| 1 | //===- LowerMemIntrinsics.cpp ----------------------------------*- C++ -*--===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #include "llvm/Transforms/Utils/LowerMemIntrinsics.h" |
| 10 | #include "llvm/Analysis/ScalarEvolution.h" |
| 11 | #include "llvm/Analysis/TargetTransformInfo.h" |
| 12 | #include "llvm/IR/IRBuilder.h" |
| 13 | #include "llvm/IR/IntrinsicInst.h" |
| 14 | #include "llvm/IR/MDBuilder.h" |
| 15 | #include "llvm/IR/ProfDataUtils.h" |
| 16 | #include "llvm/ProfileData/InstrProf.h" |
| 17 | #include "llvm/Support/Debug.h" |
| 18 | #include "llvm/Support/MathExtras.h" |
| 19 | #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| 20 | #include "llvm/Transforms/Utils/LoopUtils.h" |
| 21 | #include <limits> |
| 22 | #include <optional> |
| 23 | |
| 24 | #define DEBUG_TYPE "lower-mem-intrinsics" |
| 25 | |
| 26 | using namespace llvm; |
| 27 | |
| 28 | namespace llvm { |
| 29 | extern cl::opt<bool> ProfcheckDisableMetadataFixes; |
| 30 | } |
| 31 | |
| 32 | /// \returns \p Len urem \p OpSize, checking for optimization opportunities. |
| 33 | /// \p OpSizeVal must be the integer value of the \c ConstantInt \p OpSize. |
| 34 | static Value *getRuntimeLoopRemainder(IRBuilderBase &B, Value *Len, |
| 35 | Value *OpSize, unsigned OpSizeVal) { |
| 36 | // For powers of 2, we can and by (OpSizeVal - 1) instead of using urem. |
| 37 | if (isPowerOf2_32(Value: OpSizeVal)) |
| 38 | return B.CreateAnd(LHS: Len, RHS: OpSizeVal - 1); |
| 39 | return B.CreateURem(LHS: Len, RHS: OpSize); |
| 40 | } |
| 41 | |
| 42 | /// \returns (\p Len udiv \p OpSize) mul \p OpSize, checking for optimization |
| 43 | /// opportunities. |
| 44 | /// If \p RTLoopRemainder is provided, it must be the result of |
| 45 | /// \c getRuntimeLoopRemainder() with the same arguments. |
| 46 | static Value *getRuntimeLoopUnits(IRBuilderBase &B, Value *Len, Value *OpSize, |
| 47 | unsigned OpSizeVal, |
| 48 | Value *RTLoopRemainder = nullptr) { |
| 49 | if (!RTLoopRemainder) |
| 50 | RTLoopRemainder = getRuntimeLoopRemainder(B, Len, OpSize, OpSizeVal); |
| 51 | return B.CreateSub(LHS: Len, RHS: RTLoopRemainder); |
| 52 | } |
| 53 | |
| 54 | namespace { |
| 55 | /// Container for the return values of insertLoopExpansion. |
| 56 | struct LoopExpansionInfo { |
| 57 | /// The instruction at the end of the main loop body. |
| 58 | Instruction *MainLoopIP = nullptr; |
| 59 | |
| 60 | /// The unit index in the main loop body. |
| 61 | Value *MainLoopIndex = nullptr; |
| 62 | |
| 63 | /// The instruction at the end of the residual loop body. Can be nullptr if no |
| 64 | /// residual is required. |
| 65 | Instruction *ResidualLoopIP = nullptr; |
| 66 | |
| 67 | /// The unit index in the residual loop body. Can be nullptr if no residual is |
| 68 | /// required. |
| 69 | Value *ResidualLoopIndex = nullptr; |
| 70 | }; |
| 71 | |
| 72 | std::optional<uint64_t> getAverageMemOpLoopTripCount(const MemIntrinsic &I) { |
| 73 | if (ProfcheckDisableMetadataFixes) |
| 74 | return std::nullopt; |
| 75 | if (std::optional<Function::ProfileCount> EC = |
| 76 | I.getFunction()->getEntryCount(); |
| 77 | !EC || !EC->getCount()) |
| 78 | return std::nullopt; |
| 79 | if (const auto Len = I.getLengthInBytes()) |
| 80 | return Len->getZExtValue(); |
| 81 | uint64_t Total = 0; |
| 82 | SmallVector<InstrProfValueData> ProfData = |
| 83 | getValueProfDataFromInst(Inst: I, ValueKind: InstrProfValueKind::IPVK_MemOPSize, |
| 84 | MaxNumValueData: std::numeric_limits<uint32_t>::max(), TotalC&: Total); |
| 85 | if (!Total) |
| 86 | return std::nullopt; |
| 87 | uint64_t TripCount = 0; |
| 88 | for (const auto &P : ProfData) |
| 89 | TripCount += P.Count * P.Value; |
| 90 | return std::round(x: 1.0 * TripCount / Total); |
| 91 | } |
| 92 | |
| 93 | } // namespace |
| 94 | |
| 95 | /// Insert the control flow and loop counters for a memcpy/memset loop |
| 96 | /// expansion. |
| 97 | /// |
| 98 | /// This function inserts IR corresponding to the following C code before |
| 99 | /// \p InsertBefore: |
| 100 | /// \code |
| 101 | /// LoopUnits = (Len / MainLoopStep) * MainLoopStep; |
| 102 | /// ResidualUnits = Len - LoopUnits; |
| 103 | /// MainLoopIndex = 0; |
| 104 | /// if (LoopUnits > 0) { |
| 105 | /// do { |
| 106 | /// // MainLoopIP |
| 107 | /// MainLoopIndex += MainLoopStep; |
| 108 | /// } while (MainLoopIndex < LoopUnits); |
| 109 | /// } |
| 110 | /// for (size_t i = 0; i < ResidualUnits; i += ResidualLoopStep) { |
| 111 | /// ResidualLoopIndex = LoopUnits + i; |
| 112 | /// // ResidualLoopIP |
| 113 | /// } |
| 114 | /// \endcode |
| 115 | /// |
| 116 | /// \p MainLoopStep and \p ResidualLoopStep determine by how many "units" the |
| 117 | /// loop index is increased in each iteration of the main and residual loops, |
| 118 | /// respectively. In most cases, the "unit" will be bytes, but larger units are |
| 119 | /// useful for lowering memset.pattern. |
| 120 | /// |
| 121 | /// The computation of \c LoopUnits and \c ResidualUnits is performed at compile |
| 122 | /// time if \p Len is a \c ConstantInt. |
| 123 | /// The second (residual) loop is omitted if \p ResidualLoopStep is 0 or equal |
| 124 | /// to \p MainLoopStep. |
| 125 | /// The generated \c MainLoopIP, \c MainLoopIndex, \c ResidualLoopIP, and |
| 126 | /// \c ResidualLoopIndex are returned in a \c LoopExpansionInfo object. |
| 127 | static LoopExpansionInfo |
| 128 | insertLoopExpansion(Instruction *InsertBefore, Value *Len, |
| 129 | unsigned MainLoopStep, unsigned ResidualLoopStep, |
| 130 | StringRef BBNamePrefix, |
| 131 | std::optional<uint64_t> AverageTripCount) { |
| 132 | assert((ResidualLoopStep == 0 || MainLoopStep % ResidualLoopStep == 0) && |
| 133 | "ResidualLoopStep must divide MainLoopStep if specified" ); |
| 134 | assert(ResidualLoopStep <= MainLoopStep && |
| 135 | "ResidualLoopStep cannot be larger than MainLoopStep" ); |
| 136 | assert(MainLoopStep > 0 && "MainLoopStep must be non-zero" ); |
| 137 | LoopExpansionInfo LEI; |
| 138 | BasicBlock *PreLoopBB = InsertBefore->getParent(); |
| 139 | BasicBlock *PostLoopBB = PreLoopBB->splitBasicBlock( |
| 140 | I: InsertBefore, BBName: BBNamePrefix + "-post-expansion" ); |
| 141 | Function *ParentFunc = PreLoopBB->getParent(); |
| 142 | LLVMContext &Ctx = PreLoopBB->getContext(); |
| 143 | const DebugLoc &DbgLoc = InsertBefore->getStableDebugLoc(); |
| 144 | IRBuilder<> PreLoopBuilder(PreLoopBB->getTerminator()); |
| 145 | PreLoopBuilder.SetCurrentDebugLocation(DbgLoc); |
| 146 | |
| 147 | // Calculate the main loop trip count and remaining units to cover after the |
| 148 | // loop. |
| 149 | Type *LenType = Len->getType(); |
| 150 | IntegerType *ILenType = cast<IntegerType>(Val: LenType); |
| 151 | ConstantInt *CIMainLoopStep = ConstantInt::get(Ty: ILenType, V: MainLoopStep); |
| 152 | |
| 153 | Value *LoopUnits = Len; |
| 154 | Value *ResidualUnits = nullptr; |
| 155 | // We can make a conditional branch unconditional if we know that the |
| 156 | // MainLoop must be executed at least once. |
| 157 | bool MustTakeMainLoop = false; |
| 158 | if (MainLoopStep != 1) { |
| 159 | if (auto *CLen = dyn_cast<ConstantInt>(Val: Len)) { |
| 160 | uint64_t TotalUnits = CLen->getZExtValue(); |
| 161 | uint64_t LoopEndCount = alignDown(Value: TotalUnits, Align: MainLoopStep); |
| 162 | uint64_t ResidualCount = TotalUnits - LoopEndCount; |
| 163 | LoopUnits = ConstantInt::get(Ty: LenType, V: LoopEndCount); |
| 164 | ResidualUnits = ConstantInt::get(Ty: LenType, V: ResidualCount); |
| 165 | MustTakeMainLoop = LoopEndCount > 0; |
| 166 | // As an optimization, we could skip generating the residual loop if |
| 167 | // ResidualCount is known to be 0. However, current uses of this function |
| 168 | // don't request a residual loop if the length is constant (they generate |
| 169 | // a (potentially empty) sequence of loads and stores instead), so this |
| 170 | // optimization would have no effect here. |
| 171 | } else { |
| 172 | ResidualUnits = getRuntimeLoopRemainder(B&: PreLoopBuilder, Len, |
| 173 | OpSize: CIMainLoopStep, OpSizeVal: MainLoopStep); |
| 174 | LoopUnits = getRuntimeLoopUnits(B&: PreLoopBuilder, Len, OpSize: CIMainLoopStep, |
| 175 | OpSizeVal: MainLoopStep, RTLoopRemainder: ResidualUnits); |
| 176 | } |
| 177 | } else if (auto *CLen = dyn_cast<ConstantInt>(Val: Len)) { |
| 178 | MustTakeMainLoop = CLen->getZExtValue() > 0; |
| 179 | } |
| 180 | |
| 181 | BasicBlock *MainLoopBB = BasicBlock::Create( |
| 182 | Context&: Ctx, Name: BBNamePrefix + "-expansion-main-body" , Parent: ParentFunc, InsertBefore: PostLoopBB); |
| 183 | IRBuilder<> LoopBuilder(MainLoopBB); |
| 184 | LoopBuilder.SetCurrentDebugLocation(DbgLoc); |
| 185 | |
| 186 | PHINode *LoopIndex = LoopBuilder.CreatePHI(Ty: LenType, NumReservedValues: 2, Name: "loop-index" ); |
| 187 | LEI.MainLoopIndex = LoopIndex; |
| 188 | LoopIndex->addIncoming(V: ConstantInt::get(Ty: LenType, V: 0U), BB: PreLoopBB); |
| 189 | |
| 190 | Value *NewIndex = |
| 191 | LoopBuilder.CreateAdd(LHS: LoopIndex, RHS: ConstantInt::get(Ty: LenType, V: MainLoopStep)); |
| 192 | LoopIndex->addIncoming(V: NewIndex, BB: MainLoopBB); |
| 193 | |
| 194 | // One argument of the addition is a loop-variant PHI, so it must be an |
| 195 | // Instruction (i.e., it cannot be a Constant). |
| 196 | LEI.MainLoopIP = cast<Instruction>(Val: NewIndex); |
| 197 | |
| 198 | if (ResidualLoopStep > 0 && ResidualLoopStep < MainLoopStep) { |
| 199 | // Loop body for the residual accesses. |
| 200 | BasicBlock *ResLoopBB = |
| 201 | BasicBlock::Create(Context&: Ctx, Name: BBNamePrefix + "-expansion-residual-body" , |
| 202 | Parent: PreLoopBB->getParent(), InsertBefore: PostLoopBB); |
| 203 | // BB to check if the residual loop is needed. |
| 204 | BasicBlock *ResidualCondBB = |
| 205 | BasicBlock::Create(Context&: Ctx, Name: BBNamePrefix + "-expansion-residual-cond" , |
| 206 | Parent: PreLoopBB->getParent(), InsertBefore: ResLoopBB); |
| 207 | |
| 208 | // Enter the MainLoop unless no main loop iteration is required. |
| 209 | ConstantInt *Zero = ConstantInt::get(Ty: ILenType, V: 0U); |
| 210 | if (MustTakeMainLoop) |
| 211 | PreLoopBuilder.CreateBr(Dest: MainLoopBB); |
| 212 | else { |
| 213 | auto *BR = PreLoopBuilder.CreateCondBr( |
| 214 | Cond: PreLoopBuilder.CreateICmpNE(LHS: LoopUnits, RHS: Zero), True: MainLoopBB, |
| 215 | False: ResidualCondBB); |
| 216 | if (AverageTripCount.has_value()) { |
| 217 | MDBuilder MDB(ParentFunc->getContext()); |
| 218 | setFittedBranchWeights(I&: *BR, |
| 219 | Weights: {AverageTripCount.value() % MainLoopStep, 1}, |
| 220 | /*IsExpected=*/false); |
| 221 | } else { |
| 222 | setExplicitlyUnknownBranchWeightsIfProfiled(I&: *BR, DEBUG_TYPE); |
| 223 | } |
| 224 | } |
| 225 | PreLoopBB->getTerminator()->eraseFromParent(); |
| 226 | |
| 227 | // Stay in the MainLoop until we have handled all the LoopUnits. Then go to |
| 228 | // the residual condition BB. |
| 229 | LoopBuilder.CreateCondBr(Cond: LoopBuilder.CreateICmpULT(LHS: NewIndex, RHS: LoopUnits), |
| 230 | True: MainLoopBB, False: ResidualCondBB); |
| 231 | |
| 232 | // Determine if we need to branch to the residual loop or bypass it. |
| 233 | IRBuilder<> RCBuilder(ResidualCondBB); |
| 234 | RCBuilder.SetCurrentDebugLocation(DbgLoc); |
| 235 | RCBuilder.CreateCondBr(Cond: RCBuilder.CreateICmpNE(LHS: ResidualUnits, RHS: Zero), |
| 236 | True: ResLoopBB, False: PostLoopBB); |
| 237 | |
| 238 | IRBuilder<> ResBuilder(ResLoopBB); |
| 239 | ResBuilder.SetCurrentDebugLocation(DbgLoc); |
| 240 | PHINode *ResidualIndex = |
| 241 | ResBuilder.CreatePHI(Ty: LenType, NumReservedValues: 2, Name: "residual-loop-index" ); |
| 242 | ResidualIndex->addIncoming(V: Zero, BB: ResidualCondBB); |
| 243 | |
| 244 | // Add the offset at the end of the main loop to the loop counter of the |
| 245 | // residual loop to get the proper index. |
| 246 | Value *FullOffset = ResBuilder.CreateAdd(LHS: LoopUnits, RHS: ResidualIndex); |
| 247 | LEI.ResidualLoopIndex = FullOffset; |
| 248 | |
| 249 | Value *ResNewIndex = ResBuilder.CreateAdd( |
| 250 | LHS: ResidualIndex, RHS: ConstantInt::get(Ty: LenType, V: ResidualLoopStep)); |
| 251 | ResidualIndex->addIncoming(V: ResNewIndex, BB: ResLoopBB); |
| 252 | |
| 253 | // One argument of the addition is a loop-variant PHI, so it must be an |
| 254 | // Instruction (i.e., it cannot be a Constant). |
| 255 | LEI.ResidualLoopIP = cast<Instruction>(Val: ResNewIndex); |
| 256 | |
| 257 | // Stay in the residual loop until all ResidualUnits are handled. |
| 258 | ResBuilder.CreateCondBr( |
| 259 | Cond: ResBuilder.CreateICmpULT(LHS: ResNewIndex, RHS: ResidualUnits), True: ResLoopBB, |
| 260 | False: PostLoopBB); |
| 261 | } else { |
| 262 | // There is no need for a residual loop after the main loop. We do however |
| 263 | // need to patch up the control flow by creating the terminators for the |
| 264 | // preloop block and the main loop. |
| 265 | |
| 266 | // Enter the MainLoop unless no main loop iteration is required. |
| 267 | if (MustTakeMainLoop) { |
| 268 | PreLoopBuilder.CreateBr(Dest: MainLoopBB); |
| 269 | } else { |
| 270 | ConstantInt *Zero = ConstantInt::get(Ty: ILenType, V: 0U); |
| 271 | MDBuilder B(ParentFunc->getContext()); |
| 272 | PreLoopBuilder.CreateCondBr(Cond: PreLoopBuilder.CreateICmpNE(LHS: LoopUnits, RHS: Zero), |
| 273 | True: MainLoopBB, False: PostLoopBB, |
| 274 | BranchWeights: B.createLikelyBranchWeights()); |
| 275 | } |
| 276 | PreLoopBB->getTerminator()->eraseFromParent(); |
| 277 | // Stay in the MainLoop until we have handled all the LoopUnits. |
| 278 | auto *Br = LoopBuilder.CreateCondBr( |
| 279 | Cond: LoopBuilder.CreateICmpULT(LHS: NewIndex, RHS: LoopUnits), True: MainLoopBB, False: PostLoopBB); |
| 280 | if (AverageTripCount.has_value()) |
| 281 | setFittedBranchWeights(I&: *Br, Weights: {AverageTripCount.value() / MainLoopStep, 1}, |
| 282 | /*IsExpected=*/false); |
| 283 | else |
| 284 | setExplicitlyUnknownBranchWeightsIfProfiled(I&: *Br, DEBUG_TYPE); |
| 285 | } |
| 286 | return LEI; |
| 287 | } |
| 288 | |
| 289 | void llvm::createMemCpyLoopKnownSize(Instruction *InsertBefore, Value *SrcAddr, |
| 290 | Value *DstAddr, ConstantInt *CopyLen, |
| 291 | Align SrcAlign, Align DstAlign, |
| 292 | bool SrcIsVolatile, bool DstIsVolatile, |
| 293 | bool CanOverlap, |
| 294 | const TargetTransformInfo &TTI, |
| 295 | std::optional<uint32_t> AtomicElementSize, |
| 296 | std::optional<uint64_t> AverageTripCount) { |
| 297 | // No need to expand zero length copies. |
| 298 | if (CopyLen->isZero()) |
| 299 | return; |
| 300 | |
| 301 | BasicBlock *PreLoopBB = InsertBefore->getParent(); |
| 302 | Function *ParentFunc = PreLoopBB->getParent(); |
| 303 | LLVMContext &Ctx = PreLoopBB->getContext(); |
| 304 | const DataLayout &DL = ParentFunc->getDataLayout(); |
| 305 | MDBuilder MDB(Ctx); |
| 306 | MDNode *NewDomain = MDB.createAnonymousAliasScopeDomain(Name: "MemCopyDomain" ); |
| 307 | StringRef Name = "MemCopyAliasScope" ; |
| 308 | MDNode *NewScope = MDB.createAnonymousAliasScope(Domain: NewDomain, Name); |
| 309 | |
| 310 | unsigned SrcAS = cast<PointerType>(Val: SrcAddr->getType())->getAddressSpace(); |
| 311 | unsigned DstAS = cast<PointerType>(Val: DstAddr->getType())->getAddressSpace(); |
| 312 | |
| 313 | Type *TypeOfCopyLen = CopyLen->getType(); |
| 314 | Type *LoopOpType = TTI.getMemcpyLoopLoweringType( |
| 315 | Context&: Ctx, Length: CopyLen, SrcAddrSpace: SrcAS, DestAddrSpace: DstAS, SrcAlign, DestAlign: DstAlign, AtomicElementSize); |
| 316 | assert((!AtomicElementSize || !LoopOpType->isVectorTy()) && |
| 317 | "Atomic memcpy lowering is not supported for vector operand type" ); |
| 318 | |
| 319 | Type *Int8Type = Type::getInt8Ty(C&: Ctx); |
| 320 | unsigned LoopOpSize = DL.getTypeStoreSize(Ty: LoopOpType); |
| 321 | assert((!AtomicElementSize || LoopOpSize % *AtomicElementSize == 0) && |
| 322 | "Atomic memcpy lowering is not supported for selected operand size" ); |
| 323 | |
| 324 | uint64_t LoopEndCount = alignDown(Value: CopyLen->getZExtValue(), Align: LoopOpSize); |
| 325 | |
| 326 | // Skip the loop expansion entirely if the loop would never be taken. |
| 327 | if (LoopEndCount != 0) { |
| 328 | LoopExpansionInfo LEI = |
| 329 | insertLoopExpansion(InsertBefore, Len: CopyLen, MainLoopStep: LoopOpSize, ResidualLoopStep: 0, |
| 330 | BBNamePrefix: "static-memcpy" , AverageTripCount); |
| 331 | |
| 332 | // Fill MainLoopBB |
| 333 | IRBuilder<> MainLoopBuilder(LEI.MainLoopIP); |
| 334 | Align PartDstAlign(commonAlignment(A: DstAlign, Offset: LoopOpSize)); |
| 335 | Align PartSrcAlign(commonAlignment(A: SrcAlign, Offset: LoopOpSize)); |
| 336 | |
| 337 | // If we used LoopOpType as GEP element type, we would iterate over the |
| 338 | // buffers in TypeStoreSize strides while copying TypeAllocSize bytes, i.e., |
| 339 | // we would miss bytes if TypeStoreSize != TypeAllocSize. Therefore, use |
| 340 | // byte offsets computed from the TypeStoreSize. |
| 341 | Value *SrcGEP = |
| 342 | MainLoopBuilder.CreateInBoundsGEP(Ty: Int8Type, Ptr: SrcAddr, IdxList: LEI.MainLoopIndex); |
| 343 | LoadInst *Load = MainLoopBuilder.CreateAlignedLoad( |
| 344 | Ty: LoopOpType, Ptr: SrcGEP, Align: PartSrcAlign, isVolatile: SrcIsVolatile); |
| 345 | if (!CanOverlap) { |
| 346 | // Set alias scope for loads. |
| 347 | Load->setMetadata(KindID: LLVMContext::MD_alias_scope, |
| 348 | Node: MDNode::get(Context&: Ctx, MDs: NewScope)); |
| 349 | } |
| 350 | Value *DstGEP = |
| 351 | MainLoopBuilder.CreateInBoundsGEP(Ty: Int8Type, Ptr: DstAddr, IdxList: LEI.MainLoopIndex); |
| 352 | StoreInst *Store = MainLoopBuilder.CreateAlignedStore( |
| 353 | Val: Load, Ptr: DstGEP, Align: PartDstAlign, isVolatile: DstIsVolatile); |
| 354 | if (!CanOverlap) { |
| 355 | // Indicate that stores don't overlap loads. |
| 356 | Store->setMetadata(KindID: LLVMContext::MD_noalias, Node: MDNode::get(Context&: Ctx, MDs: NewScope)); |
| 357 | } |
| 358 | if (AtomicElementSize) { |
| 359 | Load->setAtomic(Ordering: AtomicOrdering::Unordered); |
| 360 | Store->setAtomic(Ordering: AtomicOrdering::Unordered); |
| 361 | } |
| 362 | assert(!LEI.ResidualLoopIP && !LEI.ResidualLoopIndex && |
| 363 | "No residual loop was requested" ); |
| 364 | } |
| 365 | |
| 366 | // Copy the remaining bytes with straight-line code. |
| 367 | uint64_t BytesCopied = LoopEndCount; |
| 368 | uint64_t RemainingBytes = CopyLen->getZExtValue() - BytesCopied; |
| 369 | if (RemainingBytes == 0) |
| 370 | return; |
| 371 | |
| 372 | IRBuilder<> RBuilder(InsertBefore); |
| 373 | SmallVector<Type *, 5> RemainingOps; |
| 374 | TTI.getMemcpyLoopResidualLoweringType(OpsOut&: RemainingOps, Context&: Ctx, RemainingBytes, |
| 375 | SrcAddrSpace: SrcAS, DestAddrSpace: DstAS, SrcAlign, DestAlign: DstAlign, |
| 376 | AtomicCpySize: AtomicElementSize); |
| 377 | |
| 378 | for (auto *OpTy : RemainingOps) { |
| 379 | Align PartSrcAlign(commonAlignment(A: SrcAlign, Offset: BytesCopied)); |
| 380 | Align PartDstAlign(commonAlignment(A: DstAlign, Offset: BytesCopied)); |
| 381 | |
| 382 | unsigned OperandSize = DL.getTypeStoreSize(Ty: OpTy); |
| 383 | assert((!AtomicElementSize || OperandSize % *AtomicElementSize == 0) && |
| 384 | "Atomic memcpy lowering is not supported for selected operand size" ); |
| 385 | |
| 386 | Value *SrcGEP = RBuilder.CreateInBoundsGEP( |
| 387 | Ty: Int8Type, Ptr: SrcAddr, IdxList: ConstantInt::get(Ty: TypeOfCopyLen, V: BytesCopied)); |
| 388 | LoadInst *Load = |
| 389 | RBuilder.CreateAlignedLoad(Ty: OpTy, Ptr: SrcGEP, Align: PartSrcAlign, isVolatile: SrcIsVolatile); |
| 390 | if (!CanOverlap) { |
| 391 | // Set alias scope for loads. |
| 392 | Load->setMetadata(KindID: LLVMContext::MD_alias_scope, |
| 393 | Node: MDNode::get(Context&: Ctx, MDs: NewScope)); |
| 394 | } |
| 395 | Value *DstGEP = RBuilder.CreateInBoundsGEP( |
| 396 | Ty: Int8Type, Ptr: DstAddr, IdxList: ConstantInt::get(Ty: TypeOfCopyLen, V: BytesCopied)); |
| 397 | StoreInst *Store = |
| 398 | RBuilder.CreateAlignedStore(Val: Load, Ptr: DstGEP, Align: PartDstAlign, isVolatile: DstIsVolatile); |
| 399 | if (!CanOverlap) { |
| 400 | // Indicate that stores don't overlap loads. |
| 401 | Store->setMetadata(KindID: LLVMContext::MD_noalias, Node: MDNode::get(Context&: Ctx, MDs: NewScope)); |
| 402 | } |
| 403 | if (AtomicElementSize) { |
| 404 | Load->setAtomic(Ordering: AtomicOrdering::Unordered); |
| 405 | Store->setAtomic(Ordering: AtomicOrdering::Unordered); |
| 406 | } |
| 407 | BytesCopied += OperandSize; |
| 408 | } |
| 409 | assert(BytesCopied == CopyLen->getZExtValue() && |
| 410 | "Bytes copied should match size in the call!" ); |
| 411 | } |
| 412 | |
| 413 | void llvm::createMemCpyLoopUnknownSize( |
| 414 | Instruction *InsertBefore, Value *SrcAddr, Value *DstAddr, Value *CopyLen, |
| 415 | Align SrcAlign, Align DstAlign, bool SrcIsVolatile, bool DstIsVolatile, |
| 416 | bool CanOverlap, const TargetTransformInfo &TTI, |
| 417 | std::optional<uint32_t> AtomicElementSize, |
| 418 | std::optional<uint64_t> AverageTripCount) { |
| 419 | BasicBlock *PreLoopBB = InsertBefore->getParent(); |
| 420 | Function *ParentFunc = PreLoopBB->getParent(); |
| 421 | const DataLayout &DL = ParentFunc->getDataLayout(); |
| 422 | LLVMContext &Ctx = PreLoopBB->getContext(); |
| 423 | MDBuilder MDB(Ctx); |
| 424 | MDNode *NewDomain = MDB.createAnonymousAliasScopeDomain(Name: "MemCopyDomain" ); |
| 425 | StringRef Name = "MemCopyAliasScope" ; |
| 426 | MDNode *NewScope = MDB.createAnonymousAliasScope(Domain: NewDomain, Name); |
| 427 | |
| 428 | unsigned SrcAS = cast<PointerType>(Val: SrcAddr->getType())->getAddressSpace(); |
| 429 | unsigned DstAS = cast<PointerType>(Val: DstAddr->getType())->getAddressSpace(); |
| 430 | |
| 431 | Type *LoopOpType = TTI.getMemcpyLoopLoweringType( |
| 432 | Context&: Ctx, Length: CopyLen, SrcAddrSpace: SrcAS, DestAddrSpace: DstAS, SrcAlign, DestAlign: DstAlign, AtomicElementSize); |
| 433 | assert((!AtomicElementSize || !LoopOpType->isVectorTy()) && |
| 434 | "Atomic memcpy lowering is not supported for vector operand type" ); |
| 435 | unsigned LoopOpSize = DL.getTypeStoreSize(Ty: LoopOpType); |
| 436 | assert((!AtomicElementSize || LoopOpSize % *AtomicElementSize == 0) && |
| 437 | "Atomic memcpy lowering is not supported for selected operand size" ); |
| 438 | |
| 439 | Type *Int8Type = Type::getInt8Ty(C&: Ctx); |
| 440 | |
| 441 | Type *ResidualLoopOpType = AtomicElementSize |
| 442 | ? Type::getIntNTy(C&: Ctx, N: *AtomicElementSize * 8) |
| 443 | : Int8Type; |
| 444 | unsigned ResidualLoopOpSize = DL.getTypeStoreSize(Ty: ResidualLoopOpType); |
| 445 | assert(ResidualLoopOpSize == (AtomicElementSize ? *AtomicElementSize : 1) && |
| 446 | "Store size is expected to match type size" ); |
| 447 | |
| 448 | LoopExpansionInfo LEI = |
| 449 | insertLoopExpansion(InsertBefore, Len: CopyLen, MainLoopStep: LoopOpSize, ResidualLoopStep: ResidualLoopOpSize, |
| 450 | BBNamePrefix: "dynamic-memcpy" , AverageTripCount); |
| 451 | |
| 452 | // Fill MainLoopBB |
| 453 | IRBuilder<> MainLoopBuilder(LEI.MainLoopIP); |
| 454 | Align PartSrcAlign(commonAlignment(A: SrcAlign, Offset: LoopOpSize)); |
| 455 | Align PartDstAlign(commonAlignment(A: DstAlign, Offset: LoopOpSize)); |
| 456 | |
| 457 | // If we used LoopOpType as GEP element type, we would iterate over the |
| 458 | // buffers in TypeStoreSize strides while copying TypeAllocSize bytes, i.e., |
| 459 | // we would miss bytes if TypeStoreSize != TypeAllocSize. Therefore, use byte |
| 460 | // offsets computed from the TypeStoreSize. |
| 461 | Value *SrcGEP = |
| 462 | MainLoopBuilder.CreateInBoundsGEP(Ty: Int8Type, Ptr: SrcAddr, IdxList: LEI.MainLoopIndex); |
| 463 | LoadInst *Load = MainLoopBuilder.CreateAlignedLoad( |
| 464 | Ty: LoopOpType, Ptr: SrcGEP, Align: PartSrcAlign, isVolatile: SrcIsVolatile); |
| 465 | if (!CanOverlap) { |
| 466 | // Set alias scope for loads. |
| 467 | Load->setMetadata(KindID: LLVMContext::MD_alias_scope, Node: MDNode::get(Context&: Ctx, MDs: NewScope)); |
| 468 | } |
| 469 | Value *DstGEP = |
| 470 | MainLoopBuilder.CreateInBoundsGEP(Ty: Int8Type, Ptr: DstAddr, IdxList: LEI.MainLoopIndex); |
| 471 | StoreInst *Store = MainLoopBuilder.CreateAlignedStore( |
| 472 | Val: Load, Ptr: DstGEP, Align: PartDstAlign, isVolatile: DstIsVolatile); |
| 473 | if (!CanOverlap) { |
| 474 | // Indicate that stores don't overlap loads. |
| 475 | Store->setMetadata(KindID: LLVMContext::MD_noalias, Node: MDNode::get(Context&: Ctx, MDs: NewScope)); |
| 476 | } |
| 477 | if (AtomicElementSize) { |
| 478 | Load->setAtomic(Ordering: AtomicOrdering::Unordered); |
| 479 | Store->setAtomic(Ordering: AtomicOrdering::Unordered); |
| 480 | } |
| 481 | |
| 482 | // Fill ResidualLoopBB. |
| 483 | if (!LEI.ResidualLoopIP) |
| 484 | return; |
| 485 | |
| 486 | Align ResSrcAlign(commonAlignment(A: PartSrcAlign, Offset: ResidualLoopOpSize)); |
| 487 | Align ResDstAlign(commonAlignment(A: PartDstAlign, Offset: ResidualLoopOpSize)); |
| 488 | |
| 489 | IRBuilder<> ResLoopBuilder(LEI.ResidualLoopIP); |
| 490 | Value *ResSrcGEP = ResLoopBuilder.CreateInBoundsGEP(Ty: Int8Type, Ptr: SrcAddr, |
| 491 | IdxList: LEI.ResidualLoopIndex); |
| 492 | LoadInst *ResLoad = ResLoopBuilder.CreateAlignedLoad( |
| 493 | Ty: ResidualLoopOpType, Ptr: ResSrcGEP, Align: ResSrcAlign, isVolatile: SrcIsVolatile); |
| 494 | if (!CanOverlap) { |
| 495 | // Set alias scope for loads. |
| 496 | ResLoad->setMetadata(KindID: LLVMContext::MD_alias_scope, |
| 497 | Node: MDNode::get(Context&: Ctx, MDs: NewScope)); |
| 498 | } |
| 499 | Value *ResDstGEP = ResLoopBuilder.CreateInBoundsGEP(Ty: Int8Type, Ptr: DstAddr, |
| 500 | IdxList: LEI.ResidualLoopIndex); |
| 501 | StoreInst *ResStore = ResLoopBuilder.CreateAlignedStore( |
| 502 | Val: ResLoad, Ptr: ResDstGEP, Align: ResDstAlign, isVolatile: DstIsVolatile); |
| 503 | if (!CanOverlap) { |
| 504 | // Indicate that stores don't overlap loads. |
| 505 | ResStore->setMetadata(KindID: LLVMContext::MD_noalias, Node: MDNode::get(Context&: Ctx, MDs: NewScope)); |
| 506 | } |
| 507 | if (AtomicElementSize) { |
| 508 | ResLoad->setAtomic(Ordering: AtomicOrdering::Unordered); |
| 509 | ResStore->setAtomic(Ordering: AtomicOrdering::Unordered); |
| 510 | } |
| 511 | } |
| 512 | |
| 513 | // If \p Addr1 and \p Addr2 are pointers to different address spaces, create an |
| 514 | // addresspacecast to obtain a pair of pointers in the same addressspace. The |
| 515 | // caller needs to ensure that addrspacecasting is possible. |
| 516 | // No-op if the pointers are in the same address space. |
| 517 | static std::pair<Value *, Value *> |
| 518 | tryInsertCastToCommonAddrSpace(IRBuilderBase &B, Value *Addr1, Value *Addr2, |
| 519 | const TargetTransformInfo &TTI) { |
| 520 | Value *ResAddr1 = Addr1; |
| 521 | Value *ResAddr2 = Addr2; |
| 522 | |
| 523 | unsigned AS1 = cast<PointerType>(Val: Addr1->getType())->getAddressSpace(); |
| 524 | unsigned AS2 = cast<PointerType>(Val: Addr2->getType())->getAddressSpace(); |
| 525 | if (AS1 != AS2) { |
| 526 | if (TTI.isValidAddrSpaceCast(FromAS: AS2, ToAS: AS1)) |
| 527 | ResAddr2 = B.CreateAddrSpaceCast(V: Addr2, DestTy: Addr1->getType()); |
| 528 | else if (TTI.isValidAddrSpaceCast(FromAS: AS1, ToAS: AS2)) |
| 529 | ResAddr1 = B.CreateAddrSpaceCast(V: Addr1, DestTy: Addr2->getType()); |
| 530 | else |
| 531 | llvm_unreachable("Can only lower memmove between address spaces if they " |
| 532 | "support addrspacecast" ); |
| 533 | } |
| 534 | return {ResAddr1, ResAddr2}; |
| 535 | } |
| 536 | |
| 537 | // Lower memmove to IR. memmove is required to correctly copy overlapping memory |
| 538 | // regions; therefore, it has to check the relative positions of the source and |
| 539 | // destination pointers and choose the copy direction accordingly. |
| 540 | // |
| 541 | // The code below is an IR rendition of this C function: |
| 542 | // |
| 543 | // void* memmove(void* dst, const void* src, size_t n) { |
| 544 | // unsigned char* d = dst; |
| 545 | // const unsigned char* s = src; |
| 546 | // if (s < d) { |
| 547 | // // copy backwards |
| 548 | // while (n--) { |
| 549 | // d[n] = s[n]; |
| 550 | // } |
| 551 | // } else { |
| 552 | // // copy forward |
| 553 | // for (size_t i = 0; i < n; ++i) { |
| 554 | // d[i] = s[i]; |
| 555 | // } |
| 556 | // } |
| 557 | // return dst; |
| 558 | // } |
| 559 | // |
| 560 | // If the TargetTransformInfo specifies a wider MemcpyLoopLoweringType, it is |
| 561 | // used for the memory accesses in the loops. Then, additional loops with |
| 562 | // byte-wise accesses are added for the remaining bytes. |
| 563 | static void createMemMoveLoopUnknownSize(Instruction *InsertBefore, |
| 564 | Value *SrcAddr, Value *DstAddr, |
| 565 | Value *CopyLen, Align SrcAlign, |
| 566 | Align DstAlign, bool SrcIsVolatile, |
| 567 | bool DstIsVolatile, |
| 568 | const TargetTransformInfo &TTI) { |
| 569 | Type *TypeOfCopyLen = CopyLen->getType(); |
| 570 | BasicBlock *OrigBB = InsertBefore->getParent(); |
| 571 | Function *F = OrigBB->getParent(); |
| 572 | const DataLayout &DL = F->getDataLayout(); |
| 573 | LLVMContext &Ctx = OrigBB->getContext(); |
| 574 | unsigned SrcAS = cast<PointerType>(Val: SrcAddr->getType())->getAddressSpace(); |
| 575 | unsigned DstAS = cast<PointerType>(Val: DstAddr->getType())->getAddressSpace(); |
| 576 | |
| 577 | Type *LoopOpType = TTI.getMemcpyLoopLoweringType(Context&: Ctx, Length: CopyLen, SrcAddrSpace: SrcAS, DestAddrSpace: DstAS, |
| 578 | SrcAlign, DestAlign: DstAlign); |
| 579 | unsigned LoopOpSize = DL.getTypeStoreSize(Ty: LoopOpType); |
| 580 | Type *Int8Type = Type::getInt8Ty(C&: Ctx); |
| 581 | bool LoopOpIsInt8 = LoopOpType == Int8Type; |
| 582 | |
| 583 | // If the memory accesses are wider than one byte, residual loops with |
| 584 | // i8-accesses are required to move remaining bytes. |
| 585 | bool RequiresResidual = !LoopOpIsInt8; |
| 586 | |
| 587 | Type *ResidualLoopOpType = Int8Type; |
| 588 | unsigned ResidualLoopOpSize = DL.getTypeStoreSize(Ty: ResidualLoopOpType); |
| 589 | |
| 590 | // Calculate the loop trip count and remaining bytes to copy after the loop. |
| 591 | IntegerType *ILengthType = cast<IntegerType>(Val: TypeOfCopyLen); |
| 592 | ConstantInt *CILoopOpSize = ConstantInt::get(Ty: ILengthType, V: LoopOpSize); |
| 593 | ConstantInt *CIResidualLoopOpSize = |
| 594 | ConstantInt::get(Ty: ILengthType, V: ResidualLoopOpSize); |
| 595 | ConstantInt *Zero = ConstantInt::get(Ty: ILengthType, V: 0); |
| 596 | |
| 597 | const DebugLoc &DbgLoc = InsertBefore->getStableDebugLoc(); |
| 598 | IRBuilder<> PLBuilder(InsertBefore); |
| 599 | PLBuilder.SetCurrentDebugLocation(DbgLoc); |
| 600 | |
| 601 | Value *RuntimeLoopBytes = CopyLen; |
| 602 | Value *RuntimeLoopRemainder = nullptr; |
| 603 | Value *SkipResidualCondition = nullptr; |
| 604 | if (RequiresResidual) { |
| 605 | RuntimeLoopRemainder = |
| 606 | getRuntimeLoopRemainder(B&: PLBuilder, Len: CopyLen, OpSize: CILoopOpSize, OpSizeVal: LoopOpSize); |
| 607 | RuntimeLoopBytes = getRuntimeLoopUnits(B&: PLBuilder, Len: CopyLen, OpSize: CILoopOpSize, |
| 608 | OpSizeVal: LoopOpSize, RTLoopRemainder: RuntimeLoopRemainder); |
| 609 | SkipResidualCondition = |
| 610 | PLBuilder.CreateICmpEQ(LHS: RuntimeLoopRemainder, RHS: Zero, Name: "skip_residual" ); |
| 611 | } |
| 612 | Value *SkipMainCondition = |
| 613 | PLBuilder.CreateICmpEQ(LHS: RuntimeLoopBytes, RHS: Zero, Name: "skip_main" ); |
| 614 | |
| 615 | // Create the a comparison of src and dst, based on which we jump to either |
| 616 | // the forward-copy part of the function (if src >= dst) or the backwards-copy |
| 617 | // part (if src < dst). |
| 618 | // SplitBlockAndInsertIfThenElse conveniently creates the basic if-then-else |
| 619 | // structure. Its block terminators (unconditional branches) are replaced by |
| 620 | // the appropriate conditional branches when the loop is built. |
| 621 | // If the pointers are in different address spaces, they need to be converted |
| 622 | // to a compatible one. Cases where memory ranges in the different address |
| 623 | // spaces cannot overlap are lowered as memcpy and not handled here. |
| 624 | auto [CmpSrcAddr, CmpDstAddr] = |
| 625 | tryInsertCastToCommonAddrSpace(B&: PLBuilder, Addr1: SrcAddr, Addr2: DstAddr, TTI); |
| 626 | Value *PtrCompare = |
| 627 | PLBuilder.CreateICmpULT(LHS: CmpSrcAddr, RHS: CmpDstAddr, Name: "compare_src_dst" ); |
| 628 | Instruction *ThenTerm, *ElseTerm; |
| 629 | SplitBlockAndInsertIfThenElse(Cond: PtrCompare, SplitBefore: InsertBefore->getIterator(), |
| 630 | ThenTerm: &ThenTerm, ElseTerm: &ElseTerm); |
| 631 | |
| 632 | // If the LoopOpSize is greater than 1, each part of the function consists of |
| 633 | // four blocks: |
| 634 | // memmove_copy_backwards: |
| 635 | // skip the residual loop when 0 iterations are required |
| 636 | // memmove_bwd_residual_loop: |
| 637 | // copy the last few bytes individually so that the remaining length is |
| 638 | // a multiple of the LoopOpSize |
| 639 | // memmove_bwd_middle: skip the main loop when 0 iterations are required |
| 640 | // memmove_bwd_main_loop: the actual backwards loop BB with wide accesses |
| 641 | // memmove_copy_forward: skip the main loop when 0 iterations are required |
| 642 | // memmove_fwd_main_loop: the actual forward loop BB with wide accesses |
| 643 | // memmove_fwd_middle: skip the residual loop when 0 iterations are required |
| 644 | // memmove_fwd_residual_loop: copy the last few bytes individually |
| 645 | // |
| 646 | // The main and residual loop are switched between copying forward and |
| 647 | // backward so that the residual loop always operates on the end of the moved |
| 648 | // range. This is based on the assumption that buffers whose start is aligned |
| 649 | // with the LoopOpSize are more common than buffers whose end is. |
| 650 | // |
| 651 | // If the LoopOpSize is 1, each part of the function consists of two blocks: |
| 652 | // memmove_copy_backwards: skip the loop when 0 iterations are required |
| 653 | // memmove_bwd_main_loop: the actual backwards loop BB |
| 654 | // memmove_copy_forward: skip the loop when 0 iterations are required |
| 655 | // memmove_fwd_main_loop: the actual forward loop BB |
| 656 | BasicBlock *CopyBackwardsBB = ThenTerm->getParent(); |
| 657 | CopyBackwardsBB->setName("memmove_copy_backwards" ); |
| 658 | BasicBlock *CopyForwardBB = ElseTerm->getParent(); |
| 659 | CopyForwardBB->setName("memmove_copy_forward" ); |
| 660 | BasicBlock *ExitBB = InsertBefore->getParent(); |
| 661 | ExitBB->setName("memmove_done" ); |
| 662 | |
| 663 | Align PartSrcAlign(commonAlignment(A: SrcAlign, Offset: LoopOpSize)); |
| 664 | Align PartDstAlign(commonAlignment(A: DstAlign, Offset: LoopOpSize)); |
| 665 | |
| 666 | // Accesses in the residual loops do not share the same alignment as those in |
| 667 | // the main loops. |
| 668 | Align ResidualSrcAlign(commonAlignment(A: PartSrcAlign, Offset: ResidualLoopOpSize)); |
| 669 | Align ResidualDstAlign(commonAlignment(A: PartDstAlign, Offset: ResidualLoopOpSize)); |
| 670 | |
| 671 | // Copying backwards. |
| 672 | { |
| 673 | BasicBlock *MainLoopBB = BasicBlock::Create( |
| 674 | Context&: F->getContext(), Name: "memmove_bwd_main_loop" , Parent: F, InsertBefore: CopyForwardBB); |
| 675 | |
| 676 | // The predecessor of the memmove_bwd_main_loop. Updated in the |
| 677 | // following if a residual loop is emitted first. |
| 678 | BasicBlock *PredBB = CopyBackwardsBB; |
| 679 | |
| 680 | if (RequiresResidual) { |
| 681 | // backwards residual loop |
| 682 | BasicBlock *ResidualLoopBB = BasicBlock::Create( |
| 683 | Context&: F->getContext(), Name: "memmove_bwd_residual_loop" , Parent: F, InsertBefore: MainLoopBB); |
| 684 | IRBuilder<> ResidualLoopBuilder(ResidualLoopBB); |
| 685 | ResidualLoopBuilder.SetCurrentDebugLocation(DbgLoc); |
| 686 | PHINode *ResidualLoopPhi = ResidualLoopBuilder.CreatePHI(Ty: ILengthType, NumReservedValues: 0); |
| 687 | Value *ResidualIndex = ResidualLoopBuilder.CreateSub( |
| 688 | LHS: ResidualLoopPhi, RHS: CIResidualLoopOpSize, Name: "bwd_residual_index" ); |
| 689 | // If we used LoopOpType as GEP element type, we would iterate over the |
| 690 | // buffers in TypeStoreSize strides while copying TypeAllocSize bytes, |
| 691 | // i.e., we would miss bytes if TypeStoreSize != TypeAllocSize. Therefore, |
| 692 | // use byte offsets computed from the TypeStoreSize. |
| 693 | Value *LoadGEP = ResidualLoopBuilder.CreateInBoundsGEP(Ty: Int8Type, Ptr: SrcAddr, |
| 694 | IdxList: ResidualIndex); |
| 695 | Value *Element = ResidualLoopBuilder.CreateAlignedLoad( |
| 696 | Ty: ResidualLoopOpType, Ptr: LoadGEP, Align: ResidualSrcAlign, isVolatile: SrcIsVolatile, |
| 697 | Name: "element" ); |
| 698 | Value *StoreGEP = ResidualLoopBuilder.CreateInBoundsGEP(Ty: Int8Type, Ptr: DstAddr, |
| 699 | IdxList: ResidualIndex); |
| 700 | ResidualLoopBuilder.CreateAlignedStore(Val: Element, Ptr: StoreGEP, |
| 701 | Align: ResidualDstAlign, isVolatile: DstIsVolatile); |
| 702 | |
| 703 | // After the residual loop, go to an intermediate block. |
| 704 | BasicBlock *IntermediateBB = BasicBlock::Create( |
| 705 | Context&: F->getContext(), Name: "memmove_bwd_middle" , Parent: F, InsertBefore: MainLoopBB); |
| 706 | // Later code expects a terminator in the PredBB. |
| 707 | IRBuilder<> IntermediateBuilder(IntermediateBB); |
| 708 | IntermediateBuilder.SetCurrentDebugLocation(DbgLoc); |
| 709 | IntermediateBuilder.CreateUnreachable(); |
| 710 | ResidualLoopBuilder.CreateCondBr( |
| 711 | Cond: ResidualLoopBuilder.CreateICmpEQ(LHS: ResidualIndex, RHS: RuntimeLoopBytes), |
| 712 | True: IntermediateBB, False: ResidualLoopBB); |
| 713 | |
| 714 | ResidualLoopPhi->addIncoming(V: ResidualIndex, BB: ResidualLoopBB); |
| 715 | ResidualLoopPhi->addIncoming(V: CopyLen, BB: CopyBackwardsBB); |
| 716 | |
| 717 | // How to get to the residual: |
| 718 | BranchInst *BrInst = |
| 719 | BranchInst::Create(IfTrue: IntermediateBB, IfFalse: ResidualLoopBB, |
| 720 | Cond: SkipResidualCondition, InsertBefore: ThenTerm->getIterator()); |
| 721 | BrInst->setDebugLoc(DbgLoc); |
| 722 | ThenTerm->eraseFromParent(); |
| 723 | |
| 724 | PredBB = IntermediateBB; |
| 725 | } |
| 726 | |
| 727 | // main loop |
| 728 | IRBuilder<> MainLoopBuilder(MainLoopBB); |
| 729 | MainLoopBuilder.SetCurrentDebugLocation(DbgLoc); |
| 730 | PHINode *MainLoopPhi = MainLoopBuilder.CreatePHI(Ty: ILengthType, NumReservedValues: 0); |
| 731 | Value *MainIndex = |
| 732 | MainLoopBuilder.CreateSub(LHS: MainLoopPhi, RHS: CILoopOpSize, Name: "bwd_main_index" ); |
| 733 | Value *LoadGEP = |
| 734 | MainLoopBuilder.CreateInBoundsGEP(Ty: Int8Type, Ptr: SrcAddr, IdxList: MainIndex); |
| 735 | Value *Element = MainLoopBuilder.CreateAlignedLoad( |
| 736 | Ty: LoopOpType, Ptr: LoadGEP, Align: PartSrcAlign, isVolatile: SrcIsVolatile, Name: "element" ); |
| 737 | Value *StoreGEP = |
| 738 | MainLoopBuilder.CreateInBoundsGEP(Ty: Int8Type, Ptr: DstAddr, IdxList: MainIndex); |
| 739 | MainLoopBuilder.CreateAlignedStore(Val: Element, Ptr: StoreGEP, Align: PartDstAlign, |
| 740 | isVolatile: DstIsVolatile); |
| 741 | MainLoopBuilder.CreateCondBr(Cond: MainLoopBuilder.CreateICmpEQ(LHS: MainIndex, RHS: Zero), |
| 742 | True: ExitBB, False: MainLoopBB); |
| 743 | MainLoopPhi->addIncoming(V: MainIndex, BB: MainLoopBB); |
| 744 | MainLoopPhi->addIncoming(V: RuntimeLoopBytes, BB: PredBB); |
| 745 | |
| 746 | // How to get to the main loop: |
| 747 | Instruction *PredBBTerm = PredBB->getTerminator(); |
| 748 | BranchInst *BrInst = BranchInst::Create( |
| 749 | IfTrue: ExitBB, IfFalse: MainLoopBB, Cond: SkipMainCondition, InsertBefore: PredBBTerm->getIterator()); |
| 750 | BrInst->setDebugLoc(DbgLoc); |
| 751 | PredBBTerm->eraseFromParent(); |
| 752 | } |
| 753 | |
| 754 | // Copying forward. |
| 755 | // main loop |
| 756 | { |
| 757 | BasicBlock *MainLoopBB = |
| 758 | BasicBlock::Create(Context&: F->getContext(), Name: "memmove_fwd_main_loop" , Parent: F, InsertBefore: ExitBB); |
| 759 | IRBuilder<> MainLoopBuilder(MainLoopBB); |
| 760 | MainLoopBuilder.SetCurrentDebugLocation(DbgLoc); |
| 761 | PHINode *MainLoopPhi = |
| 762 | MainLoopBuilder.CreatePHI(Ty: ILengthType, NumReservedValues: 0, Name: "fwd_main_index" ); |
| 763 | Value *LoadGEP = |
| 764 | MainLoopBuilder.CreateInBoundsGEP(Ty: Int8Type, Ptr: SrcAddr, IdxList: MainLoopPhi); |
| 765 | Value *Element = MainLoopBuilder.CreateAlignedLoad( |
| 766 | Ty: LoopOpType, Ptr: LoadGEP, Align: PartSrcAlign, isVolatile: SrcIsVolatile, Name: "element" ); |
| 767 | Value *StoreGEP = |
| 768 | MainLoopBuilder.CreateInBoundsGEP(Ty: Int8Type, Ptr: DstAddr, IdxList: MainLoopPhi); |
| 769 | MainLoopBuilder.CreateAlignedStore(Val: Element, Ptr: StoreGEP, Align: PartDstAlign, |
| 770 | isVolatile: DstIsVolatile); |
| 771 | Value *MainIndex = MainLoopBuilder.CreateAdd(LHS: MainLoopPhi, RHS: CILoopOpSize); |
| 772 | MainLoopPhi->addIncoming(V: MainIndex, BB: MainLoopBB); |
| 773 | MainLoopPhi->addIncoming(V: Zero, BB: CopyForwardBB); |
| 774 | |
| 775 | Instruction *CopyFwdBBTerm = CopyForwardBB->getTerminator(); |
| 776 | BasicBlock *SuccessorBB = ExitBB; |
| 777 | if (RequiresResidual) |
| 778 | SuccessorBB = |
| 779 | BasicBlock::Create(Context&: F->getContext(), Name: "memmove_fwd_middle" , Parent: F, InsertBefore: ExitBB); |
| 780 | |
| 781 | // leaving or staying in the main loop |
| 782 | MainLoopBuilder.CreateCondBr( |
| 783 | Cond: MainLoopBuilder.CreateICmpEQ(LHS: MainIndex, RHS: RuntimeLoopBytes), True: SuccessorBB, |
| 784 | False: MainLoopBB); |
| 785 | |
| 786 | // getting in or skipping the main loop |
| 787 | BranchInst *BrInst = |
| 788 | BranchInst::Create(IfTrue: SuccessorBB, IfFalse: MainLoopBB, Cond: SkipMainCondition, |
| 789 | InsertBefore: CopyFwdBBTerm->getIterator()); |
| 790 | BrInst->setDebugLoc(DbgLoc); |
| 791 | CopyFwdBBTerm->eraseFromParent(); |
| 792 | |
| 793 | if (RequiresResidual) { |
| 794 | BasicBlock *IntermediateBB = SuccessorBB; |
| 795 | IRBuilder<> IntermediateBuilder(IntermediateBB); |
| 796 | IntermediateBuilder.SetCurrentDebugLocation(DbgLoc); |
| 797 | BasicBlock *ResidualLoopBB = BasicBlock::Create( |
| 798 | Context&: F->getContext(), Name: "memmove_fwd_residual_loop" , Parent: F, InsertBefore: ExitBB); |
| 799 | IntermediateBuilder.CreateCondBr(Cond: SkipResidualCondition, True: ExitBB, |
| 800 | False: ResidualLoopBB); |
| 801 | |
| 802 | // Residual loop |
| 803 | IRBuilder<> ResidualLoopBuilder(ResidualLoopBB); |
| 804 | ResidualLoopBuilder.SetCurrentDebugLocation(DbgLoc); |
| 805 | PHINode *ResidualLoopPhi = |
| 806 | ResidualLoopBuilder.CreatePHI(Ty: ILengthType, NumReservedValues: 0, Name: "fwd_residual_index" ); |
| 807 | Value *LoadGEP = ResidualLoopBuilder.CreateInBoundsGEP(Ty: Int8Type, Ptr: SrcAddr, |
| 808 | IdxList: ResidualLoopPhi); |
| 809 | Value *Element = ResidualLoopBuilder.CreateAlignedLoad( |
| 810 | Ty: ResidualLoopOpType, Ptr: LoadGEP, Align: ResidualSrcAlign, isVolatile: SrcIsVolatile, |
| 811 | Name: "element" ); |
| 812 | Value *StoreGEP = ResidualLoopBuilder.CreateInBoundsGEP(Ty: Int8Type, Ptr: DstAddr, |
| 813 | IdxList: ResidualLoopPhi); |
| 814 | ResidualLoopBuilder.CreateAlignedStore(Val: Element, Ptr: StoreGEP, |
| 815 | Align: ResidualDstAlign, isVolatile: DstIsVolatile); |
| 816 | Value *ResidualIndex = |
| 817 | ResidualLoopBuilder.CreateAdd(LHS: ResidualLoopPhi, RHS: CIResidualLoopOpSize); |
| 818 | ResidualLoopBuilder.CreateCondBr( |
| 819 | Cond: ResidualLoopBuilder.CreateICmpEQ(LHS: ResidualIndex, RHS: CopyLen), True: ExitBB, |
| 820 | False: ResidualLoopBB); |
| 821 | ResidualLoopPhi->addIncoming(V: ResidualIndex, BB: ResidualLoopBB); |
| 822 | ResidualLoopPhi->addIncoming(V: RuntimeLoopBytes, BB: IntermediateBB); |
| 823 | } |
| 824 | } |
| 825 | } |
| 826 | |
| 827 | // Similar to createMemMoveLoopUnknownSize, only the trip counts are computed at |
| 828 | // compile time, obsolete loops and branches are omitted, and the residual code |
| 829 | // is straight-line code instead of a loop. |
| 830 | static void createMemMoveLoopKnownSize(Instruction *InsertBefore, |
| 831 | Value *SrcAddr, Value *DstAddr, |
| 832 | ConstantInt *CopyLen, Align SrcAlign, |
| 833 | Align DstAlign, bool SrcIsVolatile, |
| 834 | bool DstIsVolatile, |
| 835 | const TargetTransformInfo &TTI) { |
| 836 | // No need to expand zero length moves. |
| 837 | if (CopyLen->isZero()) |
| 838 | return; |
| 839 | |
| 840 | Type *TypeOfCopyLen = CopyLen->getType(); |
| 841 | BasicBlock *OrigBB = InsertBefore->getParent(); |
| 842 | Function *F = OrigBB->getParent(); |
| 843 | const DataLayout &DL = F->getDataLayout(); |
| 844 | LLVMContext &Ctx = OrigBB->getContext(); |
| 845 | unsigned SrcAS = cast<PointerType>(Val: SrcAddr->getType())->getAddressSpace(); |
| 846 | unsigned DstAS = cast<PointerType>(Val: DstAddr->getType())->getAddressSpace(); |
| 847 | |
| 848 | Type *LoopOpType = TTI.getMemcpyLoopLoweringType(Context&: Ctx, Length: CopyLen, SrcAddrSpace: SrcAS, DestAddrSpace: DstAS, |
| 849 | SrcAlign, DestAlign: DstAlign); |
| 850 | unsigned LoopOpSize = DL.getTypeStoreSize(Ty: LoopOpType); |
| 851 | Type *Int8Type = Type::getInt8Ty(C&: Ctx); |
| 852 | |
| 853 | // Calculate the loop trip count and remaining bytes to copy after the loop. |
| 854 | uint64_t BytesCopiedInLoop = alignDown(Value: CopyLen->getZExtValue(), Align: LoopOpSize); |
| 855 | uint64_t RemainingBytes = CopyLen->getZExtValue() - BytesCopiedInLoop; |
| 856 | |
| 857 | IntegerType *ILengthType = cast<IntegerType>(Val: TypeOfCopyLen); |
| 858 | ConstantInt *Zero = ConstantInt::get(Ty: ILengthType, V: 0); |
| 859 | ConstantInt *LoopBound = ConstantInt::get(Ty: ILengthType, V: BytesCopiedInLoop); |
| 860 | ConstantInt *CILoopOpSize = ConstantInt::get(Ty: ILengthType, V: LoopOpSize); |
| 861 | |
| 862 | const DebugLoc &DbgLoc = InsertBefore->getStableDebugLoc(); |
| 863 | IRBuilder<> PLBuilder(InsertBefore); |
| 864 | PLBuilder.SetCurrentDebugLocation(DbgLoc); |
| 865 | |
| 866 | auto [CmpSrcAddr, CmpDstAddr] = |
| 867 | tryInsertCastToCommonAddrSpace(B&: PLBuilder, Addr1: SrcAddr, Addr2: DstAddr, TTI); |
| 868 | Value *PtrCompare = |
| 869 | PLBuilder.CreateICmpULT(LHS: CmpSrcAddr, RHS: CmpDstAddr, Name: "compare_src_dst" ); |
| 870 | Instruction *ThenTerm, *ElseTerm; |
| 871 | SplitBlockAndInsertIfThenElse(Cond: PtrCompare, SplitBefore: InsertBefore->getIterator(), |
| 872 | ThenTerm: &ThenTerm, ElseTerm: &ElseTerm); |
| 873 | |
| 874 | BasicBlock *CopyBackwardsBB = ThenTerm->getParent(); |
| 875 | BasicBlock *CopyForwardBB = ElseTerm->getParent(); |
| 876 | BasicBlock *ExitBB = InsertBefore->getParent(); |
| 877 | ExitBB->setName("memmove_done" ); |
| 878 | |
| 879 | Align PartSrcAlign(commonAlignment(A: SrcAlign, Offset: LoopOpSize)); |
| 880 | Align PartDstAlign(commonAlignment(A: DstAlign, Offset: LoopOpSize)); |
| 881 | |
| 882 | // Helper function to generate a load/store pair of a given type in the |
| 883 | // residual. Used in the forward and backward branches. |
| 884 | auto GenerateResidualLdStPair = [&](Type *OpTy, IRBuilderBase &Builder, |
| 885 | uint64_t &BytesCopied) { |
| 886 | Align ResSrcAlign(commonAlignment(A: SrcAlign, Offset: BytesCopied)); |
| 887 | Align ResDstAlign(commonAlignment(A: DstAlign, Offset: BytesCopied)); |
| 888 | |
| 889 | unsigned OperandSize = DL.getTypeStoreSize(Ty: OpTy); |
| 890 | |
| 891 | // If we used LoopOpType as GEP element type, we would iterate over the |
| 892 | // buffers in TypeStoreSize strides while copying TypeAllocSize bytes, i.e., |
| 893 | // we would miss bytes if TypeStoreSize != TypeAllocSize. Therefore, use |
| 894 | // byte offsets computed from the TypeStoreSize. |
| 895 | Value *SrcGEP = Builder.CreateInBoundsGEP( |
| 896 | Ty: Int8Type, Ptr: SrcAddr, IdxList: ConstantInt::get(Ty: TypeOfCopyLen, V: BytesCopied)); |
| 897 | LoadInst *Load = |
| 898 | Builder.CreateAlignedLoad(Ty: OpTy, Ptr: SrcGEP, Align: ResSrcAlign, isVolatile: SrcIsVolatile); |
| 899 | Value *DstGEP = Builder.CreateInBoundsGEP( |
| 900 | Ty: Int8Type, Ptr: DstAddr, IdxList: ConstantInt::get(Ty: TypeOfCopyLen, V: BytesCopied)); |
| 901 | Builder.CreateAlignedStore(Val: Load, Ptr: DstGEP, Align: ResDstAlign, isVolatile: DstIsVolatile); |
| 902 | BytesCopied += OperandSize; |
| 903 | }; |
| 904 | |
| 905 | // Copying backwards. |
| 906 | if (RemainingBytes != 0) { |
| 907 | CopyBackwardsBB->setName("memmove_bwd_residual" ); |
| 908 | uint64_t BytesCopied = BytesCopiedInLoop; |
| 909 | |
| 910 | // Residual code is required to move the remaining bytes. We need the same |
| 911 | // instructions as in the forward case, only in reverse. So we generate code |
| 912 | // the same way, except that we change the IRBuilder insert point for each |
| 913 | // load/store pair so that each one is inserted before the previous one |
| 914 | // instead of after it. |
| 915 | IRBuilder<> BwdResBuilder(CopyBackwardsBB, |
| 916 | CopyBackwardsBB->getFirstNonPHIIt()); |
| 917 | BwdResBuilder.SetCurrentDebugLocation(DbgLoc); |
| 918 | SmallVector<Type *, 5> RemainingOps; |
| 919 | TTI.getMemcpyLoopResidualLoweringType(OpsOut&: RemainingOps, Context&: Ctx, RemainingBytes, |
| 920 | SrcAddrSpace: SrcAS, DestAddrSpace: DstAS, SrcAlign: PartSrcAlign, |
| 921 | DestAlign: PartDstAlign); |
| 922 | for (auto *OpTy : RemainingOps) { |
| 923 | // reverse the order of the emitted operations |
| 924 | BwdResBuilder.SetInsertPoint(TheBB: CopyBackwardsBB, |
| 925 | IP: CopyBackwardsBB->getFirstNonPHIIt()); |
| 926 | GenerateResidualLdStPair(OpTy, BwdResBuilder, BytesCopied); |
| 927 | } |
| 928 | } |
| 929 | if (BytesCopiedInLoop != 0) { |
| 930 | BasicBlock *LoopBB = CopyBackwardsBB; |
| 931 | BasicBlock *PredBB = OrigBB; |
| 932 | if (RemainingBytes != 0) { |
| 933 | // if we introduce residual code, it needs its separate BB |
| 934 | LoopBB = CopyBackwardsBB->splitBasicBlock( |
| 935 | I: CopyBackwardsBB->getTerminator(), BBName: "memmove_bwd_loop" ); |
| 936 | PredBB = CopyBackwardsBB; |
| 937 | } else { |
| 938 | CopyBackwardsBB->setName("memmove_bwd_loop" ); |
| 939 | } |
| 940 | IRBuilder<> LoopBuilder(LoopBB->getTerminator()); |
| 941 | LoopBuilder.SetCurrentDebugLocation(DbgLoc); |
| 942 | PHINode *LoopPhi = LoopBuilder.CreatePHI(Ty: ILengthType, NumReservedValues: 0); |
| 943 | Value *Index = LoopBuilder.CreateSub(LHS: LoopPhi, RHS: CILoopOpSize, Name: "bwd_index" ); |
| 944 | Value *LoadGEP = LoopBuilder.CreateInBoundsGEP(Ty: Int8Type, Ptr: SrcAddr, IdxList: Index); |
| 945 | Value *Element = LoopBuilder.CreateAlignedLoad( |
| 946 | Ty: LoopOpType, Ptr: LoadGEP, Align: PartSrcAlign, isVolatile: SrcIsVolatile, Name: "element" ); |
| 947 | Value *StoreGEP = LoopBuilder.CreateInBoundsGEP(Ty: Int8Type, Ptr: DstAddr, IdxList: Index); |
| 948 | LoopBuilder.CreateAlignedStore(Val: Element, Ptr: StoreGEP, Align: PartDstAlign, |
| 949 | isVolatile: DstIsVolatile); |
| 950 | |
| 951 | // Replace the unconditional branch introduced by |
| 952 | // SplitBlockAndInsertIfThenElse to turn LoopBB into a loop. |
| 953 | Instruction *UncondTerm = LoopBB->getTerminator(); |
| 954 | LoopBuilder.CreateCondBr(Cond: LoopBuilder.CreateICmpEQ(LHS: Index, RHS: Zero), True: ExitBB, |
| 955 | False: LoopBB); |
| 956 | UncondTerm->eraseFromParent(); |
| 957 | |
| 958 | LoopPhi->addIncoming(V: Index, BB: LoopBB); |
| 959 | LoopPhi->addIncoming(V: LoopBound, BB: PredBB); |
| 960 | } |
| 961 | |
| 962 | // Copying forward. |
| 963 | BasicBlock *FwdResidualBB = CopyForwardBB; |
| 964 | if (BytesCopiedInLoop != 0) { |
| 965 | CopyForwardBB->setName("memmove_fwd_loop" ); |
| 966 | BasicBlock *LoopBB = CopyForwardBB; |
| 967 | BasicBlock *SuccBB = ExitBB; |
| 968 | if (RemainingBytes != 0) { |
| 969 | // if we introduce residual code, it needs its separate BB |
| 970 | SuccBB = CopyForwardBB->splitBasicBlock(I: CopyForwardBB->getTerminator(), |
| 971 | BBName: "memmove_fwd_residual" ); |
| 972 | FwdResidualBB = SuccBB; |
| 973 | } |
| 974 | IRBuilder<> LoopBuilder(LoopBB->getTerminator()); |
| 975 | LoopBuilder.SetCurrentDebugLocation(DbgLoc); |
| 976 | PHINode *LoopPhi = LoopBuilder.CreatePHI(Ty: ILengthType, NumReservedValues: 0, Name: "fwd_index" ); |
| 977 | Value *LoadGEP = LoopBuilder.CreateInBoundsGEP(Ty: Int8Type, Ptr: SrcAddr, IdxList: LoopPhi); |
| 978 | Value *Element = LoopBuilder.CreateAlignedLoad( |
| 979 | Ty: LoopOpType, Ptr: LoadGEP, Align: PartSrcAlign, isVolatile: SrcIsVolatile, Name: "element" ); |
| 980 | Value *StoreGEP = LoopBuilder.CreateInBoundsGEP(Ty: Int8Type, Ptr: DstAddr, IdxList: LoopPhi); |
| 981 | LoopBuilder.CreateAlignedStore(Val: Element, Ptr: StoreGEP, Align: PartDstAlign, |
| 982 | isVolatile: DstIsVolatile); |
| 983 | Value *Index = LoopBuilder.CreateAdd(LHS: LoopPhi, RHS: CILoopOpSize); |
| 984 | LoopPhi->addIncoming(V: Index, BB: LoopBB); |
| 985 | LoopPhi->addIncoming(V: Zero, BB: OrigBB); |
| 986 | |
| 987 | // Replace the unconditional branch to turn LoopBB into a loop. |
| 988 | Instruction *UncondTerm = LoopBB->getTerminator(); |
| 989 | LoopBuilder.CreateCondBr(Cond: LoopBuilder.CreateICmpEQ(LHS: Index, RHS: LoopBound), True: SuccBB, |
| 990 | False: LoopBB); |
| 991 | UncondTerm->eraseFromParent(); |
| 992 | } |
| 993 | |
| 994 | if (RemainingBytes != 0) { |
| 995 | uint64_t BytesCopied = BytesCopiedInLoop; |
| 996 | |
| 997 | // Residual code is required to move the remaining bytes. In the forward |
| 998 | // case, we emit it in the normal order. |
| 999 | IRBuilder<> FwdResBuilder(FwdResidualBB->getTerminator()); |
| 1000 | FwdResBuilder.SetCurrentDebugLocation(DbgLoc); |
| 1001 | SmallVector<Type *, 5> RemainingOps; |
| 1002 | TTI.getMemcpyLoopResidualLoweringType(OpsOut&: RemainingOps, Context&: Ctx, RemainingBytes, |
| 1003 | SrcAddrSpace: SrcAS, DestAddrSpace: DstAS, SrcAlign: PartSrcAlign, |
| 1004 | DestAlign: PartDstAlign); |
| 1005 | for (auto *OpTy : RemainingOps) |
| 1006 | GenerateResidualLdStPair(OpTy, FwdResBuilder, BytesCopied); |
| 1007 | } |
| 1008 | } |
| 1009 | |
| 1010 | static void createMemSetLoop(Instruction *InsertBefore, Value *DstAddr, |
| 1011 | Value *CopyLen, Value *SetValue, Align DstAlign, |
| 1012 | std::optional<uint64_t> AverageTripCount, |
| 1013 | bool IsVolatile) { |
| 1014 | Type *TypeOfCopyLen = CopyLen->getType(); |
| 1015 | BasicBlock *OrigBB = InsertBefore->getParent(); |
| 1016 | Function *F = OrigBB->getParent(); |
| 1017 | const DataLayout &DL = F->getDataLayout(); |
| 1018 | BasicBlock *NewBB = |
| 1019 | OrigBB->splitBasicBlock(I: InsertBefore, BBName: "split" ); |
| 1020 | BasicBlock *LoopBB |
| 1021 | = BasicBlock::Create(Context&: F->getContext(), Name: "loadstoreloop" , Parent: F, InsertBefore: NewBB); |
| 1022 | |
| 1023 | const DebugLoc &DbgLoc = InsertBefore->getStableDebugLoc(); |
| 1024 | IRBuilder<> Builder(OrigBB->getTerminator()); |
| 1025 | Builder.SetCurrentDebugLocation(DbgLoc); |
| 1026 | |
| 1027 | auto *ToLoopBR = Builder.CreateCondBr( |
| 1028 | Cond: Builder.CreateICmpEQ(LHS: ConstantInt::get(Ty: TypeOfCopyLen, V: 0), RHS: CopyLen), True: NewBB, |
| 1029 | False: LoopBB); |
| 1030 | MDBuilder MDB(F->getContext()); |
| 1031 | if (AverageTripCount.has_value()) |
| 1032 | ToLoopBR->setMetadata(KindID: LLVMContext::MD_prof, |
| 1033 | Node: MDB.createLikelyBranchWeights()); |
| 1034 | else |
| 1035 | setExplicitlyUnknownBranchWeightsIfProfiled(I&: *ToLoopBR, DEBUG_TYPE); |
| 1036 | |
| 1037 | OrigBB->getTerminator()->eraseFromParent(); |
| 1038 | |
| 1039 | unsigned PartSize = DL.getTypeStoreSize(Ty: SetValue->getType()); |
| 1040 | Align PartAlign(commonAlignment(A: DstAlign, Offset: PartSize)); |
| 1041 | |
| 1042 | IRBuilder<> LoopBuilder(LoopBB); |
| 1043 | LoopBuilder.SetCurrentDebugLocation(DbgLoc); |
| 1044 | PHINode *LoopIndex = LoopBuilder.CreatePHI(Ty: TypeOfCopyLen, NumReservedValues: 0); |
| 1045 | LoopIndex->addIncoming(V: ConstantInt::get(Ty: TypeOfCopyLen, V: 0), BB: OrigBB); |
| 1046 | |
| 1047 | LoopBuilder.CreateAlignedStore( |
| 1048 | Val: SetValue, |
| 1049 | Ptr: LoopBuilder.CreateInBoundsGEP(Ty: SetValue->getType(), Ptr: DstAddr, IdxList: LoopIndex), |
| 1050 | Align: PartAlign, isVolatile: IsVolatile); |
| 1051 | |
| 1052 | Value *NewIndex = |
| 1053 | LoopBuilder.CreateAdd(LHS: LoopIndex, RHS: ConstantInt::get(Ty: TypeOfCopyLen, V: 1)); |
| 1054 | LoopIndex->addIncoming(V: NewIndex, BB: LoopBB); |
| 1055 | |
| 1056 | auto *LoopBR = LoopBuilder.CreateCondBr( |
| 1057 | Cond: LoopBuilder.CreateICmpULT(LHS: NewIndex, RHS: CopyLen), True: LoopBB, False: NewBB); |
| 1058 | if (AverageTripCount.has_value()) |
| 1059 | setFittedBranchWeights(I&: *LoopBR, Weights: {AverageTripCount.value(), 1}, |
| 1060 | /*IsExpected=*/false); |
| 1061 | else |
| 1062 | setExplicitlyUnknownBranchWeightsIfProfiled(I&: *LoopBR, DEBUG_TYPE); |
| 1063 | } |
| 1064 | |
| 1065 | template <typename T> |
| 1066 | static bool canOverlap(MemTransferBase<T> *Memcpy, ScalarEvolution *SE) { |
| 1067 | if (SE) { |
| 1068 | const SCEV *SrcSCEV = SE->getSCEV(V: Memcpy->getRawSource()); |
| 1069 | const SCEV *DestSCEV = SE->getSCEV(V: Memcpy->getRawDest()); |
| 1070 | if (SE->isKnownPredicateAt(Pred: CmpInst::ICMP_NE, LHS: SrcSCEV, RHS: DestSCEV, CtxI: Memcpy)) |
| 1071 | return false; |
| 1072 | } |
| 1073 | return true; |
| 1074 | } |
| 1075 | |
| 1076 | void llvm::expandMemCpyAsLoop(MemCpyInst *Memcpy, |
| 1077 | const TargetTransformInfo &TTI, |
| 1078 | ScalarEvolution *SE) { |
| 1079 | bool CanOverlap = canOverlap(Memcpy, SE); |
| 1080 | auto TripCount = getAverageMemOpLoopTripCount(I: *Memcpy); |
| 1081 | if (ConstantInt *CI = dyn_cast<ConstantInt>(Val: Memcpy->getLength())) { |
| 1082 | createMemCpyLoopKnownSize( |
| 1083 | /* InsertBefore */ Memcpy, |
| 1084 | /* SrcAddr */ Memcpy->getRawSource(), |
| 1085 | /* DstAddr */ Memcpy->getRawDest(), |
| 1086 | /* CopyLen */ CI, |
| 1087 | /* SrcAlign */ Memcpy->getSourceAlign().valueOrOne(), |
| 1088 | /* DestAlign */ DstAlign: Memcpy->getDestAlign().valueOrOne(), |
| 1089 | /* SrcIsVolatile */ Memcpy->isVolatile(), |
| 1090 | /* DstIsVolatile */ Memcpy->isVolatile(), |
| 1091 | /* CanOverlap */ CanOverlap, |
| 1092 | /* TargetTransformInfo */ TTI, |
| 1093 | /* AtomicElementSize */ std::nullopt, |
| 1094 | /* AverageTripCount */ TripCount); |
| 1095 | } else { |
| 1096 | createMemCpyLoopUnknownSize( |
| 1097 | /* InsertBefore */ Memcpy, |
| 1098 | /* SrcAddr */ Memcpy->getRawSource(), |
| 1099 | /* DstAddr */ Memcpy->getRawDest(), |
| 1100 | /* CopyLen */ Memcpy->getLength(), |
| 1101 | /* SrcAlign */ Memcpy->getSourceAlign().valueOrOne(), |
| 1102 | /* DestAlign */ DstAlign: Memcpy->getDestAlign().valueOrOne(), |
| 1103 | /* SrcIsVolatile */ Memcpy->isVolatile(), |
| 1104 | /* DstIsVolatile */ Memcpy->isVolatile(), |
| 1105 | /* CanOverlap */ CanOverlap, |
| 1106 | /* TargetTransformInfo */ TTI, |
| 1107 | /* AtomicElementSize */ std::nullopt, |
| 1108 | /* AverageTripCount */ TripCount); |
| 1109 | } |
| 1110 | } |
| 1111 | |
| 1112 | bool llvm::expandMemMoveAsLoop(MemMoveInst *Memmove, |
| 1113 | const TargetTransformInfo &TTI) { |
| 1114 | Value *CopyLen = Memmove->getLength(); |
| 1115 | Value *SrcAddr = Memmove->getRawSource(); |
| 1116 | Value *DstAddr = Memmove->getRawDest(); |
| 1117 | Align SrcAlign = Memmove->getSourceAlign().valueOrOne(); |
| 1118 | Align DstAlign = Memmove->getDestAlign().valueOrOne(); |
| 1119 | bool SrcIsVolatile = Memmove->isVolatile(); |
| 1120 | bool DstIsVolatile = SrcIsVolatile; |
| 1121 | IRBuilder<> CastBuilder(Memmove); |
| 1122 | CastBuilder.SetCurrentDebugLocation(Memmove->getStableDebugLoc()); |
| 1123 | |
| 1124 | unsigned SrcAS = SrcAddr->getType()->getPointerAddressSpace(); |
| 1125 | unsigned DstAS = DstAddr->getType()->getPointerAddressSpace(); |
| 1126 | if (SrcAS != DstAS) { |
| 1127 | if (!TTI.addrspacesMayAlias(AS0: SrcAS, AS1: DstAS)) { |
| 1128 | // We may not be able to emit a pointer comparison, but we don't have |
| 1129 | // to. Expand as memcpy. |
| 1130 | auto AverageTripCount = getAverageMemOpLoopTripCount(I: *Memmove); |
| 1131 | if (ConstantInt *CI = dyn_cast<ConstantInt>(Val: CopyLen)) { |
| 1132 | createMemCpyLoopKnownSize( |
| 1133 | /*InsertBefore=*/Memmove, SrcAddr, DstAddr, CopyLen: CI, SrcAlign, DstAlign, |
| 1134 | SrcIsVolatile, DstIsVolatile, |
| 1135 | /*CanOverlap=*/false, TTI, AtomicElementSize: std::nullopt, AverageTripCount); |
| 1136 | } else { |
| 1137 | createMemCpyLoopUnknownSize( |
| 1138 | /*InsertBefore=*/Memmove, SrcAddr, DstAddr, CopyLen, SrcAlign, |
| 1139 | DstAlign, SrcIsVolatile, DstIsVolatile, |
| 1140 | /*CanOverlap=*/false, TTI, AtomicElementSize: std::nullopt, AverageTripCount); |
| 1141 | } |
| 1142 | |
| 1143 | return true; |
| 1144 | } |
| 1145 | |
| 1146 | if (!(TTI.isValidAddrSpaceCast(FromAS: DstAS, ToAS: SrcAS) || |
| 1147 | TTI.isValidAddrSpaceCast(FromAS: SrcAS, ToAS: DstAS))) { |
| 1148 | // We don't know generically if it's legal to introduce an |
| 1149 | // addrspacecast. We need to know either if it's legal to insert an |
| 1150 | // addrspacecast, or if the address spaces cannot alias. |
| 1151 | LLVM_DEBUG( |
| 1152 | dbgs() << "Do not know how to expand memmove between different " |
| 1153 | "address spaces\n" ); |
| 1154 | return false; |
| 1155 | } |
| 1156 | } |
| 1157 | |
| 1158 | if (ConstantInt *CI = dyn_cast<ConstantInt>(Val: CopyLen)) { |
| 1159 | createMemMoveLoopKnownSize( |
| 1160 | /*InsertBefore=*/Memmove, SrcAddr, DstAddr, CopyLen: CI, SrcAlign, DstAlign, |
| 1161 | SrcIsVolatile, DstIsVolatile, TTI); |
| 1162 | } else { |
| 1163 | createMemMoveLoopUnknownSize( |
| 1164 | /*InsertBefore=*/Memmove, SrcAddr, DstAddr, CopyLen, SrcAlign, DstAlign, |
| 1165 | SrcIsVolatile, DstIsVolatile, TTI); |
| 1166 | } |
| 1167 | return true; |
| 1168 | } |
| 1169 | |
| 1170 | void llvm::expandMemSetAsLoop(MemSetInst *Memset) { |
| 1171 | createMemSetLoop(/* InsertBefore */ Memset, |
| 1172 | /* DstAddr */ Memset->getRawDest(), |
| 1173 | /* CopyLen */ Memset->getLength(), |
| 1174 | /* SetValue */ Memset->getValue(), |
| 1175 | /* Alignment */ DstAlign: Memset->getDestAlign().valueOrOne(), |
| 1176 | /* AverageTripCount */ getAverageMemOpLoopTripCount(I: *Memset), |
| 1177 | /* IsVolatile */ Memset->isVolatile()); |
| 1178 | } |
| 1179 | |
| 1180 | void llvm::expandMemSetPatternAsLoop(MemSetPatternInst *Memset) { |
| 1181 | createMemSetLoop(/* InsertBefore=*/Memset, |
| 1182 | /* DstAddr=*/Memset->getRawDest(), |
| 1183 | /* CopyLen=*/Memset->getLength(), |
| 1184 | /* SetValue=*/Memset->getValue(), |
| 1185 | /* Alignment=*/DstAlign: Memset->getDestAlign().valueOrOne(), |
| 1186 | /* AverageTripCount */ getAverageMemOpLoopTripCount(I: *Memset), |
| 1187 | /* IsVolatile */ Memset->isVolatile()); |
| 1188 | } |
| 1189 | |
| 1190 | void llvm::expandAtomicMemCpyAsLoop(AnyMemCpyInst *AtomicMemcpy, |
| 1191 | const TargetTransformInfo &TTI, |
| 1192 | ScalarEvolution *SE) { |
| 1193 | assert(AtomicMemcpy->isAtomic()); |
| 1194 | if (ConstantInt *CI = dyn_cast<ConstantInt>(Val: AtomicMemcpy->getLength())) { |
| 1195 | createMemCpyLoopKnownSize( |
| 1196 | /* InsertBefore */ AtomicMemcpy, |
| 1197 | /* SrcAddr */ AtomicMemcpy->getRawSource(), |
| 1198 | /* DstAddr */ AtomicMemcpy->getRawDest(), |
| 1199 | /* CopyLen */ CI, |
| 1200 | /* SrcAlign */ AtomicMemcpy->getSourceAlign().valueOrOne(), |
| 1201 | /* DestAlign */ DstAlign: AtomicMemcpy->getDestAlign().valueOrOne(), |
| 1202 | /* SrcIsVolatile */ AtomicMemcpy->isVolatile(), |
| 1203 | /* DstIsVolatile */ AtomicMemcpy->isVolatile(), |
| 1204 | /* CanOverlap */ false, // SrcAddr & DstAddr may not overlap by spec. |
| 1205 | /* TargetTransformInfo */ TTI, |
| 1206 | /* AtomicElementSize */ AtomicMemcpy->getElementSizeInBytes()); |
| 1207 | } else { |
| 1208 | createMemCpyLoopUnknownSize( |
| 1209 | /* InsertBefore */ AtomicMemcpy, |
| 1210 | /* SrcAddr */ AtomicMemcpy->getRawSource(), |
| 1211 | /* DstAddr */ AtomicMemcpy->getRawDest(), |
| 1212 | /* CopyLen */ AtomicMemcpy->getLength(), |
| 1213 | /* SrcAlign */ AtomicMemcpy->getSourceAlign().valueOrOne(), |
| 1214 | /* DestAlign */ DstAlign: AtomicMemcpy->getDestAlign().valueOrOne(), |
| 1215 | /* SrcIsVolatile */ AtomicMemcpy->isVolatile(), |
| 1216 | /* DstIsVolatile */ AtomicMemcpy->isVolatile(), |
| 1217 | /* CanOverlap */ false, // SrcAddr & DstAddr may not overlap by spec. |
| 1218 | /* TargetTransformInfo */ TTI, |
| 1219 | /* AtomicElementSize */ AtomicMemcpy->getElementSizeInBytes()); |
| 1220 | } |
| 1221 | } |
| 1222 | |