_group}); |
| 3145 | return extractVector(IRB, V: Load, BeginIndex, EndIndex, Name: "vec" ); |
| 3146 | } |
| 3147 | |
| 3148 | Value *rewriteIntegerLoad(LoadInst &LI) { |
| 3149 | assert(IntTy && "We cannot insert an integer to the alloca" ); |
| 3150 | assert(!LI.isVolatile()); |
| 3151 | Value *V = |
| 3152 | IRB.CreateAlignedLoad(Ty: NewAllocaTy, Ptr: &NewAI, Align: NewAI.getAlign(), Name: "load" ); |
| 3153 | V = IRB.CreateBitPreservingCastChain(DL, V, NewTy: IntTy); |
| 3154 | assert(NewBeginOffset >= NewAllocaBeginOffset && "Out of bounds offset" ); |
| 3155 | uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset; |
| 3156 | if (Offset > 0 || NewEndOffset < NewAllocaEndOffset) { |
| 3157 | IntegerType * = Type::getIntNTy(C&: LI.getContext(), N: SliceSize * 8); |
| 3158 | V = extractInteger(DL, IRB, V, Ty: ExtractTy, Offset, Name: "extract" ); |
| 3159 | } |
| 3160 | // It is possible that the extracted type is not the load type. This |
| 3161 | // happens if there is a load past the end of the alloca, and as |
| 3162 | // a consequence the slice is narrower but still a candidate for integer |
| 3163 | // lowering. To handle this case, we just zero extend the extracted |
| 3164 | // integer. |
| 3165 | assert(cast<IntegerType>(LI.getType())->getBitWidth() >= SliceSize * 8 && |
| 3166 | "Can only handle an extract for an overly wide load" ); |
| 3167 | if (cast<IntegerType>(Val: LI.getType())->getBitWidth() > SliceSize * 8) |
| 3168 | V = IRB.CreateZExt(V, DestTy: LI.getType()); |
| 3169 | return V; |
| 3170 | } |
| 3171 | |
| 3172 | bool visitLoadInst(LoadInst &LI) { |
| 3173 | LLVM_DEBUG(dbgs() << " original: " << LI << "\n" ); |
| 3174 | Value *OldOp = LI.getOperand(i_nocapture: 0); |
| 3175 | assert(OldOp == OldPtr); |
| 3176 | |
| 3177 | AAMDNodes AATags = LI.getAAMetadata(); |
| 3178 | |
| 3179 | unsigned AS = LI.getPointerAddressSpace(); |
| 3180 | |
| 3181 | Type *TargetTy = IsSplit ? Type::getIntNTy(C&: LI.getContext(), N: SliceSize * 8) |
| 3182 | : LI.getType(); |
| 3183 | bool IsPtrAdjusted = false; |
| 3184 | Value *V; |
| 3185 | if (VecTy) { |
| 3186 | V = rewriteVectorizedLoadInst(LI); |
| 3187 | } else if (IntTy && LI.getType()->isIntegerTy()) { |
| 3188 | V = rewriteIntegerLoad(LI); |
| 3189 | } else if (NewBeginOffset == NewAllocaBeginOffset && |
| 3190 | NewEndOffset == NewAllocaEndOffset && |
| 3191 | (canConvertValue(DL, OldTy: NewAllocaTy, NewTy: TargetTy) || |
| 3192 | (NewAllocaTy->isIntegerTy() && TargetTy->isIntegerTy() && |
| 3193 | DL.getTypeStoreSize(Ty: TargetTy).getFixedValue() > SliceSize && |
| 3194 | !LI.isVolatile()))) { |
| 3195 | Value *NewPtr = |
| 3196 | getPtrToNewAI(AddrSpace: LI.getPointerAddressSpace(), IsVolatile: LI.isVolatile()); |
| 3197 | LoadInst *NewLI = IRB.CreateAlignedLoad( |
| 3198 | Ty: NewAllocaTy, Ptr: NewPtr, Align: NewAI.getAlign(), isVolatile: LI.isVolatile(), Name: LI.getName()); |
| 3199 | if (LI.isVolatile()) |
| 3200 | NewLI->setAtomic(Ordering: LI.getOrdering(), SSID: LI.getSyncScopeID()); |
| 3201 | if (NewLI->isAtomic()) |
| 3202 | NewLI->setAlignment(LI.getAlign()); |
| 3203 | |
| 3204 | // Copy any metadata that is valid for the new load. This may require |
| 3205 | // conversion to a different kind of metadata, e.g. !nonnull might change |
| 3206 | // to !range or vice versa. |
| 3207 | copyMetadataForLoad(Dest&: *NewLI, Source: LI); |
| 3208 | |
| 3209 | // Do this after copyMetadataForLoad() to preserve the TBAA shift. |
| 3210 | if (AATags) |
| 3211 | NewLI->setAAMetadata(AATags.adjustForAccess( |
| 3212 | Offset: NewBeginOffset - BeginOffset, AccessTy: NewLI->getType(), DL)); |
| 3213 | |
| 3214 | // Try to preserve nonnull metadata |
| 3215 | V = NewLI; |
| 3216 | |
| 3217 | // If this is an integer load past the end of the slice (which means the |
| 3218 | // bytes outside the slice are undef or this load is dead) just forcibly |
| 3219 | // fix the integer size with correct handling of endianness. |
| 3220 | if (auto *AITy = dyn_cast<IntegerType>(Val: NewAllocaTy)) |
| 3221 | if (auto *TITy = dyn_cast<IntegerType>(Val: TargetTy)) |
| 3222 | if (AITy->getBitWidth() < TITy->getBitWidth()) { |
| 3223 | V = IRB.CreateZExt(V, DestTy: TITy, Name: "load.ext" ); |
| 3224 | if (DL.isBigEndian()) |
| 3225 | V = IRB.CreateShl(LHS: V, RHS: TITy->getBitWidth() - AITy->getBitWidth(), |
| 3226 | Name: "endian_shift" ); |
| 3227 | } |
| 3228 | } else { |
| 3229 | Type *LTy = IRB.getPtrTy(AddrSpace: AS); |
| 3230 | LoadInst *NewLI = |
| 3231 | IRB.CreateAlignedLoad(Ty: TargetTy, Ptr: getNewAllocaSlicePtr(IRB, PointerTy: LTy), |
| 3232 | Align: getSliceAlign(), isVolatile: LI.isVolatile(), Name: LI.getName()); |
| 3233 | |
| 3234 | if (AATags) |
| 3235 | NewLI->setAAMetadata(AATags.adjustForAccess( |
| 3236 | Offset: NewBeginOffset - BeginOffset, AccessTy: NewLI->getType(), DL)); |
| 3237 | |
| 3238 | if (LI.isVolatile()) |
| 3239 | NewLI->setAtomic(Ordering: LI.getOrdering(), SSID: LI.getSyncScopeID()); |
| 3240 | NewLI->copyMetadata(SrcInst: LI, WL: {LLVMContext::MD_mem_parallel_loop_access, |
| 3241 | LLVMContext::MD_access_group}); |
| 3242 | |
| 3243 | V = NewLI; |
| 3244 | IsPtrAdjusted = true; |
| 3245 | } |
| 3246 | V = IRB.CreateBitPreservingCastChain(DL, V, NewTy: TargetTy); |
| 3247 | |
| 3248 | if (IsSplit) { |
| 3249 | assert(!LI.isVolatile()); |
| 3250 | assert(LI.getType()->isIntegerTy() && |
| 3251 | "Only integer type loads and stores are split" ); |
| 3252 | assert(SliceSize < DL.getTypeStoreSize(LI.getType()).getFixedValue() && |
| 3253 | "Split load isn't smaller than original load" ); |
| 3254 | assert(DL.typeSizeEqualsStoreSize(LI.getType()) && |
| 3255 | "Non-byte-multiple bit width" ); |
| 3256 | // Move the insertion point just past the load so that we can refer to it. |
| 3257 | BasicBlock::iterator LIIt = std::next(x: LI.getIterator()); |
| 3258 | // Ensure the insertion point comes before any debug-info immediately |
| 3259 | // after the load, so that variable values referring to the load are |
| 3260 | // dominated by it. |
| 3261 | LIIt.setHeadBit(true); |
| 3262 | IRB.SetInsertPoint(TheBB: LI.getParent(), IP: LIIt); |
| 3263 | // Create a placeholder value with the same type as LI to use as the |
| 3264 | // basis for the new value. This allows us to replace the uses of LI with |
| 3265 | // the computed value, and then replace the placeholder with LI, leaving |
| 3266 | // LI only used for this computation. |
| 3267 | Value *Placeholder = |
| 3268 | new LoadInst(LI.getType(), PoisonValue::get(T: IRB.getPtrTy(AddrSpace: AS)), "" , |
| 3269 | false, Align(1)); |
| 3270 | V = insertInteger(DL, IRB, Old: Placeholder, V, Offset: NewBeginOffset - BeginOffset, |
| 3271 | Name: "insert" ); |
| 3272 | LI.replaceAllUsesWith(V); |
| 3273 | Placeholder->replaceAllUsesWith(V: &LI); |
| 3274 | Placeholder->deleteValue(); |
| 3275 | } else { |
| 3276 | LI.replaceAllUsesWith(V); |
| 3277 | } |
| 3278 | |
| 3279 | Pass.DeadInsts.push_back(Elt: &LI); |
| 3280 | deleteIfTriviallyDead(V: OldOp); |
| 3281 | LLVM_DEBUG(dbgs() << " to: " << *V << "\n" ); |
| 3282 | return !LI.isVolatile() && !IsPtrAdjusted; |
| 3283 | } |
| 3284 | |
| 3285 | bool rewriteVectorizedStoreInst(Value *V, StoreInst &SI, Value *OldOp, |
| 3286 | AAMDNodes AATags) { |
| 3287 | // Capture V for the purpose of debug-info accounting once it's converted |
| 3288 | // to a vector store. |
| 3289 | Value *OrigV = V; |
| 3290 | if (V->getType() != VecTy) { |
| 3291 | unsigned BeginIndex = getIndex(Offset: NewBeginOffset); |
| 3292 | unsigned EndIndex = getIndex(Offset: NewEndOffset); |
| 3293 | assert(EndIndex > BeginIndex && "Empty vector!" ); |
| 3294 | unsigned NumElements = EndIndex - BeginIndex; |
| 3295 | assert(NumElements <= cast<FixedVectorType>(VecTy)->getNumElements() && |
| 3296 | "Too many elements!" ); |
| 3297 | Type *SliceTy = (NumElements == 1) |
| 3298 | ? ElementTy |
| 3299 | : FixedVectorType::get(ElementType: ElementTy, NumElts: NumElements); |
| 3300 | if (V->getType() != SliceTy) |
| 3301 | V = IRB.CreateBitPreservingCastChain(DL, V, NewTy: SliceTy); |
| 3302 | |
| 3303 | // Mix in the existing elements. |
| 3304 | Value *Old = |
| 3305 | IRB.CreateAlignedLoad(Ty: NewAllocaTy, Ptr: &NewAI, Align: NewAI.getAlign(), Name: "load" ); |
| 3306 | V = insertVector(IRB, Old, V, BeginIndex, Name: "vec" ); |
| 3307 | } |
| 3308 | StoreInst *Store = IRB.CreateAlignedStore(Val: V, Ptr: &NewAI, Align: NewAI.getAlign()); |
| 3309 | Store->copyMetadata(SrcInst: SI, WL: {LLVMContext::MD_mem_parallel_loop_access, |
| 3310 | LLVMContext::MD_access_group}); |
| 3311 | if (AATags) |
| 3312 | Store->setAAMetadata(AATags.adjustForAccess(Offset: NewBeginOffset - BeginOffset, |
| 3313 | AccessTy: V->getType(), DL)); |
| 3314 | Pass.DeadInsts.push_back(Elt: &SI); |
| 3315 | |
| 3316 | // NOTE: Careful to use OrigV rather than V. |
| 3317 | migrateDebugInfo(OldAlloca: &OldAI, IsSplit, OldAllocaOffsetInBits: NewBeginOffset * 8, SliceSizeInBits: SliceSize * 8, OldInst: &SI, |
| 3318 | Inst: Store, Dest: Store->getPointerOperand(), Value: OrigV, DL); |
| 3319 | LLVM_DEBUG(dbgs() << " to: " << *Store << "\n" ); |
| 3320 | return true; |
| 3321 | } |
| 3322 | |
| 3323 | bool rewriteIntegerStore(Value *V, StoreInst &SI, AAMDNodes AATags) { |
| 3324 | assert(IntTy && "We cannot extract an integer from the alloca" ); |
| 3325 | assert(!SI.isVolatile()); |
| 3326 | if (DL.getTypeSizeInBits(Ty: V->getType()).getFixedValue() != |
| 3327 | IntTy->getBitWidth()) { |
| 3328 | Value *Old = IRB.CreateAlignedLoad(Ty: NewAllocaTy, Ptr: &NewAI, Align: NewAI.getAlign(), |
| 3329 | Name: "oldload" ); |
| 3330 | Old = IRB.CreateBitPreservingCastChain(DL, V: Old, NewTy: IntTy); |
| 3331 | assert(BeginOffset >= NewAllocaBeginOffset && "Out of bounds offset" ); |
| 3332 | uint64_t Offset = BeginOffset - NewAllocaBeginOffset; |
| 3333 | V = insertInteger(DL, IRB, Old, V: SI.getValueOperand(), Offset, Name: "insert" ); |
| 3334 | } |
| 3335 | V = IRB.CreateBitPreservingCastChain(DL, V, NewTy: NewAllocaTy); |
| 3336 | StoreInst *Store = IRB.CreateAlignedStore(Val: V, Ptr: &NewAI, Align: NewAI.getAlign()); |
| 3337 | Store->copyMetadata(SrcInst: SI, WL: {LLVMContext::MD_mem_parallel_loop_access, |
| 3338 | LLVMContext::MD_access_group}); |
| 3339 | if (AATags) |
| 3340 | Store->setAAMetadata(AATags.adjustForAccess(Offset: NewBeginOffset - BeginOffset, |
| 3341 | AccessTy: V->getType(), DL)); |
| 3342 | |
| 3343 | migrateDebugInfo(OldAlloca: &OldAI, IsSplit, OldAllocaOffsetInBits: NewBeginOffset * 8, SliceSizeInBits: SliceSize * 8, OldInst: &SI, |
| 3344 | Inst: Store, Dest: Store->getPointerOperand(), |
| 3345 | Value: Store->getValueOperand(), DL); |
| 3346 | |
| 3347 | Pass.DeadInsts.push_back(Elt: &SI); |
| 3348 | LLVM_DEBUG(dbgs() << " to: " << *Store << "\n" ); |
| 3349 | return true; |
| 3350 | } |
| 3351 | |
| 3352 | bool visitStoreInst(StoreInst &SI) { |
| 3353 | LLVM_DEBUG(dbgs() << " original: " << SI << "\n" ); |
| 3354 | Value *OldOp = SI.getOperand(i_nocapture: 1); |
| 3355 | assert(OldOp == OldPtr); |
| 3356 | |
| 3357 | AAMDNodes AATags = SI.getAAMetadata(); |
| 3358 | Value *V = SI.getValueOperand(); |
| 3359 | |
| 3360 | // Strip all inbounds GEPs and pointer casts to try to dig out any root |
| 3361 | // alloca that should be re-examined after promoting this alloca. |
| 3362 | if (V->getType()->isPointerTy()) |
| 3363 | if (AllocaInst *AI = dyn_cast<AllocaInst>(Val: V->stripInBoundsOffsets())) |
| 3364 | Pass.PostPromotionWorklist.insert(X: AI); |
| 3365 | |
| 3366 | TypeSize StoreSize = DL.getTypeStoreSize(Ty: V->getType()); |
| 3367 | if (StoreSize.isFixed() && SliceSize < StoreSize.getFixedValue()) { |
| 3368 | assert(!SI.isVolatile()); |
| 3369 | assert(V->getType()->isIntegerTy() && |
| 3370 | "Only integer type loads and stores are split" ); |
| 3371 | assert(DL.typeSizeEqualsStoreSize(V->getType()) && |
| 3372 | "Non-byte-multiple bit width" ); |
| 3373 | IntegerType *NarrowTy = Type::getIntNTy(C&: SI.getContext(), N: SliceSize * 8); |
| 3374 | V = extractInteger(DL, IRB, V, Ty: NarrowTy, Offset: NewBeginOffset - BeginOffset, |
| 3375 | Name: "extract" ); |
| 3376 | } |
| 3377 | |
| 3378 | if (VecTy) |
| 3379 | return rewriteVectorizedStoreInst(V, SI, OldOp, AATags); |
| 3380 | if (IntTy && V->getType()->isIntegerTy()) |
| 3381 | return rewriteIntegerStore(V, SI, AATags); |
| 3382 | |
| 3383 | StoreInst *NewSI; |
| 3384 | if (NewBeginOffset == NewAllocaBeginOffset && |
| 3385 | NewEndOffset == NewAllocaEndOffset && |
| 3386 | canConvertValue(DL, OldTy: V->getType(), NewTy: NewAllocaTy)) { |
| 3387 | V = IRB.CreateBitPreservingCastChain(DL, V, NewTy: NewAllocaTy); |
| 3388 | Value *NewPtr = |
| 3389 | getPtrToNewAI(AddrSpace: SI.getPointerAddressSpace(), IsVolatile: SI.isVolatile()); |
| 3390 | |
| 3391 | NewSI = |
| 3392 | IRB.CreateAlignedStore(Val: V, Ptr: NewPtr, Align: NewAI.getAlign(), isVolatile: SI.isVolatile()); |
| 3393 | } else { |
| 3394 | unsigned AS = SI.getPointerAddressSpace(); |
| 3395 | Value *NewPtr = getNewAllocaSlicePtr(IRB, PointerTy: IRB.getPtrTy(AddrSpace: AS)); |
| 3396 | NewSI = |
| 3397 | IRB.CreateAlignedStore(Val: V, Ptr: NewPtr, Align: getSliceAlign(), isVolatile: SI.isVolatile()); |
| 3398 | } |
| 3399 | NewSI->copyMetadata(SrcInst: SI, WL: {LLVMContext::MD_mem_parallel_loop_access, |
| 3400 | LLVMContext::MD_access_group}); |
| 3401 | if (AATags) |
| 3402 | NewSI->setAAMetadata(AATags.adjustForAccess(Offset: NewBeginOffset - BeginOffset, |
| 3403 | AccessTy: V->getType(), DL)); |
| 3404 | if (SI.isVolatile()) |
| 3405 | NewSI->setAtomic(Ordering: SI.getOrdering(), SSID: SI.getSyncScopeID()); |
| 3406 | if (NewSI->isAtomic()) |
| 3407 | NewSI->setAlignment(SI.getAlign()); |
| 3408 | |
| 3409 | migrateDebugInfo(OldAlloca: &OldAI, IsSplit, OldAllocaOffsetInBits: NewBeginOffset * 8, SliceSizeInBits: SliceSize * 8, OldInst: &SI, |
| 3410 | Inst: NewSI, Dest: NewSI->getPointerOperand(), |
| 3411 | Value: NewSI->getValueOperand(), DL); |
| 3412 | |
| 3413 | Pass.DeadInsts.push_back(Elt: &SI); |
| 3414 | deleteIfTriviallyDead(V: OldOp); |
| 3415 | |
| 3416 | LLVM_DEBUG(dbgs() << " to: " << *NewSI << "\n" ); |
| 3417 | return NewSI->getPointerOperand() == &NewAI && |
| 3418 | NewSI->getValueOperand()->getType() == NewAllocaTy && |
| 3419 | !SI.isVolatile(); |
| 3420 | } |
| 3421 | |
| 3422 | /// Compute an integer value from splatting an i8 across the given |
| 3423 | /// number of bytes. |
| 3424 | /// |
| 3425 | /// Note that this routine assumes an i8 is a byte. If that isn't true, don't |
| 3426 | /// call this routine. |
| 3427 | /// FIXME: Heed the advice above. |
| 3428 | /// |
| 3429 | /// \param V The i8 value to splat. |
| 3430 | /// \param Size The number of bytes in the output (assuming i8 is one byte) |
| 3431 | Value *getIntegerSplat(Value *V, unsigned Size) { |
| 3432 | assert(Size > 0 && "Expected a positive number of bytes." ); |
| 3433 | IntegerType *VTy = cast<IntegerType>(Val: V->getType()); |
| 3434 | assert(VTy->getBitWidth() == 8 && "Expected an i8 value for the byte" ); |
| 3435 | if (Size == 1) |
| 3436 | return V; |
| 3437 | |
| 3438 | Type *SplatIntTy = Type::getIntNTy(C&: VTy->getContext(), N: Size * 8); |
| 3439 | V = IRB.CreateMul( |
| 3440 | LHS: IRB.CreateZExt(V, DestTy: SplatIntTy, Name: "zext" ), |
| 3441 | RHS: IRB.CreateUDiv(LHS: Constant::getAllOnesValue(Ty: SplatIntTy), |
| 3442 | RHS: IRB.CreateZExt(V: Constant::getAllOnesValue(Ty: V->getType()), |
| 3443 | DestTy: SplatIntTy)), |
| 3444 | Name: "isplat" ); |
| 3445 | return V; |
| 3446 | } |
| 3447 | |
| 3448 | /// Compute a vector splat for a given element value. |
| 3449 | Value *getVectorSplat(Value *V, unsigned NumElements) { |
| 3450 | V = IRB.CreateVectorSplat(NumElts: NumElements, V, Name: "vsplat" ); |
| 3451 | LLVM_DEBUG(dbgs() << " splat: " << *V << "\n" ); |
| 3452 | return V; |
| 3453 | } |
| 3454 | |
| 3455 | bool visitMemSetInst(MemSetInst &II) { |
| 3456 | LLVM_DEBUG(dbgs() << " original: " << II << "\n" ); |
| 3457 | assert(II.getRawDest() == OldPtr); |
| 3458 | |
| 3459 | AAMDNodes AATags = II.getAAMetadata(); |
| 3460 | |
| 3461 | // If the memset has a variable size, it cannot be split, just adjust the |
| 3462 | // pointer to the new alloca. |
| 3463 | if (!isa<ConstantInt>(Val: II.getLength())) { |
| 3464 | assert(!IsSplit); |
| 3465 | assert(NewBeginOffset == BeginOffset); |
| 3466 | II.setDest(getNewAllocaSlicePtr(IRB, PointerTy: OldPtr->getType())); |
| 3467 | II.setDestAlignment(getSliceAlign()); |
| 3468 | // In theory we should call migrateDebugInfo here. However, we do not |
| 3469 | // emit dbg.assign intrinsics for mem intrinsics storing through non- |
| 3470 | // constant geps, or storing a variable number of bytes. |
| 3471 | assert(at::getDVRAssignmentMarkers(&II).empty() && |
| 3472 | "AT: Unexpected link to non-const GEP" ); |
| 3473 | deleteIfTriviallyDead(V: OldPtr); |
| 3474 | return false; |
| 3475 | } |
| 3476 | |
| 3477 | // Record this instruction for deletion. |
| 3478 | Pass.DeadInsts.push_back(Elt: &II); |
| 3479 | |
| 3480 | Type *ScalarTy = NewAllocaTy->getScalarType(); |
| 3481 | |
| 3482 | const bool CanContinue = [&]() { |
| 3483 | if (VecTy || IntTy) |
| 3484 | return true; |
| 3485 | if (BeginOffset > NewAllocaBeginOffset || EndOffset < NewAllocaEndOffset) |
| 3486 | return false; |
| 3487 | // Length must be in range for FixedVectorType. |
| 3488 | auto *C = cast<ConstantInt>(Val: II.getLength()); |
| 3489 | const uint64_t Len = C->getLimitedValue(); |
| 3490 | if (Len > std::numeric_limits<unsigned>::max()) |
| 3491 | return false; |
| 3492 | auto *Int8Ty = IntegerType::getInt8Ty(C&: NewAI.getContext()); |
| 3493 | auto *SrcTy = FixedVectorType::get(ElementType: Int8Ty, NumElts: Len); |
| 3494 | return canConvertValue(DL, OldTy: SrcTy, NewTy: NewAllocaTy) && |
| 3495 | DL.isLegalInteger(Width: DL.getTypeSizeInBits(Ty: ScalarTy).getFixedValue()); |
| 3496 | }(); |
| 3497 | |
| 3498 | // If this doesn't map cleanly onto the alloca type, and that type isn't |
| 3499 | // a single value type, just emit a memset. |
| 3500 | if (!CanContinue) { |
| 3501 | Type *SizeTy = II.getLength()->getType(); |
| 3502 | unsigned Sz = NewEndOffset - NewBeginOffset; |
| 3503 | Constant *Size = ConstantInt::get(Ty: SizeTy, V: Sz); |
| 3504 | MemIntrinsic *New = cast<MemIntrinsic>(Val: IRB.CreateMemSet( |
| 3505 | Ptr: getNewAllocaSlicePtr(IRB, PointerTy: OldPtr->getType()), Val: II.getValue(), Size, |
| 3506 | Align: MaybeAlign(getSliceAlign()), isVolatile: II.isVolatile())); |
| 3507 | if (AATags) |
| 3508 | New->setAAMetadata( |
| 3509 | AATags.adjustForAccess(Offset: NewBeginOffset - BeginOffset, AccessSize: Sz)); |
| 3510 | |
| 3511 | migrateDebugInfo(OldAlloca: &OldAI, IsSplit, OldAllocaOffsetInBits: NewBeginOffset * 8, SliceSizeInBits: SliceSize * 8, OldInst: &II, |
| 3512 | Inst: New, Dest: New->getRawDest(), Value: nullptr, DL); |
| 3513 | |
| 3514 | LLVM_DEBUG(dbgs() << " to: " << *New << "\n" ); |
| 3515 | return false; |
| 3516 | } |
| 3517 | |
| 3518 | // If we can represent this as a simple value, we have to build the actual |
| 3519 | // value to store, which requires expanding the byte present in memset to |
| 3520 | // a sensible representation for the alloca type. This is essentially |
| 3521 | // splatting the byte to a sufficiently wide integer, splatting it across |
| 3522 | // any desired vector width, and bitcasting to the final type. |
| 3523 | Value *V; |
| 3524 | |
| 3525 | if (VecTy) { |
| 3526 | // If this is a memset of a vectorized alloca, insert it. |
| 3527 | assert(ElementTy == ScalarTy); |
| 3528 | |
| 3529 | unsigned BeginIndex = getIndex(Offset: NewBeginOffset); |
| 3530 | unsigned EndIndex = getIndex(Offset: NewEndOffset); |
| 3531 | assert(EndIndex > BeginIndex && "Empty vector!" ); |
| 3532 | unsigned NumElements = EndIndex - BeginIndex; |
| 3533 | assert(NumElements <= cast<FixedVectorType>(VecTy)->getNumElements() && |
| 3534 | "Too many elements!" ); |
| 3535 | |
| 3536 | Value *Splat = getIntegerSplat( |
| 3537 | V: II.getValue(), Size: DL.getTypeSizeInBits(Ty: ElementTy).getFixedValue() / 8); |
| 3538 | Splat = IRB.CreateBitPreservingCastChain(DL, V: Splat, NewTy: ElementTy); |
| 3539 | if (NumElements > 1) |
| 3540 | Splat = getVectorSplat(V: Splat, NumElements); |
| 3541 | |
| 3542 | Value *Old = IRB.CreateAlignedLoad(Ty: NewAllocaTy, Ptr: &NewAI, Align: NewAI.getAlign(), |
| 3543 | Name: "oldload" ); |
| 3544 | V = insertVector(IRB, Old, V: Splat, BeginIndex, Name: "vec" ); |
| 3545 | } else if (IntTy) { |
| 3546 | // If this is a memset on an alloca where we can widen stores, insert the |
| 3547 | // set integer. |
| 3548 | assert(!II.isVolatile()); |
| 3549 | |
| 3550 | uint64_t Size = NewEndOffset - NewBeginOffset; |
| 3551 | V = getIntegerSplat(V: II.getValue(), Size); |
| 3552 | |
| 3553 | if (IntTy && (BeginOffset != NewAllocaBeginOffset || |
| 3554 | EndOffset != NewAllocaBeginOffset)) { |
| 3555 | Value *Old = IRB.CreateAlignedLoad(Ty: NewAllocaTy, Ptr: &NewAI, |
| 3556 | Align: NewAI.getAlign(), Name: "oldload" ); |
| 3557 | Old = IRB.CreateBitPreservingCastChain(DL, V: Old, NewTy: IntTy); |
| 3558 | uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset; |
| 3559 | V = insertInteger(DL, IRB, Old, V, Offset, Name: "insert" ); |
| 3560 | } else { |
| 3561 | assert(V->getType() == IntTy && |
| 3562 | "Wrong type for an alloca wide integer!" ); |
| 3563 | } |
| 3564 | V = IRB.CreateBitPreservingCastChain(DL, V, NewTy: NewAllocaTy); |
| 3565 | } else { |
| 3566 | // Established these invariants above. |
| 3567 | assert(NewBeginOffset == NewAllocaBeginOffset); |
| 3568 | assert(NewEndOffset == NewAllocaEndOffset); |
| 3569 | |
| 3570 | V = getIntegerSplat(V: II.getValue(), |
| 3571 | Size: DL.getTypeSizeInBits(Ty: ScalarTy).getFixedValue() / 8); |
| 3572 | if (VectorType *AllocaVecTy = dyn_cast<VectorType>(Val: NewAllocaTy)) |
| 3573 | V = getVectorSplat( |
| 3574 | V, NumElements: cast<FixedVectorType>(Val: AllocaVecTy)->getNumElements()); |
| 3575 | |
| 3576 | V = IRB.CreateBitPreservingCastChain(DL, V, NewTy: NewAllocaTy); |
| 3577 | } |
| 3578 | |
| 3579 | Value *NewPtr = getPtrToNewAI(AddrSpace: II.getDestAddressSpace(), IsVolatile: II.isVolatile()); |
| 3580 | StoreInst *New = |
| 3581 | IRB.CreateAlignedStore(Val: V, Ptr: NewPtr, Align: NewAI.getAlign(), isVolatile: II.isVolatile()); |
| 3582 | New->copyMetadata(SrcInst: II, WL: {LLVMContext::MD_mem_parallel_loop_access, |
| 3583 | LLVMContext::MD_access_group}); |
| 3584 | if (AATags) |
| 3585 | New->setAAMetadata(AATags.adjustForAccess(Offset: NewBeginOffset - BeginOffset, |
| 3586 | AccessTy: V->getType(), DL)); |
| 3587 | |
| 3588 | migrateDebugInfo(OldAlloca: &OldAI, IsSplit, OldAllocaOffsetInBits: NewBeginOffset * 8, SliceSizeInBits: SliceSize * 8, OldInst: &II, |
| 3589 | Inst: New, Dest: New->getPointerOperand(), Value: V, DL); |
| 3590 | |
| 3591 | LLVM_DEBUG(dbgs() << " to: " << *New << "\n" ); |
| 3592 | return !II.isVolatile(); |
| 3593 | } |
| 3594 | |
| 3595 | bool visitMemTransferInst(MemTransferInst &II) { |
| 3596 | // Rewriting of memory transfer instructions can be a bit tricky. We break |
| 3597 | // them into two categories: split intrinsics and unsplit intrinsics. |
| 3598 | |
| 3599 | LLVM_DEBUG(dbgs() << " original: " << II << "\n" ); |
| 3600 | |
| 3601 | AAMDNodes AATags = II.getAAMetadata(); |
| 3602 | |
| 3603 | bool IsDest = &II.getRawDestUse() == OldUse; |
| 3604 | assert((IsDest && II.getRawDest() == OldPtr) || |
| 3605 | (!IsDest && II.getRawSource() == OldPtr)); |
| 3606 | |
| 3607 | Align SliceAlign = getSliceAlign(); |
| 3608 | // For unsplit intrinsics, we simply modify the source and destination |
| 3609 | // pointers in place. This isn't just an optimization, it is a matter of |
| 3610 | // correctness. With unsplit intrinsics we may be dealing with transfers |
| 3611 | // within a single alloca before SROA ran, or with transfers that have |
| 3612 | // a variable length. We may also be dealing with memmove instead of |
| 3613 | // memcpy, and so simply updating the pointers is the necessary for us to |
| 3614 | // update both source and dest of a single call. |
| 3615 | if (!IsSplittable) { |
| 3616 | Value *AdjustedPtr = getNewAllocaSlicePtr(IRB, PointerTy: OldPtr->getType()); |
| 3617 | if (IsDest) { |
| 3618 | // Update the address component of linked dbg.assigns. |
| 3619 | for (DbgVariableRecord *DbgAssign : at::getDVRAssignmentMarkers(Inst: &II)) { |
| 3620 | if (llvm::is_contained(Range: DbgAssign->location_ops(), Element: II.getDest()) || |
| 3621 | DbgAssign->getAddress() == II.getDest()) |
| 3622 | DbgAssign->replaceVariableLocationOp(OldValue: II.getDest(), NewValue: AdjustedPtr); |
| 3623 | } |
| 3624 | II.setDest(AdjustedPtr); |
| 3625 | II.setDestAlignment(SliceAlign); |
| 3626 | } else { |
| 3627 | II.setSource(AdjustedPtr); |
| 3628 | II.setSourceAlignment(SliceAlign); |
| 3629 | } |
| 3630 | |
| 3631 | LLVM_DEBUG(dbgs() << " to: " << II << "\n" ); |
| 3632 | deleteIfTriviallyDead(V: OldPtr); |
| 3633 | return false; |
| 3634 | } |
| 3635 | // For split transfer intrinsics we have an incredibly useful assurance: |
| 3636 | // the source and destination do not reside within the same alloca, and at |
| 3637 | // least one of them does not escape. This means that we can replace |
| 3638 | // memmove with memcpy, and we don't need to worry about all manner of |
| 3639 | // downsides to splitting and transforming the operations. |
| 3640 | |
| 3641 | // If this doesn't map cleanly onto the alloca type, and that type isn't |
| 3642 | // a single value type, just emit a memcpy. |
| 3643 | bool EmitMemCpy = |
| 3644 | !VecTy && !IntTy && |
| 3645 | (BeginOffset > NewAllocaBeginOffset || EndOffset < NewAllocaEndOffset || |
| 3646 | SliceSize != DL.getTypeStoreSize(Ty: NewAllocaTy).getFixedValue() || |
| 3647 | !DL.typeSizeEqualsStoreSize(Ty: NewAllocaTy) || |
| 3648 | !NewAllocaTy->isSingleValueType()); |
| 3649 | |
| 3650 | // If we're just going to emit a memcpy, the alloca hasn't changed, and the |
| 3651 | // size hasn't been shrunk based on analysis of the viable range, this is |
| 3652 | // a no-op. |
| 3653 | if (EmitMemCpy && &OldAI == &NewAI) { |
| 3654 | // Ensure the start lines up. |
| 3655 | assert(NewBeginOffset == BeginOffset); |
| 3656 | |
| 3657 | // Rewrite the size as needed. |
| 3658 | if (NewEndOffset != EndOffset) |
| 3659 | II.setLength(NewEndOffset - NewBeginOffset); |
| 3660 | return false; |
| 3661 | } |
| 3662 | // Record this instruction for deletion. |
| 3663 | Pass.DeadInsts.push_back(Elt: &II); |
| 3664 | |
| 3665 | // Strip all inbounds GEPs and pointer casts to try to dig out any root |
| 3666 | // alloca that should be re-examined after rewriting this instruction. |
| 3667 | Value *OtherPtr = IsDest ? II.getRawSource() : II.getRawDest(); |
| 3668 | if (AllocaInst *AI = |
| 3669 | dyn_cast<AllocaInst>(Val: OtherPtr->stripInBoundsOffsets())) { |
| 3670 | assert(AI != &OldAI && AI != &NewAI && |
| 3671 | "Splittable transfers cannot reach the same alloca on both ends." ); |
| 3672 | Pass.Worklist.insert(X: AI); |
| 3673 | } |
| 3674 | |
| 3675 | Type *OtherPtrTy = OtherPtr->getType(); |
| 3676 | unsigned OtherAS = OtherPtrTy->getPointerAddressSpace(); |
| 3677 | |
| 3678 | // Compute the relative offset for the other pointer within the transfer. |
| 3679 | unsigned OffsetWidth = DL.getIndexSizeInBits(AS: OtherAS); |
| 3680 | APInt OtherOffset(OffsetWidth, NewBeginOffset - BeginOffset); |
| 3681 | Align OtherAlign = |
| 3682 | (IsDest ? II.getSourceAlign() : II.getDestAlign()).valueOrOne(); |
| 3683 | OtherAlign = |
| 3684 | commonAlignment(A: OtherAlign, Offset: OtherOffset.zextOrTrunc(width: 64).getZExtValue()); |
| 3685 | |
| 3686 | if (EmitMemCpy) { |
| 3687 | // Compute the other pointer, folding as much as possible to produce |
| 3688 | // a single, simple GEP in most cases. |
| 3689 | OtherPtr = getAdjustedPtr(IRB, DL, Ptr: OtherPtr, Offset: OtherOffset, PointerTy: OtherPtrTy, |
| 3690 | NamePrefix: OtherPtr->getName() + "." ); |
| 3691 | |
| 3692 | Value *OurPtr = getNewAllocaSlicePtr(IRB, PointerTy: OldPtr->getType()); |
| 3693 | Type *SizeTy = II.getLength()->getType(); |
| 3694 | Constant *Size = ConstantInt::get(Ty: SizeTy, V: NewEndOffset - NewBeginOffset); |
| 3695 | |
| 3696 | Value *DestPtr, *SrcPtr; |
| 3697 | MaybeAlign DestAlign, SrcAlign; |
| 3698 | // Note: IsDest is true iff we're copying into the new alloca slice |
| 3699 | if (IsDest) { |
| 3700 | DestPtr = OurPtr; |
| 3701 | DestAlign = SliceAlign; |
| 3702 | SrcPtr = OtherPtr; |
| 3703 | SrcAlign = OtherAlign; |
| 3704 | } else { |
| 3705 | DestPtr = OtherPtr; |
| 3706 | DestAlign = OtherAlign; |
| 3707 | SrcPtr = OurPtr; |
| 3708 | SrcAlign = SliceAlign; |
| 3709 | } |
| 3710 | CallInst *New = IRB.CreateMemCpy(Dst: DestPtr, DstAlign: DestAlign, Src: SrcPtr, SrcAlign, |
| 3711 | Size, isVolatile: II.isVolatile()); |
| 3712 | if (AATags) |
| 3713 | New->setAAMetadata(AATags.shift(Offset: NewBeginOffset - BeginOffset)); |
| 3714 | |
| 3715 | APInt Offset(DL.getIndexTypeSizeInBits(Ty: DestPtr->getType()), 0); |
| 3716 | if (IsDest) { |
| 3717 | migrateDebugInfo(OldAlloca: &OldAI, IsSplit, OldAllocaOffsetInBits: NewBeginOffset * 8, SliceSizeInBits: SliceSize * 8, |
| 3718 | OldInst: &II, Inst: New, Dest: DestPtr, Value: nullptr, DL); |
| 3719 | } else if (AllocaInst *Base = dyn_cast<AllocaInst>( |
| 3720 | Val: DestPtr->stripAndAccumulateConstantOffsets( |
| 3721 | DL, Offset, /*AllowNonInbounds*/ true))) { |
| 3722 | migrateDebugInfo(OldAlloca: Base, IsSplit, OldAllocaOffsetInBits: Offset.getZExtValue() * 8, |
| 3723 | SliceSizeInBits: SliceSize * 8, OldInst: &II, Inst: New, Dest: DestPtr, Value: nullptr, DL); |
| 3724 | } |
| 3725 | LLVM_DEBUG(dbgs() << " to: " << *New << "\n" ); |
| 3726 | return false; |
| 3727 | } |
| 3728 | |
| 3729 | bool IsWholeAlloca = NewBeginOffset == NewAllocaBeginOffset && |
| 3730 | NewEndOffset == NewAllocaEndOffset; |
| 3731 | uint64_t Size = NewEndOffset - NewBeginOffset; |
| 3732 | unsigned BeginIndex = VecTy ? getIndex(Offset: NewBeginOffset) : 0; |
| 3733 | unsigned EndIndex = VecTy ? getIndex(Offset: NewEndOffset) : 0; |
| 3734 | unsigned NumElements = EndIndex - BeginIndex; |
| 3735 | IntegerType *SubIntTy = |
| 3736 | IntTy ? Type::getIntNTy(C&: IntTy->getContext(), N: Size * 8) : nullptr; |
| 3737 | |
| 3738 | // Reset the other pointer type to match the register type we're going to |
| 3739 | // use, but using the address space of the original other pointer. |
| 3740 | Type *OtherTy; |
| 3741 | if (VecTy && !IsWholeAlloca) { |
| 3742 | if (NumElements == 1) |
| 3743 | OtherTy = VecTy->getElementType(); |
| 3744 | else |
| 3745 | OtherTy = FixedVectorType::get(ElementType: VecTy->getElementType(), NumElts: NumElements); |
| 3746 | } else if (IntTy && !IsWholeAlloca) { |
| 3747 | OtherTy = SubIntTy; |
| 3748 | } else { |
| 3749 | OtherTy = NewAllocaTy; |
| 3750 | } |
| 3751 | |
| 3752 | Value *AdjPtr = getAdjustedPtr(IRB, DL, Ptr: OtherPtr, Offset: OtherOffset, PointerTy: OtherPtrTy, |
| 3753 | NamePrefix: OtherPtr->getName() + "." ); |
| 3754 | MaybeAlign SrcAlign = OtherAlign; |
| 3755 | MaybeAlign DstAlign = SliceAlign; |
| 3756 | if (!IsDest) |
| 3757 | std::swap(a&: SrcAlign, b&: DstAlign); |
| 3758 | |
| 3759 | Value *SrcPtr; |
| 3760 | Value *DstPtr; |
| 3761 | |
| 3762 | if (IsDest) { |
| 3763 | DstPtr = getPtrToNewAI(AddrSpace: II.getDestAddressSpace(), IsVolatile: II.isVolatile()); |
| 3764 | SrcPtr = AdjPtr; |
| 3765 | } else { |
| 3766 | DstPtr = AdjPtr; |
| 3767 | SrcPtr = getPtrToNewAI(AddrSpace: II.getSourceAddressSpace(), IsVolatile: II.isVolatile()); |
| 3768 | } |
| 3769 | |
| 3770 | Value *Src; |
| 3771 | if (VecTy && !IsWholeAlloca && !IsDest) { |
| 3772 | Src = |
| 3773 | IRB.CreateAlignedLoad(Ty: NewAllocaTy, Ptr: &NewAI, Align: NewAI.getAlign(), Name: "load" ); |
| 3774 | Src = extractVector(IRB, V: Src, BeginIndex, EndIndex, Name: "vec" ); |
| 3775 | } else if (IntTy && !IsWholeAlloca && !IsDest) { |
| 3776 | Src = |
| 3777 | IRB.CreateAlignedLoad(Ty: NewAllocaTy, Ptr: &NewAI, Align: NewAI.getAlign(), Name: "load" ); |
| 3778 | Src = IRB.CreateBitPreservingCastChain(DL, V: Src, NewTy: IntTy); |
| 3779 | uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset; |
| 3780 | Src = extractInteger(DL, IRB, V: Src, Ty: SubIntTy, Offset, Name: "extract" ); |
| 3781 | } else { |
| 3782 | LoadInst *Load = IRB.CreateAlignedLoad(Ty: OtherTy, Ptr: SrcPtr, Align: SrcAlign, |
| 3783 | isVolatile: II.isVolatile(), Name: "copyload" ); |
| 3784 | Load->copyMetadata(SrcInst: II, WL: {LLVMContext::MD_mem_parallel_loop_access, |
| 3785 | LLVMContext::MD_access_group}); |
| 3786 | if (AATags) |
| 3787 | Load->setAAMetadata(AATags.adjustForAccess(Offset: NewBeginOffset - BeginOffset, |
| 3788 | AccessTy: Load->getType(), DL)); |
| 3789 | Src = Load; |
| 3790 | } |
| 3791 | |
| 3792 | if (VecTy && !IsWholeAlloca && IsDest) { |
| 3793 | Value *Old = IRB.CreateAlignedLoad(Ty: NewAllocaTy, Ptr: &NewAI, Align: NewAI.getAlign(), |
| 3794 | Name: "oldload" ); |
| 3795 | Src = insertVector(IRB, Old, V: Src, BeginIndex, Name: "vec" ); |
| 3796 | } else if (IntTy && !IsWholeAlloca && IsDest) { |
| 3797 | Value *Old = IRB.CreateAlignedLoad(Ty: NewAllocaTy, Ptr: &NewAI, Align: NewAI.getAlign(), |
| 3798 | Name: "oldload" ); |
| 3799 | Old = IRB.CreateBitPreservingCastChain(DL, V: Old, NewTy: IntTy); |
| 3800 | uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset; |
| 3801 | Src = insertInteger(DL, IRB, Old, V: Src, Offset, Name: "insert" ); |
| 3802 | Src = IRB.CreateBitPreservingCastChain(DL, V: Src, NewTy: NewAllocaTy); |
| 3803 | } |
| 3804 | |
| 3805 | StoreInst *Store = cast<StoreInst>( |
| 3806 | Val: IRB.CreateAlignedStore(Val: Src, Ptr: DstPtr, Align: DstAlign, isVolatile: II.isVolatile())); |
| 3807 | Store->copyMetadata(SrcInst: II, WL: {LLVMContext::MD_mem_parallel_loop_access, |
| 3808 | LLVMContext::MD_access_group}); |
| 3809 | if (AATags) |
| 3810 | Store->setAAMetadata(AATags.adjustForAccess(Offset: NewBeginOffset - BeginOffset, |
| 3811 | AccessTy: Src->getType(), DL)); |
| 3812 | |
| 3813 | APInt Offset(DL.getIndexTypeSizeInBits(Ty: DstPtr->getType()), 0); |
| 3814 | if (IsDest) { |
| 3815 | |
| 3816 | migrateDebugInfo(OldAlloca: &OldAI, IsSplit, OldAllocaOffsetInBits: NewBeginOffset * 8, SliceSizeInBits: SliceSize * 8, OldInst: &II, |
| 3817 | Inst: Store, Dest: DstPtr, Value: Src, DL); |
| 3818 | } else if (AllocaInst *Base = dyn_cast<AllocaInst>( |
| 3819 | Val: DstPtr->stripAndAccumulateConstantOffsets( |
| 3820 | DL, Offset, /*AllowNonInbounds*/ true))) { |
| 3821 | migrateDebugInfo(OldAlloca: Base, IsSplit, OldAllocaOffsetInBits: Offset.getZExtValue() * 8, SliceSizeInBits: SliceSize * 8, |
| 3822 | OldInst: &II, Inst: Store, Dest: DstPtr, Value: Src, DL); |
| 3823 | } |
| 3824 | |
| 3825 | LLVM_DEBUG(dbgs() << " to: " << *Store << "\n" ); |
| 3826 | return !II.isVolatile(); |
| 3827 | } |
| 3828 | |
| 3829 | bool visitIntrinsicInst(IntrinsicInst &II) { |
| 3830 | assert((II.isLifetimeStartOrEnd() || II.isDroppable()) && |
| 3831 | "Unexpected intrinsic!" ); |
| 3832 | LLVM_DEBUG(dbgs() << " original: " << II << "\n" ); |
| 3833 | |
| 3834 | // Record this instruction for deletion. |
| 3835 | Pass.DeadInsts.push_back(Elt: &II); |
| 3836 | |
| 3837 | if (II.isDroppable()) { |
| 3838 | assert(II.getIntrinsicID() == Intrinsic::assume && "Expected assume" ); |
| 3839 | // TODO For now we forget assumed information, this can be improved. |
| 3840 | OldPtr->dropDroppableUsesIn(Usr&: II); |
| 3841 | return true; |
| 3842 | } |
| 3843 | |
| 3844 | assert(II.getArgOperand(0) == OldPtr); |
| 3845 | Type *PointerTy = IRB.getPtrTy(AddrSpace: OldPtr->getType()->getPointerAddressSpace()); |
| 3846 | Value *Ptr = getNewAllocaSlicePtr(IRB, PointerTy); |
| 3847 | Value *New; |
| 3848 | if (II.getIntrinsicID() == Intrinsic::lifetime_start) |
| 3849 | New = IRB.CreateLifetimeStart(Ptr); |
| 3850 | else |
| 3851 | New = IRB.CreateLifetimeEnd(Ptr); |
| 3852 | |
| 3853 | (void)New; |
| 3854 | LLVM_DEBUG(dbgs() << " to: " << *New << "\n" ); |
| 3855 | |
| 3856 | return true; |
| 3857 | } |
| 3858 | |
| 3859 | void fixLoadStoreAlign(Instruction &Root) { |
| 3860 | // This algorithm implements the same visitor loop as |
| 3861 | // hasUnsafePHIOrSelectUse, and fixes the alignment of each load |
| 3862 | // or store found. |
| 3863 | SmallPtrSet<Instruction *, 4> Visited; |
| 3864 | SmallVector<Instruction *, 4> Uses; |
| 3865 | Visited.insert(Ptr: &Root); |
| 3866 | Uses.push_back(Elt: &Root); |
| 3867 | do { |
| 3868 | Instruction *I = Uses.pop_back_val(); |
| 3869 | |
| 3870 | if (LoadInst *LI = dyn_cast<LoadInst>(Val: I)) { |
| 3871 | LI->setAlignment(std::min(a: LI->getAlign(), b: getSliceAlign())); |
| 3872 | continue; |
| 3873 | } |
| 3874 | if (StoreInst *SI = dyn_cast<StoreInst>(Val: I)) { |
| 3875 | SI->setAlignment(std::min(a: SI->getAlign(), b: getSliceAlign())); |
| 3876 | continue; |
| 3877 | } |
| 3878 | |
| 3879 | assert(isa<BitCastInst>(I) || isa<AddrSpaceCastInst>(I) || |
| 3880 | isa<PHINode>(I) || isa<SelectInst>(I) || |
| 3881 | isa<GetElementPtrInst>(I)); |
| 3882 | for (User *U : I->users()) |
| 3883 | if (Visited.insert(Ptr: cast<Instruction>(Val: U)).second) |
| 3884 | Uses.push_back(Elt: cast<Instruction>(Val: U)); |
| 3885 | } while (!Uses.empty()); |
| 3886 | } |
| 3887 | |
| 3888 | bool visitPHINode(PHINode &PN) { |
| 3889 | LLVM_DEBUG(dbgs() << " original: " << PN << "\n" ); |
| 3890 | assert(BeginOffset >= NewAllocaBeginOffset && "PHIs are unsplittable" ); |
| 3891 | assert(EndOffset <= NewAllocaEndOffset && "PHIs are unsplittable" ); |
| 3892 | |
| 3893 | // We would like to compute a new pointer in only one place, but have it be |
| 3894 | // as local as possible to the PHI. To do that, we re-use the location of |
| 3895 | // the old pointer, which necessarily must be in the right position to |
| 3896 | // dominate the PHI. |
| 3897 | IRBuilderBase::InsertPointGuard Guard(IRB); |
| 3898 | if (isa<PHINode>(Val: OldPtr)) |
| 3899 | IRB.SetInsertPoint(TheBB: OldPtr->getParent(), |
| 3900 | IP: OldPtr->getParent()->getFirstInsertionPt()); |
| 3901 | else |
| 3902 | IRB.SetInsertPoint(OldPtr); |
| 3903 | IRB.SetCurrentDebugLocation(OldPtr->getDebugLoc()); |
| 3904 | |
| 3905 | Value *NewPtr = getNewAllocaSlicePtr(IRB, PointerTy: OldPtr->getType()); |
| 3906 | // Replace the operands which were using the old pointer. |
| 3907 | std::replace(first: PN.op_begin(), last: PN.op_end(), old_value: cast<Value>(Val: OldPtr), new_value: NewPtr); |
| 3908 | |
| 3909 | LLVM_DEBUG(dbgs() << " to: " << PN << "\n" ); |
| 3910 | deleteIfTriviallyDead(V: OldPtr); |
| 3911 | |
| 3912 | // Fix the alignment of any loads or stores using this PHI node. |
| 3913 | fixLoadStoreAlign(Root&: PN); |
| 3914 | |
| 3915 | // PHIs can't be promoted on their own, but often can be speculated. We |
| 3916 | // check the speculation outside of the rewriter so that we see the |
| 3917 | // fully-rewritten alloca. |
| 3918 | PHIUsers.insert(X: &PN); |
| 3919 | return true; |
| 3920 | } |
| 3921 | |
| 3922 | bool visitSelectInst(SelectInst &SI) { |
| 3923 | LLVM_DEBUG(dbgs() << " original: " << SI << "\n" ); |
| 3924 | assert((SI.getTrueValue() == OldPtr || SI.getFalseValue() == OldPtr) && |
| 3925 | "Pointer isn't an operand!" ); |
| 3926 | assert(BeginOffset >= NewAllocaBeginOffset && "Selects are unsplittable" ); |
| 3927 | assert(EndOffset <= NewAllocaEndOffset && "Selects are unsplittable" ); |
| 3928 | |
| 3929 | Value *NewPtr = getNewAllocaSlicePtr(IRB, PointerTy: OldPtr->getType()); |
| 3930 | // Replace the operands which were using the old pointer. |
| 3931 | if (SI.getOperand(i_nocapture: 1) == OldPtr) |
| 3932 | SI.setOperand(i_nocapture: 1, Val_nocapture: NewPtr); |
| 3933 | if (SI.getOperand(i_nocapture: 2) == OldPtr) |
| 3934 | SI.setOperand(i_nocapture: 2, Val_nocapture: NewPtr); |
| 3935 | |
| 3936 | LLVM_DEBUG(dbgs() << " to: " << SI << "\n" ); |
| 3937 | deleteIfTriviallyDead(V: OldPtr); |
| 3938 | |
| 3939 | // Fix the alignment of any loads or stores using this select. |
| 3940 | fixLoadStoreAlign(Root&: SI); |
| 3941 | |
| 3942 | // Selects can't be promoted on their own, but often can be speculated. We |
| 3943 | // check the speculation outside of the rewriter so that we see the |
| 3944 | // fully-rewritten alloca. |
| 3945 | SelectUsers.insert(X: &SI); |
| 3946 | return true; |
| 3947 | } |
| 3948 | }; |
| 3949 | |
| 3950 | /// Visitor to rewrite aggregate loads and stores as scalar. |
| 3951 | /// |
| 3952 | /// This pass aggressively rewrites all aggregate loads and stores on |
| 3953 | /// a particular pointer (or any pointer derived from it which we can identify) |
| 3954 | /// with scalar loads and stores. |
| 3955 | class AggLoadStoreRewriter : public InstVisitor<AggLoadStoreRewriter, bool> { |
| 3956 | // Befriend the base class so it can delegate to private visit methods. |
| 3957 | friend class InstVisitor<AggLoadStoreRewriter, bool>; |
| 3958 | |
| 3959 | /// Queue of pointer uses to analyze and potentially rewrite. |
| 3960 | SmallVector<Use *, 8> Queue; |
| 3961 | |
| 3962 | /// Set to prevent us from cycling with phi nodes and loops. |
| 3963 | SmallPtrSet<User *, 8> Visited; |
| 3964 | |
| 3965 | /// The current pointer use being rewritten. This is used to dig up the used |
| 3966 | /// value (as opposed to the user). |
| 3967 | Use *U = nullptr; |
| 3968 | |
| 3969 | /// Used to calculate offsets, and hence alignment, of subobjects. |
| 3970 | const DataLayout &DL; |
| 3971 | |
| 3972 | IRBuilderTy &IRB; |
| 3973 | |
| 3974 | public: |
| 3975 | AggLoadStoreRewriter(const DataLayout &DL, IRBuilderTy &IRB) |
| 3976 | : DL(DL), IRB(IRB) {} |
| 3977 | |
| 3978 | /// Rewrite loads and stores through a pointer and all pointers derived from |
| 3979 | /// it. |
| 3980 | bool rewrite(Instruction &I) { |
| 3981 | LLVM_DEBUG(dbgs() << " Rewriting FCA loads and stores...\n" ); |
| 3982 | enqueueUsers(I); |
| 3983 | bool Changed = false; |
| 3984 | while (!Queue.empty()) { |
| 3985 | U = Queue.pop_back_val(); |
| 3986 | Changed |= visit(I: cast<Instruction>(Val: U->getUser())); |
| 3987 | } |
| 3988 | return Changed; |
| 3989 | } |
| 3990 | |
| 3991 | private: |
| 3992 | /// Enqueue all the users of the given instruction for further processing. |
| 3993 | /// This uses a set to de-duplicate users. |
| 3994 | void enqueueUsers(Instruction &I) { |
| 3995 | for (Use &U : I.uses()) |
| 3996 | if (Visited.insert(Ptr: U.getUser()).second) |
| 3997 | Queue.push_back(Elt: &U); |
| 3998 | } |
| 3999 | |
| 4000 | // Conservative default is to not rewrite anything. |
| 4001 | bool visitInstruction(Instruction &I) { return false; } |
| 4002 | |
| 4003 | /// Generic recursive split emission class. |
| 4004 | template <typename Derived> class OpSplitter { |
| 4005 | protected: |
| 4006 | /// The builder used to form new instructions. |
| 4007 | IRBuilderTy &IRB; |
| 4008 | |
| 4009 | /// The indices which to be used with insert- or extractvalue to select the |
| 4010 | /// appropriate value within the aggregate. |
| 4011 | SmallVector<unsigned, 4> Indices; |
| 4012 | |
| 4013 | /// The indices to a GEP instruction which will move Ptr to the correct slot |
| 4014 | /// within the aggregate. |
| 4015 | SmallVector<Value *, 4> GEPIndices; |
| 4016 | |
| 4017 | /// The base pointer of the original op, used as a base for GEPing the |
| 4018 | /// split operations. |
| 4019 | Value *Ptr; |
| 4020 | |
| 4021 | /// The base pointee type being GEPed into. |
| 4022 | Type *BaseTy; |
| 4023 | |
| 4024 | /// Known alignment of the base pointer. |
| 4025 | Align BaseAlign; |
| 4026 | |
| 4027 | /// To calculate offset of each component so we can correctly deduce |
| 4028 | /// alignments. |
| 4029 | const DataLayout &DL; |
| 4030 | |
| 4031 | /// Initialize the splitter with an insertion point, Ptr and start with a |
| 4032 | /// single zero GEP index. |
| 4033 | OpSplitter(Instruction *InsertionPoint, Value *Ptr, Type *BaseTy, |
| 4034 | Align BaseAlign, const DataLayout &DL, IRBuilderTy &IRB) |
| 4035 | : IRB(IRB), GEPIndices(1, IRB.getInt32(C: 0)), Ptr(Ptr), BaseTy(BaseTy), |
| 4036 | BaseAlign(BaseAlign), DL(DL) { |
| 4037 | IRB.SetInsertPoint(InsertionPoint); |
| 4038 | } |
| 4039 | |
| 4040 | public: |
| 4041 | /// Generic recursive split emission routine. |
| 4042 | /// |
| 4043 | /// This method recursively splits an aggregate op (load or store) into |
| 4044 | /// scalar or vector ops. It splits recursively until it hits a single value |
| 4045 | /// and emits that single value operation via the template argument. |
| 4046 | /// |
| 4047 | /// The logic of this routine relies on GEPs and insertvalue and |
| 4048 | /// extractvalue all operating with the same fundamental index list, merely |
| 4049 | /// formatted differently (GEPs need actual values). |
| 4050 | /// |
| 4051 | /// \param Ty The type being split recursively into smaller ops. |
| 4052 | /// \param Agg The aggregate value being built up or stored, depending on |
| 4053 | /// whether this is splitting a load or a store respectively. |
| 4054 | void emitSplitOps(Type *Ty, Value *&Agg, const Twine &Name) { |
| 4055 | if (Ty->isSingleValueType()) { |
| 4056 | unsigned Offset = DL.getIndexedOffsetInType(ElemTy: BaseTy, Indices: GEPIndices); |
| 4057 | return static_cast<Derived *>(this)->emitFunc( |
| 4058 | Ty, Agg, commonAlignment(A: BaseAlign, Offset), Name); |
| 4059 | } |
| 4060 | |
| 4061 | if (ArrayType *ATy = dyn_cast<ArrayType>(Val: Ty)) { |
| 4062 | unsigned OldSize = Indices.size(); |
| 4063 | (void)OldSize; |
| 4064 | for (unsigned Idx = 0, Size = ATy->getNumElements(); Idx != Size; |
| 4065 | ++Idx) { |
| 4066 | assert(Indices.size() == OldSize && "Did not return to the old size" ); |
| 4067 | Indices.push_back(Elt: Idx); |
| 4068 | GEPIndices.push_back(Elt: IRB.getInt32(C: Idx)); |
| 4069 | emitSplitOps(Ty: ATy->getElementType(), Agg, Name: Name + "." + Twine(Idx)); |
| 4070 | GEPIndices.pop_back(); |
| 4071 | Indices.pop_back(); |
| 4072 | } |
| 4073 | return; |
| 4074 | } |
| 4075 | |
| 4076 | if (StructType *STy = dyn_cast<StructType>(Val: Ty)) { |
| 4077 | unsigned OldSize = Indices.size(); |
| 4078 | (void)OldSize; |
| 4079 | for (unsigned Idx = 0, Size = STy->getNumElements(); Idx != Size; |
| 4080 | ++Idx) { |
| 4081 | assert(Indices.size() == OldSize && "Did not return to the old size" ); |
| 4082 | Indices.push_back(Elt: Idx); |
| 4083 | GEPIndices.push_back(Elt: IRB.getInt32(C: Idx)); |
| 4084 | emitSplitOps(Ty: STy->getElementType(N: Idx), Agg, Name: Name + "." + Twine(Idx)); |
| 4085 | GEPIndices.pop_back(); |
| 4086 | Indices.pop_back(); |
| 4087 | } |
| 4088 | return; |
| 4089 | } |
| 4090 | |
| 4091 | llvm_unreachable("Only arrays and structs are aggregate loadable types" ); |
| 4092 | } |
| 4093 | }; |
| 4094 | |
| 4095 | struct LoadOpSplitter : public OpSplitter<LoadOpSplitter> { |
| 4096 | AAMDNodes AATags; |
| 4097 | // A vector to hold the split components that we want to emit |
| 4098 | // separate fake uses for. |
| 4099 | SmallVector<Value *, 4> Components; |
| 4100 | // A vector to hold all the fake uses of the struct that we are splitting. |
| 4101 | // Usually there should only be one, but we are handling the general case. |
| 4102 | SmallVector<Instruction *, 1> FakeUses; |
| 4103 | |
| 4104 | LoadOpSplitter(Instruction *InsertionPoint, Value *Ptr, Type *BaseTy, |
| 4105 | AAMDNodes AATags, Align BaseAlign, const DataLayout &DL, |
| 4106 | IRBuilderTy &IRB) |
| 4107 | : OpSplitter<LoadOpSplitter>(InsertionPoint, Ptr, BaseTy, BaseAlign, DL, |
| 4108 | IRB), |
| 4109 | AATags(AATags) {} |
| 4110 | |
| 4111 | /// Emit a leaf load of a single value. This is called at the leaves of the |
| 4112 | /// recursive emission to actually load values. |
| 4113 | void emitFunc(Type *Ty, Value *&Agg, Align Alignment, const Twine &Name) { |
| 4114 | assert(Ty->isSingleValueType()); |
| 4115 | // Load the single value and insert it using the indices. |
| 4116 | Value *GEP = |
| 4117 | IRB.CreateInBoundsGEP(Ty: BaseTy, Ptr, IdxList: GEPIndices, Name: Name + ".gep" ); |
| 4118 | LoadInst *Load = |
| 4119 | IRB.CreateAlignedLoad(Ty, Ptr: GEP, Align: Alignment, Name: Name + ".load" ); |
| 4120 | |
| 4121 | APInt Offset( |
| 4122 | DL.getIndexSizeInBits(AS: Ptr->getType()->getPointerAddressSpace()), 0); |
| 4123 | if (AATags && |
| 4124 | GEPOperator::accumulateConstantOffset(SourceType: BaseTy, Index: GEPIndices, DL, Offset)) |
| 4125 | Load->setAAMetadata( |
| 4126 | AATags.adjustForAccess(Offset: Offset.getZExtValue(), AccessTy: Load->getType(), DL)); |
| 4127 | // Record the load so we can generate a fake use for this aggregate |
| 4128 | // component. |
| 4129 | Components.push_back(Elt: Load); |
| 4130 | |
| 4131 | Agg = IRB.CreateInsertValue(Agg, Val: Load, Idxs: Indices, Name: Name + ".insert" ); |
| 4132 | LLVM_DEBUG(dbgs() << " to: " << *Load << "\n" ); |
| 4133 | } |
| 4134 | |
| 4135 | // Stash the fake uses that use the value generated by this instruction. |
| 4136 | void recordFakeUses(LoadInst &LI) { |
| 4137 | for (Use &U : LI.uses()) |
| 4138 | if (auto *II = dyn_cast<IntrinsicInst>(Val: U.getUser())) |
| 4139 | if (II->getIntrinsicID() == Intrinsic::fake_use) |
| 4140 | FakeUses.push_back(Elt: II); |
| 4141 | } |
| 4142 | |
| 4143 | // Replace all fake uses of the aggregate with a series of fake uses, one |
| 4144 | // for each split component. |
| 4145 | void emitFakeUses() { |
| 4146 | for (Instruction *I : FakeUses) { |
| 4147 | IRB.SetInsertPoint(I); |
| 4148 | for (auto *V : Components) |
| 4149 | IRB.CreateIntrinsic(ID: Intrinsic::fake_use, Args: {V}); |
| 4150 | I->eraseFromParent(); |
| 4151 | } |
| 4152 | } |
| 4153 | }; |
| 4154 | |
| 4155 | bool visitLoadInst(LoadInst &LI) { |
| 4156 | assert(LI.getPointerOperand() == *U); |
| 4157 | if (!LI.isSimple() || LI.getType()->isSingleValueType()) |
| 4158 | return false; |
| 4159 | |
| 4160 | // We have an aggregate being loaded, split it apart. |
| 4161 | LLVM_DEBUG(dbgs() << " original: " << LI << "\n" ); |
| 4162 | LoadOpSplitter Splitter(&LI, *U, LI.getType(), LI.getAAMetadata(), |
| 4163 | getAdjustedAlignment(I: &LI, Offset: 0), DL, IRB); |
| 4164 | Splitter.recordFakeUses(LI); |
| 4165 | Value *V = PoisonValue::get(T: LI.getType()); |
| 4166 | Splitter.emitSplitOps(Ty: LI.getType(), Agg&: V, Name: LI.getName() + ".fca" ); |
| 4167 | Splitter.emitFakeUses(); |
| 4168 | Visited.erase(Ptr: &LI); |
| 4169 | LI.replaceAllUsesWith(V); |
| 4170 | LI.eraseFromParent(); |
| 4171 | return true; |
| 4172 | } |
| 4173 | |
| 4174 | struct StoreOpSplitter : public OpSplitter<StoreOpSplitter> { |
| 4175 | StoreOpSplitter(Instruction *InsertionPoint, Value *Ptr, Type *BaseTy, |
| 4176 | AAMDNodes AATags, StoreInst *AggStore, Align BaseAlign, |
| 4177 | const DataLayout &DL, IRBuilderTy &IRB) |
| 4178 | : OpSplitter<StoreOpSplitter>(InsertionPoint, Ptr, BaseTy, BaseAlign, |
| 4179 | DL, IRB), |
| 4180 | AATags(AATags), AggStore(AggStore) {} |
| 4181 | AAMDNodes AATags; |
| 4182 | StoreInst *AggStore; |
| 4183 | /// Emit a leaf store of a single value. This is called at the leaves of the |
| 4184 | /// recursive emission to actually produce stores. |
| 4185 | void emitFunc(Type *Ty, Value *&Agg, Align Alignment, const Twine &Name) { |
| 4186 | assert(Ty->isSingleValueType()); |
| 4187 | // Extract the single value and store it using the indices. |
| 4188 | // |
| 4189 | // The gep and extractvalue values are factored out of the CreateStore |
| 4190 | // call to make the output independent of the argument evaluation order. |
| 4191 | Value * = |
| 4192 | IRB.CreateExtractValue(Agg, Idxs: Indices, Name: Name + ".extract" ); |
| 4193 | Value *InBoundsGEP = |
| 4194 | IRB.CreateInBoundsGEP(Ty: BaseTy, Ptr, IdxList: GEPIndices, Name: Name + ".gep" ); |
| 4195 | StoreInst *Store = |
| 4196 | IRB.CreateAlignedStore(Val: ExtractValue, Ptr: InBoundsGEP, Align: Alignment); |
| 4197 | |
| 4198 | APInt Offset( |
| 4199 | DL.getIndexSizeInBits(AS: Ptr->getType()->getPointerAddressSpace()), 0); |
| 4200 | GEPOperator::accumulateConstantOffset(SourceType: BaseTy, Index: GEPIndices, DL, Offset); |
| 4201 | if (AATags) { |
| 4202 | Store->setAAMetadata(AATags.adjustForAccess( |
| 4203 | Offset: Offset.getZExtValue(), AccessTy: ExtractValue->getType(), DL)); |
| 4204 | } |
| 4205 | |
| 4206 | // migrateDebugInfo requires the base Alloca. Walk to it from this gep. |
| 4207 | // If we cannot (because there's an intervening non-const or unbounded |
| 4208 | // gep) then we wouldn't expect to see dbg.assign intrinsics linked to |
| 4209 | // this instruction. |
| 4210 | Value *Base = AggStore->getPointerOperand()->stripInBoundsOffsets(); |
| 4211 | if (auto *OldAI = dyn_cast<AllocaInst>(Val: Base)) { |
| 4212 | uint64_t SizeInBits = |
| 4213 | DL.getTypeSizeInBits(Ty: Store->getValueOperand()->getType()); |
| 4214 | migrateDebugInfo(OldAlloca: OldAI, /*IsSplit*/ true, OldAllocaOffsetInBits: Offset.getZExtValue() * 8, |
| 4215 | SliceSizeInBits: SizeInBits, OldInst: AggStore, Inst: Store, |
| 4216 | Dest: Store->getPointerOperand(), Value: Store->getValueOperand(), |
| 4217 | DL); |
| 4218 | } else { |
| 4219 | assert(at::getDVRAssignmentMarkers(Store).empty() && |
| 4220 | "AT: unexpected debug.assign linked to store through " |
| 4221 | "unbounded GEP" ); |
| 4222 | } |
| 4223 | LLVM_DEBUG(dbgs() << " to: " << *Store << "\n" ); |
| 4224 | } |
| 4225 | }; |
| 4226 | |
| 4227 | bool visitStoreInst(StoreInst &SI) { |
| 4228 | if (!SI.isSimple() || SI.getPointerOperand() != *U) |
| 4229 | return false; |
| 4230 | Value *V = SI.getValueOperand(); |
| 4231 | if (V->getType()->isSingleValueType()) |
| 4232 | return false; |
| 4233 | |
| 4234 | // We have an aggregate being stored, split it apart. |
| 4235 | LLVM_DEBUG(dbgs() << " original: " << SI << "\n" ); |
| 4236 | StoreOpSplitter Splitter(&SI, *U, V->getType(), SI.getAAMetadata(), &SI, |
| 4237 | getAdjustedAlignment(I: &SI, Offset: 0), DL, IRB); |
| 4238 | Splitter.emitSplitOps(Ty: V->getType(), Agg&: V, Name: V->getName() + ".fca" ); |
| 4239 | Visited.erase(Ptr: &SI); |
| 4240 | // The stores replacing SI each have markers describing fragments of the |
| 4241 | // assignment so delete the assignment markers linked to SI. |
| 4242 | at::deleteAssignmentMarkers(Inst: &SI); |
| 4243 | SI.eraseFromParent(); |
| 4244 | return true; |
| 4245 | } |
| 4246 | |
| 4247 | bool visitBitCastInst(BitCastInst &BC) { |
| 4248 | enqueueUsers(I&: BC); |
| 4249 | return false; |
| 4250 | } |
| 4251 | |
| 4252 | bool visitAddrSpaceCastInst(AddrSpaceCastInst &ASC) { |
| 4253 | enqueueUsers(I&: ASC); |
| 4254 | return false; |
| 4255 | } |
| 4256 | |
| 4257 | // Unfold gep (select cond, ptr1, ptr2), idx |
| 4258 | // => select cond, gep(ptr1, idx), gep(ptr2, idx) |
| 4259 | // and gep ptr, (select cond, idx1, idx2) |
| 4260 | // => select cond, gep(ptr, idx1), gep(ptr, idx2) |
| 4261 | // We also allow for i1 zext indices, which are equivalent to selects. |
| 4262 | bool unfoldGEPSelect(GetElementPtrInst &GEPI) { |
| 4263 | // Check whether the GEP has exactly one select operand and all indices |
| 4264 | // will become constant after the transform. |
| 4265 | Instruction *Sel = dyn_cast<SelectInst>(Val: GEPI.getPointerOperand()); |
| 4266 | for (Value *Op : GEPI.indices()) { |
| 4267 | if (auto *SI = dyn_cast<SelectInst>(Val: Op)) { |
| 4268 | if (Sel) |
| 4269 | return false; |
| 4270 | |
| 4271 | Sel = SI; |
| 4272 | if (!isa<ConstantInt>(Val: SI->getTrueValue()) || |
| 4273 | !isa<ConstantInt>(Val: SI->getFalseValue())) |
| 4274 | return false; |
| 4275 | continue; |
| 4276 | } |
| 4277 | if (auto *ZI = dyn_cast<ZExtInst>(Val: Op)) { |
| 4278 | if (Sel) |
| 4279 | return false; |
| 4280 | Sel = ZI; |
| 4281 | if (!ZI->getSrcTy()->isIntegerTy(Bitwidth: 1)) |
| 4282 | return false; |
| 4283 | continue; |
| 4284 | } |
| 4285 | |
| 4286 | if (!isa<ConstantInt>(Val: Op)) |
| 4287 | return false; |
| 4288 | } |
| 4289 | |
| 4290 | if (!Sel) |
| 4291 | return false; |
| 4292 | |
| 4293 | LLVM_DEBUG(dbgs() << " Rewriting gep(select) -> select(gep):\n" ; |
| 4294 | dbgs() << " original: " << *Sel << "\n" ; |
| 4295 | dbgs() << " " << GEPI << "\n" ;); |
| 4296 | |
| 4297 | auto GetNewOps = [&](Value *SelOp) { |
| 4298 | SmallVector<Value *> NewOps; |
| 4299 | for (Value *Op : GEPI.operands()) |
| 4300 | if (Op == Sel) |
| 4301 | NewOps.push_back(Elt: SelOp); |
| 4302 | else |
| 4303 | NewOps.push_back(Elt: Op); |
| 4304 | return NewOps; |
| 4305 | }; |
| 4306 | |
| 4307 | Value *Cond, *True, *False; |
| 4308 | Instruction *MDFrom = nullptr; |
| 4309 | if (auto *SI = dyn_cast<SelectInst>(Val: Sel)) { |
| 4310 | Cond = SI->getCondition(); |
| 4311 | True = SI->getTrueValue(); |
| 4312 | False = SI->getFalseValue(); |
| 4313 | if (!ProfcheckDisableMetadataFixes) |
| 4314 | MDFrom = SI; |
| 4315 | } else { |
| 4316 | Cond = Sel->getOperand(i: 0); |
| 4317 | True = ConstantInt::get(Ty: Sel->getType(), V: 1); |
| 4318 | False = ConstantInt::get(Ty: Sel->getType(), V: 0); |
| 4319 | } |
| 4320 | SmallVector<Value *> TrueOps = GetNewOps(True); |
| 4321 | SmallVector<Value *> FalseOps = GetNewOps(False); |
| 4322 | |
| 4323 | IRB.SetInsertPoint(&GEPI); |
| 4324 | GEPNoWrapFlags NW = GEPI.getNoWrapFlags(); |
| 4325 | |
| 4326 | Type *Ty = GEPI.getSourceElementType(); |
| 4327 | Value *NTrue = IRB.CreateGEP(Ty, Ptr: TrueOps[0], IdxList: ArrayRef(TrueOps).drop_front(), |
| 4328 | Name: True->getName() + ".sroa.gep" , NW); |
| 4329 | |
| 4330 | Value *NFalse = |
| 4331 | IRB.CreateGEP(Ty, Ptr: FalseOps[0], IdxList: ArrayRef(FalseOps).drop_front(), |
| 4332 | Name: False->getName() + ".sroa.gep" , NW); |
| 4333 | |
| 4334 | Value *NSel = MDFrom |
| 4335 | ? IRB.CreateSelect(C: Cond, True: NTrue, False: NFalse, |
| 4336 | Name: Sel->getName() + ".sroa.sel" , MDFrom) |
| 4337 | : IRB.CreateSelectWithUnknownProfile( |
| 4338 | C: Cond, True: NTrue, False: NFalse, DEBUG_TYPE, |
| 4339 | Name: Sel->getName() + ".sroa.sel" ); |
| 4340 | Visited.erase(Ptr: &GEPI); |
| 4341 | GEPI.replaceAllUsesWith(V: NSel); |
| 4342 | GEPI.eraseFromParent(); |
| 4343 | Instruction *NSelI = cast<Instruction>(Val: NSel); |
| 4344 | Visited.insert(Ptr: NSelI); |
| 4345 | enqueueUsers(I&: *NSelI); |
| 4346 | |
| 4347 | LLVM_DEBUG(dbgs() << " to: " << *NTrue << "\n" ; |
| 4348 | dbgs() << " " << *NFalse << "\n" ; |
| 4349 | dbgs() << " " << *NSel << "\n" ;); |
| 4350 | |
| 4351 | return true; |
| 4352 | } |
| 4353 | |
| 4354 | // Unfold gep (phi ptr1, ptr2), idx |
| 4355 | // => phi ((gep ptr1, idx), (gep ptr2, idx)) |
| 4356 | // and gep ptr, (phi idx1, idx2) |
| 4357 | // => phi ((gep ptr, idx1), (gep ptr, idx2)) |
| 4358 | bool unfoldGEPPhi(GetElementPtrInst &GEPI) { |
| 4359 | // To prevent infinitely expanding recursive phis, bail if the GEP pointer |
| 4360 | // operand (looking through the phi if it is the phi we want to unfold) is |
| 4361 | // an instruction besides a static alloca. |
| 4362 | PHINode *Phi = dyn_cast<PHINode>(Val: GEPI.getPointerOperand()); |
| 4363 | auto IsInvalidPointerOperand = [](Value *V) { |
| 4364 | if (!isa<Instruction>(Val: V)) |
| 4365 | return false; |
| 4366 | if (auto *AI = dyn_cast<AllocaInst>(Val: V)) |
| 4367 | return !AI->isStaticAlloca(); |
| 4368 | return true; |
| 4369 | }; |
| 4370 | if (Phi) { |
| 4371 | if (any_of(Range: Phi->operands(), P: IsInvalidPointerOperand)) |
| 4372 | return false; |
| 4373 | } else { |
| 4374 | if (IsInvalidPointerOperand(GEPI.getPointerOperand())) |
| 4375 | return false; |
| 4376 | } |
| 4377 | // Check whether the GEP has exactly one phi operand (including the pointer |
| 4378 | // operand) and all indices will become constant after the transform. |
| 4379 | for (Value *Op : GEPI.indices()) { |
| 4380 | if (auto *SI = dyn_cast<PHINode>(Val: Op)) { |
| 4381 | if (Phi) |
| 4382 | return false; |
| 4383 | |
| 4384 | Phi = SI; |
| 4385 | if (!all_of(Range: Phi->incoming_values(), |
| 4386 | P: [](Value *V) { return isa<ConstantInt>(Val: V); })) |
| 4387 | return false; |
| 4388 | continue; |
| 4389 | } |
| 4390 | |
| 4391 | if (!isa<ConstantInt>(Val: Op)) |
| 4392 | return false; |
| 4393 | } |
| 4394 | |
| 4395 | if (!Phi) |
| 4396 | return false; |
| 4397 | |
| 4398 | LLVM_DEBUG(dbgs() << " Rewriting gep(phi) -> phi(gep):\n" ; |
| 4399 | dbgs() << " original: " << *Phi << "\n" ; |
| 4400 | dbgs() << " " << GEPI << "\n" ;); |
| 4401 | |
| 4402 | auto GetNewOps = [&](Value *PhiOp) { |
| 4403 | SmallVector<Value *> NewOps; |
| 4404 | for (Value *Op : GEPI.operands()) |
| 4405 | if (Op == Phi) |
| 4406 | NewOps.push_back(Elt: PhiOp); |
| 4407 | else |
| 4408 | NewOps.push_back(Elt: Op); |
| 4409 | return NewOps; |
| 4410 | }; |
| 4411 | |
| 4412 | IRB.SetInsertPoint(Phi); |
| 4413 | PHINode *NewPhi = IRB.CreatePHI(Ty: GEPI.getType(), NumReservedValues: Phi->getNumIncomingValues(), |
| 4414 | Name: Phi->getName() + ".sroa.phi" ); |
| 4415 | |
| 4416 | Type *SourceTy = GEPI.getSourceElementType(); |
| 4417 | // We only handle arguments, constants, and static allocas here, so we can |
| 4418 | // insert GEPs at the end of the entry block. |
| 4419 | IRB.SetInsertPoint(GEPI.getFunction()->getEntryBlock().getTerminator()); |
| 4420 | for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) { |
| 4421 | Value *Op = Phi->getIncomingValue(i: I); |
| 4422 | BasicBlock *BB = Phi->getIncomingBlock(i: I); |
| 4423 | Value *NewGEP; |
| 4424 | if (int NI = NewPhi->getBasicBlockIndex(BB); NI >= 0) { |
| 4425 | NewGEP = NewPhi->getIncomingValue(i: NI); |
| 4426 | } else { |
| 4427 | SmallVector<Value *> NewOps = GetNewOps(Op); |
| 4428 | NewGEP = |
| 4429 | IRB.CreateGEP(Ty: SourceTy, Ptr: NewOps[0], IdxList: ArrayRef(NewOps).drop_front(), |
| 4430 | Name: Phi->getName() + ".sroa.gep" , NW: GEPI.getNoWrapFlags()); |
| 4431 | } |
| 4432 | NewPhi->addIncoming(V: NewGEP, BB); |
| 4433 | } |
| 4434 | |
| 4435 | Visited.erase(Ptr: &GEPI); |
| 4436 | GEPI.replaceAllUsesWith(V: NewPhi); |
| 4437 | GEPI.eraseFromParent(); |
| 4438 | Visited.insert(Ptr: NewPhi); |
| 4439 | enqueueUsers(I&: *NewPhi); |
| 4440 | |
| 4441 | LLVM_DEBUG(dbgs() << " to: " ; |
| 4442 | for (Value *In |
| 4443 | : NewPhi->incoming_values()) dbgs() |
| 4444 | << "\n " << *In; |
| 4445 | dbgs() << "\n " << *NewPhi << '\n'); |
| 4446 | |
| 4447 | return true; |
| 4448 | } |
| 4449 | |
| 4450 | bool visitGetElementPtrInst(GetElementPtrInst &GEPI) { |
| 4451 | if (unfoldGEPSelect(GEPI)) |
| 4452 | return true; |
| 4453 | |
| 4454 | if (unfoldGEPPhi(GEPI)) |
| 4455 | return true; |
| 4456 | |
| 4457 | enqueueUsers(I&: GEPI); |
| 4458 | return false; |
| 4459 | } |
| 4460 | |
| 4461 | bool visitPHINode(PHINode &PN) { |
| 4462 | enqueueUsers(I&: PN); |
| 4463 | return false; |
| 4464 | } |
| 4465 | |
| 4466 | bool visitSelectInst(SelectInst &SI) { |
| 4467 | enqueueUsers(I&: SI); |
| 4468 | return false; |
| 4469 | } |
| 4470 | }; |
| 4471 | |
| 4472 | } // end anonymous namespace |
| 4473 | |
| 4474 | /// Strip aggregate type wrapping. |
| 4475 | /// |
| 4476 | /// This removes no-op aggregate types wrapping an underlying type. It will |
| 4477 | /// strip as many layers of types as it can without changing either the type |
| 4478 | /// size or the allocated size. |
| 4479 | static Type *stripAggregateTypeWrapping(const DataLayout &DL, Type *Ty) { |
| 4480 | if (Ty->isSingleValueType()) |
| 4481 | return Ty; |
| 4482 | |
| 4483 | uint64_t AllocSize = DL.getTypeAllocSize(Ty).getFixedValue(); |
| 4484 | uint64_t TypeSize = DL.getTypeSizeInBits(Ty).getFixedValue(); |
| 4485 | |
| 4486 | Type *InnerTy; |
| 4487 | if (ArrayType *ArrTy = dyn_cast<ArrayType>(Val: Ty)) { |
| 4488 | InnerTy = ArrTy->getElementType(); |
| 4489 | } else if (StructType *STy = dyn_cast<StructType>(Val: Ty)) { |
| 4490 | const StructLayout *SL = DL.getStructLayout(Ty: STy); |
| 4491 | unsigned Index = SL->getElementContainingOffset(FixedOffset: 0); |
| 4492 | InnerTy = STy->getElementType(N: Index); |
| 4493 | } else { |
| 4494 | return Ty; |
| 4495 | } |
| 4496 | |
| 4497 | if (AllocSize > DL.getTypeAllocSize(Ty: InnerTy).getFixedValue() || |
| 4498 | TypeSize > DL.getTypeSizeInBits(Ty: InnerTy).getFixedValue()) |
| 4499 | return Ty; |
| 4500 | |
| 4501 | return stripAggregateTypeWrapping(DL, Ty: InnerTy); |
| 4502 | } |
| 4503 | |
| 4504 | /// Try to find a partition of the aggregate type passed in for a given |
| 4505 | /// offset and size. |
| 4506 | /// |
| 4507 | /// This recurses through the aggregate type and tries to compute a subtype |
| 4508 | /// based on the offset and size. When the offset and size span a sub-section |
| 4509 | /// of an array, it will even compute a new array type for that sub-section, |
| 4510 | /// and the same for structs. |
| 4511 | /// |
| 4512 | /// Note that this routine is very strict and tries to find a partition of the |
| 4513 | /// type which produces the *exact* right offset and size. It is not forgiving |
| 4514 | /// when the size or offset cause either end of type-based partition to be off. |
| 4515 | /// Also, this is a best-effort routine. It is reasonable to give up and not |
| 4516 | /// return a type if necessary. |
| 4517 | static Type *getTypePartition(const DataLayout &DL, Type *Ty, uint64_t Offset, |
| 4518 | uint64_t Size) { |
| 4519 | if (Offset == 0 && DL.getTypeAllocSize(Ty).getFixedValue() == Size) |
| 4520 | return stripAggregateTypeWrapping(DL, Ty); |
| 4521 | if (Offset > DL.getTypeAllocSize(Ty).getFixedValue() || |
| 4522 | (DL.getTypeAllocSize(Ty).getFixedValue() - Offset) < Size) |
| 4523 | return nullptr; |
| 4524 | |
| 4525 | if (isa<ArrayType>(Val: Ty) || isa<VectorType>(Val: Ty)) { |
| 4526 | Type *ElementTy; |
| 4527 | uint64_t TyNumElements; |
| 4528 | if (auto *AT = dyn_cast<ArrayType>(Val: Ty)) { |
| 4529 | ElementTy = AT->getElementType(); |
| 4530 | TyNumElements = AT->getNumElements(); |
| 4531 | } else { |
| 4532 | // FIXME: This isn't right for vectors with non-byte-sized or |
| 4533 | // non-power-of-two sized elements. |
| 4534 | auto *VT = cast<FixedVectorType>(Val: Ty); |
| 4535 | ElementTy = VT->getElementType(); |
| 4536 | TyNumElements = VT->getNumElements(); |
| 4537 | } |
| 4538 | uint64_t ElementSize = DL.getTypeAllocSize(Ty: ElementTy).getFixedValue(); |
| 4539 | uint64_t NumSkippedElements = Offset / ElementSize; |
| 4540 | if (NumSkippedElements >= TyNumElements) |
| 4541 | return nullptr; |
| 4542 | Offset -= NumSkippedElements * ElementSize; |
| 4543 | |
| 4544 | // First check if we need to recurse. |
| 4545 | if (Offset > 0 || Size < ElementSize) { |
| 4546 | // Bail if the partition ends in a different array element. |
| 4547 | if ((Offset + Size) > ElementSize) |
| 4548 | return nullptr; |
| 4549 | // Recurse through the element type trying to peel off offset bytes. |
| 4550 | return getTypePartition(DL, Ty: ElementTy, Offset, Size); |
| 4551 | } |
| 4552 | assert(Offset == 0); |
| 4553 | |
| 4554 | if (Size == ElementSize) |
| 4555 | return stripAggregateTypeWrapping(DL, Ty: ElementTy); |
| 4556 | assert(Size > ElementSize); |
| 4557 | uint64_t NumElements = Size / ElementSize; |
| 4558 | if (NumElements * ElementSize != Size) |
| 4559 | return nullptr; |
| 4560 | return ArrayType::get(ElementType: ElementTy, NumElements); |
| 4561 | } |
| 4562 | |
| 4563 | StructType *STy = dyn_cast<StructType>(Val: Ty); |
| 4564 | if (!STy) |
| 4565 | return nullptr; |
| 4566 | |
| 4567 | const StructLayout *SL = DL.getStructLayout(Ty: STy); |
| 4568 | |
| 4569 | if (SL->getSizeInBits().isScalable()) |
| 4570 | return nullptr; |
| 4571 | |
| 4572 | if (Offset >= SL->getSizeInBytes()) |
| 4573 | return nullptr; |
| 4574 | uint64_t EndOffset = Offset + Size; |
| 4575 | if (EndOffset > SL->getSizeInBytes()) |
| 4576 | return nullptr; |
| 4577 | |
| 4578 | unsigned Index = SL->getElementContainingOffset(FixedOffset: Offset); |
| 4579 | Offset -= SL->getElementOffset(Idx: Index); |
| 4580 | |
| 4581 | Type *ElementTy = STy->getElementType(N: Index); |
| 4582 | uint64_t ElementSize = DL.getTypeAllocSize(Ty: ElementTy).getFixedValue(); |
| 4583 | if (Offset >= ElementSize) |
| 4584 | return nullptr; // The offset points into alignment padding. |
| 4585 | |
| 4586 | // See if any partition must be contained by the element. |
| 4587 | if (Offset > 0 || Size < ElementSize) { |
| 4588 | if ((Offset + Size) > ElementSize) |
| 4589 | return nullptr; |
| 4590 | return getTypePartition(DL, Ty: ElementTy, Offset, Size); |
| 4591 | } |
| 4592 | assert(Offset == 0); |
| 4593 | |
| 4594 | if (Size == ElementSize) |
| 4595 | return stripAggregateTypeWrapping(DL, Ty: ElementTy); |
| 4596 | |
| 4597 | StructType::element_iterator EI = STy->element_begin() + Index, |
| 4598 | EE = STy->element_end(); |
| 4599 | if (EndOffset < SL->getSizeInBytes()) { |
| 4600 | unsigned EndIndex = SL->getElementContainingOffset(FixedOffset: EndOffset); |
| 4601 | if (Index == EndIndex) |
| 4602 | return nullptr; // Within a single element and its padding. |
| 4603 | |
| 4604 | // Don't try to form "natural" types if the elements don't line up with the |
| 4605 | // expected size. |
| 4606 | // FIXME: We could potentially recurse down through the last element in the |
| 4607 | // sub-struct to find a natural end point. |
| 4608 | if (SL->getElementOffset(Idx: EndIndex) != EndOffset) |
| 4609 | return nullptr; |
| 4610 | |
| 4611 | assert(Index < EndIndex); |
| 4612 | EE = STy->element_begin() + EndIndex; |
| 4613 | } |
| 4614 | |
| 4615 | // Try to build up a sub-structure. |
| 4616 | StructType *SubTy = |
| 4617 | StructType::get(Context&: STy->getContext(), Elements: ArrayRef(EI, EE), isPacked: STy->isPacked()); |
| 4618 | const StructLayout *SubSL = DL.getStructLayout(Ty: SubTy); |
| 4619 | if (Size != SubSL->getSizeInBytes()) |
| 4620 | return nullptr; // The sub-struct doesn't have quite the size needed. |
| 4621 | |
| 4622 | return SubTy; |
| 4623 | } |
| 4624 | |
| 4625 | /// Pre-split loads and stores to simplify rewriting. |
| 4626 | /// |
| 4627 | /// We want to break up the splittable load+store pairs as much as |
| 4628 | /// possible. This is important to do as a preprocessing step, as once we |
| 4629 | /// start rewriting the accesses to partitions of the alloca we lose the |
| 4630 | /// necessary information to correctly split apart paired loads and stores |
| 4631 | /// which both point into this alloca. The case to consider is something like |
| 4632 | /// the following: |
| 4633 | /// |
| 4634 | /// %a = alloca [12 x i8] |
| 4635 | /// %gep1 = getelementptr i8, ptr %a, i32 0 |
| 4636 | /// %gep2 = getelementptr i8, ptr %a, i32 4 |
| 4637 | /// %gep3 = getelementptr i8, ptr %a, i32 8 |
| 4638 | /// store float 0.0, ptr %gep1 |
| 4639 | /// store float 1.0, ptr %gep2 |
| 4640 | /// %v = load i64, ptr %gep1 |
| 4641 | /// store i64 %v, ptr %gep2 |
| 4642 | /// %f1 = load float, ptr %gep2 |
| 4643 | /// %f2 = load float, ptr %gep3 |
| 4644 | /// |
| 4645 | /// Here we want to form 3 partitions of the alloca, each 4 bytes large, and |
| 4646 | /// promote everything so we recover the 2 SSA values that should have been |
| 4647 | /// there all along. |
| 4648 | /// |
| 4649 | /// \returns true if any changes are made. |
| 4650 | bool SROA::presplitLoadsAndStores(AllocaInst &AI, AllocaSlices &AS) { |
| 4651 | LLVM_DEBUG(dbgs() << "Pre-splitting loads and stores\n" ); |
| 4652 | |
| 4653 | // Track the loads and stores which are candidates for pre-splitting here, in |
| 4654 | // the order they first appear during the partition scan. These give stable |
| 4655 | // iteration order and a basis for tracking which loads and stores we |
| 4656 | // actually split. |
| 4657 | SmallVector<LoadInst *, 4> Loads; |
| 4658 | SmallVector<StoreInst *, 4> Stores; |
| 4659 | |
| 4660 | // We need to accumulate the splits required of each load or store where we |
| 4661 | // can find them via a direct lookup. This is important to cross-check loads |
| 4662 | // and stores against each other. We also track the slice so that we can kill |
| 4663 | // all the slices that end up split. |
| 4664 | struct SplitOffsets { |
| 4665 | Slice *S; |
| 4666 | std::vector<uint64_t> Splits; |
| 4667 | }; |
| 4668 | SmallDenseMap<Instruction *, SplitOffsets, 8> SplitOffsetsMap; |
| 4669 | |
| 4670 | // Track loads out of this alloca which cannot, for any reason, be pre-split. |
| 4671 | // This is important as we also cannot pre-split stores of those loads! |
| 4672 | // FIXME: This is all pretty gross. It means that we can be more aggressive |
| 4673 | // in pre-splitting when the load feeding the store happens to come from |
| 4674 | // a separate alloca. Put another way, the effectiveness of SROA would be |
| 4675 | // decreased by a frontend which just concatenated all of its local allocas |
| 4676 | // into one big flat alloca. But defeating such patterns is exactly the job |
| 4677 | // SROA is tasked with! Sadly, to not have this discrepancy we would have |
| 4678 | // change store pre-splitting to actually force pre-splitting of the load |
| 4679 | // that feeds it *and all stores*. That makes pre-splitting much harder, but |
| 4680 | // maybe it would make it more principled? |
| 4681 | SmallPtrSet<LoadInst *, 8> UnsplittableLoads; |
| 4682 | |
| 4683 | LLVM_DEBUG(dbgs() << " Searching for candidate loads and stores\n" ); |
| 4684 | for (auto &P : AS.partitions()) { |
| 4685 | for (Slice &S : P) { |
| 4686 | Instruction *I = cast<Instruction>(Val: S.getUse()->getUser()); |
| 4687 | if (!S.isSplittable() || S.endOffset() <= P.endOffset()) { |
| 4688 | // If this is a load we have to track that it can't participate in any |
| 4689 | // pre-splitting. If this is a store of a load we have to track that |
| 4690 | // that load also can't participate in any pre-splitting. |
| 4691 | if (auto *LI = dyn_cast<LoadInst>(Val: I)) |
| 4692 | UnsplittableLoads.insert(Ptr: LI); |
| 4693 | else if (auto *SI = dyn_cast<StoreInst>(Val: I)) |
| 4694 | if (auto *LI = dyn_cast<LoadInst>(Val: SI->getValueOperand())) |
| 4695 | UnsplittableLoads.insert(Ptr: LI); |
| 4696 | continue; |
| 4697 | } |
| 4698 | assert(P.endOffset() > S.beginOffset() && |
| 4699 | "Empty or backwards partition!" ); |
| 4700 | |
| 4701 | // Determine if this is a pre-splittable slice. |
| 4702 | if (auto *LI = dyn_cast<LoadInst>(Val: I)) { |
| 4703 | assert(!LI->isVolatile() && "Cannot split volatile loads!" ); |
| 4704 | |
| 4705 | // The load must be used exclusively to store into other pointers for |
| 4706 | // us to be able to arbitrarily pre-split it. The stores must also be |
| 4707 | // simple to avoid changing semantics. |
| 4708 | auto IsLoadSimplyStored = [](LoadInst *LI) { |
| 4709 | for (User *LU : LI->users()) { |
| 4710 | auto *SI = dyn_cast<StoreInst>(Val: LU); |
| 4711 | if (!SI || !SI->isSimple()) |
| 4712 | return false; |
| 4713 | } |
| 4714 | return true; |
| 4715 | }; |
| 4716 | if (!IsLoadSimplyStored(LI)) { |
| 4717 | UnsplittableLoads.insert(Ptr: LI); |
| 4718 | continue; |
| 4719 | } |
| 4720 | |
| 4721 | Loads.push_back(Elt: LI); |
| 4722 | } else if (auto *SI = dyn_cast<StoreInst>(Val: I)) { |
| 4723 | if (S.getUse() != &SI->getOperandUse(i: SI->getPointerOperandIndex())) |
| 4724 | // Skip stores *of* pointers. FIXME: This shouldn't even be possible! |
| 4725 | continue; |
| 4726 | auto *StoredLoad = dyn_cast<LoadInst>(Val: SI->getValueOperand()); |
| 4727 | if (!StoredLoad || !StoredLoad->isSimple()) |
| 4728 | continue; |
| 4729 | assert(!SI->isVolatile() && "Cannot split volatile stores!" ); |
| 4730 | |
| 4731 | Stores.push_back(Elt: SI); |
| 4732 | } else { |
| 4733 | // Other uses cannot be pre-split. |
| 4734 | continue; |
| 4735 | } |
| 4736 | |
| 4737 | // Record the initial split. |
| 4738 | LLVM_DEBUG(dbgs() << " Candidate: " << *I << "\n" ); |
| 4739 | auto &Offsets = SplitOffsetsMap[I]; |
| 4740 | assert(Offsets.Splits.empty() && |
| 4741 | "Should not have splits the first time we see an instruction!" ); |
| 4742 | Offsets.S = &S; |
| 4743 | Offsets.Splits.push_back(x: P.endOffset() - S.beginOffset()); |
| 4744 | } |
| 4745 | |
| 4746 | // Now scan the already split slices, and add a split for any of them which |
| 4747 | // we're going to pre-split. |
| 4748 | for (Slice *S : P.splitSliceTails()) { |
| 4749 | auto SplitOffsetsMapI = |
| 4750 | SplitOffsetsMap.find(Val: cast<Instruction>(Val: S->getUse()->getUser())); |
| 4751 | if (SplitOffsetsMapI == SplitOffsetsMap.end()) |
| 4752 | continue; |
| 4753 | auto &Offsets = SplitOffsetsMapI->second; |
| 4754 | |
| 4755 | assert(Offsets.S == S && "Found a mismatched slice!" ); |
| 4756 | assert(!Offsets.Splits.empty() && |
| 4757 | "Cannot have an empty set of splits on the second partition!" ); |
| 4758 | assert(Offsets.Splits.back() == |
| 4759 | P.beginOffset() - Offsets.S->beginOffset() && |
| 4760 | "Previous split does not end where this one begins!" ); |
| 4761 | |
| 4762 | // Record each split. The last partition's end isn't needed as the size |
| 4763 | // of the slice dictates that. |
| 4764 | if (S->endOffset() > P.endOffset()) |
| 4765 | Offsets.Splits.push_back(x: P.endOffset() - Offsets.S->beginOffset()); |
| 4766 | } |
| 4767 | } |
| 4768 | |
| 4769 | // We may have split loads where some of their stores are split stores. For |
| 4770 | // such loads and stores, we can only pre-split them if their splits exactly |
| 4771 | // match relative to their starting offset. We have to verify this prior to |
| 4772 | // any rewriting. |
| 4773 | llvm::erase_if(C&: Stores, P: [&UnsplittableLoads, &SplitOffsetsMap](StoreInst *SI) { |
| 4774 | // Lookup the load we are storing in our map of split |
| 4775 | // offsets. |
| 4776 | auto *LI = cast<LoadInst>(Val: SI->getValueOperand()); |
| 4777 | // If it was completely unsplittable, then we're done, |
| 4778 | // and this store can't be pre-split. |
| 4779 | if (UnsplittableLoads.count(Ptr: LI)) |
| 4780 | return true; |
| 4781 | |
| 4782 | auto LoadOffsetsI = SplitOffsetsMap.find(Val: LI); |
| 4783 | if (LoadOffsetsI == SplitOffsetsMap.end()) |
| 4784 | return false; // Unrelated loads are definitely safe. |
| 4785 | auto &LoadOffsets = LoadOffsetsI->second; |
| 4786 | |
| 4787 | // Now lookup the store's offsets. |
| 4788 | auto &StoreOffsets = SplitOffsetsMap[SI]; |
| 4789 | |
| 4790 | // If the relative offsets of each split in the load and |
| 4791 | // store match exactly, then we can split them and we |
| 4792 | // don't need to remove them here. |
| 4793 | if (LoadOffsets.Splits == StoreOffsets.Splits) |
| 4794 | return false; |
| 4795 | |
| 4796 | LLVM_DEBUG(dbgs() << " Mismatched splits for load and store:\n" |
| 4797 | << " " << *LI << "\n" |
| 4798 | << " " << *SI << "\n" ); |
| 4799 | |
| 4800 | // We've found a store and load that we need to split |
| 4801 | // with mismatched relative splits. Just give up on them |
| 4802 | // and remove both instructions from our list of |
| 4803 | // candidates. |
| 4804 | UnsplittableLoads.insert(Ptr: LI); |
| 4805 | return true; |
| 4806 | }); |
| 4807 | // Now we have to go *back* through all the stores, because a later store may |
| 4808 | // have caused an earlier store's load to become unsplittable and if it is |
| 4809 | // unsplittable for the later store, then we can't rely on it being split in |
| 4810 | // the earlier store either. |
| 4811 | llvm::erase_if(C&: Stores, P: [&UnsplittableLoads](StoreInst *SI) { |
| 4812 | auto *LI = cast<LoadInst>(Val: SI->getValueOperand()); |
| 4813 | return UnsplittableLoads.count(Ptr: LI); |
| 4814 | }); |
| 4815 | // Once we've established all the loads that can't be split for some reason, |
| 4816 | // filter any that made it into our list out. |
| 4817 | llvm::erase_if(C&: Loads, P: [&UnsplittableLoads](LoadInst *LI) { |
| 4818 | return UnsplittableLoads.count(Ptr: LI); |
| 4819 | }); |
| 4820 | |
| 4821 | // If no loads or stores are left, there is no pre-splitting to be done for |
| 4822 | // this alloca. |
| 4823 | if (Loads.empty() && Stores.empty()) |
| 4824 | return false; |
| 4825 | |
| 4826 | // From here on, we can't fail and will be building new accesses, so rig up |
| 4827 | // an IR builder. |
| 4828 | IRBuilderTy IRB(&AI); |
| 4829 | |
| 4830 | // Collect the new slices which we will merge into the alloca slices. |
| 4831 | SmallVector<Slice, 4> NewSlices; |
| 4832 | |
| 4833 | // Track any allocas we end up splitting loads and stores for so we iterate |
| 4834 | // on them. |
| 4835 | SmallPtrSet<AllocaInst *, 4> ResplitPromotableAllocas; |
| 4836 | |
| 4837 | // At this point, we have collected all of the loads and stores we can |
| 4838 | // pre-split, and the specific splits needed for them. We actually do the |
| 4839 | // splitting in a specific order in order to handle when one of the loads in |
| 4840 | // the value operand to one of the stores. |
| 4841 | // |
| 4842 | // First, we rewrite all of the split loads, and just accumulate each split |
| 4843 | // load in a parallel structure. We also build the slices for them and append |
| 4844 | // them to the alloca slices. |
| 4845 | SmallDenseMap<LoadInst *, std::vector<LoadInst *>, 1> SplitLoadsMap; |
| 4846 | std::vector<LoadInst *> SplitLoads; |
| 4847 | const DataLayout &DL = AI.getDataLayout(); |
| 4848 | for (LoadInst *LI : Loads) { |
| 4849 | SplitLoads.clear(); |
| 4850 | |
| 4851 | auto &Offsets = SplitOffsetsMap[LI]; |
| 4852 | unsigned SliceSize = Offsets.S->endOffset() - Offsets.S->beginOffset(); |
| 4853 | assert(LI->getType()->getIntegerBitWidth() % 8 == 0 && |
| 4854 | "Load must have type size equal to store size" ); |
| 4855 | assert(LI->getType()->getIntegerBitWidth() / 8 >= SliceSize && |
| 4856 | "Load must be >= slice size" ); |
| 4857 | |
| 4858 | uint64_t BaseOffset = Offsets.S->beginOffset(); |
| 4859 | assert(BaseOffset + SliceSize > BaseOffset && |
| 4860 | "Cannot represent alloca access size using 64-bit integers!" ); |
| 4861 | |
| 4862 | Instruction *BasePtr = cast<Instruction>(Val: LI->getPointerOperand()); |
| 4863 | IRB.SetInsertPoint(LI); |
| 4864 | |
| 4865 | LLVM_DEBUG(dbgs() << " Splitting load: " << *LI << "\n" ); |
| 4866 | |
| 4867 | uint64_t PartOffset = 0, PartSize = Offsets.Splits.front(); |
| 4868 | int Idx = 0, Size = Offsets.Splits.size(); |
| 4869 | for (;;) { |
| 4870 | auto *PartTy = Type::getIntNTy(C&: LI->getContext(), N: PartSize * 8); |
| 4871 | auto AS = LI->getPointerAddressSpace(); |
| 4872 | auto *PartPtrTy = LI->getPointerOperandType(); |
| 4873 | LoadInst *PLoad = IRB.CreateAlignedLoad( |
| 4874 | Ty: PartTy, |
| 4875 | Ptr: getAdjustedPtr(IRB, DL, Ptr: BasePtr, |
| 4876 | Offset: APInt(DL.getIndexSizeInBits(AS), PartOffset), |
| 4877 | PointerTy: PartPtrTy, NamePrefix: BasePtr->getName() + "." ), |
| 4878 | Align: getAdjustedAlignment(I: LI, Offset: PartOffset), |
| 4879 | /*IsVolatile*/ isVolatile: false, Name: LI->getName()); |
| 4880 | PLoad->copyMetadata(SrcInst: *LI, WL: {LLVMContext::MD_mem_parallel_loop_access, |
| 4881 | LLVMContext::MD_access_group}); |
| 4882 | |
| 4883 | // Append this load onto the list of split loads so we can find it later |
| 4884 | // to rewrite the stores. |
| 4885 | SplitLoads.push_back(x: PLoad); |
| 4886 | |
| 4887 | // Now build a new slice for the alloca. |
| 4888 | NewSlices.push_back( |
| 4889 | Elt: Slice(BaseOffset + PartOffset, BaseOffset + PartOffset + PartSize, |
| 4890 | &PLoad->getOperandUse(i: PLoad->getPointerOperandIndex()), |
| 4891 | /*IsSplittable*/ false, nullptr)); |
| 4892 | LLVM_DEBUG(dbgs() << " new slice [" << NewSlices.back().beginOffset() |
| 4893 | << ", " << NewSlices.back().endOffset() |
| 4894 | << "): " << *PLoad << "\n" ); |
| 4895 | |
| 4896 | // See if we've handled all the splits. |
| 4897 | if (Idx >= Size) |
| 4898 | break; |
| 4899 | |
| 4900 | // Setup the next partition. |
| 4901 | PartOffset = Offsets.Splits[Idx]; |
| 4902 | ++Idx; |
| 4903 | PartSize = (Idx < Size ? Offsets.Splits[Idx] : SliceSize) - PartOffset; |
| 4904 | } |
| 4905 | |
| 4906 | // Now that we have the split loads, do the slow walk over all uses of the |
| 4907 | // load and rewrite them as split stores, or save the split loads to use |
| 4908 | // below if the store is going to be split there anyways. |
| 4909 | bool DeferredStores = false; |
| 4910 | for (User *LU : LI->users()) { |
| 4911 | StoreInst *SI = cast<StoreInst>(Val: LU); |
| 4912 | if (!Stores.empty() && SplitOffsetsMap.count(Val: SI)) { |
| 4913 | DeferredStores = true; |
| 4914 | LLVM_DEBUG(dbgs() << " Deferred splitting of store: " << *SI |
| 4915 | << "\n" ); |
| 4916 | continue; |
| 4917 | } |
| 4918 | |
| 4919 | Value *StoreBasePtr = SI->getPointerOperand(); |
| 4920 | IRB.SetInsertPoint(SI); |
| 4921 | AAMDNodes AATags = SI->getAAMetadata(); |
| 4922 | |
| 4923 | LLVM_DEBUG(dbgs() << " Splitting store of load: " << *SI << "\n" ); |
| 4924 | |
| 4925 | for (int Idx = 0, Size = SplitLoads.size(); Idx < Size; ++Idx) { |
| 4926 | LoadInst *PLoad = SplitLoads[Idx]; |
| 4927 | uint64_t PartOffset = Idx == 0 ? 0 : Offsets.Splits[Idx - 1]; |
| 4928 | auto *PartPtrTy = SI->getPointerOperandType(); |
| 4929 | |
| 4930 | auto AS = SI->getPointerAddressSpace(); |
| 4931 | StoreInst *PStore = IRB.CreateAlignedStore( |
| 4932 | Val: PLoad, |
| 4933 | Ptr: getAdjustedPtr(IRB, DL, Ptr: StoreBasePtr, |
| 4934 | Offset: APInt(DL.getIndexSizeInBits(AS), PartOffset), |
| 4935 | PointerTy: PartPtrTy, NamePrefix: StoreBasePtr->getName() + "." ), |
| 4936 | Align: getAdjustedAlignment(I: SI, Offset: PartOffset), |
| 4937 | /*IsVolatile*/ isVolatile: false); |
| 4938 | PStore->copyMetadata(SrcInst: *SI, WL: {LLVMContext::MD_mem_parallel_loop_access, |
| 4939 | LLVMContext::MD_access_group, |
| 4940 | LLVMContext::MD_DIAssignID}); |
| 4941 | |
| 4942 | if (AATags) |
| 4943 | PStore->setAAMetadata( |
| 4944 | AATags.adjustForAccess(Offset: PartOffset, AccessTy: PLoad->getType(), DL)); |
| 4945 | LLVM_DEBUG(dbgs() << " +" << PartOffset << ":" << *PStore << "\n" ); |
| 4946 | } |
| 4947 | |
| 4948 | // We want to immediately iterate on any allocas impacted by splitting |
| 4949 | // this store, and we have to track any promotable alloca (indicated by |
| 4950 | // a direct store) as needing to be resplit because it is no longer |
| 4951 | // promotable. |
| 4952 | if (AllocaInst *OtherAI = dyn_cast<AllocaInst>(Val: StoreBasePtr)) { |
| 4953 | ResplitPromotableAllocas.insert(Ptr: OtherAI); |
| 4954 | Worklist.insert(X: OtherAI); |
| 4955 | } else if (AllocaInst *OtherAI = dyn_cast<AllocaInst>( |
| 4956 | Val: StoreBasePtr->stripInBoundsOffsets())) { |
| 4957 | Worklist.insert(X: OtherAI); |
| 4958 | } |
| 4959 | |
| 4960 | // Mark the original store as dead. |
| 4961 | DeadInsts.push_back(Elt: SI); |
| 4962 | } |
| 4963 | |
| 4964 | // Save the split loads if there are deferred stores among the users. |
| 4965 | if (DeferredStores) |
| 4966 | SplitLoadsMap.insert(KV: std::make_pair(x&: LI, y: std::move(SplitLoads))); |
| 4967 | |
| 4968 | // Mark the original load as dead and kill the original slice. |
| 4969 | DeadInsts.push_back(Elt: LI); |
| 4970 | Offsets.S->kill(); |
| 4971 | } |
| 4972 | |
| 4973 | // Second, we rewrite all of the split stores. At this point, we know that |
| 4974 | // all loads from this alloca have been split already. For stores of such |
| 4975 | // loads, we can simply look up the pre-existing split loads. For stores of |
| 4976 | // other loads, we split those loads first and then write split stores of |
| 4977 | // them. |
| 4978 | for (StoreInst *SI : Stores) { |
| 4979 | auto *LI = cast<LoadInst>(Val: SI->getValueOperand()); |
| 4980 | IntegerType *Ty = cast<IntegerType>(Val: LI->getType()); |
| 4981 | assert(Ty->getBitWidth() % 8 == 0); |
| 4982 | uint64_t StoreSize = Ty->getBitWidth() / 8; |
| 4983 | assert(StoreSize > 0 && "Cannot have a zero-sized integer store!" ); |
| 4984 | |
| 4985 | auto &Offsets = SplitOffsetsMap[SI]; |
| 4986 | assert(StoreSize == Offsets.S->endOffset() - Offsets.S->beginOffset() && |
| 4987 | "Slice size should always match load size exactly!" ); |
| 4988 | uint64_t BaseOffset = Offsets.S->beginOffset(); |
| 4989 | assert(BaseOffset + StoreSize > BaseOffset && |
| 4990 | "Cannot represent alloca access size using 64-bit integers!" ); |
| 4991 | |
| 4992 | Value *LoadBasePtr = LI->getPointerOperand(); |
| 4993 | Instruction *StoreBasePtr = cast<Instruction>(Val: SI->getPointerOperand()); |
| 4994 | |
| 4995 | LLVM_DEBUG(dbgs() << " Splitting store: " << *SI << "\n" ); |
| 4996 | |
| 4997 | // Check whether we have an already split load. |
| 4998 | auto SplitLoadsMapI = SplitLoadsMap.find(Val: LI); |
| 4999 | std::vector<LoadInst *> *SplitLoads = nullptr; |
| 5000 | if (SplitLoadsMapI != SplitLoadsMap.end()) { |
| 5001 | SplitLoads = &SplitLoadsMapI->second; |
| 5002 | assert(SplitLoads->size() == Offsets.Splits.size() + 1 && |
| 5003 | "Too few split loads for the number of splits in the store!" ); |
| 5004 | } else { |
| 5005 | LLVM_DEBUG(dbgs() << " of load: " << *LI << "\n" ); |
| 5006 | } |
| 5007 | |
| 5008 | uint64_t PartOffset = 0, PartSize = Offsets.Splits.front(); |
| 5009 | int Idx = 0, Size = Offsets.Splits.size(); |
| 5010 | for (;;) { |
| 5011 | auto *PartTy = Type::getIntNTy(C&: Ty->getContext(), N: PartSize * 8); |
| 5012 | auto *LoadPartPtrTy = LI->getPointerOperandType(); |
| 5013 | auto *StorePartPtrTy = SI->getPointerOperandType(); |
| 5014 | |
| 5015 | // Either lookup a split load or create one. |
| 5016 | LoadInst *PLoad; |
| 5017 | if (SplitLoads) { |
| 5018 | PLoad = (*SplitLoads)[Idx]; |
| 5019 | } else { |
| 5020 | IRB.SetInsertPoint(LI); |
| 5021 | auto AS = LI->getPointerAddressSpace(); |
| 5022 | PLoad = IRB.CreateAlignedLoad( |
| 5023 | Ty: PartTy, |
| 5024 | Ptr: getAdjustedPtr(IRB, DL, Ptr: LoadBasePtr, |
| 5025 | Offset: APInt(DL.getIndexSizeInBits(AS), PartOffset), |
| 5026 | PointerTy: LoadPartPtrTy, NamePrefix: LoadBasePtr->getName() + "." ), |
| 5027 | Align: getAdjustedAlignment(I: LI, Offset: PartOffset), |
| 5028 | /*IsVolatile*/ isVolatile: false, Name: LI->getName()); |
| 5029 | PLoad->copyMetadata(SrcInst: *LI, WL: {LLVMContext::MD_mem_parallel_loop_access, |
| 5030 | LLVMContext::MD_access_group}); |
| 5031 | } |
| 5032 | |
| 5033 | // And store this partition. |
| 5034 | IRB.SetInsertPoint(SI); |
| 5035 | auto AS = SI->getPointerAddressSpace(); |
| 5036 | StoreInst *PStore = IRB.CreateAlignedStore( |
| 5037 | Val: PLoad, |
| 5038 | Ptr: getAdjustedPtr(IRB, DL, Ptr: StoreBasePtr, |
| 5039 | Offset: APInt(DL.getIndexSizeInBits(AS), PartOffset), |
| 5040 | PointerTy: StorePartPtrTy, NamePrefix: StoreBasePtr->getName() + "." ), |
| 5041 | Align: getAdjustedAlignment(I: SI, Offset: PartOffset), |
| 5042 | /*IsVolatile*/ isVolatile: false); |
| 5043 | PStore->copyMetadata(SrcInst: *SI, WL: {LLVMContext::MD_mem_parallel_loop_access, |
| 5044 | LLVMContext::MD_access_group}); |
| 5045 | |
| 5046 | // Now build a new slice for the alloca. |
| 5047 | // ProtectedFieldDisc==nullptr is a lie, but it doesn't matter because we |
| 5048 | // already determined that all accesses are consistent. |
| 5049 | NewSlices.push_back( |
| 5050 | Elt: Slice(BaseOffset + PartOffset, BaseOffset + PartOffset + PartSize, |
| 5051 | &PStore->getOperandUse(i: PStore->getPointerOperandIndex()), |
| 5052 | /*IsSplittable*/ false, nullptr)); |
| 5053 | LLVM_DEBUG(dbgs() << " new slice [" << NewSlices.back().beginOffset() |
| 5054 | << ", " << NewSlices.back().endOffset() |
| 5055 | << "): " << *PStore << "\n" ); |
| 5056 | if (!SplitLoads) { |
| 5057 | LLVM_DEBUG(dbgs() << " of split load: " << *PLoad << "\n" ); |
| 5058 | } |
| 5059 | |
| 5060 | // See if we've finished all the splits. |
| 5061 | if (Idx >= Size) |
| 5062 | break; |
| 5063 | |
| 5064 | // Setup the next partition. |
| 5065 | PartOffset = Offsets.Splits[Idx]; |
| 5066 | ++Idx; |
| 5067 | PartSize = (Idx < Size ? Offsets.Splits[Idx] : StoreSize) - PartOffset; |
| 5068 | } |
| 5069 | |
| 5070 | // We want to immediately iterate on any allocas impacted by splitting |
| 5071 | // this load, which is only relevant if it isn't a load of this alloca and |
| 5072 | // thus we didn't already split the loads above. We also have to keep track |
| 5073 | // of any promotable allocas we split loads on as they can no longer be |
| 5074 | // promoted. |
| 5075 | if (!SplitLoads) { |
| 5076 | if (AllocaInst *OtherAI = dyn_cast<AllocaInst>(Val: LoadBasePtr)) { |
| 5077 | assert(OtherAI != &AI && "We can't re-split our own alloca!" ); |
| 5078 | ResplitPromotableAllocas.insert(Ptr: OtherAI); |
| 5079 | Worklist.insert(X: OtherAI); |
| 5080 | } else if (AllocaInst *OtherAI = dyn_cast<AllocaInst>( |
| 5081 | Val: LoadBasePtr->stripInBoundsOffsets())) { |
| 5082 | assert(OtherAI != &AI && "We can't re-split our own alloca!" ); |
| 5083 | Worklist.insert(X: OtherAI); |
| 5084 | } |
| 5085 | } |
| 5086 | |
| 5087 | // Mark the original store as dead now that we've split it up and kill its |
| 5088 | // slice. Note that we leave the original load in place unless this store |
| 5089 | // was its only use. It may in turn be split up if it is an alloca load |
| 5090 | // for some other alloca, but it may be a normal load. This may introduce |
| 5091 | // redundant loads, but where those can be merged the rest of the optimizer |
| 5092 | // should handle the merging, and this uncovers SSA splits which is more |
| 5093 | // important. In practice, the original loads will almost always be fully |
| 5094 | // split and removed eventually, and the splits will be merged by any |
| 5095 | // trivial CSE, including instcombine. |
| 5096 | if (LI->hasOneUse()) { |
| 5097 | assert(*LI->user_begin() == SI && "Single use isn't this store!" ); |
| 5098 | DeadInsts.push_back(Elt: LI); |
| 5099 | } |
| 5100 | DeadInsts.push_back(Elt: SI); |
| 5101 | Offsets.S->kill(); |
| 5102 | } |
| 5103 | |
| 5104 | // Remove the killed slices that have ben pre-split. |
| 5105 | llvm::erase_if(C&: AS, P: [](const Slice &S) { return S.isDead(); }); |
| 5106 | |
| 5107 | // Insert our new slices. This will sort and merge them into the sorted |
| 5108 | // sequence. |
| 5109 | AS.insert(NewSlices); |
| 5110 | |
| 5111 | LLVM_DEBUG(dbgs() << " Pre-split slices:\n" ); |
| 5112 | #ifndef NDEBUG |
| 5113 | for (auto I = AS.begin(), E = AS.end(); I != E; ++I) |
| 5114 | LLVM_DEBUG(AS.print(dbgs(), I, " " )); |
| 5115 | #endif |
| 5116 | |
| 5117 | // Finally, don't try to promote any allocas that new require re-splitting. |
| 5118 | // They have already been added to the worklist above. |
| 5119 | PromotableAllocas.set_subtract(ResplitPromotableAllocas); |
| 5120 | |
| 5121 | return true; |
| 5122 | } |
| 5123 | |
| 5124 | /// Select a partition type for an alloca partition. |
| 5125 | /// |
| 5126 | /// Try to compute a friendly type for this partition of the alloca. This |
| 5127 | /// won't always succeed, in which case we fall back to a legal integer type |
| 5128 | /// or an i8 array of an appropriate size. |
| 5129 | /// |
| 5130 | /// \returns A tuple with the following elements: |
| 5131 | /// - PartitionType: The computed type for this partition. |
| 5132 | /// - IsIntegerWideningViable: True if integer widening promotion is used. |
| 5133 | /// - VectorType: The vector type if vector promotion is used, otherwise |
| 5134 | /// nullptr. |
| 5135 | static std::tuple<Type *, bool, VectorType *> |
| 5136 | selectPartitionType(Partition &P, const DataLayout &DL, AllocaInst &AI, |
| 5137 | LLVMContext &C) { |
| 5138 | // First check if the partition is viable for vector promotion. |
| 5139 | // |
| 5140 | // We prefer vector promotion over integer widening promotion when: |
| 5141 | // - The vector element type is a floating-point type. |
| 5142 | // - All the loads/stores to the alloca are vector loads/stores to the |
| 5143 | // entire alloca or load/store a single element of the vector. |
| 5144 | // |
| 5145 | // Otherwise when there is an integer vector with mixed type loads/stores we |
| 5146 | // prefer integer widening promotion because it's more likely the user is |
| 5147 | // doing bitwise arithmetic and we generate better code. |
| 5148 | VectorType *VecTy = |
| 5149 | isVectorPromotionViable(P, DL, VScale: AI.getFunction()->getVScaleValue()); |
| 5150 | // If the vector element type is a floating-point type, we prefer vector |
| 5151 | // promotion. If the vector has one element, let the below code select |
| 5152 | // whether we promote with the vector or scalar. |
| 5153 | if (VecTy && VecTy->getElementType()->isFloatingPointTy() && |
| 5154 | VecTy->getElementCount().getFixedValue() > 1) |
| 5155 | return {VecTy, false, VecTy}; |
| 5156 | |
| 5157 | // Check if there is a common type that all slices of the partition use that |
| 5158 | // spans the partition. |
| 5159 | auto [CommonUseTy, LargestIntTy] = |
| 5160 | findCommonType(B: P.begin(), E: P.end(), EndOffset: P.endOffset()); |
| 5161 | if (CommonUseTy) { |
| 5162 | TypeSize CommonUseSize = DL.getTypeAllocSize(Ty: CommonUseTy); |
| 5163 | if (CommonUseSize.isFixed() && CommonUseSize.getFixedValue() >= P.size()) { |
| 5164 | // We prefer vector promotion here because if vector promotion is viable |
| 5165 | // and there is a common type used, then it implies the second listed |
| 5166 | // condition for preferring vector promotion is true. |
| 5167 | if (VecTy) |
| 5168 | return {VecTy, false, VecTy}; |
| 5169 | return {CommonUseTy, isIntegerWideningViable(P, AllocaTy: CommonUseTy, DL), |
| 5170 | nullptr}; |
| 5171 | } |
| 5172 | } |
| 5173 | |
| 5174 | // Can we find an appropriate subtype in the original allocated |
| 5175 | // type? |
| 5176 | if (Type *TypePartitionTy = getTypePartition(DL, Ty: AI.getAllocatedType(), |
| 5177 | Offset: P.beginOffset(), Size: P.size())) { |
| 5178 | // If the partition is an integer array that can be spanned by a legal |
| 5179 | // integer type, prefer to represent it as a legal integer type because |
| 5180 | // it's more likely to be promotable. |
| 5181 | if (TypePartitionTy->isArrayTy() && |
| 5182 | TypePartitionTy->getArrayElementType()->isIntegerTy() && |
| 5183 | DL.isLegalInteger(Width: P.size() * 8)) |
| 5184 | TypePartitionTy = Type::getIntNTy(C, N: P.size() * 8); |
| 5185 | // There was no common type used, so we prefer integer widening promotion. |
| 5186 | if (isIntegerWideningViable(P, AllocaTy: TypePartitionTy, DL)) |
| 5187 | return {TypePartitionTy, true, nullptr}; |
| 5188 | if (VecTy) |
| 5189 | return {VecTy, false, VecTy}; |
| 5190 | // If we couldn't promote with TypePartitionTy, try with the largest |
| 5191 | // integer type used. |
| 5192 | if (LargestIntTy && |
| 5193 | DL.getTypeAllocSize(Ty: LargestIntTy).getFixedValue() >= P.size() && |
| 5194 | isIntegerWideningViable(P, AllocaTy: LargestIntTy, DL)) |
| 5195 | return {LargestIntTy, true, nullptr}; |
| 5196 | |
| 5197 | // Fallback to TypePartitionTy and we probably won't promote. |
| 5198 | return {TypePartitionTy, false, nullptr}; |
| 5199 | } |
| 5200 | |
| 5201 | // Select the largest integer type used if it spans the partition. |
| 5202 | if (LargestIntTy && |
| 5203 | DL.getTypeAllocSize(Ty: LargestIntTy).getFixedValue() >= P.size()) |
| 5204 | return {LargestIntTy, false, nullptr}; |
| 5205 | |
| 5206 | // Select a legal integer type if it spans the partition. |
| 5207 | if (DL.isLegalInteger(Width: P.size() * 8)) |
| 5208 | return {Type::getIntNTy(C, N: P.size() * 8), false, nullptr}; |
| 5209 | |
| 5210 | // Fallback to an i8 array. |
| 5211 | return {ArrayType::get(ElementType: Type::getInt8Ty(C), NumElements: P.size()), false, nullptr}; |
| 5212 | } |
| 5213 | |
| 5214 | /// Rewrite an alloca partition's users. |
| 5215 | /// |
| 5216 | /// This routine drives both of the rewriting goals of the SROA pass. It tries |
| 5217 | /// to rewrite uses of an alloca partition to be conducive for SSA value |
| 5218 | /// promotion. If the partition needs a new, more refined alloca, this will |
| 5219 | /// build that new alloca, preserving as much type information as possible, and |
| 5220 | /// rewrite the uses of the old alloca to point at the new one and have the |
| 5221 | /// appropriate new offsets. It also evaluates how successful the rewrite was |
| 5222 | /// at enabling promotion and if it was successful queues the alloca to be |
| 5223 | /// promoted. |
| 5224 | std::pair<AllocaInst *, uint64_t> |
| 5225 | SROA::rewritePartition(AllocaInst &AI, AllocaSlices &AS, Partition &P) { |
| 5226 | const DataLayout &DL = AI.getDataLayout(); |
| 5227 | // Select the type for the new alloca that spans the partition. |
| 5228 | auto [PartitionTy, IsIntegerWideningViable, VecTy] = |
| 5229 | selectPartitionType(P, DL, AI, C&: *C); |
| 5230 | |
| 5231 | // Check for the case where we're going to rewrite to a new alloca of the |
| 5232 | // exact same type as the original, and with the same access offsets. In that |
| 5233 | // case, re-use the existing alloca, but still run through the rewriter to |
| 5234 | // perform phi and select speculation. |
| 5235 | // P.beginOffset() can be non-zero even with the same type in a case with |
| 5236 | // out-of-bounds access (e.g. @PR35657 function in SROA/basictest.ll). |
| 5237 | AllocaInst *NewAI; |
| 5238 | if (PartitionTy == AI.getAllocatedType() && P.beginOffset() == 0) { |
| 5239 | NewAI = &AI; |
| 5240 | // FIXME: We should be able to bail at this point with "nothing changed". |
| 5241 | // FIXME: We might want to defer PHI speculation until after here. |
| 5242 | // FIXME: return nullptr; |
| 5243 | } else { |
| 5244 | // Make sure the alignment is compatible with P.beginOffset(). |
| 5245 | const Align Alignment = commonAlignment(A: AI.getAlign(), Offset: P.beginOffset()); |
| 5246 | // If we will get at least this much alignment from the type alone, leave |
| 5247 | // the alloca's alignment unconstrained. |
| 5248 | const bool IsUnconstrained = Alignment <= DL.getABITypeAlign(Ty: PartitionTy); |
| 5249 | NewAI = new AllocaInst( |
| 5250 | PartitionTy, AI.getAddressSpace(), nullptr, |
| 5251 | IsUnconstrained ? DL.getPrefTypeAlign(Ty: PartitionTy) : Alignment, |
| 5252 | AI.getName() + ".sroa." + Twine(P.begin() - AS.begin()), |
| 5253 | AI.getIterator()); |
| 5254 | // Copy the old AI debug location over to the new one. |
| 5255 | NewAI->setDebugLoc(AI.getDebugLoc()); |
| 5256 | ++NumNewAllocas; |
| 5257 | } |
| 5258 | |
| 5259 | LLVM_DEBUG(dbgs() << "Rewriting alloca partition " << "[" << P.beginOffset() |
| 5260 | << "," << P.endOffset() << ") to: " << *NewAI << "\n" ); |
| 5261 | |
| 5262 | // Track the high watermark on the worklist as it is only relevant for |
| 5263 | // promoted allocas. We will reset it to this point if the alloca is not in |
| 5264 | // fact scheduled for promotion. |
| 5265 | unsigned PPWOldSize = PostPromotionWorklist.size(); |
| 5266 | unsigned NumUses = 0; |
| 5267 | SmallSetVector<PHINode *, 8> PHIUsers; |
| 5268 | SmallSetVector<SelectInst *, 8> SelectUsers; |
| 5269 | |
| 5270 | AllocaSliceRewriter Rewriter( |
| 5271 | DL, AS, *this, AI, *NewAI, PartitionTy, P.beginOffset(), P.endOffset(), |
| 5272 | IsIntegerWideningViable, VecTy, PHIUsers, SelectUsers); |
| 5273 | bool Promotable = true; |
| 5274 | // Check whether we can have tree-structured merge. |
| 5275 | if (auto DeletedValues = Rewriter.rewriteTreeStructuredMerge(P)) { |
| 5276 | NumUses += DeletedValues->size() + 1; |
| 5277 | for (Value *V : *DeletedValues) |
| 5278 | DeadInsts.push_back(Elt: V); |
| 5279 | } else { |
| 5280 | for (Slice *S : P.splitSliceTails()) { |
| 5281 | Promotable &= Rewriter.visit(I: S); |
| 5282 | ++NumUses; |
| 5283 | } |
| 5284 | for (Slice &S : P) { |
| 5285 | Promotable &= Rewriter.visit(I: &S); |
| 5286 | ++NumUses; |
| 5287 | } |
| 5288 | } |
| 5289 | |
| 5290 | NumAllocaPartitionUses += NumUses; |
| 5291 | MaxUsesPerAllocaPartition.updateMax(V: NumUses); |
| 5292 | |
| 5293 | // Now that we've processed all the slices in the new partition, check if any |
| 5294 | // PHIs or Selects would block promotion. |
| 5295 | for (PHINode *PHI : PHIUsers) |
| 5296 | if (!isSafePHIToSpeculate(PN&: *PHI)) { |
| 5297 | Promotable = false; |
| 5298 | PHIUsers.clear(); |
| 5299 | SelectUsers.clear(); |
| 5300 | break; |
| 5301 | } |
| 5302 | |
| 5303 | SmallVector<std::pair<SelectInst *, RewriteableMemOps>, 2> |
| 5304 | NewSelectsToRewrite; |
| 5305 | NewSelectsToRewrite.reserve(N: SelectUsers.size()); |
| 5306 | for (SelectInst *Sel : SelectUsers) { |
| 5307 | std::optional<RewriteableMemOps> Ops = |
| 5308 | isSafeSelectToSpeculate(SI&: *Sel, PreserveCFG); |
| 5309 | if (!Ops) { |
| 5310 | Promotable = false; |
| 5311 | PHIUsers.clear(); |
| 5312 | SelectUsers.clear(); |
| 5313 | NewSelectsToRewrite.clear(); |
| 5314 | break; |
| 5315 | } |
| 5316 | NewSelectsToRewrite.emplace_back(Args: std::make_pair(x&: Sel, y&: *Ops)); |
| 5317 | } |
| 5318 | |
| 5319 | if (Promotable) { |
| 5320 | for (Use *U : AS.getDeadUsesIfPromotable()) { |
| 5321 | auto *OldInst = dyn_cast<Instruction>(Val: U->get()); |
| 5322 | Value::dropDroppableUse(U&: *U); |
| 5323 | if (OldInst) |
| 5324 | if (isInstructionTriviallyDead(I: OldInst)) |
| 5325 | DeadInsts.push_back(Elt: OldInst); |
| 5326 | } |
| 5327 | if (PHIUsers.empty() && SelectUsers.empty()) { |
| 5328 | // Promote the alloca. |
| 5329 | PromotableAllocas.insert(X: NewAI); |
| 5330 | } else { |
| 5331 | // If we have either PHIs or Selects to speculate, add them to those |
| 5332 | // worklists and re-queue the new alloca so that we promote in on the |
| 5333 | // next iteration. |
| 5334 | SpeculatablePHIs.insert_range(R&: PHIUsers); |
| 5335 | SelectsToRewrite.reserve(NumEntries: SelectsToRewrite.size() + |
| 5336 | NewSelectsToRewrite.size()); |
| 5337 | for (auto &&KV : llvm::make_range( |
| 5338 | x: std::make_move_iterator(i: NewSelectsToRewrite.begin()), |
| 5339 | y: std::make_move_iterator(i: NewSelectsToRewrite.end()))) |
| 5340 | SelectsToRewrite.insert(KV: std::move(KV)); |
| 5341 | Worklist.insert(X: NewAI); |
| 5342 | } |
| 5343 | } else { |
| 5344 | // Drop any post-promotion work items if promotion didn't happen. |
| 5345 | while (PostPromotionWorklist.size() > PPWOldSize) |
| 5346 | PostPromotionWorklist.pop_back(); |
| 5347 | |
| 5348 | // We couldn't promote and we didn't create a new partition, nothing |
| 5349 | // happened. |
| 5350 | if (NewAI == &AI) |
| 5351 | return {nullptr, 0}; |
| 5352 | |
| 5353 | // If we can't promote the alloca, iterate on it to check for new |
| 5354 | // refinements exposed by splitting the current alloca. Don't iterate on an |
| 5355 | // alloca which didn't actually change and didn't get promoted. |
| 5356 | Worklist.insert(X: NewAI); |
| 5357 | } |
| 5358 | |
| 5359 | return {NewAI, DL.getTypeSizeInBits(Ty: PartitionTy).getFixedValue()}; |
| 5360 | } |
| 5361 | |
| 5362 | // There isn't a shared interface to get the "address" parts out of a |
| 5363 | // dbg.declare and dbg.assign, so provide some wrappers. |
| 5364 | bool isKillAddress(const DbgVariableRecord *DVR) { |
| 5365 | if (DVR->getType() == DbgVariableRecord::LocationType::Assign) |
| 5366 | return DVR->isKillAddress(); |
| 5367 | return DVR->isKillLocation(); |
| 5368 | } |
| 5369 | |
| 5370 | const DIExpression *getAddressExpression(const DbgVariableRecord *DVR) { |
| 5371 | if (DVR->getType() == DbgVariableRecord::LocationType::Assign) |
| 5372 | return DVR->getAddressExpression(); |
| 5373 | return DVR->getExpression(); |
| 5374 | } |
| 5375 | |
| 5376 | /// Create or replace an existing fragment in a DIExpression with \p Frag. |
| 5377 | /// If the expression already contains a DW_OP_LLVM_extract_bits_[sz]ext |
| 5378 | /// operation, add \p BitExtractOffset to the offset part. |
| 5379 | /// |
| 5380 | /// Returns the new expression, or nullptr if this fails (see details below). |
| 5381 | /// |
| 5382 | /// This function is similar to DIExpression::createFragmentExpression except |
| 5383 | /// for 3 important distinctions: |
| 5384 | /// 1. The new fragment isn't relative to an existing fragment. |
| 5385 | /// 2. It assumes the computed location is a memory location. This means we |
| 5386 | /// don't need to perform checks that creating the fragment preserves the |
| 5387 | /// expression semantics. |
| 5388 | /// 3. Existing extract_bits are modified independently of fragment changes |
| 5389 | /// using \p BitExtractOffset. A change to the fragment offset or size |
| 5390 | /// may affect a bit extract. But a bit extract offset can change |
| 5391 | /// independently of the fragment dimensions. |
| 5392 | /// |
| 5393 | /// Returns the new expression, or nullptr if one couldn't be created. |
| 5394 | /// Ideally this is only used to signal that a bit-extract has become |
| 5395 | /// zero-sized (and thus the new debug record has no size and can be |
| 5396 | /// dropped), however, it fails for other reasons too - see the FIXME below. |
| 5397 | /// |
| 5398 | /// FIXME: To keep the change that introduces this function NFC it bails |
| 5399 | /// in some situations unecessarily, e.g. when fragment and bit extract |
| 5400 | /// sizes differ. |
| 5401 | static DIExpression *createOrReplaceFragment(const DIExpression *Expr, |
| 5402 | DIExpression::FragmentInfo Frag, |
| 5403 | int64_t ) { |
| 5404 | SmallVector<uint64_t, 8> Ops; |
| 5405 | bool HasFragment = false; |
| 5406 | bool = false; |
| 5407 | |
| 5408 | for (auto &Op : Expr->expr_ops()) { |
| 5409 | if (Op.getOp() == dwarf::DW_OP_LLVM_fragment) { |
| 5410 | HasFragment = true; |
| 5411 | continue; |
| 5412 | } |
| 5413 | if (Op.getOp() == dwarf::DW_OP_LLVM_extract_bits_zext || |
| 5414 | Op.getOp() == dwarf::DW_OP_LLVM_extract_bits_sext) { |
| 5415 | HasBitExtract = true; |
| 5416 | int64_t = Op.getArg(I: 0); |
| 5417 | int64_t = Op.getArg(I: 1); |
| 5418 | |
| 5419 | // DIExpression::createFragmentExpression doesn't know how to handle |
| 5420 | // a fragment that is smaller than the extract. Copy the behaviour |
| 5421 | // (bail) to avoid non-NFC changes. |
| 5422 | // FIXME: Don't do this. |
| 5423 | if (Frag.SizeInBits < uint64_t(ExtractSizeInBits)) |
| 5424 | return nullptr; |
| 5425 | |
| 5426 | assert(BitExtractOffset <= 0); |
| 5427 | int64_t AdjustedOffset = ExtractOffsetInBits + BitExtractOffset; |
| 5428 | |
| 5429 | // DIExpression::createFragmentExpression doesn't know what to do |
| 5430 | // if the new extract starts "outside" the existing one. Copy the |
| 5431 | // behaviour (bail) to avoid non-NFC changes. |
| 5432 | // FIXME: Don't do this. |
| 5433 | if (AdjustedOffset < 0) |
| 5434 | return nullptr; |
| 5435 | |
| 5436 | Ops.push_back(Elt: Op.getOp()); |
| 5437 | Ops.push_back(Elt: std::max<int64_t>(a: 0, b: AdjustedOffset)); |
| 5438 | Ops.push_back(Elt: ExtractSizeInBits); |
| 5439 | continue; |
| 5440 | } |
| 5441 | Op.appendToVector(V&: Ops); |
| 5442 | } |
| 5443 | |
| 5444 | // Unsupported by createFragmentExpression, so don't support it here yet to |
| 5445 | // preserve NFC-ness. |
| 5446 | if (HasFragment && HasBitExtract) |
| 5447 | return nullptr; |
| 5448 | |
| 5449 | if (!HasBitExtract) { |
| 5450 | Ops.push_back(Elt: dwarf::DW_OP_LLVM_fragment); |
| 5451 | Ops.push_back(Elt: Frag.OffsetInBits); |
| 5452 | Ops.push_back(Elt: Frag.SizeInBits); |
| 5453 | } |
| 5454 | return DIExpression::get(Context&: Expr->getContext(), Elements: Ops); |
| 5455 | } |
| 5456 | |
| 5457 | /// Insert a new DbgRecord. |
| 5458 | /// \p Orig Original to copy record type, debug loc and variable from, and |
| 5459 | /// additionally value and value expression for dbg_assign records. |
| 5460 | /// \p NewAddr Location's new base address. |
| 5461 | /// \p NewAddrExpr New expression to apply to address. |
| 5462 | /// \p BeforeInst Insert position. |
| 5463 | /// \p NewFragment New fragment (absolute, non-relative). |
| 5464 | /// \p BitExtractAdjustment Offset to apply to any extract_bits op. |
| 5465 | static void |
| 5466 | insertNewDbgInst(DIBuilder &DIB, DbgVariableRecord *Orig, AllocaInst *NewAddr, |
| 5467 | DIExpression *NewAddrExpr, Instruction *BeforeInst, |
| 5468 | std::optional<DIExpression::FragmentInfo> NewFragment, |
| 5469 | int64_t ) { |
| 5470 | (void)DIB; |
| 5471 | |
| 5472 | // A dbg_assign puts fragment info in the value expression only. The address |
| 5473 | // expression has already been built: NewAddrExpr. A dbg_declare puts the |
| 5474 | // new fragment info into NewAddrExpr (as it only has one expression). |
| 5475 | DIExpression *NewFragmentExpr = |
| 5476 | Orig->isDbgAssign() ? Orig->getExpression() : NewAddrExpr; |
| 5477 | if (NewFragment) |
| 5478 | NewFragmentExpr = createOrReplaceFragment(Expr: NewFragmentExpr, Frag: *NewFragment, |
| 5479 | BitExtractOffset: BitExtractAdjustment); |
| 5480 | if (!NewFragmentExpr) |
| 5481 | return; |
| 5482 | |
| 5483 | if (Orig->isDbgDeclare()) { |
| 5484 | DbgVariableRecord *DVR = DbgVariableRecord::createDVRDeclare( |
| 5485 | Address: NewAddr, DV: Orig->getVariable(), Expr: NewFragmentExpr, DI: Orig->getDebugLoc()); |
| 5486 | BeforeInst->getParent()->insertDbgRecordBefore(DR: DVR, |
| 5487 | Here: BeforeInst->getIterator()); |
| 5488 | return; |
| 5489 | } |
| 5490 | |
| 5491 | if (Orig->isDbgValue()) { |
| 5492 | DbgVariableRecord *DVR = DbgVariableRecord::createDbgVariableRecord( |
| 5493 | Location: NewAddr, DV: Orig->getVariable(), Expr: NewFragmentExpr, DI: Orig->getDebugLoc()); |
| 5494 | // Drop debug information if the expression doesn't start with a |
| 5495 | // DW_OP_deref. This is because without a DW_OP_deref, the #dbg_value |
| 5496 | // describes the address of alloca rather than the value inside the alloca. |
| 5497 | if (!NewFragmentExpr->startsWithDeref()) |
| 5498 | DVR->setKillAddress(); |
| 5499 | BeforeInst->getParent()->insertDbgRecordBefore(DR: DVR, |
| 5500 | Here: BeforeInst->getIterator()); |
| 5501 | return; |
| 5502 | } |
| 5503 | |
| 5504 | // Apply a DIAssignID to the store if it doesn't already have it. |
| 5505 | if (!NewAddr->hasMetadata(KindID: LLVMContext::MD_DIAssignID)) { |
| 5506 | NewAddr->setMetadata(KindID: LLVMContext::MD_DIAssignID, |
| 5507 | Node: DIAssignID::getDistinct(Context&: NewAddr->getContext())); |
| 5508 | } |
| 5509 | |
| 5510 | DbgVariableRecord *NewAssign = DbgVariableRecord::createLinkedDVRAssign( |
| 5511 | LinkedInstr: NewAddr, Val: Orig->getValue(), Variable: Orig->getVariable(), Expression: NewFragmentExpr, Address: NewAddr, |
| 5512 | AddressExpression: NewAddrExpr, DI: Orig->getDebugLoc()); |
| 5513 | LLVM_DEBUG(dbgs() << "Created new DVRAssign: " << *NewAssign << "\n" ); |
| 5514 | (void)NewAssign; |
| 5515 | } |
| 5516 | |
| 5517 | /// Walks the slices of an alloca and form partitions based on them, |
| 5518 | /// rewriting each of their uses. |
| 5519 | bool SROA::splitAlloca(AllocaInst &AI, AllocaSlices &AS) { |
| 5520 | if (AS.begin() == AS.end()) |
| 5521 | return false; |
| 5522 | |
| 5523 | unsigned NumPartitions = 0; |
| 5524 | bool Changed = false; |
| 5525 | const DataLayout &DL = AI.getModule()->getDataLayout(); |
| 5526 | |
| 5527 | // First try to pre-split loads and stores. |
| 5528 | Changed |= presplitLoadsAndStores(AI, AS); |
| 5529 | |
| 5530 | // Now that we have identified any pre-splitting opportunities, |
| 5531 | // mark loads and stores unsplittable except for the following case. |
| 5532 | // We leave a slice splittable if all other slices are disjoint or fully |
| 5533 | // included in the slice, such as whole-alloca loads and stores. |
| 5534 | // If we fail to split these during pre-splitting, we want to force them |
| 5535 | // to be rewritten into a partition. |
| 5536 | bool IsSorted = true; |
| 5537 | |
| 5538 | uint64_t AllocaSize = AI.getAllocationSize(DL)->getFixedValue(); |
| 5539 | const uint64_t MaxBitVectorSize = 1024; |
| 5540 | if (AllocaSize <= MaxBitVectorSize) { |
| 5541 | // If a byte boundary is included in any load or store, a slice starting or |
| 5542 | // ending at the boundary is not splittable. |
| 5543 | SmallBitVector SplittableOffset(AllocaSize + 1, true); |
| 5544 | for (Slice &S : AS) |
| 5545 | for (unsigned O = S.beginOffset() + 1; |
| 5546 | O < S.endOffset() && O < AllocaSize; O++) |
| 5547 | SplittableOffset.reset(Idx: O); |
| 5548 | |
| 5549 | for (Slice &S : AS) { |
| 5550 | if (!S.isSplittable()) |
| 5551 | continue; |
| 5552 | |
| 5553 | if ((S.beginOffset() > AllocaSize || SplittableOffset[S.beginOffset()]) && |
| 5554 | (S.endOffset() > AllocaSize || SplittableOffset[S.endOffset()])) |
| 5555 | continue; |
| 5556 | |
| 5557 | if (isa<LoadInst>(Val: S.getUse()->getUser()) || |
| 5558 | isa<StoreInst>(Val: S.getUse()->getUser())) { |
| 5559 | S.makeUnsplittable(); |
| 5560 | IsSorted = false; |
| 5561 | } |
| 5562 | } |
| 5563 | } else { |
| 5564 | // We only allow whole-alloca splittable loads and stores |
| 5565 | // for a large alloca to avoid creating too large BitVector. |
| 5566 | for (Slice &S : AS) { |
| 5567 | if (!S.isSplittable()) |
| 5568 | continue; |
| 5569 | |
| 5570 | if (S.beginOffset() == 0 && S.endOffset() >= AllocaSize) |
| 5571 | continue; |
| 5572 | |
| 5573 | if (isa<LoadInst>(Val: S.getUse()->getUser()) || |
| 5574 | isa<StoreInst>(Val: S.getUse()->getUser())) { |
| 5575 | S.makeUnsplittable(); |
| 5576 | IsSorted = false; |
| 5577 | } |
| 5578 | } |
| 5579 | } |
| 5580 | |
| 5581 | if (!IsSorted) |
| 5582 | llvm::stable_sort(Range&: AS); |
| 5583 | |
| 5584 | /// Describes the allocas introduced by rewritePartition in order to migrate |
| 5585 | /// the debug info. |
| 5586 | struct Fragment { |
| 5587 | AllocaInst *Alloca; |
| 5588 | uint64_t Offset; |
| 5589 | uint64_t Size; |
| 5590 | Fragment(AllocaInst *AI, uint64_t O, uint64_t S) |
| 5591 | : Alloca(AI), Offset(O), Size(S) {} |
| 5592 | }; |
| 5593 | SmallVector<Fragment, 4> Fragments; |
| 5594 | |
| 5595 | // Rewrite each partition. |
| 5596 | for (auto &P : AS.partitions()) { |
| 5597 | auto [NewAI, ActiveBits] = rewritePartition(AI, AS, P); |
| 5598 | if (NewAI) { |
| 5599 | Changed = true; |
| 5600 | if (NewAI != &AI) { |
| 5601 | uint64_t SizeOfByte = 8; |
| 5602 | // Don't include any padding. |
| 5603 | uint64_t Size = std::min(a: ActiveBits, b: P.size() * SizeOfByte); |
| 5604 | Fragments.push_back( |
| 5605 | Elt: Fragment(NewAI, P.beginOffset() * SizeOfByte, Size)); |
| 5606 | } |
| 5607 | } |
| 5608 | ++NumPartitions; |
| 5609 | } |
| 5610 | |
| 5611 | NumAllocaPartitions += NumPartitions; |
| 5612 | MaxPartitionsPerAlloca.updateMax(V: NumPartitions); |
| 5613 | |
| 5614 | // Migrate debug information from the old alloca to the new alloca(s) |
| 5615 | // and the individual partitions. |
| 5616 | auto MigrateOne = [&](DbgVariableRecord *DbgVariable) { |
| 5617 | // Can't overlap with undef memory. |
| 5618 | if (isKillAddress(DVR: DbgVariable)) |
| 5619 | return; |
| 5620 | |
| 5621 | const Value *DbgPtr = DbgVariable->getAddress(); |
| 5622 | DIExpression::FragmentInfo VarFrag = |
| 5623 | DbgVariable->getFragmentOrEntireVariable(); |
| 5624 | // Get the address expression constant offset if one exists and the ops |
| 5625 | // that come after it. |
| 5626 | int64_t CurrentExprOffsetInBytes = 0; |
| 5627 | SmallVector<uint64_t> PostOffsetOps; |
| 5628 | if (!getAddressExpression(DVR: DbgVariable) |
| 5629 | ->extractLeadingOffset(OffsetInBytes&: CurrentExprOffsetInBytes, RemainingOps&: PostOffsetOps)) |
| 5630 | return; // Couldn't interpret this DIExpression - drop the var. |
| 5631 | |
| 5632 | // Offset defined by a DW_OP_LLVM_extract_bits_[sz]ext. |
| 5633 | int64_t = 0; |
| 5634 | for (auto Op : getAddressExpression(DVR: DbgVariable)->expr_ops()) { |
| 5635 | if (Op.getOp() == dwarf::DW_OP_LLVM_extract_bits_zext || |
| 5636 | Op.getOp() == dwarf::DW_OP_LLVM_extract_bits_sext) { |
| 5637 | ExtractOffsetInBits = Op.getArg(I: 0); |
| 5638 | break; |
| 5639 | } |
| 5640 | } |
| 5641 | |
| 5642 | DIBuilder DIB(*AI.getModule(), /*AllowUnresolved*/ false); |
| 5643 | for (auto Fragment : Fragments) { |
| 5644 | int64_t OffsetFromLocationInBits; |
| 5645 | std::optional<DIExpression::FragmentInfo> NewDbgFragment; |
| 5646 | // Find the variable fragment that the new alloca slice covers. |
| 5647 | // Drop debug info for this variable fragment if we can't compute an |
| 5648 | // intersect between it and the alloca slice. |
| 5649 | if (!DIExpression::calculateFragmentIntersect( |
| 5650 | DL, SliceStart: &AI, SliceOffsetInBits: Fragment.Offset, SliceSizeInBits: Fragment.Size, DbgPtr, |
| 5651 | DbgPtrOffsetInBits: CurrentExprOffsetInBytes * 8, DbgExtractOffsetInBits: ExtractOffsetInBits, VarFrag, |
| 5652 | Result&: NewDbgFragment, OffsetFromLocationInBits)) |
| 5653 | continue; // Do not migrate this fragment to this slice. |
| 5654 | |
| 5655 | // Zero sized fragment indicates there's no intersect between the variable |
| 5656 | // fragment and the alloca slice. Skip this slice for this variable |
| 5657 | // fragment. |
| 5658 | if (NewDbgFragment && !NewDbgFragment->SizeInBits) |
| 5659 | continue; // Do not migrate this fragment to this slice. |
| 5660 | |
| 5661 | // No fragment indicates DbgVariable's variable or fragment exactly |
| 5662 | // overlaps the slice; copy its fragment (or nullopt if there isn't one). |
| 5663 | if (!NewDbgFragment) |
| 5664 | NewDbgFragment = DbgVariable->getFragment(); |
| 5665 | |
| 5666 | // Reduce the new expression offset by the bit-extract offset since |
| 5667 | // we'll be keeping that. |
| 5668 | int64_t OffestFromNewAllocaInBits = |
| 5669 | OffsetFromLocationInBits - ExtractOffsetInBits; |
| 5670 | // We need to adjust an existing bit extract if the offset expression |
| 5671 | // can't eat the slack (i.e., if the new offset would be negative). |
| 5672 | int64_t = |
| 5673 | std::min<int64_t>(a: 0, b: OffestFromNewAllocaInBits); |
| 5674 | // The magnitude of a negative value indicates the number of bits into |
| 5675 | // the existing variable fragment that the memory region begins. The new |
| 5676 | // variable fragment already excludes those bits - the new DbgPtr offset |
| 5677 | // only needs to be applied if it's positive. |
| 5678 | OffestFromNewAllocaInBits = |
| 5679 | std::max(a: int64_t(0), b: OffestFromNewAllocaInBits); |
| 5680 | |
| 5681 | // Rebuild the expression: |
| 5682 | // {Offset(OffestFromNewAllocaInBits), PostOffsetOps, NewDbgFragment} |
| 5683 | // Add NewDbgFragment later, because dbg.assigns don't want it in the |
| 5684 | // address expression but the value expression instead. |
| 5685 | DIExpression *NewExpr = DIExpression::get(Context&: AI.getContext(), Elements: PostOffsetOps); |
| 5686 | if (OffestFromNewAllocaInBits > 0) { |
| 5687 | int64_t OffsetInBytes = (OffestFromNewAllocaInBits + 7) / 8; |
| 5688 | NewExpr = DIExpression::prepend(Expr: NewExpr, /*flags=*/Flags: 0, Offset: OffsetInBytes); |
| 5689 | } |
| 5690 | |
| 5691 | // Remove any existing intrinsics on the new alloca describing |
| 5692 | // the variable fragment. |
| 5693 | auto RemoveOne = [DbgVariable](auto *OldDII) { |
| 5694 | auto SameVariableFragment = [](const auto *LHS, const auto *RHS) { |
| 5695 | return LHS->getVariable() == RHS->getVariable() && |
| 5696 | LHS->getDebugLoc()->getInlinedAt() == |
| 5697 | RHS->getDebugLoc()->getInlinedAt(); |
| 5698 | }; |
| 5699 | if (SameVariableFragment(OldDII, DbgVariable)) |
| 5700 | OldDII->eraseFromParent(); |
| 5701 | }; |
| 5702 | for_each(Range: findDVRDeclares(V: Fragment.Alloca), F: RemoveOne); |
| 5703 | for_each(Range: findDVRValues(V: Fragment.Alloca), F: RemoveOne); |
| 5704 | insertNewDbgInst(DIB, Orig: DbgVariable, NewAddr: Fragment.Alloca, NewAddrExpr: NewExpr, BeforeInst: &AI, |
| 5705 | NewFragment: NewDbgFragment, BitExtractAdjustment: BitExtractOffset); |
| 5706 | } |
| 5707 | }; |
| 5708 | |
| 5709 | // Migrate debug information from the old alloca to the new alloca(s) |
| 5710 | // and the individual partitions. |
| 5711 | for_each(Range: findDVRDeclares(V: &AI), F: MigrateOne); |
| 5712 | for_each(Range: findDVRValues(V: &AI), F: MigrateOne); |
| 5713 | for_each(Range: at::getDVRAssignmentMarkers(Inst: &AI), F: MigrateOne); |
| 5714 | |
| 5715 | return Changed; |
| 5716 | } |
| 5717 | |
| 5718 | /// Clobber a use with poison, deleting the used value if it becomes dead. |
| 5719 | void SROA::clobberUse(Use &U) { |
| 5720 | Value *OldV = U; |
| 5721 | // Replace the use with an poison value. |
| 5722 | U = PoisonValue::get(T: OldV->getType()); |
| 5723 | |
| 5724 | // Check for this making an instruction dead. We have to garbage collect |
| 5725 | // all the dead instructions to ensure the uses of any alloca end up being |
| 5726 | // minimal. |
| 5727 | if (Instruction *OldI = dyn_cast<Instruction>(Val: OldV)) |
| 5728 | if (isInstructionTriviallyDead(I: OldI)) { |
| 5729 | DeadInsts.push_back(Elt: OldI); |
| 5730 | } |
| 5731 | } |
| 5732 | |
| 5733 | /// A basic LoadAndStorePromoter that does not remove store nodes. |
| 5734 | class BasicLoadAndStorePromoter : public LoadAndStorePromoter { |
| 5735 | public: |
| 5736 | BasicLoadAndStorePromoter(ArrayRef<const Instruction *> Insts, SSAUpdater &S, |
| 5737 | Type *ZeroType) |
| 5738 | : LoadAndStorePromoter(Insts, S), ZeroType(ZeroType) {} |
| 5739 | bool shouldDelete(Instruction *I) const override { |
| 5740 | return !isa<StoreInst>(Val: I) && !isa<AllocaInst>(Val: I); |
| 5741 | } |
| 5742 | |
| 5743 | Value *getValueToUseForAlloca(Instruction *I) const override { |
| 5744 | return UndefValue::get(T: ZeroType); |
| 5745 | } |
| 5746 | |
| 5747 | private: |
| 5748 | Type *ZeroType; |
| 5749 | }; |
| 5750 | |
| 5751 | bool SROA::propagateStoredValuesToLoads(AllocaInst &AI, AllocaSlices &AS) { |
| 5752 | // Look through each "partition", looking for slices with the same start/end |
| 5753 | // that do not overlap with any before them. The slices are sorted by |
| 5754 | // increasing beginOffset. We don't use AS.partitions(), as it will use a more |
| 5755 | // sophisticated algorithm that takes splittable slices into account. |
| 5756 | LLVM_DEBUG(dbgs() << "Attempting to propagate values on " << AI << "\n" ); |
| 5757 | bool AllSameAndValid = true; |
| 5758 | Type *PartitionType = nullptr; |
| 5759 | SmallVector<Instruction *> Insts; |
| 5760 | uint64_t BeginOffset = 0; |
| 5761 | uint64_t EndOffset = 0; |
| 5762 | |
| 5763 | auto Flush = [&]() { |
| 5764 | if (AllSameAndValid && !Insts.empty()) { |
| 5765 | LLVM_DEBUG(dbgs() << "Propagate values on slice [" << BeginOffset << ", " |
| 5766 | << EndOffset << ")\n" ); |
| 5767 | SmallVector<PHINode *, 4> NewPHIs; |
| 5768 | SSAUpdater SSA(&NewPHIs); |
| 5769 | Insts.push_back(Elt: &AI); |
| 5770 | BasicLoadAndStorePromoter Promoter(Insts, SSA, PartitionType); |
| 5771 | Promoter.run(Insts); |
| 5772 | } |
| 5773 | AllSameAndValid = true; |
| 5774 | PartitionType = nullptr; |
| 5775 | Insts.clear(); |
| 5776 | }; |
| 5777 | |
| 5778 | for (Slice &S : AS) { |
| 5779 | auto *User = cast<Instruction>(Val: S.getUse()->getUser()); |
| 5780 | if (isAssumeLikeIntrinsic(I: User)) { |
| 5781 | LLVM_DEBUG({ |
| 5782 | dbgs() << "Ignoring slice: " ; |
| 5783 | AS.print(dbgs(), &S); |
| 5784 | }); |
| 5785 | continue; |
| 5786 | } |
| 5787 | if (S.beginOffset() >= EndOffset) { |
| 5788 | Flush(); |
| 5789 | BeginOffset = S.beginOffset(); |
| 5790 | EndOffset = S.endOffset(); |
| 5791 | } else if (S.beginOffset() != BeginOffset || S.endOffset() != EndOffset) { |
| 5792 | if (AllSameAndValid) { |
| 5793 | LLVM_DEBUG({ |
| 5794 | dbgs() << "Slice does not match range [" << BeginOffset << ", " |
| 5795 | << EndOffset << ")" ; |
| 5796 | AS.print(dbgs(), &S); |
| 5797 | }); |
| 5798 | AllSameAndValid = false; |
| 5799 | } |
| 5800 | EndOffset = std::max(a: EndOffset, b: S.endOffset()); |
| 5801 | continue; |
| 5802 | } |
| 5803 | |
| 5804 | if (auto *LI = dyn_cast<LoadInst>(Val: User)) { |
| 5805 | Type *UserTy = LI->getType(); |
| 5806 | // LoadAndStorePromoter requires all the types to be the same. |
| 5807 | if (!LI->isSimple() || (PartitionType && UserTy != PartitionType)) |
| 5808 | AllSameAndValid = false; |
| 5809 | PartitionType = UserTy; |
| 5810 | Insts.push_back(Elt: User); |
| 5811 | } else if (auto *SI = dyn_cast<StoreInst>(Val: User)) { |
| 5812 | Type *UserTy = SI->getValueOperand()->getType(); |
| 5813 | if (!SI->isSimple() || (PartitionType && UserTy != PartitionType)) |
| 5814 | AllSameAndValid = false; |
| 5815 | PartitionType = UserTy; |
| 5816 | Insts.push_back(Elt: User); |
| 5817 | } else { |
| 5818 | AllSameAndValid = false; |
| 5819 | } |
| 5820 | } |
| 5821 | |
| 5822 | Flush(); |
| 5823 | return true; |
| 5824 | } |
| 5825 | |
| 5826 | /// Analyze an alloca for SROA. |
| 5827 | /// |
| 5828 | /// This analyzes the alloca to ensure we can reason about it, builds |
| 5829 | /// the slices of the alloca, and then hands it off to be split and |
| 5830 | /// rewritten as needed. |
| 5831 | std::pair<bool /*Changed*/, bool /*CFGChanged*/> |
| 5832 | SROA::runOnAlloca(AllocaInst &AI) { |
| 5833 | bool Changed = false; |
| 5834 | bool CFGChanged = false; |
| 5835 | |
| 5836 | LLVM_DEBUG(dbgs() << "SROA alloca: " << AI << "\n" ); |
| 5837 | ++NumAllocasAnalyzed; |
| 5838 | |
| 5839 | // Special case dead allocas, as they're trivial. |
| 5840 | if (AI.use_empty()) { |
| 5841 | AI.eraseFromParent(); |
| 5842 | Changed = true; |
| 5843 | return {Changed, CFGChanged}; |
| 5844 | } |
| 5845 | const DataLayout &DL = AI.getDataLayout(); |
| 5846 | |
| 5847 | // Skip alloca forms that this analysis can't handle. |
| 5848 | std::optional<TypeSize> Size = AI.getAllocationSize(DL); |
| 5849 | if (AI.isArrayAllocation() || !Size || Size->isScalable() || Size->isZero()) |
| 5850 | return {Changed, CFGChanged}; |
| 5851 | |
| 5852 | // First, split any FCA loads and stores touching this alloca to promote |
| 5853 | // better splitting and promotion opportunities. |
| 5854 | IRBuilderTy IRB(&AI); |
| 5855 | AggLoadStoreRewriter AggRewriter(DL, IRB); |
| 5856 | Changed |= AggRewriter.rewrite(I&: AI); |
| 5857 | |
| 5858 | // Build the slices using a recursive instruction-visiting builder. |
| 5859 | AllocaSlices AS(DL, AI); |
| 5860 | LLVM_DEBUG(AS.print(dbgs())); |
| 5861 | if (AS.isEscaped()) |
| 5862 | return {Changed, CFGChanged}; |
| 5863 | |
| 5864 | if (AS.isEscapedReadOnly()) { |
| 5865 | Changed |= propagateStoredValuesToLoads(AI, AS); |
| 5866 | return {Changed, CFGChanged}; |
| 5867 | } |
| 5868 | |
| 5869 | for (auto &P : AS.partitions()) { |
| 5870 | // For now, we can't split if a field is accessed both via protected field |
| 5871 | // and not, because that would mean that we would need to introduce sign and |
| 5872 | // auth operations to convert between the protected and non-protected uses, |
| 5873 | // and this pass doesn't know how to do that. Also, this case is unlikely to |
| 5874 | // occur in normal code. |
| 5875 | std::optional<Value *> ProtectedFieldDisc; |
| 5876 | auto SliceHasMismatch = [&](Slice &S) { |
| 5877 | if (auto *II = dyn_cast<IntrinsicInst>(Val: S.getUse()->getUser())) |
| 5878 | if (II->getIntrinsicID() == Intrinsic::lifetime_start || |
| 5879 | II->getIntrinsicID() == Intrinsic::lifetime_end) |
| 5880 | return false; |
| 5881 | if (!ProtectedFieldDisc) |
| 5882 | ProtectedFieldDisc = S.ProtectedFieldDisc; |
| 5883 | return *ProtectedFieldDisc != S.ProtectedFieldDisc; |
| 5884 | }; |
| 5885 | for (Slice &S : P) |
| 5886 | if (SliceHasMismatch(S)) |
| 5887 | return {Changed, CFGChanged}; |
| 5888 | for (Slice *S : P.splitSliceTails()) |
| 5889 | if (SliceHasMismatch(*S)) |
| 5890 | return {Changed, CFGChanged}; |
| 5891 | } |
| 5892 | |
| 5893 | // Delete all the dead users of this alloca before splitting and rewriting it. |
| 5894 | for (Instruction *DeadUser : AS.getDeadUsers()) { |
| 5895 | // Free up everything used by this instruction. |
| 5896 | for (Use &DeadOp : DeadUser->operands()) |
| 5897 | clobberUse(U&: DeadOp); |
| 5898 | |
| 5899 | // Now replace the uses of this instruction. |
| 5900 | DeadUser->replaceAllUsesWith(V: PoisonValue::get(T: DeadUser->getType())); |
| 5901 | |
| 5902 | // And mark it for deletion. |
| 5903 | DeadInsts.push_back(Elt: DeadUser); |
| 5904 | Changed = true; |
| 5905 | } |
| 5906 | for (Use *DeadOp : AS.getDeadOperands()) { |
| 5907 | clobberUse(U&: *DeadOp); |
| 5908 | Changed = true; |
| 5909 | } |
| 5910 | for (IntrinsicInst *PFPUser : AS.getPFPUsers()) { |
| 5911 | PFPUser->replaceAllUsesWith(V: PFPUser->getArgOperand(i: 0)); |
| 5912 | |
| 5913 | DeadInsts.push_back(Elt: PFPUser); |
| 5914 | Changed = true; |
| 5915 | } |
| 5916 | |
| 5917 | // No slices to split. Leave the dead alloca for a later pass to clean up. |
| 5918 | if (AS.begin() == AS.end()) |
| 5919 | return {Changed, CFGChanged}; |
| 5920 | |
| 5921 | Changed |= splitAlloca(AI, AS); |
| 5922 | |
| 5923 | LLVM_DEBUG(dbgs() << " Speculating PHIs\n" ); |
| 5924 | while (!SpeculatablePHIs.empty()) |
| 5925 | speculatePHINodeLoads(IRB, PN&: *SpeculatablePHIs.pop_back_val()); |
| 5926 | |
| 5927 | LLVM_DEBUG(dbgs() << " Rewriting Selects\n" ); |
| 5928 | auto RemainingSelectsToRewrite = SelectsToRewrite.takeVector(); |
| 5929 | while (!RemainingSelectsToRewrite.empty()) { |
| 5930 | const auto [K, V] = RemainingSelectsToRewrite.pop_back_val(); |
| 5931 | CFGChanged |= |
| 5932 | rewriteSelectInstMemOps(SI&: *K, Ops: V, IRB, DTU: PreserveCFG ? nullptr : DTU); |
| 5933 | } |
| 5934 | |
| 5935 | return {Changed, CFGChanged}; |
| 5936 | } |
| 5937 | |
| 5938 | /// Delete the dead instructions accumulated in this run. |
| 5939 | /// |
| 5940 | /// Recursively deletes the dead instructions we've accumulated. This is done |
| 5941 | /// at the very end to maximize locality of the recursive delete and to |
| 5942 | /// minimize the problems of invalidated instruction pointers as such pointers |
| 5943 | /// are used heavily in the intermediate stages of the algorithm. |
| 5944 | /// |
| 5945 | /// We also record the alloca instructions deleted here so that they aren't |
| 5946 | /// subsequently handed to mem2reg to promote. |
| 5947 | bool SROA::deleteDeadInstructions( |
| 5948 | SmallPtrSetImpl<AllocaInst *> &DeletedAllocas) { |
| 5949 | bool Changed = false; |
| 5950 | while (!DeadInsts.empty()) { |
| 5951 | Instruction *I = dyn_cast_or_null<Instruction>(Val: DeadInsts.pop_back_val()); |
| 5952 | if (!I) |
| 5953 | continue; |
| 5954 | LLVM_DEBUG(dbgs() << "Deleting dead instruction: " << *I << "\n" ); |
| 5955 | |
| 5956 | // If the instruction is an alloca, find the possible dbg.declare connected |
| 5957 | // to it, and remove it too. We must do this before calling RAUW or we will |
| 5958 | // not be able to find it. |
| 5959 | if (AllocaInst *AI = dyn_cast<AllocaInst>(Val: I)) { |
| 5960 | DeletedAllocas.insert(Ptr: AI); |
| 5961 | for (DbgVariableRecord *OldDII : findDVRDeclares(V: AI)) |
| 5962 | OldDII->eraseFromParent(); |
| 5963 | } |
| 5964 | |
| 5965 | at::deleteAssignmentMarkers(Inst: I); |
| 5966 | I->replaceAllUsesWith(V: UndefValue::get(T: I->getType())); |
| 5967 | |
| 5968 | for (Use &Operand : I->operands()) |
| 5969 | if (Instruction *U = dyn_cast<Instruction>(Val&: Operand)) { |
| 5970 | // Zero out the operand and see if it becomes trivially dead. |
| 5971 | Operand = nullptr; |
| 5972 | if (isInstructionTriviallyDead(I: U)) |
| 5973 | DeadInsts.push_back(Elt: U); |
| 5974 | } |
| 5975 | |
| 5976 | ++NumDeleted; |
| 5977 | I->eraseFromParent(); |
| 5978 | Changed = true; |
| 5979 | } |
| 5980 | return Changed; |
| 5981 | } |
| 5982 | /// Promote the allocas, using the best available technique. |
| 5983 | /// |
| 5984 | /// This attempts to promote whatever allocas have been identified as viable in |
| 5985 | /// the PromotableAllocas list. If that list is empty, there is nothing to do. |
| 5986 | /// This function returns whether any promotion occurred. |
| 5987 | bool SROA::promoteAllocas() { |
| 5988 | if (PromotableAllocas.empty()) |
| 5989 | return false; |
| 5990 | |
| 5991 | if (SROASkipMem2Reg) { |
| 5992 | LLVM_DEBUG(dbgs() << "Not promoting allocas with mem2reg!\n" ); |
| 5993 | } else { |
| 5994 | LLVM_DEBUG(dbgs() << "Promoting allocas with mem2reg...\n" ); |
| 5995 | NumPromoted += PromotableAllocas.size(); |
| 5996 | PromoteMemToReg(Allocas: PromotableAllocas.getArrayRef(), DT&: DTU->getDomTree(), AC); |
| 5997 | } |
| 5998 | |
| 5999 | PromotableAllocas.clear(); |
| 6000 | return true; |
| 6001 | } |
| 6002 | |
| 6003 | std::pair<bool /*Changed*/, bool /*CFGChanged*/> SROA::runSROA(Function &F) { |
| 6004 | LLVM_DEBUG(dbgs() << "SROA function: " << F.getName() << "\n" ); |
| 6005 | |
| 6006 | const DataLayout &DL = F.getDataLayout(); |
| 6007 | BasicBlock &EntryBB = F.getEntryBlock(); |
| 6008 | for (BasicBlock::iterator I = EntryBB.begin(), E = std::prev(x: EntryBB.end()); |
| 6009 | I != E; ++I) { |
| 6010 | if (AllocaInst *AI = dyn_cast<AllocaInst>(Val&: I)) { |
| 6011 | std::optional<TypeSize> Size = AI->getAllocationSize(DL); |
| 6012 | if (Size && Size->isScalable() && isAllocaPromotable(AI)) |
| 6013 | PromotableAllocas.insert(X: AI); |
| 6014 | else |
| 6015 | Worklist.insert(X: AI); |
| 6016 | } |
| 6017 | } |
| 6018 | |
| 6019 | bool Changed = false; |
| 6020 | bool CFGChanged = false; |
| 6021 | // A set of deleted alloca instruction pointers which should be removed from |
| 6022 | // the list of promotable allocas. |
| 6023 | SmallPtrSet<AllocaInst *, 4> DeletedAllocas; |
| 6024 | |
| 6025 | do { |
| 6026 | while (!Worklist.empty()) { |
| 6027 | auto [IterationChanged, IterationCFGChanged] = |
| 6028 | runOnAlloca(AI&: *Worklist.pop_back_val()); |
| 6029 | Changed |= IterationChanged; |
| 6030 | CFGChanged |= IterationCFGChanged; |
| 6031 | |
| 6032 | Changed |= deleteDeadInstructions(DeletedAllocas); |
| 6033 | |
| 6034 | // Remove the deleted allocas from various lists so that we don't try to |
| 6035 | // continue processing them. |
| 6036 | if (!DeletedAllocas.empty()) { |
| 6037 | Worklist.set_subtract(DeletedAllocas); |
| 6038 | PostPromotionWorklist.set_subtract(DeletedAllocas); |
| 6039 | PromotableAllocas.set_subtract(DeletedAllocas); |
| 6040 | DeletedAllocas.clear(); |
| 6041 | } |
| 6042 | } |
| 6043 | |
| 6044 | Changed |= promoteAllocas(); |
| 6045 | |
| 6046 | Worklist = PostPromotionWorklist; |
| 6047 | PostPromotionWorklist.clear(); |
| 6048 | } while (!Worklist.empty()); |
| 6049 | |
| 6050 | assert((!CFGChanged || Changed) && "Can not only modify the CFG." ); |
| 6051 | assert((!CFGChanged || !PreserveCFG) && |
| 6052 | "Should not have modified the CFG when told to preserve it." ); |
| 6053 | |
| 6054 | if (Changed && isAssignmentTrackingEnabled(M: *F.getParent())) { |
| 6055 | for (auto &BB : F) { |
| 6056 | RemoveRedundantDbgInstrs(BB: &BB); |
| 6057 | } |
| 6058 | } |
| 6059 | |
| 6060 | return {Changed, CFGChanged}; |
| 6061 | } |
| 6062 | |
| 6063 | PreservedAnalyses SROAPass::run(Function &F, FunctionAnalysisManager &AM) { |
| 6064 | DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(IR&: F); |
| 6065 | AssumptionCache &AC = AM.getResult<AssumptionAnalysis>(IR&: F); |
| 6066 | DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); |
| 6067 | auto [Changed, CFGChanged] = |
| 6068 | SROA(&F.getContext(), &DTU, &AC, PreserveCFG).runSROA(F); |
| 6069 | if (!Changed) |
| 6070 | return PreservedAnalyses::all(); |
| 6071 | PreservedAnalyses PA; |
| 6072 | if (!CFGChanged) |
| 6073 | PA.preserveSet<CFGAnalyses>(); |
| 6074 | PA.preserve<DominatorTreeAnalysis>(); |
| 6075 | return PA; |
| 6076 | } |
| 6077 | |
| 6078 | void SROAPass::printPipeline( |
| 6079 | raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { |
| 6080 | static_cast<PassInfoMixin<SROAPass> *>(this)->printPipeline( |
| 6081 | OS, MapClassName2PassName); |
| 6082 | OS << (PreserveCFG == SROAOptions::PreserveCFG ? "<preserve-cfg>" |
| 6083 | : "<modify-cfg>" ); |
| 6084 | } |
| 6085 | |
| 6086 | SROAPass::SROAPass(SROAOptions PreserveCFG) : PreserveCFG(PreserveCFG) {} |
| 6087 | |
| 6088 | namespace { |
| 6089 | |
| 6090 | /// A legacy pass for the legacy pass manager that wraps the \c SROA pass. |
| 6091 | class SROALegacyPass : public FunctionPass { |
| 6092 | SROAOptions PreserveCFG; |
| 6093 | |
| 6094 | public: |
| 6095 | static char ID; |
| 6096 | |
| 6097 | SROALegacyPass(SROAOptions PreserveCFG = SROAOptions::PreserveCFG) |
| 6098 | : FunctionPass(ID), PreserveCFG(PreserveCFG) { |
| 6099 | initializeSROALegacyPassPass(*PassRegistry::getPassRegistry()); |
| 6100 | } |
| 6101 | |
| 6102 | bool runOnFunction(Function &F) override { |
| 6103 | if (skipFunction(F)) |
| 6104 | return false; |
| 6105 | |
| 6106 | DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); |
| 6107 | AssumptionCache &AC = |
| 6108 | getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); |
| 6109 | DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); |
| 6110 | auto [Changed, _] = |
| 6111 | SROA(&F.getContext(), &DTU, &AC, PreserveCFG).runSROA(F); |
| 6112 | return Changed; |
| 6113 | } |
| 6114 | |
| 6115 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
| 6116 | AU.addRequired<AssumptionCacheTracker>(); |
| 6117 | AU.addRequired<DominatorTreeWrapperPass>(); |
| 6118 | AU.addPreserved<GlobalsAAWrapperPass>(); |
| 6119 | AU.addPreserved<DominatorTreeWrapperPass>(); |
| 6120 | } |
| 6121 | |
| 6122 | StringRef getPassName() const override { return "SROA" ; } |
| 6123 | }; |
| 6124 | |
| 6125 | } // end anonymous namespace |
| 6126 | |
| 6127 | char SROALegacyPass::ID = 0; |
| 6128 | |
| 6129 | FunctionPass *llvm::createSROAPass(bool PreserveCFG) { |
| 6130 | return new SROALegacyPass(PreserveCFG ? SROAOptions::PreserveCFG |
| 6131 | : SROAOptions::ModifyCFG); |
| 6132 | } |
| 6133 | |
| 6134 | INITIALIZE_PASS_BEGIN(SROALegacyPass, "sroa" , |
| 6135 | "Scalar Replacement Of Aggregates" , false, false) |
| 6136 | INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) |
| 6137 | INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) |
| 6138 | INITIALIZE_PASS_END(SROALegacyPass, "sroa" , "Scalar Replacement Of Aggregates" , |
| 6139 | false, false) |
| 6140 | |