| 1 | //===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file implements some loop unrolling utilities. It does not define any |
| 10 | // actual pass or policy, but provides a single function to perform loop |
| 11 | // unrolling. |
| 12 | // |
| 13 | // The process of unrolling can produce extraneous basic blocks linked with |
| 14 | // unconditional branches. This will be corrected in the future. |
| 15 | // |
| 16 | //===----------------------------------------------------------------------===// |
| 17 | |
| 18 | #include "llvm/ADT/ArrayRef.h" |
| 19 | #include "llvm/ADT/DenseMap.h" |
| 20 | #include "llvm/ADT/STLExtras.h" |
| 21 | #include "llvm/ADT/ScopedHashTable.h" |
| 22 | #include "llvm/ADT/SetVector.h" |
| 23 | #include "llvm/ADT/SmallVector.h" |
| 24 | #include "llvm/ADT/Statistic.h" |
| 25 | #include "llvm/ADT/StringRef.h" |
| 26 | #include "llvm/ADT/Twine.h" |
| 27 | #include "llvm/Analysis/AliasAnalysis.h" |
| 28 | #include "llvm/Analysis/AssumptionCache.h" |
| 29 | #include "llvm/Analysis/DomTreeUpdater.h" |
| 30 | #include "llvm/Analysis/InstructionSimplify.h" |
| 31 | #include "llvm/Analysis/LoopInfo.h" |
| 32 | #include "llvm/Analysis/LoopIterator.h" |
| 33 | #include "llvm/Analysis/MemorySSA.h" |
| 34 | #include "llvm/Analysis/OptimizationRemarkEmitter.h" |
| 35 | #include "llvm/Analysis/ScalarEvolution.h" |
| 36 | #include "llvm/IR/BasicBlock.h" |
| 37 | #include "llvm/IR/CFG.h" |
| 38 | #include "llvm/IR/Constants.h" |
| 39 | #include "llvm/IR/DebugInfoMetadata.h" |
| 40 | #include "llvm/IR/DebugLoc.h" |
| 41 | #include "llvm/IR/DiagnosticInfo.h" |
| 42 | #include "llvm/IR/Dominators.h" |
| 43 | #include "llvm/IR/Function.h" |
| 44 | #include "llvm/IR/IRBuilder.h" |
| 45 | #include "llvm/IR/Instruction.h" |
| 46 | #include "llvm/IR/Instructions.h" |
| 47 | #include "llvm/IR/IntrinsicInst.h" |
| 48 | #include "llvm/IR/Metadata.h" |
| 49 | #include "llvm/IR/PatternMatch.h" |
| 50 | #include "llvm/IR/Use.h" |
| 51 | #include "llvm/IR/User.h" |
| 52 | #include "llvm/IR/ValueHandle.h" |
| 53 | #include "llvm/IR/ValueMap.h" |
| 54 | #include "llvm/Support/Casting.h" |
| 55 | #include "llvm/Support/CommandLine.h" |
| 56 | #include "llvm/Support/Debug.h" |
| 57 | #include "llvm/Support/GenericDomTree.h" |
| 58 | #include "llvm/Support/raw_ostream.h" |
| 59 | #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| 60 | #include "llvm/Transforms/Utils/Cloning.h" |
| 61 | #include "llvm/Transforms/Utils/Local.h" |
| 62 | #include "llvm/Transforms/Utils/LoopSimplify.h" |
| 63 | #include "llvm/Transforms/Utils/LoopUtils.h" |
| 64 | #include "llvm/Transforms/Utils/SimplifyIndVar.h" |
| 65 | #include "llvm/Transforms/Utils/UnrollLoop.h" |
| 66 | #include "llvm/Transforms/Utils/ValueMapper.h" |
| 67 | #include <assert.h> |
| 68 | #include <numeric> |
| 69 | #include <vector> |
| 70 | |
| 71 | namespace llvm { |
| 72 | class DataLayout; |
| 73 | class Value; |
| 74 | } // namespace llvm |
| 75 | |
| 76 | using namespace llvm; |
| 77 | |
| 78 | #define DEBUG_TYPE "loop-unroll" |
| 79 | |
| 80 | // TODO: Should these be here or in LoopUnroll? |
| 81 | STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled" ); |
| 82 | STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)" ); |
| 83 | STATISTIC(NumUnrolledNotLatch, "Number of loops unrolled without a conditional " |
| 84 | "latch (completely or otherwise)" ); |
| 85 | |
| 86 | static cl::opt<bool> |
| 87 | UnrollRuntimeEpilog("unroll-runtime-epilog" , cl::init(Val: false), cl::Hidden, |
| 88 | cl::desc("Allow runtime unrolled loops to be unrolled " |
| 89 | "with epilog instead of prolog." )); |
| 90 | |
| 91 | static cl::opt<bool> |
| 92 | UnrollVerifyDomtree("unroll-verify-domtree" , cl::Hidden, |
| 93 | cl::desc("Verify domtree after unrolling" ), |
| 94 | #ifdef EXPENSIVE_CHECKS |
| 95 | cl::init(true) |
| 96 | #else |
| 97 | cl::init(Val: false) |
| 98 | #endif |
| 99 | ); |
| 100 | |
| 101 | static cl::opt<bool> |
| 102 | UnrollVerifyLoopInfo("unroll-verify-loopinfo" , cl::Hidden, |
| 103 | cl::desc("Verify loopinfo after unrolling" ), |
| 104 | #ifdef EXPENSIVE_CHECKS |
| 105 | cl::init(true) |
| 106 | #else |
| 107 | cl::init(Val: false) |
| 108 | #endif |
| 109 | ); |
| 110 | |
| 111 | static cl::opt<bool> UnrollAddParallelReductions( |
| 112 | "unroll-add-parallel-reductions" , cl::init(Val: false), cl::Hidden, |
| 113 | cl::desc("Allow unrolling to add parallel reduction phis." )); |
| 114 | |
| 115 | /// Check if unrolling created a situation where we need to insert phi nodes to |
| 116 | /// preserve LCSSA form. |
| 117 | /// \param Blocks is a vector of basic blocks representing unrolled loop. |
| 118 | /// \param L is the outer loop. |
| 119 | /// It's possible that some of the blocks are in L, and some are not. In this |
| 120 | /// case, if there is a use is outside L, and definition is inside L, we need to |
| 121 | /// insert a phi-node, otherwise LCSSA will be broken. |
| 122 | /// The function is just a helper function for llvm::UnrollLoop that returns |
| 123 | /// true if this situation occurs, indicating that LCSSA needs to be fixed. |
| 124 | static bool needToInsertPhisForLCSSA(Loop *L, |
| 125 | const std::vector<BasicBlock *> &Blocks, |
| 126 | LoopInfo *LI) { |
| 127 | for (BasicBlock *BB : Blocks) { |
| 128 | if (LI->getLoopFor(BB) == L) |
| 129 | continue; |
| 130 | for (Instruction &I : *BB) { |
| 131 | for (Use &U : I.operands()) { |
| 132 | if (const auto *Def = dyn_cast<Instruction>(Val&: U)) { |
| 133 | Loop *DefLoop = LI->getLoopFor(BB: Def->getParent()); |
| 134 | if (!DefLoop) |
| 135 | continue; |
| 136 | if (DefLoop->contains(L)) |
| 137 | return true; |
| 138 | } |
| 139 | } |
| 140 | } |
| 141 | } |
| 142 | return false; |
| 143 | } |
| 144 | |
| 145 | /// Adds ClonedBB to LoopInfo, creates a new loop for ClonedBB if necessary |
| 146 | /// and adds a mapping from the original loop to the new loop to NewLoops. |
| 147 | /// Returns nullptr if no new loop was created and a pointer to the |
| 148 | /// original loop OriginalBB was part of otherwise. |
| 149 | const Loop* llvm::addClonedBlockToLoopInfo(BasicBlock *OriginalBB, |
| 150 | BasicBlock *ClonedBB, LoopInfo *LI, |
| 151 | NewLoopsMap &NewLoops) { |
| 152 | // Figure out which loop New is in. |
| 153 | const Loop *OldLoop = LI->getLoopFor(BB: OriginalBB); |
| 154 | assert(OldLoop && "Should (at least) be in the loop being unrolled!" ); |
| 155 | |
| 156 | Loop *&NewLoop = NewLoops[OldLoop]; |
| 157 | if (!NewLoop) { |
| 158 | // Found a new sub-loop. |
| 159 | assert(OriginalBB == OldLoop->getHeader() && |
| 160 | "Header should be first in RPO" ); |
| 161 | |
| 162 | NewLoop = LI->AllocateLoop(); |
| 163 | Loop *NewLoopParent = NewLoops.lookup(Val: OldLoop->getParentLoop()); |
| 164 | |
| 165 | if (NewLoopParent) |
| 166 | NewLoopParent->addChildLoop(NewChild: NewLoop); |
| 167 | else |
| 168 | LI->addTopLevelLoop(New: NewLoop); |
| 169 | |
| 170 | NewLoop->addBasicBlockToLoop(NewBB: ClonedBB, LI&: *LI); |
| 171 | return OldLoop; |
| 172 | } else { |
| 173 | NewLoop->addBasicBlockToLoop(NewBB: ClonedBB, LI&: *LI); |
| 174 | return nullptr; |
| 175 | } |
| 176 | } |
| 177 | |
| 178 | /// The function chooses which type of unroll (epilog or prolog) is more |
| 179 | /// profitabale. |
| 180 | /// Epilog unroll is more profitable when there is PHI that starts from |
| 181 | /// constant. In this case epilog will leave PHI start from constant, |
| 182 | /// but prolog will convert it to non-constant. |
| 183 | /// |
| 184 | /// loop: |
| 185 | /// PN = PHI [I, Latch], [CI, PreHeader] |
| 186 | /// I = foo(PN) |
| 187 | /// ... |
| 188 | /// |
| 189 | /// Epilog unroll case. |
| 190 | /// loop: |
| 191 | /// PN = PHI [I2, Latch], [CI, PreHeader] |
| 192 | /// I1 = foo(PN) |
| 193 | /// I2 = foo(I1) |
| 194 | /// ... |
| 195 | /// Prolog unroll case. |
| 196 | /// NewPN = PHI [PrologI, Prolog], [CI, PreHeader] |
| 197 | /// loop: |
| 198 | /// PN = PHI [I2, Latch], [NewPN, PreHeader] |
| 199 | /// I1 = foo(PN) |
| 200 | /// I2 = foo(I1) |
| 201 | /// ... |
| 202 | /// |
| 203 | static bool isEpilogProfitable(Loop *L) { |
| 204 | BasicBlock * = L->getLoopPreheader(); |
| 205 | BasicBlock * = L->getHeader(); |
| 206 | assert(PreHeader && Header); |
| 207 | for (const PHINode &PN : Header->phis()) { |
| 208 | if (isa<ConstantInt>(Val: PN.getIncomingValueForBlock(BB: PreHeader))) |
| 209 | return true; |
| 210 | } |
| 211 | return false; |
| 212 | } |
| 213 | |
| 214 | struct LoadValue { |
| 215 | Instruction *DefI = nullptr; |
| 216 | unsigned Generation = 0; |
| 217 | LoadValue() = default; |
| 218 | LoadValue(Instruction *Inst, unsigned Generation) |
| 219 | : DefI(Inst), Generation(Generation) {} |
| 220 | }; |
| 221 | |
| 222 | class StackNode { |
| 223 | ScopedHashTable<const SCEV *, LoadValue>::ScopeTy LoadScope; |
| 224 | unsigned CurrentGeneration; |
| 225 | unsigned ChildGeneration; |
| 226 | DomTreeNode *Node; |
| 227 | DomTreeNode::const_iterator ChildIter; |
| 228 | DomTreeNode::const_iterator EndIter; |
| 229 | bool Processed = false; |
| 230 | |
| 231 | public: |
| 232 | StackNode(ScopedHashTable<const SCEV *, LoadValue> &AvailableLoads, |
| 233 | unsigned cg, DomTreeNode *N, DomTreeNode::const_iterator Child, |
| 234 | DomTreeNode::const_iterator End) |
| 235 | : LoadScope(AvailableLoads), CurrentGeneration(cg), ChildGeneration(cg), |
| 236 | Node(N), ChildIter(Child), EndIter(End) {} |
| 237 | // Accessors. |
| 238 | unsigned currentGeneration() const { return CurrentGeneration; } |
| 239 | unsigned childGeneration() const { return ChildGeneration; } |
| 240 | void childGeneration(unsigned generation) { ChildGeneration = generation; } |
| 241 | DomTreeNode *node() { return Node; } |
| 242 | DomTreeNode::const_iterator childIter() const { return ChildIter; } |
| 243 | |
| 244 | DomTreeNode *nextChild() { |
| 245 | DomTreeNode *Child = *ChildIter; |
| 246 | ++ChildIter; |
| 247 | return Child; |
| 248 | } |
| 249 | |
| 250 | DomTreeNode::const_iterator end() const { return EndIter; } |
| 251 | bool isProcessed() const { return Processed; } |
| 252 | void process() { Processed = true; } |
| 253 | }; |
| 254 | |
| 255 | Value *getMatchingValue(LoadValue LV, LoadInst *LI, unsigned CurrentGeneration, |
| 256 | BatchAAResults &BAA, |
| 257 | function_ref<MemorySSA *()> GetMSSA) { |
| 258 | if (!LV.DefI) |
| 259 | return nullptr; |
| 260 | if (LV.DefI->getType() != LI->getType()) |
| 261 | return nullptr; |
| 262 | if (LV.Generation != CurrentGeneration) { |
| 263 | MemorySSA *MSSA = GetMSSA(); |
| 264 | if (!MSSA) |
| 265 | return nullptr; |
| 266 | auto *EarlierMA = MSSA->getMemoryAccess(I: LV.DefI); |
| 267 | MemoryAccess *LaterDef = |
| 268 | MSSA->getWalker()->getClobberingMemoryAccess(I: LI, AA&: BAA); |
| 269 | if (!MSSA->dominates(A: LaterDef, B: EarlierMA)) |
| 270 | return nullptr; |
| 271 | } |
| 272 | return LV.DefI; |
| 273 | } |
| 274 | |
| 275 | void loadCSE(Loop *L, DominatorTree &DT, ScalarEvolution &SE, LoopInfo &LI, |
| 276 | BatchAAResults &BAA, function_ref<MemorySSA *()> GetMSSA) { |
| 277 | ScopedHashTable<const SCEV *, LoadValue> AvailableLoads; |
| 278 | SmallVector<std::unique_ptr<StackNode>> NodesToProcess; |
| 279 | DomTreeNode * = DT.getNode(BB: L->getHeader()); |
| 280 | NodesToProcess.emplace_back(Args: new StackNode(AvailableLoads, 0, HeaderD, |
| 281 | HeaderD->begin(), HeaderD->end())); |
| 282 | |
| 283 | unsigned CurrentGeneration = 0; |
| 284 | while (!NodesToProcess.empty()) { |
| 285 | StackNode *NodeToProcess = &*NodesToProcess.back(); |
| 286 | |
| 287 | CurrentGeneration = NodeToProcess->currentGeneration(); |
| 288 | |
| 289 | if (!NodeToProcess->isProcessed()) { |
| 290 | // Process the node. |
| 291 | |
| 292 | // If this block has a single predecessor, then the predecessor is the |
| 293 | // parent |
| 294 | // of the domtree node and all of the live out memory values are still |
| 295 | // current in this block. If this block has multiple predecessors, then |
| 296 | // they could have invalidated the live-out memory values of our parent |
| 297 | // value. For now, just be conservative and invalidate memory if this |
| 298 | // block has multiple predecessors. |
| 299 | if (!NodeToProcess->node()->getBlock()->getSinglePredecessor()) |
| 300 | ++CurrentGeneration; |
| 301 | for (auto &I : make_early_inc_range(Range&: *NodeToProcess->node()->getBlock())) { |
| 302 | |
| 303 | auto *Load = dyn_cast<LoadInst>(Val: &I); |
| 304 | if (!Load || !Load->isSimple()) { |
| 305 | if (I.mayWriteToMemory()) |
| 306 | CurrentGeneration++; |
| 307 | continue; |
| 308 | } |
| 309 | |
| 310 | const SCEV *PtrSCEV = SE.getSCEV(V: Load->getPointerOperand()); |
| 311 | LoadValue LV = AvailableLoads.lookup(Key: PtrSCEV); |
| 312 | if (Value *M = |
| 313 | getMatchingValue(LV, LI: Load, CurrentGeneration, BAA, GetMSSA)) { |
| 314 | if (LI.replacementPreservesLCSSAForm(From: Load, To: M)) { |
| 315 | Load->replaceAllUsesWith(V: M); |
| 316 | Load->eraseFromParent(); |
| 317 | } |
| 318 | } else { |
| 319 | AvailableLoads.insert(Key: PtrSCEV, Val: LoadValue(Load, CurrentGeneration)); |
| 320 | } |
| 321 | } |
| 322 | NodeToProcess->childGeneration(generation: CurrentGeneration); |
| 323 | NodeToProcess->process(); |
| 324 | } else if (NodeToProcess->childIter() != NodeToProcess->end()) { |
| 325 | // Push the next child onto the stack. |
| 326 | DomTreeNode *Child = NodeToProcess->nextChild(); |
| 327 | if (!L->contains(BB: Child->getBlock())) |
| 328 | continue; |
| 329 | NodesToProcess.emplace_back( |
| 330 | Args: new StackNode(AvailableLoads, NodeToProcess->childGeneration(), Child, |
| 331 | Child->begin(), Child->end())); |
| 332 | } else { |
| 333 | // It has been processed, and there are no more children to process, |
| 334 | // so delete it and pop it off the stack. |
| 335 | NodesToProcess.pop_back(); |
| 336 | } |
| 337 | } |
| 338 | } |
| 339 | |
| 340 | /// Perform some cleanup and simplifications on loops after unrolling. It is |
| 341 | /// useful to simplify the IV's in the new loop, as well as do a quick |
| 342 | /// simplify/dce pass of the instructions. |
| 343 | void llvm::simplifyLoopAfterUnroll(Loop *L, bool SimplifyIVs, LoopInfo *LI, |
| 344 | ScalarEvolution *SE, DominatorTree *DT, |
| 345 | AssumptionCache *AC, |
| 346 | const TargetTransformInfo *TTI, |
| 347 | AAResults *AA) { |
| 348 | using namespace llvm::PatternMatch; |
| 349 | |
| 350 | // Simplify any new induction variables in the partially unrolled loop. |
| 351 | if (SE && SimplifyIVs) { |
| 352 | SmallVector<WeakTrackingVH, 16> DeadInsts; |
| 353 | simplifyLoopIVs(L, SE, DT, LI, TTI, Dead&: DeadInsts); |
| 354 | |
| 355 | // Aggressively clean up dead instructions that simplifyLoopIVs already |
| 356 | // identified. Any remaining should be cleaned up below. |
| 357 | while (!DeadInsts.empty()) { |
| 358 | Value *V = DeadInsts.pop_back_val(); |
| 359 | if (Instruction *Inst = dyn_cast_or_null<Instruction>(Val: V)) |
| 360 | RecursivelyDeleteTriviallyDeadInstructions(V: Inst); |
| 361 | } |
| 362 | |
| 363 | if (AA) { |
| 364 | std::unique_ptr<MemorySSA> MSSA = nullptr; |
| 365 | BatchAAResults BAA(*AA); |
| 366 | loadCSE(L, DT&: *DT, SE&: *SE, LI&: *LI, BAA, GetMSSA: [L, AA, DT, &MSSA]() -> MemorySSA * { |
| 367 | if (!MSSA) |
| 368 | MSSA.reset(p: new MemorySSA(*L, AA, DT)); |
| 369 | return &*MSSA; |
| 370 | }); |
| 371 | } |
| 372 | } |
| 373 | |
| 374 | // At this point, the code is well formed. Perform constprop, instsimplify, |
| 375 | // and dce. |
| 376 | const DataLayout &DL = L->getHeader()->getDataLayout(); |
| 377 | SmallVector<WeakTrackingVH, 16> DeadInsts; |
| 378 | for (BasicBlock *BB : L->getBlocks()) { |
| 379 | // Remove repeated debug instructions after loop unrolling. |
| 380 | if (BB->getParent()->getSubprogram()) |
| 381 | RemoveRedundantDbgInstrs(BB); |
| 382 | |
| 383 | for (Instruction &Inst : llvm::make_early_inc_range(Range&: *BB)) { |
| 384 | if (Value *V = simplifyInstruction(I: &Inst, Q: {DL, nullptr, DT, AC})) |
| 385 | if (LI->replacementPreservesLCSSAForm(From: &Inst, To: V)) |
| 386 | Inst.replaceAllUsesWith(V); |
| 387 | if (isInstructionTriviallyDead(I: &Inst)) |
| 388 | DeadInsts.emplace_back(Args: &Inst); |
| 389 | |
| 390 | // Fold ((add X, C1), C2) to (add X, C1+C2). This is very common in |
| 391 | // unrolled loops, and handling this early allows following code to |
| 392 | // identify the IV as a "simple recurrence" without first folding away |
| 393 | // a long chain of adds. |
| 394 | { |
| 395 | Value *X; |
| 396 | const APInt *C1, *C2; |
| 397 | if (match(V: &Inst, P: m_Add(L: m_Add(L: m_Value(V&: X), R: m_APInt(Res&: C1)), R: m_APInt(Res&: C2)))) { |
| 398 | auto *InnerI = dyn_cast<Instruction>(Val: Inst.getOperand(i: 0)); |
| 399 | auto *InnerOBO = cast<OverflowingBinaryOperator>(Val: Inst.getOperand(i: 0)); |
| 400 | bool SignedOverflow; |
| 401 | APInt NewC = C1->sadd_ov(RHS: *C2, Overflow&: SignedOverflow); |
| 402 | Inst.setOperand(i: 0, Val: X); |
| 403 | Inst.setOperand(i: 1, Val: ConstantInt::get(Ty: Inst.getType(), V: NewC)); |
| 404 | Inst.setHasNoUnsignedWrap(Inst.hasNoUnsignedWrap() && |
| 405 | InnerOBO->hasNoUnsignedWrap()); |
| 406 | Inst.setHasNoSignedWrap(Inst.hasNoSignedWrap() && |
| 407 | InnerOBO->hasNoSignedWrap() && |
| 408 | !SignedOverflow); |
| 409 | if (InnerI && isInstructionTriviallyDead(I: InnerI)) |
| 410 | DeadInsts.emplace_back(Args&: InnerI); |
| 411 | } |
| 412 | } |
| 413 | } |
| 414 | // We can't do recursive deletion until we're done iterating, as we might |
| 415 | // have a phi which (potentially indirectly) uses instructions later in |
| 416 | // the block we're iterating through. |
| 417 | RecursivelyDeleteTriviallyDeadInstructions(DeadInsts); |
| 418 | } |
| 419 | } |
| 420 | |
| 421 | // Loops containing convergent instructions that are uncontrolled or controlled |
| 422 | // from outside the loop must have a count that divides their TripMultiple. |
| 423 | LLVM_ATTRIBUTE_USED |
| 424 | static bool canHaveUnrollRemainder(const Loop *L) { |
| 425 | if (getLoopConvergenceHeart(TheLoop: L)) |
| 426 | return false; |
| 427 | |
| 428 | // Check for uncontrolled convergent operations. |
| 429 | for (auto &BB : L->blocks()) { |
| 430 | for (auto &I : *BB) { |
| 431 | if (isa<ConvergenceControlInst>(Val: I)) |
| 432 | return true; |
| 433 | if (auto *CB = dyn_cast<CallBase>(Val: &I)) |
| 434 | if (CB->isConvergent()) |
| 435 | return CB->getConvergenceControlToken(); |
| 436 | } |
| 437 | } |
| 438 | return true; |
| 439 | } |
| 440 | |
| 441 | /// Unroll the given loop by Count. The loop must be in LCSSA form. Unrolling |
| 442 | /// can only fail when the loop's latch block is not terminated by a conditional |
| 443 | /// branch instruction. However, if the trip count (and multiple) are not known, |
| 444 | /// loop unrolling will mostly produce more code that is no faster. |
| 445 | /// |
| 446 | /// If Runtime is true then UnrollLoop will try to insert a prologue or |
| 447 | /// epilogue that ensures the latch has a trip multiple of Count. UnrollLoop |
| 448 | /// will not runtime-unroll the loop if computing the run-time trip count will |
| 449 | /// be expensive and AllowExpensiveTripCount is false. |
| 450 | /// |
| 451 | /// The LoopInfo Analysis that is passed will be kept consistent. |
| 452 | /// |
| 453 | /// This utility preserves LoopInfo. It will also preserve ScalarEvolution and |
| 454 | /// DominatorTree if they are non-null. |
| 455 | /// |
| 456 | /// If RemainderLoop is non-null, it will receive the remainder loop (if |
| 457 | /// required and not fully unrolled). |
| 458 | LoopUnrollResult |
| 459 | llvm::UnrollLoop(Loop *L, UnrollLoopOptions ULO, LoopInfo *LI, |
| 460 | ScalarEvolution *SE, DominatorTree *DT, AssumptionCache *AC, |
| 461 | const TargetTransformInfo *TTI, OptimizationRemarkEmitter *ORE, |
| 462 | bool PreserveLCSSA, Loop **RemainderLoop, AAResults *AA) { |
| 463 | assert(DT && "DomTree is required" ); |
| 464 | |
| 465 | if (!L->getLoopPreheader()) { |
| 466 | LLVM_DEBUG(dbgs() << " Can't unroll; loop preheader-insertion failed.\n" ); |
| 467 | return LoopUnrollResult::Unmodified; |
| 468 | } |
| 469 | |
| 470 | if (!L->getLoopLatch()) { |
| 471 | LLVM_DEBUG(dbgs() << " Can't unroll; loop exit-block-insertion failed.\n" ); |
| 472 | return LoopUnrollResult::Unmodified; |
| 473 | } |
| 474 | |
| 475 | // Loops with indirectbr cannot be cloned. |
| 476 | if (!L->isSafeToClone()) { |
| 477 | LLVM_DEBUG(dbgs() << " Can't unroll; Loop body cannot be cloned.\n" ); |
| 478 | return LoopUnrollResult::Unmodified; |
| 479 | } |
| 480 | |
| 481 | if (L->getHeader()->hasAddressTaken()) { |
| 482 | // The loop-rotate pass can be helpful to avoid this in many cases. |
| 483 | LLVM_DEBUG( |
| 484 | dbgs() << " Won't unroll loop: address of header block is taken.\n" ); |
| 485 | return LoopUnrollResult::Unmodified; |
| 486 | } |
| 487 | |
| 488 | assert(ULO.Count > 0); |
| 489 | |
| 490 | // All these values should be taken only after peeling because they might have |
| 491 | // changed. |
| 492 | BasicBlock * = L->getLoopPreheader(); |
| 493 | BasicBlock * = L->getHeader(); |
| 494 | BasicBlock *LatchBlock = L->getLoopLatch(); |
| 495 | SmallVector<BasicBlock *, 4> ExitBlocks; |
| 496 | L->getExitBlocks(ExitBlocks); |
| 497 | std::vector<BasicBlock *> OriginalLoopBlocks = L->getBlocks(); |
| 498 | |
| 499 | const unsigned MaxTripCount = SE->getSmallConstantMaxTripCount(L); |
| 500 | const bool MaxOrZero = SE->isBackedgeTakenCountMaxOrZero(L); |
| 501 | std::optional<unsigned> OriginalTripCount = |
| 502 | llvm::getLoopEstimatedTripCount(L); |
| 503 | BranchProbability OriginalLoopProb = llvm::getLoopProbability(L); |
| 504 | |
| 505 | // Effectively "DCE" unrolled iterations that are beyond the max tripcount |
| 506 | // and will never be executed. |
| 507 | if (MaxTripCount && ULO.Count > MaxTripCount) |
| 508 | ULO.Count = MaxTripCount; |
| 509 | |
| 510 | struct ExitInfo { |
| 511 | unsigned TripCount; |
| 512 | unsigned TripMultiple; |
| 513 | unsigned BreakoutTrip; |
| 514 | bool ExitOnTrue; |
| 515 | BasicBlock *FirstExitingBlock = nullptr; |
| 516 | SmallVector<BasicBlock *> ExitingBlocks; |
| 517 | }; |
| 518 | DenseMap<BasicBlock *, ExitInfo> ExitInfos; |
| 519 | SmallVector<BasicBlock *, 4> ExitingBlocks; |
| 520 | L->getExitingBlocks(ExitingBlocks); |
| 521 | for (auto *ExitingBlock : ExitingBlocks) { |
| 522 | // The folding code is not prepared to deal with non-branch instructions |
| 523 | // right now. |
| 524 | auto *BI = dyn_cast<BranchInst>(Val: ExitingBlock->getTerminator()); |
| 525 | if (!BI) |
| 526 | continue; |
| 527 | |
| 528 | ExitInfo &Info = ExitInfos[ExitingBlock]; |
| 529 | Info.TripCount = SE->getSmallConstantTripCount(L, ExitingBlock); |
| 530 | Info.TripMultiple = SE->getSmallConstantTripMultiple(L, ExitingBlock); |
| 531 | if (Info.TripCount != 0) { |
| 532 | Info.BreakoutTrip = Info.TripCount % ULO.Count; |
| 533 | Info.TripMultiple = 0; |
| 534 | } else { |
| 535 | Info.BreakoutTrip = Info.TripMultiple = |
| 536 | (unsigned)std::gcd(m: ULO.Count, n: Info.TripMultiple); |
| 537 | } |
| 538 | Info.ExitOnTrue = !L->contains(BB: BI->getSuccessor(i: 0)); |
| 539 | Info.ExitingBlocks.push_back(Elt: ExitingBlock); |
| 540 | LLVM_DEBUG(dbgs() << " Exiting block %" << ExitingBlock->getName() |
| 541 | << ": TripCount=" << Info.TripCount |
| 542 | << ", TripMultiple=" << Info.TripMultiple |
| 543 | << ", BreakoutTrip=" << Info.BreakoutTrip << "\n" ); |
| 544 | } |
| 545 | |
| 546 | // Are we eliminating the loop control altogether? Note that we can know |
| 547 | // we're eliminating the backedge without knowing exactly which iteration |
| 548 | // of the unrolled body exits. |
| 549 | const bool CompletelyUnroll = ULO.Count == MaxTripCount; |
| 550 | |
| 551 | const bool PreserveOnlyFirst = CompletelyUnroll && MaxOrZero; |
| 552 | |
| 553 | // There's no point in performing runtime unrolling if this unroll count |
| 554 | // results in a full unroll. |
| 555 | if (CompletelyUnroll) |
| 556 | ULO.Runtime = false; |
| 557 | |
| 558 | // Go through all exits of L and see if there are any phi-nodes there. We just |
| 559 | // conservatively assume that they're inserted to preserve LCSSA form, which |
| 560 | // means that complete unrolling might break this form. We need to either fix |
| 561 | // it in-place after the transformation, or entirely rebuild LCSSA. TODO: For |
| 562 | // now we just recompute LCSSA for the outer loop, but it should be possible |
| 563 | // to fix it in-place. |
| 564 | bool NeedToFixLCSSA = |
| 565 | PreserveLCSSA && CompletelyUnroll && |
| 566 | any_of(Range&: ExitBlocks, |
| 567 | P: [](const BasicBlock *BB) { return isa<PHINode>(Val: BB->begin()); }); |
| 568 | |
| 569 | // The current loop unroll pass can unroll loops that have |
| 570 | // (1) single latch; and |
| 571 | // (2a) latch is unconditional; or |
| 572 | // (2b) latch is conditional and is an exiting block |
| 573 | // FIXME: The implementation can be extended to work with more complicated |
| 574 | // cases, e.g. loops with multiple latches. |
| 575 | BranchInst *LatchBI = dyn_cast<BranchInst>(Val: LatchBlock->getTerminator()); |
| 576 | |
| 577 | // A conditional branch which exits the loop, which can be optimized to an |
| 578 | // unconditional branch in the unrolled loop in some cases. |
| 579 | bool LatchIsExiting = L->isLoopExiting(BB: LatchBlock); |
| 580 | if (!LatchBI || (LatchBI->isConditional() && !LatchIsExiting)) { |
| 581 | LLVM_DEBUG( |
| 582 | dbgs() << "Can't unroll; a conditional latch must exit the loop" ); |
| 583 | return LoopUnrollResult::Unmodified; |
| 584 | } |
| 585 | |
| 586 | assert((!ULO.Runtime || canHaveUnrollRemainder(L)) && |
| 587 | "Can't runtime unroll if loop contains a convergent operation." ); |
| 588 | |
| 589 | bool EpilogProfitability = |
| 590 | UnrollRuntimeEpilog.getNumOccurrences() ? UnrollRuntimeEpilog |
| 591 | : isEpilogProfitable(L); |
| 592 | |
| 593 | if (ULO.Runtime && |
| 594 | !UnrollRuntimeLoopRemainder( |
| 595 | L, Count: ULO.Count, AllowExpensiveTripCount: ULO.AllowExpensiveTripCount, UseEpilogRemainder: EpilogProfitability, |
| 596 | UnrollRemainder: ULO.UnrollRemainder, ForgetAllSCEV: ULO.ForgetAllSCEV, LI, SE, DT, AC, TTI, |
| 597 | PreserveLCSSA, SCEVExpansionBudget: ULO.SCEVExpansionBudget, RuntimeUnrollMultiExit: ULO.RuntimeUnrollMultiExit, |
| 598 | ResultLoop: RemainderLoop, OriginalTripCount, OriginalLoopProb)) { |
| 599 | if (ULO.Force) |
| 600 | ULO.Runtime = false; |
| 601 | else { |
| 602 | LLVM_DEBUG(dbgs() << "Won't unroll; remainder loop could not be " |
| 603 | "generated when assuming runtime trip count\n" ); |
| 604 | return LoopUnrollResult::Unmodified; |
| 605 | } |
| 606 | } |
| 607 | |
| 608 | using namespace ore; |
| 609 | // Report the unrolling decision. |
| 610 | if (CompletelyUnroll) { |
| 611 | LLVM_DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName() |
| 612 | << " with trip count " << ULO.Count << "!\n" ); |
| 613 | if (ORE) |
| 614 | ORE->emit(RemarkBuilder: [&]() { |
| 615 | return OptimizationRemark(DEBUG_TYPE, "FullyUnrolled" , L->getStartLoc(), |
| 616 | L->getHeader()) |
| 617 | << "completely unrolled loop with " |
| 618 | << NV("UnrollCount" , ULO.Count) << " iterations" ; |
| 619 | }); |
| 620 | } else { |
| 621 | LLVM_DEBUG(dbgs() << "UNROLLING loop %" << Header->getName() << " by " |
| 622 | << ULO.Count); |
| 623 | if (ULO.Runtime) |
| 624 | LLVM_DEBUG(dbgs() << " with run-time trip count" ); |
| 625 | LLVM_DEBUG(dbgs() << "!\n" ); |
| 626 | |
| 627 | if (ORE) |
| 628 | ORE->emit(RemarkBuilder: [&]() { |
| 629 | OptimizationRemark Diag(DEBUG_TYPE, "PartialUnrolled" , L->getStartLoc(), |
| 630 | L->getHeader()); |
| 631 | Diag << "unrolled loop by a factor of " << NV("UnrollCount" , ULO.Count); |
| 632 | if (ULO.Runtime) |
| 633 | Diag << " with run-time trip count" ; |
| 634 | return Diag; |
| 635 | }); |
| 636 | } |
| 637 | |
| 638 | // We are going to make changes to this loop. SCEV may be keeping cached info |
| 639 | // about it, in particular about backedge taken count. The changes we make |
| 640 | // are guaranteed to invalidate this information for our loop. It is tempting |
| 641 | // to only invalidate the loop being unrolled, but it is incorrect as long as |
| 642 | // all exiting branches from all inner loops have impact on the outer loops, |
| 643 | // and if something changes inside them then any of outer loops may also |
| 644 | // change. When we forget outermost loop, we also forget all contained loops |
| 645 | // and this is what we need here. |
| 646 | if (SE) { |
| 647 | if (ULO.ForgetAllSCEV) |
| 648 | SE->forgetAllLoops(); |
| 649 | else { |
| 650 | SE->forgetTopmostLoop(L); |
| 651 | SE->forgetBlockAndLoopDispositions(); |
| 652 | } |
| 653 | } |
| 654 | |
| 655 | if (!LatchIsExiting) |
| 656 | ++NumUnrolledNotLatch; |
| 657 | |
| 658 | // For the first iteration of the loop, we should use the precloned values for |
| 659 | // PHI nodes. Insert associations now. |
| 660 | ValueToValueMapTy LastValueMap; |
| 661 | std::vector<PHINode*> OrigPHINode; |
| 662 | for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(Val: I); ++I) { |
| 663 | OrigPHINode.push_back(x: cast<PHINode>(Val&: I)); |
| 664 | } |
| 665 | |
| 666 | // Collect phi nodes for reductions for which we can introduce multiple |
| 667 | // parallel reduction phis and compute the final reduction result after the |
| 668 | // loop. This requires a single exit block after unrolling. This is ensured by |
| 669 | // restricting to single-block loops where the unrolled iterations are known |
| 670 | // to not exit. |
| 671 | DenseMap<PHINode *, RecurrenceDescriptor> Reductions; |
| 672 | bool CanAddAdditionalAccumulators = |
| 673 | (UnrollAddParallelReductions.getNumOccurrences() > 0 |
| 674 | ? UnrollAddParallelReductions |
| 675 | : ULO.AddAdditionalAccumulators) && |
| 676 | !CompletelyUnroll && L->getNumBlocks() == 1 && |
| 677 | (ULO.Runtime || |
| 678 | (ExitInfos.contains(Val: Header) && ((ExitInfos[Header].TripCount != 0 && |
| 679 | ExitInfos[Header].BreakoutTrip == 0)))); |
| 680 | |
| 681 | // Limit parallelizing reductions to unroll counts of 4 or less for now. |
| 682 | // TODO: The number of parallel reductions should depend on the number of |
| 683 | // execution units. We also don't have to add a parallel reduction phi per |
| 684 | // unrolled iteration, but could for example add a parallel phi for every 2 |
| 685 | // unrolled iterations. |
| 686 | if (CanAddAdditionalAccumulators && ULO.Count <= 4) { |
| 687 | for (PHINode &Phi : Header->phis()) { |
| 688 | auto RdxDesc = canParallelizeReductionWhenUnrolling(Phi, L, SE); |
| 689 | if (!RdxDesc) |
| 690 | continue; |
| 691 | |
| 692 | // Only handle duplicate phis for a single reduction for now. |
| 693 | // TODO: Handle any number of reductions |
| 694 | if (!Reductions.empty()) |
| 695 | continue; |
| 696 | |
| 697 | Reductions[&Phi] = *RdxDesc; |
| 698 | } |
| 699 | } |
| 700 | |
| 701 | std::vector<BasicBlock *> ; |
| 702 | std::vector<BasicBlock *> Latches; |
| 703 | Headers.push_back(x: Header); |
| 704 | Latches.push_back(x: LatchBlock); |
| 705 | |
| 706 | // The current on-the-fly SSA update requires blocks to be processed in |
| 707 | // reverse postorder so that LastValueMap contains the correct value at each |
| 708 | // exit. |
| 709 | LoopBlocksDFS DFS(L); |
| 710 | DFS.perform(LI); |
| 711 | |
| 712 | // Stash the DFS iterators before adding blocks to the loop. |
| 713 | LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO(); |
| 714 | LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO(); |
| 715 | |
| 716 | std::vector<BasicBlock*> UnrolledLoopBlocks = L->getBlocks(); |
| 717 | |
| 718 | // Loop Unrolling might create new loops. While we do preserve LoopInfo, we |
| 719 | // might break loop-simplified form for these loops (as they, e.g., would |
| 720 | // share the same exit blocks). We'll keep track of loops for which we can |
| 721 | // break this so that later we can re-simplify them. |
| 722 | SmallSetVector<Loop *, 4> LoopsToSimplify; |
| 723 | LoopsToSimplify.insert_range(R&: *L); |
| 724 | |
| 725 | // When a FSDiscriminator is enabled, we don't need to add the multiply |
| 726 | // factors to the discriminators. |
| 727 | if (Header->getParent()->shouldEmitDebugInfoForProfiling() && |
| 728 | !EnableFSDiscriminator) |
| 729 | for (BasicBlock *BB : L->getBlocks()) |
| 730 | for (Instruction &I : *BB) |
| 731 | if (!I.isDebugOrPseudoInst()) |
| 732 | if (const DILocation *DIL = I.getDebugLoc()) { |
| 733 | auto NewDIL = DIL->cloneByMultiplyingDuplicationFactor(DF: ULO.Count); |
| 734 | if (NewDIL) |
| 735 | I.setDebugLoc(*NewDIL); |
| 736 | else |
| 737 | LLVM_DEBUG(dbgs() |
| 738 | << "Failed to create new discriminator: " |
| 739 | << DIL->getFilename() << " Line: " << DIL->getLine()); |
| 740 | } |
| 741 | |
| 742 | // Identify what noalias metadata is inside the loop: if it is inside the |
| 743 | // loop, the associated metadata must be cloned for each iteration. |
| 744 | SmallVector<MDNode *, 6> LoopLocalNoAliasDeclScopes; |
| 745 | identifyNoAliasScopesToClone(BBs: L->getBlocks(), NoAliasDeclScopes&: LoopLocalNoAliasDeclScopes); |
| 746 | |
| 747 | // We place the unrolled iterations immediately after the original loop |
| 748 | // latch. This is a reasonable default placement if we don't have block |
| 749 | // frequencies, and if we do, well the layout will be adjusted later. |
| 750 | auto BlockInsertPt = std::next(x: LatchBlock->getIterator()); |
| 751 | SmallVector<Instruction *> PartialReductions; |
| 752 | for (unsigned It = 1; It != ULO.Count; ++It) { |
| 753 | SmallVector<BasicBlock *, 8> NewBlocks; |
| 754 | SmallDenseMap<const Loop *, Loop *, 4> NewLoops; |
| 755 | NewLoops[L] = L; |
| 756 | |
| 757 | for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) { |
| 758 | ValueToValueMapTy VMap; |
| 759 | BasicBlock *New = CloneBasicBlock(BB: *BB, VMap, NameSuffix: "." + Twine(It)); |
| 760 | Header->getParent()->insert(Position: BlockInsertPt, BB: New); |
| 761 | |
| 762 | assert((*BB != Header || LI->getLoopFor(*BB) == L) && |
| 763 | "Header should not be in a sub-loop" ); |
| 764 | // Tell LI about New. |
| 765 | const Loop *OldLoop = addClonedBlockToLoopInfo(OriginalBB: *BB, ClonedBB: New, LI, NewLoops); |
| 766 | if (OldLoop) |
| 767 | LoopsToSimplify.insert(X: NewLoops[OldLoop]); |
| 768 | |
| 769 | if (*BB == Header) { |
| 770 | // Loop over all of the PHI nodes in the block, changing them to use |
| 771 | // the incoming values from the previous block. |
| 772 | for (PHINode *OrigPHI : OrigPHINode) { |
| 773 | PHINode *NewPHI = cast<PHINode>(Val&: VMap[OrigPHI]); |
| 774 | Value *InVal = NewPHI->getIncomingValueForBlock(BB: LatchBlock); |
| 775 | |
| 776 | // Use cloned phis as parallel phis for partial reductions, which will |
| 777 | // get combined to the final reduction result after the loop. |
| 778 | if (Reductions.contains(Val: OrigPHI)) { |
| 779 | // Collect partial reduction results. |
| 780 | if (PartialReductions.empty()) |
| 781 | PartialReductions.push_back(Elt: cast<Instruction>(Val: InVal)); |
| 782 | PartialReductions.push_back(Elt: cast<Instruction>(Val&: VMap[InVal])); |
| 783 | |
| 784 | // Update the start value for the cloned phis to use the identity |
| 785 | // value for the reduction. |
| 786 | const RecurrenceDescriptor &RdxDesc = Reductions[OrigPHI]; |
| 787 | NewPHI->setIncomingValueForBlock( |
| 788 | BB: L->getLoopPreheader(), |
| 789 | V: getRecurrenceIdentity(K: RdxDesc.getRecurrenceKind(), |
| 790 | Tp: OrigPHI->getType(), |
| 791 | FMF: RdxDesc.getFastMathFlags())); |
| 792 | |
| 793 | // Update NewPHI to use the cloned value for the iteration and move |
| 794 | // to header. |
| 795 | NewPHI->replaceUsesOfWith(From: InVal, To: VMap[InVal]); |
| 796 | NewPHI->moveBefore(InsertPos: OrigPHI->getIterator()); |
| 797 | continue; |
| 798 | } |
| 799 | |
| 800 | if (Instruction *InValI = dyn_cast<Instruction>(Val: InVal)) |
| 801 | if (It > 1 && L->contains(Inst: InValI)) |
| 802 | InVal = LastValueMap[InValI]; |
| 803 | VMap[OrigPHI] = InVal; |
| 804 | NewPHI->eraseFromParent(); |
| 805 | } |
| 806 | |
| 807 | // Eliminate copies of the loop heart intrinsic, if any. |
| 808 | if (ULO.Heart) { |
| 809 | auto it = VMap.find(Val: ULO.Heart); |
| 810 | assert(it != VMap.end()); |
| 811 | Instruction *heartCopy = cast<Instruction>(Val&: it->second); |
| 812 | heartCopy->eraseFromParent(); |
| 813 | VMap.erase(I: it); |
| 814 | } |
| 815 | } |
| 816 | |
| 817 | // Remap source location atom instance. Do this now, rather than |
| 818 | // when we remap instructions, because remap is called once we've |
| 819 | // cloned all blocks (all the clones would get the same atom |
| 820 | // number). |
| 821 | if (!VMap.AtomMap.empty()) |
| 822 | for (Instruction &I : *New) |
| 823 | RemapSourceAtom(I: &I, VM&: VMap); |
| 824 | |
| 825 | // Update our running map of newest clones |
| 826 | LastValueMap[*BB] = New; |
| 827 | for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end(); |
| 828 | VI != VE; ++VI) |
| 829 | LastValueMap[VI->first] = VI->second; |
| 830 | |
| 831 | // Add phi entries for newly created values to all exit blocks. |
| 832 | for (BasicBlock *Succ : successors(BB: *BB)) { |
| 833 | if (L->contains(BB: Succ)) |
| 834 | continue; |
| 835 | for (PHINode &PHI : Succ->phis()) { |
| 836 | Value *Incoming = PHI.getIncomingValueForBlock(BB: *BB); |
| 837 | ValueToValueMapTy::iterator It = LastValueMap.find(Val: Incoming); |
| 838 | if (It != LastValueMap.end()) |
| 839 | Incoming = It->second; |
| 840 | PHI.addIncoming(V: Incoming, BB: New); |
| 841 | SE->forgetLcssaPhiWithNewPredecessor(L, V: &PHI); |
| 842 | } |
| 843 | } |
| 844 | // Keep track of new headers and latches as we create them, so that |
| 845 | // we can insert the proper branches later. |
| 846 | if (*BB == Header) |
| 847 | Headers.push_back(x: New); |
| 848 | if (*BB == LatchBlock) |
| 849 | Latches.push_back(x: New); |
| 850 | |
| 851 | // Keep track of the exiting block and its successor block contained in |
| 852 | // the loop for the current iteration. |
| 853 | auto ExitInfoIt = ExitInfos.find(Val: *BB); |
| 854 | if (ExitInfoIt != ExitInfos.end()) |
| 855 | ExitInfoIt->second.ExitingBlocks.push_back(Elt: New); |
| 856 | |
| 857 | NewBlocks.push_back(Elt: New); |
| 858 | UnrolledLoopBlocks.push_back(x: New); |
| 859 | |
| 860 | // Update DomTree: since we just copy the loop body, and each copy has a |
| 861 | // dedicated entry block (copy of the header block), this header's copy |
| 862 | // dominates all copied blocks. That means, dominance relations in the |
| 863 | // copied body are the same as in the original body. |
| 864 | if (*BB == Header) |
| 865 | DT->addNewBlock(BB: New, DomBB: Latches[It - 1]); |
| 866 | else { |
| 867 | auto BBDomNode = DT->getNode(BB: *BB); |
| 868 | auto BBIDom = BBDomNode->getIDom(); |
| 869 | BasicBlock *OriginalBBIDom = BBIDom->getBlock(); |
| 870 | DT->addNewBlock( |
| 871 | BB: New, DomBB: cast<BasicBlock>(Val&: LastValueMap[cast<Value>(Val: OriginalBBIDom)])); |
| 872 | } |
| 873 | } |
| 874 | |
| 875 | // Remap all instructions in the most recent iteration. |
| 876 | // Key Instructions: Nothing to do - we've already remapped the atoms. |
| 877 | remapInstructionsInBlocks(Blocks: NewBlocks, VMap&: LastValueMap); |
| 878 | for (BasicBlock *NewBlock : NewBlocks) |
| 879 | for (Instruction &I : *NewBlock) |
| 880 | if (auto *II = dyn_cast<AssumeInst>(Val: &I)) |
| 881 | AC->registerAssumption(CI: II); |
| 882 | |
| 883 | { |
| 884 | // Identify what other metadata depends on the cloned version. After |
| 885 | // cloning, replace the metadata with the corrected version for both |
| 886 | // memory instructions and noalias intrinsics. |
| 887 | std::string ext = (Twine("It" ) + Twine(It)).str(); |
| 888 | cloneAndAdaptNoAliasScopes(NoAliasDeclScopes: LoopLocalNoAliasDeclScopes, NewBlocks, |
| 889 | Context&: Header->getContext(), Ext: ext); |
| 890 | } |
| 891 | } |
| 892 | |
| 893 | // Loop over the PHI nodes in the original block, setting incoming values. |
| 894 | for (PHINode *PN : OrigPHINode) { |
| 895 | if (CompletelyUnroll) { |
| 896 | PN->replaceAllUsesWith(V: PN->getIncomingValueForBlock(BB: Preheader)); |
| 897 | PN->eraseFromParent(); |
| 898 | } else if (ULO.Count > 1) { |
| 899 | if (Reductions.contains(Val: PN)) |
| 900 | continue; |
| 901 | |
| 902 | Value *InVal = PN->removeIncomingValue(BB: LatchBlock, DeletePHIIfEmpty: false); |
| 903 | // If this value was defined in the loop, take the value defined by the |
| 904 | // last iteration of the loop. |
| 905 | if (Instruction *InValI = dyn_cast<Instruction>(Val: InVal)) { |
| 906 | if (L->contains(Inst: InValI)) |
| 907 | InVal = LastValueMap[InVal]; |
| 908 | } |
| 909 | assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch" ); |
| 910 | PN->addIncoming(V: InVal, BB: Latches.back()); |
| 911 | } |
| 912 | } |
| 913 | |
| 914 | // Connect latches of the unrolled iterations to the headers of the next |
| 915 | // iteration. Currently they point to the header of the same iteration. |
| 916 | for (unsigned i = 0, e = Latches.size(); i != e; ++i) { |
| 917 | unsigned j = (i + 1) % e; |
| 918 | Latches[i]->getTerminator()->replaceSuccessorWith(OldBB: Headers[i], NewBB: Headers[j]); |
| 919 | } |
| 920 | |
| 921 | // Remove loop metadata copied from the original loop latch to branches that |
| 922 | // are no longer latches. |
| 923 | for (unsigned I = 0, E = Latches.size() - (CompletelyUnroll ? 0 : 1); I < E; |
| 924 | ++I) |
| 925 | Latches[I]->getTerminator()->setMetadata(KindID: LLVMContext::MD_loop, Node: nullptr); |
| 926 | |
| 927 | // Update dominators of blocks we might reach through exits. |
| 928 | // Immediate dominator of such block might change, because we add more |
| 929 | // routes which can lead to the exit: we can now reach it from the copied |
| 930 | // iterations too. |
| 931 | if (ULO.Count > 1) { |
| 932 | for (auto *BB : OriginalLoopBlocks) { |
| 933 | auto *BBDomNode = DT->getNode(BB); |
| 934 | SmallVector<BasicBlock *, 16> ChildrenToUpdate; |
| 935 | for (auto *ChildDomNode : BBDomNode->children()) { |
| 936 | auto *ChildBB = ChildDomNode->getBlock(); |
| 937 | if (!L->contains(BB: ChildBB)) |
| 938 | ChildrenToUpdate.push_back(Elt: ChildBB); |
| 939 | } |
| 940 | // The new idom of the block will be the nearest common dominator |
| 941 | // of all copies of the previous idom. This is equivalent to the |
| 942 | // nearest common dominator of the previous idom and the first latch, |
| 943 | // which dominates all copies of the previous idom. |
| 944 | BasicBlock *NewIDom = DT->findNearestCommonDominator(A: BB, B: LatchBlock); |
| 945 | for (auto *ChildBB : ChildrenToUpdate) |
| 946 | DT->changeImmediateDominator(BB: ChildBB, NewBB: NewIDom); |
| 947 | } |
| 948 | } |
| 949 | |
| 950 | assert(!UnrollVerifyDomtree || |
| 951 | DT->verify(DominatorTree::VerificationLevel::Fast)); |
| 952 | |
| 953 | SmallVector<DominatorTree::UpdateType> DTUpdates; |
| 954 | auto SetDest = [&](BasicBlock *Src, bool WillExit, bool ExitOnTrue) { |
| 955 | auto *Term = cast<BranchInst>(Val: Src->getTerminator()); |
| 956 | const unsigned Idx = ExitOnTrue ^ WillExit; |
| 957 | BasicBlock *Dest = Term->getSuccessor(i: Idx); |
| 958 | BasicBlock *DeadSucc = Term->getSuccessor(i: 1-Idx); |
| 959 | |
| 960 | // Remove predecessors from all non-Dest successors. |
| 961 | DeadSucc->removePredecessor(Pred: Src, /* KeepOneInputPHIs */ true); |
| 962 | |
| 963 | // Replace the conditional branch with an unconditional one. |
| 964 | auto *BI = BranchInst::Create(IfTrue: Dest, InsertBefore: Term->getIterator()); |
| 965 | BI->setDebugLoc(Term->getDebugLoc()); |
| 966 | Term->eraseFromParent(); |
| 967 | |
| 968 | DTUpdates.emplace_back(Args: DominatorTree::Delete, Args&: Src, Args&: DeadSucc); |
| 969 | }; |
| 970 | |
| 971 | auto WillExit = [&](const ExitInfo &Info, unsigned i, unsigned j, |
| 972 | bool IsLatch) -> std::optional<bool> { |
| 973 | if (CompletelyUnroll) { |
| 974 | if (PreserveOnlyFirst) { |
| 975 | if (i == 0) |
| 976 | return std::nullopt; |
| 977 | return j == 0; |
| 978 | } |
| 979 | // Complete (but possibly inexact) unrolling |
| 980 | if (j == 0) |
| 981 | return true; |
| 982 | if (Info.TripCount && j != Info.TripCount) |
| 983 | return false; |
| 984 | return std::nullopt; |
| 985 | } |
| 986 | |
| 987 | if (ULO.Runtime) { |
| 988 | // If runtime unrolling inserts a prologue, information about non-latch |
| 989 | // exits may be stale. |
| 990 | if (IsLatch && j != 0) |
| 991 | return false; |
| 992 | return std::nullopt; |
| 993 | } |
| 994 | |
| 995 | if (j != Info.BreakoutTrip && |
| 996 | (Info.TripMultiple == 0 || j % Info.TripMultiple != 0)) { |
| 997 | // If we know the trip count or a multiple of it, we can safely use an |
| 998 | // unconditional branch for some iterations. |
| 999 | return false; |
| 1000 | } |
| 1001 | return std::nullopt; |
| 1002 | }; |
| 1003 | |
| 1004 | // Fold branches for iterations where we know that they will exit or not |
| 1005 | // exit. |
| 1006 | for (auto &Pair : ExitInfos) { |
| 1007 | ExitInfo &Info = Pair.second; |
| 1008 | for (unsigned i = 0, e = Info.ExitingBlocks.size(); i != e; ++i) { |
| 1009 | // The branch destination. |
| 1010 | unsigned j = (i + 1) % e; |
| 1011 | bool IsLatch = Pair.first == LatchBlock; |
| 1012 | std::optional<bool> KnownWillExit = WillExit(Info, i, j, IsLatch); |
| 1013 | if (!KnownWillExit) { |
| 1014 | if (!Info.FirstExitingBlock) |
| 1015 | Info.FirstExitingBlock = Info.ExitingBlocks[i]; |
| 1016 | continue; |
| 1017 | } |
| 1018 | |
| 1019 | // We don't fold known-exiting branches for non-latch exits here, |
| 1020 | // because this ensures that both all loop blocks and all exit blocks |
| 1021 | // remain reachable in the CFG. |
| 1022 | // TODO: We could fold these branches, but it would require much more |
| 1023 | // sophisticated updates to LoopInfo. |
| 1024 | if (*KnownWillExit && !IsLatch) { |
| 1025 | if (!Info.FirstExitingBlock) |
| 1026 | Info.FirstExitingBlock = Info.ExitingBlocks[i]; |
| 1027 | continue; |
| 1028 | } |
| 1029 | |
| 1030 | SetDest(Info.ExitingBlocks[i], *KnownWillExit, Info.ExitOnTrue); |
| 1031 | } |
| 1032 | } |
| 1033 | |
| 1034 | DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); |
| 1035 | DomTreeUpdater *DTUToUse = &DTU; |
| 1036 | if (ExitingBlocks.size() == 1 && ExitInfos.size() == 1) { |
| 1037 | // Manually update the DT if there's a single exiting node. In that case |
| 1038 | // there's a single exit node and it is sufficient to update the nodes |
| 1039 | // immediately dominated by the original exiting block. They will become |
| 1040 | // dominated by the first exiting block that leaves the loop after |
| 1041 | // unrolling. Note that the CFG inside the loop does not change, so there's |
| 1042 | // no need to update the DT inside the unrolled loop. |
| 1043 | DTUToUse = nullptr; |
| 1044 | auto &[OriginalExit, Info] = *ExitInfos.begin(); |
| 1045 | if (!Info.FirstExitingBlock) |
| 1046 | Info.FirstExitingBlock = Info.ExitingBlocks.back(); |
| 1047 | for (auto *C : to_vector(Range: DT->getNode(BB: OriginalExit)->children())) { |
| 1048 | if (L->contains(BB: C->getBlock())) |
| 1049 | continue; |
| 1050 | C->setIDom(DT->getNode(BB: Info.FirstExitingBlock)); |
| 1051 | } |
| 1052 | } else { |
| 1053 | DTU.applyUpdates(Updates: DTUpdates); |
| 1054 | } |
| 1055 | |
| 1056 | // When completely unrolling, the last latch becomes unreachable. |
| 1057 | if (!LatchIsExiting && CompletelyUnroll) { |
| 1058 | // There is no need to update the DT here, because there must be a unique |
| 1059 | // latch. Hence if the latch is not exiting it must directly branch back to |
| 1060 | // the original loop header and does not dominate any nodes. |
| 1061 | assert(LatchBlock->getSingleSuccessor() && "Loop with multiple latches?" ); |
| 1062 | changeToUnreachable(I: Latches.back()->getTerminator(), PreserveLCSSA); |
| 1063 | } |
| 1064 | |
| 1065 | // Merge adjacent basic blocks, if possible. |
| 1066 | for (BasicBlock *Latch : Latches) { |
| 1067 | BranchInst *Term = dyn_cast<BranchInst>(Val: Latch->getTerminator()); |
| 1068 | assert((Term || |
| 1069 | (CompletelyUnroll && !LatchIsExiting && Latch == Latches.back())) && |
| 1070 | "Need a branch as terminator, except when fully unrolling with " |
| 1071 | "unconditional latch" ); |
| 1072 | if (Term && Term->isUnconditional()) { |
| 1073 | BasicBlock *Dest = Term->getSuccessor(i: 0); |
| 1074 | BasicBlock *Fold = Dest->getUniquePredecessor(); |
| 1075 | if (MergeBlockIntoPredecessor(BB: Dest, /*DTU=*/DTUToUse, LI, |
| 1076 | /*MSSAU=*/nullptr, /*MemDep=*/nullptr, |
| 1077 | /*PredecessorWithTwoSuccessors=*/false, |
| 1078 | DT: DTUToUse ? nullptr : DT)) { |
| 1079 | // Dest has been folded into Fold. Update our worklists accordingly. |
| 1080 | llvm::replace(Range&: Latches, OldValue: Dest, NewValue: Fold); |
| 1081 | llvm::erase(C&: UnrolledLoopBlocks, V: Dest); |
| 1082 | } |
| 1083 | } |
| 1084 | } |
| 1085 | |
| 1086 | // If there are partial reductions, create code in the exit block to compute |
| 1087 | // the final result and update users of the final result. |
| 1088 | if (!PartialReductions.empty()) { |
| 1089 | BasicBlock *ExitBlock = L->getExitBlock(); |
| 1090 | assert(ExitBlock && |
| 1091 | "Can only introduce parallel reduction phis with single exit block" ); |
| 1092 | assert(Reductions.size() == 1 && |
| 1093 | "currently only a single reduction is supported" ); |
| 1094 | Value *FinalRdxValue = PartialReductions.back(); |
| 1095 | Value *RdxResult = nullptr; |
| 1096 | for (PHINode &Phi : ExitBlock->phis()) { |
| 1097 | if (Phi.getIncomingValueForBlock(BB: L->getLoopLatch()) != FinalRdxValue) |
| 1098 | continue; |
| 1099 | if (!RdxResult) { |
| 1100 | RdxResult = PartialReductions.front(); |
| 1101 | IRBuilder Builder(ExitBlock, ExitBlock->getFirstNonPHIIt()); |
| 1102 | Builder.setFastMathFlags(Reductions.begin()->second.getFastMathFlags()); |
| 1103 | RecurKind RK = Reductions.begin()->second.getRecurrenceKind(); |
| 1104 | for (Instruction *RdxPart : drop_begin(RangeOrContainer&: PartialReductions)) { |
| 1105 | RdxResult = Builder.CreateBinOp( |
| 1106 | Opc: (Instruction::BinaryOps)RecurrenceDescriptor::getOpcode(Kind: RK), |
| 1107 | LHS: RdxPart, RHS: RdxResult, Name: "bin.rdx" ); |
| 1108 | } |
| 1109 | NeedToFixLCSSA = true; |
| 1110 | for (Instruction *RdxPart : PartialReductions) |
| 1111 | RdxPart->dropPoisonGeneratingFlags(); |
| 1112 | } |
| 1113 | |
| 1114 | Phi.replaceAllUsesWith(V: RdxResult); |
| 1115 | } |
| 1116 | } |
| 1117 | |
| 1118 | if (DTUToUse) { |
| 1119 | // Apply updates to the DomTree. |
| 1120 | DT = &DTU.getDomTree(); |
| 1121 | } |
| 1122 | assert(!UnrollVerifyDomtree || |
| 1123 | DT->verify(DominatorTree::VerificationLevel::Fast)); |
| 1124 | |
| 1125 | // At this point, the code is well formed. We now simplify the unrolled loop, |
| 1126 | // doing constant propagation and dead code elimination as we go. |
| 1127 | simplifyLoopAfterUnroll(L, SimplifyIVs: !CompletelyUnroll && ULO.Count > 1, LI, SE, DT, AC, |
| 1128 | TTI, AA); |
| 1129 | |
| 1130 | NumCompletelyUnrolled += CompletelyUnroll; |
| 1131 | ++NumUnrolled; |
| 1132 | |
| 1133 | Loop *OuterL = L->getParentLoop(); |
| 1134 | // Update LoopInfo if the loop is completely removed. |
| 1135 | if (CompletelyUnroll) { |
| 1136 | LI->erase(L); |
| 1137 | // We shouldn't try to use `L` anymore. |
| 1138 | L = nullptr; |
| 1139 | } else { |
| 1140 | // Update metadata for the loop's branch weights and estimated trip count: |
| 1141 | // - If ULO.Runtime, UnrollRuntimeLoopRemainder sets the guard branch |
| 1142 | // weights, latch branch weights, and estimated trip count of the |
| 1143 | // remainder loop it creates. It also sets the branch weights for the |
| 1144 | // unrolled loop guard it creates. The branch weights for the unrolled |
| 1145 | // loop latch are adjusted below. FIXME: Handle prologue loops. |
| 1146 | // - Otherwise, if unrolled loop iteration latches become unconditional, |
| 1147 | // branch weights are adjusted above. FIXME: Actually handle such |
| 1148 | // unconditional latches. |
| 1149 | // - Otherwise, the original loop's branch weights are correct for the |
| 1150 | // unrolled loop, so do not adjust them. |
| 1151 | // - In all cases, the unrolled loop's estimated trip count is set below. |
| 1152 | // |
| 1153 | // As an example of the last case, consider what happens if the unroll count |
| 1154 | // is 4 for a loop with an estimated trip count of 10 when we do not create |
| 1155 | // a remainder loop and all iterations' latches remain conditional. Each |
| 1156 | // unrolled iteration's latch still has the same probability of exiting the |
| 1157 | // loop as it did when in the original loop, and thus it should still have |
| 1158 | // the same branch weights. Each unrolled iteration's non-zero probability |
| 1159 | // of exiting already appropriately reduces the probability of reaching the |
| 1160 | // remaining iterations just as it did in the original loop. Trying to also |
| 1161 | // adjust the branch weights of the final unrolled iteration's latch (i.e., |
| 1162 | // the backedge for the unrolled loop as a whole) to reflect its new trip |
| 1163 | // count of 3 will erroneously further reduce its block frequencies. |
| 1164 | // However, in case an analysis later needs to estimate the trip count of |
| 1165 | // the unrolled loop as a whole without considering the branch weights for |
| 1166 | // each unrolled iteration's latch within it, we store the new trip count as |
| 1167 | // separate metadata. |
| 1168 | if (!OriginalLoopProb.isUnknown() && ULO.Runtime && EpilogProfitability) { |
| 1169 | // Where p is always the probability of executing at least 1 more |
| 1170 | // iteration, the probability for at least n more iterations is p^n. |
| 1171 | setLoopProbability(L, P: OriginalLoopProb.pow(N: ULO.Count)); |
| 1172 | } |
| 1173 | if (OriginalTripCount) { |
| 1174 | unsigned NewTripCount = *OriginalTripCount / ULO.Count; |
| 1175 | if (!ULO.Runtime && *OriginalTripCount % ULO.Count) |
| 1176 | ++NewTripCount; |
| 1177 | setLoopEstimatedTripCount(L, EstimatedTripCount: NewTripCount); |
| 1178 | } |
| 1179 | } |
| 1180 | |
| 1181 | // LoopInfo should not be valid, confirm that. |
| 1182 | if (UnrollVerifyLoopInfo) |
| 1183 | LI->verify(DomTree: *DT); |
| 1184 | |
| 1185 | // After complete unrolling most of the blocks should be contained in OuterL. |
| 1186 | // However, some of them might happen to be out of OuterL (e.g. if they |
| 1187 | // precede a loop exit). In this case we might need to insert PHI nodes in |
| 1188 | // order to preserve LCSSA form. |
| 1189 | // We don't need to check this if we already know that we need to fix LCSSA |
| 1190 | // form. |
| 1191 | // TODO: For now we just recompute LCSSA for the outer loop in this case, but |
| 1192 | // it should be possible to fix it in-place. |
| 1193 | if (PreserveLCSSA && OuterL && CompletelyUnroll && !NeedToFixLCSSA) |
| 1194 | NeedToFixLCSSA |= ::needToInsertPhisForLCSSA(L: OuterL, Blocks: UnrolledLoopBlocks, LI); |
| 1195 | |
| 1196 | // Make sure that loop-simplify form is preserved. We want to simplify |
| 1197 | // at least one layer outside of the loop that was unrolled so that any |
| 1198 | // changes to the parent loop exposed by the unrolling are considered. |
| 1199 | if (OuterL) { |
| 1200 | // OuterL includes all loops for which we can break loop-simplify, so |
| 1201 | // it's sufficient to simplify only it (it'll recursively simplify inner |
| 1202 | // loops too). |
| 1203 | if (NeedToFixLCSSA) { |
| 1204 | // LCSSA must be performed on the outermost affected loop. The unrolled |
| 1205 | // loop's last loop latch is guaranteed to be in the outermost loop |
| 1206 | // after LoopInfo's been updated by LoopInfo::erase. |
| 1207 | Loop *LatchLoop = LI->getLoopFor(BB: Latches.back()); |
| 1208 | Loop *FixLCSSALoop = OuterL; |
| 1209 | if (!FixLCSSALoop->contains(L: LatchLoop)) |
| 1210 | while (FixLCSSALoop->getParentLoop() != LatchLoop) |
| 1211 | FixLCSSALoop = FixLCSSALoop->getParentLoop(); |
| 1212 | |
| 1213 | formLCSSARecursively(L&: *FixLCSSALoop, DT: *DT, LI, SE); |
| 1214 | } else if (PreserveLCSSA) { |
| 1215 | assert(OuterL->isLCSSAForm(*DT) && |
| 1216 | "Loops should be in LCSSA form after loop-unroll." ); |
| 1217 | } |
| 1218 | |
| 1219 | // TODO: That potentially might be compile-time expensive. We should try |
| 1220 | // to fix the loop-simplified form incrementally. |
| 1221 | simplifyLoop(L: OuterL, DT, LI, SE, AC, MSSAU: nullptr, PreserveLCSSA); |
| 1222 | } else { |
| 1223 | // Simplify loops for which we might've broken loop-simplify form. |
| 1224 | for (Loop *SubLoop : LoopsToSimplify) |
| 1225 | simplifyLoop(L: SubLoop, DT, LI, SE, AC, MSSAU: nullptr, PreserveLCSSA); |
| 1226 | } |
| 1227 | |
| 1228 | return CompletelyUnroll ? LoopUnrollResult::FullyUnrolled |
| 1229 | : LoopUnrollResult::PartiallyUnrolled; |
| 1230 | } |
| 1231 | |
| 1232 | /// Given an llvm.loop loop id metadata node, returns the loop hint metadata |
| 1233 | /// node with the given name (for example, "llvm.loop.unroll.count"). If no |
| 1234 | /// such metadata node exists, then nullptr is returned. |
| 1235 | MDNode *llvm::GetUnrollMetadata(MDNode *LoopID, StringRef Name) { |
| 1236 | // First operand should refer to the loop id itself. |
| 1237 | assert(LoopID->getNumOperands() > 0 && "requires at least one operand" ); |
| 1238 | assert(LoopID->getOperand(0) == LoopID && "invalid loop id" ); |
| 1239 | |
| 1240 | for (const MDOperand &MDO : llvm::drop_begin(RangeOrContainer: LoopID->operands())) { |
| 1241 | MDNode *MD = dyn_cast<MDNode>(Val: MDO); |
| 1242 | if (!MD) |
| 1243 | continue; |
| 1244 | |
| 1245 | MDString *S = dyn_cast<MDString>(Val: MD->getOperand(I: 0)); |
| 1246 | if (!S) |
| 1247 | continue; |
| 1248 | |
| 1249 | if (Name == S->getString()) |
| 1250 | return MD; |
| 1251 | } |
| 1252 | return nullptr; |
| 1253 | } |
| 1254 | |
| 1255 | std::optional<RecurrenceDescriptor> |
| 1256 | llvm::canParallelizeReductionWhenUnrolling(PHINode &Phi, Loop *L, |
| 1257 | ScalarEvolution *SE) { |
| 1258 | RecurrenceDescriptor RdxDesc; |
| 1259 | if (!RecurrenceDescriptor::isReductionPHI(Phi: &Phi, TheLoop: L, RedDes&: RdxDesc, |
| 1260 | /*DemandedBits=*/DB: nullptr, |
| 1261 | /*AC=*/nullptr, /*DT=*/nullptr, SE)) |
| 1262 | return std::nullopt; |
| 1263 | if (RdxDesc.hasUsesOutsideReductionChain()) |
| 1264 | return std::nullopt; |
| 1265 | RecurKind RK = RdxDesc.getRecurrenceKind(); |
| 1266 | // Skip unsupported reductions. |
| 1267 | // TODO: Handle additional reductions, including FP and min-max |
| 1268 | // reductions. |
| 1269 | if (RecurrenceDescriptor::isAnyOfRecurrenceKind(Kind: RK) || |
| 1270 | RecurrenceDescriptor::isFindRecurrenceKind(Kind: RK) || |
| 1271 | RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind: RK)) |
| 1272 | return std::nullopt; |
| 1273 | |
| 1274 | if (RdxDesc.hasExactFPMath()) |
| 1275 | return std::nullopt; |
| 1276 | |
| 1277 | if (RdxDesc.IntermediateStore) |
| 1278 | return std::nullopt; |
| 1279 | |
| 1280 | // Don't unroll reductions with constant ops; those can be folded to a |
| 1281 | // single induction update. |
| 1282 | if (any_of(Range: cast<Instruction>(Val: Phi.getIncomingValueForBlock(BB: L->getLoopLatch())) |
| 1283 | ->operands(), |
| 1284 | P: IsaPred<Constant>)) |
| 1285 | return std::nullopt; |
| 1286 | |
| 1287 | BasicBlock *Latch = L->getLoopLatch(); |
| 1288 | if (!Latch || |
| 1289 | !is_contained( |
| 1290 | Range: cast<Instruction>(Val: Phi.getIncomingValueForBlock(BB: Latch))->operands(), |
| 1291 | Element: &Phi)) |
| 1292 | return std::nullopt; |
| 1293 | |
| 1294 | return RdxDesc; |
| 1295 | } |
| 1296 | |