| 1 | //===- VPlan.h - Represent A Vectorizer Plan --------------------*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | /// \file |
| 10 | /// This file contains the declarations of the Vectorization Plan base classes: |
| 11 | /// 1. VPBasicBlock and VPRegionBlock that inherit from a common pure virtual |
| 12 | /// VPBlockBase, together implementing a Hierarchical CFG; |
| 13 | /// 2. Pure virtual VPRecipeBase serving as the base class for recipes contained |
| 14 | /// within VPBasicBlocks; |
| 15 | /// 3. Pure virtual VPSingleDefRecipe serving as a base class for recipes that |
| 16 | /// also inherit from VPValue. |
| 17 | /// 4. VPInstruction, a concrete Recipe and VPUser modeling a single planned |
| 18 | /// instruction; |
| 19 | /// 5. The VPlan class holding a candidate for vectorization; |
| 20 | /// These are documented in docs/VectorizationPlan.rst. |
| 21 | // |
| 22 | //===----------------------------------------------------------------------===// |
| 23 | |
| 24 | #ifndef LLVM_TRANSFORMS_VECTORIZE_VPLAN_H |
| 25 | #define LLVM_TRANSFORMS_VECTORIZE_VPLAN_H |
| 26 | |
| 27 | #include "VPlanValue.h" |
| 28 | #include "llvm/ADT/MapVector.h" |
| 29 | #include "llvm/ADT/SmallPtrSet.h" |
| 30 | #include "llvm/ADT/SmallVector.h" |
| 31 | #include "llvm/ADT/Twine.h" |
| 32 | #include "llvm/ADT/ilist.h" |
| 33 | #include "llvm/ADT/ilist_node.h" |
| 34 | #include "llvm/Analysis/IVDescriptors.h" |
| 35 | #include "llvm/Analysis/MemoryLocation.h" |
| 36 | #include "llvm/Analysis/VectorUtils.h" |
| 37 | #include "llvm/IR/DebugLoc.h" |
| 38 | #include "llvm/IR/FMF.h" |
| 39 | #include "llvm/IR/Operator.h" |
| 40 | #include "llvm/Support/Compiler.h" |
| 41 | #include "llvm/Support/InstructionCost.h" |
| 42 | #include <cassert> |
| 43 | #include <cstddef> |
| 44 | #include <functional> |
| 45 | #include <string> |
| 46 | #include <utility> |
| 47 | #include <variant> |
| 48 | |
| 49 | namespace llvm { |
| 50 | |
| 51 | class BasicBlock; |
| 52 | class DominatorTree; |
| 53 | class InnerLoopVectorizer; |
| 54 | class IRBuilderBase; |
| 55 | struct VPTransformState; |
| 56 | class raw_ostream; |
| 57 | class RecurrenceDescriptor; |
| 58 | class SCEV; |
| 59 | class Type; |
| 60 | class VPBasicBlock; |
| 61 | class VPBuilder; |
| 62 | class VPDominatorTree; |
| 63 | class VPRegionBlock; |
| 64 | class VPlan; |
| 65 | class VPLane; |
| 66 | class VPReplicateRecipe; |
| 67 | class VPlanSlp; |
| 68 | class Value; |
| 69 | class LoopVectorizationCostModel; |
| 70 | |
| 71 | struct VPCostContext; |
| 72 | |
| 73 | namespace Intrinsic { |
| 74 | typedef unsigned ID; |
| 75 | } |
| 76 | |
| 77 | using VPlanPtr = std::unique_ptr<VPlan>; |
| 78 | |
| 79 | /// VPBlockBase is the building block of the Hierarchical Control-Flow Graph. |
| 80 | /// A VPBlockBase can be either a VPBasicBlock or a VPRegionBlock. |
| 81 | class LLVM_ABI_FOR_TEST VPBlockBase { |
| 82 | friend class VPBlockUtils; |
| 83 | |
| 84 | const unsigned char SubclassID; ///< Subclass identifier (for isa/dyn_cast). |
| 85 | |
| 86 | /// An optional name for the block. |
| 87 | std::string Name; |
| 88 | |
| 89 | /// The immediate VPRegionBlock which this VPBlockBase belongs to, or null if |
| 90 | /// it is a topmost VPBlockBase. |
| 91 | VPRegionBlock *Parent = nullptr; |
| 92 | |
| 93 | /// List of predecessor blocks. |
| 94 | SmallVector<VPBlockBase *, 1> Predecessors; |
| 95 | |
| 96 | /// List of successor blocks. |
| 97 | SmallVector<VPBlockBase *, 1> Successors; |
| 98 | |
| 99 | /// VPlan containing the block. Can only be set on the entry block of the |
| 100 | /// plan. |
| 101 | VPlan *Plan = nullptr; |
| 102 | |
| 103 | /// Add \p Successor as the last successor to this block. |
| 104 | void appendSuccessor(VPBlockBase *Successor) { |
| 105 | assert(Successor && "Cannot add nullptr successor!" ); |
| 106 | Successors.push_back(Elt: Successor); |
| 107 | } |
| 108 | |
| 109 | /// Add \p Predecessor as the last predecessor to this block. |
| 110 | void appendPredecessor(VPBlockBase *Predecessor) { |
| 111 | assert(Predecessor && "Cannot add nullptr predecessor!" ); |
| 112 | Predecessors.push_back(Elt: Predecessor); |
| 113 | } |
| 114 | |
| 115 | /// Remove \p Predecessor from the predecessors of this block. |
| 116 | void removePredecessor(VPBlockBase *Predecessor) { |
| 117 | auto Pos = find(Range&: Predecessors, Val: Predecessor); |
| 118 | assert(Pos && "Predecessor does not exist" ); |
| 119 | Predecessors.erase(CI: Pos); |
| 120 | } |
| 121 | |
| 122 | /// Remove \p Successor from the successors of this block. |
| 123 | void removeSuccessor(VPBlockBase *Successor) { |
| 124 | auto Pos = find(Range&: Successors, Val: Successor); |
| 125 | assert(Pos && "Successor does not exist" ); |
| 126 | Successors.erase(CI: Pos); |
| 127 | } |
| 128 | |
| 129 | /// This function replaces one predecessor with another, useful when |
| 130 | /// trying to replace an old block in the CFG with a new one. |
| 131 | void replacePredecessor(VPBlockBase *Old, VPBlockBase *New) { |
| 132 | auto I = find(Range&: Predecessors, Val: Old); |
| 133 | assert(I != Predecessors.end()); |
| 134 | assert(Old->getParent() == New->getParent() && |
| 135 | "replaced predecessor must have the same parent" ); |
| 136 | *I = New; |
| 137 | } |
| 138 | |
| 139 | /// This function replaces one successor with another, useful when |
| 140 | /// trying to replace an old block in the CFG with a new one. |
| 141 | void replaceSuccessor(VPBlockBase *Old, VPBlockBase *New) { |
| 142 | auto I = find(Range&: Successors, Val: Old); |
| 143 | assert(I != Successors.end()); |
| 144 | assert(Old->getParent() == New->getParent() && |
| 145 | "replaced successor must have the same parent" ); |
| 146 | *I = New; |
| 147 | } |
| 148 | |
| 149 | protected: |
| 150 | VPBlockBase(const unsigned char SC, const std::string &N) |
| 151 | : SubclassID(SC), Name(N) {} |
| 152 | |
| 153 | public: |
| 154 | /// An enumeration for keeping track of the concrete subclass of VPBlockBase |
| 155 | /// that are actually instantiated. Values of this enumeration are kept in the |
| 156 | /// SubclassID field of the VPBlockBase objects. They are used for concrete |
| 157 | /// type identification. |
| 158 | using VPBlockTy = enum { VPRegionBlockSC, VPBasicBlockSC, VPIRBasicBlockSC }; |
| 159 | |
| 160 | using VPBlocksTy = SmallVectorImpl<VPBlockBase *>; |
| 161 | |
| 162 | virtual ~VPBlockBase() = default; |
| 163 | |
| 164 | const std::string &getName() const { return Name; } |
| 165 | |
| 166 | void setName(const Twine &newName) { Name = newName.str(); } |
| 167 | |
| 168 | /// \return an ID for the concrete type of this object. |
| 169 | /// This is used to implement the classof checks. This should not be used |
| 170 | /// for any other purpose, as the values may change as LLVM evolves. |
| 171 | unsigned getVPBlockID() const { return SubclassID; } |
| 172 | |
| 173 | VPRegionBlock *getParent() { return Parent; } |
| 174 | const VPRegionBlock *getParent() const { return Parent; } |
| 175 | |
| 176 | /// \return A pointer to the plan containing the current block. |
| 177 | VPlan *getPlan(); |
| 178 | const VPlan *getPlan() const; |
| 179 | |
| 180 | /// Sets the pointer of the plan containing the block. The block must be the |
| 181 | /// entry block into the VPlan. |
| 182 | void setPlan(VPlan *ParentPlan); |
| 183 | |
| 184 | void setParent(VPRegionBlock *P) { Parent = P; } |
| 185 | |
| 186 | /// \return the VPBasicBlock that is the entry of this VPBlockBase, |
| 187 | /// recursively, if the latter is a VPRegionBlock. Otherwise, if this |
| 188 | /// VPBlockBase is a VPBasicBlock, it is returned. |
| 189 | const VPBasicBlock *getEntryBasicBlock() const; |
| 190 | VPBasicBlock *getEntryBasicBlock(); |
| 191 | |
| 192 | /// \return the VPBasicBlock that is the exiting this VPBlockBase, |
| 193 | /// recursively, if the latter is a VPRegionBlock. Otherwise, if this |
| 194 | /// VPBlockBase is a VPBasicBlock, it is returned. |
| 195 | const VPBasicBlock *getExitingBasicBlock() const; |
| 196 | VPBasicBlock *getExitingBasicBlock(); |
| 197 | |
| 198 | const VPBlocksTy &getSuccessors() const { return Successors; } |
| 199 | VPBlocksTy &getSuccessors() { return Successors; } |
| 200 | |
| 201 | iterator_range<VPBlockBase **> successors() { return Successors; } |
| 202 | iterator_range<VPBlockBase **> predecessors() { return Predecessors; } |
| 203 | |
| 204 | const VPBlocksTy &getPredecessors() const { return Predecessors; } |
| 205 | VPBlocksTy &getPredecessors() { return Predecessors; } |
| 206 | |
| 207 | /// \return the successor of this VPBlockBase if it has a single successor. |
| 208 | /// Otherwise return a null pointer. |
| 209 | VPBlockBase *getSingleSuccessor() const { |
| 210 | return (Successors.size() == 1 ? *Successors.begin() : nullptr); |
| 211 | } |
| 212 | |
| 213 | /// \return the predecessor of this VPBlockBase if it has a single |
| 214 | /// predecessor. Otherwise return a null pointer. |
| 215 | VPBlockBase *getSinglePredecessor() const { |
| 216 | return (Predecessors.size() == 1 ? *Predecessors.begin() : nullptr); |
| 217 | } |
| 218 | |
| 219 | size_t getNumSuccessors() const { return Successors.size(); } |
| 220 | size_t getNumPredecessors() const { return Predecessors.size(); } |
| 221 | |
| 222 | /// Returns true if this block has any predecessors. |
| 223 | bool hasPredecessors() const { return !Predecessors.empty(); } |
| 224 | |
| 225 | /// An Enclosing Block of a block B is any block containing B, including B |
| 226 | /// itself. \return the closest enclosing block starting from "this", which |
| 227 | /// has successors. \return the root enclosing block if all enclosing blocks |
| 228 | /// have no successors. |
| 229 | VPBlockBase *getEnclosingBlockWithSuccessors(); |
| 230 | |
| 231 | /// \return the closest enclosing block starting from "this", which has |
| 232 | /// predecessors. \return the root enclosing block if all enclosing blocks |
| 233 | /// have no predecessors. |
| 234 | VPBlockBase *getEnclosingBlockWithPredecessors(); |
| 235 | |
| 236 | /// \return the successors either attached directly to this VPBlockBase or, if |
| 237 | /// this VPBlockBase is the exit block of a VPRegionBlock and has no |
| 238 | /// successors of its own, search recursively for the first enclosing |
| 239 | /// VPRegionBlock that has successors and return them. If no such |
| 240 | /// VPRegionBlock exists, return the (empty) successors of the topmost |
| 241 | /// VPBlockBase reached. |
| 242 | const VPBlocksTy &getHierarchicalSuccessors() { |
| 243 | return getEnclosingBlockWithSuccessors()->getSuccessors(); |
| 244 | } |
| 245 | |
| 246 | /// \return the hierarchical successor of this VPBlockBase if it has a single |
| 247 | /// hierarchical successor. Otherwise return a null pointer. |
| 248 | VPBlockBase *getSingleHierarchicalSuccessor() { |
| 249 | return getEnclosingBlockWithSuccessors()->getSingleSuccessor(); |
| 250 | } |
| 251 | |
| 252 | /// \return the predecessors either attached directly to this VPBlockBase or, |
| 253 | /// if this VPBlockBase is the entry block of a VPRegionBlock and has no |
| 254 | /// predecessors of its own, search recursively for the first enclosing |
| 255 | /// VPRegionBlock that has predecessors and return them. If no such |
| 256 | /// VPRegionBlock exists, return the (empty) predecessors of the topmost |
| 257 | /// VPBlockBase reached. |
| 258 | const VPBlocksTy &getHierarchicalPredecessors() { |
| 259 | return getEnclosingBlockWithPredecessors()->getPredecessors(); |
| 260 | } |
| 261 | |
| 262 | /// \return the hierarchical predecessor of this VPBlockBase if it has a |
| 263 | /// single hierarchical predecessor. Otherwise return a null pointer. |
| 264 | VPBlockBase *getSingleHierarchicalPredecessor() { |
| 265 | return getEnclosingBlockWithPredecessors()->getSinglePredecessor(); |
| 266 | } |
| 267 | |
| 268 | /// Set a given VPBlockBase \p Successor as the single successor of this |
| 269 | /// VPBlockBase. This VPBlockBase is not added as predecessor of \p Successor. |
| 270 | /// This VPBlockBase must have no successors. |
| 271 | void setOneSuccessor(VPBlockBase *Successor) { |
| 272 | assert(Successors.empty() && "Setting one successor when others exist." ); |
| 273 | assert(Successor->getParent() == getParent() && |
| 274 | "connected blocks must have the same parent" ); |
| 275 | appendSuccessor(Successor); |
| 276 | } |
| 277 | |
| 278 | /// Set two given VPBlockBases \p IfTrue and \p IfFalse to be the two |
| 279 | /// successors of this VPBlockBase. This VPBlockBase is not added as |
| 280 | /// predecessor of \p IfTrue or \p IfFalse. This VPBlockBase must have no |
| 281 | /// successors. |
| 282 | void setTwoSuccessors(VPBlockBase *IfTrue, VPBlockBase *IfFalse) { |
| 283 | assert(Successors.empty() && "Setting two successors when others exist." ); |
| 284 | appendSuccessor(Successor: IfTrue); |
| 285 | appendSuccessor(Successor: IfFalse); |
| 286 | } |
| 287 | |
| 288 | /// Set each VPBasicBlock in \p NewPreds as predecessor of this VPBlockBase. |
| 289 | /// This VPBlockBase must have no predecessors. This VPBlockBase is not added |
| 290 | /// as successor of any VPBasicBlock in \p NewPreds. |
| 291 | void setPredecessors(ArrayRef<VPBlockBase *> NewPreds) { |
| 292 | assert(Predecessors.empty() && "Block predecessors already set." ); |
| 293 | for (auto *Pred : NewPreds) |
| 294 | appendPredecessor(Predecessor: Pred); |
| 295 | } |
| 296 | |
| 297 | /// Set each VPBasicBlock in \p NewSuccss as successor of this VPBlockBase. |
| 298 | /// This VPBlockBase must have no successors. This VPBlockBase is not added |
| 299 | /// as predecessor of any VPBasicBlock in \p NewSuccs. |
| 300 | void setSuccessors(ArrayRef<VPBlockBase *> NewSuccs) { |
| 301 | assert(Successors.empty() && "Block successors already set." ); |
| 302 | for (auto *Succ : NewSuccs) |
| 303 | appendSuccessor(Successor: Succ); |
| 304 | } |
| 305 | |
| 306 | /// Remove all the predecessor of this block. |
| 307 | void clearPredecessors() { Predecessors.clear(); } |
| 308 | |
| 309 | /// Remove all the successors of this block. |
| 310 | void clearSuccessors() { Successors.clear(); } |
| 311 | |
| 312 | /// Swap predecessors of the block. The block must have exactly 2 |
| 313 | /// predecessors. |
| 314 | void swapPredecessors() { |
| 315 | assert(Predecessors.size() == 2 && "must have 2 predecessors to swap" ); |
| 316 | std::swap(a&: Predecessors[0], b&: Predecessors[1]); |
| 317 | } |
| 318 | |
| 319 | /// Swap successors of the block. The block must have exactly 2 successors. |
| 320 | // TODO: This should be part of introducing conditional branch recipes rather |
| 321 | // than being independent. |
| 322 | void swapSuccessors() { |
| 323 | assert(Successors.size() == 2 && "must have 2 successors to swap" ); |
| 324 | std::swap(a&: Successors[0], b&: Successors[1]); |
| 325 | } |
| 326 | |
| 327 | /// Returns the index for \p Pred in the blocks predecessors list. |
| 328 | unsigned getIndexForPredecessor(const VPBlockBase *Pred) const { |
| 329 | assert(count(Predecessors, Pred) == 1 && |
| 330 | "must have Pred exactly once in Predecessors" ); |
| 331 | return std::distance(first: Predecessors.begin(), last: find(Range: Predecessors, Val: Pred)); |
| 332 | } |
| 333 | |
| 334 | /// Returns the index for \p Succ in the blocks successor list. |
| 335 | unsigned getIndexForSuccessor(const VPBlockBase *Succ) const { |
| 336 | assert(count(Successors, Succ) == 1 && |
| 337 | "must have Succ exactly once in Successors" ); |
| 338 | return std::distance(first: Successors.begin(), last: find(Range: Successors, Val: Succ)); |
| 339 | } |
| 340 | |
| 341 | /// The method which generates the output IR that correspond to this |
| 342 | /// VPBlockBase, thereby "executing" the VPlan. |
| 343 | virtual void execute(VPTransformState *State) = 0; |
| 344 | |
| 345 | /// Return the cost of the block. |
| 346 | virtual InstructionCost cost(ElementCount VF, VPCostContext &Ctx) = 0; |
| 347 | |
| 348 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 349 | void printAsOperand(raw_ostream &OS, bool PrintType = false) const { |
| 350 | OS << getName(); |
| 351 | } |
| 352 | |
| 353 | /// Print plain-text dump of this VPBlockBase to \p O, prefixing all lines |
| 354 | /// with \p Indent. \p SlotTracker is used to print unnamed VPValue's using |
| 355 | /// consequtive numbers. |
| 356 | /// |
| 357 | /// Note that the numbering is applied to the whole VPlan, so printing |
| 358 | /// individual blocks is consistent with the whole VPlan printing. |
| 359 | virtual void print(raw_ostream &O, const Twine &Indent, |
| 360 | VPSlotTracker &SlotTracker) const = 0; |
| 361 | |
| 362 | /// Print plain-text dump of this VPlan to \p O. |
| 363 | void print(raw_ostream &O) const; |
| 364 | |
| 365 | /// Print the successors of this block to \p O, prefixing all lines with \p |
| 366 | /// Indent. |
| 367 | void printSuccessors(raw_ostream &O, const Twine &Indent) const; |
| 368 | |
| 369 | /// Dump this VPBlockBase to dbgs(). |
| 370 | LLVM_DUMP_METHOD void dump() const { print(dbgs()); } |
| 371 | #endif |
| 372 | |
| 373 | /// Clone the current block and it's recipes without updating the operands of |
| 374 | /// the cloned recipes, including all blocks in the single-entry single-exit |
| 375 | /// region for VPRegionBlocks. |
| 376 | virtual VPBlockBase *clone() = 0; |
| 377 | }; |
| 378 | |
| 379 | /// VPRecipeBase is a base class modeling a sequence of one or more output IR |
| 380 | /// instructions. VPRecipeBase owns the VPValues it defines through VPDef |
| 381 | /// and is responsible for deleting its defined values. Single-value |
| 382 | /// recipes must inherit from VPSingleDef instead of inheriting from both |
| 383 | /// VPRecipeBase and VPValue separately. |
| 384 | class LLVM_ABI_FOR_TEST VPRecipeBase |
| 385 | : public ilist_node_with_parent<VPRecipeBase, VPBasicBlock>, |
| 386 | public VPDef, |
| 387 | public VPUser { |
| 388 | friend VPBasicBlock; |
| 389 | friend class VPBlockUtils; |
| 390 | |
| 391 | /// Subclass identifier (for isa/dyn_cast). |
| 392 | const unsigned char SubclassID; |
| 393 | |
| 394 | /// Each VPRecipe belongs to a single VPBasicBlock. |
| 395 | VPBasicBlock *Parent = nullptr; |
| 396 | |
| 397 | /// The debug location for the recipe. |
| 398 | DebugLoc DL; |
| 399 | |
| 400 | public: |
| 401 | /// An enumeration for keeping track of the concrete subclass of VPRecipeBase |
| 402 | /// that is actually instantiated. Values of this enumeration are kept in the |
| 403 | /// SubclassID field of the VPRecipeBase objects. They are used for concrete |
| 404 | /// type identification. |
| 405 | using VPRecipeTy = enum { |
| 406 | VPBranchOnMaskSC, |
| 407 | VPDerivedIVSC, |
| 408 | VPExpandSCEVSC, |
| 409 | VPExpressionSC, |
| 410 | VPIRInstructionSC, |
| 411 | VPInstructionSC, |
| 412 | VPInterleaveEVLSC, |
| 413 | VPInterleaveSC, |
| 414 | VPReductionEVLSC, |
| 415 | VPReductionSC, |
| 416 | VPReplicateSC, |
| 417 | VPScalarIVStepsSC, |
| 418 | VPVectorPointerSC, |
| 419 | VPVectorEndPointerSC, |
| 420 | VPWidenCallSC, |
| 421 | VPWidenCanonicalIVSC, |
| 422 | VPWidenCastSC, |
| 423 | VPWidenGEPSC, |
| 424 | VPWidenIntrinsicSC, |
| 425 | VPWidenLoadEVLSC, |
| 426 | VPWidenLoadSC, |
| 427 | VPWidenStoreEVLSC, |
| 428 | VPWidenStoreSC, |
| 429 | VPWidenSC, |
| 430 | VPBlendSC, |
| 431 | VPHistogramSC, |
| 432 | // START: Phi-like recipes. Need to be kept together. |
| 433 | VPWidenPHISC, |
| 434 | VPPredInstPHISC, |
| 435 | // START: SubclassID for recipes that inherit VPHeaderPHIRecipe. |
| 436 | // VPHeaderPHIRecipe need to be kept together. |
| 437 | VPCanonicalIVPHISC, |
| 438 | VPActiveLaneMaskPHISC, |
| 439 | VPEVLBasedIVPHISC, |
| 440 | VPFirstOrderRecurrencePHISC, |
| 441 | VPWidenIntOrFpInductionSC, |
| 442 | VPWidenPointerInductionSC, |
| 443 | VPReductionPHISC, |
| 444 | // END: SubclassID for recipes that inherit VPHeaderPHIRecipe |
| 445 | // END: Phi-like recipes |
| 446 | VPFirstPHISC = VPWidenPHISC, |
| 447 | = VPCanonicalIVPHISC, |
| 448 | = VPReductionPHISC, |
| 449 | VPLastPHISC = VPReductionPHISC, |
| 450 | }; |
| 451 | |
| 452 | VPRecipeBase(const unsigned char SC, ArrayRef<VPValue *> Operands, |
| 453 | DebugLoc DL = DebugLoc::getUnknown()) |
| 454 | : VPDef(), VPUser(Operands), SubclassID(SC), DL(DL) {} |
| 455 | |
| 456 | ~VPRecipeBase() override = default; |
| 457 | |
| 458 | /// Clone the current recipe. |
| 459 | virtual VPRecipeBase *clone() = 0; |
| 460 | |
| 461 | /// \return the VPBasicBlock which this VPRecipe belongs to. |
| 462 | VPBasicBlock *getParent() { return Parent; } |
| 463 | const VPBasicBlock *getParent() const { return Parent; } |
| 464 | |
| 465 | /// \return the VPRegionBlock which the recipe belongs to. |
| 466 | VPRegionBlock *getRegion(); |
| 467 | const VPRegionBlock *getRegion() const; |
| 468 | |
| 469 | /// The method which generates the output IR instructions that correspond to |
| 470 | /// this VPRecipe, thereby "executing" the VPlan. |
| 471 | virtual void execute(VPTransformState &State) = 0; |
| 472 | |
| 473 | /// Return the cost of this recipe, taking into account if the cost |
| 474 | /// computation should be skipped and the ForceTargetInstructionCost flag. |
| 475 | /// Also takes care of printing the cost for debugging. |
| 476 | InstructionCost cost(ElementCount VF, VPCostContext &Ctx); |
| 477 | |
| 478 | /// Insert an unlinked recipe into a basic block immediately before |
| 479 | /// the specified recipe. |
| 480 | void insertBefore(VPRecipeBase *InsertPos); |
| 481 | /// Insert an unlinked recipe into \p BB immediately before the insertion |
| 482 | /// point \p IP; |
| 483 | void insertBefore(VPBasicBlock &BB, iplist<VPRecipeBase>::iterator IP); |
| 484 | |
| 485 | /// Insert an unlinked Recipe into a basic block immediately after |
| 486 | /// the specified Recipe. |
| 487 | void insertAfter(VPRecipeBase *InsertPos); |
| 488 | |
| 489 | /// Unlink this recipe from its current VPBasicBlock and insert it into |
| 490 | /// the VPBasicBlock that MovePos lives in, right after MovePos. |
| 491 | void moveAfter(VPRecipeBase *MovePos); |
| 492 | |
| 493 | /// Unlink this recipe and insert into BB before I. |
| 494 | /// |
| 495 | /// \pre I is a valid iterator into BB. |
| 496 | void moveBefore(VPBasicBlock &BB, iplist<VPRecipeBase>::iterator I); |
| 497 | |
| 498 | /// This method unlinks 'this' from the containing basic block, but does not |
| 499 | /// delete it. |
| 500 | void removeFromParent(); |
| 501 | |
| 502 | /// This method unlinks 'this' from the containing basic block and deletes it. |
| 503 | /// |
| 504 | /// \returns an iterator pointing to the element after the erased one |
| 505 | iplist<VPRecipeBase>::iterator eraseFromParent(); |
| 506 | |
| 507 | /// \return an ID for the concrete type of this object. |
| 508 | unsigned getVPRecipeID() const { return SubclassID; } |
| 509 | |
| 510 | /// Method to support type inquiry through isa, cast, and dyn_cast. |
| 511 | static inline bool classof(const VPDef *D) { |
| 512 | // All VPDefs are also VPRecipeBases. |
| 513 | return true; |
| 514 | } |
| 515 | |
| 516 | static inline bool classof(const VPUser *U) { return true; } |
| 517 | |
| 518 | /// Returns true if the recipe may have side-effects. |
| 519 | bool mayHaveSideEffects() const; |
| 520 | |
| 521 | /// Returns true for PHI-like recipes. |
| 522 | bool isPhi() const; |
| 523 | |
| 524 | /// Returns true if the recipe may read from memory. |
| 525 | bool mayReadFromMemory() const; |
| 526 | |
| 527 | /// Returns true if the recipe may write to memory. |
| 528 | bool mayWriteToMemory() const; |
| 529 | |
| 530 | /// Returns true if the recipe may read from or write to memory. |
| 531 | bool mayReadOrWriteMemory() const { |
| 532 | return mayReadFromMemory() || mayWriteToMemory(); |
| 533 | } |
| 534 | |
| 535 | /// Returns the debug location of the recipe. |
| 536 | DebugLoc getDebugLoc() const { return DL; } |
| 537 | |
| 538 | /// Return true if the recipe is a scalar cast. |
| 539 | bool isScalarCast() const; |
| 540 | |
| 541 | /// Set the recipe's debug location to \p NewDL. |
| 542 | void setDebugLoc(DebugLoc NewDL) { DL = NewDL; } |
| 543 | |
| 544 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 545 | /// Dump the recipe to stderr (for debugging). |
| 546 | LLVM_ABI_FOR_TEST void dump() const; |
| 547 | |
| 548 | /// Print the recipe, delegating to printRecipe(). |
| 549 | void print(raw_ostream &O, const Twine &Indent, |
| 550 | VPSlotTracker &SlotTracker) const; |
| 551 | #endif |
| 552 | |
| 553 | protected: |
| 554 | /// Compute the cost of this recipe either using a recipe's specialized |
| 555 | /// implementation or using the legacy cost model and the underlying |
| 556 | /// instructions. |
| 557 | virtual InstructionCost computeCost(ElementCount VF, |
| 558 | VPCostContext &Ctx) const; |
| 559 | |
| 560 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 561 | /// Each concrete VPRecipe prints itself, without printing common information, |
| 562 | /// like debug info or metadata. |
| 563 | virtual void printRecipe(raw_ostream &O, const Twine &Indent, |
| 564 | VPSlotTracker &SlotTracker) const = 0; |
| 565 | #endif |
| 566 | }; |
| 567 | |
| 568 | // Helper macro to define common classof implementations for recipes. |
| 569 | #define VP_CLASSOF_IMPL(VPRecipeID) \ |
| 570 | static inline bool classof(const VPRecipeBase *R) { \ |
| 571 | return R->getVPRecipeID() == VPRecipeID; \ |
| 572 | } \ |
| 573 | static inline bool classof(const VPValue *V) { \ |
| 574 | auto *R = V->getDefiningRecipe(); \ |
| 575 | return R && R->getVPRecipeID() == VPRecipeID; \ |
| 576 | } \ |
| 577 | static inline bool classof(const VPUser *U) { \ |
| 578 | auto *R = dyn_cast<VPRecipeBase>(U); \ |
| 579 | return R && R->getVPRecipeID() == VPRecipeID; \ |
| 580 | } \ |
| 581 | static inline bool classof(const VPSingleDefRecipe *R) { \ |
| 582 | return R->getVPRecipeID() == VPRecipeID; \ |
| 583 | } |
| 584 | |
| 585 | /// VPSingleDef is a base class for recipes for modeling a sequence of one or |
| 586 | /// more output IR that define a single result VPValue. |
| 587 | /// Note that VPRecipeBase must be inherited from before VPValue. |
| 588 | class VPSingleDefRecipe : public VPRecipeBase, public VPRecipeValue { |
| 589 | public: |
| 590 | VPSingleDefRecipe(const unsigned char SC, ArrayRef<VPValue *> Operands, |
| 591 | DebugLoc DL = DebugLoc::getUnknown()) |
| 592 | : VPRecipeBase(SC, Operands, DL), VPRecipeValue(this) {} |
| 593 | |
| 594 | VPSingleDefRecipe(const unsigned char SC, ArrayRef<VPValue *> Operands, |
| 595 | Value *UV, DebugLoc DL = DebugLoc::getUnknown()) |
| 596 | : VPRecipeBase(SC, Operands, DL), VPRecipeValue(this, UV) {} |
| 597 | |
| 598 | static inline bool classof(const VPRecipeBase *R) { |
| 599 | switch (R->getVPRecipeID()) { |
| 600 | case VPRecipeBase::VPDerivedIVSC: |
| 601 | case VPRecipeBase::VPEVLBasedIVPHISC: |
| 602 | case VPRecipeBase::VPExpandSCEVSC: |
| 603 | case VPRecipeBase::VPExpressionSC: |
| 604 | case VPRecipeBase::VPInstructionSC: |
| 605 | case VPRecipeBase::VPReductionEVLSC: |
| 606 | case VPRecipeBase::VPReductionSC: |
| 607 | case VPRecipeBase::VPReplicateSC: |
| 608 | case VPRecipeBase::VPScalarIVStepsSC: |
| 609 | case VPRecipeBase::VPVectorPointerSC: |
| 610 | case VPRecipeBase::VPVectorEndPointerSC: |
| 611 | case VPRecipeBase::VPWidenCallSC: |
| 612 | case VPRecipeBase::VPWidenCanonicalIVSC: |
| 613 | case VPRecipeBase::VPWidenCastSC: |
| 614 | case VPRecipeBase::VPWidenGEPSC: |
| 615 | case VPRecipeBase::VPWidenIntrinsicSC: |
| 616 | case VPRecipeBase::VPWidenSC: |
| 617 | case VPRecipeBase::VPBlendSC: |
| 618 | case VPRecipeBase::VPPredInstPHISC: |
| 619 | case VPRecipeBase::VPCanonicalIVPHISC: |
| 620 | case VPRecipeBase::VPActiveLaneMaskPHISC: |
| 621 | case VPRecipeBase::VPFirstOrderRecurrencePHISC: |
| 622 | case VPRecipeBase::VPWidenPHISC: |
| 623 | case VPRecipeBase::VPWidenIntOrFpInductionSC: |
| 624 | case VPRecipeBase::VPWidenPointerInductionSC: |
| 625 | case VPRecipeBase::VPReductionPHISC: |
| 626 | return true; |
| 627 | case VPRecipeBase::VPBranchOnMaskSC: |
| 628 | case VPRecipeBase::VPInterleaveEVLSC: |
| 629 | case VPRecipeBase::VPInterleaveSC: |
| 630 | case VPRecipeBase::VPIRInstructionSC: |
| 631 | case VPRecipeBase::VPWidenLoadEVLSC: |
| 632 | case VPRecipeBase::VPWidenLoadSC: |
| 633 | case VPRecipeBase::VPWidenStoreEVLSC: |
| 634 | case VPRecipeBase::VPWidenStoreSC: |
| 635 | case VPRecipeBase::VPHistogramSC: |
| 636 | // TODO: Widened stores don't define a value, but widened loads do. Split |
| 637 | // the recipes to be able to make widened loads VPSingleDefRecipes. |
| 638 | return false; |
| 639 | } |
| 640 | llvm_unreachable("Unhandled VPRecipeID" ); |
| 641 | } |
| 642 | |
| 643 | static inline bool classof(const VPUser *U) { |
| 644 | auto *R = dyn_cast<VPRecipeBase>(Val: U); |
| 645 | return R && classof(R); |
| 646 | } |
| 647 | |
| 648 | VPSingleDefRecipe *clone() override = 0; |
| 649 | |
| 650 | /// Returns the underlying instruction. |
| 651 | Instruction *getUnderlyingInstr() { |
| 652 | return cast<Instruction>(Val: getUnderlyingValue()); |
| 653 | } |
| 654 | const Instruction *getUnderlyingInstr() const { |
| 655 | return cast<Instruction>(Val: getUnderlyingValue()); |
| 656 | } |
| 657 | |
| 658 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 659 | /// Print this VPSingleDefRecipe to dbgs() (for debugging). |
| 660 | LLVM_ABI_FOR_TEST LLVM_DUMP_METHOD void dump() const; |
| 661 | #endif |
| 662 | }; |
| 663 | |
| 664 | /// Class to record and manage LLVM IR flags. |
| 665 | class VPIRFlags { |
| 666 | enum class OperationType : unsigned char { |
| 667 | Cmp, |
| 668 | FCmp, |
| 669 | OverflowingBinOp, |
| 670 | Trunc, |
| 671 | DisjointOp, |
| 672 | PossiblyExactOp, |
| 673 | GEPOp, |
| 674 | FPMathOp, |
| 675 | NonNegOp, |
| 676 | ReductionOp, |
| 677 | Other |
| 678 | }; |
| 679 | |
| 680 | public: |
| 681 | struct WrapFlagsTy { |
| 682 | char HasNUW : 1; |
| 683 | char HasNSW : 1; |
| 684 | |
| 685 | WrapFlagsTy(bool HasNUW, bool HasNSW) : HasNUW(HasNUW), HasNSW(HasNSW) {} |
| 686 | }; |
| 687 | |
| 688 | struct TruncFlagsTy { |
| 689 | char HasNUW : 1; |
| 690 | char HasNSW : 1; |
| 691 | |
| 692 | TruncFlagsTy(bool HasNUW, bool HasNSW) : HasNUW(HasNUW), HasNSW(HasNSW) {} |
| 693 | }; |
| 694 | |
| 695 | struct DisjointFlagsTy { |
| 696 | char IsDisjoint : 1; |
| 697 | DisjointFlagsTy(bool IsDisjoint) : IsDisjoint(IsDisjoint) {} |
| 698 | }; |
| 699 | |
| 700 | struct NonNegFlagsTy { |
| 701 | char NonNeg : 1; |
| 702 | NonNegFlagsTy(bool IsNonNeg) : NonNeg(IsNonNeg) {} |
| 703 | }; |
| 704 | |
| 705 | private: |
| 706 | struct ExactFlagsTy { |
| 707 | char IsExact : 1; |
| 708 | ExactFlagsTy(bool Exact) : IsExact(Exact) {} |
| 709 | }; |
| 710 | struct FastMathFlagsTy { |
| 711 | char AllowReassoc : 1; |
| 712 | char NoNaNs : 1; |
| 713 | char NoInfs : 1; |
| 714 | char NoSignedZeros : 1; |
| 715 | char AllowReciprocal : 1; |
| 716 | char AllowContract : 1; |
| 717 | char ApproxFunc : 1; |
| 718 | |
| 719 | LLVM_ABI_FOR_TEST FastMathFlagsTy(const FastMathFlags &FMF); |
| 720 | }; |
| 721 | /// Holds both the predicate and fast-math flags for floating-point |
| 722 | /// comparisons. |
| 723 | struct FCmpFlagsTy { |
| 724 | CmpInst::Predicate Pred; |
| 725 | FastMathFlagsTy FMFs; |
| 726 | }; |
| 727 | /// Holds reduction-specific flags: RecurKind, IsOrdered, IsInLoop, and FMFs. |
| 728 | struct ReductionFlagsTy { |
| 729 | // RecurKind has ~26 values, needs 5 bits but uses 6 bits to account for |
| 730 | // additional kinds. |
| 731 | unsigned char Kind : 6; |
| 732 | // TODO: Derive order/in-loop from plan and remove here. |
| 733 | unsigned char IsOrdered : 1; |
| 734 | unsigned char IsInLoop : 1; |
| 735 | FastMathFlagsTy FMFs; |
| 736 | |
| 737 | ReductionFlagsTy(RecurKind Kind, bool IsOrdered, bool IsInLoop, |
| 738 | FastMathFlags FMFs) |
| 739 | : Kind(static_cast<unsigned char>(Kind)), IsOrdered(IsOrdered), |
| 740 | IsInLoop(IsInLoop), FMFs(FMFs) {} |
| 741 | }; |
| 742 | |
| 743 | OperationType OpType; |
| 744 | |
| 745 | union { |
| 746 | CmpInst::Predicate CmpPredicate; |
| 747 | WrapFlagsTy WrapFlags; |
| 748 | TruncFlagsTy TruncFlags; |
| 749 | DisjointFlagsTy DisjointFlags; |
| 750 | ExactFlagsTy ExactFlags; |
| 751 | GEPNoWrapFlags GEPFlags; |
| 752 | NonNegFlagsTy NonNegFlags; |
| 753 | FastMathFlagsTy FMFs; |
| 754 | FCmpFlagsTy FCmpFlags; |
| 755 | ReductionFlagsTy ReductionFlags; |
| 756 | unsigned AllFlags; |
| 757 | }; |
| 758 | |
| 759 | public: |
| 760 | VPIRFlags() : OpType(OperationType::Other), AllFlags(0) {} |
| 761 | |
| 762 | VPIRFlags(Instruction &I) { |
| 763 | if (auto *FCmp = dyn_cast<FCmpInst>(Val: &I)) { |
| 764 | OpType = OperationType::FCmp; |
| 765 | FCmpFlags.Pred = FCmp->getPredicate(); |
| 766 | FCmpFlags.FMFs = FCmp->getFastMathFlags(); |
| 767 | } else if (auto *Op = dyn_cast<CmpInst>(Val: &I)) { |
| 768 | OpType = OperationType::Cmp; |
| 769 | CmpPredicate = Op->getPredicate(); |
| 770 | } else if (auto *Op = dyn_cast<PossiblyDisjointInst>(Val: &I)) { |
| 771 | OpType = OperationType::DisjointOp; |
| 772 | DisjointFlags.IsDisjoint = Op->isDisjoint(); |
| 773 | } else if (auto *Op = dyn_cast<OverflowingBinaryOperator>(Val: &I)) { |
| 774 | OpType = OperationType::OverflowingBinOp; |
| 775 | WrapFlags = {Op->hasNoUnsignedWrap(), Op->hasNoSignedWrap()}; |
| 776 | } else if (auto *Op = dyn_cast<TruncInst>(Val: &I)) { |
| 777 | OpType = OperationType::Trunc; |
| 778 | TruncFlags = {Op->hasNoUnsignedWrap(), Op->hasNoSignedWrap()}; |
| 779 | } else if (auto *Op = dyn_cast<PossiblyExactOperator>(Val: &I)) { |
| 780 | OpType = OperationType::PossiblyExactOp; |
| 781 | ExactFlags.IsExact = Op->isExact(); |
| 782 | } else if (auto *GEP = dyn_cast<GetElementPtrInst>(Val: &I)) { |
| 783 | OpType = OperationType::GEPOp; |
| 784 | GEPFlags = GEP->getNoWrapFlags(); |
| 785 | } else if (auto *PNNI = dyn_cast<PossiblyNonNegInst>(Val: &I)) { |
| 786 | OpType = OperationType::NonNegOp; |
| 787 | NonNegFlags.NonNeg = PNNI->hasNonNeg(); |
| 788 | } else if (auto *Op = dyn_cast<FPMathOperator>(Val: &I)) { |
| 789 | OpType = OperationType::FPMathOp; |
| 790 | FMFs = Op->getFastMathFlags(); |
| 791 | } else { |
| 792 | OpType = OperationType::Other; |
| 793 | AllFlags = 0; |
| 794 | } |
| 795 | } |
| 796 | |
| 797 | VPIRFlags(CmpInst::Predicate Pred) |
| 798 | : OpType(OperationType::Cmp), CmpPredicate(Pred) {} |
| 799 | |
| 800 | VPIRFlags(CmpInst::Predicate Pred, FastMathFlags FMFs) |
| 801 | : OpType(OperationType::FCmp) { |
| 802 | FCmpFlags.Pred = Pred; |
| 803 | FCmpFlags.FMFs = FMFs; |
| 804 | } |
| 805 | |
| 806 | VPIRFlags(WrapFlagsTy WrapFlags) |
| 807 | : OpType(OperationType::OverflowingBinOp), WrapFlags(WrapFlags) {} |
| 808 | |
| 809 | VPIRFlags(TruncFlagsTy TruncFlags) |
| 810 | : OpType(OperationType::Trunc), TruncFlags(TruncFlags) {} |
| 811 | |
| 812 | VPIRFlags(FastMathFlags FMFs) : OpType(OperationType::FPMathOp), FMFs(FMFs) {} |
| 813 | |
| 814 | VPIRFlags(DisjointFlagsTy DisjointFlags) |
| 815 | : OpType(OperationType::DisjointOp), DisjointFlags(DisjointFlags) {} |
| 816 | |
| 817 | VPIRFlags(NonNegFlagsTy NonNegFlags) |
| 818 | : OpType(OperationType::NonNegOp), NonNegFlags(NonNegFlags) {} |
| 819 | |
| 820 | VPIRFlags(ExactFlagsTy ExactFlags) |
| 821 | : OpType(OperationType::PossiblyExactOp), ExactFlags(ExactFlags) {} |
| 822 | |
| 823 | VPIRFlags(GEPNoWrapFlags GEPFlags) |
| 824 | : OpType(OperationType::GEPOp), GEPFlags(GEPFlags) {} |
| 825 | |
| 826 | VPIRFlags(RecurKind Kind, bool IsOrdered, bool IsInLoop, FastMathFlags FMFs) |
| 827 | : OpType(OperationType::ReductionOp), |
| 828 | ReductionFlags(Kind, IsOrdered, IsInLoop, FMFs) {} |
| 829 | |
| 830 | void transferFlags(VPIRFlags &Other) { |
| 831 | OpType = Other.OpType; |
| 832 | AllFlags = Other.AllFlags; |
| 833 | } |
| 834 | |
| 835 | /// Only keep flags also present in \p Other. \p Other must have the same |
| 836 | /// OpType as the current object. |
| 837 | void intersectFlags(const VPIRFlags &Other); |
| 838 | |
| 839 | /// Drop all poison-generating flags. |
| 840 | void dropPoisonGeneratingFlags() { |
| 841 | // NOTE: This needs to be kept in-sync with |
| 842 | // Instruction::dropPoisonGeneratingFlags. |
| 843 | switch (OpType) { |
| 844 | case OperationType::OverflowingBinOp: |
| 845 | WrapFlags.HasNUW = false; |
| 846 | WrapFlags.HasNSW = false; |
| 847 | break; |
| 848 | case OperationType::Trunc: |
| 849 | TruncFlags.HasNUW = false; |
| 850 | TruncFlags.HasNSW = false; |
| 851 | break; |
| 852 | case OperationType::DisjointOp: |
| 853 | DisjointFlags.IsDisjoint = false; |
| 854 | break; |
| 855 | case OperationType::PossiblyExactOp: |
| 856 | ExactFlags.IsExact = false; |
| 857 | break; |
| 858 | case OperationType::GEPOp: |
| 859 | GEPFlags = GEPNoWrapFlags::none(); |
| 860 | break; |
| 861 | case OperationType::FPMathOp: |
| 862 | case OperationType::FCmp: |
| 863 | case OperationType::ReductionOp: |
| 864 | getFMFsRef().NoNaNs = false; |
| 865 | getFMFsRef().NoInfs = false; |
| 866 | break; |
| 867 | case OperationType::NonNegOp: |
| 868 | NonNegFlags.NonNeg = false; |
| 869 | break; |
| 870 | case OperationType::Cmp: |
| 871 | case OperationType::Other: |
| 872 | break; |
| 873 | } |
| 874 | } |
| 875 | |
| 876 | /// Apply the IR flags to \p I. |
| 877 | void applyFlags(Instruction &I) const { |
| 878 | switch (OpType) { |
| 879 | case OperationType::OverflowingBinOp: |
| 880 | I.setHasNoUnsignedWrap(WrapFlags.HasNUW); |
| 881 | I.setHasNoSignedWrap(WrapFlags.HasNSW); |
| 882 | break; |
| 883 | case OperationType::Trunc: |
| 884 | I.setHasNoUnsignedWrap(TruncFlags.HasNUW); |
| 885 | I.setHasNoSignedWrap(TruncFlags.HasNSW); |
| 886 | break; |
| 887 | case OperationType::DisjointOp: |
| 888 | cast<PossiblyDisjointInst>(Val: &I)->setIsDisjoint(DisjointFlags.IsDisjoint); |
| 889 | break; |
| 890 | case OperationType::PossiblyExactOp: |
| 891 | I.setIsExact(ExactFlags.IsExact); |
| 892 | break; |
| 893 | case OperationType::GEPOp: |
| 894 | cast<GetElementPtrInst>(Val: &I)->setNoWrapFlags(GEPFlags); |
| 895 | break; |
| 896 | case OperationType::FPMathOp: |
| 897 | case OperationType::FCmp: { |
| 898 | const FastMathFlagsTy &F = getFMFsRef(); |
| 899 | I.setHasAllowReassoc(F.AllowReassoc); |
| 900 | I.setHasNoNaNs(F.NoNaNs); |
| 901 | I.setHasNoInfs(F.NoInfs); |
| 902 | I.setHasNoSignedZeros(F.NoSignedZeros); |
| 903 | I.setHasAllowReciprocal(F.AllowReciprocal); |
| 904 | I.setHasAllowContract(F.AllowContract); |
| 905 | I.setHasApproxFunc(F.ApproxFunc); |
| 906 | break; |
| 907 | } |
| 908 | case OperationType::NonNegOp: |
| 909 | I.setNonNeg(NonNegFlags.NonNeg); |
| 910 | break; |
| 911 | case OperationType::ReductionOp: |
| 912 | llvm_unreachable("reduction ops should not use applyFlags" ); |
| 913 | case OperationType::Cmp: |
| 914 | case OperationType::Other: |
| 915 | break; |
| 916 | } |
| 917 | } |
| 918 | |
| 919 | CmpInst::Predicate getPredicate() const { |
| 920 | assert((OpType == OperationType::Cmp || OpType == OperationType::FCmp) && |
| 921 | "recipe doesn't have a compare predicate" ); |
| 922 | return OpType == OperationType::FCmp ? FCmpFlags.Pred : CmpPredicate; |
| 923 | } |
| 924 | |
| 925 | void setPredicate(CmpInst::Predicate Pred) { |
| 926 | assert((OpType == OperationType::Cmp || OpType == OperationType::FCmp) && |
| 927 | "recipe doesn't have a compare predicate" ); |
| 928 | if (OpType == OperationType::FCmp) |
| 929 | FCmpFlags.Pred = Pred; |
| 930 | else |
| 931 | CmpPredicate = Pred; |
| 932 | } |
| 933 | |
| 934 | GEPNoWrapFlags getGEPNoWrapFlags() const { return GEPFlags; } |
| 935 | |
| 936 | /// Returns true if the recipe has a comparison predicate. |
| 937 | bool hasPredicate() const { |
| 938 | return OpType == OperationType::Cmp || OpType == OperationType::FCmp; |
| 939 | } |
| 940 | |
| 941 | /// Returns true if the recipe has fast-math flags. |
| 942 | bool hasFastMathFlags() const { |
| 943 | return OpType == OperationType::FPMathOp || OpType == OperationType::FCmp || |
| 944 | OpType == OperationType::ReductionOp; |
| 945 | } |
| 946 | |
| 947 | LLVM_ABI_FOR_TEST FastMathFlags getFastMathFlags() const; |
| 948 | |
| 949 | /// Returns true if the recipe has non-negative flag. |
| 950 | bool hasNonNegFlag() const { return OpType == OperationType::NonNegOp; } |
| 951 | |
| 952 | bool isNonNeg() const { |
| 953 | assert(OpType == OperationType::NonNegOp && |
| 954 | "recipe doesn't have a NNEG flag" ); |
| 955 | return NonNegFlags.NonNeg; |
| 956 | } |
| 957 | |
| 958 | bool hasNoUnsignedWrap() const { |
| 959 | switch (OpType) { |
| 960 | case OperationType::OverflowingBinOp: |
| 961 | return WrapFlags.HasNUW; |
| 962 | case OperationType::Trunc: |
| 963 | return TruncFlags.HasNUW; |
| 964 | default: |
| 965 | llvm_unreachable("recipe doesn't have a NUW flag" ); |
| 966 | } |
| 967 | } |
| 968 | |
| 969 | bool hasNoSignedWrap() const { |
| 970 | switch (OpType) { |
| 971 | case OperationType::OverflowingBinOp: |
| 972 | return WrapFlags.HasNSW; |
| 973 | case OperationType::Trunc: |
| 974 | return TruncFlags.HasNSW; |
| 975 | default: |
| 976 | llvm_unreachable("recipe doesn't have a NSW flag" ); |
| 977 | } |
| 978 | } |
| 979 | |
| 980 | bool isDisjoint() const { |
| 981 | assert(OpType == OperationType::DisjointOp && |
| 982 | "recipe cannot have a disjoing flag" ); |
| 983 | return DisjointFlags.IsDisjoint; |
| 984 | } |
| 985 | |
| 986 | RecurKind getRecurKind() const { |
| 987 | assert(OpType == OperationType::ReductionOp && |
| 988 | "recipe doesn't have reduction flags" ); |
| 989 | return static_cast<RecurKind>(ReductionFlags.Kind); |
| 990 | } |
| 991 | |
| 992 | bool isReductionOrdered() const { |
| 993 | assert(OpType == OperationType::ReductionOp && |
| 994 | "recipe doesn't have reduction flags" ); |
| 995 | return ReductionFlags.IsOrdered; |
| 996 | } |
| 997 | |
| 998 | bool isReductionInLoop() const { |
| 999 | assert(OpType == OperationType::ReductionOp && |
| 1000 | "recipe doesn't have reduction flags" ); |
| 1001 | return ReductionFlags.IsInLoop; |
| 1002 | } |
| 1003 | |
| 1004 | private: |
| 1005 | /// Get a reference to the fast-math flags for FPMathOp, FCmp or ReductionOp. |
| 1006 | FastMathFlagsTy &getFMFsRef() { |
| 1007 | if (OpType == OperationType::FCmp) |
| 1008 | return FCmpFlags.FMFs; |
| 1009 | if (OpType == OperationType::ReductionOp) |
| 1010 | return ReductionFlags.FMFs; |
| 1011 | return FMFs; |
| 1012 | } |
| 1013 | const FastMathFlagsTy &getFMFsRef() const { |
| 1014 | if (OpType == OperationType::FCmp) |
| 1015 | return FCmpFlags.FMFs; |
| 1016 | if (OpType == OperationType::ReductionOp) |
| 1017 | return ReductionFlags.FMFs; |
| 1018 | return FMFs; |
| 1019 | } |
| 1020 | |
| 1021 | public: |
| 1022 | /// Returns default flags for \p Opcode for opcodes that support it, asserts |
| 1023 | /// otherwise. Opcodes not supporting default flags include compares and |
| 1024 | /// ComputeReductionResult. |
| 1025 | static VPIRFlags getDefaultFlags(unsigned Opcode); |
| 1026 | |
| 1027 | #if !defined(NDEBUG) |
| 1028 | /// Returns true if the set flags are valid for \p Opcode. |
| 1029 | LLVM_ABI_FOR_TEST bool flagsValidForOpcode(unsigned Opcode) const; |
| 1030 | |
| 1031 | /// Returns true if \p Opcode has its required flags set. |
| 1032 | LLVM_ABI_FOR_TEST bool hasRequiredFlagsForOpcode(unsigned Opcode) const; |
| 1033 | #endif |
| 1034 | |
| 1035 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 1036 | void printFlags(raw_ostream &O) const; |
| 1037 | #endif |
| 1038 | }; |
| 1039 | |
| 1040 | /// A pure-virtual common base class for recipes defining a single VPValue and |
| 1041 | /// using IR flags. |
| 1042 | struct VPRecipeWithIRFlags : public VPSingleDefRecipe, public VPIRFlags { |
| 1043 | VPRecipeWithIRFlags(const unsigned char SC, ArrayRef<VPValue *> Operands, |
| 1044 | const VPIRFlags &Flags, |
| 1045 | DebugLoc DL = DebugLoc::getUnknown()) |
| 1046 | : VPSingleDefRecipe(SC, Operands, DL), VPIRFlags(Flags) {} |
| 1047 | |
| 1048 | static inline bool classof(const VPRecipeBase *R) { |
| 1049 | return R->getVPRecipeID() == VPRecipeBase::VPInstructionSC || |
| 1050 | R->getVPRecipeID() == VPRecipeBase::VPWidenSC || |
| 1051 | R->getVPRecipeID() == VPRecipeBase::VPWidenGEPSC || |
| 1052 | R->getVPRecipeID() == VPRecipeBase::VPWidenCallSC || |
| 1053 | R->getVPRecipeID() == VPRecipeBase::VPWidenCastSC || |
| 1054 | R->getVPRecipeID() == VPRecipeBase::VPWidenIntrinsicSC || |
| 1055 | R->getVPRecipeID() == VPRecipeBase::VPReductionSC || |
| 1056 | R->getVPRecipeID() == VPRecipeBase::VPReductionEVLSC || |
| 1057 | R->getVPRecipeID() == VPRecipeBase::VPReplicateSC || |
| 1058 | R->getVPRecipeID() == VPRecipeBase::VPVectorEndPointerSC || |
| 1059 | R->getVPRecipeID() == VPRecipeBase::VPVectorPointerSC; |
| 1060 | } |
| 1061 | |
| 1062 | static inline bool classof(const VPUser *U) { |
| 1063 | auto *R = dyn_cast<VPRecipeBase>(Val: U); |
| 1064 | return R && classof(R); |
| 1065 | } |
| 1066 | |
| 1067 | static inline bool classof(const VPValue *V) { |
| 1068 | auto *R = V->getDefiningRecipe(); |
| 1069 | return R && classof(R); |
| 1070 | } |
| 1071 | |
| 1072 | VPRecipeWithIRFlags *clone() override = 0; |
| 1073 | |
| 1074 | static inline bool classof(const VPSingleDefRecipe *R) { |
| 1075 | return classof(R: static_cast<const VPRecipeBase *>(R)); |
| 1076 | } |
| 1077 | |
| 1078 | void execute(VPTransformState &State) override = 0; |
| 1079 | |
| 1080 | /// Compute the cost for this recipe for \p VF, using \p Opcode and \p Ctx. |
| 1081 | InstructionCost getCostForRecipeWithOpcode(unsigned Opcode, ElementCount VF, |
| 1082 | VPCostContext &Ctx) const; |
| 1083 | }; |
| 1084 | |
| 1085 | /// Helper to access the operand that contains the unroll part for this recipe |
| 1086 | /// after unrolling. |
| 1087 | template <unsigned PartOpIdx> class LLVM_ABI_FOR_TEST VPUnrollPartAccessor { |
| 1088 | protected: |
| 1089 | /// Return the VPValue operand containing the unroll part or null if there is |
| 1090 | /// no such operand. |
| 1091 | VPValue *getUnrollPartOperand(const VPUser &U) const; |
| 1092 | |
| 1093 | /// Return the unroll part. |
| 1094 | unsigned getUnrollPart(const VPUser &U) const; |
| 1095 | }; |
| 1096 | |
| 1097 | /// Helper to manage IR metadata for recipes. It filters out metadata that |
| 1098 | /// cannot be propagated. |
| 1099 | class VPIRMetadata { |
| 1100 | SmallVector<std::pair<unsigned, MDNode *>> Metadata; |
| 1101 | |
| 1102 | public: |
| 1103 | VPIRMetadata() = default; |
| 1104 | |
| 1105 | /// Adds metatadata that can be preserved from the original instruction |
| 1106 | /// \p I. |
| 1107 | VPIRMetadata(Instruction &I) { getMetadataToPropagate(Inst: &I, Metadata); } |
| 1108 | |
| 1109 | /// Copy constructor for cloning. |
| 1110 | VPIRMetadata(const VPIRMetadata &Other) = default; |
| 1111 | |
| 1112 | VPIRMetadata &operator=(const VPIRMetadata &Other) = default; |
| 1113 | |
| 1114 | /// Add all metadata to \p I. |
| 1115 | void applyMetadata(Instruction &I) const; |
| 1116 | |
| 1117 | /// Set metadata with kind \p Kind to \p Node. If metadata with \p Kind |
| 1118 | /// already exists, it will be replaced. Otherwise, it will be added. |
| 1119 | void setMetadata(unsigned Kind, MDNode *Node) { |
| 1120 | auto It = |
| 1121 | llvm::find_if(Range&: Metadata, P: [Kind](const std::pair<unsigned, MDNode *> &P) { |
| 1122 | return P.first == Kind; |
| 1123 | }); |
| 1124 | if (It != Metadata.end()) |
| 1125 | It->second = Node; |
| 1126 | else |
| 1127 | Metadata.emplace_back(Args&: Kind, Args&: Node); |
| 1128 | } |
| 1129 | |
| 1130 | /// Intersect this VPIRMetadata object with \p MD, keeping only metadata |
| 1131 | /// nodes that are common to both. |
| 1132 | void intersect(const VPIRMetadata &MD); |
| 1133 | |
| 1134 | /// Get metadata of kind \p Kind. Returns nullptr if not found. |
| 1135 | MDNode *getMetadata(unsigned Kind) const { |
| 1136 | auto It = |
| 1137 | find_if(Range: Metadata, P: [Kind](const auto &P) { return P.first == Kind; }); |
| 1138 | return It != Metadata.end() ? It->second : nullptr; |
| 1139 | } |
| 1140 | |
| 1141 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 1142 | /// Print metadata with node IDs. |
| 1143 | void print(raw_ostream &O, VPSlotTracker &SlotTracker) const; |
| 1144 | #endif |
| 1145 | }; |
| 1146 | |
| 1147 | /// This is a concrete Recipe that models a single VPlan-level instruction. |
| 1148 | /// While as any Recipe it may generate a sequence of IR instructions when |
| 1149 | /// executed, these instructions would always form a single-def expression as |
| 1150 | /// the VPInstruction is also a single def-use vertex. |
| 1151 | class LLVM_ABI_FOR_TEST VPInstruction : public VPRecipeWithIRFlags, |
| 1152 | public VPIRMetadata, |
| 1153 | public VPUnrollPartAccessor<1> { |
| 1154 | friend class VPlanSlp; |
| 1155 | |
| 1156 | public: |
| 1157 | /// VPlan opcodes, extending LLVM IR with idiomatics instructions. |
| 1158 | enum { |
| 1159 | FirstOrderRecurrenceSplice = |
| 1160 | Instruction::OtherOpsEnd + 1, // Combines the incoming and previous |
| 1161 | // values of a first-order recurrence. |
| 1162 | Not, |
| 1163 | SLPLoad, |
| 1164 | SLPStore, |
| 1165 | // Creates a mask where each lane is active (true) whilst the current |
| 1166 | // counter (first operand + index) is less than the second operand. i.e. |
| 1167 | // mask[i] = icmpt ult (op0 + i), op1 |
| 1168 | // The size of the mask returned is VF * Multiplier (UF, third op). |
| 1169 | ActiveLaneMask, |
| 1170 | ExplicitVectorLength, |
| 1171 | CalculateTripCountMinusVF, |
| 1172 | // Increment the canonical IV separately for each unrolled part. |
| 1173 | CanonicalIVIncrementForPart, |
| 1174 | // Abstract instruction that compares two values and branches. This is |
| 1175 | // lowered to ICmp + BranchOnCond during VPlan to VPlan transformation. |
| 1176 | BranchOnCount, |
| 1177 | BranchOnCond, |
| 1178 | // Branch with 2 boolean condition operands and 3 successors. If condition |
| 1179 | // 0 is true, branches to successor 0; if condition 1 is true, branches to |
| 1180 | // successor 1; otherwise branches to successor 2. Expanded after region |
| 1181 | // dissolution into: (1) an OR of the two conditions branching to |
| 1182 | // middle.split or successor 2, and (2) middle.split branching to successor |
| 1183 | // 0 or successor 1 based on condition 0. |
| 1184 | BranchOnTwoConds, |
| 1185 | Broadcast, |
| 1186 | /// Given operands of (the same) struct type, creates a struct of fixed- |
| 1187 | /// width vectors each containing a struct field of all operands. The |
| 1188 | /// number of operands matches the element count of every vector. |
| 1189 | BuildStructVector, |
| 1190 | /// Creates a fixed-width vector containing all operands. The number of |
| 1191 | /// operands matches the vector element count. |
| 1192 | BuildVector, |
| 1193 | /// Extracts all lanes from its (non-scalable) vector operand. This is an |
| 1194 | /// abstract VPInstruction whose single defined VPValue represents VF |
| 1195 | /// scalars extracted from a vector, to be replaced by VF ExtractElement |
| 1196 | /// VPInstructions. |
| 1197 | Unpack, |
| 1198 | /// Compute the final result of a AnyOf reduction with select(cmp(),x,y), |
| 1199 | /// where one of (x,y) is loop invariant, and both x and y are integer type. |
| 1200 | ComputeAnyOfResult, |
| 1201 | ComputeReductionResult, |
| 1202 | // Extracts the last part of its operand. Removed during unrolling. |
| 1203 | , |
| 1204 | // Extracts the last lane of its vector operand, per part. |
| 1205 | , |
| 1206 | // Extracts the second-to-last lane from its operand or the second-to-last |
| 1207 | // part if it is scalar. In the latter case, the recipe will be removed |
| 1208 | // during unrolling. |
| 1209 | , |
| 1210 | LogicalAnd, // Non-poison propagating logical And. |
| 1211 | // Add an offset in bytes (second operand) to a base pointer (first |
| 1212 | // operand). Only generates scalar values (either for the first lane only or |
| 1213 | // for all lanes, depending on its uses). |
| 1214 | PtrAdd, |
| 1215 | // Add a vector offset in bytes (second operand) to a scalar base pointer |
| 1216 | // (first operand). |
| 1217 | WidePtrAdd, |
| 1218 | // Returns a scalar boolean value, which is true if any lane of its |
| 1219 | // (boolean) vector operands is true. It produces the reduced value across |
| 1220 | // all unrolled iterations. Unrolling will add all copies of its original |
| 1221 | // operand as additional operands. AnyOf is poison-safe as all operands |
| 1222 | // will be frozen. |
| 1223 | AnyOf, |
| 1224 | // Calculates the first active lane index of the vector predicate operands. |
| 1225 | // It produces the lane index across all unrolled iterations. Unrolling will |
| 1226 | // add all copies of its original operand as additional operands. |
| 1227 | // Implemented with @llvm.experimental.cttz.elts, but returns the expected |
| 1228 | // result even with operands that are all zeroes. |
| 1229 | FirstActiveLane, |
| 1230 | // Calculates the last active lane index of the vector predicate operands. |
| 1231 | // The predicates must be prefix-masks (all 1s before all 0s). Used when |
| 1232 | // tail-folding to extract the correct live-out value from the last active |
| 1233 | // iteration. It produces the lane index across all unrolled iterations. |
| 1234 | // Unrolling will add all copies of its original operand as additional |
| 1235 | // operands. |
| 1236 | LastActiveLane, |
| 1237 | // Returns a reversed vector for the operand. |
| 1238 | Reverse, |
| 1239 | |
| 1240 | // The opcodes below are used for VPInstructionWithType. |
| 1241 | // |
| 1242 | /// Scale the first operand (vector step) by the second operand |
| 1243 | /// (scalar-step). Casts both operands to the result type if needed. |
| 1244 | WideIVStep, |
| 1245 | /// Start vector for reductions with 3 operands: the original start value, |
| 1246 | /// the identity value for the reduction and an integer indicating the |
| 1247 | /// scaling factor. |
| 1248 | ReductionStartVector, |
| 1249 | // Creates a step vector starting from 0 to VF with a step of 1. |
| 1250 | StepVector, |
| 1251 | /// Extracts a single lane (first operand) from a set of vector operands. |
| 1252 | /// The lane specifies an index into a vector formed by combining all vector |
| 1253 | /// operands (all operands after the first one). |
| 1254 | , |
| 1255 | /// Explicit user for the resume phi of the canonical induction in the main |
| 1256 | /// VPlan, used by the epilogue vector loop. |
| 1257 | ResumeForEpilogue, |
| 1258 | /// Extracts the lane from the first operand corresponding to the last |
| 1259 | /// active (non-zero) lane in the mask (second operand), or if no lanes |
| 1260 | /// were active in the mask, returns the default value (third operand). |
| 1261 | , |
| 1262 | |
| 1263 | /// Returns the value for vscale. |
| 1264 | VScale, |
| 1265 | OpsEnd = VScale, |
| 1266 | }; |
| 1267 | |
| 1268 | /// Returns true if this VPInstruction generates scalar values for all lanes. |
| 1269 | /// Most VPInstructions generate a single value per part, either vector or |
| 1270 | /// scalar. VPReplicateRecipe takes care of generating multiple (scalar) |
| 1271 | /// values per all lanes, stemming from an original ingredient. This method |
| 1272 | /// identifies the (rare) cases of VPInstructions that do so as well, w/o an |
| 1273 | /// underlying ingredient. |
| 1274 | bool doesGeneratePerAllLanes() const; |
| 1275 | |
| 1276 | /// Return the number of operands determined by the opcode of the |
| 1277 | /// VPInstruction. Returns -1u if the number of operands cannot be determined |
| 1278 | /// directly by the opcode. |
| 1279 | static unsigned getNumOperandsForOpcode(unsigned Opcode); |
| 1280 | |
| 1281 | private: |
| 1282 | typedef unsigned char OpcodeTy; |
| 1283 | OpcodeTy Opcode; |
| 1284 | |
| 1285 | /// An optional name that can be used for the generated IR instruction. |
| 1286 | std::string Name; |
| 1287 | |
| 1288 | /// Returns true if we can generate a scalar for the first lane only if |
| 1289 | /// needed. |
| 1290 | bool canGenerateScalarForFirstLane() const; |
| 1291 | |
| 1292 | /// Utility methods serving execute(): generates a single vector instance of |
| 1293 | /// the modeled instruction. \returns the generated value. . In some cases an |
| 1294 | /// existing value is returned rather than a generated one. |
| 1295 | Value *generate(VPTransformState &State); |
| 1296 | |
| 1297 | public: |
| 1298 | VPInstruction(unsigned Opcode, ArrayRef<VPValue *> Operands, |
| 1299 | const VPIRFlags &Flags = {}, const VPIRMetadata &MD = {}, |
| 1300 | DebugLoc DL = DebugLoc::getUnknown(), const Twine &Name = "" ); |
| 1301 | |
| 1302 | VP_CLASSOF_IMPL(VPRecipeBase::VPInstructionSC) |
| 1303 | |
| 1304 | VPInstruction *clone() override { |
| 1305 | auto *New = new VPInstruction(Opcode, operands(), *this, *this, |
| 1306 | getDebugLoc(), Name); |
| 1307 | if (getUnderlyingValue()) |
| 1308 | New->setUnderlyingValue(getUnderlyingInstr()); |
| 1309 | return New; |
| 1310 | } |
| 1311 | |
| 1312 | unsigned getOpcode() const { return Opcode; } |
| 1313 | |
| 1314 | /// Generate the instruction. |
| 1315 | /// TODO: We currently execute only per-part unless a specific instance is |
| 1316 | /// provided. |
| 1317 | void execute(VPTransformState &State) override; |
| 1318 | |
| 1319 | /// Return the cost of this VPInstruction. |
| 1320 | InstructionCost computeCost(ElementCount VF, |
| 1321 | VPCostContext &Ctx) const override; |
| 1322 | |
| 1323 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 1324 | /// Print the VPInstruction to dbgs() (for debugging). |
| 1325 | LLVM_DUMP_METHOD void dump() const; |
| 1326 | #endif |
| 1327 | |
| 1328 | bool hasResult() const { |
| 1329 | // CallInst may or may not have a result, depending on the called function. |
| 1330 | // Conservatively return calls have results for now. |
| 1331 | switch (getOpcode()) { |
| 1332 | case Instruction::Ret: |
| 1333 | case Instruction::Br: |
| 1334 | case Instruction::Store: |
| 1335 | case Instruction::Switch: |
| 1336 | case Instruction::IndirectBr: |
| 1337 | case Instruction::Resume: |
| 1338 | case Instruction::CatchRet: |
| 1339 | case Instruction::Unreachable: |
| 1340 | case Instruction::Fence: |
| 1341 | case Instruction::AtomicRMW: |
| 1342 | case VPInstruction::BranchOnCond: |
| 1343 | case VPInstruction::BranchOnTwoConds: |
| 1344 | case VPInstruction::BranchOnCount: |
| 1345 | return false; |
| 1346 | default: |
| 1347 | return true; |
| 1348 | } |
| 1349 | } |
| 1350 | |
| 1351 | /// Returns true if the underlying opcode may read from or write to memory. |
| 1352 | bool opcodeMayReadOrWriteFromMemory() const; |
| 1353 | |
| 1354 | /// Returns true if the recipe only uses the first lane of operand \p Op. |
| 1355 | bool usesFirstLaneOnly(const VPValue *Op) const override; |
| 1356 | |
| 1357 | /// Returns true if the recipe only uses the first part of operand \p Op. |
| 1358 | bool usesFirstPartOnly(const VPValue *Op) const override; |
| 1359 | |
| 1360 | /// Returns true if this VPInstruction produces a scalar value from a vector, |
| 1361 | /// e.g. by performing a reduction or extracting a lane. |
| 1362 | bool isVectorToScalar() const; |
| 1363 | |
| 1364 | /// Returns true if this VPInstruction's operands are single scalars and the |
| 1365 | /// result is also a single scalar. |
| 1366 | bool isSingleScalar() const; |
| 1367 | |
| 1368 | /// Returns the symbolic name assigned to the VPInstruction. |
| 1369 | StringRef getName() const { return Name; } |
| 1370 | |
| 1371 | /// Set the symbolic name for the VPInstruction. |
| 1372 | void setName(StringRef NewName) { Name = NewName.str(); } |
| 1373 | |
| 1374 | protected: |
| 1375 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 1376 | /// Print the VPInstruction to \p O. |
| 1377 | void printRecipe(raw_ostream &O, const Twine &Indent, |
| 1378 | VPSlotTracker &SlotTracker) const override; |
| 1379 | #endif |
| 1380 | }; |
| 1381 | |
| 1382 | /// A specialization of VPInstruction augmenting it with a dedicated result |
| 1383 | /// type, to be used when the opcode and operands of the VPInstruction don't |
| 1384 | /// directly determine the result type. Note that there is no separate recipe ID |
| 1385 | /// for VPInstructionWithType; it shares the same ID as VPInstruction and is |
| 1386 | /// distinguished purely by the opcode. |
| 1387 | class VPInstructionWithType : public VPInstruction { |
| 1388 | /// Scalar result type produced by the recipe. |
| 1389 | Type *ResultTy; |
| 1390 | |
| 1391 | public: |
| 1392 | VPInstructionWithType(unsigned Opcode, ArrayRef<VPValue *> Operands, |
| 1393 | Type *ResultTy, const VPIRFlags &Flags = {}, |
| 1394 | const VPIRMetadata &Metadata = {}, |
| 1395 | DebugLoc DL = DebugLoc::getUnknown(), |
| 1396 | const Twine &Name = "" ) |
| 1397 | : VPInstruction(Opcode, Operands, Flags, Metadata, DL, Name), |
| 1398 | ResultTy(ResultTy) {} |
| 1399 | |
| 1400 | static inline bool classof(const VPRecipeBase *R) { |
| 1401 | // VPInstructionWithType are VPInstructions with specific opcodes requiring |
| 1402 | // type information. |
| 1403 | if (R->isScalarCast()) |
| 1404 | return true; |
| 1405 | auto *VPI = dyn_cast<VPInstruction>(Val: R); |
| 1406 | if (!VPI) |
| 1407 | return false; |
| 1408 | switch (VPI->getOpcode()) { |
| 1409 | case VPInstruction::WideIVStep: |
| 1410 | case VPInstruction::StepVector: |
| 1411 | case VPInstruction::VScale: |
| 1412 | return true; |
| 1413 | default: |
| 1414 | return false; |
| 1415 | } |
| 1416 | } |
| 1417 | |
| 1418 | static inline bool classof(const VPUser *R) { |
| 1419 | return isa<VPInstructionWithType>(Val: cast<VPRecipeBase>(Val: R)); |
| 1420 | } |
| 1421 | |
| 1422 | VPInstruction *clone() override { |
| 1423 | auto *New = |
| 1424 | new VPInstructionWithType(getOpcode(), operands(), getResultType(), |
| 1425 | *this, *this, getDebugLoc(), getName()); |
| 1426 | New->setUnderlyingValue(getUnderlyingValue()); |
| 1427 | return New; |
| 1428 | } |
| 1429 | |
| 1430 | void execute(VPTransformState &State) override; |
| 1431 | |
| 1432 | /// Return the cost of this VPInstruction. |
| 1433 | InstructionCost computeCost(ElementCount VF, |
| 1434 | VPCostContext &Ctx) const override { |
| 1435 | // TODO: Compute accurate cost after retiring the legacy cost model. |
| 1436 | return 0; |
| 1437 | } |
| 1438 | |
| 1439 | Type *getResultType() const { return ResultTy; } |
| 1440 | |
| 1441 | protected: |
| 1442 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 1443 | /// Print the recipe. |
| 1444 | void printRecipe(raw_ostream &O, const Twine &Indent, |
| 1445 | VPSlotTracker &SlotTracker) const override; |
| 1446 | #endif |
| 1447 | }; |
| 1448 | |
| 1449 | /// Helper type to provide functions to access incoming values and blocks for |
| 1450 | /// phi-like recipes. |
| 1451 | class VPPhiAccessors { |
| 1452 | protected: |
| 1453 | /// Return a VPRecipeBase* to the current object. |
| 1454 | virtual const VPRecipeBase *getAsRecipe() const = 0; |
| 1455 | |
| 1456 | public: |
| 1457 | virtual ~VPPhiAccessors() = default; |
| 1458 | |
| 1459 | /// Returns the incoming VPValue with index \p Idx. |
| 1460 | VPValue *getIncomingValue(unsigned Idx) const { |
| 1461 | return getAsRecipe()->getOperand(N: Idx); |
| 1462 | } |
| 1463 | |
| 1464 | /// Returns the incoming block with index \p Idx. |
| 1465 | const VPBasicBlock *getIncomingBlock(unsigned Idx) const; |
| 1466 | |
| 1467 | /// Returns the number of incoming values, also number of incoming blocks. |
| 1468 | virtual unsigned getNumIncoming() const { |
| 1469 | return getAsRecipe()->getNumOperands(); |
| 1470 | } |
| 1471 | |
| 1472 | /// Returns an interator range over the incoming values. |
| 1473 | VPUser::const_operand_range incoming_values() const { |
| 1474 | return make_range(x: getAsRecipe()->op_begin(), |
| 1475 | y: getAsRecipe()->op_begin() + getNumIncoming()); |
| 1476 | } |
| 1477 | |
| 1478 | using const_incoming_blocks_range = iterator_range<mapped_iterator< |
| 1479 | detail::index_iterator, std::function<const VPBasicBlock *(size_t)>>>; |
| 1480 | |
| 1481 | /// Returns an iterator range over the incoming blocks. |
| 1482 | const_incoming_blocks_range incoming_blocks() const { |
| 1483 | std::function<const VPBasicBlock *(size_t)> GetBlock = [this](size_t Idx) { |
| 1484 | return getIncomingBlock(Idx); |
| 1485 | }; |
| 1486 | return map_range(C: index_range(0, getNumIncoming()), F: GetBlock); |
| 1487 | } |
| 1488 | |
| 1489 | /// Returns an iterator range over pairs of incoming values and corresponding |
| 1490 | /// incoming blocks. |
| 1491 | detail::zippy<llvm::detail::zip_first, VPUser::const_operand_range, |
| 1492 | const_incoming_blocks_range> |
| 1493 | incoming_values_and_blocks() const { |
| 1494 | return zip_equal(t: incoming_values(), u: incoming_blocks()); |
| 1495 | } |
| 1496 | |
| 1497 | /// Removes the incoming value for \p IncomingBlock, which must be a |
| 1498 | /// predecessor. |
| 1499 | void removeIncomingValueFor(VPBlockBase *IncomingBlock) const; |
| 1500 | |
| 1501 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 1502 | /// Print the recipe. |
| 1503 | void printPhiOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const; |
| 1504 | #endif |
| 1505 | }; |
| 1506 | |
| 1507 | struct LLVM_ABI_FOR_TEST VPPhi : public VPInstruction, public VPPhiAccessors { |
| 1508 | VPPhi(ArrayRef<VPValue *> Operands, DebugLoc DL, const Twine &Name = "" ) |
| 1509 | : VPInstruction(Instruction::PHI, Operands, {}, {}, DL, Name) {} |
| 1510 | |
| 1511 | static inline bool classof(const VPUser *U) { |
| 1512 | auto *VPI = dyn_cast<VPInstruction>(Val: U); |
| 1513 | return VPI && VPI->getOpcode() == Instruction::PHI; |
| 1514 | } |
| 1515 | |
| 1516 | static inline bool classof(const VPValue *V) { |
| 1517 | auto *VPI = dyn_cast<VPInstruction>(Val: V); |
| 1518 | return VPI && VPI->getOpcode() == Instruction::PHI; |
| 1519 | } |
| 1520 | |
| 1521 | static inline bool classof(const VPSingleDefRecipe *SDR) { |
| 1522 | auto *VPI = dyn_cast<VPInstruction>(Val: SDR); |
| 1523 | return VPI && VPI->getOpcode() == Instruction::PHI; |
| 1524 | } |
| 1525 | |
| 1526 | VPPhi *clone() override { |
| 1527 | auto *PhiR = new VPPhi(operands(), getDebugLoc(), getName()); |
| 1528 | PhiR->setUnderlyingValue(getUnderlyingValue()); |
| 1529 | return PhiR; |
| 1530 | } |
| 1531 | |
| 1532 | void execute(VPTransformState &State) override; |
| 1533 | |
| 1534 | protected: |
| 1535 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 1536 | /// Print the recipe. |
| 1537 | void printRecipe(raw_ostream &O, const Twine &Indent, |
| 1538 | VPSlotTracker &SlotTracker) const override; |
| 1539 | #endif |
| 1540 | |
| 1541 | const VPRecipeBase *getAsRecipe() const override { return this; } |
| 1542 | }; |
| 1543 | |
| 1544 | /// A recipe to wrap on original IR instruction not to be modified during |
| 1545 | /// execution, except for PHIs. PHIs are modeled via the VPIRPhi subclass. |
| 1546 | /// Expect PHIs, VPIRInstructions cannot have any operands. |
| 1547 | class VPIRInstruction : public VPRecipeBase { |
| 1548 | Instruction &I; |
| 1549 | |
| 1550 | protected: |
| 1551 | /// VPIRInstruction::create() should be used to create VPIRInstructions, as |
| 1552 | /// subclasses may need to be created, e.g. VPIRPhi. |
| 1553 | VPIRInstruction(Instruction &I) |
| 1554 | : VPRecipeBase(VPRecipeBase::VPIRInstructionSC, {}), I(I) {} |
| 1555 | |
| 1556 | public: |
| 1557 | ~VPIRInstruction() override = default; |
| 1558 | |
| 1559 | /// Create a new VPIRPhi for \p \I, if it is a PHINode, otherwise create a |
| 1560 | /// VPIRInstruction. |
| 1561 | LLVM_ABI_FOR_TEST static VPIRInstruction *create(Instruction &I); |
| 1562 | |
| 1563 | VP_CLASSOF_IMPL(VPRecipeBase::VPIRInstructionSC) |
| 1564 | |
| 1565 | VPIRInstruction *clone() override { |
| 1566 | auto *R = create(I); |
| 1567 | for (auto *Op : operands()) |
| 1568 | R->addOperand(Operand: Op); |
| 1569 | return R; |
| 1570 | } |
| 1571 | |
| 1572 | void execute(VPTransformState &State) override; |
| 1573 | |
| 1574 | /// Return the cost of this VPIRInstruction. |
| 1575 | LLVM_ABI_FOR_TEST InstructionCost |
| 1576 | computeCost(ElementCount VF, VPCostContext &Ctx) const override; |
| 1577 | |
| 1578 | Instruction &getInstruction() const { return I; } |
| 1579 | |
| 1580 | bool usesScalars(const VPValue *Op) const override { |
| 1581 | assert(is_contained(operands(), Op) && |
| 1582 | "Op must be an operand of the recipe" ); |
| 1583 | return true; |
| 1584 | } |
| 1585 | |
| 1586 | bool usesFirstPartOnly(const VPValue *Op) const override { |
| 1587 | assert(is_contained(operands(), Op) && |
| 1588 | "Op must be an operand of the recipe" ); |
| 1589 | return true; |
| 1590 | } |
| 1591 | |
| 1592 | bool usesFirstLaneOnly(const VPValue *Op) const override { |
| 1593 | assert(is_contained(operands(), Op) && |
| 1594 | "Op must be an operand of the recipe" ); |
| 1595 | return true; |
| 1596 | } |
| 1597 | |
| 1598 | /// Update the recipe's first operand to the last lane of the last part of the |
| 1599 | /// operand using \p Builder. Must only be used for VPIRInstructions with at |
| 1600 | /// least one operand wrapping a PHINode. |
| 1601 | void extractLastLaneOfLastPartOfFirstOperand(VPBuilder &Builder); |
| 1602 | |
| 1603 | protected: |
| 1604 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 1605 | /// Print the recipe. |
| 1606 | void printRecipe(raw_ostream &O, const Twine &Indent, |
| 1607 | VPSlotTracker &SlotTracker) const override; |
| 1608 | #endif |
| 1609 | }; |
| 1610 | |
| 1611 | /// An overlay for VPIRInstructions wrapping PHI nodes enabling convenient use |
| 1612 | /// cast/dyn_cast/isa and execute() implementation. A single VPValue operand is |
| 1613 | /// allowed, and it is used to add a new incoming value for the single |
| 1614 | /// predecessor VPBB. |
| 1615 | struct LLVM_ABI_FOR_TEST VPIRPhi : public VPIRInstruction, |
| 1616 | public VPPhiAccessors { |
| 1617 | VPIRPhi(PHINode &PN) : VPIRInstruction(PN) {} |
| 1618 | |
| 1619 | static inline bool classof(const VPRecipeBase *U) { |
| 1620 | auto *R = dyn_cast<VPIRInstruction>(Val: U); |
| 1621 | return R && isa<PHINode>(Val: R->getInstruction()); |
| 1622 | } |
| 1623 | |
| 1624 | PHINode &getIRPhi() { return cast<PHINode>(Val&: getInstruction()); } |
| 1625 | |
| 1626 | void execute(VPTransformState &State) override; |
| 1627 | |
| 1628 | protected: |
| 1629 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 1630 | /// Print the recipe. |
| 1631 | void printRecipe(raw_ostream &O, const Twine &Indent, |
| 1632 | VPSlotTracker &SlotTracker) const override; |
| 1633 | #endif |
| 1634 | |
| 1635 | const VPRecipeBase *getAsRecipe() const override { return this; } |
| 1636 | }; |
| 1637 | |
| 1638 | /// VPWidenRecipe is a recipe for producing a widened instruction using the |
| 1639 | /// opcode and operands of the recipe. This recipe covers most of the |
| 1640 | /// traditional vectorization cases where each recipe transforms into a |
| 1641 | /// vectorized version of itself. |
| 1642 | class LLVM_ABI_FOR_TEST VPWidenRecipe : public VPRecipeWithIRFlags, |
| 1643 | public VPIRMetadata { |
| 1644 | unsigned Opcode; |
| 1645 | |
| 1646 | public: |
| 1647 | VPWidenRecipe(Instruction &I, ArrayRef<VPValue *> Operands, |
| 1648 | const VPIRFlags &Flags = {}, const VPIRMetadata &Metadata = {}, |
| 1649 | DebugLoc DL = {}) |
| 1650 | : VPRecipeWithIRFlags(VPRecipeBase::VPWidenSC, Operands, Flags, DL), |
| 1651 | VPIRMetadata(Metadata), Opcode(I.getOpcode()) { |
| 1652 | setUnderlyingValue(&I); |
| 1653 | } |
| 1654 | |
| 1655 | VPWidenRecipe(unsigned Opcode, ArrayRef<VPValue *> Operands, |
| 1656 | const VPIRFlags &Flags = {}, const VPIRMetadata &Metadata = {}, |
| 1657 | DebugLoc DL = {}) |
| 1658 | : VPRecipeWithIRFlags(VPRecipeBase::VPWidenSC, Operands, Flags, DL), |
| 1659 | VPIRMetadata(Metadata), Opcode(Opcode) {} |
| 1660 | |
| 1661 | ~VPWidenRecipe() override = default; |
| 1662 | |
| 1663 | VPWidenRecipe *clone() override { |
| 1664 | if (auto *UV = getUnderlyingValue()) |
| 1665 | return new VPWidenRecipe(*cast<Instruction>(Val: UV), operands(), *this, *this, |
| 1666 | getDebugLoc()); |
| 1667 | return new VPWidenRecipe(Opcode, operands(), *this, *this, getDebugLoc()); |
| 1668 | } |
| 1669 | |
| 1670 | VP_CLASSOF_IMPL(VPRecipeBase::VPWidenSC) |
| 1671 | |
| 1672 | /// Produce a widened instruction using the opcode and operands of the recipe, |
| 1673 | /// processing State.VF elements. |
| 1674 | void execute(VPTransformState &State) override; |
| 1675 | |
| 1676 | /// Return the cost of this VPWidenRecipe. |
| 1677 | InstructionCost computeCost(ElementCount VF, |
| 1678 | VPCostContext &Ctx) const override; |
| 1679 | |
| 1680 | unsigned getOpcode() const { return Opcode; } |
| 1681 | |
| 1682 | protected: |
| 1683 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 1684 | /// Print the recipe. |
| 1685 | void printRecipe(raw_ostream &O, const Twine &Indent, |
| 1686 | VPSlotTracker &SlotTracker) const override; |
| 1687 | #endif |
| 1688 | |
| 1689 | /// Returns true if the recipe only uses the first lane of operand \p Op. |
| 1690 | bool usesFirstLaneOnly(const VPValue *Op) const override { |
| 1691 | assert(is_contained(operands(), Op) && |
| 1692 | "Op must be an operand of the recipe" ); |
| 1693 | return Opcode == Instruction::Select && Op == getOperand(N: 0) && |
| 1694 | Op->isDefinedOutsideLoopRegions(); |
| 1695 | } |
| 1696 | }; |
| 1697 | |
| 1698 | /// VPWidenCastRecipe is a recipe to create vector cast instructions. |
| 1699 | class VPWidenCastRecipe : public VPRecipeWithIRFlags, public VPIRMetadata { |
| 1700 | /// Cast instruction opcode. |
| 1701 | Instruction::CastOps Opcode; |
| 1702 | |
| 1703 | /// Result type for the cast. |
| 1704 | Type *ResultTy; |
| 1705 | |
| 1706 | public: |
| 1707 | VPWidenCastRecipe(Instruction::CastOps Opcode, VPValue *Op, Type *ResultTy, |
| 1708 | CastInst *CI = nullptr, const VPIRFlags &Flags = {}, |
| 1709 | const VPIRMetadata &Metadata = {}, |
| 1710 | DebugLoc DL = DebugLoc::getUnknown()) |
| 1711 | : VPRecipeWithIRFlags(VPRecipeBase::VPWidenCastSC, Op, Flags, DL), |
| 1712 | VPIRMetadata(Metadata), Opcode(Opcode), ResultTy(ResultTy) { |
| 1713 | assert(flagsValidForOpcode(Opcode) && |
| 1714 | "Set flags not supported for the provided opcode" ); |
| 1715 | assert(hasRequiredFlagsForOpcode(Opcode) && |
| 1716 | "Opcode requires specific flags to be set" ); |
| 1717 | setUnderlyingValue(CI); |
| 1718 | } |
| 1719 | |
| 1720 | ~VPWidenCastRecipe() override = default; |
| 1721 | |
| 1722 | VPWidenCastRecipe *clone() override { |
| 1723 | return new VPWidenCastRecipe(Opcode, getOperand(N: 0), ResultTy, |
| 1724 | cast_or_null<CastInst>(Val: getUnderlyingValue()), |
| 1725 | *this, *this, getDebugLoc()); |
| 1726 | } |
| 1727 | |
| 1728 | VP_CLASSOF_IMPL(VPRecipeBase::VPWidenCastSC) |
| 1729 | |
| 1730 | /// Produce widened copies of the cast. |
| 1731 | LLVM_ABI_FOR_TEST void execute(VPTransformState &State) override; |
| 1732 | |
| 1733 | /// Return the cost of this VPWidenCastRecipe. |
| 1734 | LLVM_ABI_FOR_TEST InstructionCost |
| 1735 | computeCost(ElementCount VF, VPCostContext &Ctx) const override; |
| 1736 | |
| 1737 | Instruction::CastOps getOpcode() const { return Opcode; } |
| 1738 | |
| 1739 | /// Returns the result type of the cast. |
| 1740 | Type *getResultType() const { return ResultTy; } |
| 1741 | |
| 1742 | protected: |
| 1743 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 1744 | /// Print the recipe. |
| 1745 | LLVM_ABI_FOR_TEST void printRecipe(raw_ostream &O, const Twine &Indent, |
| 1746 | VPSlotTracker &SlotTracker) const override; |
| 1747 | #endif |
| 1748 | }; |
| 1749 | |
| 1750 | /// A recipe for widening vector intrinsics. |
| 1751 | class VPWidenIntrinsicRecipe : public VPRecipeWithIRFlags, public VPIRMetadata { |
| 1752 | /// ID of the vector intrinsic to widen. |
| 1753 | Intrinsic::ID VectorIntrinsicID; |
| 1754 | |
| 1755 | /// Scalar return type of the intrinsic. |
| 1756 | Type *ResultTy; |
| 1757 | |
| 1758 | /// True if the intrinsic may read from memory. |
| 1759 | bool MayReadFromMemory; |
| 1760 | |
| 1761 | /// True if the intrinsic may read write to memory. |
| 1762 | bool MayWriteToMemory; |
| 1763 | |
| 1764 | /// True if the intrinsic may have side-effects. |
| 1765 | bool MayHaveSideEffects; |
| 1766 | |
| 1767 | public: |
| 1768 | VPWidenIntrinsicRecipe(CallInst &CI, Intrinsic::ID VectorIntrinsicID, |
| 1769 | ArrayRef<VPValue *> CallArguments, Type *Ty, |
| 1770 | const VPIRFlags &Flags = {}, |
| 1771 | const VPIRMetadata &MD = {}, |
| 1772 | DebugLoc DL = DebugLoc::getUnknown()) |
| 1773 | : VPRecipeWithIRFlags(VPRecipeBase::VPWidenIntrinsicSC, CallArguments, |
| 1774 | Flags, DL), |
| 1775 | VPIRMetadata(MD), VectorIntrinsicID(VectorIntrinsicID), ResultTy(Ty), |
| 1776 | MayReadFromMemory(CI.mayReadFromMemory()), |
| 1777 | MayWriteToMemory(CI.mayWriteToMemory()), |
| 1778 | MayHaveSideEffects(CI.mayHaveSideEffects()) { |
| 1779 | setUnderlyingValue(&CI); |
| 1780 | } |
| 1781 | |
| 1782 | VPWidenIntrinsicRecipe(Intrinsic::ID VectorIntrinsicID, |
| 1783 | ArrayRef<VPValue *> CallArguments, Type *Ty, |
| 1784 | const VPIRFlags &Flags = {}, |
| 1785 | const VPIRMetadata &Metadata = {}, |
| 1786 | DebugLoc DL = DebugLoc::getUnknown()) |
| 1787 | : VPRecipeWithIRFlags(VPRecipeBase::VPWidenIntrinsicSC, CallArguments, |
| 1788 | Flags, DL), |
| 1789 | VPIRMetadata(Metadata), VectorIntrinsicID(VectorIntrinsicID), |
| 1790 | ResultTy(Ty) { |
| 1791 | LLVMContext &Ctx = Ty->getContext(); |
| 1792 | AttributeSet Attrs = Intrinsic::getFnAttributes(C&: Ctx, id: VectorIntrinsicID); |
| 1793 | MemoryEffects ME = Attrs.getMemoryEffects(); |
| 1794 | MayReadFromMemory = !ME.onlyWritesMemory(); |
| 1795 | MayWriteToMemory = !ME.onlyReadsMemory(); |
| 1796 | MayHaveSideEffects = MayWriteToMemory || |
| 1797 | !Attrs.hasAttribute(Kind: Attribute::NoUnwind) || |
| 1798 | !Attrs.hasAttribute(Kind: Attribute::WillReturn); |
| 1799 | } |
| 1800 | |
| 1801 | ~VPWidenIntrinsicRecipe() override = default; |
| 1802 | |
| 1803 | VPWidenIntrinsicRecipe *clone() override { |
| 1804 | if (Value *CI = getUnderlyingValue()) |
| 1805 | return new VPWidenIntrinsicRecipe(*cast<CallInst>(Val: CI), VectorIntrinsicID, |
| 1806 | operands(), ResultTy, *this, *this, |
| 1807 | getDebugLoc()); |
| 1808 | return new VPWidenIntrinsicRecipe(VectorIntrinsicID, operands(), ResultTy, |
| 1809 | *this, *this, getDebugLoc()); |
| 1810 | } |
| 1811 | |
| 1812 | VP_CLASSOF_IMPL(VPRecipeBase::VPWidenIntrinsicSC) |
| 1813 | |
| 1814 | /// Produce a widened version of the vector intrinsic. |
| 1815 | LLVM_ABI_FOR_TEST void execute(VPTransformState &State) override; |
| 1816 | |
| 1817 | /// Return the cost of this vector intrinsic. |
| 1818 | LLVM_ABI_FOR_TEST InstructionCost |
| 1819 | computeCost(ElementCount VF, VPCostContext &Ctx) const override; |
| 1820 | |
| 1821 | /// Return the ID of the intrinsic. |
| 1822 | Intrinsic::ID getVectorIntrinsicID() const { return VectorIntrinsicID; } |
| 1823 | |
| 1824 | /// Return the scalar return type of the intrinsic. |
| 1825 | Type *getResultType() const { return ResultTy; } |
| 1826 | |
| 1827 | /// Return to name of the intrinsic as string. |
| 1828 | StringRef getIntrinsicName() const; |
| 1829 | |
| 1830 | /// Returns true if the intrinsic may read from memory. |
| 1831 | bool mayReadFromMemory() const { return MayReadFromMemory; } |
| 1832 | |
| 1833 | /// Returns true if the intrinsic may write to memory. |
| 1834 | bool mayWriteToMemory() const { return MayWriteToMemory; } |
| 1835 | |
| 1836 | /// Returns true if the intrinsic may have side-effects. |
| 1837 | bool mayHaveSideEffects() const { return MayHaveSideEffects; } |
| 1838 | |
| 1839 | LLVM_ABI_FOR_TEST bool usesFirstLaneOnly(const VPValue *Op) const override; |
| 1840 | |
| 1841 | protected: |
| 1842 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 1843 | /// Print the recipe. |
| 1844 | LLVM_ABI_FOR_TEST void printRecipe(raw_ostream &O, const Twine &Indent, |
| 1845 | VPSlotTracker &SlotTracker) const override; |
| 1846 | #endif |
| 1847 | }; |
| 1848 | |
| 1849 | /// A recipe for widening Call instructions using library calls. |
| 1850 | class LLVM_ABI_FOR_TEST VPWidenCallRecipe : public VPRecipeWithIRFlags, |
| 1851 | public VPIRMetadata { |
| 1852 | /// Variant stores a pointer to the chosen function. There is a 1:1 mapping |
| 1853 | /// between a given VF and the chosen vectorized variant, so there will be a |
| 1854 | /// different VPlan for each VF with a valid variant. |
| 1855 | Function *Variant; |
| 1856 | |
| 1857 | public: |
| 1858 | VPWidenCallRecipe(Value *UV, Function *Variant, |
| 1859 | ArrayRef<VPValue *> CallArguments, |
| 1860 | const VPIRFlags &Flags = {}, |
| 1861 | const VPIRMetadata &Metadata = {}, DebugLoc DL = {}) |
| 1862 | : VPRecipeWithIRFlags(VPRecipeBase::VPWidenCallSC, CallArguments, Flags, |
| 1863 | DL), |
| 1864 | VPIRMetadata(Metadata), Variant(Variant) { |
| 1865 | setUnderlyingValue(UV); |
| 1866 | assert( |
| 1867 | isa<Function>(getOperand(getNumOperands() - 1)->getLiveInIRValue()) && |
| 1868 | "last operand must be the called function" ); |
| 1869 | } |
| 1870 | |
| 1871 | ~VPWidenCallRecipe() override = default; |
| 1872 | |
| 1873 | VPWidenCallRecipe *clone() override { |
| 1874 | return new VPWidenCallRecipe(getUnderlyingValue(), Variant, operands(), |
| 1875 | *this, *this, getDebugLoc()); |
| 1876 | } |
| 1877 | |
| 1878 | VP_CLASSOF_IMPL(VPRecipeBase::VPWidenCallSC) |
| 1879 | |
| 1880 | /// Produce a widened version of the call instruction. |
| 1881 | void execute(VPTransformState &State) override; |
| 1882 | |
| 1883 | /// Return the cost of this VPWidenCallRecipe. |
| 1884 | InstructionCost computeCost(ElementCount VF, |
| 1885 | VPCostContext &Ctx) const override; |
| 1886 | |
| 1887 | Function *getCalledScalarFunction() const { |
| 1888 | return cast<Function>(Val: getOperand(N: getNumOperands() - 1)->getLiveInIRValue()); |
| 1889 | } |
| 1890 | |
| 1891 | operand_range args() { return drop_end(RangeOrContainer: operands()); } |
| 1892 | const_operand_range args() const { return drop_end(RangeOrContainer: operands()); } |
| 1893 | |
| 1894 | protected: |
| 1895 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 1896 | /// Print the recipe. |
| 1897 | void printRecipe(raw_ostream &O, const Twine &Indent, |
| 1898 | VPSlotTracker &SlotTracker) const override; |
| 1899 | #endif |
| 1900 | }; |
| 1901 | |
| 1902 | /// A recipe representing a sequence of load -> update -> store as part of |
| 1903 | /// a histogram operation. This means there may be aliasing between vector |
| 1904 | /// lanes, which is handled by the llvm.experimental.vector.histogram family |
| 1905 | /// of intrinsics. The only update operations currently supported are |
| 1906 | /// 'add' and 'sub' where the other term is loop-invariant. |
| 1907 | class VPHistogramRecipe : public VPRecipeBase { |
| 1908 | /// Opcode of the update operation, currently either add or sub. |
| 1909 | unsigned Opcode; |
| 1910 | |
| 1911 | public: |
| 1912 | VPHistogramRecipe(unsigned Opcode, ArrayRef<VPValue *> Operands, |
| 1913 | DebugLoc DL = DebugLoc::getUnknown()) |
| 1914 | : VPRecipeBase(VPRecipeBase::VPHistogramSC, Operands, DL), |
| 1915 | Opcode(Opcode) {} |
| 1916 | |
| 1917 | ~VPHistogramRecipe() override = default; |
| 1918 | |
| 1919 | VPHistogramRecipe *clone() override { |
| 1920 | return new VPHistogramRecipe(Opcode, operands(), getDebugLoc()); |
| 1921 | } |
| 1922 | |
| 1923 | VP_CLASSOF_IMPL(VPRecipeBase::VPHistogramSC); |
| 1924 | |
| 1925 | /// Produce a vectorized histogram operation. |
| 1926 | void execute(VPTransformState &State) override; |
| 1927 | |
| 1928 | /// Return the cost of this VPHistogramRecipe. |
| 1929 | InstructionCost computeCost(ElementCount VF, |
| 1930 | VPCostContext &Ctx) const override; |
| 1931 | |
| 1932 | unsigned getOpcode() const { return Opcode; } |
| 1933 | |
| 1934 | /// Return the mask operand if one was provided, or a null pointer if all |
| 1935 | /// lanes should be executed unconditionally. |
| 1936 | VPValue *getMask() const { |
| 1937 | return getNumOperands() == 3 ? getOperand(N: 2) : nullptr; |
| 1938 | } |
| 1939 | |
| 1940 | protected: |
| 1941 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 1942 | /// Print the recipe |
| 1943 | void printRecipe(raw_ostream &O, const Twine &Indent, |
| 1944 | VPSlotTracker &SlotTracker) const override; |
| 1945 | #endif |
| 1946 | }; |
| 1947 | |
| 1948 | /// A recipe for handling GEP instructions. |
| 1949 | class LLVM_ABI_FOR_TEST VPWidenGEPRecipe : public VPRecipeWithIRFlags { |
| 1950 | Type *SourceElementTy; |
| 1951 | |
| 1952 | bool isPointerLoopInvariant() const { |
| 1953 | return getOperand(N: 0)->isDefinedOutsideLoopRegions(); |
| 1954 | } |
| 1955 | |
| 1956 | bool isIndexLoopInvariant(unsigned I) const { |
| 1957 | return getOperand(N: I + 1)->isDefinedOutsideLoopRegions(); |
| 1958 | } |
| 1959 | |
| 1960 | public: |
| 1961 | VPWidenGEPRecipe(GetElementPtrInst *GEP, ArrayRef<VPValue *> Operands, |
| 1962 | const VPIRFlags &Flags = {}, |
| 1963 | DebugLoc DL = DebugLoc::getUnknown()) |
| 1964 | : VPRecipeWithIRFlags(VPRecipeBase::VPWidenGEPSC, Operands, Flags, DL), |
| 1965 | SourceElementTy(GEP->getSourceElementType()) { |
| 1966 | setUnderlyingValue(GEP); |
| 1967 | SmallVector<std::pair<unsigned, MDNode *>> Metadata; |
| 1968 | (void)Metadata; |
| 1969 | getMetadataToPropagate(Inst: GEP, Metadata); |
| 1970 | assert(Metadata.empty() && "unexpected metadata on GEP" ); |
| 1971 | } |
| 1972 | |
| 1973 | ~VPWidenGEPRecipe() override = default; |
| 1974 | |
| 1975 | VPWidenGEPRecipe *clone() override { |
| 1976 | return new VPWidenGEPRecipe(cast<GetElementPtrInst>(Val: getUnderlyingInstr()), |
| 1977 | operands(), *this, getDebugLoc()); |
| 1978 | } |
| 1979 | |
| 1980 | VP_CLASSOF_IMPL(VPRecipeBase::VPWidenGEPSC) |
| 1981 | |
| 1982 | /// This recipe generates a GEP instruction. |
| 1983 | unsigned getOpcode() const { return Instruction::GetElementPtr; } |
| 1984 | |
| 1985 | /// Generate the gep nodes. |
| 1986 | void execute(VPTransformState &State) override; |
| 1987 | |
| 1988 | Type *getSourceElementType() const { return SourceElementTy; } |
| 1989 | |
| 1990 | /// Return the cost of this VPWidenGEPRecipe. |
| 1991 | InstructionCost computeCost(ElementCount VF, |
| 1992 | VPCostContext &Ctx) const override { |
| 1993 | // TODO: Compute accurate cost after retiring the legacy cost model. |
| 1994 | return 0; |
| 1995 | } |
| 1996 | |
| 1997 | /// Returns true if the recipe only uses the first lane of operand \p Op. |
| 1998 | bool usesFirstLaneOnly(const VPValue *Op) const override; |
| 1999 | |
| 2000 | protected: |
| 2001 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 2002 | /// Print the recipe. |
| 2003 | void printRecipe(raw_ostream &O, const Twine &Indent, |
| 2004 | VPSlotTracker &SlotTracker) const override; |
| 2005 | #endif |
| 2006 | }; |
| 2007 | |
| 2008 | /// A recipe to compute a pointer to the last element of each part of a widened |
| 2009 | /// memory access for widened memory accesses of SourceElementTy. Used for |
| 2010 | /// VPWidenMemoryRecipes or VPInterleaveRecipes that are reversed. |
| 2011 | class VPVectorEndPointerRecipe : public VPRecipeWithIRFlags, |
| 2012 | public VPUnrollPartAccessor<2> { |
| 2013 | Type *SourceElementTy; |
| 2014 | |
| 2015 | /// The constant stride of the pointer computed by this recipe, expressed in |
| 2016 | /// units of SourceElementTy. |
| 2017 | int64_t Stride; |
| 2018 | |
| 2019 | public: |
| 2020 | VPVectorEndPointerRecipe(VPValue *Ptr, VPValue *VF, Type *SourceElementTy, |
| 2021 | int64_t Stride, GEPNoWrapFlags GEPFlags, DebugLoc DL) |
| 2022 | : VPRecipeWithIRFlags(VPRecipeBase::VPVectorEndPointerSC, {Ptr, VF}, |
| 2023 | GEPFlags, DL), |
| 2024 | SourceElementTy(SourceElementTy), Stride(Stride) { |
| 2025 | assert(Stride < 0 && "Stride must be negative" ); |
| 2026 | } |
| 2027 | |
| 2028 | VP_CLASSOF_IMPL(VPRecipeBase::VPVectorEndPointerSC) |
| 2029 | |
| 2030 | Type *getSourceElementType() const { return SourceElementTy; } |
| 2031 | VPValue *getVFValue() { return getOperand(N: 1); } |
| 2032 | const VPValue *getVFValue() const { return getOperand(N: 1); } |
| 2033 | |
| 2034 | void execute(VPTransformState &State) override; |
| 2035 | |
| 2036 | bool usesFirstLaneOnly(const VPValue *Op) const override { |
| 2037 | assert(is_contained(operands(), Op) && |
| 2038 | "Op must be an operand of the recipe" ); |
| 2039 | return true; |
| 2040 | } |
| 2041 | |
| 2042 | /// Return the cost of this VPVectorPointerRecipe. |
| 2043 | InstructionCost computeCost(ElementCount VF, |
| 2044 | VPCostContext &Ctx) const override { |
| 2045 | // TODO: Compute accurate cost after retiring the legacy cost model. |
| 2046 | return 0; |
| 2047 | } |
| 2048 | |
| 2049 | /// Returns true if the recipe only uses the first part of operand \p Op. |
| 2050 | bool usesFirstPartOnly(const VPValue *Op) const override { |
| 2051 | assert(is_contained(operands(), Op) && |
| 2052 | "Op must be an operand of the recipe" ); |
| 2053 | assert(getNumOperands() <= 2 && "must have at most two operands" ); |
| 2054 | return true; |
| 2055 | } |
| 2056 | |
| 2057 | VPVectorEndPointerRecipe *clone() override { |
| 2058 | return new VPVectorEndPointerRecipe(getOperand(N: 0), getVFValue(), |
| 2059 | getSourceElementType(), Stride, |
| 2060 | getGEPNoWrapFlags(), getDebugLoc()); |
| 2061 | } |
| 2062 | |
| 2063 | protected: |
| 2064 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 2065 | /// Print the recipe. |
| 2066 | void printRecipe(raw_ostream &O, const Twine &Indent, |
| 2067 | VPSlotTracker &SlotTracker) const override; |
| 2068 | #endif |
| 2069 | }; |
| 2070 | |
| 2071 | /// A recipe to compute the pointers for widened memory accesses of \p |
| 2072 | /// SourceElementTy. Unrolling adds an extra offset operand for unrolled parts > |
| 2073 | /// 0 and it produces `GEP Ptr, Offset`. The offset for unrolled part 0 is 0. |
| 2074 | class VPVectorPointerRecipe : public VPRecipeWithIRFlags { |
| 2075 | Type *SourceElementTy; |
| 2076 | |
| 2077 | public: |
| 2078 | VPVectorPointerRecipe(VPValue *Ptr, Type *SourceElementTy, |
| 2079 | GEPNoWrapFlags GEPFlags, DebugLoc DL) |
| 2080 | : VPRecipeWithIRFlags(VPRecipeBase::VPVectorPointerSC, Ptr, GEPFlags, DL), |
| 2081 | SourceElementTy(SourceElementTy) {} |
| 2082 | |
| 2083 | VP_CLASSOF_IMPL(VPRecipeBase::VPVectorPointerSC) |
| 2084 | |
| 2085 | VPValue *getOffset() { |
| 2086 | return getNumOperands() == 2 ? getOperand(N: 1) : nullptr; |
| 2087 | } |
| 2088 | |
| 2089 | void execute(VPTransformState &State) override; |
| 2090 | |
| 2091 | Type *getSourceElementType() const { return SourceElementTy; } |
| 2092 | |
| 2093 | bool usesFirstLaneOnly(const VPValue *Op) const override { |
| 2094 | assert(is_contained(operands(), Op) && |
| 2095 | "Op must be an operand of the recipe" ); |
| 2096 | return true; |
| 2097 | } |
| 2098 | |
| 2099 | /// Returns true if the recipe only uses the first part of operand \p Op. |
| 2100 | bool usesFirstPartOnly(const VPValue *Op) const override { |
| 2101 | assert(is_contained(operands(), Op) && |
| 2102 | "Op must be an operand of the recipe" ); |
| 2103 | assert(getNumOperands() <= 2 && "must have at most two operands" ); |
| 2104 | return true; |
| 2105 | } |
| 2106 | |
| 2107 | VPVectorPointerRecipe *clone() override { |
| 2108 | auto *Clone = new VPVectorPointerRecipe(getOperand(N: 0), SourceElementTy, |
| 2109 | getGEPNoWrapFlags(), getDebugLoc()); |
| 2110 | if (auto *Off = getOffset()) |
| 2111 | Clone->addOperand(Operand: Off); |
| 2112 | return Clone; |
| 2113 | } |
| 2114 | |
| 2115 | /// Return the cost of this VPHeaderPHIRecipe. |
| 2116 | InstructionCost computeCost(ElementCount VF, |
| 2117 | VPCostContext &Ctx) const override { |
| 2118 | // TODO: Compute accurate cost after retiring the legacy cost model. |
| 2119 | return 0; |
| 2120 | } |
| 2121 | |
| 2122 | protected: |
| 2123 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 2124 | /// Print the recipe. |
| 2125 | void printRecipe(raw_ostream &O, const Twine &Indent, |
| 2126 | VPSlotTracker &SlotTracker) const override; |
| 2127 | #endif |
| 2128 | }; |
| 2129 | |
| 2130 | /// A pure virtual base class for all recipes modeling header phis, including |
| 2131 | /// phis for first order recurrences, pointer inductions and reductions. The |
| 2132 | /// start value is the first operand of the recipe and the incoming value from |
| 2133 | /// the backedge is the second operand. |
| 2134 | /// |
| 2135 | /// Inductions are modeled using the following sub-classes: |
| 2136 | /// * VPCanonicalIVPHIRecipe: Canonical scalar induction of the vector loop, |
| 2137 | /// starting at a specified value (zero for the main vector loop, the resume |
| 2138 | /// value for the epilogue vector loop) and stepping by 1. The induction |
| 2139 | /// controls exiting of the vector loop by comparing against the vector trip |
| 2140 | /// count. Produces a single scalar PHI for the induction value per |
| 2141 | /// iteration. |
| 2142 | /// * VPWidenIntOrFpInductionRecipe: Generates vector values for integer and |
| 2143 | /// floating point inductions with arbitrary start and step values. Produces |
| 2144 | /// a vector PHI per-part. |
| 2145 | /// * VPDerivedIVRecipe: Converts the canonical IV value to the corresponding |
| 2146 | /// value of an IV with different start and step values. Produces a single |
| 2147 | /// scalar value per iteration |
| 2148 | /// * VPScalarIVStepsRecipe: Generates scalar values per-lane based on a |
| 2149 | /// canonical or derived induction. |
| 2150 | /// * VPWidenPointerInductionRecipe: Generate vector and scalar values for a |
| 2151 | /// pointer induction. Produces either a vector PHI per-part or scalar values |
| 2152 | /// per-lane based on the canonical induction. |
| 2153 | class LLVM_ABI_FOR_TEST : public VPSingleDefRecipe, |
| 2154 | public VPPhiAccessors { |
| 2155 | protected: |
| 2156 | (unsigned char VPRecipeID, Instruction *UnderlyingInstr, |
| 2157 | VPValue *Start, DebugLoc DL = DebugLoc::getUnknown()) |
| 2158 | : VPSingleDefRecipe(VPRecipeID, Start, UnderlyingInstr, DL) {} |
| 2159 | |
| 2160 | const VPRecipeBase *() const override { return this; } |
| 2161 | |
| 2162 | public: |
| 2163 | () override = default; |
| 2164 | |
| 2165 | /// Method to support type inquiry through isa, cast, and dyn_cast. |
| 2166 | static inline bool (const VPRecipeBase *R) { |
| 2167 | return R->getVPRecipeID() >= VPRecipeBase::VPFirstHeaderPHISC && |
| 2168 | R->getVPRecipeID() <= VPRecipeBase::VPLastHeaderPHISC; |
| 2169 | } |
| 2170 | static inline bool (const VPValue *V) { |
| 2171 | return isa<VPHeaderPHIRecipe>(Val: V->getDefiningRecipe()); |
| 2172 | } |
| 2173 | static inline bool (const VPSingleDefRecipe *R) { |
| 2174 | return isa<VPHeaderPHIRecipe>(Val: static_cast<const VPRecipeBase *>(R)); |
| 2175 | } |
| 2176 | |
| 2177 | /// Generate the phi nodes. |
| 2178 | void (VPTransformState &State) override = 0; |
| 2179 | |
| 2180 | /// Return the cost of this header phi recipe. |
| 2181 | InstructionCost (ElementCount VF, |
| 2182 | VPCostContext &Ctx) const override; |
| 2183 | |
| 2184 | /// Returns the start value of the phi, if one is set. |
| 2185 | VPValue *() { |
| 2186 | return getNumOperands() == 0 ? nullptr : getOperand(N: 0); |
| 2187 | } |
| 2188 | VPValue *() const { |
| 2189 | return getNumOperands() == 0 ? nullptr : getOperand(N: 0); |
| 2190 | } |
| 2191 | |
| 2192 | /// Update the start value of the recipe. |
| 2193 | void (VPValue *V) { setOperand(I: 0, New: V); } |
| 2194 | |
| 2195 | /// Returns the incoming value from the loop backedge. |
| 2196 | virtual VPValue *() { |
| 2197 | return getOperand(N: 1); |
| 2198 | } |
| 2199 | |
| 2200 | /// Update the incoming value from the loop backedge. |
| 2201 | void (VPValue *V) { setOperand(I: 1, New: V); } |
| 2202 | |
| 2203 | /// Returns the backedge value as a recipe. The backedge value is guaranteed |
| 2204 | /// to be a recipe. |
| 2205 | virtual VPRecipeBase &() { |
| 2206 | return *getBackedgeValue()->getDefiningRecipe(); |
| 2207 | } |
| 2208 | |
| 2209 | protected: |
| 2210 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 2211 | /// Print the recipe. |
| 2212 | void printRecipe(raw_ostream &O, const Twine &Indent, |
| 2213 | VPSlotTracker &SlotTracker) const override = 0; |
| 2214 | #endif |
| 2215 | }; |
| 2216 | |
| 2217 | /// Base class for widened induction (VPWidenIntOrFpInductionRecipe and |
| 2218 | /// VPWidenPointerInductionRecipe), providing shared functionality, including |
| 2219 | /// retrieving the step value, induction descriptor and original phi node. |
| 2220 | class VPWidenInductionRecipe : public VPHeaderPHIRecipe { |
| 2221 | const InductionDescriptor &IndDesc; |
| 2222 | |
| 2223 | public: |
| 2224 | VPWidenInductionRecipe(unsigned char Kind, PHINode *IV, VPValue *Start, |
| 2225 | VPValue *Step, const InductionDescriptor &IndDesc, |
| 2226 | DebugLoc DL) |
| 2227 | : VPHeaderPHIRecipe(Kind, IV, Start, DL), IndDesc(IndDesc) { |
| 2228 | addOperand(Operand: Step); |
| 2229 | } |
| 2230 | |
| 2231 | static inline bool classof(const VPRecipeBase *R) { |
| 2232 | return R->getVPRecipeID() == VPRecipeBase::VPWidenIntOrFpInductionSC || |
| 2233 | R->getVPRecipeID() == VPRecipeBase::VPWidenPointerInductionSC; |
| 2234 | } |
| 2235 | |
| 2236 | static inline bool classof(const VPValue *V) { |
| 2237 | auto *R = V->getDefiningRecipe(); |
| 2238 | return R && classof(R); |
| 2239 | } |
| 2240 | |
| 2241 | static inline bool classof(const VPSingleDefRecipe *R) { |
| 2242 | return classof(R: static_cast<const VPRecipeBase *>(R)); |
| 2243 | } |
| 2244 | |
| 2245 | void execute(VPTransformState &State) override = 0; |
| 2246 | |
| 2247 | /// Returns the start value of the induction. |
| 2248 | VPIRValue *getStartValue() const { return cast<VPIRValue>(Val: getOperand(N: 0)); } |
| 2249 | |
| 2250 | /// Returns the step value of the induction. |
| 2251 | VPValue *getStepValue() { return getOperand(N: 1); } |
| 2252 | const VPValue *getStepValue() const { return getOperand(N: 1); } |
| 2253 | |
| 2254 | /// Update the step value of the recipe. |
| 2255 | void setStepValue(VPValue *V) { setOperand(I: 1, New: V); } |
| 2256 | |
| 2257 | VPValue *getVFValue() { return getOperand(N: 2); } |
| 2258 | const VPValue *getVFValue() const { return getOperand(N: 2); } |
| 2259 | |
| 2260 | /// Returns the number of incoming values, also number of incoming blocks. |
| 2261 | /// Note that at the moment, VPWidenPointerInductionRecipe only has a single |
| 2262 | /// incoming value, its start value. |
| 2263 | unsigned getNumIncoming() const override { return 1; } |
| 2264 | |
| 2265 | PHINode *getPHINode() const { return cast<PHINode>(Val: getUnderlyingValue()); } |
| 2266 | |
| 2267 | /// Returns the induction descriptor for the recipe. |
| 2268 | const InductionDescriptor &getInductionDescriptor() const { return IndDesc; } |
| 2269 | |
| 2270 | VPValue *getBackedgeValue() override { |
| 2271 | // TODO: All operands of base recipe must exist and be at same index in |
| 2272 | // derived recipe. |
| 2273 | llvm_unreachable( |
| 2274 | "VPWidenIntOrFpInductionRecipe generates its own backedge value" ); |
| 2275 | } |
| 2276 | |
| 2277 | VPRecipeBase &getBackedgeRecipe() override { |
| 2278 | // TODO: All operands of base recipe must exist and be at same index in |
| 2279 | // derived recipe. |
| 2280 | llvm_unreachable( |
| 2281 | "VPWidenIntOrFpInductionRecipe generates its own backedge value" ); |
| 2282 | } |
| 2283 | |
| 2284 | /// Returns true if the recipe only uses the first lane of operand \p Op. |
| 2285 | bool usesFirstLaneOnly(const VPValue *Op) const override { |
| 2286 | assert(is_contained(operands(), Op) && |
| 2287 | "Op must be an operand of the recipe" ); |
| 2288 | // The recipe creates its own wide start value, so it only requests the |
| 2289 | // first lane of the operand. |
| 2290 | // TODO: Remove once creating the start value is modeled separately. |
| 2291 | return Op == getStartValue() || Op == getStepValue(); |
| 2292 | } |
| 2293 | }; |
| 2294 | |
| 2295 | /// A recipe for handling phi nodes of integer and floating-point inductions, |
| 2296 | /// producing their vector values. This is an abstract recipe and must be |
| 2297 | /// converted to concrete recipes before executing. |
| 2298 | class VPWidenIntOrFpInductionRecipe : public VPWidenInductionRecipe, |
| 2299 | public VPIRFlags { |
| 2300 | TruncInst *Trunc; |
| 2301 | |
| 2302 | // If this recipe is unrolled it will have 2 additional operands. |
| 2303 | bool isUnrolled() const { return getNumOperands() == 5; } |
| 2304 | |
| 2305 | public: |
| 2306 | VPWidenIntOrFpInductionRecipe(PHINode *IV, VPIRValue *Start, VPValue *Step, |
| 2307 | VPValue *VF, const InductionDescriptor &IndDesc, |
| 2308 | const VPIRFlags &Flags, DebugLoc DL) |
| 2309 | : VPWidenInductionRecipe(VPRecipeBase::VPWidenIntOrFpInductionSC, IV, |
| 2310 | Start, Step, IndDesc, DL), |
| 2311 | VPIRFlags(Flags), Trunc(nullptr) { |
| 2312 | addOperand(Operand: VF); |
| 2313 | } |
| 2314 | |
| 2315 | VPWidenIntOrFpInductionRecipe(PHINode *IV, VPIRValue *Start, VPValue *Step, |
| 2316 | VPValue *VF, const InductionDescriptor &IndDesc, |
| 2317 | TruncInst *Trunc, const VPIRFlags &Flags, |
| 2318 | DebugLoc DL) |
| 2319 | : VPWidenInductionRecipe(VPRecipeBase::VPWidenIntOrFpInductionSC, IV, |
| 2320 | Start, Step, IndDesc, DL), |
| 2321 | VPIRFlags(Flags), Trunc(Trunc) { |
| 2322 | addOperand(Operand: VF); |
| 2323 | SmallVector<std::pair<unsigned, MDNode *>> Metadata; |
| 2324 | (void)Metadata; |
| 2325 | if (Trunc) |
| 2326 | getMetadataToPropagate(Inst: Trunc, Metadata); |
| 2327 | assert(Metadata.empty() && "unexpected metadata on Trunc" ); |
| 2328 | } |
| 2329 | |
| 2330 | ~VPWidenIntOrFpInductionRecipe() override = default; |
| 2331 | |
| 2332 | VPWidenIntOrFpInductionRecipe *clone() override { |
| 2333 | return new VPWidenIntOrFpInductionRecipe( |
| 2334 | getPHINode(), getStartValue(), getStepValue(), getVFValue(), |
| 2335 | getInductionDescriptor(), Trunc, *this, getDebugLoc()); |
| 2336 | } |
| 2337 | |
| 2338 | VP_CLASSOF_IMPL(VPRecipeBase::VPWidenIntOrFpInductionSC) |
| 2339 | |
| 2340 | void execute(VPTransformState &State) override { |
| 2341 | llvm_unreachable("cannot execute this recipe, should be expanded via " |
| 2342 | "expandVPWidenIntOrFpInductionRecipe" ); |
| 2343 | } |
| 2344 | |
| 2345 | /// Returns the start value of the induction. |
| 2346 | VPIRValue *getStartValue() const { return cast<VPIRValue>(Val: getOperand(N: 0)); } |
| 2347 | |
| 2348 | /// If the recipe has been unrolled, return the VPValue for the induction |
| 2349 | /// increment, otherwise return null. |
| 2350 | VPValue *getSplatVFValue() const { |
| 2351 | return isUnrolled() ? getOperand(N: getNumOperands() - 2) : nullptr; |
| 2352 | } |
| 2353 | |
| 2354 | /// Returns the number of incoming values, also number of incoming blocks. |
| 2355 | /// Note that at the moment, VPWidenIntOrFpInductionRecipes only have a single |
| 2356 | /// incoming value, its start value. |
| 2357 | unsigned getNumIncoming() const override { return 1; } |
| 2358 | |
| 2359 | /// Returns the first defined value as TruncInst, if it is one or nullptr |
| 2360 | /// otherwise. |
| 2361 | TruncInst *getTruncInst() { return Trunc; } |
| 2362 | const TruncInst *getTruncInst() const { return Trunc; } |
| 2363 | |
| 2364 | /// Returns true if the induction is canonical, i.e. starting at 0 and |
| 2365 | /// incremented by UF * VF (= the original IV is incremented by 1) and has the |
| 2366 | /// same type as the canonical induction. |
| 2367 | bool isCanonical() const; |
| 2368 | |
| 2369 | /// Returns the scalar type of the induction. |
| 2370 | Type *getScalarType() const { |
| 2371 | return Trunc ? Trunc->getType() : getStartValue()->getType(); |
| 2372 | } |
| 2373 | |
| 2374 | /// Returns the VPValue representing the value of this induction at |
| 2375 | /// the last unrolled part, if it exists. Returns itself if unrolling did not |
| 2376 | /// take place. |
| 2377 | VPValue *getLastUnrolledPartOperand() { |
| 2378 | return isUnrolled() ? getOperand(N: getNumOperands() - 1) : this; |
| 2379 | } |
| 2380 | |
| 2381 | protected: |
| 2382 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 2383 | /// Print the recipe. |
| 2384 | void printRecipe(raw_ostream &O, const Twine &Indent, |
| 2385 | VPSlotTracker &SlotTracker) const override; |
| 2386 | #endif |
| 2387 | }; |
| 2388 | |
| 2389 | class VPWidenPointerInductionRecipe : public VPWidenInductionRecipe { |
| 2390 | public: |
| 2391 | /// Create a new VPWidenPointerInductionRecipe for \p Phi with start value \p |
| 2392 | /// Start and the number of elements unrolled \p NumUnrolledElems, typically |
| 2393 | /// VF*UF. |
| 2394 | VPWidenPointerInductionRecipe(PHINode *Phi, VPValue *Start, VPValue *Step, |
| 2395 | VPValue *NumUnrolledElems, |
| 2396 | const InductionDescriptor &IndDesc, DebugLoc DL) |
| 2397 | : VPWidenInductionRecipe(VPRecipeBase::VPWidenPointerInductionSC, Phi, |
| 2398 | Start, Step, IndDesc, DL) { |
| 2399 | addOperand(Operand: NumUnrolledElems); |
| 2400 | } |
| 2401 | |
| 2402 | ~VPWidenPointerInductionRecipe() override = default; |
| 2403 | |
| 2404 | VPWidenPointerInductionRecipe *clone() override { |
| 2405 | return new VPWidenPointerInductionRecipe( |
| 2406 | cast<PHINode>(Val: getUnderlyingInstr()), getOperand(N: 0), getOperand(N: 1), |
| 2407 | getOperand(N: 2), getInductionDescriptor(), getDebugLoc()); |
| 2408 | } |
| 2409 | |
| 2410 | VP_CLASSOF_IMPL(VPRecipeBase::VPWidenPointerInductionSC) |
| 2411 | |
| 2412 | /// Generate vector values for the pointer induction. |
| 2413 | void execute(VPTransformState &State) override { |
| 2414 | llvm_unreachable("cannot execute this recipe, should be expanded via " |
| 2415 | "expandVPWidenPointerInduction" ); |
| 2416 | }; |
| 2417 | |
| 2418 | /// Returns true if only scalar values will be generated. |
| 2419 | bool onlyScalarsGenerated(bool IsScalable); |
| 2420 | |
| 2421 | protected: |
| 2422 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 2423 | /// Print the recipe. |
| 2424 | void printRecipe(raw_ostream &O, const Twine &Indent, |
| 2425 | VPSlotTracker &SlotTracker) const override; |
| 2426 | #endif |
| 2427 | }; |
| 2428 | |
| 2429 | /// A recipe for widened phis. Incoming values are operands of the recipe and |
| 2430 | /// their operand index corresponds to the incoming predecessor block. If the |
| 2431 | /// recipe is placed in an entry block to a (non-replicate) region, it must have |
| 2432 | /// exactly 2 incoming values, the first from the predecessor of the region and |
| 2433 | /// the second from the exiting block of the region. |
| 2434 | class LLVM_ABI_FOR_TEST VPWidenPHIRecipe : public VPSingleDefRecipe, |
| 2435 | public VPPhiAccessors { |
| 2436 | /// Name to use for the generated IR instruction for the widened phi. |
| 2437 | std::string Name; |
| 2438 | |
| 2439 | public: |
| 2440 | /// Create a new VPWidenPHIRecipe for \p Phi with start value \p Start and |
| 2441 | /// debug location \p DL. |
| 2442 | VPWidenPHIRecipe(PHINode *Phi, VPValue *Start = nullptr, |
| 2443 | DebugLoc DL = DebugLoc::getUnknown(), const Twine &Name = "" ) |
| 2444 | : VPSingleDefRecipe(VPRecipeBase::VPWidenPHISC, {}, Phi, DL), |
| 2445 | Name(Name.str()) { |
| 2446 | if (Start) |
| 2447 | addOperand(Operand: Start); |
| 2448 | } |
| 2449 | |
| 2450 | VPWidenPHIRecipe *clone() override { |
| 2451 | auto *C = new VPWidenPHIRecipe(cast<PHINode>(Val: getUnderlyingValue()), |
| 2452 | getOperand(N: 0), getDebugLoc(), Name); |
| 2453 | for (VPValue *Op : llvm::drop_begin(RangeOrContainer: operands())) |
| 2454 | C->addOperand(Operand: Op); |
| 2455 | return C; |
| 2456 | } |
| 2457 | |
| 2458 | ~VPWidenPHIRecipe() override = default; |
| 2459 | |
| 2460 | VP_CLASSOF_IMPL(VPRecipeBase::VPWidenPHISC) |
| 2461 | |
| 2462 | /// Generate the phi/select nodes. |
| 2463 | void execute(VPTransformState &State) override; |
| 2464 | |
| 2465 | /// Return the cost of this VPWidenPHIRecipe. |
| 2466 | InstructionCost computeCost(ElementCount VF, |
| 2467 | VPCostContext &Ctx) const override; |
| 2468 | |
| 2469 | protected: |
| 2470 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 2471 | /// Print the recipe. |
| 2472 | void printRecipe(raw_ostream &O, const Twine &Indent, |
| 2473 | VPSlotTracker &SlotTracker) const override; |
| 2474 | #endif |
| 2475 | |
| 2476 | const VPRecipeBase *getAsRecipe() const override { return this; } |
| 2477 | }; |
| 2478 | |
| 2479 | /// A recipe for handling first-order recurrence phis. The start value is the |
| 2480 | /// first operand of the recipe and the incoming value from the backedge is the |
| 2481 | /// second operand. |
| 2482 | struct VPFirstOrderRecurrencePHIRecipe : public VPHeaderPHIRecipe { |
| 2483 | VPFirstOrderRecurrencePHIRecipe(PHINode *Phi, VPValue &Start, |
| 2484 | VPValue &BackedgeValue) |
| 2485 | : VPHeaderPHIRecipe(VPRecipeBase::VPFirstOrderRecurrencePHISC, Phi, |
| 2486 | &Start) { |
| 2487 | addOperand(Operand: &BackedgeValue); |
| 2488 | } |
| 2489 | |
| 2490 | VP_CLASSOF_IMPL(VPRecipeBase::VPFirstOrderRecurrencePHISC) |
| 2491 | |
| 2492 | VPFirstOrderRecurrencePHIRecipe *clone() override { |
| 2493 | return new VPFirstOrderRecurrencePHIRecipe( |
| 2494 | cast<PHINode>(Val: getUnderlyingInstr()), *getOperand(N: 0), *getOperand(N: 1)); |
| 2495 | } |
| 2496 | |
| 2497 | void execute(VPTransformState &State) override; |
| 2498 | |
| 2499 | /// Return the cost of this first-order recurrence phi recipe. |
| 2500 | InstructionCost computeCost(ElementCount VF, |
| 2501 | VPCostContext &Ctx) const override; |
| 2502 | |
| 2503 | /// Returns true if the recipe only uses the first lane of operand \p Op. |
| 2504 | bool usesFirstLaneOnly(const VPValue *Op) const override { |
| 2505 | assert(is_contained(operands(), Op) && |
| 2506 | "Op must be an operand of the recipe" ); |
| 2507 | return Op == getStartValue(); |
| 2508 | } |
| 2509 | |
| 2510 | protected: |
| 2511 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 2512 | /// Print the recipe. |
| 2513 | void printRecipe(raw_ostream &O, const Twine &Indent, |
| 2514 | VPSlotTracker &SlotTracker) const override; |
| 2515 | #endif |
| 2516 | }; |
| 2517 | |
| 2518 | /// Possible variants of a reduction. |
| 2519 | |
| 2520 | /// This reduction is ordered and in-loop. |
| 2521 | struct RdxOrdered {}; |
| 2522 | /// This reduction is in-loop. |
| 2523 | struct RdxInLoop {}; |
| 2524 | /// This reduction is unordered with the partial result scaled down by some |
| 2525 | /// factor. |
| 2526 | struct RdxUnordered { |
| 2527 | unsigned VFScaleFactor; |
| 2528 | }; |
| 2529 | using ReductionStyle = std::variant<RdxOrdered, RdxInLoop, RdxUnordered>; |
| 2530 | |
| 2531 | inline ReductionStyle getReductionStyle(bool InLoop, bool Ordered, |
| 2532 | unsigned ScaleFactor) { |
| 2533 | assert((!Ordered || InLoop) && "Ordered implies in-loop" ); |
| 2534 | if (Ordered) |
| 2535 | return RdxOrdered{}; |
| 2536 | if (InLoop) |
| 2537 | return RdxInLoop{}; |
| 2538 | return RdxUnordered{/*VFScaleFactor=*/.VFScaleFactor: ScaleFactor}; |
| 2539 | } |
| 2540 | |
| 2541 | /// A recipe for handling reduction phis. The start value is the first operand |
| 2542 | /// of the recipe and the incoming value from the backedge is the second |
| 2543 | /// operand. |
| 2544 | class VPReductionPHIRecipe : public VPHeaderPHIRecipe, |
| 2545 | public VPUnrollPartAccessor<2> { |
| 2546 | /// The recurrence kind of the reduction. |
| 2547 | const RecurKind Kind; |
| 2548 | |
| 2549 | ReductionStyle Style; |
| 2550 | |
| 2551 | /// The phi is part of a multi-use reduction (e.g., used in FindLastIV |
| 2552 | /// patterns for argmin/argmax). |
| 2553 | /// TODO: Also support cases where the phi itself has a single use, but its |
| 2554 | /// compare has multiple uses. |
| 2555 | bool HasUsesOutsideReductionChain; |
| 2556 | |
| 2557 | public: |
| 2558 | /// Create a new VPReductionPHIRecipe for the reduction \p Phi. |
| 2559 | VPReductionPHIRecipe(PHINode *Phi, RecurKind Kind, VPValue &Start, |
| 2560 | VPValue &BackedgeValue, ReductionStyle Style, |
| 2561 | bool HasUsesOutsideReductionChain = false) |
| 2562 | : VPHeaderPHIRecipe(VPRecipeBase::VPReductionPHISC, Phi, &Start), |
| 2563 | Kind(Kind), Style(Style), |
| 2564 | HasUsesOutsideReductionChain(HasUsesOutsideReductionChain) { |
| 2565 | addOperand(Operand: &BackedgeValue); |
| 2566 | } |
| 2567 | |
| 2568 | ~VPReductionPHIRecipe() override = default; |
| 2569 | |
| 2570 | VPReductionPHIRecipe *clone() override { |
| 2571 | return new VPReductionPHIRecipe( |
| 2572 | dyn_cast_or_null<PHINode>(Val: getUnderlyingValue()), getRecurrenceKind(), |
| 2573 | *getOperand(N: 0), *getBackedgeValue(), Style, |
| 2574 | HasUsesOutsideReductionChain); |
| 2575 | } |
| 2576 | |
| 2577 | VP_CLASSOF_IMPL(VPRecipeBase::VPReductionPHISC) |
| 2578 | |
| 2579 | /// Generate the phi/select nodes. |
| 2580 | void execute(VPTransformState &State) override; |
| 2581 | |
| 2582 | /// Get the factor that the VF of this recipe's output should be scaled by, or |
| 2583 | /// 1 if it isn't scaled. |
| 2584 | unsigned getVFScaleFactor() const { |
| 2585 | auto *Partial = std::get_if<RdxUnordered>(ptr: &Style); |
| 2586 | return Partial ? Partial->VFScaleFactor : 1; |
| 2587 | } |
| 2588 | |
| 2589 | /// Set the VFScaleFactor for this reduction phi. Can only be set to a factor |
| 2590 | /// > 1. |
| 2591 | void setVFScaleFactor(unsigned ScaleFactor) { |
| 2592 | assert(ScaleFactor > 1 && "must set to scale factor > 1" ); |
| 2593 | Style = RdxUnordered{.VFScaleFactor: ScaleFactor}; |
| 2594 | } |
| 2595 | |
| 2596 | /// Returns the number of incoming values, also number of incoming blocks. |
| 2597 | /// Note that at the moment, VPWidenPointerInductionRecipe only has a single |
| 2598 | /// incoming value, its start value. |
| 2599 | unsigned getNumIncoming() const override { return 2; } |
| 2600 | |
| 2601 | /// Returns the recurrence kind of the reduction. |
| 2602 | RecurKind getRecurrenceKind() const { return Kind; } |
| 2603 | |
| 2604 | /// Returns true, if the phi is part of an ordered reduction. |
| 2605 | bool isOrdered() const { return std::holds_alternative<RdxOrdered>(v: Style); } |
| 2606 | |
| 2607 | /// Returns true if the phi is part of an in-loop reduction. |
| 2608 | bool isInLoop() const { |
| 2609 | return std::holds_alternative<RdxInLoop>(v: Style) || |
| 2610 | std::holds_alternative<RdxOrdered>(v: Style); |
| 2611 | } |
| 2612 | |
| 2613 | /// Returns true if the reduction outputs a vector with a scaled down VF. |
| 2614 | bool isPartialReduction() const { return getVFScaleFactor() > 1; } |
| 2615 | |
| 2616 | /// Returns true, if the phi is part of a multi-use reduction. |
| 2617 | bool hasUsesOutsideReductionChain() const { |
| 2618 | return HasUsesOutsideReductionChain; |
| 2619 | } |
| 2620 | |
| 2621 | /// Returns true if the recipe only uses the first lane of operand \p Op. |
| 2622 | bool usesFirstLaneOnly(const VPValue *Op) const override { |
| 2623 | assert(is_contained(operands(), Op) && |
| 2624 | "Op must be an operand of the recipe" ); |
| 2625 | return isOrdered() || isInLoop(); |
| 2626 | } |
| 2627 | |
| 2628 | protected: |
| 2629 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 2630 | /// Print the recipe. |
| 2631 | void printRecipe(raw_ostream &O, const Twine &Indent, |
| 2632 | VPSlotTracker &SlotTracker) const override; |
| 2633 | #endif |
| 2634 | }; |
| 2635 | |
| 2636 | /// A recipe for vectorizing a phi-node as a sequence of mask-based select |
| 2637 | /// instructions. |
| 2638 | class LLVM_ABI_FOR_TEST VPBlendRecipe : public VPSingleDefRecipe { |
| 2639 | public: |
| 2640 | /// The blend operation is a User of the incoming values and of their |
| 2641 | /// respective masks, ordered [I0, M0, I1, M1, I2, M2, ...]. Note that M0 can |
| 2642 | /// be omitted (implied by passing an odd number of operands) in which case |
| 2643 | /// all other incoming values are merged into it. |
| 2644 | VPBlendRecipe(PHINode *Phi, ArrayRef<VPValue *> Operands, DebugLoc DL) |
| 2645 | : VPSingleDefRecipe(VPRecipeBase::VPBlendSC, Operands, Phi, DL) { |
| 2646 | assert(Operands.size() >= 2 && "Expected at least two operands!" ); |
| 2647 | } |
| 2648 | |
| 2649 | VPBlendRecipe *clone() override { |
| 2650 | return new VPBlendRecipe(cast_or_null<PHINode>(Val: getUnderlyingValue()), |
| 2651 | operands(), getDebugLoc()); |
| 2652 | } |
| 2653 | |
| 2654 | VP_CLASSOF_IMPL(VPRecipeBase::VPBlendSC) |
| 2655 | |
| 2656 | /// A normalized blend is one that has an odd number of operands, whereby the |
| 2657 | /// first operand does not have an associated mask. |
| 2658 | bool isNormalized() const { return getNumOperands() % 2; } |
| 2659 | |
| 2660 | /// Return the number of incoming values, taking into account when normalized |
| 2661 | /// the first incoming value will have no mask. |
| 2662 | unsigned getNumIncomingValues() const { |
| 2663 | return (getNumOperands() + isNormalized()) / 2; |
| 2664 | } |
| 2665 | |
| 2666 | /// Return incoming value number \p Idx. |
| 2667 | VPValue *getIncomingValue(unsigned Idx) const { |
| 2668 | return Idx == 0 ? getOperand(N: 0) : getOperand(N: Idx * 2 - isNormalized()); |
| 2669 | } |
| 2670 | |
| 2671 | /// Return mask number \p Idx. |
| 2672 | VPValue *getMask(unsigned Idx) const { |
| 2673 | assert((Idx > 0 || !isNormalized()) && "First index has no mask!" ); |
| 2674 | return Idx == 0 ? getOperand(N: 1) : getOperand(N: Idx * 2 + !isNormalized()); |
| 2675 | } |
| 2676 | |
| 2677 | /// Set mask number \p Idx to \p V. |
| 2678 | void setMask(unsigned Idx, VPValue *V) { |
| 2679 | assert((Idx > 0 || !isNormalized()) && "First index has no mask!" ); |
| 2680 | Idx == 0 ? setOperand(I: 1, New: V) : setOperand(I: Idx * 2 + !isNormalized(), New: V); |
| 2681 | } |
| 2682 | |
| 2683 | void execute(VPTransformState &State) override { |
| 2684 | llvm_unreachable("VPBlendRecipe should be expanded by simplifyBlends" ); |
| 2685 | } |
| 2686 | |
| 2687 | /// Return the cost of this VPWidenMemoryRecipe. |
| 2688 | InstructionCost computeCost(ElementCount VF, |
| 2689 | VPCostContext &Ctx) const override; |
| 2690 | |
| 2691 | /// Returns true if the recipe only uses the first lane of operand \p Op. |
| 2692 | bool usesFirstLaneOnly(const VPValue *Op) const override { |
| 2693 | assert(is_contained(operands(), Op) && |
| 2694 | "Op must be an operand of the recipe" ); |
| 2695 | // Recursing through Blend recipes only, must terminate at header phi's the |
| 2696 | // latest. |
| 2697 | return all_of(Range: users(), |
| 2698 | P: [this](VPUser *U) { return U->usesFirstLaneOnly(Op: this); }); |
| 2699 | } |
| 2700 | |
| 2701 | protected: |
| 2702 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 2703 | /// Print the recipe. |
| 2704 | void printRecipe(raw_ostream &O, const Twine &Indent, |
| 2705 | VPSlotTracker &SlotTracker) const override; |
| 2706 | #endif |
| 2707 | }; |
| 2708 | |
| 2709 | /// A common base class for interleaved memory operations. |
| 2710 | /// An Interleaved memory operation is a memory access method that combines |
| 2711 | /// multiple strided loads/stores into a single wide load/store with shuffles. |
| 2712 | /// The first operand is the start address. The optional operands are, in order, |
| 2713 | /// the stored values and the mask. |
| 2714 | class LLVM_ABI_FOR_TEST VPInterleaveBase : public VPRecipeBase, |
| 2715 | public VPIRMetadata { |
| 2716 | const InterleaveGroup<Instruction> *IG; |
| 2717 | |
| 2718 | /// Indicates if the interleave group is in a conditional block and requires a |
| 2719 | /// mask. |
| 2720 | bool HasMask = false; |
| 2721 | |
| 2722 | /// Indicates if gaps between members of the group need to be masked out or if |
| 2723 | /// unusued gaps can be loaded speculatively. |
| 2724 | bool NeedsMaskForGaps = false; |
| 2725 | |
| 2726 | protected: |
| 2727 | VPInterleaveBase(const unsigned char SC, |
| 2728 | const InterleaveGroup<Instruction> *IG, |
| 2729 | ArrayRef<VPValue *> Operands, |
| 2730 | ArrayRef<VPValue *> StoredValues, VPValue *Mask, |
| 2731 | bool NeedsMaskForGaps, const VPIRMetadata &MD, DebugLoc DL) |
| 2732 | : VPRecipeBase(SC, Operands, DL), VPIRMetadata(MD), IG(IG), |
| 2733 | NeedsMaskForGaps(NeedsMaskForGaps) { |
| 2734 | // TODO: extend the masked interleaved-group support to reversed access. |
| 2735 | assert((!Mask || !IG->isReverse()) && |
| 2736 | "Reversed masked interleave-group not supported." ); |
| 2737 | if (StoredValues.empty()) { |
| 2738 | for (unsigned I = 0; I < IG->getFactor(); ++I) |
| 2739 | if (Instruction *Inst = IG->getMember(Index: I)) { |
| 2740 | assert(!Inst->getType()->isVoidTy() && "must have result" ); |
| 2741 | new VPRecipeValue(this, Inst); |
| 2742 | } |
| 2743 | } else { |
| 2744 | for (auto *SV : StoredValues) |
| 2745 | addOperand(Operand: SV); |
| 2746 | } |
| 2747 | if (Mask) { |
| 2748 | HasMask = true; |
| 2749 | addOperand(Operand: Mask); |
| 2750 | } |
| 2751 | } |
| 2752 | |
| 2753 | public: |
| 2754 | VPInterleaveBase *clone() override = 0; |
| 2755 | |
| 2756 | static inline bool classof(const VPRecipeBase *R) { |
| 2757 | return R->getVPRecipeID() == VPRecipeBase::VPInterleaveSC || |
| 2758 | R->getVPRecipeID() == VPRecipeBase::VPInterleaveEVLSC; |
| 2759 | } |
| 2760 | |
| 2761 | static inline bool classof(const VPUser *U) { |
| 2762 | auto *R = dyn_cast<VPRecipeBase>(Val: U); |
| 2763 | return R && classof(R); |
| 2764 | } |
| 2765 | |
| 2766 | /// Return the address accessed by this recipe. |
| 2767 | VPValue *getAddr() const { |
| 2768 | return getOperand(N: 0); // Address is the 1st, mandatory operand. |
| 2769 | } |
| 2770 | |
| 2771 | /// Return the mask used by this recipe. Note that a full mask is represented |
| 2772 | /// by a nullptr. |
| 2773 | VPValue *getMask() const { |
| 2774 | // Mask is optional and the last operand. |
| 2775 | return HasMask ? getOperand(N: getNumOperands() - 1) : nullptr; |
| 2776 | } |
| 2777 | |
| 2778 | /// Return true if the access needs a mask because of the gaps. |
| 2779 | bool needsMaskForGaps() const { return NeedsMaskForGaps; } |
| 2780 | |
| 2781 | const InterleaveGroup<Instruction> *getInterleaveGroup() const { return IG; } |
| 2782 | |
| 2783 | Instruction *getInsertPos() const { return IG->getInsertPos(); } |
| 2784 | |
| 2785 | void execute(VPTransformState &State) override { |
| 2786 | llvm_unreachable("VPInterleaveBase should not be instantiated." ); |
| 2787 | } |
| 2788 | |
| 2789 | /// Return the cost of this recipe. |
| 2790 | InstructionCost computeCost(ElementCount VF, |
| 2791 | VPCostContext &Ctx) const override; |
| 2792 | |
| 2793 | /// Returns true if the recipe only uses the first lane of operand \p Op. |
| 2794 | bool usesFirstLaneOnly(const VPValue *Op) const override = 0; |
| 2795 | |
| 2796 | /// Returns the number of stored operands of this interleave group. Returns 0 |
| 2797 | /// for load interleave groups. |
| 2798 | virtual unsigned getNumStoreOperands() const = 0; |
| 2799 | |
| 2800 | /// Return the VPValues stored by this interleave group. If it is a load |
| 2801 | /// interleave group, return an empty ArrayRef. |
| 2802 | ArrayRef<VPValue *> getStoredValues() const { |
| 2803 | return {op_end() - (getNumStoreOperands() + (HasMask ? 1 : 0)), |
| 2804 | getNumStoreOperands()}; |
| 2805 | } |
| 2806 | }; |
| 2807 | |
| 2808 | /// VPInterleaveRecipe is a recipe for transforming an interleave group of load |
| 2809 | /// or stores into one wide load/store and shuffles. The first operand of a |
| 2810 | /// VPInterleave recipe is the address, followed by the stored values, followed |
| 2811 | /// by an optional mask. |
| 2812 | class LLVM_ABI_FOR_TEST VPInterleaveRecipe final : public VPInterleaveBase { |
| 2813 | public: |
| 2814 | VPInterleaveRecipe(const InterleaveGroup<Instruction> *IG, VPValue *Addr, |
| 2815 | ArrayRef<VPValue *> StoredValues, VPValue *Mask, |
| 2816 | bool NeedsMaskForGaps, const VPIRMetadata &MD, DebugLoc DL) |
| 2817 | : VPInterleaveBase(VPRecipeBase::VPInterleaveSC, IG, Addr, StoredValues, |
| 2818 | Mask, NeedsMaskForGaps, MD, DL) {} |
| 2819 | |
| 2820 | ~VPInterleaveRecipe() override = default; |
| 2821 | |
| 2822 | VPInterleaveRecipe *clone() override { |
| 2823 | return new VPInterleaveRecipe(getInterleaveGroup(), getAddr(), |
| 2824 | getStoredValues(), getMask(), |
| 2825 | needsMaskForGaps(), *this, getDebugLoc()); |
| 2826 | } |
| 2827 | |
| 2828 | VP_CLASSOF_IMPL(VPRecipeBase::VPInterleaveSC) |
| 2829 | |
| 2830 | /// Generate the wide load or store, and shuffles. |
| 2831 | void execute(VPTransformState &State) override; |
| 2832 | |
| 2833 | bool usesFirstLaneOnly(const VPValue *Op) const override { |
| 2834 | assert(is_contained(operands(), Op) && |
| 2835 | "Op must be an operand of the recipe" ); |
| 2836 | return Op == getAddr() && !llvm::is_contained(Range: getStoredValues(), Element: Op); |
| 2837 | } |
| 2838 | |
| 2839 | unsigned getNumStoreOperands() const override { |
| 2840 | return getNumOperands() - (getMask() ? 2 : 1); |
| 2841 | } |
| 2842 | |
| 2843 | protected: |
| 2844 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 2845 | /// Print the recipe. |
| 2846 | void printRecipe(raw_ostream &O, const Twine &Indent, |
| 2847 | VPSlotTracker &SlotTracker) const override; |
| 2848 | #endif |
| 2849 | }; |
| 2850 | |
| 2851 | /// A recipe for interleaved memory operations with vector-predication |
| 2852 | /// intrinsics. The first operand is the address, the second operand is the |
| 2853 | /// explicit vector length. Stored values and mask are optional operands. |
| 2854 | class LLVM_ABI_FOR_TEST VPInterleaveEVLRecipe final : public VPInterleaveBase { |
| 2855 | public: |
| 2856 | VPInterleaveEVLRecipe(VPInterleaveRecipe &R, VPValue &EVL, VPValue *Mask) |
| 2857 | : VPInterleaveBase(VPRecipeBase::VPInterleaveEVLSC, |
| 2858 | R.getInterleaveGroup(), {R.getAddr(), &EVL}, |
| 2859 | R.getStoredValues(), Mask, R.needsMaskForGaps(), R, |
| 2860 | R.getDebugLoc()) { |
| 2861 | assert(!getInterleaveGroup()->isReverse() && |
| 2862 | "Reversed interleave-group with tail folding is not supported." ); |
| 2863 | assert(!needsMaskForGaps() && "Interleaved access with gap mask is not " |
| 2864 | "supported for scalable vector." ); |
| 2865 | } |
| 2866 | |
| 2867 | ~VPInterleaveEVLRecipe() override = default; |
| 2868 | |
| 2869 | VPInterleaveEVLRecipe *clone() override { |
| 2870 | llvm_unreachable("cloning not implemented yet" ); |
| 2871 | } |
| 2872 | |
| 2873 | VP_CLASSOF_IMPL(VPRecipeBase::VPInterleaveEVLSC) |
| 2874 | |
| 2875 | /// The VPValue of the explicit vector length. |
| 2876 | VPValue *getEVL() const { return getOperand(N: 1); } |
| 2877 | |
| 2878 | /// Generate the wide load or store, and shuffles. |
| 2879 | void execute(VPTransformState &State) override; |
| 2880 | |
| 2881 | /// The recipe only uses the first lane of the address, and EVL operand. |
| 2882 | bool usesFirstLaneOnly(const VPValue *Op) const override { |
| 2883 | assert(is_contained(operands(), Op) && |
| 2884 | "Op must be an operand of the recipe" ); |
| 2885 | return (Op == getAddr() && !llvm::is_contained(Range: getStoredValues(), Element: Op)) || |
| 2886 | Op == getEVL(); |
| 2887 | } |
| 2888 | |
| 2889 | unsigned getNumStoreOperands() const override { |
| 2890 | return getNumOperands() - (getMask() ? 3 : 2); |
| 2891 | } |
| 2892 | |
| 2893 | protected: |
| 2894 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 2895 | /// Print the recipe. |
| 2896 | void printRecipe(raw_ostream &O, const Twine &Indent, |
| 2897 | VPSlotTracker &SlotTracker) const override; |
| 2898 | #endif |
| 2899 | }; |
| 2900 | |
| 2901 | /// A recipe to represent inloop, ordered or partial reduction operations. It |
| 2902 | /// performs a reduction on a vector operand into a scalar (vector in the case |
| 2903 | /// of a partial reduction) value, and adds the result to a chain. The Operands |
| 2904 | /// are {ChainOp, VecOp, [Condition]}. |
| 2905 | class LLVM_ABI_FOR_TEST VPReductionRecipe : public VPRecipeWithIRFlags { |
| 2906 | |
| 2907 | /// The recurrence kind for the reduction in question. |
| 2908 | RecurKind RdxKind; |
| 2909 | /// Whether the reduction is conditional. |
| 2910 | bool IsConditional = false; |
| 2911 | ReductionStyle Style; |
| 2912 | |
| 2913 | protected: |
| 2914 | VPReductionRecipe(const unsigned char SC, RecurKind RdxKind, |
| 2915 | FastMathFlags FMFs, Instruction *I, |
| 2916 | ArrayRef<VPValue *> Operands, VPValue *CondOp, |
| 2917 | ReductionStyle Style, DebugLoc DL) |
| 2918 | : VPRecipeWithIRFlags(SC, Operands, FMFs, DL), RdxKind(RdxKind), |
| 2919 | Style(Style) { |
| 2920 | if (CondOp) { |
| 2921 | IsConditional = true; |
| 2922 | addOperand(Operand: CondOp); |
| 2923 | } |
| 2924 | setUnderlyingValue(I); |
| 2925 | } |
| 2926 | |
| 2927 | public: |
| 2928 | VPReductionRecipe(RecurKind RdxKind, FastMathFlags FMFs, Instruction *I, |
| 2929 | VPValue *ChainOp, VPValue *VecOp, VPValue *CondOp, |
| 2930 | ReductionStyle Style, DebugLoc DL = DebugLoc::getUnknown()) |
| 2931 | : VPReductionRecipe(VPRecipeBase::VPReductionSC, RdxKind, FMFs, I, |
| 2932 | {ChainOp, VecOp}, CondOp, Style, DL) {} |
| 2933 | |
| 2934 | VPReductionRecipe(const RecurKind RdxKind, FastMathFlags FMFs, |
| 2935 | VPValue *ChainOp, VPValue *VecOp, VPValue *CondOp, |
| 2936 | ReductionStyle Style, DebugLoc DL = DebugLoc::getUnknown()) |
| 2937 | : VPReductionRecipe(VPRecipeBase::VPReductionSC, RdxKind, FMFs, nullptr, |
| 2938 | {ChainOp, VecOp}, CondOp, Style, DL) {} |
| 2939 | |
| 2940 | ~VPReductionRecipe() override = default; |
| 2941 | |
| 2942 | VPReductionRecipe *clone() override { |
| 2943 | return new VPReductionRecipe(RdxKind, getFastMathFlags(), |
| 2944 | getUnderlyingInstr(), getChainOp(), getVecOp(), |
| 2945 | getCondOp(), Style, getDebugLoc()); |
| 2946 | } |
| 2947 | |
| 2948 | static inline bool classof(const VPRecipeBase *R) { |
| 2949 | return R->getVPRecipeID() == VPRecipeBase::VPReductionSC || |
| 2950 | R->getVPRecipeID() == VPRecipeBase::VPReductionEVLSC; |
| 2951 | } |
| 2952 | |
| 2953 | static inline bool classof(const VPUser *U) { |
| 2954 | auto *R = dyn_cast<VPRecipeBase>(Val: U); |
| 2955 | return R && classof(R); |
| 2956 | } |
| 2957 | |
| 2958 | static inline bool classof(const VPValue *VPV) { |
| 2959 | const VPRecipeBase *R = VPV->getDefiningRecipe(); |
| 2960 | return R && classof(R); |
| 2961 | } |
| 2962 | |
| 2963 | static inline bool classof(const VPSingleDefRecipe *R) { |
| 2964 | return classof(R: static_cast<const VPRecipeBase *>(R)); |
| 2965 | } |
| 2966 | |
| 2967 | /// Generate the reduction in the loop. |
| 2968 | void execute(VPTransformState &State) override; |
| 2969 | |
| 2970 | /// Return the cost of VPReductionRecipe. |
| 2971 | InstructionCost computeCost(ElementCount VF, |
| 2972 | VPCostContext &Ctx) const override; |
| 2973 | |
| 2974 | /// Return the recurrence kind for the in-loop reduction. |
| 2975 | RecurKind getRecurrenceKind() const { return RdxKind; } |
| 2976 | /// Return true if the in-loop reduction is ordered. |
| 2977 | bool isOrdered() const { return std::holds_alternative<RdxOrdered>(v: Style); }; |
| 2978 | /// Return true if the in-loop reduction is conditional. |
| 2979 | bool isConditional() const { return IsConditional; }; |
| 2980 | /// Returns true if the reduction outputs a vector with a scaled down VF. |
| 2981 | bool isPartialReduction() const { return getVFScaleFactor() > 1; } |
| 2982 | /// Returns true if the reduction is in-loop. |
| 2983 | bool isInLoop() const { |
| 2984 | return std::holds_alternative<RdxInLoop>(v: Style) || |
| 2985 | std::holds_alternative<RdxOrdered>(v: Style); |
| 2986 | } |
| 2987 | /// The VPValue of the scalar Chain being accumulated. |
| 2988 | VPValue *getChainOp() const { return getOperand(N: 0); } |
| 2989 | /// The VPValue of the vector value to be reduced. |
| 2990 | VPValue *getVecOp() const { return getOperand(N: 1); } |
| 2991 | /// The VPValue of the condition for the block. |
| 2992 | VPValue *getCondOp() const { |
| 2993 | return isConditional() ? getOperand(N: getNumOperands() - 1) : nullptr; |
| 2994 | } |
| 2995 | /// Get the factor that the VF of this recipe's output should be scaled by, or |
| 2996 | /// 1 if it isn't scaled. |
| 2997 | unsigned getVFScaleFactor() const { |
| 2998 | auto *Partial = std::get_if<RdxUnordered>(ptr: &Style); |
| 2999 | return Partial ? Partial->VFScaleFactor : 1; |
| 3000 | } |
| 3001 | |
| 3002 | protected: |
| 3003 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 3004 | /// Print the recipe. |
| 3005 | void printRecipe(raw_ostream &O, const Twine &Indent, |
| 3006 | VPSlotTracker &SlotTracker) const override; |
| 3007 | #endif |
| 3008 | }; |
| 3009 | |
| 3010 | /// A recipe to represent inloop reduction operations with vector-predication |
| 3011 | /// intrinsics, performing a reduction on a vector operand with the explicit |
| 3012 | /// vector length (EVL) into a scalar value, and adding the result to a chain. |
| 3013 | /// The Operands are {ChainOp, VecOp, EVL, [Condition]}. |
| 3014 | class LLVM_ABI_FOR_TEST VPReductionEVLRecipe : public VPReductionRecipe { |
| 3015 | public: |
| 3016 | VPReductionEVLRecipe(VPReductionRecipe &R, VPValue &EVL, VPValue *CondOp, |
| 3017 | DebugLoc DL = DebugLoc::getUnknown()) |
| 3018 | : VPReductionRecipe(VPRecipeBase::VPReductionEVLSC, R.getRecurrenceKind(), |
| 3019 | R.getFastMathFlags(), |
| 3020 | cast_or_null<Instruction>(Val: R.getUnderlyingValue()), |
| 3021 | {R.getChainOp(), R.getVecOp(), &EVL}, CondOp, |
| 3022 | getReductionStyle(/*InLoop=*/InLoop: true, Ordered: R.isOrdered(), ScaleFactor: 1), |
| 3023 | DL) {} |
| 3024 | |
| 3025 | ~VPReductionEVLRecipe() override = default; |
| 3026 | |
| 3027 | VPReductionEVLRecipe *clone() override { |
| 3028 | llvm_unreachable("cloning not implemented yet" ); |
| 3029 | } |
| 3030 | |
| 3031 | VP_CLASSOF_IMPL(VPRecipeBase::VPReductionEVLSC) |
| 3032 | |
| 3033 | /// Generate the reduction in the loop |
| 3034 | void execute(VPTransformState &State) override; |
| 3035 | |
| 3036 | /// The VPValue of the explicit vector length. |
| 3037 | VPValue *getEVL() const { return getOperand(N: 2); } |
| 3038 | |
| 3039 | /// Returns true if the recipe only uses the first lane of operand \p Op. |
| 3040 | bool usesFirstLaneOnly(const VPValue *Op) const override { |
| 3041 | assert(is_contained(operands(), Op) && |
| 3042 | "Op must be an operand of the recipe" ); |
| 3043 | return Op == getEVL(); |
| 3044 | } |
| 3045 | |
| 3046 | protected: |
| 3047 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 3048 | /// Print the recipe. |
| 3049 | void printRecipe(raw_ostream &O, const Twine &Indent, |
| 3050 | VPSlotTracker &SlotTracker) const override; |
| 3051 | #endif |
| 3052 | }; |
| 3053 | |
| 3054 | /// VPReplicateRecipe replicates a given instruction producing multiple scalar |
| 3055 | /// copies of the original scalar type, one per lane, instead of producing a |
| 3056 | /// single copy of widened type for all lanes. If the instruction is known to be |
| 3057 | /// a single scalar, only one copy, per lane zero, will be generated. |
| 3058 | class LLVM_ABI_FOR_TEST VPReplicateRecipe : public VPRecipeWithIRFlags, |
| 3059 | public VPIRMetadata { |
| 3060 | /// Indicator if only a single replica per lane is needed. |
| 3061 | bool IsSingleScalar; |
| 3062 | |
| 3063 | /// Indicator if the replicas are also predicated. |
| 3064 | bool IsPredicated; |
| 3065 | |
| 3066 | public: |
| 3067 | VPReplicateRecipe(Instruction *I, ArrayRef<VPValue *> Operands, |
| 3068 | bool IsSingleScalar, VPValue *Mask = nullptr, |
| 3069 | const VPIRFlags &Flags = {}, VPIRMetadata Metadata = {}, |
| 3070 | DebugLoc DL = DebugLoc::getUnknown()) |
| 3071 | : VPRecipeWithIRFlags(VPRecipeBase::VPReplicateSC, Operands, Flags, DL), |
| 3072 | VPIRMetadata(Metadata), IsSingleScalar(IsSingleScalar), |
| 3073 | IsPredicated(Mask) { |
| 3074 | setUnderlyingValue(I); |
| 3075 | if (Mask) |
| 3076 | addOperand(Operand: Mask); |
| 3077 | } |
| 3078 | |
| 3079 | ~VPReplicateRecipe() override = default; |
| 3080 | |
| 3081 | VPReplicateRecipe *clone() override { |
| 3082 | auto *Copy = new VPReplicateRecipe( |
| 3083 | getUnderlyingInstr(), operands(), IsSingleScalar, |
| 3084 | isPredicated() ? getMask() : nullptr, *this, *this, getDebugLoc()); |
| 3085 | Copy->transferFlags(Other&: *this); |
| 3086 | return Copy; |
| 3087 | } |
| 3088 | |
| 3089 | VP_CLASSOF_IMPL(VPRecipeBase::VPReplicateSC) |
| 3090 | |
| 3091 | /// Generate replicas of the desired Ingredient. Replicas will be generated |
| 3092 | /// for all parts and lanes unless a specific part and lane are specified in |
| 3093 | /// the \p State. |
| 3094 | void execute(VPTransformState &State) override; |
| 3095 | |
| 3096 | /// Return the cost of this VPReplicateRecipe. |
| 3097 | InstructionCost computeCost(ElementCount VF, |
| 3098 | VPCostContext &Ctx) const override; |
| 3099 | |
| 3100 | bool isSingleScalar() const { return IsSingleScalar; } |
| 3101 | |
| 3102 | bool isPredicated() const { return IsPredicated; } |
| 3103 | |
| 3104 | /// Returns true if the recipe only uses the first lane of operand \p Op. |
| 3105 | bool usesFirstLaneOnly(const VPValue *Op) const override { |
| 3106 | assert(is_contained(operands(), Op) && |
| 3107 | "Op must be an operand of the recipe" ); |
| 3108 | return isSingleScalar(); |
| 3109 | } |
| 3110 | |
| 3111 | /// Returns true if the recipe uses scalars of operand \p Op. |
| 3112 | bool usesScalars(const VPValue *Op) const override { |
| 3113 | assert(is_contained(operands(), Op) && |
| 3114 | "Op must be an operand of the recipe" ); |
| 3115 | return true; |
| 3116 | } |
| 3117 | |
| 3118 | /// Returns true if the recipe is used by a widened recipe via an intervening |
| 3119 | /// VPPredInstPHIRecipe. In this case, the scalar values should also be packed |
| 3120 | /// in a vector. |
| 3121 | bool shouldPack() const; |
| 3122 | |
| 3123 | /// Return the mask of a predicated VPReplicateRecipe. |
| 3124 | VPValue *getMask() { |
| 3125 | assert(isPredicated() && "Trying to get the mask of a unpredicated recipe" ); |
| 3126 | return getOperand(N: getNumOperands() - 1); |
| 3127 | } |
| 3128 | |
| 3129 | unsigned getOpcode() const { return getUnderlyingInstr()->getOpcode(); } |
| 3130 | |
| 3131 | protected: |
| 3132 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 3133 | /// Print the recipe. |
| 3134 | void printRecipe(raw_ostream &O, const Twine &Indent, |
| 3135 | VPSlotTracker &SlotTracker) const override; |
| 3136 | #endif |
| 3137 | }; |
| 3138 | |
| 3139 | /// A recipe for generating conditional branches on the bits of a mask. |
| 3140 | class LLVM_ABI_FOR_TEST VPBranchOnMaskRecipe : public VPRecipeBase { |
| 3141 | public: |
| 3142 | VPBranchOnMaskRecipe(VPValue *BlockInMask, DebugLoc DL) |
| 3143 | : VPRecipeBase(VPRecipeBase::VPBranchOnMaskSC, {BlockInMask}, DL) {} |
| 3144 | |
| 3145 | VPBranchOnMaskRecipe *clone() override { |
| 3146 | return new VPBranchOnMaskRecipe(getOperand(N: 0), getDebugLoc()); |
| 3147 | } |
| 3148 | |
| 3149 | VP_CLASSOF_IMPL(VPRecipeBase::VPBranchOnMaskSC) |
| 3150 | |
| 3151 | /// Generate the extraction of the appropriate bit from the block mask and the |
| 3152 | /// conditional branch. |
| 3153 | void execute(VPTransformState &State) override; |
| 3154 | |
| 3155 | /// Return the cost of this VPBranchOnMaskRecipe. |
| 3156 | InstructionCost computeCost(ElementCount VF, |
| 3157 | VPCostContext &Ctx) const override; |
| 3158 | |
| 3159 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 3160 | /// Print the recipe. |
| 3161 | void printRecipe(raw_ostream &O, const Twine &Indent, |
| 3162 | VPSlotTracker &SlotTracker) const override { |
| 3163 | O << Indent << "BRANCH-ON-MASK " ; |
| 3164 | printOperands(O, SlotTracker); |
| 3165 | } |
| 3166 | #endif |
| 3167 | |
| 3168 | /// Returns true if the recipe uses scalars of operand \p Op. |
| 3169 | bool usesScalars(const VPValue *Op) const override { |
| 3170 | assert(is_contained(operands(), Op) && |
| 3171 | "Op must be an operand of the recipe" ); |
| 3172 | return true; |
| 3173 | } |
| 3174 | }; |
| 3175 | |
| 3176 | /// A recipe to combine multiple recipes into a single 'expression' recipe, |
| 3177 | /// which should be considered a single entity for cost-modeling and transforms. |
| 3178 | /// The recipe needs to be 'decomposed', i.e. replaced by its individual |
| 3179 | /// expression recipes, before execute. The individual expression recipes are |
| 3180 | /// completely disconnected from the def-use graph of other recipes not part of |
| 3181 | /// the expression. Def-use edges between pairs of expression recipes remain |
| 3182 | /// intact, whereas every edge between an expression recipe and a recipe outside |
| 3183 | /// the expression is elevated to connect the non-expression recipe with the |
| 3184 | /// VPExpressionRecipe itself. |
| 3185 | class VPExpressionRecipe : public VPSingleDefRecipe { |
| 3186 | /// Recipes included in this VPExpressionRecipe. This could contain |
| 3187 | /// duplicates. |
| 3188 | SmallVector<VPSingleDefRecipe *> ExpressionRecipes; |
| 3189 | |
| 3190 | /// Temporary VPValues used for external operands of the expression, i.e. |
| 3191 | /// operands not defined by recipes in the expression. |
| 3192 | SmallVector<VPValue *> LiveInPlaceholders; |
| 3193 | |
| 3194 | enum class ExpressionTypes { |
| 3195 | /// Represents an inloop extended reduction operation, performing a |
| 3196 | /// reduction on an extended vector operand into a scalar value, and adding |
| 3197 | /// the result to a chain. |
| 3198 | ExtendedReduction, |
| 3199 | /// Represent an inloop multiply-accumulate reduction, multiplying the |
| 3200 | /// extended vector operands, performing a reduction.add on the result, and |
| 3201 | /// adding the scalar result to a chain. |
| 3202 | ExtMulAccReduction, |
| 3203 | /// Represent an inloop multiply-accumulate reduction, multiplying the |
| 3204 | /// vector operands, performing a reduction.add on the result, and adding |
| 3205 | /// the scalar result to a chain. |
| 3206 | MulAccReduction, |
| 3207 | /// Represent an inloop multiply-accumulate reduction, multiplying the |
| 3208 | /// extended vector operands, negating the multiplication, performing a |
| 3209 | /// reduction.add on the result, and adding the scalar result to a chain. |
| 3210 | ExtNegatedMulAccReduction, |
| 3211 | }; |
| 3212 | |
| 3213 | /// Type of the expression. |
| 3214 | ExpressionTypes ExpressionType; |
| 3215 | |
| 3216 | /// Construct a new VPExpressionRecipe by internalizing recipes in \p |
| 3217 | /// ExpressionRecipes. External operands (i.e. not defined by another recipe |
| 3218 | /// in the expression) are replaced by temporary VPValues and the original |
| 3219 | /// operands are transferred to the VPExpressionRecipe itself. Clone recipes |
| 3220 | /// as needed (excluding last) to ensure they are only used by other recipes |
| 3221 | /// in the expression. |
| 3222 | VPExpressionRecipe(ExpressionTypes ExpressionType, |
| 3223 | ArrayRef<VPSingleDefRecipe *> ExpressionRecipes); |
| 3224 | |
| 3225 | public: |
| 3226 | VPExpressionRecipe(VPWidenCastRecipe *Ext, VPReductionRecipe *Red) |
| 3227 | : VPExpressionRecipe(ExpressionTypes::ExtendedReduction, {Ext, Red}) {} |
| 3228 | VPExpressionRecipe(VPWidenRecipe *Mul, VPReductionRecipe *Red) |
| 3229 | : VPExpressionRecipe(ExpressionTypes::MulAccReduction, {Mul, Red}) {} |
| 3230 | VPExpressionRecipe(VPWidenCastRecipe *Ext0, VPWidenCastRecipe *Ext1, |
| 3231 | VPWidenRecipe *Mul, VPReductionRecipe *Red) |
| 3232 | : VPExpressionRecipe(ExpressionTypes::ExtMulAccReduction, |
| 3233 | {Ext0, Ext1, Mul, Red}) {} |
| 3234 | VPExpressionRecipe(VPWidenCastRecipe *Ext0, VPWidenCastRecipe *Ext1, |
| 3235 | VPWidenRecipe *Mul, VPWidenRecipe *Sub, |
| 3236 | VPReductionRecipe *Red) |
| 3237 | : VPExpressionRecipe(ExpressionTypes::ExtNegatedMulAccReduction, |
| 3238 | {Ext0, Ext1, Mul, Sub, Red}) { |
| 3239 | assert(Mul->getOpcode() == Instruction::Mul && "Expected a mul" ); |
| 3240 | assert(Red->getRecurrenceKind() == RecurKind::Add && |
| 3241 | "Expected an add reduction" ); |
| 3242 | assert(getNumOperands() >= 3 && "Expected at least three operands" ); |
| 3243 | [[maybe_unused]] auto *SubConst = dyn_cast<VPConstantInt>(Val: getOperand(N: 2)); |
| 3244 | assert(SubConst && SubConst->isZero() && |
| 3245 | Sub->getOpcode() == Instruction::Sub && "Expected a negating sub" ); |
| 3246 | } |
| 3247 | |
| 3248 | ~VPExpressionRecipe() override { |
| 3249 | SmallPtrSet<VPSingleDefRecipe *, 4> ExpressionRecipesSeen; |
| 3250 | for (auto *R : reverse(C&: ExpressionRecipes)) { |
| 3251 | if (ExpressionRecipesSeen.insert(Ptr: R).second) |
| 3252 | delete R; |
| 3253 | } |
| 3254 | for (VPValue *T : LiveInPlaceholders) |
| 3255 | delete T; |
| 3256 | } |
| 3257 | |
| 3258 | VP_CLASSOF_IMPL(VPRecipeBase::VPExpressionSC) |
| 3259 | |
| 3260 | VPExpressionRecipe *clone() override { |
| 3261 | assert(!ExpressionRecipes.empty() && "empty expressions should be removed" ); |
| 3262 | SmallVector<VPSingleDefRecipe *> NewExpressiondRecipes; |
| 3263 | for (auto *R : ExpressionRecipes) |
| 3264 | NewExpressiondRecipes.push_back(Elt: R->clone()); |
| 3265 | for (auto *New : NewExpressiondRecipes) { |
| 3266 | for (const auto &[Idx, Old] : enumerate(First&: ExpressionRecipes)) |
| 3267 | New->replaceUsesOfWith(From: Old, To: NewExpressiondRecipes[Idx]); |
| 3268 | // Update placeholder operands in the cloned recipe to use the external |
| 3269 | // operands, to be internalized when the cloned expression is constructed. |
| 3270 | for (const auto &[Placeholder, OutsideOp] : |
| 3271 | zip(t&: LiveInPlaceholders, u: operands())) |
| 3272 | New->replaceUsesOfWith(From: Placeholder, To: OutsideOp); |
| 3273 | } |
| 3274 | return new VPExpressionRecipe(ExpressionType, NewExpressiondRecipes); |
| 3275 | } |
| 3276 | |
| 3277 | /// Return the VPValue to use to infer the result type of the recipe. |
| 3278 | VPValue *getOperandOfResultType() const { |
| 3279 | unsigned OpIdx = |
| 3280 | cast<VPReductionRecipe>(Val: ExpressionRecipes.back())->isConditional() ? 2 |
| 3281 | : 1; |
| 3282 | return getOperand(N: getNumOperands() - OpIdx); |
| 3283 | } |
| 3284 | |
| 3285 | /// Insert the recipes of the expression back into the VPlan, directly before |
| 3286 | /// the current recipe. Leaves the expression recipe empty, which must be |
| 3287 | /// removed before codegen. |
| 3288 | void decompose(); |
| 3289 | |
| 3290 | unsigned getVFScaleFactor() const { |
| 3291 | auto *PR = dyn_cast<VPReductionRecipe>(Val: ExpressionRecipes.back()); |
| 3292 | return PR ? PR->getVFScaleFactor() : 1; |
| 3293 | } |
| 3294 | |
| 3295 | /// Method for generating code, must not be called as this recipe is abstract. |
| 3296 | void execute(VPTransformState &State) override { |
| 3297 | llvm_unreachable("recipe must be removed before execute" ); |
| 3298 | } |
| 3299 | |
| 3300 | InstructionCost computeCost(ElementCount VF, |
| 3301 | VPCostContext &Ctx) const override; |
| 3302 | |
| 3303 | /// Returns true if this expression contains recipes that may read from or |
| 3304 | /// write to memory. |
| 3305 | bool mayReadOrWriteMemory() const; |
| 3306 | |
| 3307 | /// Returns true if this expression contains recipes that may have side |
| 3308 | /// effects. |
| 3309 | bool mayHaveSideEffects() const; |
| 3310 | |
| 3311 | /// Returns true if the result of this VPExpressionRecipe is a single-scalar. |
| 3312 | bool isSingleScalar() const; |
| 3313 | |
| 3314 | protected: |
| 3315 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 3316 | /// Print the recipe. |
| 3317 | void printRecipe(raw_ostream &O, const Twine &Indent, |
| 3318 | VPSlotTracker &SlotTracker) const override; |
| 3319 | #endif |
| 3320 | }; |
| 3321 | |
| 3322 | /// VPPredInstPHIRecipe is a recipe for generating the phi nodes needed when |
| 3323 | /// control converges back from a Branch-on-Mask. The phi nodes are needed in |
| 3324 | /// order to merge values that are set under such a branch and feed their uses. |
| 3325 | /// The phi nodes can be scalar or vector depending on the users of the value. |
| 3326 | /// This recipe works in concert with VPBranchOnMaskRecipe. |
| 3327 | class LLVM_ABI_FOR_TEST VPPredInstPHIRecipe : public VPSingleDefRecipe { |
| 3328 | public: |
| 3329 | /// Construct a VPPredInstPHIRecipe given \p PredInst whose value needs a phi |
| 3330 | /// nodes after merging back from a Branch-on-Mask. |
| 3331 | VPPredInstPHIRecipe(VPValue *PredV, DebugLoc DL) |
| 3332 | : VPSingleDefRecipe(VPRecipeBase::VPPredInstPHISC, PredV, DL) {} |
| 3333 | ~VPPredInstPHIRecipe() override = default; |
| 3334 | |
| 3335 | VPPredInstPHIRecipe *clone() override { |
| 3336 | return new VPPredInstPHIRecipe(getOperand(N: 0), getDebugLoc()); |
| 3337 | } |
| 3338 | |
| 3339 | VP_CLASSOF_IMPL(VPRecipeBase::VPPredInstPHISC) |
| 3340 | |
| 3341 | /// Generates phi nodes for live-outs (from a replicate region) as needed to |
| 3342 | /// retain SSA form. |
| 3343 | void execute(VPTransformState &State) override; |
| 3344 | |
| 3345 | /// Return the cost of this VPPredInstPHIRecipe. |
| 3346 | InstructionCost computeCost(ElementCount VF, |
| 3347 | VPCostContext &Ctx) const override { |
| 3348 | // TODO: Compute accurate cost after retiring the legacy cost model. |
| 3349 | return 0; |
| 3350 | } |
| 3351 | |
| 3352 | /// Returns true if the recipe uses scalars of operand \p Op. |
| 3353 | bool usesScalars(const VPValue *Op) const override { |
| 3354 | assert(is_contained(operands(), Op) && |
| 3355 | "Op must be an operand of the recipe" ); |
| 3356 | return true; |
| 3357 | } |
| 3358 | |
| 3359 | protected: |
| 3360 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 3361 | /// Print the recipe. |
| 3362 | void printRecipe(raw_ostream &O, const Twine &Indent, |
| 3363 | VPSlotTracker &SlotTracker) const override; |
| 3364 | #endif |
| 3365 | }; |
| 3366 | |
| 3367 | /// A common base class for widening memory operations. An optional mask can be |
| 3368 | /// provided as the last operand. |
| 3369 | class LLVM_ABI_FOR_TEST VPWidenMemoryRecipe : public VPRecipeBase, |
| 3370 | public VPIRMetadata { |
| 3371 | protected: |
| 3372 | Instruction &Ingredient; |
| 3373 | |
| 3374 | /// Alignment information for this memory access. |
| 3375 | Align Alignment; |
| 3376 | |
| 3377 | /// Whether the accessed addresses are consecutive. |
| 3378 | bool Consecutive; |
| 3379 | |
| 3380 | /// Whether the consecutive accessed addresses are in reverse order. |
| 3381 | bool Reverse; |
| 3382 | |
| 3383 | /// Whether the memory access is masked. |
| 3384 | bool IsMasked = false; |
| 3385 | |
| 3386 | void setMask(VPValue *Mask) { |
| 3387 | assert(!IsMasked && "cannot re-set mask" ); |
| 3388 | if (!Mask) |
| 3389 | return; |
| 3390 | addOperand(Operand: Mask); |
| 3391 | IsMasked = true; |
| 3392 | } |
| 3393 | |
| 3394 | VPWidenMemoryRecipe(const char unsigned SC, Instruction &I, |
| 3395 | std::initializer_list<VPValue *> Operands, |
| 3396 | bool Consecutive, bool Reverse, |
| 3397 | const VPIRMetadata &Metadata, DebugLoc DL) |
| 3398 | : VPRecipeBase(SC, Operands, DL), VPIRMetadata(Metadata), Ingredient(I), |
| 3399 | Alignment(getLoadStoreAlignment(I: &I)), Consecutive(Consecutive), |
| 3400 | Reverse(Reverse) { |
| 3401 | assert((Consecutive || !Reverse) && "Reverse implies consecutive" ); |
| 3402 | assert((isa<VPVectorEndPointerRecipe>(getAddr()) || !Reverse) && |
| 3403 | "Reversed acccess without VPVectorEndPointerRecipe address?" ); |
| 3404 | } |
| 3405 | |
| 3406 | public: |
| 3407 | VPWidenMemoryRecipe *clone() override { |
| 3408 | llvm_unreachable("cloning not supported" ); |
| 3409 | } |
| 3410 | |
| 3411 | static inline bool classof(const VPRecipeBase *R) { |
| 3412 | return R->getVPRecipeID() == VPRecipeBase::VPWidenLoadSC || |
| 3413 | R->getVPRecipeID() == VPRecipeBase::VPWidenStoreSC || |
| 3414 | R->getVPRecipeID() == VPRecipeBase::VPWidenLoadEVLSC || |
| 3415 | R->getVPRecipeID() == VPRecipeBase::VPWidenStoreEVLSC; |
| 3416 | } |
| 3417 | |
| 3418 | static inline bool classof(const VPUser *U) { |
| 3419 | auto *R = dyn_cast<VPRecipeBase>(Val: U); |
| 3420 | return R && classof(R); |
| 3421 | } |
| 3422 | |
| 3423 | /// Return whether the loaded-from / stored-to addresses are consecutive. |
| 3424 | bool isConsecutive() const { return Consecutive; } |
| 3425 | |
| 3426 | /// Return whether the consecutive loaded/stored addresses are in reverse |
| 3427 | /// order. |
| 3428 | bool isReverse() const { return Reverse; } |
| 3429 | |
| 3430 | /// Return the address accessed by this recipe. |
| 3431 | VPValue *getAddr() const { return getOperand(N: 0); } |
| 3432 | |
| 3433 | /// Returns true if the recipe is masked. |
| 3434 | bool isMasked() const { return IsMasked; } |
| 3435 | |
| 3436 | /// Return the mask used by this recipe. Note that a full mask is represented |
| 3437 | /// by a nullptr. |
| 3438 | VPValue *getMask() const { |
| 3439 | // Mask is optional and therefore the last operand. |
| 3440 | return isMasked() ? getOperand(N: getNumOperands() - 1) : nullptr; |
| 3441 | } |
| 3442 | |
| 3443 | /// Returns the alignment of the memory access. |
| 3444 | Align getAlign() const { return Alignment; } |
| 3445 | |
| 3446 | /// Generate the wide load/store. |
| 3447 | void execute(VPTransformState &State) override { |
| 3448 | llvm_unreachable("VPWidenMemoryRecipe should not be instantiated." ); |
| 3449 | } |
| 3450 | |
| 3451 | /// Return the cost of this VPWidenMemoryRecipe. |
| 3452 | InstructionCost computeCost(ElementCount VF, |
| 3453 | VPCostContext &Ctx) const override; |
| 3454 | |
| 3455 | Instruction &getIngredient() const { return Ingredient; } |
| 3456 | }; |
| 3457 | |
| 3458 | /// A recipe for widening load operations, using the address to load from and an |
| 3459 | /// optional mask. |
| 3460 | struct LLVM_ABI_FOR_TEST VPWidenLoadRecipe final : public VPWidenMemoryRecipe, |
| 3461 | public VPRecipeValue { |
| 3462 | VPWidenLoadRecipe(LoadInst &Load, VPValue *Addr, VPValue *Mask, |
| 3463 | bool Consecutive, bool Reverse, |
| 3464 | const VPIRMetadata &Metadata, DebugLoc DL) |
| 3465 | : VPWidenMemoryRecipe(VPRecipeBase::VPWidenLoadSC, Load, {Addr}, |
| 3466 | Consecutive, Reverse, Metadata, DL), |
| 3467 | VPRecipeValue(this, &Load) { |
| 3468 | setMask(Mask); |
| 3469 | } |
| 3470 | |
| 3471 | VPWidenLoadRecipe *clone() override { |
| 3472 | return new VPWidenLoadRecipe(cast<LoadInst>(Val&: Ingredient), getAddr(), |
| 3473 | getMask(), Consecutive, Reverse, *this, |
| 3474 | getDebugLoc()); |
| 3475 | } |
| 3476 | |
| 3477 | VP_CLASSOF_IMPL(VPRecipeBase::VPWidenLoadSC); |
| 3478 | |
| 3479 | /// Generate a wide load or gather. |
| 3480 | void execute(VPTransformState &State) override; |
| 3481 | |
| 3482 | /// Returns true if the recipe only uses the first lane of operand \p Op. |
| 3483 | bool usesFirstLaneOnly(const VPValue *Op) const override { |
| 3484 | assert(is_contained(operands(), Op) && |
| 3485 | "Op must be an operand of the recipe" ); |
| 3486 | // Widened, consecutive loads operations only demand the first lane of |
| 3487 | // their address. |
| 3488 | return Op == getAddr() && isConsecutive(); |
| 3489 | } |
| 3490 | |
| 3491 | protected: |
| 3492 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 3493 | /// Print the recipe. |
| 3494 | void printRecipe(raw_ostream &O, const Twine &Indent, |
| 3495 | VPSlotTracker &SlotTracker) const override; |
| 3496 | #endif |
| 3497 | }; |
| 3498 | |
| 3499 | /// A recipe for widening load operations with vector-predication intrinsics, |
| 3500 | /// using the address to load from, the explicit vector length and an optional |
| 3501 | /// mask. |
| 3502 | struct VPWidenLoadEVLRecipe final : public VPWidenMemoryRecipe, |
| 3503 | public VPRecipeValue { |
| 3504 | VPWidenLoadEVLRecipe(VPWidenLoadRecipe &L, VPValue *Addr, VPValue &EVL, |
| 3505 | VPValue *Mask) |
| 3506 | : VPWidenMemoryRecipe(VPRecipeBase::VPWidenLoadEVLSC, L.getIngredient(), |
| 3507 | {Addr, &EVL}, L.isConsecutive(), L.isReverse(), L, |
| 3508 | L.getDebugLoc()), |
| 3509 | VPRecipeValue(this, &getIngredient()) { |
| 3510 | setMask(Mask); |
| 3511 | } |
| 3512 | |
| 3513 | VP_CLASSOF_IMPL(VPRecipeBase::VPWidenLoadEVLSC) |
| 3514 | |
| 3515 | /// Return the EVL operand. |
| 3516 | VPValue *getEVL() const { return getOperand(N: 1); } |
| 3517 | |
| 3518 | /// Generate the wide load or gather. |
| 3519 | LLVM_ABI_FOR_TEST void execute(VPTransformState &State) override; |
| 3520 | |
| 3521 | /// Return the cost of this VPWidenLoadEVLRecipe. |
| 3522 | LLVM_ABI_FOR_TEST InstructionCost |
| 3523 | computeCost(ElementCount VF, VPCostContext &Ctx) const override; |
| 3524 | |
| 3525 | /// Returns true if the recipe only uses the first lane of operand \p Op. |
| 3526 | bool usesFirstLaneOnly(const VPValue *Op) const override { |
| 3527 | assert(is_contained(operands(), Op) && |
| 3528 | "Op must be an operand of the recipe" ); |
| 3529 | // Widened loads only demand the first lane of EVL and consecutive loads |
| 3530 | // only demand the first lane of their address. |
| 3531 | return Op == getEVL() || (Op == getAddr() && isConsecutive()); |
| 3532 | } |
| 3533 | |
| 3534 | protected: |
| 3535 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 3536 | /// Print the recipe. |
| 3537 | LLVM_ABI_FOR_TEST void printRecipe(raw_ostream &O, const Twine &Indent, |
| 3538 | VPSlotTracker &SlotTracker) const override; |
| 3539 | #endif |
| 3540 | }; |
| 3541 | |
| 3542 | /// A recipe for widening store operations, using the stored value, the address |
| 3543 | /// to store to and an optional mask. |
| 3544 | struct LLVM_ABI_FOR_TEST VPWidenStoreRecipe final : public VPWidenMemoryRecipe { |
| 3545 | VPWidenStoreRecipe(StoreInst &Store, VPValue *Addr, VPValue *StoredVal, |
| 3546 | VPValue *Mask, bool Consecutive, bool Reverse, |
| 3547 | const VPIRMetadata &Metadata, DebugLoc DL) |
| 3548 | : VPWidenMemoryRecipe(VPRecipeBase::VPWidenStoreSC, Store, |
| 3549 | {Addr, StoredVal}, Consecutive, Reverse, Metadata, |
| 3550 | DL) { |
| 3551 | setMask(Mask); |
| 3552 | } |
| 3553 | |
| 3554 | VPWidenStoreRecipe *clone() override { |
| 3555 | return new VPWidenStoreRecipe(cast<StoreInst>(Val&: Ingredient), getAddr(), |
| 3556 | getStoredValue(), getMask(), Consecutive, |
| 3557 | Reverse, *this, getDebugLoc()); |
| 3558 | } |
| 3559 | |
| 3560 | VP_CLASSOF_IMPL(VPRecipeBase::VPWidenStoreSC); |
| 3561 | |
| 3562 | /// Return the value stored by this recipe. |
| 3563 | VPValue *getStoredValue() const { return getOperand(N: 1); } |
| 3564 | |
| 3565 | /// Generate a wide store or scatter. |
| 3566 | void execute(VPTransformState &State) override; |
| 3567 | |
| 3568 | /// Returns true if the recipe only uses the first lane of operand \p Op. |
| 3569 | bool usesFirstLaneOnly(const VPValue *Op) const override { |
| 3570 | assert(is_contained(operands(), Op) && |
| 3571 | "Op must be an operand of the recipe" ); |
| 3572 | // Widened, consecutive stores only demand the first lane of their address, |
| 3573 | // unless the same operand is also stored. |
| 3574 | return Op == getAddr() && isConsecutive() && Op != getStoredValue(); |
| 3575 | } |
| 3576 | |
| 3577 | protected: |
| 3578 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 3579 | /// Print the recipe. |
| 3580 | void printRecipe(raw_ostream &O, const Twine &Indent, |
| 3581 | VPSlotTracker &SlotTracker) const override; |
| 3582 | #endif |
| 3583 | }; |
| 3584 | |
| 3585 | /// A recipe for widening store operations with vector-predication intrinsics, |
| 3586 | /// using the value to store, the address to store to, the explicit vector |
| 3587 | /// length and an optional mask. |
| 3588 | struct VPWidenStoreEVLRecipe final : public VPWidenMemoryRecipe { |
| 3589 | VPWidenStoreEVLRecipe(VPWidenStoreRecipe &S, VPValue *Addr, |
| 3590 | VPValue *StoredVal, VPValue &EVL, VPValue *Mask) |
| 3591 | : VPWidenMemoryRecipe(VPRecipeBase::VPWidenStoreEVLSC, S.getIngredient(), |
| 3592 | {Addr, StoredVal, &EVL}, S.isConsecutive(), |
| 3593 | S.isReverse(), S, S.getDebugLoc()) { |
| 3594 | setMask(Mask); |
| 3595 | } |
| 3596 | |
| 3597 | VP_CLASSOF_IMPL(VPRecipeBase::VPWidenStoreEVLSC) |
| 3598 | |
| 3599 | /// Return the address accessed by this recipe. |
| 3600 | VPValue *getStoredValue() const { return getOperand(N: 1); } |
| 3601 | |
| 3602 | /// Return the EVL operand. |
| 3603 | VPValue *getEVL() const { return getOperand(N: 2); } |
| 3604 | |
| 3605 | /// Generate the wide store or scatter. |
| 3606 | LLVM_ABI_FOR_TEST void execute(VPTransformState &State) override; |
| 3607 | |
| 3608 | /// Return the cost of this VPWidenStoreEVLRecipe. |
| 3609 | LLVM_ABI_FOR_TEST InstructionCost |
| 3610 | computeCost(ElementCount VF, VPCostContext &Ctx) const override; |
| 3611 | |
| 3612 | /// Returns true if the recipe only uses the first lane of operand \p Op. |
| 3613 | bool usesFirstLaneOnly(const VPValue *Op) const override { |
| 3614 | assert(is_contained(operands(), Op) && |
| 3615 | "Op must be an operand of the recipe" ); |
| 3616 | if (Op == getEVL()) { |
| 3617 | assert(getStoredValue() != Op && "unexpected store of EVL" ); |
| 3618 | return true; |
| 3619 | } |
| 3620 | // Widened, consecutive memory operations only demand the first lane of |
| 3621 | // their address, unless the same operand is also stored. That latter can |
| 3622 | // happen with opaque pointers. |
| 3623 | return Op == getAddr() && isConsecutive() && Op != getStoredValue(); |
| 3624 | } |
| 3625 | |
| 3626 | protected: |
| 3627 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 3628 | /// Print the recipe. |
| 3629 | LLVM_ABI_FOR_TEST void printRecipe(raw_ostream &O, const Twine &Indent, |
| 3630 | VPSlotTracker &SlotTracker) const override; |
| 3631 | #endif |
| 3632 | }; |
| 3633 | |
| 3634 | /// Recipe to expand a SCEV expression. |
| 3635 | class VPExpandSCEVRecipe : public VPSingleDefRecipe { |
| 3636 | const SCEV *Expr; |
| 3637 | |
| 3638 | public: |
| 3639 | VPExpandSCEVRecipe(const SCEV *Expr) |
| 3640 | : VPSingleDefRecipe(VPRecipeBase::VPExpandSCEVSC, {}), Expr(Expr) {} |
| 3641 | |
| 3642 | ~VPExpandSCEVRecipe() override = default; |
| 3643 | |
| 3644 | VPExpandSCEVRecipe *clone() override { return new VPExpandSCEVRecipe(Expr); } |
| 3645 | |
| 3646 | VP_CLASSOF_IMPL(VPRecipeBase::VPExpandSCEVSC) |
| 3647 | |
| 3648 | void execute(VPTransformState &State) override { |
| 3649 | llvm_unreachable("SCEV expressions must be expanded before final execute" ); |
| 3650 | } |
| 3651 | |
| 3652 | /// Return the cost of this VPExpandSCEVRecipe. |
| 3653 | InstructionCost computeCost(ElementCount VF, |
| 3654 | VPCostContext &Ctx) const override { |
| 3655 | // TODO: Compute accurate cost after retiring the legacy cost model. |
| 3656 | return 0; |
| 3657 | } |
| 3658 | |
| 3659 | const SCEV *getSCEV() const { return Expr; } |
| 3660 | |
| 3661 | protected: |
| 3662 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 3663 | /// Print the recipe. |
| 3664 | void printRecipe(raw_ostream &O, const Twine &Indent, |
| 3665 | VPSlotTracker &SlotTracker) const override; |
| 3666 | #endif |
| 3667 | }; |
| 3668 | |
| 3669 | /// Canonical scalar induction phi of the vector loop. Starting at the specified |
| 3670 | /// start value (either 0 or the resume value when vectorizing the epilogue |
| 3671 | /// loop). VPWidenCanonicalIVRecipe represents the vector version of the |
| 3672 | /// canonical induction variable. |
| 3673 | class VPCanonicalIVPHIRecipe : public VPHeaderPHIRecipe { |
| 3674 | public: |
| 3675 | VPCanonicalIVPHIRecipe(VPIRValue *StartV, DebugLoc DL) |
| 3676 | : VPHeaderPHIRecipe(VPRecipeBase::VPCanonicalIVPHISC, nullptr, StartV, |
| 3677 | DL) {} |
| 3678 | |
| 3679 | ~VPCanonicalIVPHIRecipe() override = default; |
| 3680 | |
| 3681 | VPCanonicalIVPHIRecipe *clone() override { |
| 3682 | auto *R = new VPCanonicalIVPHIRecipe(getStartValue(), getDebugLoc()); |
| 3683 | R->addOperand(Operand: getBackedgeValue()); |
| 3684 | return R; |
| 3685 | } |
| 3686 | |
| 3687 | VP_CLASSOF_IMPL(VPRecipeBase::VPCanonicalIVPHISC) |
| 3688 | |
| 3689 | void execute(VPTransformState &State) override { |
| 3690 | llvm_unreachable("cannot execute this recipe, should be replaced by a " |
| 3691 | "scalar phi recipe" ); |
| 3692 | } |
| 3693 | |
| 3694 | /// Returns the start value of the canonical induction. |
| 3695 | VPIRValue *getStartValue() const { return cast<VPIRValue>(Val: getOperand(N: 0)); } |
| 3696 | |
| 3697 | /// Returns the scalar type of the induction. |
| 3698 | Type *getScalarType() const { return getStartValue()->getType(); } |
| 3699 | |
| 3700 | /// Returns true if the recipe only uses the first lane of operand \p Op. |
| 3701 | bool usesFirstLaneOnly(const VPValue *Op) const override { |
| 3702 | assert(is_contained(operands(), Op) && |
| 3703 | "Op must be an operand of the recipe" ); |
| 3704 | return true; |
| 3705 | } |
| 3706 | |
| 3707 | /// Returns true if the recipe only uses the first part of operand \p Op. |
| 3708 | bool usesFirstPartOnly(const VPValue *Op) const override { |
| 3709 | assert(is_contained(operands(), Op) && |
| 3710 | "Op must be an operand of the recipe" ); |
| 3711 | return true; |
| 3712 | } |
| 3713 | |
| 3714 | /// Return the cost of this VPCanonicalIVPHIRecipe. |
| 3715 | InstructionCost computeCost(ElementCount VF, |
| 3716 | VPCostContext &Ctx) const override { |
| 3717 | // For now, match the behavior of the legacy cost model. |
| 3718 | return 0; |
| 3719 | } |
| 3720 | |
| 3721 | protected: |
| 3722 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 3723 | /// Print the recipe. |
| 3724 | LLVM_ABI_FOR_TEST void printRecipe(raw_ostream &O, const Twine &Indent, |
| 3725 | VPSlotTracker &SlotTracker) const override; |
| 3726 | #endif |
| 3727 | }; |
| 3728 | |
| 3729 | /// A recipe for generating the active lane mask for the vector loop that is |
| 3730 | /// used to predicate the vector operations. |
| 3731 | class VPActiveLaneMaskPHIRecipe : public VPHeaderPHIRecipe { |
| 3732 | public: |
| 3733 | VPActiveLaneMaskPHIRecipe(VPValue *StartMask, DebugLoc DL) |
| 3734 | : VPHeaderPHIRecipe(VPRecipeBase::VPActiveLaneMaskPHISC, nullptr, |
| 3735 | StartMask, DL) {} |
| 3736 | |
| 3737 | ~VPActiveLaneMaskPHIRecipe() override = default; |
| 3738 | |
| 3739 | VPActiveLaneMaskPHIRecipe *clone() override { |
| 3740 | auto *R = new VPActiveLaneMaskPHIRecipe(getOperand(N: 0), getDebugLoc()); |
| 3741 | if (getNumOperands() == 2) |
| 3742 | R->addOperand(Operand: getOperand(N: 1)); |
| 3743 | return R; |
| 3744 | } |
| 3745 | |
| 3746 | VP_CLASSOF_IMPL(VPRecipeBase::VPActiveLaneMaskPHISC) |
| 3747 | |
| 3748 | /// Generate the active lane mask phi of the vector loop. |
| 3749 | void execute(VPTransformState &State) override; |
| 3750 | |
| 3751 | protected: |
| 3752 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 3753 | /// Print the recipe. |
| 3754 | void printRecipe(raw_ostream &O, const Twine &Indent, |
| 3755 | VPSlotTracker &SlotTracker) const override; |
| 3756 | #endif |
| 3757 | }; |
| 3758 | |
| 3759 | /// A recipe for generating the phi node for the current index of elements, |
| 3760 | /// adjusted in accordance with EVL value. It starts at the start value of the |
| 3761 | /// canonical induction and gets incremented by EVL in each iteration of the |
| 3762 | /// vector loop. |
| 3763 | class VPEVLBasedIVPHIRecipe : public VPHeaderPHIRecipe { |
| 3764 | public: |
| 3765 | VPEVLBasedIVPHIRecipe(VPValue *StartIV, DebugLoc DL) |
| 3766 | : VPHeaderPHIRecipe(VPRecipeBase::VPEVLBasedIVPHISC, nullptr, StartIV, |
| 3767 | DL) {} |
| 3768 | |
| 3769 | ~VPEVLBasedIVPHIRecipe() override = default; |
| 3770 | |
| 3771 | VPEVLBasedIVPHIRecipe *clone() override { |
| 3772 | llvm_unreachable("cloning not implemented yet" ); |
| 3773 | } |
| 3774 | |
| 3775 | VP_CLASSOF_IMPL(VPRecipeBase::VPEVLBasedIVPHISC) |
| 3776 | |
| 3777 | void execute(VPTransformState &State) override { |
| 3778 | llvm_unreachable("cannot execute this recipe, should be replaced by a " |
| 3779 | "scalar phi recipe" ); |
| 3780 | } |
| 3781 | |
| 3782 | /// Return the cost of this VPEVLBasedIVPHIRecipe. |
| 3783 | InstructionCost computeCost(ElementCount VF, |
| 3784 | VPCostContext &Ctx) const override { |
| 3785 | // For now, match the behavior of the legacy cost model. |
| 3786 | return 0; |
| 3787 | } |
| 3788 | |
| 3789 | /// Returns true if the recipe only uses the first lane of operand \p Op. |
| 3790 | bool usesFirstLaneOnly(const VPValue *Op) const override { |
| 3791 | assert(is_contained(operands(), Op) && |
| 3792 | "Op must be an operand of the recipe" ); |
| 3793 | return true; |
| 3794 | } |
| 3795 | |
| 3796 | protected: |
| 3797 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 3798 | /// Print the recipe. |
| 3799 | LLVM_ABI_FOR_TEST void printRecipe(raw_ostream &O, const Twine &Indent, |
| 3800 | VPSlotTracker &SlotTracker) const override; |
| 3801 | #endif |
| 3802 | }; |
| 3803 | |
| 3804 | /// A Recipe for widening the canonical induction variable of the vector loop. |
| 3805 | class VPWidenCanonicalIVRecipe : public VPSingleDefRecipe, |
| 3806 | public VPUnrollPartAccessor<1> { |
| 3807 | public: |
| 3808 | VPWidenCanonicalIVRecipe(VPCanonicalIVPHIRecipe *CanonicalIV) |
| 3809 | : VPSingleDefRecipe(VPRecipeBase::VPWidenCanonicalIVSC, {CanonicalIV}) {} |
| 3810 | |
| 3811 | ~VPWidenCanonicalIVRecipe() override = default; |
| 3812 | |
| 3813 | VPWidenCanonicalIVRecipe *clone() override { |
| 3814 | return new VPWidenCanonicalIVRecipe( |
| 3815 | cast<VPCanonicalIVPHIRecipe>(Val: getOperand(N: 0))); |
| 3816 | } |
| 3817 | |
| 3818 | VP_CLASSOF_IMPL(VPRecipeBase::VPWidenCanonicalIVSC) |
| 3819 | |
| 3820 | /// Generate a canonical vector induction variable of the vector loop, with |
| 3821 | /// start = {<Part*VF, Part*VF+1, ..., Part*VF+VF-1> for 0 <= Part < UF}, and |
| 3822 | /// step = <VF*UF, VF*UF, ..., VF*UF>. |
| 3823 | void execute(VPTransformState &State) override; |
| 3824 | |
| 3825 | /// Return the cost of this VPWidenCanonicalIVPHIRecipe. |
| 3826 | InstructionCost computeCost(ElementCount VF, |
| 3827 | VPCostContext &Ctx) const override { |
| 3828 | // TODO: Compute accurate cost after retiring the legacy cost model. |
| 3829 | return 0; |
| 3830 | } |
| 3831 | |
| 3832 | protected: |
| 3833 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 3834 | /// Print the recipe. |
| 3835 | void printRecipe(raw_ostream &O, const Twine &Indent, |
| 3836 | VPSlotTracker &SlotTracker) const override; |
| 3837 | #endif |
| 3838 | }; |
| 3839 | |
| 3840 | /// A recipe for converting the input value \p IV value to the corresponding |
| 3841 | /// value of an IV with different start and step values, using Start + IV * |
| 3842 | /// Step. |
| 3843 | class VPDerivedIVRecipe : public VPSingleDefRecipe { |
| 3844 | /// Kind of the induction. |
| 3845 | const InductionDescriptor::InductionKind Kind; |
| 3846 | /// If not nullptr, the floating point induction binary operator. Must be set |
| 3847 | /// for floating point inductions. |
| 3848 | const FPMathOperator *FPBinOp; |
| 3849 | |
| 3850 | /// Name to use for the generated IR instruction for the derived IV. |
| 3851 | std::string Name; |
| 3852 | |
| 3853 | public: |
| 3854 | VPDerivedIVRecipe(const InductionDescriptor &IndDesc, VPIRValue *Start, |
| 3855 | VPCanonicalIVPHIRecipe *CanonicalIV, VPValue *Step, |
| 3856 | const Twine &Name = "" ) |
| 3857 | : VPDerivedIVRecipe( |
| 3858 | IndDesc.getKind(), |
| 3859 | dyn_cast_or_null<FPMathOperator>(Val: IndDesc.getInductionBinOp()), |
| 3860 | Start, CanonicalIV, Step, Name) {} |
| 3861 | |
| 3862 | VPDerivedIVRecipe(InductionDescriptor::InductionKind Kind, |
| 3863 | const FPMathOperator *FPBinOp, VPIRValue *Start, |
| 3864 | VPValue *IV, VPValue *Step, const Twine &Name = "" ) |
| 3865 | : VPSingleDefRecipe(VPRecipeBase::VPDerivedIVSC, {Start, IV, Step}), |
| 3866 | Kind(Kind), FPBinOp(FPBinOp), Name(Name.str()) {} |
| 3867 | |
| 3868 | ~VPDerivedIVRecipe() override = default; |
| 3869 | |
| 3870 | VPDerivedIVRecipe *clone() override { |
| 3871 | return new VPDerivedIVRecipe(Kind, FPBinOp, getStartValue(), getOperand(N: 1), |
| 3872 | getStepValue()); |
| 3873 | } |
| 3874 | |
| 3875 | VP_CLASSOF_IMPL(VPRecipeBase::VPDerivedIVSC) |
| 3876 | |
| 3877 | /// Generate the transformed value of the induction at offset StartValue (1. |
| 3878 | /// operand) + IV (2. operand) * StepValue (3, operand). |
| 3879 | void execute(VPTransformState &State) override; |
| 3880 | |
| 3881 | /// Return the cost of this VPDerivedIVRecipe. |
| 3882 | InstructionCost computeCost(ElementCount VF, |
| 3883 | VPCostContext &Ctx) const override { |
| 3884 | // TODO: Compute accurate cost after retiring the legacy cost model. |
| 3885 | return 0; |
| 3886 | } |
| 3887 | |
| 3888 | Type *getScalarType() const { return getStartValue()->getType(); } |
| 3889 | |
| 3890 | VPIRValue *getStartValue() const { return cast<VPIRValue>(Val: getOperand(N: 0)); } |
| 3891 | VPValue *getStepValue() const { return getOperand(N: 2); } |
| 3892 | |
| 3893 | /// Returns true if the recipe only uses the first lane of operand \p Op. |
| 3894 | bool usesFirstLaneOnly(const VPValue *Op) const override { |
| 3895 | assert(is_contained(operands(), Op) && |
| 3896 | "Op must be an operand of the recipe" ); |
| 3897 | return true; |
| 3898 | } |
| 3899 | |
| 3900 | protected: |
| 3901 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 3902 | /// Print the recipe. |
| 3903 | void printRecipe(raw_ostream &O, const Twine &Indent, |
| 3904 | VPSlotTracker &SlotTracker) const override; |
| 3905 | #endif |
| 3906 | }; |
| 3907 | |
| 3908 | /// A recipe for handling phi nodes of integer and floating-point inductions, |
| 3909 | /// producing their scalar values. Before unrolling by UF the recipe represents |
| 3910 | /// the VF*UF scalar values to be produced, or UF scalar values if only first |
| 3911 | /// lane is used, and has 3 operands: IV, step and VF. Unrolling adds one extra |
| 3912 | /// operand StartIndex to all unroll parts except part 0, as the recipe |
| 3913 | /// represents the VF scalar values (this number of values is taken from |
| 3914 | /// State.VF rather than from the VF operand) starting at IV + StartIndex. |
| 3915 | class LLVM_ABI_FOR_TEST VPScalarIVStepsRecipe : public VPRecipeWithIRFlags { |
| 3916 | Instruction::BinaryOps InductionOpcode; |
| 3917 | |
| 3918 | public: |
| 3919 | VPScalarIVStepsRecipe(VPValue *IV, VPValue *Step, VPValue *VF, |
| 3920 | Instruction::BinaryOps Opcode, FastMathFlags FMFs, |
| 3921 | DebugLoc DL) |
| 3922 | : VPRecipeWithIRFlags(VPRecipeBase::VPScalarIVStepsSC, {IV, Step, VF}, |
| 3923 | FMFs, DL), |
| 3924 | InductionOpcode(Opcode) {} |
| 3925 | |
| 3926 | VPScalarIVStepsRecipe(const InductionDescriptor &IndDesc, VPValue *IV, |
| 3927 | VPValue *Step, VPValue *VF, |
| 3928 | DebugLoc DL = DebugLoc::getUnknown()) |
| 3929 | : VPScalarIVStepsRecipe( |
| 3930 | IV, Step, VF, IndDesc.getInductionOpcode(), |
| 3931 | dyn_cast_or_null<FPMathOperator>(Val: IndDesc.getInductionBinOp()) |
| 3932 | ? IndDesc.getInductionBinOp()->getFastMathFlags() |
| 3933 | : FastMathFlags(), |
| 3934 | DL) {} |
| 3935 | |
| 3936 | ~VPScalarIVStepsRecipe() override = default; |
| 3937 | |
| 3938 | VPScalarIVStepsRecipe *clone() override { |
| 3939 | return new VPScalarIVStepsRecipe( |
| 3940 | getOperand(N: 0), getOperand(N: 1), getOperand(N: 2), InductionOpcode, |
| 3941 | hasFastMathFlags() ? getFastMathFlags() : FastMathFlags(), |
| 3942 | getDebugLoc()); |
| 3943 | } |
| 3944 | |
| 3945 | VP_CLASSOF_IMPL(VPRecipeBase::VPScalarIVStepsSC) |
| 3946 | |
| 3947 | /// Generate the scalarized versions of the phi node as needed by their users. |
| 3948 | void execute(VPTransformState &State) override; |
| 3949 | |
| 3950 | /// Return the cost of this VPScalarIVStepsRecipe. |
| 3951 | InstructionCost computeCost(ElementCount VF, |
| 3952 | VPCostContext &Ctx) const override { |
| 3953 | // TODO: Compute accurate cost after retiring the legacy cost model. |
| 3954 | return 0; |
| 3955 | } |
| 3956 | |
| 3957 | VPValue *getStepValue() const { return getOperand(N: 1); } |
| 3958 | |
| 3959 | /// Return the number of scalars to produce per unroll part, used to compute |
| 3960 | /// StartIndex during unrolling. |
| 3961 | VPValue *getVFValue() const { return getOperand(N: 2); } |
| 3962 | |
| 3963 | /// Return the StartIndex, or null if known to be zero, valid only after |
| 3964 | /// unrolling. |
| 3965 | VPValue *getStartIndex() const { |
| 3966 | return getNumOperands() == 4 ? getOperand(N: 3) : nullptr; |
| 3967 | } |
| 3968 | |
| 3969 | /// Returns true if the recipe only uses the first lane of operand \p Op. |
| 3970 | bool usesFirstLaneOnly(const VPValue *Op) const override { |
| 3971 | assert(is_contained(operands(), Op) && |
| 3972 | "Op must be an operand of the recipe" ); |
| 3973 | return true; |
| 3974 | } |
| 3975 | |
| 3976 | protected: |
| 3977 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 3978 | /// Print the recipe. |
| 3979 | void printRecipe(raw_ostream &O, const Twine &Indent, |
| 3980 | VPSlotTracker &SlotTracker) const override; |
| 3981 | #endif |
| 3982 | }; |
| 3983 | |
| 3984 | /// Casting from VPRecipeBase -> VPPhiAccessors is supported for all recipe |
| 3985 | /// types implementing VPPhiAccessors. Used by isa<> & co. |
| 3986 | template <> struct CastIsPossible<VPPhiAccessors, const VPRecipeBase *> { |
| 3987 | static inline bool isPossible(const VPRecipeBase *f) { |
| 3988 | // TODO: include VPPredInstPHIRecipe too, once it implements VPPhiAccessors. |
| 3989 | return isa<VPIRPhi, VPHeaderPHIRecipe, VPWidenPHIRecipe, VPPhi>(Val: f); |
| 3990 | } |
| 3991 | }; |
| 3992 | /// Support casting from VPRecipeBase -> VPPhiAccessors, by down-casting to the |
| 3993 | /// recipe types implementing VPPhiAccessors. Used by cast<>, dyn_cast<> & co. |
| 3994 | template <typename SrcTy> |
| 3995 | struct CastInfoVPPhiAccessors : public CastIsPossible<VPPhiAccessors, SrcTy> { |
| 3996 | |
| 3997 | using Self = CastInfo<VPPhiAccessors, SrcTy>; |
| 3998 | |
| 3999 | /// doCast is used by cast<>. |
| 4000 | static inline VPPhiAccessors *doCast(SrcTy R) { |
| 4001 | return const_cast<VPPhiAccessors *>([R]() -> const VPPhiAccessors * { |
| 4002 | switch (R->getVPRecipeID()) { |
| 4003 | case VPRecipeBase::VPInstructionSC: |
| 4004 | return cast<VPPhi>(R); |
| 4005 | case VPRecipeBase::VPIRInstructionSC: |
| 4006 | return cast<VPIRPhi>(R); |
| 4007 | case VPRecipeBase::VPWidenPHISC: |
| 4008 | return cast<VPWidenPHIRecipe>(R); |
| 4009 | default: |
| 4010 | return cast<VPHeaderPHIRecipe>(R); |
| 4011 | } |
| 4012 | }()); |
| 4013 | } |
| 4014 | |
| 4015 | /// doCastIfPossible is used by dyn_cast<>. |
| 4016 | static inline VPPhiAccessors *doCastIfPossible(SrcTy f) { |
| 4017 | if (!Self::isPossible(f)) |
| 4018 | return nullptr; |
| 4019 | return doCast(R: f); |
| 4020 | } |
| 4021 | }; |
| 4022 | template <> |
| 4023 | struct CastInfo<VPPhiAccessors, VPRecipeBase *> |
| 4024 | : CastInfoVPPhiAccessors<VPRecipeBase *> {}; |
| 4025 | template <> |
| 4026 | struct CastInfo<VPPhiAccessors, const VPRecipeBase *> |
| 4027 | : CastInfoVPPhiAccessors<const VPRecipeBase *> {}; |
| 4028 | |
| 4029 | /// Casting from (const) VPRecipeBase -> (const) VPIRMetadata is supported for |
| 4030 | /// all recipe types implementing VPIRMetadata. Used by isa<> & co. |
| 4031 | namespace detail { |
| 4032 | template <typename DstTy, typename RecipeBasePtrTy> |
| 4033 | static inline auto castToVPIRMetadata(RecipeBasePtrTy R) -> DstTy { |
| 4034 | switch (R->getVPRecipeID()) { |
| 4035 | case VPRecipeBase::VPInstructionSC: |
| 4036 | return cast<VPInstruction>(R); |
| 4037 | case VPRecipeBase::VPWidenSC: |
| 4038 | return cast<VPWidenRecipe>(R); |
| 4039 | case VPRecipeBase::VPWidenCastSC: |
| 4040 | return cast<VPWidenCastRecipe>(R); |
| 4041 | case VPRecipeBase::VPWidenIntrinsicSC: |
| 4042 | return cast<VPWidenIntrinsicRecipe>(R); |
| 4043 | case VPRecipeBase::VPWidenCallSC: |
| 4044 | return cast<VPWidenCallRecipe>(R); |
| 4045 | case VPRecipeBase::VPReplicateSC: |
| 4046 | return cast<VPReplicateRecipe>(R); |
| 4047 | case VPRecipeBase::VPInterleaveSC: |
| 4048 | case VPRecipeBase::VPInterleaveEVLSC: |
| 4049 | return cast<VPInterleaveBase>(R); |
| 4050 | case VPRecipeBase::VPWidenLoadSC: |
| 4051 | case VPRecipeBase::VPWidenLoadEVLSC: |
| 4052 | case VPRecipeBase::VPWidenStoreSC: |
| 4053 | case VPRecipeBase::VPWidenStoreEVLSC: |
| 4054 | return cast<VPWidenMemoryRecipe>(R); |
| 4055 | default: |
| 4056 | llvm_unreachable("invalid recipe for VPIRMetadata cast" ); |
| 4057 | } |
| 4058 | } |
| 4059 | } // namespace detail |
| 4060 | |
| 4061 | /// Support casting from VPRecipeBase -> VPIRMetadata, by down-casting to the |
| 4062 | /// recipe types implementing VPIRMetadata. Used by cast<>, dyn_cast<> & co. |
| 4063 | template <typename DstTy, typename SrcTy> |
| 4064 | struct CastInfoVPIRMetadata : public CastIsPossible<DstTy, SrcTy> { |
| 4065 | static inline bool isPossible(SrcTy R) { |
| 4066 | // NOTE: Each recipe inheriting from VPIRMetadata must be listed here and |
| 4067 | // also handled in castToVPIRMetadata. |
| 4068 | return isa<VPInstruction, VPWidenRecipe, VPWidenCastRecipe, |
| 4069 | VPWidenIntrinsicRecipe, VPWidenCallRecipe, VPReplicateRecipe, |
| 4070 | VPInterleaveRecipe, VPInterleaveEVLRecipe, VPWidenLoadRecipe, |
| 4071 | VPWidenLoadEVLRecipe, VPWidenStoreRecipe, VPWidenStoreEVLRecipe>( |
| 4072 | R); |
| 4073 | } |
| 4074 | |
| 4075 | using RetTy = DstTy *; |
| 4076 | |
| 4077 | /// doCast is used by cast<>. |
| 4078 | static inline RetTy doCast(SrcTy R) { |
| 4079 | return detail::castToVPIRMetadata<RetTy, SrcTy>(R); |
| 4080 | } |
| 4081 | |
| 4082 | /// doCastIfPossible is used by dyn_cast<>. |
| 4083 | static inline RetTy doCastIfPossible(SrcTy R) { |
| 4084 | if (!isPossible(R)) |
| 4085 | return nullptr; |
| 4086 | return doCast(R); |
| 4087 | } |
| 4088 | }; |
| 4089 | template <> |
| 4090 | struct CastInfo<VPIRMetadata, VPRecipeBase *> |
| 4091 | : CastInfoVPIRMetadata<VPIRMetadata, VPRecipeBase *> {}; |
| 4092 | template <> |
| 4093 | struct CastInfo<VPIRMetadata, const VPRecipeBase *> |
| 4094 | : CastInfoVPIRMetadata<const VPIRMetadata, const VPRecipeBase *> {}; |
| 4095 | |
| 4096 | /// VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph. It |
| 4097 | /// holds a sequence of zero or more VPRecipe's each representing a sequence of |
| 4098 | /// output IR instructions. All PHI-like recipes must come before any non-PHI recipes. |
| 4099 | class LLVM_ABI_FOR_TEST VPBasicBlock : public VPBlockBase { |
| 4100 | friend class VPlan; |
| 4101 | |
| 4102 | /// Use VPlan::createVPBasicBlock to create VPBasicBlocks. |
| 4103 | VPBasicBlock(const Twine &Name = "" , VPRecipeBase *Recipe = nullptr) |
| 4104 | : VPBlockBase(VPBasicBlockSC, Name.str()) { |
| 4105 | if (Recipe) |
| 4106 | appendRecipe(Recipe); |
| 4107 | } |
| 4108 | |
| 4109 | public: |
| 4110 | using RecipeListTy = iplist<VPRecipeBase>; |
| 4111 | |
| 4112 | protected: |
| 4113 | /// The VPRecipes held in the order of output instructions to generate. |
| 4114 | RecipeListTy Recipes; |
| 4115 | |
| 4116 | VPBasicBlock(const unsigned char BlockSC, const Twine &Name = "" ) |
| 4117 | : VPBlockBase(BlockSC, Name.str()) {} |
| 4118 | |
| 4119 | public: |
| 4120 | ~VPBasicBlock() override { |
| 4121 | while (!Recipes.empty()) |
| 4122 | Recipes.pop_back(); |
| 4123 | } |
| 4124 | |
| 4125 | /// Instruction iterators... |
| 4126 | using iterator = RecipeListTy::iterator; |
| 4127 | using const_iterator = RecipeListTy::const_iterator; |
| 4128 | using reverse_iterator = RecipeListTy::reverse_iterator; |
| 4129 | using const_reverse_iterator = RecipeListTy::const_reverse_iterator; |
| 4130 | |
| 4131 | //===--------------------------------------------------------------------===// |
| 4132 | /// Recipe iterator methods |
| 4133 | /// |
| 4134 | inline iterator begin() { return Recipes.begin(); } |
| 4135 | inline const_iterator begin() const { return Recipes.begin(); } |
| 4136 | inline iterator end() { return Recipes.end(); } |
| 4137 | inline const_iterator end() const { return Recipes.end(); } |
| 4138 | |
| 4139 | inline reverse_iterator rbegin() { return Recipes.rbegin(); } |
| 4140 | inline const_reverse_iterator rbegin() const { return Recipes.rbegin(); } |
| 4141 | inline reverse_iterator rend() { return Recipes.rend(); } |
| 4142 | inline const_reverse_iterator rend() const { return Recipes.rend(); } |
| 4143 | |
| 4144 | inline size_t size() const { return Recipes.size(); } |
| 4145 | inline bool empty() const { return Recipes.empty(); } |
| 4146 | inline const VPRecipeBase &front() const { return Recipes.front(); } |
| 4147 | inline VPRecipeBase &front() { return Recipes.front(); } |
| 4148 | inline const VPRecipeBase &back() const { return Recipes.back(); } |
| 4149 | inline VPRecipeBase &back() { return Recipes.back(); } |
| 4150 | |
| 4151 | /// Returns a reference to the list of recipes. |
| 4152 | RecipeListTy &getRecipeList() { return Recipes; } |
| 4153 | |
| 4154 | /// Returns a pointer to a member of the recipe list. |
| 4155 | static RecipeListTy VPBasicBlock::*getSublistAccess(VPRecipeBase *) { |
| 4156 | return &VPBasicBlock::Recipes; |
| 4157 | } |
| 4158 | |
| 4159 | /// Method to support type inquiry through isa, cast, and dyn_cast. |
| 4160 | static inline bool classof(const VPBlockBase *V) { |
| 4161 | return V->getVPBlockID() == VPBlockBase::VPBasicBlockSC || |
| 4162 | V->getVPBlockID() == VPBlockBase::VPIRBasicBlockSC; |
| 4163 | } |
| 4164 | |
| 4165 | void insert(VPRecipeBase *Recipe, iterator InsertPt) { |
| 4166 | assert(Recipe && "No recipe to append." ); |
| 4167 | assert(!Recipe->Parent && "Recipe already in VPlan" ); |
| 4168 | Recipe->Parent = this; |
| 4169 | Recipes.insert(where: InsertPt, New: Recipe); |
| 4170 | } |
| 4171 | |
| 4172 | /// Augment the existing recipes of a VPBasicBlock with an additional |
| 4173 | /// \p Recipe as the last recipe. |
| 4174 | void appendRecipe(VPRecipeBase *Recipe) { insert(Recipe, InsertPt: end()); } |
| 4175 | |
| 4176 | /// The method which generates the output IR instructions that correspond to |
| 4177 | /// this VPBasicBlock, thereby "executing" the VPlan. |
| 4178 | void execute(VPTransformState *State) override; |
| 4179 | |
| 4180 | /// Return the cost of this VPBasicBlock. |
| 4181 | InstructionCost cost(ElementCount VF, VPCostContext &Ctx) override; |
| 4182 | |
| 4183 | /// Return the position of the first non-phi node recipe in the block. |
| 4184 | iterator getFirstNonPhi(); |
| 4185 | |
| 4186 | /// Returns an iterator range over the PHI-like recipes in the block. |
| 4187 | iterator_range<iterator> phis() { |
| 4188 | return make_range(x: begin(), y: getFirstNonPhi()); |
| 4189 | } |
| 4190 | |
| 4191 | /// Split current block at \p SplitAt by inserting a new block between the |
| 4192 | /// current block and its successors and moving all recipes starting at |
| 4193 | /// SplitAt to the new block. Returns the new block. |
| 4194 | VPBasicBlock *splitAt(iterator SplitAt); |
| 4195 | |
| 4196 | VPRegionBlock *getEnclosingLoopRegion(); |
| 4197 | const VPRegionBlock *getEnclosingLoopRegion() const; |
| 4198 | |
| 4199 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 4200 | /// Print this VPBsicBlock to \p O, prefixing all lines with \p Indent. \p |
| 4201 | /// SlotTracker is used to print unnamed VPValue's using consequtive numbers. |
| 4202 | /// |
| 4203 | /// Note that the numbering is applied to the whole VPlan, so printing |
| 4204 | /// individual blocks is consistent with the whole VPlan printing. |
| 4205 | void print(raw_ostream &O, const Twine &Indent, |
| 4206 | VPSlotTracker &SlotTracker) const override; |
| 4207 | using VPBlockBase::print; // Get the print(raw_stream &O) version. |
| 4208 | #endif |
| 4209 | |
| 4210 | /// If the block has multiple successors, return the branch recipe terminating |
| 4211 | /// the block. If there are no or only a single successor, return nullptr; |
| 4212 | VPRecipeBase *getTerminator(); |
| 4213 | const VPRecipeBase *getTerminator() const; |
| 4214 | |
| 4215 | /// Returns true if the block is exiting it's parent region. |
| 4216 | bool isExiting() const; |
| 4217 | |
| 4218 | /// Clone the current block and it's recipes, without updating the operands of |
| 4219 | /// the cloned recipes. |
| 4220 | VPBasicBlock *clone() override; |
| 4221 | |
| 4222 | /// Returns the predecessor block at index \p Idx with the predecessors as per |
| 4223 | /// the corresponding plain CFG. If the block is an entry block to a region, |
| 4224 | /// the first predecessor is the single predecessor of a region, and the |
| 4225 | /// second predecessor is the exiting block of the region. |
| 4226 | const VPBasicBlock *getCFGPredecessor(unsigned Idx) const; |
| 4227 | |
| 4228 | protected: |
| 4229 | /// Execute the recipes in the IR basic block \p BB. |
| 4230 | void executeRecipes(VPTransformState *State, BasicBlock *BB); |
| 4231 | |
| 4232 | /// Connect the VPBBs predecessors' in the VPlan CFG to the IR basic block |
| 4233 | /// generated for this VPBB. |
| 4234 | void connectToPredecessors(VPTransformState &State); |
| 4235 | |
| 4236 | private: |
| 4237 | /// Create an IR BasicBlock to hold the output instructions generated by this |
| 4238 | /// VPBasicBlock, and return it. Update the CFGState accordingly. |
| 4239 | BasicBlock *createEmptyBasicBlock(VPTransformState &State); |
| 4240 | }; |
| 4241 | |
| 4242 | inline const VPBasicBlock * |
| 4243 | VPPhiAccessors::getIncomingBlock(unsigned Idx) const { |
| 4244 | return getAsRecipe()->getParent()->getCFGPredecessor(Idx); |
| 4245 | } |
| 4246 | |
| 4247 | /// A special type of VPBasicBlock that wraps an existing IR basic block. |
| 4248 | /// Recipes of the block get added before the first non-phi instruction in the |
| 4249 | /// wrapped block. |
| 4250 | /// Note: At the moment, VPIRBasicBlock can only be used to wrap VPlan's |
| 4251 | /// preheader block. |
| 4252 | class VPIRBasicBlock : public VPBasicBlock { |
| 4253 | friend class VPlan; |
| 4254 | |
| 4255 | BasicBlock *IRBB; |
| 4256 | |
| 4257 | /// Use VPlan::createVPIRBasicBlock to create VPIRBasicBlocks. |
| 4258 | VPIRBasicBlock(BasicBlock *IRBB) |
| 4259 | : VPBasicBlock(VPIRBasicBlockSC, |
| 4260 | (Twine("ir-bb<" ) + IRBB->getName() + Twine(">" )).str()), |
| 4261 | IRBB(IRBB) {} |
| 4262 | |
| 4263 | public: |
| 4264 | ~VPIRBasicBlock() override = default; |
| 4265 | |
| 4266 | static inline bool classof(const VPBlockBase *V) { |
| 4267 | return V->getVPBlockID() == VPBlockBase::VPIRBasicBlockSC; |
| 4268 | } |
| 4269 | |
| 4270 | /// The method which generates the output IR instructions that correspond to |
| 4271 | /// this VPBasicBlock, thereby "executing" the VPlan. |
| 4272 | void execute(VPTransformState *State) override; |
| 4273 | |
| 4274 | VPIRBasicBlock *clone() override; |
| 4275 | |
| 4276 | BasicBlock *getIRBasicBlock() const { return IRBB; } |
| 4277 | }; |
| 4278 | |
| 4279 | /// VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks |
| 4280 | /// which form a Single-Entry-Single-Exiting subgraph of the output IR CFG. |
| 4281 | /// A VPRegionBlock may indicate that its contents are to be replicated several |
| 4282 | /// times. This is designed to support predicated scalarization, in which a |
| 4283 | /// scalar if-then code structure needs to be generated VF * UF times. Having |
| 4284 | /// this replication indicator helps to keep a single model for multiple |
| 4285 | /// candidate VF's. The actual replication takes place only once the desired VF |
| 4286 | /// and UF have been determined. |
| 4287 | class LLVM_ABI_FOR_TEST VPRegionBlock : public VPBlockBase { |
| 4288 | friend class VPlan; |
| 4289 | |
| 4290 | /// Hold the Single Entry of the SESE region modelled by the VPRegionBlock. |
| 4291 | VPBlockBase *Entry; |
| 4292 | |
| 4293 | /// Hold the Single Exiting block of the SESE region modelled by the |
| 4294 | /// VPRegionBlock. |
| 4295 | VPBlockBase *Exiting; |
| 4296 | |
| 4297 | /// An indicator whether this region is to generate multiple replicated |
| 4298 | /// instances of output IR corresponding to its VPBlockBases. |
| 4299 | bool IsReplicator; |
| 4300 | |
| 4301 | /// Use VPlan::createVPRegionBlock to create VPRegionBlocks. |
| 4302 | VPRegionBlock(VPBlockBase *Entry, VPBlockBase *Exiting, |
| 4303 | const std::string &Name = "" , bool IsReplicator = false) |
| 4304 | : VPBlockBase(VPRegionBlockSC, Name), Entry(Entry), Exiting(Exiting), |
| 4305 | IsReplicator(IsReplicator) { |
| 4306 | assert(Entry->getPredecessors().empty() && "Entry block has predecessors." ); |
| 4307 | assert(Exiting->getSuccessors().empty() && "Exit block has successors." ); |
| 4308 | Entry->setParent(this); |
| 4309 | Exiting->setParent(this); |
| 4310 | } |
| 4311 | VPRegionBlock(const std::string &Name = "" , bool IsReplicator = false) |
| 4312 | : VPBlockBase(VPRegionBlockSC, Name), Entry(nullptr), Exiting(nullptr), |
| 4313 | IsReplicator(IsReplicator) {} |
| 4314 | |
| 4315 | public: |
| 4316 | ~VPRegionBlock() override = default; |
| 4317 | |
| 4318 | /// Method to support type inquiry through isa, cast, and dyn_cast. |
| 4319 | static inline bool classof(const VPBlockBase *V) { |
| 4320 | return V->getVPBlockID() == VPBlockBase::VPRegionBlockSC; |
| 4321 | } |
| 4322 | |
| 4323 | const VPBlockBase *getEntry() const { return Entry; } |
| 4324 | VPBlockBase *getEntry() { return Entry; } |
| 4325 | |
| 4326 | /// Set \p EntryBlock as the entry VPBlockBase of this VPRegionBlock. \p |
| 4327 | /// EntryBlock must have no predecessors. |
| 4328 | void setEntry(VPBlockBase *EntryBlock) { |
| 4329 | assert(EntryBlock->getPredecessors().empty() && |
| 4330 | "Entry block cannot have predecessors." ); |
| 4331 | Entry = EntryBlock; |
| 4332 | EntryBlock->setParent(this); |
| 4333 | } |
| 4334 | |
| 4335 | const VPBlockBase *getExiting() const { return Exiting; } |
| 4336 | VPBlockBase *getExiting() { return Exiting; } |
| 4337 | |
| 4338 | /// Set \p ExitingBlock as the exiting VPBlockBase of this VPRegionBlock. \p |
| 4339 | /// ExitingBlock must have no successors. |
| 4340 | void setExiting(VPBlockBase *ExitingBlock) { |
| 4341 | assert(ExitingBlock->getSuccessors().empty() && |
| 4342 | "Exit block cannot have successors." ); |
| 4343 | Exiting = ExitingBlock; |
| 4344 | ExitingBlock->setParent(this); |
| 4345 | } |
| 4346 | |
| 4347 | /// Returns the pre-header VPBasicBlock of the loop region. |
| 4348 | VPBasicBlock *() { |
| 4349 | assert(!isReplicator() && "should only get pre-header of loop regions" ); |
| 4350 | return getSinglePredecessor()->getExitingBasicBlock(); |
| 4351 | } |
| 4352 | |
| 4353 | /// An indicator whether this region is to generate multiple replicated |
| 4354 | /// instances of output IR corresponding to its VPBlockBases. |
| 4355 | bool isReplicator() const { return IsReplicator; } |
| 4356 | |
| 4357 | /// The method which generates the output IR instructions that correspond to |
| 4358 | /// this VPRegionBlock, thereby "executing" the VPlan. |
| 4359 | void execute(VPTransformState *State) override; |
| 4360 | |
| 4361 | // Return the cost of this region. |
| 4362 | InstructionCost cost(ElementCount VF, VPCostContext &Ctx) override; |
| 4363 | |
| 4364 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 4365 | /// Print this VPRegionBlock to \p O (recursively), prefixing all lines with |
| 4366 | /// \p Indent. \p SlotTracker is used to print unnamed VPValue's using |
| 4367 | /// consequtive numbers. |
| 4368 | /// |
| 4369 | /// Note that the numbering is applied to the whole VPlan, so printing |
| 4370 | /// individual regions is consistent with the whole VPlan printing. |
| 4371 | void print(raw_ostream &O, const Twine &Indent, |
| 4372 | VPSlotTracker &SlotTracker) const override; |
| 4373 | using VPBlockBase::print; // Get the print(raw_stream &O) version. |
| 4374 | #endif |
| 4375 | |
| 4376 | /// Clone all blocks in the single-entry single-exit region of the block and |
| 4377 | /// their recipes without updating the operands of the cloned recipes. |
| 4378 | VPRegionBlock *clone() override; |
| 4379 | |
| 4380 | /// Remove the current region from its VPlan, connecting its predecessor to |
| 4381 | /// its entry, and its exiting block to its successor. |
| 4382 | void dissolveToCFGLoop(); |
| 4383 | |
| 4384 | /// Returns the canonical induction recipe of the region. |
| 4385 | VPCanonicalIVPHIRecipe *getCanonicalIV() { |
| 4386 | VPBasicBlock *EntryVPBB = getEntryBasicBlock(); |
| 4387 | if (EntryVPBB->empty()) { |
| 4388 | // VPlan native path. TODO: Unify both code paths. |
| 4389 | EntryVPBB = cast<VPBasicBlock>(Val: EntryVPBB->getSingleSuccessor()); |
| 4390 | } |
| 4391 | return cast<VPCanonicalIVPHIRecipe>(Val: &*EntryVPBB->begin()); |
| 4392 | } |
| 4393 | const VPCanonicalIVPHIRecipe *getCanonicalIV() const { |
| 4394 | return const_cast<VPRegionBlock *>(this)->getCanonicalIV(); |
| 4395 | } |
| 4396 | |
| 4397 | /// Return the type of the canonical IV for loop regions. |
| 4398 | Type *getCanonicalIVType() { return getCanonicalIV()->getScalarType(); } |
| 4399 | const Type *getCanonicalIVType() const { |
| 4400 | return getCanonicalIV()->getScalarType(); |
| 4401 | } |
| 4402 | }; |
| 4403 | |
| 4404 | inline VPRegionBlock *VPRecipeBase::getRegion() { |
| 4405 | return getParent()->getParent(); |
| 4406 | } |
| 4407 | |
| 4408 | inline const VPRegionBlock *VPRecipeBase::getRegion() const { |
| 4409 | return getParent()->getParent(); |
| 4410 | } |
| 4411 | |
| 4412 | /// VPlan models a candidate for vectorization, encoding various decisions take |
| 4413 | /// to produce efficient output IR, including which branches, basic-blocks and |
| 4414 | /// output IR instructions to generate, and their cost. VPlan holds a |
| 4415 | /// Hierarchical-CFG of VPBasicBlocks and VPRegionBlocks rooted at an Entry |
| 4416 | /// VPBasicBlock. |
| 4417 | class VPlan { |
| 4418 | friend class VPlanPrinter; |
| 4419 | friend class VPSlotTracker; |
| 4420 | |
| 4421 | /// VPBasicBlock corresponding to the original preheader. Used to place |
| 4422 | /// VPExpandSCEV recipes for expressions used during skeleton creation and the |
| 4423 | /// rest of VPlan execution. |
| 4424 | /// When this VPlan is used for the epilogue vector loop, the entry will be |
| 4425 | /// replaced by a new entry block created during skeleton creation. |
| 4426 | VPBasicBlock *Entry; |
| 4427 | |
| 4428 | /// VPIRBasicBlock wrapping the header of the original scalar loop. |
| 4429 | VPIRBasicBlock *; |
| 4430 | |
| 4431 | /// Immutable list of VPIRBasicBlocks wrapping the exit blocks of the original |
| 4432 | /// scalar loop. Note that some exit blocks may be unreachable at the moment, |
| 4433 | /// e.g. if the scalar epilogue always executes. |
| 4434 | SmallVector<VPIRBasicBlock *, 2> ExitBlocks; |
| 4435 | |
| 4436 | /// Holds the VFs applicable to this VPlan. |
| 4437 | SmallSetVector<ElementCount, 2> VFs; |
| 4438 | |
| 4439 | /// Holds the UFs applicable to this VPlan. If empty, the VPlan is valid for |
| 4440 | /// any UF. |
| 4441 | SmallSetVector<unsigned, 2> UFs; |
| 4442 | |
| 4443 | /// Holds the name of the VPlan, for printing. |
| 4444 | std::string Name; |
| 4445 | |
| 4446 | /// Represents the trip count of the original loop, for folding |
| 4447 | /// the tail. |
| 4448 | VPValue *TripCount = nullptr; |
| 4449 | |
| 4450 | /// Represents the backedge taken count of the original loop, for folding |
| 4451 | /// the tail. It equals TripCount - 1. |
| 4452 | VPSymbolicValue *BackedgeTakenCount = nullptr; |
| 4453 | |
| 4454 | /// Represents the vector trip count. |
| 4455 | VPSymbolicValue VectorTripCount; |
| 4456 | |
| 4457 | /// Represents the vectorization factor of the loop. |
| 4458 | VPSymbolicValue VF; |
| 4459 | |
| 4460 | /// Represents the loop-invariant VF * UF of the vector loop region. |
| 4461 | VPSymbolicValue VFxUF; |
| 4462 | |
| 4463 | /// Contains all the external definitions created for this VPlan, as a mapping |
| 4464 | /// from IR Values to VPIRValues. |
| 4465 | SmallMapVector<Value *, VPIRValue *, 16> LiveIns; |
| 4466 | |
| 4467 | /// Blocks allocated and owned by the VPlan. They will be deleted once the |
| 4468 | /// VPlan is destroyed. |
| 4469 | SmallVector<VPBlockBase *> CreatedBlocks; |
| 4470 | |
| 4471 | /// Construct a VPlan with \p Entry to the plan and with \p ScalarHeader |
| 4472 | /// wrapping the original header of the scalar loop. |
| 4473 | VPlan(VPBasicBlock *Entry, VPIRBasicBlock *) |
| 4474 | : Entry(Entry), ScalarHeader(ScalarHeader) { |
| 4475 | Entry->setPlan(this); |
| 4476 | assert(ScalarHeader->getNumSuccessors() == 0 && |
| 4477 | "scalar header must be a leaf node" ); |
| 4478 | } |
| 4479 | |
| 4480 | public: |
| 4481 | /// Construct a VPlan for \p L. This will create VPIRBasicBlocks wrapping the |
| 4482 | /// original preheader and scalar header of \p L, to be used as entry and |
| 4483 | /// scalar header blocks of the new VPlan. |
| 4484 | VPlan(Loop *L); |
| 4485 | |
| 4486 | /// Construct a VPlan with a new VPBasicBlock as entry, a VPIRBasicBlock |
| 4487 | /// wrapping \p ScalarHeaderBB and a trip count of \p TC. |
| 4488 | VPlan(BasicBlock *) { |
| 4489 | setEntry(createVPBasicBlock(Name: "preheader" )); |
| 4490 | ScalarHeader = createVPIRBasicBlock(IRBB: ScalarHeaderBB); |
| 4491 | } |
| 4492 | |
| 4493 | LLVM_ABI_FOR_TEST ~VPlan(); |
| 4494 | |
| 4495 | void setEntry(VPBasicBlock *VPBB) { |
| 4496 | Entry = VPBB; |
| 4497 | VPBB->setPlan(this); |
| 4498 | } |
| 4499 | |
| 4500 | /// Generate the IR code for this VPlan. |
| 4501 | void execute(VPTransformState *State); |
| 4502 | |
| 4503 | /// Return the cost of this plan. |
| 4504 | InstructionCost cost(ElementCount VF, VPCostContext &Ctx); |
| 4505 | |
| 4506 | VPBasicBlock *getEntry() { return Entry; } |
| 4507 | const VPBasicBlock *getEntry() const { return Entry; } |
| 4508 | |
| 4509 | /// Returns the preheader of the vector loop region, if one exists, or null |
| 4510 | /// otherwise. |
| 4511 | VPBasicBlock *() { |
| 4512 | VPRegionBlock *VectorRegion = getVectorLoopRegion(); |
| 4513 | return VectorRegion |
| 4514 | ? cast<VPBasicBlock>(Val: VectorRegion->getSinglePredecessor()) |
| 4515 | : nullptr; |
| 4516 | } |
| 4517 | |
| 4518 | /// Returns the VPRegionBlock of the vector loop. |
| 4519 | LLVM_ABI_FOR_TEST VPRegionBlock *getVectorLoopRegion(); |
| 4520 | LLVM_ABI_FOR_TEST const VPRegionBlock *getVectorLoopRegion() const; |
| 4521 | |
| 4522 | /// Returns the 'middle' block of the plan, that is the block that selects |
| 4523 | /// whether to execute the scalar tail loop or the exit block from the loop |
| 4524 | /// latch. If there is an early exit from the vector loop, the middle block |
| 4525 | /// conceptully has the early exit block as third successor, split accross 2 |
| 4526 | /// VPBBs. In that case, the second VPBB selects whether to execute the scalar |
| 4527 | /// tail loop or the exit block. If the scalar tail loop or exit block are |
| 4528 | /// known to always execute, the middle block may branch directly to that |
| 4529 | /// block. This function cannot be called once the vector loop region has been |
| 4530 | /// removed. |
| 4531 | VPBasicBlock *getMiddleBlock() { |
| 4532 | VPRegionBlock *LoopRegion = getVectorLoopRegion(); |
| 4533 | assert( |
| 4534 | LoopRegion && |
| 4535 | "cannot call the function after vector loop region has been removed" ); |
| 4536 | // The middle block is always the last successor of the region. |
| 4537 | return cast<VPBasicBlock>(Val: LoopRegion->getSuccessors().back()); |
| 4538 | } |
| 4539 | |
| 4540 | const VPBasicBlock *getMiddleBlock() const { |
| 4541 | return const_cast<VPlan *>(this)->getMiddleBlock(); |
| 4542 | } |
| 4543 | |
| 4544 | /// Return the VPBasicBlock for the preheader of the scalar loop. |
| 4545 | VPBasicBlock *() const { |
| 4546 | return cast<VPBasicBlock>(Val: getScalarHeader()->getSinglePredecessor()); |
| 4547 | } |
| 4548 | |
| 4549 | /// Return the VPIRBasicBlock wrapping the header of the scalar loop. |
| 4550 | VPIRBasicBlock *() const { return ScalarHeader; } |
| 4551 | |
| 4552 | /// Return an ArrayRef containing VPIRBasicBlocks wrapping the exit blocks of |
| 4553 | /// the original scalar loop. |
| 4554 | ArrayRef<VPIRBasicBlock *> getExitBlocks() const { return ExitBlocks; } |
| 4555 | |
| 4556 | /// Return the VPIRBasicBlock corresponding to \p IRBB. \p IRBB must be an |
| 4557 | /// exit block. |
| 4558 | VPIRBasicBlock *getExitBlock(BasicBlock *IRBB) const; |
| 4559 | |
| 4560 | /// Returns true if \p VPBB is an exit block. |
| 4561 | bool isExitBlock(VPBlockBase *VPBB); |
| 4562 | |
| 4563 | /// The trip count of the original loop. |
| 4564 | VPValue *getTripCount() const { |
| 4565 | assert(TripCount && "trip count needs to be set before accessing it" ); |
| 4566 | return TripCount; |
| 4567 | } |
| 4568 | |
| 4569 | /// Set the trip count assuming it is currently null; if it is not - use |
| 4570 | /// resetTripCount(). |
| 4571 | void setTripCount(VPValue *NewTripCount) { |
| 4572 | assert(!TripCount && NewTripCount && "TripCount should not be set yet." ); |
| 4573 | TripCount = NewTripCount; |
| 4574 | } |
| 4575 | |
| 4576 | /// Resets the trip count for the VPlan. The caller must make sure all uses of |
| 4577 | /// the original trip count have been replaced. |
| 4578 | void resetTripCount(VPValue *NewTripCount) { |
| 4579 | assert(TripCount && NewTripCount && TripCount->getNumUsers() == 0 && |
| 4580 | "TripCount must be set when resetting" ); |
| 4581 | TripCount = NewTripCount; |
| 4582 | } |
| 4583 | |
| 4584 | /// The backedge taken count of the original loop. |
| 4585 | VPValue *getOrCreateBackedgeTakenCount() { |
| 4586 | if (!BackedgeTakenCount) |
| 4587 | BackedgeTakenCount = new VPSymbolicValue(); |
| 4588 | return BackedgeTakenCount; |
| 4589 | } |
| 4590 | VPValue *getBackedgeTakenCount() const { return BackedgeTakenCount; } |
| 4591 | |
| 4592 | /// The vector trip count. |
| 4593 | VPSymbolicValue &getVectorTripCount() { return VectorTripCount; } |
| 4594 | |
| 4595 | /// Returns the VF of the vector loop region. |
| 4596 | VPValue &getVF() { return VF; }; |
| 4597 | const VPValue &getVF() const { return VF; }; |
| 4598 | |
| 4599 | /// Returns VF * UF of the vector loop region. |
| 4600 | VPValue &getVFxUF() { return VFxUF; } |
| 4601 | |
| 4602 | LLVMContext &getContext() const { |
| 4603 | return getScalarHeader()->getIRBasicBlock()->getContext(); |
| 4604 | } |
| 4605 | |
| 4606 | void addVF(ElementCount VF) { VFs.insert(X: VF); } |
| 4607 | |
| 4608 | void setVF(ElementCount VF) { |
| 4609 | assert(hasVF(VF) && "Cannot set VF not already in plan" ); |
| 4610 | VFs.clear(); |
| 4611 | VFs.insert(X: VF); |
| 4612 | } |
| 4613 | |
| 4614 | bool hasVF(ElementCount VF) const { return VFs.count(key: VF); } |
| 4615 | bool hasScalableVF() const { |
| 4616 | return any_of(Range: VFs, P: [](ElementCount VF) { return VF.isScalable(); }); |
| 4617 | } |
| 4618 | |
| 4619 | /// Returns an iterator range over all VFs of the plan. |
| 4620 | iterator_range<SmallSetVector<ElementCount, 2>::iterator> |
| 4621 | vectorFactors() const { |
| 4622 | return VFs; |
| 4623 | } |
| 4624 | |
| 4625 | bool hasScalarVFOnly() const { |
| 4626 | bool HasScalarVFOnly = VFs.size() == 1 && VFs[0].isScalar(); |
| 4627 | assert(HasScalarVFOnly == hasVF(ElementCount::getFixed(1)) && |
| 4628 | "Plan with scalar VF should only have a single VF" ); |
| 4629 | return HasScalarVFOnly; |
| 4630 | } |
| 4631 | |
| 4632 | bool hasUF(unsigned UF) const { return UFs.empty() || UFs.contains(key: UF); } |
| 4633 | |
| 4634 | unsigned getUF() const { |
| 4635 | assert(UFs.size() == 1 && "Expected a single UF" ); |
| 4636 | return UFs[0]; |
| 4637 | } |
| 4638 | |
| 4639 | void setUF(unsigned UF) { |
| 4640 | assert(hasUF(UF) && "Cannot set the UF not already in plan" ); |
| 4641 | UFs.clear(); |
| 4642 | UFs.insert(X: UF); |
| 4643 | } |
| 4644 | |
| 4645 | /// Returns true if the VPlan already has been unrolled, i.e. it has a single |
| 4646 | /// concrete UF. |
| 4647 | bool isUnrolled() const { return UFs.size() == 1; } |
| 4648 | |
| 4649 | /// Return a string with the name of the plan and the applicable VFs and UFs. |
| 4650 | std::string getName() const; |
| 4651 | |
| 4652 | void setName(const Twine &newName) { Name = newName.str(); } |
| 4653 | |
| 4654 | /// Gets the live-in VPIRValue for \p V or adds a new live-in (if none exists |
| 4655 | /// yet) for \p V. |
| 4656 | VPIRValue *getOrAddLiveIn(Value *V) { |
| 4657 | assert(V && "Trying to get or add the VPIRValue of a null Value" ); |
| 4658 | auto [It, Inserted] = LiveIns.try_emplace(Key: V); |
| 4659 | if (Inserted) { |
| 4660 | if (auto *CI = dyn_cast<ConstantInt>(Val: V)) |
| 4661 | It->second = new VPConstantInt(CI); |
| 4662 | else |
| 4663 | It->second = new VPIRValue(V); |
| 4664 | } |
| 4665 | |
| 4666 | assert(isa<VPIRValue>(It->second) && |
| 4667 | "Only VPIRValues should be in mapping" ); |
| 4668 | return It->second; |
| 4669 | } |
| 4670 | VPIRValue *getOrAddLiveIn(VPIRValue *V) { |
| 4671 | assert(V && "Trying to get or add the VPIRValue of a null VPIRValue" ); |
| 4672 | return getOrAddLiveIn(V: V->getValue()); |
| 4673 | } |
| 4674 | |
| 4675 | /// Return a VPIRValue wrapping i1 true. |
| 4676 | VPIRValue *getTrue() { return getConstantInt(BitWidth: 1, Val: 1); } |
| 4677 | |
| 4678 | /// Return a VPIRValue wrapping i1 false. |
| 4679 | VPIRValue *getFalse() { return getConstantInt(BitWidth: 1, Val: 0); } |
| 4680 | |
| 4681 | /// Return a VPIRValue wrapping a ConstantInt with the given type and value. |
| 4682 | VPIRValue *getConstantInt(Type *Ty, uint64_t Val, bool IsSigned = false) { |
| 4683 | return getOrAddLiveIn(V: ConstantInt::get(Ty, V: Val, IsSigned)); |
| 4684 | } |
| 4685 | |
| 4686 | /// Return a VPIRValue wrapping a ConstantInt with the given bitwidth and |
| 4687 | /// value. |
| 4688 | VPIRValue *getConstantInt(unsigned BitWidth, uint64_t Val, |
| 4689 | bool IsSigned = false) { |
| 4690 | return getConstantInt(Val: APInt(BitWidth, Val, IsSigned)); |
| 4691 | } |
| 4692 | |
| 4693 | /// Return a VPIRValue wrapping a ConstantInt with the given APInt value. |
| 4694 | VPIRValue *getConstantInt(const APInt &Val) { |
| 4695 | return getOrAddLiveIn(V: ConstantInt::get(Context&: getContext(), V: Val)); |
| 4696 | } |
| 4697 | |
| 4698 | /// Return the live-in VPIRValue for \p V, if there is one or nullptr |
| 4699 | /// otherwise. |
| 4700 | VPIRValue *getLiveIn(Value *V) const { return LiveIns.lookup(Key: V); } |
| 4701 | |
| 4702 | /// Return the list of live-in VPValues available in the VPlan. |
| 4703 | auto getLiveIns() const { return LiveIns.values(); } |
| 4704 | |
| 4705 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 4706 | /// Print the live-ins of this VPlan to \p O. |
| 4707 | void printLiveIns(raw_ostream &O) const; |
| 4708 | |
| 4709 | /// Print this VPlan to \p O. |
| 4710 | LLVM_ABI_FOR_TEST void print(raw_ostream &O) const; |
| 4711 | |
| 4712 | /// Print this VPlan in DOT format to \p O. |
| 4713 | LLVM_ABI_FOR_TEST void printDOT(raw_ostream &O) const; |
| 4714 | |
| 4715 | /// Dump the plan to stderr (for debugging). |
| 4716 | LLVM_DUMP_METHOD void dump() const; |
| 4717 | #endif |
| 4718 | |
| 4719 | /// Clone the current VPlan, update all VPValues of the new VPlan and cloned |
| 4720 | /// recipes to refer to the clones, and return it. |
| 4721 | LLVM_ABI_FOR_TEST VPlan *duplicate(); |
| 4722 | |
| 4723 | /// Create a new VPBasicBlock with \p Name and containing \p Recipe if |
| 4724 | /// present. The returned block is owned by the VPlan and deleted once the |
| 4725 | /// VPlan is destroyed. |
| 4726 | VPBasicBlock *createVPBasicBlock(const Twine &Name, |
| 4727 | VPRecipeBase *Recipe = nullptr) { |
| 4728 | auto *VPB = new VPBasicBlock(Name, Recipe); |
| 4729 | CreatedBlocks.push_back(Elt: VPB); |
| 4730 | return VPB; |
| 4731 | } |
| 4732 | |
| 4733 | /// Create a new loop region with \p Name and entry and exiting blocks set |
| 4734 | /// to \p Entry and \p Exiting respectively, if set. The returned block is |
| 4735 | /// owned by the VPlan and deleted once the VPlan is destroyed. |
| 4736 | VPRegionBlock *createLoopRegion(const std::string &Name = "" , |
| 4737 | VPBlockBase *Entry = nullptr, |
| 4738 | VPBlockBase *Exiting = nullptr) { |
| 4739 | auto *VPB = Entry ? new VPRegionBlock(Entry, Exiting, Name) |
| 4740 | : new VPRegionBlock(Name); |
| 4741 | CreatedBlocks.push_back(Elt: VPB); |
| 4742 | return VPB; |
| 4743 | } |
| 4744 | |
| 4745 | /// Create a new replicate region with \p Entry, \p Exiting and \p Name. The |
| 4746 | /// returned block is owned by the VPlan and deleted once the VPlan is |
| 4747 | /// destroyed. |
| 4748 | VPRegionBlock *createReplicateRegion(VPBlockBase *Entry, VPBlockBase *Exiting, |
| 4749 | const std::string &Name = "" ) { |
| 4750 | auto *VPB = new VPRegionBlock(Entry, Exiting, Name, true); |
| 4751 | CreatedBlocks.push_back(Elt: VPB); |
| 4752 | return VPB; |
| 4753 | } |
| 4754 | |
| 4755 | /// Create a VPIRBasicBlock wrapping \p IRBB, but do not create |
| 4756 | /// VPIRInstructions wrapping the instructions in t\p IRBB. The returned |
| 4757 | /// block is owned by the VPlan and deleted once the VPlan is destroyed. |
| 4758 | VPIRBasicBlock *createEmptyVPIRBasicBlock(BasicBlock *IRBB); |
| 4759 | |
| 4760 | /// Create a VPIRBasicBlock from \p IRBB containing VPIRInstructions for all |
| 4761 | /// instructions in \p IRBB, except its terminator which is managed by the |
| 4762 | /// successors of the block in VPlan. The returned block is owned by the VPlan |
| 4763 | /// and deleted once the VPlan is destroyed. |
| 4764 | LLVM_ABI_FOR_TEST VPIRBasicBlock *createVPIRBasicBlock(BasicBlock *IRBB); |
| 4765 | |
| 4766 | /// Returns true if the VPlan is based on a loop with an early exit. That is |
| 4767 | /// the case if the VPlan has either more than one exit block or a single exit |
| 4768 | /// block with multiple predecessors (one for the exit via the latch and one |
| 4769 | /// via the other early exit). |
| 4770 | bool hasEarlyExit() const { |
| 4771 | return count_if(Range: ExitBlocks, |
| 4772 | P: [](VPIRBasicBlock *EB) { return EB->hasPredecessors(); }) > |
| 4773 | 1 || |
| 4774 | (ExitBlocks.size() == 1 && ExitBlocks[0]->getNumPredecessors() > 1); |
| 4775 | } |
| 4776 | |
| 4777 | /// Returns true if the scalar tail may execute after the vector loop. Note |
| 4778 | /// that this relies on unneeded branches to the scalar tail loop being |
| 4779 | /// removed. |
| 4780 | bool hasScalarTail() const { |
| 4781 | return !(!getScalarPreheader()->hasPredecessors() || |
| 4782 | getScalarPreheader()->getSinglePredecessor() == getEntry()); |
| 4783 | } |
| 4784 | }; |
| 4785 | |
| 4786 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 4787 | inline raw_ostream &operator<<(raw_ostream &OS, const VPlan &Plan) { |
| 4788 | Plan.print(OS); |
| 4789 | return OS; |
| 4790 | } |
| 4791 | #endif |
| 4792 | |
| 4793 | } // end namespace llvm |
| 4794 | |
| 4795 | #endif // LLVM_TRANSFORMS_VECTORIZE_VPLAN_H |
| 4796 | |