| 1 | //===- SeparateConstOffsetFromGEP.cpp -------------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // Loop unrolling may create many similar GEPs for array accesses. |
| 10 | // e.g., a 2-level loop |
| 11 | // |
| 12 | // float a[32][32]; // global variable |
| 13 | // |
| 14 | // for (int i = 0; i < 2; ++i) { |
| 15 | // for (int j = 0; j < 2; ++j) { |
| 16 | // ... |
| 17 | // ... = a[x + i][y + j]; |
| 18 | // ... |
| 19 | // } |
| 20 | // } |
| 21 | // |
| 22 | // will probably be unrolled to: |
| 23 | // |
| 24 | // gep %a, 0, %x, %y; load |
| 25 | // gep %a, 0, %x, %y + 1; load |
| 26 | // gep %a, 0, %x + 1, %y; load |
| 27 | // gep %a, 0, %x + 1, %y + 1; load |
| 28 | // |
| 29 | // LLVM's GVN does not use partial redundancy elimination yet, and is thus |
| 30 | // unable to reuse (gep %a, 0, %x, %y). As a result, this misoptimization incurs |
| 31 | // significant slowdown in targets with limited addressing modes. For instance, |
| 32 | // because the PTX target does not support the reg+reg addressing mode, the |
| 33 | // NVPTX backend emits PTX code that literally computes the pointer address of |
| 34 | // each GEP, wasting tons of registers. It emits the following PTX for the |
| 35 | // first load and similar PTX for other loads. |
| 36 | // |
| 37 | // mov.u32 %r1, %x; |
| 38 | // mov.u32 %r2, %y; |
| 39 | // mul.wide.u32 %rl2, %r1, 128; |
| 40 | // mov.u64 %rl3, a; |
| 41 | // add.s64 %rl4, %rl3, %rl2; |
| 42 | // mul.wide.u32 %rl5, %r2, 4; |
| 43 | // add.s64 %rl6, %rl4, %rl5; |
| 44 | // ld.global.f32 %f1, [%rl6]; |
| 45 | // |
| 46 | // To reduce the register pressure, the optimization implemented in this file |
| 47 | // merges the common part of a group of GEPs, so we can compute each pointer |
| 48 | // address by adding a simple offset to the common part, saving many registers. |
| 49 | // |
| 50 | // It works by splitting each GEP into a variadic base and a constant offset. |
| 51 | // The variadic base can be computed once and reused by multiple GEPs, and the |
| 52 | // constant offsets can be nicely folded into the reg+immediate addressing mode |
| 53 | // (supported by most targets) without using any extra register. |
| 54 | // |
| 55 | // For instance, we transform the four GEPs and four loads in the above example |
| 56 | // into: |
| 57 | // |
| 58 | // base = gep a, 0, x, y |
| 59 | // load base |
| 60 | // load base + 1 * sizeof(float) |
| 61 | // load base + 32 * sizeof(float) |
| 62 | // load base + 33 * sizeof(float) |
| 63 | // |
| 64 | // Given the transformed IR, a backend that supports the reg+immediate |
| 65 | // addressing mode can easily fold the pointer arithmetics into the loads. For |
| 66 | // example, the NVPTX backend can easily fold the pointer arithmetics into the |
| 67 | // ld.global.f32 instructions, and the resultant PTX uses much fewer registers. |
| 68 | // |
| 69 | // mov.u32 %r1, %tid.x; |
| 70 | // mov.u32 %r2, %tid.y; |
| 71 | // mul.wide.u32 %rl2, %r1, 128; |
| 72 | // mov.u64 %rl3, a; |
| 73 | // add.s64 %rl4, %rl3, %rl2; |
| 74 | // mul.wide.u32 %rl5, %r2, 4; |
| 75 | // add.s64 %rl6, %rl4, %rl5; |
| 76 | // ld.global.f32 %f1, [%rl6]; // so far the same as unoptimized PTX |
| 77 | // ld.global.f32 %f2, [%rl6+4]; // much better |
| 78 | // ld.global.f32 %f3, [%rl6+128]; // much better |
| 79 | // ld.global.f32 %f4, [%rl6+132]; // much better |
| 80 | // |
| 81 | // Another improvement enabled by the LowerGEP flag is to lower a GEP with |
| 82 | // multiple indices to multiple GEPs with a single index. |
| 83 | // Such transformation can have following benefits: |
| 84 | // (1) It can always extract constants in the indices of structure type. |
| 85 | // (2) After such Lowering, there are more optimization opportunities such as |
| 86 | // CSE, LICM and CGP. |
| 87 | // |
| 88 | // E.g. The following GEPs have multiple indices: |
| 89 | // BB1: |
| 90 | // %p = getelementptr [10 x %struct], ptr %ptr, i64 %i, i64 %j1, i32 3 |
| 91 | // load %p |
| 92 | // ... |
| 93 | // BB2: |
| 94 | // %p2 = getelementptr [10 x %struct], ptr %ptr, i64 %i, i64 %j1, i32 2 |
| 95 | // load %p2 |
| 96 | // ... |
| 97 | // |
| 98 | // We can not do CSE to the common part related to index "i64 %i". Lowering |
| 99 | // GEPs can achieve such goals. |
| 100 | // |
| 101 | // This pass will lower a GEP with multiple indices into multiple GEPs with a |
| 102 | // single index: |
| 103 | // BB1: |
| 104 | // %2 = mul i64 %i, length_of_10xstruct ; CSE opportunity |
| 105 | // %3 = getelementptr i8, ptr %ptr, i64 %2 ; CSE opportunity |
| 106 | // %4 = mul i64 %j1, length_of_struct |
| 107 | // %5 = getelementptr i8, ptr %3, i64 %4 |
| 108 | // %p = getelementptr i8, ptr %5, struct_field_3 ; Constant offset |
| 109 | // load %p |
| 110 | // ... |
| 111 | // BB2: |
| 112 | // %8 = mul i64 %i, length_of_10xstruct ; CSE opportunity |
| 113 | // %9 = getelementptr i8, ptr %ptr, i64 %8 ; CSE opportunity |
| 114 | // %10 = mul i64 %j2, length_of_struct |
| 115 | // %11 = getelementptr i8, ptr %9, i64 %10 |
| 116 | // %p2 = getelementptr i8, ptr %11, struct_field_2 ; Constant offset |
| 117 | // load %p2 |
| 118 | // ... |
| 119 | // |
| 120 | // Lowering GEPs can also benefit other passes such as LICM and CGP. |
| 121 | // LICM (Loop Invariant Code Motion) can not hoist/sink a GEP of multiple |
| 122 | // indices if one of the index is variant. If we lower such GEP into invariant |
| 123 | // parts and variant parts, LICM can hoist/sink those invariant parts. |
| 124 | // CGP (CodeGen Prepare) tries to sink address calculations that match the |
| 125 | // target's addressing modes. A GEP with multiple indices may not match and will |
| 126 | // not be sunk. If we lower such GEP into smaller parts, CGP may sink some of |
| 127 | // them. So we end up with a better addressing mode. |
| 128 | // |
| 129 | //===----------------------------------------------------------------------===// |
| 130 | |
| 131 | #include "llvm/Transforms/Scalar/SeparateConstOffsetFromGEP.h" |
| 132 | #include "llvm/ADT/APInt.h" |
| 133 | #include "llvm/ADT/DenseMap.h" |
| 134 | #include "llvm/ADT/DepthFirstIterator.h" |
| 135 | #include "llvm/ADT/SmallVector.h" |
| 136 | #include "llvm/Analysis/LoopInfo.h" |
| 137 | #include "llvm/Analysis/MemoryBuiltins.h" |
| 138 | #include "llvm/Analysis/TargetLibraryInfo.h" |
| 139 | #include "llvm/Analysis/TargetTransformInfo.h" |
| 140 | #include "llvm/Analysis/ValueTracking.h" |
| 141 | #include "llvm/IR/BasicBlock.h" |
| 142 | #include "llvm/IR/Constant.h" |
| 143 | #include "llvm/IR/Constants.h" |
| 144 | #include "llvm/IR/DataLayout.h" |
| 145 | #include "llvm/IR/DerivedTypes.h" |
| 146 | #include "llvm/IR/Dominators.h" |
| 147 | #include "llvm/IR/Function.h" |
| 148 | #include "llvm/IR/GetElementPtrTypeIterator.h" |
| 149 | #include "llvm/IR/IRBuilder.h" |
| 150 | #include "llvm/IR/InstrTypes.h" |
| 151 | #include "llvm/IR/Instruction.h" |
| 152 | #include "llvm/IR/Instructions.h" |
| 153 | #include "llvm/IR/Module.h" |
| 154 | #include "llvm/IR/PassManager.h" |
| 155 | #include "llvm/IR/PatternMatch.h" |
| 156 | #include "llvm/IR/Type.h" |
| 157 | #include "llvm/IR/User.h" |
| 158 | #include "llvm/IR/Value.h" |
| 159 | #include "llvm/InitializePasses.h" |
| 160 | #include "llvm/Pass.h" |
| 161 | #include "llvm/Support/Casting.h" |
| 162 | #include "llvm/Support/CommandLine.h" |
| 163 | #include "llvm/Support/ErrorHandling.h" |
| 164 | #include "llvm/Support/raw_ostream.h" |
| 165 | #include "llvm/Transforms/Scalar.h" |
| 166 | #include "llvm/Transforms/Utils/Local.h" |
| 167 | #include <cassert> |
| 168 | #include <cstdint> |
| 169 | #include <string> |
| 170 | |
| 171 | using namespace llvm; |
| 172 | using namespace llvm::PatternMatch; |
| 173 | |
| 174 | static cl::opt<bool> DisableSeparateConstOffsetFromGEP( |
| 175 | "disable-separate-const-offset-from-gep" , cl::init(Val: false), |
| 176 | cl::desc("Do not separate the constant offset from a GEP instruction" ), |
| 177 | cl::Hidden); |
| 178 | |
| 179 | // Setting this flag may emit false positives when the input module already |
| 180 | // contains dead instructions. Therefore, we set it only in unit tests that are |
| 181 | // free of dead code. |
| 182 | static cl::opt<bool> |
| 183 | VerifyNoDeadCode("reassociate-geps-verify-no-dead-code" , cl::init(Val: false), |
| 184 | cl::desc("Verify this pass produces no dead code" ), |
| 185 | cl::Hidden); |
| 186 | |
| 187 | namespace { |
| 188 | |
| 189 | /// A helper class for separating a constant offset from a GEP index. |
| 190 | /// |
| 191 | /// In real programs, a GEP index may be more complicated than a simple addition |
| 192 | /// of something and a constant integer which can be trivially splitted. For |
| 193 | /// example, to split ((a << 3) | 5) + b, we need to search deeper for the |
| 194 | /// constant offset, so that we can separate the index to (a << 3) + b and 5. |
| 195 | /// |
| 196 | /// Therefore, this class looks into the expression that computes a given GEP |
| 197 | /// index, and tries to find a constant integer that can be hoisted to the |
| 198 | /// outermost level of the expression as an addition. Not every constant in an |
| 199 | /// expression can jump out. e.g., we cannot transform (b * (a + 5)) to (b * a + |
| 200 | /// 5); nor can we transform (3 * (a + 5)) to (3 * a + 5), however in this case, |
| 201 | /// -instcombine probably already optimized (3 * (a + 5)) to (3 * a + 15). |
| 202 | class { |
| 203 | public: |
| 204 | /// Extracts a constant offset from the given GEP index. It returns the |
| 205 | /// new index representing the remainder (equal to the original index minus |
| 206 | /// the constant offset), or nullptr if we cannot extract a constant offset. |
| 207 | /// \p Idx The given GEP index |
| 208 | /// \p GEP The given GEP |
| 209 | /// \p UserChainTail Outputs the tail of UserChain so that we can |
| 210 | /// garbage-collect unused instructions in UserChain. |
| 211 | /// \p PreservesNUW Outputs whether the extraction allows preserving the |
| 212 | /// GEP's nuw flag, if it has one. |
| 213 | static Value *Extract(Value *Idx, GetElementPtrInst *GEP, |
| 214 | User *&UserChainTail, bool &PreservesNUW); |
| 215 | |
| 216 | /// Looks for a constant offset from the given GEP index without extracting |
| 217 | /// it. It returns the numeric value of the extracted constant offset (0 if |
| 218 | /// failed). The meaning of the arguments are the same as Extract. |
| 219 | static APInt Find(Value *Idx, GetElementPtrInst *GEP); |
| 220 | |
| 221 | private: |
| 222 | (BasicBlock::iterator InsertionPt) |
| 223 | : IP(InsertionPt), DL(InsertionPt->getDataLayout()) {} |
| 224 | |
| 225 | /// Searches the expression that computes V for a non-zero constant C s.t. |
| 226 | /// V can be reassociated into the form V' + C. If the searching is |
| 227 | /// successful, returns C and update UserChain as a def-use chain from C to V; |
| 228 | /// otherwise, UserChain is empty. |
| 229 | /// |
| 230 | /// \p V The given expression |
| 231 | /// \p SignExtended Whether V will be sign-extended in the computation of the |
| 232 | /// GEP index |
| 233 | /// \p ZeroExtended Whether V will be zero-extended in the computation of the |
| 234 | /// GEP index |
| 235 | /// \p NonNegative Whether V is guaranteed to be non-negative. For example, |
| 236 | /// an index of an inbounds GEP is guaranteed to be |
| 237 | /// non-negative. Levaraging this, we can better split |
| 238 | /// inbounds GEPs. |
| 239 | APInt find(Value *V, bool SignExtended, bool ZeroExtended, bool NonNegative); |
| 240 | |
| 241 | /// A helper function to look into both operands of a binary operator. |
| 242 | APInt findInEitherOperand(BinaryOperator *BO, bool SignExtended, |
| 243 | bool ZeroExtended); |
| 244 | |
| 245 | /// After finding the constant offset C from the GEP index I, we build a new |
| 246 | /// index I' s.t. I' + C = I. This function builds and returns the new |
| 247 | /// index I' according to UserChain produced by function "find". |
| 248 | /// |
| 249 | /// The building conceptually takes two steps: |
| 250 | /// 1) iteratively distribute sext/zext/trunc towards the leaves of the |
| 251 | /// expression tree that computes I |
| 252 | /// 2) reassociate the expression tree to the form I' + C. |
| 253 | /// |
| 254 | /// For example, to extract the 5 from sext(a + (b + 5)), we first distribute |
| 255 | /// sext to a, b and 5 so that we have |
| 256 | /// sext(a) + (sext(b) + 5). |
| 257 | /// Then, we reassociate it to |
| 258 | /// (sext(a) + sext(b)) + 5. |
| 259 | /// Given this form, we know I' is sext(a) + sext(b). |
| 260 | Value *rebuildWithoutConstOffset(); |
| 261 | |
| 262 | /// After the first step of rebuilding the GEP index without the constant |
| 263 | /// offset, distribute sext/zext/trunc to the operands of all operators in |
| 264 | /// UserChain. e.g., zext(sext(a + (b + 5)) (assuming no overflow) => |
| 265 | /// zext(sext(a)) + (zext(sext(b)) + zext(sext(5))). |
| 266 | /// |
| 267 | /// The function also updates UserChain to point to new subexpressions after |
| 268 | /// distributing sext/zext/trunc. e.g., the old UserChain of the above example |
| 269 | /// is |
| 270 | /// 5 -> b + 5 -> a + (b + 5) -> sext(...) -> zext(sext(...)), |
| 271 | /// and the new UserChain is |
| 272 | /// zext(sext(5)) -> zext(sext(b)) + zext(sext(5)) -> |
| 273 | /// zext(sext(a)) + (zext(sext(b)) + zext(sext(5)) |
| 274 | /// |
| 275 | /// \p ChainIndex The index to UserChain. ChainIndex is initially |
| 276 | /// UserChain.size() - 1, and is decremented during |
| 277 | /// the recursion. |
| 278 | Value *distributeCastsAndCloneChain(unsigned ChainIndex); |
| 279 | |
| 280 | /// Reassociates the GEP index to the form I' + C and returns I'. |
| 281 | Value *removeConstOffset(unsigned ChainIndex); |
| 282 | |
| 283 | /// A helper function to apply CastInsts, a list of sext/zext/trunc, to value |
| 284 | /// V. e.g., if CastInsts = [sext i32 to i64, zext i16 to i32], this function |
| 285 | /// returns "sext i32 (zext i16 V to i32) to i64". |
| 286 | Value *applyCasts(Value *V); |
| 287 | |
| 288 | /// A helper function that returns whether we can trace into the operands |
| 289 | /// of binary operator BO for a constant offset. |
| 290 | /// |
| 291 | /// \p SignExtended Whether BO is surrounded by sext |
| 292 | /// \p ZeroExtended Whether BO is surrounded by zext |
| 293 | /// \p NonNegative Whether BO is known to be non-negative, e.g., an in-bound |
| 294 | /// array index. |
| 295 | bool CanTraceInto(bool SignExtended, bool ZeroExtended, BinaryOperator *BO, |
| 296 | bool NonNegative); |
| 297 | |
| 298 | /// The path from the constant offset to the old GEP index. e.g., if the GEP |
| 299 | /// index is "a * b + (c + 5)". After running function find, UserChain[0] will |
| 300 | /// be the constant 5, UserChain[1] will be the subexpression "c + 5", and |
| 301 | /// UserChain[2] will be the entire expression "a * b + (c + 5)". |
| 302 | /// |
| 303 | /// This path helps to rebuild the new GEP index. |
| 304 | SmallVector<User *, 8> ; |
| 305 | |
| 306 | /// A data structure used in rebuildWithoutConstOffset. Contains all |
| 307 | /// sext/zext/trunc instructions along UserChain. |
| 308 | SmallVector<CastInst *, 16> ; |
| 309 | |
| 310 | /// Insertion position of cloned instructions. |
| 311 | BasicBlock::iterator ; |
| 312 | |
| 313 | const DataLayout &; |
| 314 | }; |
| 315 | |
| 316 | /// A pass that tries to split every GEP in the function into a variadic |
| 317 | /// base and a constant offset. It is a FunctionPass because searching for the |
| 318 | /// constant offset may inspect other basic blocks. |
| 319 | class SeparateConstOffsetFromGEPLegacyPass : public FunctionPass { |
| 320 | public: |
| 321 | static char ID; |
| 322 | |
| 323 | SeparateConstOffsetFromGEPLegacyPass(bool LowerGEP = false) |
| 324 | : FunctionPass(ID), LowerGEP(LowerGEP) { |
| 325 | initializeSeparateConstOffsetFromGEPLegacyPassPass( |
| 326 | *PassRegistry::getPassRegistry()); |
| 327 | } |
| 328 | |
| 329 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
| 330 | AU.addRequired<DominatorTreeWrapperPass>(); |
| 331 | AU.addRequired<TargetTransformInfoWrapperPass>(); |
| 332 | AU.addRequired<LoopInfoWrapperPass>(); |
| 333 | AU.setPreservesCFG(); |
| 334 | AU.addRequired<TargetLibraryInfoWrapperPass>(); |
| 335 | } |
| 336 | |
| 337 | bool runOnFunction(Function &F) override; |
| 338 | |
| 339 | private: |
| 340 | bool LowerGEP; |
| 341 | }; |
| 342 | |
| 343 | /// A pass that tries to split every GEP in the function into a variadic |
| 344 | /// base and a constant offset. It is a FunctionPass because searching for the |
| 345 | /// constant offset may inspect other basic blocks. |
| 346 | class SeparateConstOffsetFromGEP { |
| 347 | public: |
| 348 | SeparateConstOffsetFromGEP( |
| 349 | DominatorTree *DT, LoopInfo *LI, TargetLibraryInfo *TLI, |
| 350 | function_ref<TargetTransformInfo &(Function &)> GetTTI, bool LowerGEP) |
| 351 | : DT(DT), LI(LI), TLI(TLI), GetTTI(GetTTI), LowerGEP(LowerGEP) {} |
| 352 | |
| 353 | bool run(Function &F); |
| 354 | |
| 355 | private: |
| 356 | /// Track the operands of an add or sub. |
| 357 | using ExprKey = std::pair<Value *, Value *>; |
| 358 | |
| 359 | /// Create a pair for use as a map key for a commutable operation. |
| 360 | static ExprKey createNormalizedCommutablePair(Value *A, Value *B) { |
| 361 | if (A < B) |
| 362 | return {A, B}; |
| 363 | return {B, A}; |
| 364 | } |
| 365 | |
| 366 | /// Tries to split the given GEP into a variadic base and a constant offset, |
| 367 | /// and returns true if the splitting succeeds. |
| 368 | bool splitGEP(GetElementPtrInst *GEP); |
| 369 | |
| 370 | /// Tries to reorder the given GEP with the GEP that produces the base if |
| 371 | /// doing so results in producing a constant offset as the outermost |
| 372 | /// index. |
| 373 | bool reorderGEP(GetElementPtrInst *GEP, TargetTransformInfo &TTI); |
| 374 | |
| 375 | /// Lower a GEP with multiple indices into multiple GEPs with a single index. |
| 376 | /// Function splitGEP already split the original GEP into a variadic part and |
| 377 | /// a constant offset (i.e., AccumulativeByteOffset). This function lowers the |
| 378 | /// variadic part into a set of GEPs with a single index and applies |
| 379 | /// AccumulativeByteOffset to it. |
| 380 | /// \p Variadic The variadic part of the original GEP. |
| 381 | /// \p AccumulativeByteOffset The constant offset. |
| 382 | void lowerToSingleIndexGEPs(GetElementPtrInst *Variadic, |
| 383 | const APInt &AccumulativeByteOffset); |
| 384 | |
| 385 | /// Finds the constant offset within each index and accumulates them. If |
| 386 | /// LowerGEP is true, it finds in indices of both sequential and structure |
| 387 | /// types, otherwise it only finds in sequential indices. The output |
| 388 | /// NeedsExtraction indicates whether we successfully find a non-zero constant |
| 389 | /// offset. |
| 390 | APInt accumulateByteOffset(GetElementPtrInst *GEP, bool &); |
| 391 | |
| 392 | /// Canonicalize array indices to pointer-size integers. This helps to |
| 393 | /// simplify the logic of splitting a GEP. For example, if a + b is a |
| 394 | /// pointer-size integer, we have |
| 395 | /// gep base, a + b = gep (gep base, a), b |
| 396 | /// However, this equality may not hold if the size of a + b is smaller than |
| 397 | /// the pointer size, because LLVM conceptually sign-extends GEP indices to |
| 398 | /// pointer size before computing the address |
| 399 | /// (http://llvm.org/docs/LangRef.html#id181). |
| 400 | /// |
| 401 | /// This canonicalization is very likely already done in clang and |
| 402 | /// instcombine. Therefore, the program will probably remain the same. |
| 403 | /// |
| 404 | /// Returns true if the module changes. |
| 405 | /// |
| 406 | /// Verified in @i32_add in split-gep.ll |
| 407 | bool canonicalizeArrayIndicesToIndexSize(GetElementPtrInst *GEP); |
| 408 | |
| 409 | /// Optimize sext(a)+sext(b) to sext(a+b) when a+b can't sign overflow. |
| 410 | /// SeparateConstOffsetFromGEP distributes a sext to leaves before extracting |
| 411 | /// the constant offset. After extraction, it becomes desirable to reunion the |
| 412 | /// distributed sexts. For example, |
| 413 | /// |
| 414 | /// &a[sext(i +nsw (j +nsw 5)] |
| 415 | /// => distribute &a[sext(i) +nsw (sext(j) +nsw 5)] |
| 416 | /// => constant extraction &a[sext(i) + sext(j)] + 5 |
| 417 | /// => reunion &a[sext(i +nsw j)] + 5 |
| 418 | bool reuniteExts(Function &F); |
| 419 | |
| 420 | /// A helper that reunites sexts in an instruction. |
| 421 | bool reuniteExts(Instruction *I); |
| 422 | |
| 423 | /// Find the closest dominator of <Dominatee> that is equivalent to <Key>. |
| 424 | Instruction *findClosestMatchingDominator( |
| 425 | ExprKey Key, Instruction *Dominatee, |
| 426 | DenseMap<ExprKey, SmallVector<Instruction *, 2>> &DominatingExprs); |
| 427 | |
| 428 | /// Verify F is free of dead code. |
| 429 | void verifyNoDeadCode(Function &F); |
| 430 | |
| 431 | bool hasMoreThanOneUseInLoop(Value *v, Loop *L); |
| 432 | |
| 433 | // Swap the index operand of two GEP. |
| 434 | void swapGEPOperand(GetElementPtrInst *First, GetElementPtrInst *Second); |
| 435 | |
| 436 | // Check if it is safe to swap operand of two GEP. |
| 437 | bool isLegalToSwapOperand(GetElementPtrInst *First, GetElementPtrInst *Second, |
| 438 | Loop *CurLoop); |
| 439 | |
| 440 | const DataLayout *DL = nullptr; |
| 441 | DominatorTree *DT = nullptr; |
| 442 | LoopInfo *LI; |
| 443 | TargetLibraryInfo *TLI; |
| 444 | // Retrieved lazily since not always used. |
| 445 | function_ref<TargetTransformInfo &(Function &)> GetTTI; |
| 446 | |
| 447 | /// Whether to lower a GEP with multiple indices into arithmetic operations or |
| 448 | /// multiple GEPs with a single index. |
| 449 | bool LowerGEP; |
| 450 | |
| 451 | DenseMap<ExprKey, SmallVector<Instruction *, 2>> DominatingAdds; |
| 452 | DenseMap<ExprKey, SmallVector<Instruction *, 2>> DominatingSubs; |
| 453 | }; |
| 454 | |
| 455 | } // end anonymous namespace |
| 456 | |
| 457 | char SeparateConstOffsetFromGEPLegacyPass::ID = 0; |
| 458 | |
| 459 | INITIALIZE_PASS_BEGIN( |
| 460 | SeparateConstOffsetFromGEPLegacyPass, "separate-const-offset-from-gep" , |
| 461 | "Split GEPs to a variadic base and a constant offset for better CSE" , false, |
| 462 | false) |
| 463 | INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) |
| 464 | INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) |
| 465 | INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) |
| 466 | INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) |
| 467 | INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) |
| 468 | INITIALIZE_PASS_END( |
| 469 | SeparateConstOffsetFromGEPLegacyPass, "separate-const-offset-from-gep" , |
| 470 | "Split GEPs to a variadic base and a constant offset for better CSE" , false, |
| 471 | false) |
| 472 | |
| 473 | FunctionPass *llvm::createSeparateConstOffsetFromGEPPass(bool LowerGEP) { |
| 474 | return new SeparateConstOffsetFromGEPLegacyPass(LowerGEP); |
| 475 | } |
| 476 | |
| 477 | bool ConstantOffsetExtractor::(bool SignExtended, |
| 478 | bool ZeroExtended, |
| 479 | BinaryOperator *BO, |
| 480 | bool NonNegative) { |
| 481 | // We only consider ADD, SUB and OR, because a non-zero constant found in |
| 482 | // expressions composed of these operations can be easily hoisted as a |
| 483 | // constant offset by reassociation. |
| 484 | if (BO->getOpcode() != Instruction::Add && |
| 485 | BO->getOpcode() != Instruction::Sub && |
| 486 | BO->getOpcode() != Instruction::Or) { |
| 487 | return false; |
| 488 | } |
| 489 | |
| 490 | Value *LHS = BO->getOperand(i_nocapture: 0), *RHS = BO->getOperand(i_nocapture: 1); |
| 491 | // Do not trace into "or" unless it is equivalent to "add nuw nsw". |
| 492 | // This is the case if the or's disjoint flag is set. |
| 493 | if (BO->getOpcode() == Instruction::Or && |
| 494 | !cast<PossiblyDisjointInst>(Val: BO)->isDisjoint()) |
| 495 | return false; |
| 496 | |
| 497 | // FIXME: We don't currently support constants from the RHS of subs, |
| 498 | // when we are zero-extended, because we need a way to zero-extended |
| 499 | // them before they are negated. |
| 500 | if (ZeroExtended && !SignExtended && BO->getOpcode() == Instruction::Sub) |
| 501 | return false; |
| 502 | |
| 503 | // In addition, tracing into BO requires that its surrounding sext/zext/trunc |
| 504 | // (if any) is distributable to both operands. |
| 505 | // |
| 506 | // Suppose BO = A op B. |
| 507 | // SignExtended | ZeroExtended | Distributable? |
| 508 | // --------------+--------------+---------------------------------- |
| 509 | // 0 | 0 | true because no s/zext exists |
| 510 | // 0 | 1 | zext(BO) == zext(A) op zext(B) |
| 511 | // 1 | 0 | sext(BO) == sext(A) op sext(B) |
| 512 | // 1 | 1 | zext(sext(BO)) == |
| 513 | // | | zext(sext(A)) op zext(sext(B)) |
| 514 | if (BO->getOpcode() == Instruction::Add && !ZeroExtended && NonNegative) { |
| 515 | // If a + b >= 0 and (a >= 0 or b >= 0), then |
| 516 | // sext(a + b) = sext(a) + sext(b) |
| 517 | // even if the addition is not marked nsw. |
| 518 | // |
| 519 | // Leveraging this invariant, we can trace into an sext'ed inbound GEP |
| 520 | // index if the constant offset is non-negative. |
| 521 | // |
| 522 | // Verified in @sext_add in split-gep.ll. |
| 523 | if (ConstantInt *ConstLHS = dyn_cast<ConstantInt>(Val: LHS)) { |
| 524 | if (!ConstLHS->isNegative()) |
| 525 | return true; |
| 526 | } |
| 527 | if (ConstantInt *ConstRHS = dyn_cast<ConstantInt>(Val: RHS)) { |
| 528 | if (!ConstRHS->isNegative()) |
| 529 | return true; |
| 530 | } |
| 531 | } |
| 532 | |
| 533 | // sext (add/sub nsw A, B) == add/sub nsw (sext A), (sext B) |
| 534 | // zext (add/sub nuw A, B) == add/sub nuw (zext A), (zext B) |
| 535 | if (BO->getOpcode() == Instruction::Add || |
| 536 | BO->getOpcode() == Instruction::Sub) { |
| 537 | if (SignExtended && !BO->hasNoSignedWrap()) |
| 538 | return false; |
| 539 | if (ZeroExtended && !BO->hasNoUnsignedWrap()) |
| 540 | return false; |
| 541 | } |
| 542 | |
| 543 | return true; |
| 544 | } |
| 545 | |
| 546 | APInt ConstantOffsetExtractor::findInEitherOperand(BinaryOperator *BO, |
| 547 | bool SignExtended, |
| 548 | bool ZeroExtended) { |
| 549 | // Save off the current height of the chain, in case we need to restore it. |
| 550 | size_t ChainLength = UserChain.size(); |
| 551 | |
| 552 | // BO being non-negative does not shed light on whether its operands are |
| 553 | // non-negative. Clear the NonNegative flag here. |
| 554 | APInt ConstantOffset = find(V: BO->getOperand(i_nocapture: 0), SignExtended, ZeroExtended, |
| 555 | /* NonNegative */ false); |
| 556 | // If we found a constant offset in the left operand, stop and return that. |
| 557 | // This shortcut might cause us to miss opportunities of combining the |
| 558 | // constant offsets in both operands, e.g., (a + 4) + (b + 5) => (a + b) + 9. |
| 559 | // However, such cases are probably already handled by -instcombine, |
| 560 | // given this pass runs after the standard optimizations. |
| 561 | if (ConstantOffset != 0) return ConstantOffset; |
| 562 | |
| 563 | // Reset the chain back to where it was when we started exploring this node, |
| 564 | // since visiting the LHS didn't pan out. |
| 565 | UserChain.resize(N: ChainLength); |
| 566 | |
| 567 | ConstantOffset = find(V: BO->getOperand(i_nocapture: 1), SignExtended, ZeroExtended, |
| 568 | /* NonNegative */ false); |
| 569 | // If U is a sub operator, negate the constant offset found in the right |
| 570 | // operand. |
| 571 | if (BO->getOpcode() == Instruction::Sub) |
| 572 | ConstantOffset = -ConstantOffset; |
| 573 | |
| 574 | // If RHS wasn't a suitable candidate either, reset the chain again. |
| 575 | if (ConstantOffset == 0) |
| 576 | UserChain.resize(N: ChainLength); |
| 577 | |
| 578 | return ConstantOffset; |
| 579 | } |
| 580 | |
| 581 | APInt ConstantOffsetExtractor::(Value *V, bool SignExtended, |
| 582 | bool ZeroExtended, bool NonNegative) { |
| 583 | // TODO(jingyue): We could trace into integer/pointer casts, such as |
| 584 | // inttoptr, ptrtoint, bitcast, and addrspacecast. We choose to handle only |
| 585 | // integers because it gives good enough results for our benchmarks. |
| 586 | unsigned BitWidth = cast<IntegerType>(Val: V->getType())->getBitWidth(); |
| 587 | |
| 588 | // We cannot do much with Values that are not a User, such as an Argument. |
| 589 | User *U = dyn_cast<User>(Val: V); |
| 590 | if (U == nullptr) return APInt(BitWidth, 0); |
| 591 | |
| 592 | APInt ConstantOffset(BitWidth, 0); |
| 593 | if (ConstantInt *CI = dyn_cast<ConstantInt>(Val: V)) { |
| 594 | // Hooray, we found it! |
| 595 | ConstantOffset = CI->getValue(); |
| 596 | } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Val: V)) { |
| 597 | // Trace into subexpressions for more hoisting opportunities. |
| 598 | if (CanTraceInto(SignExtended, ZeroExtended, BO, NonNegative)) |
| 599 | ConstantOffset = findInEitherOperand(BO, SignExtended, ZeroExtended); |
| 600 | } else if (isa<TruncInst>(Val: V)) { |
| 601 | ConstantOffset = |
| 602 | find(V: U->getOperand(i: 0), SignExtended, ZeroExtended, NonNegative) |
| 603 | .trunc(width: BitWidth); |
| 604 | } else if (isa<SExtInst>(Val: V)) { |
| 605 | ConstantOffset = find(V: U->getOperand(i: 0), /* SignExtended */ true, |
| 606 | ZeroExtended, NonNegative).sext(width: BitWidth); |
| 607 | } else if (isa<ZExtInst>(Val: V)) { |
| 608 | // As an optimization, we can clear the SignExtended flag because |
| 609 | // sext(zext(a)) = zext(a). Verified in @sext_zext in split-gep.ll. |
| 610 | // |
| 611 | // Clear the NonNegative flag, because zext(a) >= 0 does not imply a >= 0. |
| 612 | ConstantOffset = |
| 613 | find(V: U->getOperand(i: 0), /* SignExtended */ false, |
| 614 | /* ZeroExtended */ true, /* NonNegative */ false).zext(width: BitWidth); |
| 615 | } |
| 616 | |
| 617 | // If we found a non-zero constant offset, add it to the path for |
| 618 | // rebuildWithoutConstOffset. Zero is a valid constant offset, but doesn't |
| 619 | // help this optimization. |
| 620 | if (ConstantOffset != 0) |
| 621 | UserChain.push_back(Elt: U); |
| 622 | return ConstantOffset; |
| 623 | } |
| 624 | |
| 625 | Value *ConstantOffsetExtractor::(Value *V) { |
| 626 | Value *Current = V; |
| 627 | // CastInsts is built in the use-def order. Therefore, we apply them to V |
| 628 | // in the reversed order. |
| 629 | for (CastInst *I : llvm::reverse(C&: CastInsts)) { |
| 630 | if (Constant *C = dyn_cast<Constant>(Val: Current)) { |
| 631 | // Try to constant fold the cast. |
| 632 | Current = ConstantFoldCastOperand(Opcode: I->getOpcode(), C, DestTy: I->getType(), DL); |
| 633 | if (Current) |
| 634 | continue; |
| 635 | } |
| 636 | |
| 637 | Instruction *Cast = I->clone(); |
| 638 | Cast->setOperand(i: 0, Val: Current); |
| 639 | // In ConstantOffsetExtractor::find we do not analyze nuw/nsw for trunc, so |
| 640 | // we assume that it is ok to redistribute trunc over add/sub/or. But for |
| 641 | // example (add (trunc nuw A), (trunc nuw B)) is more poisonous than (trunc |
| 642 | // nuw (add A, B))). To make such redistributions legal we drop all the |
| 643 | // poison generating flags from cloned trunc instructions here. |
| 644 | if (isa<TruncInst>(Val: Cast)) |
| 645 | Cast->dropPoisonGeneratingFlags(); |
| 646 | Cast->insertBefore(BB&: *IP->getParent(), InsertPos: IP); |
| 647 | Current = Cast; |
| 648 | } |
| 649 | return Current; |
| 650 | } |
| 651 | |
| 652 | Value *ConstantOffsetExtractor::() { |
| 653 | distributeCastsAndCloneChain(ChainIndex: UserChain.size() - 1); |
| 654 | // Remove all nullptrs (used to be sext/zext/trunc) from UserChain. |
| 655 | unsigned NewSize = 0; |
| 656 | for (User *I : UserChain) { |
| 657 | if (I != nullptr) { |
| 658 | UserChain[NewSize] = I; |
| 659 | NewSize++; |
| 660 | } |
| 661 | } |
| 662 | UserChain.resize(N: NewSize); |
| 663 | return removeConstOffset(ChainIndex: UserChain.size() - 1); |
| 664 | } |
| 665 | |
| 666 | Value * |
| 667 | ConstantOffsetExtractor::distributeCastsAndCloneChain(unsigned ChainIndex) { |
| 668 | User *U = UserChain[ChainIndex]; |
| 669 | if (ChainIndex == 0) { |
| 670 | assert(isa<ConstantInt>(U)); |
| 671 | // If U is a ConstantInt, applyCasts will return a ConstantInt as well. |
| 672 | return UserChain[ChainIndex] = cast<ConstantInt>(Val: applyCasts(V: U)); |
| 673 | } |
| 674 | |
| 675 | if (CastInst *Cast = dyn_cast<CastInst>(Val: U)) { |
| 676 | assert( |
| 677 | (isa<SExtInst>(Cast) || isa<ZExtInst>(Cast) || isa<TruncInst>(Cast)) && |
| 678 | "Only following instructions can be traced: sext, zext & trunc" ); |
| 679 | CastInsts.push_back(Elt: Cast); |
| 680 | UserChain[ChainIndex] = nullptr; |
| 681 | return distributeCastsAndCloneChain(ChainIndex: ChainIndex - 1); |
| 682 | } |
| 683 | |
| 684 | // Function find only trace into BinaryOperator and CastInst. |
| 685 | BinaryOperator *BO = cast<BinaryOperator>(Val: U); |
| 686 | // OpNo = which operand of BO is UserChain[ChainIndex - 1] |
| 687 | unsigned OpNo = (BO->getOperand(i_nocapture: 0) == UserChain[ChainIndex - 1] ? 0 : 1); |
| 688 | Value *TheOther = applyCasts(V: BO->getOperand(i_nocapture: 1 - OpNo)); |
| 689 | Value *NextInChain = distributeCastsAndCloneChain(ChainIndex: ChainIndex - 1); |
| 690 | |
| 691 | BinaryOperator *NewBO = nullptr; |
| 692 | if (OpNo == 0) { |
| 693 | NewBO = BinaryOperator::Create(Op: BO->getOpcode(), S1: NextInChain, S2: TheOther, |
| 694 | Name: BO->getName(), InsertBefore: IP); |
| 695 | } else { |
| 696 | NewBO = BinaryOperator::Create(Op: BO->getOpcode(), S1: TheOther, S2: NextInChain, |
| 697 | Name: BO->getName(), InsertBefore: IP); |
| 698 | } |
| 699 | return UserChain[ChainIndex] = NewBO; |
| 700 | } |
| 701 | |
| 702 | Value *ConstantOffsetExtractor::(unsigned ChainIndex) { |
| 703 | if (ChainIndex == 0) { |
| 704 | assert(isa<ConstantInt>(UserChain[ChainIndex])); |
| 705 | return ConstantInt::getNullValue(Ty: UserChain[ChainIndex]->getType()); |
| 706 | } |
| 707 | |
| 708 | BinaryOperator *BO = cast<BinaryOperator>(Val: UserChain[ChainIndex]); |
| 709 | assert((BO->use_empty() || BO->hasOneUse()) && |
| 710 | "distributeCastsAndCloneChain clones each BinaryOperator in " |
| 711 | "UserChain, so no one should be used more than " |
| 712 | "once" ); |
| 713 | |
| 714 | unsigned OpNo = (BO->getOperand(i_nocapture: 0) == UserChain[ChainIndex - 1] ? 0 : 1); |
| 715 | assert(BO->getOperand(OpNo) == UserChain[ChainIndex - 1]); |
| 716 | Value *NextInChain = removeConstOffset(ChainIndex: ChainIndex - 1); |
| 717 | Value *TheOther = BO->getOperand(i_nocapture: 1 - OpNo); |
| 718 | |
| 719 | // If NextInChain is 0 and not the LHS of a sub, we can simplify the |
| 720 | // sub-expression to be just TheOther. |
| 721 | if (ConstantInt *CI = dyn_cast<ConstantInt>(Val: NextInChain)) { |
| 722 | if (CI->isZero() && !(BO->getOpcode() == Instruction::Sub && OpNo == 0)) |
| 723 | return TheOther; |
| 724 | } |
| 725 | |
| 726 | BinaryOperator::BinaryOps NewOp = BO->getOpcode(); |
| 727 | if (BO->getOpcode() == Instruction::Or) { |
| 728 | // Rebuild "or" as "add", because "or" may be invalid for the new |
| 729 | // expression. |
| 730 | // |
| 731 | // For instance, given |
| 732 | // a | (b + 5) where a and b + 5 have no common bits, |
| 733 | // we can extract 5 as the constant offset. |
| 734 | // |
| 735 | // However, reusing the "or" in the new index would give us |
| 736 | // (a | b) + 5 |
| 737 | // which does not equal a | (b + 5). |
| 738 | // |
| 739 | // Replacing the "or" with "add" is fine, because |
| 740 | // a | (b + 5) = a + (b + 5) = (a + b) + 5 |
| 741 | NewOp = Instruction::Add; |
| 742 | } |
| 743 | |
| 744 | BinaryOperator *NewBO; |
| 745 | if (OpNo == 0) { |
| 746 | NewBO = BinaryOperator::Create(Op: NewOp, S1: NextInChain, S2: TheOther, Name: "" , InsertBefore: IP); |
| 747 | } else { |
| 748 | NewBO = BinaryOperator::Create(Op: NewOp, S1: TheOther, S2: NextInChain, Name: "" , InsertBefore: IP); |
| 749 | } |
| 750 | NewBO->takeName(V: BO); |
| 751 | return NewBO; |
| 752 | } |
| 753 | |
| 754 | /// A helper function to check if reassociating through an entry in the user |
| 755 | /// chain would invalidate the GEP's nuw flag. |
| 756 | static bool allowsPreservingNUW(const User *U) { |
| 757 | if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(Val: U)) { |
| 758 | // Binary operations need to be effectively add nuw. |
| 759 | auto Opcode = BO->getOpcode(); |
| 760 | if (Opcode == BinaryOperator::Or) { |
| 761 | // Ors are only considered here if they are disjoint. The addition that |
| 762 | // they represent in this case is NUW. |
| 763 | assert(cast<PossiblyDisjointInst>(BO)->isDisjoint()); |
| 764 | return true; |
| 765 | } |
| 766 | return Opcode == BinaryOperator::Add && BO->hasNoUnsignedWrap(); |
| 767 | } |
| 768 | // UserChain can only contain ConstantInt, CastInst, or BinaryOperator. |
| 769 | // Among the possible CastInsts, only trunc without nuw is a problem: If it |
| 770 | // is distributed through an add nuw, wrapping may occur: |
| 771 | // "add nuw trunc(a), trunc(b)" is more poisonous than "trunc(add nuw a, b)" |
| 772 | if (const TruncInst *TI = dyn_cast<TruncInst>(Val: U)) |
| 773 | return TI->hasNoUnsignedWrap(); |
| 774 | assert((isa<CastInst>(U) || isa<ConstantInt>(U)) && "Unexpected User." ); |
| 775 | return true; |
| 776 | } |
| 777 | |
| 778 | Value *ConstantOffsetExtractor::(Value *Idx, GetElementPtrInst *GEP, |
| 779 | User *&UserChainTail, |
| 780 | bool &PreservesNUW) { |
| 781 | ConstantOffsetExtractor (GEP->getIterator()); |
| 782 | // Find a non-zero constant offset first. |
| 783 | APInt ConstantOffset = |
| 784 | Extractor.find(V: Idx, /* SignExtended */ false, /* ZeroExtended */ false, |
| 785 | NonNegative: GEP->isInBounds()); |
| 786 | if (ConstantOffset == 0) { |
| 787 | UserChainTail = nullptr; |
| 788 | PreservesNUW = true; |
| 789 | return nullptr; |
| 790 | } |
| 791 | |
| 792 | PreservesNUW = all_of(Range&: Extractor.UserChain, P: allowsPreservingNUW); |
| 793 | |
| 794 | // Separates the constant offset from the GEP index. |
| 795 | Value *IdxWithoutConstOffset = Extractor.rebuildWithoutConstOffset(); |
| 796 | UserChainTail = Extractor.UserChain.back(); |
| 797 | return IdxWithoutConstOffset; |
| 798 | } |
| 799 | |
| 800 | APInt ConstantOffsetExtractor::(Value *Idx, GetElementPtrInst *GEP) { |
| 801 | // If Idx is an index of an inbound GEP, Idx is guaranteed to be non-negative. |
| 802 | return ConstantOffsetExtractor(GEP->getIterator()) |
| 803 | .find(V: Idx, /* SignExtended */ false, /* ZeroExtended */ false, |
| 804 | NonNegative: GEP->isInBounds()); |
| 805 | } |
| 806 | |
| 807 | bool SeparateConstOffsetFromGEP::canonicalizeArrayIndicesToIndexSize( |
| 808 | GetElementPtrInst *GEP) { |
| 809 | bool Changed = false; |
| 810 | Type *PtrIdxTy = DL->getIndexType(PtrTy: GEP->getType()); |
| 811 | gep_type_iterator GTI = gep_type_begin(GEP: *GEP); |
| 812 | for (User::op_iterator I = GEP->op_begin() + 1, E = GEP->op_end(); |
| 813 | I != E; ++I, ++GTI) { |
| 814 | // Skip struct member indices which must be i32. |
| 815 | if (GTI.isSequential()) { |
| 816 | if ((*I)->getType() != PtrIdxTy) { |
| 817 | *I = CastInst::CreateIntegerCast(S: *I, Ty: PtrIdxTy, isSigned: true, Name: "idxprom" , |
| 818 | InsertBefore: GEP->getIterator()); |
| 819 | Changed = true; |
| 820 | } |
| 821 | } |
| 822 | } |
| 823 | return Changed; |
| 824 | } |
| 825 | |
| 826 | APInt SeparateConstOffsetFromGEP::accumulateByteOffset(GetElementPtrInst *GEP, |
| 827 | bool &) { |
| 828 | NeedsExtraction = false; |
| 829 | unsigned IdxWidth = DL->getIndexTypeSizeInBits(Ty: GEP->getType()); |
| 830 | APInt AccumulativeByteOffset(IdxWidth, 0); |
| 831 | gep_type_iterator GTI = gep_type_begin(GEP: *GEP); |
| 832 | for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I, ++GTI) { |
| 833 | if (GTI.isSequential()) { |
| 834 | // Constant offsets of scalable types are not really constant. |
| 835 | if (GTI.getIndexedType()->isScalableTy()) |
| 836 | continue; |
| 837 | |
| 838 | // Tries to extract a constant offset from this GEP index. |
| 839 | APInt ConstantOffset = |
| 840 | ConstantOffsetExtractor::Find(Idx: GEP->getOperand(i_nocapture: I), GEP) |
| 841 | .sextOrTrunc(width: IdxWidth); |
| 842 | if (ConstantOffset != 0) { |
| 843 | NeedsExtraction = true; |
| 844 | // A GEP may have multiple indices. We accumulate the extracted |
| 845 | // constant offset to a byte offset, and later offset the remainder of |
| 846 | // the original GEP with this byte offset. |
| 847 | AccumulativeByteOffset += |
| 848 | ConstantOffset * APInt(IdxWidth, |
| 849 | GTI.getSequentialElementStride(DL: *DL), |
| 850 | /*IsSigned=*/true, /*ImplicitTrunc=*/true); |
| 851 | } |
| 852 | } else if (LowerGEP) { |
| 853 | StructType *StTy = GTI.getStructType(); |
| 854 | uint64_t Field = cast<ConstantInt>(Val: GEP->getOperand(i_nocapture: I))->getZExtValue(); |
| 855 | // Skip field 0 as the offset is always 0. |
| 856 | if (Field != 0) { |
| 857 | NeedsExtraction = true; |
| 858 | AccumulativeByteOffset += |
| 859 | APInt(IdxWidth, DL->getStructLayout(Ty: StTy)->getElementOffset(Idx: Field), |
| 860 | /*IsSigned=*/true, /*ImplicitTrunc=*/true); |
| 861 | } |
| 862 | } |
| 863 | } |
| 864 | return AccumulativeByteOffset; |
| 865 | } |
| 866 | |
| 867 | void SeparateConstOffsetFromGEP::lowerToSingleIndexGEPs( |
| 868 | GetElementPtrInst *Variadic, const APInt &AccumulativeByteOffset) { |
| 869 | IRBuilder<> Builder(Variadic); |
| 870 | Type *PtrIndexTy = DL->getIndexType(PtrTy: Variadic->getType()); |
| 871 | |
| 872 | Value *ResultPtr = Variadic->getOperand(i_nocapture: 0); |
| 873 | Loop *L = LI->getLoopFor(BB: Variadic->getParent()); |
| 874 | // Check if the base is not loop invariant or used more than once. |
| 875 | bool isSwapCandidate = |
| 876 | L && L->isLoopInvariant(V: ResultPtr) && |
| 877 | !hasMoreThanOneUseInLoop(v: ResultPtr, L); |
| 878 | Value *FirstResult = nullptr; |
| 879 | |
| 880 | gep_type_iterator GTI = gep_type_begin(GEP: *Variadic); |
| 881 | // Create an ugly GEP for each sequential index. We don't create GEPs for |
| 882 | // structure indices, as they are accumulated in the constant offset index. |
| 883 | for (unsigned I = 1, E = Variadic->getNumOperands(); I != E; ++I, ++GTI) { |
| 884 | if (GTI.isSequential()) { |
| 885 | Value *Idx = Variadic->getOperand(i_nocapture: I); |
| 886 | // Skip zero indices. |
| 887 | if (ConstantInt *CI = dyn_cast<ConstantInt>(Val: Idx)) |
| 888 | if (CI->isZero()) |
| 889 | continue; |
| 890 | |
| 891 | APInt ElementSize = APInt(PtrIndexTy->getIntegerBitWidth(), |
| 892 | GTI.getSequentialElementStride(DL: *DL)); |
| 893 | // Scale the index by element size. |
| 894 | if (ElementSize != 1) { |
| 895 | if (ElementSize.isPowerOf2()) { |
| 896 | Idx = Builder.CreateShl( |
| 897 | LHS: Idx, RHS: ConstantInt::get(Ty: PtrIndexTy, V: ElementSize.logBase2())); |
| 898 | } else { |
| 899 | Idx = |
| 900 | Builder.CreateMul(LHS: Idx, RHS: ConstantInt::get(Ty: PtrIndexTy, V: ElementSize)); |
| 901 | } |
| 902 | } |
| 903 | // Create an ugly GEP with a single index for each index. |
| 904 | ResultPtr = Builder.CreatePtrAdd(Ptr: ResultPtr, Offset: Idx, Name: "uglygep" ); |
| 905 | if (FirstResult == nullptr) |
| 906 | FirstResult = ResultPtr; |
| 907 | } |
| 908 | } |
| 909 | |
| 910 | // Create a GEP with the constant offset index. |
| 911 | if (AccumulativeByteOffset != 0) { |
| 912 | Value *Offset = ConstantInt::get(Ty: PtrIndexTy, V: AccumulativeByteOffset); |
| 913 | ResultPtr = Builder.CreatePtrAdd(Ptr: ResultPtr, Offset, Name: "uglygep" ); |
| 914 | } else |
| 915 | isSwapCandidate = false; |
| 916 | |
| 917 | // If we created a GEP with constant index, and the base is loop invariant, |
| 918 | // then we swap the first one with it, so LICM can move constant GEP out |
| 919 | // later. |
| 920 | auto *FirstGEP = dyn_cast_or_null<GetElementPtrInst>(Val: FirstResult); |
| 921 | auto *SecondGEP = dyn_cast<GetElementPtrInst>(Val: ResultPtr); |
| 922 | if (isSwapCandidate && isLegalToSwapOperand(First: FirstGEP, Second: SecondGEP, CurLoop: L)) |
| 923 | swapGEPOperand(First: FirstGEP, Second: SecondGEP); |
| 924 | |
| 925 | Variadic->replaceAllUsesWith(V: ResultPtr); |
| 926 | Variadic->eraseFromParent(); |
| 927 | } |
| 928 | |
| 929 | bool SeparateConstOffsetFromGEP::reorderGEP(GetElementPtrInst *GEP, |
| 930 | TargetTransformInfo &TTI) { |
| 931 | auto PtrGEP = dyn_cast<GetElementPtrInst>(Val: GEP->getPointerOperand()); |
| 932 | if (!PtrGEP) |
| 933 | return false; |
| 934 | |
| 935 | bool ; |
| 936 | APInt NestedByteOffset = accumulateByteOffset(GEP: PtrGEP, NeedsExtraction&: NestedNeedsExtraction); |
| 937 | if (!NestedNeedsExtraction) |
| 938 | return false; |
| 939 | |
| 940 | unsigned AddrSpace = PtrGEP->getPointerAddressSpace(); |
| 941 | if (!TTI.isLegalAddressingMode(Ty: GEP->getResultElementType(), |
| 942 | /*BaseGV=*/nullptr, |
| 943 | BaseOffset: NestedByteOffset.getSExtValue(), |
| 944 | /*HasBaseReg=*/true, /*Scale=*/0, AddrSpace)) |
| 945 | return false; |
| 946 | |
| 947 | bool GEPInBounds = GEP->isInBounds(); |
| 948 | bool PtrGEPInBounds = PtrGEP->isInBounds(); |
| 949 | bool IsChainInBounds = GEPInBounds && PtrGEPInBounds; |
| 950 | if (IsChainInBounds) { |
| 951 | auto IsKnownNonNegative = [this](Value *V) { |
| 952 | return isKnownNonNegative(V, SQ: *DL); |
| 953 | }; |
| 954 | IsChainInBounds &= all_of(Range: GEP->indices(), P: IsKnownNonNegative); |
| 955 | if (IsChainInBounds) |
| 956 | IsChainInBounds &= all_of(Range: PtrGEP->indices(), P: IsKnownNonNegative); |
| 957 | } |
| 958 | |
| 959 | IRBuilder<> Builder(GEP); |
| 960 | // For trivial GEP chains, we can swap the indices. |
| 961 | Value *NewSrc = Builder.CreateGEP( |
| 962 | Ty: GEP->getSourceElementType(), Ptr: PtrGEP->getPointerOperand(), |
| 963 | IdxList: SmallVector<Value *, 4>(GEP->indices()), Name: "" , NW: IsChainInBounds); |
| 964 | Value *NewGEP = Builder.CreateGEP(Ty: PtrGEP->getSourceElementType(), Ptr: NewSrc, |
| 965 | IdxList: SmallVector<Value *, 4>(PtrGEP->indices()), |
| 966 | Name: "" , NW: IsChainInBounds); |
| 967 | GEP->replaceAllUsesWith(V: NewGEP); |
| 968 | RecursivelyDeleteTriviallyDeadInstructions(V: GEP); |
| 969 | return true; |
| 970 | } |
| 971 | |
| 972 | bool SeparateConstOffsetFromGEP::splitGEP(GetElementPtrInst *GEP) { |
| 973 | // Skip vector GEPs. |
| 974 | if (GEP->getType()->isVectorTy()) |
| 975 | return false; |
| 976 | |
| 977 | // If the base of this GEP is a ptradd of a constant, lets pass the constant |
| 978 | // along. This ensures that when we have a chain of GEPs the constant |
| 979 | // offset from each is accumulated. |
| 980 | Value *NewBase; |
| 981 | const APInt *BaseOffset; |
| 982 | const bool = |
| 983 | match(V: GEP->getPointerOperand(), |
| 984 | P: m_PtrAdd(PointerOp: m_Value(V&: NewBase), OffsetOp: m_APInt(Res&: BaseOffset))); |
| 985 | |
| 986 | unsigned IdxWidth = DL->getIndexTypeSizeInBits(Ty: GEP->getType()); |
| 987 | const APInt BaseByteOffset = |
| 988 | ExtractBase ? BaseOffset->sextOrTrunc(width: IdxWidth) : APInt(IdxWidth, 0); |
| 989 | |
| 990 | // The backend can already nicely handle the case where all indices are |
| 991 | // constant. |
| 992 | if (GEP->hasAllConstantIndices() && !ExtractBase) |
| 993 | return false; |
| 994 | |
| 995 | bool Changed = canonicalizeArrayIndicesToIndexSize(GEP); |
| 996 | |
| 997 | bool ; |
| 998 | APInt AccumulativeByteOffset = |
| 999 | BaseByteOffset + accumulateByteOffset(GEP, NeedsExtraction); |
| 1000 | |
| 1001 | TargetTransformInfo &TTI = GetTTI(*GEP->getFunction()); |
| 1002 | |
| 1003 | if (!NeedsExtraction && !ExtractBase) { |
| 1004 | Changed |= reorderGEP(GEP, TTI); |
| 1005 | return Changed; |
| 1006 | } |
| 1007 | |
| 1008 | // If LowerGEP is disabled, before really splitting the GEP, check whether the |
| 1009 | // backend supports the addressing mode we are about to produce. If no, this |
| 1010 | // splitting probably won't be beneficial. |
| 1011 | // If LowerGEP is enabled, even the extracted constant offset can not match |
| 1012 | // the addressing mode, we can still do optimizations to other lowered parts |
| 1013 | // of variable indices. Therefore, we don't check for addressing modes in that |
| 1014 | // case. |
| 1015 | if (!LowerGEP) { |
| 1016 | unsigned AddrSpace = GEP->getPointerAddressSpace(); |
| 1017 | if (!TTI.isLegalAddressingMode( |
| 1018 | Ty: GEP->getResultElementType(), |
| 1019 | /*BaseGV=*/nullptr, BaseOffset: AccumulativeByteOffset.getSExtValue(), |
| 1020 | /*HasBaseReg=*/true, /*Scale=*/0, AddrSpace)) { |
| 1021 | return Changed; |
| 1022 | } |
| 1023 | } |
| 1024 | |
| 1025 | // Track information for preserving GEP flags. |
| 1026 | bool AllOffsetsNonNegative = AccumulativeByteOffset.isNonNegative(); |
| 1027 | bool AllNUWPreserved = GEP->hasNoUnsignedWrap(); |
| 1028 | bool NewGEPInBounds = GEP->isInBounds(); |
| 1029 | bool NewGEPNUSW = GEP->hasNoUnsignedSignedWrap(); |
| 1030 | |
| 1031 | // Remove the constant offset in each sequential index. The resultant GEP |
| 1032 | // computes the variadic base. |
| 1033 | // Notice that we don't remove struct field indices here. If LowerGEP is |
| 1034 | // disabled, a structure index is not accumulated and we still use the old |
| 1035 | // one. If LowerGEP is enabled, a structure index is accumulated in the |
| 1036 | // constant offset. LowerToSingleIndexGEPs will later handle the constant |
| 1037 | // offset and won't need a new structure index. |
| 1038 | gep_type_iterator GTI = gep_type_begin(GEP: *GEP); |
| 1039 | for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I, ++GTI) { |
| 1040 | if (GTI.isSequential()) { |
| 1041 | // Constant offsets of scalable types are not really constant. |
| 1042 | if (GTI.getIndexedType()->isScalableTy()) |
| 1043 | continue; |
| 1044 | |
| 1045 | // Splits this GEP index into a variadic part and a constant offset, and |
| 1046 | // uses the variadic part as the new index. |
| 1047 | Value *Idx = GEP->getOperand(i_nocapture: I); |
| 1048 | User *UserChainTail; |
| 1049 | bool PreservesNUW; |
| 1050 | Value *NewIdx = ConstantOffsetExtractor::Extract(Idx, GEP, UserChainTail, |
| 1051 | PreservesNUW); |
| 1052 | if (NewIdx != nullptr) { |
| 1053 | // Switches to the index with the constant offset removed. |
| 1054 | GEP->setOperand(i_nocapture: I, Val_nocapture: NewIdx); |
| 1055 | // After switching to the new index, we can garbage-collect UserChain |
| 1056 | // and the old index if they are not used. |
| 1057 | RecursivelyDeleteTriviallyDeadInstructions(V: UserChainTail); |
| 1058 | RecursivelyDeleteTriviallyDeadInstructions(V: Idx); |
| 1059 | Idx = NewIdx; |
| 1060 | AllNUWPreserved &= PreservesNUW; |
| 1061 | } |
| 1062 | AllOffsetsNonNegative = |
| 1063 | AllOffsetsNonNegative && isKnownNonNegative(V: Idx, SQ: *DL); |
| 1064 | } |
| 1065 | } |
| 1066 | if (ExtractBase) { |
| 1067 | GEPOperator *Base = cast<GEPOperator>(Val: GEP->getPointerOperand()); |
| 1068 | AllNUWPreserved &= Base->hasNoUnsignedWrap(); |
| 1069 | NewGEPInBounds &= Base->isInBounds(); |
| 1070 | NewGEPNUSW &= Base->hasNoUnsignedSignedWrap(); |
| 1071 | AllOffsetsNonNegative &= BaseByteOffset.isNonNegative(); |
| 1072 | |
| 1073 | GEP->setOperand(i_nocapture: 0, Val_nocapture: NewBase); |
| 1074 | RecursivelyDeleteTriviallyDeadInstructions(V: Base); |
| 1075 | } |
| 1076 | |
| 1077 | // Clear the inbounds attribute because the new index may be off-bound. |
| 1078 | // e.g., |
| 1079 | // |
| 1080 | // b = add i64 a, 5 |
| 1081 | // addr = gep inbounds float, float* p, i64 b |
| 1082 | // |
| 1083 | // is transformed to: |
| 1084 | // |
| 1085 | // addr2 = gep float, float* p, i64 a ; inbounds removed |
| 1086 | // addr = gep float, float* addr2, i64 5 ; inbounds removed |
| 1087 | // |
| 1088 | // If a is -4, although the old index b is in bounds, the new index a is |
| 1089 | // off-bound. http://llvm.org/docs/LangRef.html#id181 says "if the |
| 1090 | // inbounds keyword is not present, the offsets are added to the base |
| 1091 | // address with silently-wrapping two's complement arithmetic". |
| 1092 | // Therefore, the final code will be a semantically equivalent. |
| 1093 | GEPNoWrapFlags NewGEPFlags = GEPNoWrapFlags::none(); |
| 1094 | |
| 1095 | // If the initial GEP was inbounds/nusw and all variable indices and the |
| 1096 | // accumulated offsets are non-negative, they can be added in any order and |
| 1097 | // the intermediate results are in bounds and don't overflow in a nusw sense. |
| 1098 | // So, we can preserve the inbounds/nusw flag for both GEPs. |
| 1099 | bool CanPreserveInBoundsNUSW = AllOffsetsNonNegative; |
| 1100 | |
| 1101 | // If the initial GEP was NUW and all operations that we reassociate were NUW |
| 1102 | // additions, the resulting GEPs are also NUW. |
| 1103 | if (AllNUWPreserved) { |
| 1104 | NewGEPFlags |= GEPNoWrapFlags::noUnsignedWrap(); |
| 1105 | // If the initial GEP additionally had NUSW (or inbounds, which implies |
| 1106 | // NUSW), we know that the indices in the initial GEP must all have their |
| 1107 | // signbit not set. For indices that are the result of NUW adds, the |
| 1108 | // add-operands therefore also don't have their signbit set. Therefore, all |
| 1109 | // indices of the resulting GEPs are non-negative -> we can preserve |
| 1110 | // the inbounds/nusw flag. |
| 1111 | CanPreserveInBoundsNUSW |= NewGEPNUSW; |
| 1112 | } |
| 1113 | |
| 1114 | if (CanPreserveInBoundsNUSW) { |
| 1115 | if (NewGEPInBounds) |
| 1116 | NewGEPFlags |= GEPNoWrapFlags::inBounds(); |
| 1117 | else if (NewGEPNUSW) |
| 1118 | NewGEPFlags |= GEPNoWrapFlags::noUnsignedSignedWrap(); |
| 1119 | } |
| 1120 | |
| 1121 | GEP->setNoWrapFlags(NewGEPFlags); |
| 1122 | |
| 1123 | // Lowers a GEP to GEPs with a single index. |
| 1124 | if (LowerGEP) { |
| 1125 | lowerToSingleIndexGEPs(Variadic: GEP, AccumulativeByteOffset); |
| 1126 | return true; |
| 1127 | } |
| 1128 | |
| 1129 | // No need to create another GEP if the accumulative byte offset is 0. |
| 1130 | if (AccumulativeByteOffset == 0) |
| 1131 | return true; |
| 1132 | |
| 1133 | // Offsets the base with the accumulative byte offset. |
| 1134 | // |
| 1135 | // %gep ; the base |
| 1136 | // ... %gep ... |
| 1137 | // |
| 1138 | // => add the offset |
| 1139 | // |
| 1140 | // %gep2 ; clone of %gep |
| 1141 | // %new.gep = gep i8, %gep2, %offset |
| 1142 | // %gep ; will be removed |
| 1143 | // ... %gep ... |
| 1144 | // |
| 1145 | // => replace all uses of %gep with %new.gep and remove %gep |
| 1146 | // |
| 1147 | // %gep2 ; clone of %gep |
| 1148 | // %new.gep = gep i8, %gep2, %offset |
| 1149 | // ... %new.gep ... |
| 1150 | Instruction *NewGEP = GEP->clone(); |
| 1151 | NewGEP->insertBefore(InsertPos: GEP->getIterator()); |
| 1152 | |
| 1153 | Type *PtrIdxTy = DL->getIndexType(PtrTy: GEP->getType()); |
| 1154 | IRBuilder<> Builder(GEP); |
| 1155 | NewGEP = cast<Instruction>(Val: Builder.CreatePtrAdd( |
| 1156 | Ptr: NewGEP, Offset: ConstantInt::get(Ty: PtrIdxTy, V: AccumulativeByteOffset), |
| 1157 | Name: GEP->getName(), NW: NewGEPFlags)); |
| 1158 | NewGEP->copyMetadata(SrcInst: *GEP); |
| 1159 | |
| 1160 | GEP->replaceAllUsesWith(V: NewGEP); |
| 1161 | GEP->eraseFromParent(); |
| 1162 | |
| 1163 | return true; |
| 1164 | } |
| 1165 | |
| 1166 | bool SeparateConstOffsetFromGEPLegacyPass::runOnFunction(Function &F) { |
| 1167 | if (skipFunction(F)) |
| 1168 | return false; |
| 1169 | auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); |
| 1170 | auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); |
| 1171 | auto *TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); |
| 1172 | auto GetTTI = [this](Function &F) -> TargetTransformInfo & { |
| 1173 | return this->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); |
| 1174 | }; |
| 1175 | SeparateConstOffsetFromGEP Impl(DT, LI, TLI, GetTTI, LowerGEP); |
| 1176 | return Impl.run(F); |
| 1177 | } |
| 1178 | |
| 1179 | bool SeparateConstOffsetFromGEP::run(Function &F) { |
| 1180 | if (DisableSeparateConstOffsetFromGEP) |
| 1181 | return false; |
| 1182 | |
| 1183 | DL = &F.getDataLayout(); |
| 1184 | bool Changed = false; |
| 1185 | |
| 1186 | ReversePostOrderTraversal<Function *> RPOT(&F); |
| 1187 | for (BasicBlock *B : RPOT) { |
| 1188 | if (!DT->isReachableFromEntry(A: B)) |
| 1189 | continue; |
| 1190 | |
| 1191 | for (Instruction &I : llvm::make_early_inc_range(Range&: *B)) |
| 1192 | if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Val: &I)) |
| 1193 | Changed |= splitGEP(GEP); |
| 1194 | // No need to split GEP ConstantExprs because all its indices are constant |
| 1195 | // already. |
| 1196 | } |
| 1197 | |
| 1198 | Changed |= reuniteExts(F); |
| 1199 | |
| 1200 | if (VerifyNoDeadCode) |
| 1201 | verifyNoDeadCode(F); |
| 1202 | |
| 1203 | return Changed; |
| 1204 | } |
| 1205 | |
| 1206 | Instruction *SeparateConstOffsetFromGEP::findClosestMatchingDominator( |
| 1207 | ExprKey Key, Instruction *Dominatee, |
| 1208 | DenseMap<ExprKey, SmallVector<Instruction *, 2>> &DominatingExprs) { |
| 1209 | auto Pos = DominatingExprs.find(Val: Key); |
| 1210 | if (Pos == DominatingExprs.end()) |
| 1211 | return nullptr; |
| 1212 | |
| 1213 | auto &Candidates = Pos->second; |
| 1214 | // Because we process the basic blocks in pre-order of the dominator tree, a |
| 1215 | // candidate that doesn't dominate the current instruction won't dominate any |
| 1216 | // future instruction either. Therefore, we pop it out of the stack. This |
| 1217 | // optimization makes the algorithm O(n). |
| 1218 | while (!Candidates.empty()) { |
| 1219 | Instruction *Candidate = Candidates.back(); |
| 1220 | if (DT->dominates(Def: Candidate, User: Dominatee)) |
| 1221 | return Candidate; |
| 1222 | Candidates.pop_back(); |
| 1223 | } |
| 1224 | return nullptr; |
| 1225 | } |
| 1226 | |
| 1227 | bool SeparateConstOffsetFromGEP::reuniteExts(Instruction *I) { |
| 1228 | if (!I->getType()->isIntOrIntVectorTy()) |
| 1229 | return false; |
| 1230 | |
| 1231 | // Dom: LHS+RHS |
| 1232 | // I: sext(LHS)+sext(RHS) |
| 1233 | // If Dom can't sign overflow and Dom dominates I, optimize I to sext(Dom). |
| 1234 | // TODO: handle zext |
| 1235 | Value *LHS = nullptr, *RHS = nullptr; |
| 1236 | if (match(V: I, P: m_Add(L: m_SExt(Op: m_Value(V&: LHS)), R: m_SExt(Op: m_Value(V&: RHS))))) { |
| 1237 | if (LHS->getType() == RHS->getType()) { |
| 1238 | ExprKey Key = createNormalizedCommutablePair(A: LHS, B: RHS); |
| 1239 | if (auto *Dom = findClosestMatchingDominator(Key, Dominatee: I, DominatingExprs&: DominatingAdds)) { |
| 1240 | Instruction *NewSExt = |
| 1241 | new SExtInst(Dom, I->getType(), "" , I->getIterator()); |
| 1242 | NewSExt->takeName(V: I); |
| 1243 | I->replaceAllUsesWith(V: NewSExt); |
| 1244 | NewSExt->setDebugLoc(I->getDebugLoc()); |
| 1245 | RecursivelyDeleteTriviallyDeadInstructions(V: I); |
| 1246 | return true; |
| 1247 | } |
| 1248 | } |
| 1249 | } else if (match(V: I, P: m_Sub(L: m_SExt(Op: m_Value(V&: LHS)), R: m_SExt(Op: m_Value(V&: RHS))))) { |
| 1250 | if (LHS->getType() == RHS->getType()) { |
| 1251 | if (auto *Dom = |
| 1252 | findClosestMatchingDominator(Key: {LHS, RHS}, Dominatee: I, DominatingExprs&: DominatingSubs)) { |
| 1253 | Instruction *NewSExt = |
| 1254 | new SExtInst(Dom, I->getType(), "" , I->getIterator()); |
| 1255 | NewSExt->takeName(V: I); |
| 1256 | I->replaceAllUsesWith(V: NewSExt); |
| 1257 | NewSExt->setDebugLoc(I->getDebugLoc()); |
| 1258 | RecursivelyDeleteTriviallyDeadInstructions(V: I); |
| 1259 | return true; |
| 1260 | } |
| 1261 | } |
| 1262 | } |
| 1263 | |
| 1264 | // Add I to DominatingExprs if it's an add/sub that can't sign overflow. |
| 1265 | if (match(V: I, P: m_NSWAdd(L: m_Value(V&: LHS), R: m_Value(V&: RHS)))) { |
| 1266 | if (programUndefinedIfPoison(Inst: I)) { |
| 1267 | ExprKey Key = createNormalizedCommutablePair(A: LHS, B: RHS); |
| 1268 | DominatingAdds[Key].push_back(Elt: I); |
| 1269 | } |
| 1270 | } else if (match(V: I, P: m_NSWSub(L: m_Value(V&: LHS), R: m_Value(V&: RHS)))) { |
| 1271 | if (programUndefinedIfPoison(Inst: I)) |
| 1272 | DominatingSubs[{LHS, RHS}].push_back(Elt: I); |
| 1273 | } |
| 1274 | return false; |
| 1275 | } |
| 1276 | |
| 1277 | bool SeparateConstOffsetFromGEP::reuniteExts(Function &F) { |
| 1278 | bool Changed = false; |
| 1279 | DominatingAdds.clear(); |
| 1280 | DominatingSubs.clear(); |
| 1281 | for (const auto Node : depth_first(G: DT)) { |
| 1282 | BasicBlock *BB = Node->getBlock(); |
| 1283 | for (Instruction &I : llvm::make_early_inc_range(Range&: *BB)) |
| 1284 | Changed |= reuniteExts(I: &I); |
| 1285 | } |
| 1286 | return Changed; |
| 1287 | } |
| 1288 | |
| 1289 | void SeparateConstOffsetFromGEP::verifyNoDeadCode(Function &F) { |
| 1290 | for (BasicBlock &B : F) { |
| 1291 | for (Instruction &I : B) { |
| 1292 | if (isInstructionTriviallyDead(I: &I)) { |
| 1293 | std::string ErrMessage; |
| 1294 | raw_string_ostream RSO(ErrMessage); |
| 1295 | RSO << "Dead instruction detected!\n" << I << "\n" ; |
| 1296 | llvm_unreachable(RSO.str().c_str()); |
| 1297 | } |
| 1298 | } |
| 1299 | } |
| 1300 | } |
| 1301 | |
| 1302 | bool SeparateConstOffsetFromGEP::isLegalToSwapOperand( |
| 1303 | GetElementPtrInst *FirstGEP, GetElementPtrInst *SecondGEP, Loop *CurLoop) { |
| 1304 | if (!FirstGEP || !FirstGEP->hasOneUse()) |
| 1305 | return false; |
| 1306 | |
| 1307 | if (!SecondGEP || FirstGEP->getParent() != SecondGEP->getParent()) |
| 1308 | return false; |
| 1309 | |
| 1310 | if (FirstGEP == SecondGEP) |
| 1311 | return false; |
| 1312 | |
| 1313 | unsigned FirstNum = FirstGEP->getNumOperands(); |
| 1314 | unsigned SecondNum = SecondGEP->getNumOperands(); |
| 1315 | // Give up if the number of operands are not 2. |
| 1316 | if (FirstNum != SecondNum || FirstNum != 2) |
| 1317 | return false; |
| 1318 | |
| 1319 | Value *FirstBase = FirstGEP->getOperand(i_nocapture: 0); |
| 1320 | Value *SecondBase = SecondGEP->getOperand(i_nocapture: 0); |
| 1321 | Value *FirstOffset = FirstGEP->getOperand(i_nocapture: 1); |
| 1322 | // Give up if the index of the first GEP is loop invariant. |
| 1323 | if (CurLoop->isLoopInvariant(V: FirstOffset)) |
| 1324 | return false; |
| 1325 | |
| 1326 | // Give up if base doesn't have same type. |
| 1327 | if (FirstBase->getType() != SecondBase->getType()) |
| 1328 | return false; |
| 1329 | |
| 1330 | Instruction *FirstOffsetDef = dyn_cast<Instruction>(Val: FirstOffset); |
| 1331 | |
| 1332 | // Check if the second operand of first GEP has constant coefficient. |
| 1333 | // For an example, for the following code, we won't gain anything by |
| 1334 | // hoisting the second GEP out because the second GEP can be folded away. |
| 1335 | // %scevgep.sum.ur159 = add i64 %idxprom48.ur, 256 |
| 1336 | // %67 = shl i64 %scevgep.sum.ur159, 2 |
| 1337 | // %uglygep160 = getelementptr i8* %65, i64 %67 |
| 1338 | // %uglygep161 = getelementptr i8* %uglygep160, i64 -1024 |
| 1339 | |
| 1340 | // Skip constant shift instruction which may be generated by Splitting GEPs. |
| 1341 | if (FirstOffsetDef && FirstOffsetDef->isShift() && |
| 1342 | isa<ConstantInt>(Val: FirstOffsetDef->getOperand(i: 1))) |
| 1343 | FirstOffsetDef = dyn_cast<Instruction>(Val: FirstOffsetDef->getOperand(i: 0)); |
| 1344 | |
| 1345 | // Give up if FirstOffsetDef is an Add or Sub with constant. |
| 1346 | // Because it may not profitable at all due to constant folding. |
| 1347 | if (FirstOffsetDef) |
| 1348 | if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Val: FirstOffsetDef)) { |
| 1349 | unsigned opc = BO->getOpcode(); |
| 1350 | if ((opc == Instruction::Add || opc == Instruction::Sub) && |
| 1351 | (isa<ConstantInt>(Val: BO->getOperand(i_nocapture: 0)) || |
| 1352 | isa<ConstantInt>(Val: BO->getOperand(i_nocapture: 1)))) |
| 1353 | return false; |
| 1354 | } |
| 1355 | return true; |
| 1356 | } |
| 1357 | |
| 1358 | bool SeparateConstOffsetFromGEP::hasMoreThanOneUseInLoop(Value *V, Loop *L) { |
| 1359 | // TODO: Could look at uses of globals, but we need to make sure we are |
| 1360 | // looking at the correct function. |
| 1361 | if (isa<Constant>(Val: V)) |
| 1362 | return false; |
| 1363 | |
| 1364 | int UsesInLoop = 0; |
| 1365 | for (User *U : V->users()) { |
| 1366 | if (Instruction *User = dyn_cast<Instruction>(Val: U)) |
| 1367 | if (L->contains(Inst: User)) |
| 1368 | if (++UsesInLoop > 1) |
| 1369 | return true; |
| 1370 | } |
| 1371 | return false; |
| 1372 | } |
| 1373 | |
| 1374 | void SeparateConstOffsetFromGEP::swapGEPOperand(GetElementPtrInst *First, |
| 1375 | GetElementPtrInst *Second) { |
| 1376 | Value *Offset1 = First->getOperand(i_nocapture: 1); |
| 1377 | Value *Offset2 = Second->getOperand(i_nocapture: 1); |
| 1378 | First->setOperand(i_nocapture: 1, Val_nocapture: Offset2); |
| 1379 | Second->setOperand(i_nocapture: 1, Val_nocapture: Offset1); |
| 1380 | |
| 1381 | // We changed p+o+c to p+c+o, p+c may not be inbound anymore. |
| 1382 | const DataLayout &DAL = First->getDataLayout(); |
| 1383 | APInt Offset(DAL.getIndexSizeInBits( |
| 1384 | AS: cast<PointerType>(Val: First->getType())->getAddressSpace()), |
| 1385 | 0); |
| 1386 | Value *NewBase = |
| 1387 | First->stripAndAccumulateInBoundsConstantOffsets(DL: DAL, Offset); |
| 1388 | uint64_t ObjectSize; |
| 1389 | if (!getObjectSize(Ptr: NewBase, Size&: ObjectSize, DL: DAL, TLI) || |
| 1390 | Offset.ugt(RHS: ObjectSize)) { |
| 1391 | // TODO(gep_nowrap): Make flag preservation more precise. |
| 1392 | First->setNoWrapFlags(GEPNoWrapFlags::none()); |
| 1393 | Second->setNoWrapFlags(GEPNoWrapFlags::none()); |
| 1394 | } else |
| 1395 | First->setIsInBounds(true); |
| 1396 | } |
| 1397 | |
| 1398 | void SeparateConstOffsetFromGEPPass::printPipeline( |
| 1399 | raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { |
| 1400 | static_cast<PassInfoMixin<SeparateConstOffsetFromGEPPass> *>(this) |
| 1401 | ->printPipeline(OS, MapClassName2PassName); |
| 1402 | OS << '<'; |
| 1403 | if (LowerGEP) |
| 1404 | OS << "lower-gep" ; |
| 1405 | OS << '>'; |
| 1406 | } |
| 1407 | |
| 1408 | PreservedAnalyses |
| 1409 | SeparateConstOffsetFromGEPPass::run(Function &F, FunctionAnalysisManager &AM) { |
| 1410 | auto *DT = &AM.getResult<DominatorTreeAnalysis>(IR&: F); |
| 1411 | auto *LI = &AM.getResult<LoopAnalysis>(IR&: F); |
| 1412 | auto *TLI = &AM.getResult<TargetLibraryAnalysis>(IR&: F); |
| 1413 | auto GetTTI = [&AM](Function &F) -> TargetTransformInfo & { |
| 1414 | return AM.getResult<TargetIRAnalysis>(IR&: F); |
| 1415 | }; |
| 1416 | SeparateConstOffsetFromGEP Impl(DT, LI, TLI, GetTTI, LowerGEP); |
| 1417 | if (!Impl.run(F)) |
| 1418 | return PreservedAnalyses::all(); |
| 1419 | PreservedAnalyses PA; |
| 1420 | PA.preserveSet<CFGAnalyses>(); |
| 1421 | return PA; |
| 1422 | } |
| 1423 | |