| 1 | //===------- VectorCombine.cpp - Optimize partial vector operations -------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This pass optimizes scalar/vector interactions using target cost models. The |
| 10 | // transforms implemented here may not fit in traditional loop-based or SLP |
| 11 | // vectorization passes. |
| 12 | // |
| 13 | //===----------------------------------------------------------------------===// |
| 14 | |
| 15 | #include "llvm/Transforms/Vectorize/VectorCombine.h" |
| 16 | #include "llvm/ADT/DenseMap.h" |
| 17 | #include "llvm/ADT/STLExtras.h" |
| 18 | #include "llvm/ADT/ScopeExit.h" |
| 19 | #include "llvm/ADT/SmallVector.h" |
| 20 | #include "llvm/ADT/Statistic.h" |
| 21 | #include "llvm/Analysis/AssumptionCache.h" |
| 22 | #include "llvm/Analysis/BasicAliasAnalysis.h" |
| 23 | #include "llvm/Analysis/GlobalsModRef.h" |
| 24 | #include "llvm/Analysis/InstSimplifyFolder.h" |
| 25 | #include "llvm/Analysis/Loads.h" |
| 26 | #include "llvm/Analysis/TargetFolder.h" |
| 27 | #include "llvm/Analysis/TargetTransformInfo.h" |
| 28 | #include "llvm/Analysis/ValueTracking.h" |
| 29 | #include "llvm/Analysis/VectorUtils.h" |
| 30 | #include "llvm/IR/Dominators.h" |
| 31 | #include "llvm/IR/Function.h" |
| 32 | #include "llvm/IR/IRBuilder.h" |
| 33 | #include "llvm/IR/Instructions.h" |
| 34 | #include "llvm/IR/PatternMatch.h" |
| 35 | #include "llvm/Support/CommandLine.h" |
| 36 | #include "llvm/Support/MathExtras.h" |
| 37 | #include "llvm/Transforms/Utils/Local.h" |
| 38 | #include "llvm/Transforms/Utils/LoopUtils.h" |
| 39 | #include <numeric> |
| 40 | #include <optional> |
| 41 | #include <queue> |
| 42 | #include <set> |
| 43 | |
| 44 | #define DEBUG_TYPE "vector-combine" |
| 45 | #include "llvm/Transforms/Utils/InstructionWorklist.h" |
| 46 | |
| 47 | using namespace llvm; |
| 48 | using namespace llvm::PatternMatch; |
| 49 | |
| 50 | STATISTIC(NumVecLoad, "Number of vector loads formed" ); |
| 51 | STATISTIC(NumVecCmp, "Number of vector compares formed" ); |
| 52 | STATISTIC(NumVecBO, "Number of vector binops formed" ); |
| 53 | STATISTIC(NumVecCmpBO, "Number of vector compare + binop formed" ); |
| 54 | STATISTIC(NumShufOfBitcast, "Number of shuffles moved after bitcast" ); |
| 55 | STATISTIC(NumScalarOps, "Number of scalar unary + binary ops formed" ); |
| 56 | STATISTIC(NumScalarCmp, "Number of scalar compares formed" ); |
| 57 | STATISTIC(NumScalarIntrinsic, "Number of scalar intrinsic calls formed" ); |
| 58 | |
| 59 | static cl::opt<bool> DisableVectorCombine( |
| 60 | "disable-vector-combine" , cl::init(Val: false), cl::Hidden, |
| 61 | cl::desc("Disable all vector combine transforms" )); |
| 62 | |
| 63 | static cl::opt<bool> ( |
| 64 | "disable-binop-extract-shuffle" , cl::init(Val: false), cl::Hidden, |
| 65 | cl::desc("Disable binop extract to shuffle transforms" )); |
| 66 | |
| 67 | static cl::opt<unsigned> MaxInstrsToScan( |
| 68 | "vector-combine-max-scan-instrs" , cl::init(Val: 30), cl::Hidden, |
| 69 | cl::desc("Max number of instructions to scan for vector combining." )); |
| 70 | |
| 71 | static const unsigned InvalidIndex = std::numeric_limits<unsigned>::max(); |
| 72 | |
| 73 | namespace { |
| 74 | class VectorCombine { |
| 75 | public: |
| 76 | VectorCombine(Function &F, const TargetTransformInfo &TTI, |
| 77 | const DominatorTree &DT, AAResults &AA, AssumptionCache &AC, |
| 78 | const DataLayout *DL, TTI::TargetCostKind CostKind, |
| 79 | bool TryEarlyFoldsOnly) |
| 80 | : F(F), Builder(F.getContext(), InstSimplifyFolder(*DL)), TTI(TTI), |
| 81 | DT(DT), AA(AA), AC(AC), DL(DL), CostKind(CostKind), SQ(*DL), |
| 82 | TryEarlyFoldsOnly(TryEarlyFoldsOnly) {} |
| 83 | |
| 84 | bool run(); |
| 85 | |
| 86 | private: |
| 87 | Function &F; |
| 88 | IRBuilder<InstSimplifyFolder> Builder; |
| 89 | const TargetTransformInfo &TTI; |
| 90 | const DominatorTree &DT; |
| 91 | AAResults &AA; |
| 92 | AssumptionCache &AC; |
| 93 | const DataLayout *DL; |
| 94 | TTI::TargetCostKind CostKind; |
| 95 | const SimplifyQuery SQ; |
| 96 | |
| 97 | /// If true, only perform beneficial early IR transforms. Do not introduce new |
| 98 | /// vector operations. |
| 99 | bool TryEarlyFoldsOnly; |
| 100 | |
| 101 | InstructionWorklist Worklist; |
| 102 | |
| 103 | /// Next instruction to iterate. It will be updated when it is erased by |
| 104 | /// RecursivelyDeleteTriviallyDeadInstructions. |
| 105 | Instruction *NextInst; |
| 106 | |
| 107 | // TODO: Direct calls from the top-level "run" loop use a plain "Instruction" |
| 108 | // parameter. That should be updated to specific sub-classes because the |
| 109 | // run loop was changed to dispatch on opcode. |
| 110 | bool vectorizeLoadInsert(Instruction &I); |
| 111 | bool widenSubvectorLoad(Instruction &I); |
| 112 | ExtractElementInst *getShuffleExtract(ExtractElementInst *Ext0, |
| 113 | ExtractElementInst *Ext1, |
| 114 | unsigned ) const; |
| 115 | bool isExtractExtractCheap(ExtractElementInst *Ext0, ExtractElementInst *Ext1, |
| 116 | const Instruction &I, |
| 117 | ExtractElementInst *&ConvertToShuffle, |
| 118 | unsigned ); |
| 119 | Value *foldExtExtCmp(Value *V0, Value *V1, Value *ExtIndex, Instruction &I); |
| 120 | Value *foldExtExtBinop(Value *V0, Value *V1, Value *ExtIndex, Instruction &I); |
| 121 | bool foldExtractExtract(Instruction &I); |
| 122 | bool foldInsExtFNeg(Instruction &I); |
| 123 | bool foldInsExtBinop(Instruction &I); |
| 124 | bool foldInsExtVectorToShuffle(Instruction &I); |
| 125 | bool foldBitOpOfCastops(Instruction &I); |
| 126 | bool foldBitOpOfCastConstant(Instruction &I); |
| 127 | bool foldBitcastShuffle(Instruction &I); |
| 128 | bool scalarizeOpOrCmp(Instruction &I); |
| 129 | bool scalarizeVPIntrinsic(Instruction &I); |
| 130 | bool foldExtractedCmps(Instruction &I); |
| 131 | bool foldSelectsFromBitcast(Instruction &I); |
| 132 | bool foldBinopOfReductions(Instruction &I); |
| 133 | bool foldSingleElementStore(Instruction &I); |
| 134 | bool scalarizeLoad(Instruction &I); |
| 135 | bool scalarizeLoadExtract(LoadInst *LI, VectorType *VecTy, Value *Ptr); |
| 136 | bool scalarizeLoadBitcast(LoadInst *LI, VectorType *VecTy, Value *Ptr); |
| 137 | bool scalarizeExtExtract(Instruction &I); |
| 138 | bool foldConcatOfBoolMasks(Instruction &I); |
| 139 | bool foldPermuteOfBinops(Instruction &I); |
| 140 | bool foldShuffleOfBinops(Instruction &I); |
| 141 | bool foldShuffleOfSelects(Instruction &I); |
| 142 | bool foldShuffleOfCastops(Instruction &I); |
| 143 | bool foldShuffleOfShuffles(Instruction &I); |
| 144 | bool foldPermuteOfIntrinsic(Instruction &I); |
| 145 | bool foldShufflesOfLengthChangingShuffles(Instruction &I); |
| 146 | bool foldShuffleOfIntrinsics(Instruction &I); |
| 147 | bool foldShuffleToIdentity(Instruction &I); |
| 148 | bool foldShuffleFromReductions(Instruction &I); |
| 149 | bool foldShuffleChainsToReduce(Instruction &I); |
| 150 | bool foldCastFromReductions(Instruction &I); |
| 151 | bool foldSignBitReductionCmp(Instruction &I); |
| 152 | bool foldICmpEqZeroVectorReduce(Instruction &I); |
| 153 | bool foldEquivalentReductionCmp(Instruction &I); |
| 154 | bool foldSelectShuffle(Instruction &I, bool FromReduction = false); |
| 155 | bool foldInterleaveIntrinsics(Instruction &I); |
| 156 | bool shrinkType(Instruction &I); |
| 157 | bool shrinkLoadForShuffles(Instruction &I); |
| 158 | bool shrinkPhiOfShuffles(Instruction &I); |
| 159 | |
| 160 | void replaceValue(Instruction &Old, Value &New, bool Erase = true) { |
| 161 | LLVM_DEBUG(dbgs() << "VC: Replacing: " << Old << '\n'); |
| 162 | LLVM_DEBUG(dbgs() << " With: " << New << '\n'); |
| 163 | Old.replaceAllUsesWith(V: &New); |
| 164 | if (auto *NewI = dyn_cast<Instruction>(Val: &New)) { |
| 165 | New.takeName(V: &Old); |
| 166 | Worklist.pushUsersToWorkList(I&: *NewI); |
| 167 | Worklist.pushValue(V: NewI); |
| 168 | } |
| 169 | if (Erase && isInstructionTriviallyDead(I: &Old)) { |
| 170 | eraseInstruction(I&: Old); |
| 171 | } else { |
| 172 | Worklist.push(I: &Old); |
| 173 | } |
| 174 | } |
| 175 | |
| 176 | void eraseInstruction(Instruction &I) { |
| 177 | LLVM_DEBUG(dbgs() << "VC: Erasing: " << I << '\n'); |
| 178 | SmallVector<Value *> Ops(I.operands()); |
| 179 | Worklist.remove(I: &I); |
| 180 | I.eraseFromParent(); |
| 181 | |
| 182 | // Push remaining users of the operands and then the operand itself - allows |
| 183 | // further folds that were hindered by OneUse limits. |
| 184 | SmallPtrSet<Value *, 4> Visited; |
| 185 | for (Value *Op : Ops) { |
| 186 | if (!Visited.contains(Ptr: Op)) { |
| 187 | if (auto *OpI = dyn_cast<Instruction>(Val: Op)) { |
| 188 | if (RecursivelyDeleteTriviallyDeadInstructions( |
| 189 | V: OpI, TLI: nullptr, MSSAU: nullptr, AboutToDeleteCallback: [&](Value *V) { |
| 190 | if (auto *I = dyn_cast<Instruction>(Val: V)) { |
| 191 | LLVM_DEBUG(dbgs() << "VC: Erased: " << *I << '\n'); |
| 192 | Worklist.remove(I); |
| 193 | if (I == NextInst) |
| 194 | NextInst = NextInst->getNextNode(); |
| 195 | Visited.insert(Ptr: I); |
| 196 | } |
| 197 | })) |
| 198 | continue; |
| 199 | Worklist.pushUsersToWorkList(I&: *OpI); |
| 200 | Worklist.pushValue(V: OpI); |
| 201 | } |
| 202 | } |
| 203 | } |
| 204 | } |
| 205 | }; |
| 206 | } // namespace |
| 207 | |
| 208 | /// Return the source operand of a potentially bitcasted value. If there is no |
| 209 | /// bitcast, return the input value itself. |
| 210 | static Value *peekThroughBitcasts(Value *V) { |
| 211 | while (auto *BitCast = dyn_cast<BitCastInst>(Val: V)) |
| 212 | V = BitCast->getOperand(i_nocapture: 0); |
| 213 | return V; |
| 214 | } |
| 215 | |
| 216 | static bool canWidenLoad(LoadInst *Load, const TargetTransformInfo &TTI) { |
| 217 | // Do not widen load if atomic/volatile or under asan/hwasan/memtag/tsan. |
| 218 | // The widened load may load data from dirty regions or create data races |
| 219 | // non-existent in the source. |
| 220 | if (!Load || !Load->isSimple() || !Load->hasOneUse() || |
| 221 | Load->getFunction()->hasFnAttribute(Kind: Attribute::SanitizeMemTag) || |
| 222 | mustSuppressSpeculation(LI: *Load)) |
| 223 | return false; |
| 224 | |
| 225 | // We are potentially transforming byte-sized (8-bit) memory accesses, so make |
| 226 | // sure we have all of our type-based constraints in place for this target. |
| 227 | Type *ScalarTy = Load->getType()->getScalarType(); |
| 228 | uint64_t ScalarSize = ScalarTy->getPrimitiveSizeInBits(); |
| 229 | unsigned MinVectorSize = TTI.getMinVectorRegisterBitWidth(); |
| 230 | if (!ScalarSize || !MinVectorSize || MinVectorSize % ScalarSize != 0 || |
| 231 | ScalarSize % 8 != 0) |
| 232 | return false; |
| 233 | |
| 234 | return true; |
| 235 | } |
| 236 | |
| 237 | bool VectorCombine::vectorizeLoadInsert(Instruction &I) { |
| 238 | // Match insert into fixed vector of scalar value. |
| 239 | // TODO: Handle non-zero insert index. |
| 240 | Value *Scalar; |
| 241 | if (!match(V: &I, |
| 242 | P: m_InsertElt(Val: m_Poison(), Elt: m_OneUse(SubPattern: m_Value(V&: Scalar)), Idx: m_ZeroInt()))) |
| 243 | return false; |
| 244 | |
| 245 | // Optionally match an extract from another vector. |
| 246 | Value *X; |
| 247 | bool = match(V: Scalar, P: m_ExtractElt(Val: m_Value(V&: X), Idx: m_ZeroInt())); |
| 248 | if (!HasExtract) |
| 249 | X = Scalar; |
| 250 | |
| 251 | auto *Load = dyn_cast<LoadInst>(Val: X); |
| 252 | if (!canWidenLoad(Load, TTI)) |
| 253 | return false; |
| 254 | |
| 255 | Type *ScalarTy = Scalar->getType(); |
| 256 | uint64_t ScalarSize = ScalarTy->getPrimitiveSizeInBits(); |
| 257 | unsigned MinVectorSize = TTI.getMinVectorRegisterBitWidth(); |
| 258 | |
| 259 | // Check safety of replacing the scalar load with a larger vector load. |
| 260 | // We use minimal alignment (maximum flexibility) because we only care about |
| 261 | // the dereferenceable region. When calculating cost and creating a new op, |
| 262 | // we may use a larger value based on alignment attributes. |
| 263 | Value *SrcPtr = Load->getPointerOperand()->stripPointerCasts(); |
| 264 | assert(isa<PointerType>(SrcPtr->getType()) && "Expected a pointer type" ); |
| 265 | |
| 266 | unsigned MinVecNumElts = MinVectorSize / ScalarSize; |
| 267 | auto *MinVecTy = VectorType::get(ElementType: ScalarTy, NumElements: MinVecNumElts, Scalable: false); |
| 268 | unsigned OffsetEltIndex = 0; |
| 269 | Align Alignment = Load->getAlign(); |
| 270 | if (!isSafeToLoadUnconditionally(V: SrcPtr, Ty: MinVecTy, Alignment: Align(1), DL: *DL, ScanFrom: Load, AC: &AC, |
| 271 | DT: &DT)) { |
| 272 | // It is not safe to load directly from the pointer, but we can still peek |
| 273 | // through gep offsets and check if it safe to load from a base address with |
| 274 | // updated alignment. If it is, we can shuffle the element(s) into place |
| 275 | // after loading. |
| 276 | unsigned OffsetBitWidth = DL->getIndexTypeSizeInBits(Ty: SrcPtr->getType()); |
| 277 | APInt Offset(OffsetBitWidth, 0); |
| 278 | SrcPtr = SrcPtr->stripAndAccumulateInBoundsConstantOffsets(DL: *DL, Offset); |
| 279 | |
| 280 | // We want to shuffle the result down from a high element of a vector, so |
| 281 | // the offset must be positive. |
| 282 | if (Offset.isNegative()) |
| 283 | return false; |
| 284 | |
| 285 | // The offset must be a multiple of the scalar element to shuffle cleanly |
| 286 | // in the element's size. |
| 287 | uint64_t ScalarSizeInBytes = ScalarSize / 8; |
| 288 | if (Offset.urem(RHS: ScalarSizeInBytes) != 0) |
| 289 | return false; |
| 290 | |
| 291 | // If we load MinVecNumElts, will our target element still be loaded? |
| 292 | OffsetEltIndex = Offset.udiv(RHS: ScalarSizeInBytes).getZExtValue(); |
| 293 | if (OffsetEltIndex >= MinVecNumElts) |
| 294 | return false; |
| 295 | |
| 296 | if (!isSafeToLoadUnconditionally(V: SrcPtr, Ty: MinVecTy, Alignment: Align(1), DL: *DL, ScanFrom: Load, AC: &AC, |
| 297 | DT: &DT)) |
| 298 | return false; |
| 299 | |
| 300 | // Update alignment with offset value. Note that the offset could be negated |
| 301 | // to more accurately represent "(new) SrcPtr - Offset = (old) SrcPtr", but |
| 302 | // negation does not change the result of the alignment calculation. |
| 303 | Alignment = commonAlignment(A: Alignment, Offset: Offset.getZExtValue()); |
| 304 | } |
| 305 | |
| 306 | // Original pattern: insertelt undef, load [free casts of] PtrOp, 0 |
| 307 | // Use the greater of the alignment on the load or its source pointer. |
| 308 | Alignment = std::max(a: SrcPtr->getPointerAlignment(DL: *DL), b: Alignment); |
| 309 | Type *LoadTy = Load->getType(); |
| 310 | unsigned AS = Load->getPointerAddressSpace(); |
| 311 | InstructionCost OldCost = |
| 312 | TTI.getMemoryOpCost(Opcode: Instruction::Load, Src: LoadTy, Alignment, AddressSpace: AS, CostKind); |
| 313 | APInt DemandedElts = APInt::getOneBitSet(numBits: MinVecNumElts, BitNo: 0); |
| 314 | OldCost += |
| 315 | TTI.getScalarizationOverhead(Ty: MinVecTy, DemandedElts, |
| 316 | /* Insert */ true, Extract: HasExtract, CostKind); |
| 317 | |
| 318 | // New pattern: load VecPtr |
| 319 | InstructionCost NewCost = |
| 320 | TTI.getMemoryOpCost(Opcode: Instruction::Load, Src: MinVecTy, Alignment, AddressSpace: AS, CostKind); |
| 321 | // Optionally, we are shuffling the loaded vector element(s) into place. |
| 322 | // For the mask set everything but element 0 to undef to prevent poison from |
| 323 | // propagating from the extra loaded memory. This will also optionally |
| 324 | // shrink/grow the vector from the loaded size to the output size. |
| 325 | // We assume this operation has no cost in codegen if there was no offset. |
| 326 | // Note that we could use freeze to avoid poison problems, but then we might |
| 327 | // still need a shuffle to change the vector size. |
| 328 | auto *Ty = cast<FixedVectorType>(Val: I.getType()); |
| 329 | unsigned OutputNumElts = Ty->getNumElements(); |
| 330 | SmallVector<int, 16> Mask(OutputNumElts, PoisonMaskElem); |
| 331 | assert(OffsetEltIndex < MinVecNumElts && "Address offset too big" ); |
| 332 | Mask[0] = OffsetEltIndex; |
| 333 | if (OffsetEltIndex) |
| 334 | NewCost += TTI.getShuffleCost(Kind: TTI::SK_PermuteSingleSrc, DstTy: Ty, SrcTy: MinVecTy, Mask, |
| 335 | CostKind); |
| 336 | |
| 337 | // We can aggressively convert to the vector form because the backend can |
| 338 | // invert this transform if it does not result in a performance win. |
| 339 | if (OldCost < NewCost || !NewCost.isValid()) |
| 340 | return false; |
| 341 | |
| 342 | // It is safe and potentially profitable to load a vector directly: |
| 343 | // inselt undef, load Scalar, 0 --> load VecPtr |
| 344 | IRBuilder<> Builder(Load); |
| 345 | Value *CastedPtr = |
| 346 | Builder.CreatePointerBitCastOrAddrSpaceCast(V: SrcPtr, DestTy: Builder.getPtrTy(AddrSpace: AS)); |
| 347 | Value *VecLd = Builder.CreateAlignedLoad(Ty: MinVecTy, Ptr: CastedPtr, Align: Alignment); |
| 348 | VecLd = Builder.CreateShuffleVector(V: VecLd, Mask); |
| 349 | |
| 350 | replaceValue(Old&: I, New&: *VecLd); |
| 351 | ++NumVecLoad; |
| 352 | return true; |
| 353 | } |
| 354 | |
| 355 | /// If we are loading a vector and then inserting it into a larger vector with |
| 356 | /// undefined elements, try to load the larger vector and eliminate the insert. |
| 357 | /// This removes a shuffle in IR and may allow combining of other loaded values. |
| 358 | bool VectorCombine::widenSubvectorLoad(Instruction &I) { |
| 359 | // Match subvector insert of fixed vector. |
| 360 | auto *Shuf = cast<ShuffleVectorInst>(Val: &I); |
| 361 | if (!Shuf->isIdentityWithPadding()) |
| 362 | return false; |
| 363 | |
| 364 | // Allow a non-canonical shuffle mask that is choosing elements from op1. |
| 365 | unsigned NumOpElts = |
| 366 | cast<FixedVectorType>(Val: Shuf->getOperand(i_nocapture: 0)->getType())->getNumElements(); |
| 367 | unsigned OpIndex = any_of(Range: Shuf->getShuffleMask(), P: [&NumOpElts](int M) { |
| 368 | return M >= (int)(NumOpElts); |
| 369 | }); |
| 370 | |
| 371 | auto *Load = dyn_cast<LoadInst>(Val: Shuf->getOperand(i_nocapture: OpIndex)); |
| 372 | if (!canWidenLoad(Load, TTI)) |
| 373 | return false; |
| 374 | |
| 375 | // We use minimal alignment (maximum flexibility) because we only care about |
| 376 | // the dereferenceable region. When calculating cost and creating a new op, |
| 377 | // we may use a larger value based on alignment attributes. |
| 378 | auto *Ty = cast<FixedVectorType>(Val: I.getType()); |
| 379 | Value *SrcPtr = Load->getPointerOperand()->stripPointerCasts(); |
| 380 | assert(isa<PointerType>(SrcPtr->getType()) && "Expected a pointer type" ); |
| 381 | Align Alignment = Load->getAlign(); |
| 382 | if (!isSafeToLoadUnconditionally(V: SrcPtr, Ty, Alignment: Align(1), DL: *DL, ScanFrom: Load, AC: &AC, DT: &DT)) |
| 383 | return false; |
| 384 | |
| 385 | Alignment = std::max(a: SrcPtr->getPointerAlignment(DL: *DL), b: Alignment); |
| 386 | Type *LoadTy = Load->getType(); |
| 387 | unsigned AS = Load->getPointerAddressSpace(); |
| 388 | |
| 389 | // Original pattern: insert_subvector (load PtrOp) |
| 390 | // This conservatively assumes that the cost of a subvector insert into an |
| 391 | // undef value is 0. We could add that cost if the cost model accurately |
| 392 | // reflects the real cost of that operation. |
| 393 | InstructionCost OldCost = |
| 394 | TTI.getMemoryOpCost(Opcode: Instruction::Load, Src: LoadTy, Alignment, AddressSpace: AS, CostKind); |
| 395 | |
| 396 | // New pattern: load PtrOp |
| 397 | InstructionCost NewCost = |
| 398 | TTI.getMemoryOpCost(Opcode: Instruction::Load, Src: Ty, Alignment, AddressSpace: AS, CostKind); |
| 399 | |
| 400 | // We can aggressively convert to the vector form because the backend can |
| 401 | // invert this transform if it does not result in a performance win. |
| 402 | if (OldCost < NewCost || !NewCost.isValid()) |
| 403 | return false; |
| 404 | |
| 405 | IRBuilder<> Builder(Load); |
| 406 | Value *CastedPtr = |
| 407 | Builder.CreatePointerBitCastOrAddrSpaceCast(V: SrcPtr, DestTy: Builder.getPtrTy(AddrSpace: AS)); |
| 408 | Value *VecLd = Builder.CreateAlignedLoad(Ty, Ptr: CastedPtr, Align: Alignment); |
| 409 | replaceValue(Old&: I, New&: *VecLd); |
| 410 | ++NumVecLoad; |
| 411 | return true; |
| 412 | } |
| 413 | |
| 414 | /// Determine which, if any, of the inputs should be replaced by a shuffle |
| 415 | /// followed by extract from a different index. |
| 416 | ExtractElementInst *VectorCombine::( |
| 417 | ExtractElementInst *Ext0, ExtractElementInst *Ext1, |
| 418 | unsigned = InvalidIndex) const { |
| 419 | auto *Index0C = dyn_cast<ConstantInt>(Val: Ext0->getIndexOperand()); |
| 420 | auto *Index1C = dyn_cast<ConstantInt>(Val: Ext1->getIndexOperand()); |
| 421 | assert(Index0C && Index1C && "Expected constant extract indexes" ); |
| 422 | |
| 423 | unsigned Index0 = Index0C->getZExtValue(); |
| 424 | unsigned Index1 = Index1C->getZExtValue(); |
| 425 | |
| 426 | // If the extract indexes are identical, no shuffle is needed. |
| 427 | if (Index0 == Index1) |
| 428 | return nullptr; |
| 429 | |
| 430 | Type *VecTy = Ext0->getVectorOperand()->getType(); |
| 431 | assert(VecTy == Ext1->getVectorOperand()->getType() && "Need matching types" ); |
| 432 | InstructionCost Cost0 = |
| 433 | TTI.getVectorInstrCost(I: *Ext0, Val: VecTy, CostKind, Index: Index0); |
| 434 | InstructionCost Cost1 = |
| 435 | TTI.getVectorInstrCost(I: *Ext1, Val: VecTy, CostKind, Index: Index1); |
| 436 | |
| 437 | // If both costs are invalid no shuffle is needed |
| 438 | if (!Cost0.isValid() && !Cost1.isValid()) |
| 439 | return nullptr; |
| 440 | |
| 441 | // We are extracting from 2 different indexes, so one operand must be shuffled |
| 442 | // before performing a vector operation and/or extract. The more expensive |
| 443 | // extract will be replaced by a shuffle. |
| 444 | if (Cost0 > Cost1) |
| 445 | return Ext0; |
| 446 | if (Cost1 > Cost0) |
| 447 | return Ext1; |
| 448 | |
| 449 | // If the costs are equal and there is a preferred extract index, shuffle the |
| 450 | // opposite operand. |
| 451 | if (PreferredExtractIndex == Index0) |
| 452 | return Ext1; |
| 453 | if (PreferredExtractIndex == Index1) |
| 454 | return Ext0; |
| 455 | |
| 456 | // Otherwise, replace the extract with the higher index. |
| 457 | return Index0 > Index1 ? Ext0 : Ext1; |
| 458 | } |
| 459 | |
| 460 | /// Compare the relative costs of 2 extracts followed by scalar operation vs. |
| 461 | /// vector operation(s) followed by extract. Return true if the existing |
| 462 | /// instructions are cheaper than a vector alternative. Otherwise, return false |
| 463 | /// and if one of the extracts should be transformed to a shufflevector, set |
| 464 | /// \p ConvertToShuffle to that extract instruction. |
| 465 | bool VectorCombine::(ExtractElementInst *Ext0, |
| 466 | ExtractElementInst *Ext1, |
| 467 | const Instruction &I, |
| 468 | ExtractElementInst *&ConvertToShuffle, |
| 469 | unsigned ) { |
| 470 | auto *Ext0IndexC = dyn_cast<ConstantInt>(Val: Ext0->getIndexOperand()); |
| 471 | auto *Ext1IndexC = dyn_cast<ConstantInt>(Val: Ext1->getIndexOperand()); |
| 472 | assert(Ext0IndexC && Ext1IndexC && "Expected constant extract indexes" ); |
| 473 | |
| 474 | unsigned Opcode = I.getOpcode(); |
| 475 | Value *Ext0Src = Ext0->getVectorOperand(); |
| 476 | Value *Ext1Src = Ext1->getVectorOperand(); |
| 477 | Type *ScalarTy = Ext0->getType(); |
| 478 | auto *VecTy = cast<VectorType>(Val: Ext0Src->getType()); |
| 479 | InstructionCost ScalarOpCost, VectorOpCost; |
| 480 | |
| 481 | // Get cost estimates for scalar and vector versions of the operation. |
| 482 | bool IsBinOp = Instruction::isBinaryOp(Opcode); |
| 483 | if (IsBinOp) { |
| 484 | ScalarOpCost = TTI.getArithmeticInstrCost(Opcode, Ty: ScalarTy, CostKind); |
| 485 | VectorOpCost = TTI.getArithmeticInstrCost(Opcode, Ty: VecTy, CostKind); |
| 486 | } else { |
| 487 | assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) && |
| 488 | "Expected a compare" ); |
| 489 | CmpInst::Predicate Pred = cast<CmpInst>(Val: I).getPredicate(); |
| 490 | ScalarOpCost = TTI.getCmpSelInstrCost( |
| 491 | Opcode, ValTy: ScalarTy, CondTy: CmpInst::makeCmpResultType(opnd_type: ScalarTy), VecPred: Pred, CostKind); |
| 492 | VectorOpCost = TTI.getCmpSelInstrCost( |
| 493 | Opcode, ValTy: VecTy, CondTy: CmpInst::makeCmpResultType(opnd_type: VecTy), VecPred: Pred, CostKind); |
| 494 | } |
| 495 | |
| 496 | // Get cost estimates for the extract elements. These costs will factor into |
| 497 | // both sequences. |
| 498 | unsigned Ext0Index = Ext0IndexC->getZExtValue(); |
| 499 | unsigned Ext1Index = Ext1IndexC->getZExtValue(); |
| 500 | |
| 501 | InstructionCost = |
| 502 | TTI.getVectorInstrCost(I: *Ext0, Val: VecTy, CostKind, Index: Ext0Index); |
| 503 | InstructionCost = |
| 504 | TTI.getVectorInstrCost(I: *Ext1, Val: VecTy, CostKind, Index: Ext1Index); |
| 505 | |
| 506 | // A more expensive extract will always be replaced by a splat shuffle. |
| 507 | // For example, if Ext0 is more expensive: |
| 508 | // opcode (extelt V0, Ext0), (ext V1, Ext1) --> |
| 509 | // extelt (opcode (splat V0, Ext0), V1), Ext1 |
| 510 | // TODO: Evaluate whether that always results in lowest cost. Alternatively, |
| 511 | // check the cost of creating a broadcast shuffle and shuffling both |
| 512 | // operands to element 0. |
| 513 | unsigned BestExtIndex = Extract0Cost > Extract1Cost ? Ext0Index : Ext1Index; |
| 514 | unsigned BestInsIndex = Extract0Cost > Extract1Cost ? Ext1Index : Ext0Index; |
| 515 | InstructionCost = std::min(a: Extract0Cost, b: Extract1Cost); |
| 516 | |
| 517 | // Extra uses of the extracts mean that we include those costs in the |
| 518 | // vector total because those instructions will not be eliminated. |
| 519 | InstructionCost OldCost, NewCost; |
| 520 | if (Ext0Src == Ext1Src && Ext0Index == Ext1Index) { |
| 521 | // Handle a special case. If the 2 extracts are identical, adjust the |
| 522 | // formulas to account for that. The extra use charge allows for either the |
| 523 | // CSE'd pattern or an unoptimized form with identical values: |
| 524 | // opcode (extelt V, C), (extelt V, C) --> extelt (opcode V, V), C |
| 525 | bool HasUseTax = Ext0 == Ext1 ? !Ext0->hasNUses(N: 2) |
| 526 | : !Ext0->hasOneUse() || !Ext1->hasOneUse(); |
| 527 | OldCost = CheapExtractCost + ScalarOpCost; |
| 528 | NewCost = VectorOpCost + CheapExtractCost + HasUseTax * CheapExtractCost; |
| 529 | } else { |
| 530 | // Handle the general case. Each extract is actually a different value: |
| 531 | // opcode (extelt V0, C0), (extelt V1, C1) --> extelt (opcode V0, V1), C |
| 532 | OldCost = Extract0Cost + Extract1Cost + ScalarOpCost; |
| 533 | NewCost = VectorOpCost + CheapExtractCost + |
| 534 | !Ext0->hasOneUse() * Extract0Cost + |
| 535 | !Ext1->hasOneUse() * Extract1Cost; |
| 536 | } |
| 537 | |
| 538 | ConvertToShuffle = getShuffleExtract(Ext0, Ext1, PreferredExtractIndex); |
| 539 | if (ConvertToShuffle) { |
| 540 | if (IsBinOp && DisableBinopExtractShuffle) |
| 541 | return true; |
| 542 | |
| 543 | // If we are extracting from 2 different indexes, then one operand must be |
| 544 | // shuffled before performing the vector operation. The shuffle mask is |
| 545 | // poison except for 1 lane that is being translated to the remaining |
| 546 | // extraction lane. Therefore, it is a splat shuffle. Ex: |
| 547 | // ShufMask = { poison, poison, 0, poison } |
| 548 | // TODO: The cost model has an option for a "broadcast" shuffle |
| 549 | // (splat-from-element-0), but no option for a more general splat. |
| 550 | if (auto *FixedVecTy = dyn_cast<FixedVectorType>(Val: VecTy)) { |
| 551 | SmallVector<int> ShuffleMask(FixedVecTy->getNumElements(), |
| 552 | PoisonMaskElem); |
| 553 | ShuffleMask[BestInsIndex] = BestExtIndex; |
| 554 | NewCost += TTI.getShuffleCost(Kind: TargetTransformInfo::SK_PermuteSingleSrc, |
| 555 | DstTy: VecTy, SrcTy: VecTy, Mask: ShuffleMask, CostKind, Index: 0, |
| 556 | SubTp: nullptr, Args: {ConvertToShuffle}); |
| 557 | } else { |
| 558 | NewCost += TTI.getShuffleCost(Kind: TargetTransformInfo::SK_PermuteSingleSrc, |
| 559 | DstTy: VecTy, SrcTy: VecTy, Mask: {}, CostKind, Index: 0, SubTp: nullptr, |
| 560 | Args: {ConvertToShuffle}); |
| 561 | } |
| 562 | } |
| 563 | |
| 564 | // Aggressively form a vector op if the cost is equal because the transform |
| 565 | // may enable further optimization. |
| 566 | // Codegen can reverse this transform (scalarize) if it was not profitable. |
| 567 | return OldCost < NewCost; |
| 568 | } |
| 569 | |
| 570 | /// Create a shuffle that translates (shifts) 1 element from the input vector |
| 571 | /// to a new element location. |
| 572 | static Value *createShiftShuffle(Value *Vec, unsigned OldIndex, |
| 573 | unsigned NewIndex, IRBuilderBase &Builder) { |
| 574 | // The shuffle mask is poison except for 1 lane that is being translated |
| 575 | // to the new element index. Example for OldIndex == 2 and NewIndex == 0: |
| 576 | // ShufMask = { 2, poison, poison, poison } |
| 577 | auto *VecTy = cast<FixedVectorType>(Val: Vec->getType()); |
| 578 | SmallVector<int, 32> ShufMask(VecTy->getNumElements(), PoisonMaskElem); |
| 579 | ShufMask[NewIndex] = OldIndex; |
| 580 | return Builder.CreateShuffleVector(V: Vec, Mask: ShufMask, Name: "shift" ); |
| 581 | } |
| 582 | |
| 583 | /// Given an extract element instruction with constant index operand, shuffle |
| 584 | /// the source vector (shift the scalar element) to a NewIndex for extraction. |
| 585 | /// Return null if the input can be constant folded, so that we are not creating |
| 586 | /// unnecessary instructions. |
| 587 | static Value *(ExtractElementInst *ExtElt, unsigned NewIndex, |
| 588 | IRBuilderBase &Builder) { |
| 589 | // Shufflevectors can only be created for fixed-width vectors. |
| 590 | Value *X = ExtElt->getVectorOperand(); |
| 591 | if (!isa<FixedVectorType>(Val: X->getType())) |
| 592 | return nullptr; |
| 593 | |
| 594 | // If the extract can be constant-folded, this code is unsimplified. Defer |
| 595 | // to other passes to handle that. |
| 596 | Value *C = ExtElt->getIndexOperand(); |
| 597 | assert(isa<ConstantInt>(C) && "Expected a constant index operand" ); |
| 598 | if (isa<Constant>(Val: X)) |
| 599 | return nullptr; |
| 600 | |
| 601 | Value *Shuf = createShiftShuffle(Vec: X, OldIndex: cast<ConstantInt>(Val: C)->getZExtValue(), |
| 602 | NewIndex, Builder); |
| 603 | return Shuf; |
| 604 | } |
| 605 | |
| 606 | /// Try to reduce extract element costs by converting scalar compares to vector |
| 607 | /// compares followed by extract. |
| 608 | /// cmp (ext0 V0, ExtIndex), (ext1 V1, ExtIndex) |
| 609 | Value *VectorCombine::foldExtExtCmp(Value *V0, Value *V1, Value *ExtIndex, |
| 610 | Instruction &I) { |
| 611 | assert(isa<CmpInst>(&I) && "Expected a compare" ); |
| 612 | |
| 613 | // cmp Pred (extelt V0, ExtIndex), (extelt V1, ExtIndex) |
| 614 | // --> extelt (cmp Pred V0, V1), ExtIndex |
| 615 | ++NumVecCmp; |
| 616 | CmpInst::Predicate Pred = cast<CmpInst>(Val: &I)->getPredicate(); |
| 617 | Value *VecCmp = Builder.CreateCmp(Pred, LHS: V0, RHS: V1); |
| 618 | return Builder.CreateExtractElement(Vec: VecCmp, Idx: ExtIndex, Name: "foldExtExtCmp" ); |
| 619 | } |
| 620 | |
| 621 | /// Try to reduce extract element costs by converting scalar binops to vector |
| 622 | /// binops followed by extract. |
| 623 | /// bo (ext0 V0, ExtIndex), (ext1 V1, ExtIndex) |
| 624 | Value *VectorCombine::foldExtExtBinop(Value *V0, Value *V1, Value *ExtIndex, |
| 625 | Instruction &I) { |
| 626 | assert(isa<BinaryOperator>(&I) && "Expected a binary operator" ); |
| 627 | |
| 628 | // bo (extelt V0, ExtIndex), (extelt V1, ExtIndex) |
| 629 | // --> extelt (bo V0, V1), ExtIndex |
| 630 | ++NumVecBO; |
| 631 | Value *VecBO = Builder.CreateBinOp(Opc: cast<BinaryOperator>(Val: &I)->getOpcode(), LHS: V0, |
| 632 | RHS: V1, Name: "foldExtExtBinop" ); |
| 633 | |
| 634 | // All IR flags are safe to back-propagate because any potential poison |
| 635 | // created in unused vector elements is discarded by the extract. |
| 636 | if (auto *VecBOInst = dyn_cast<Instruction>(Val: VecBO)) |
| 637 | VecBOInst->copyIRFlags(V: &I); |
| 638 | |
| 639 | return Builder.CreateExtractElement(Vec: VecBO, Idx: ExtIndex, Name: "foldExtExtBinop" ); |
| 640 | } |
| 641 | |
| 642 | /// Match an instruction with extracted vector operands. |
| 643 | bool VectorCombine::(Instruction &I) { |
| 644 | // It is not safe to transform things like div, urem, etc. because we may |
| 645 | // create undefined behavior when executing those on unknown vector elements. |
| 646 | if (!isSafeToSpeculativelyExecute(I: &I)) |
| 647 | return false; |
| 648 | |
| 649 | Instruction *I0, *I1; |
| 650 | CmpPredicate Pred = CmpInst::BAD_ICMP_PREDICATE; |
| 651 | if (!match(V: &I, P: m_Cmp(Pred, L: m_Instruction(I&: I0), R: m_Instruction(I&: I1))) && |
| 652 | !match(V: &I, P: m_BinOp(L: m_Instruction(I&: I0), R: m_Instruction(I&: I1)))) |
| 653 | return false; |
| 654 | |
| 655 | Value *V0, *V1; |
| 656 | uint64_t C0, C1; |
| 657 | if (!match(V: I0, P: m_ExtractElt(Val: m_Value(V&: V0), Idx: m_ConstantInt(V&: C0))) || |
| 658 | !match(V: I1, P: m_ExtractElt(Val: m_Value(V&: V1), Idx: m_ConstantInt(V&: C1))) || |
| 659 | V0->getType() != V1->getType()) |
| 660 | return false; |
| 661 | |
| 662 | // If the scalar value 'I' is going to be re-inserted into a vector, then try |
| 663 | // to create an extract to that same element. The extract/insert can be |
| 664 | // reduced to a "select shuffle". |
| 665 | // TODO: If we add a larger pattern match that starts from an insert, this |
| 666 | // probably becomes unnecessary. |
| 667 | auto *Ext0 = cast<ExtractElementInst>(Val: I0); |
| 668 | auto *Ext1 = cast<ExtractElementInst>(Val: I1); |
| 669 | uint64_t InsertIndex = InvalidIndex; |
| 670 | if (I.hasOneUse()) |
| 671 | match(V: I.user_back(), |
| 672 | P: m_InsertElt(Val: m_Value(), Elt: m_Value(), Idx: m_ConstantInt(V&: InsertIndex))); |
| 673 | |
| 674 | ExtractElementInst *; |
| 675 | if (isExtractExtractCheap(Ext0, Ext1, I, ConvertToShuffle&: ExtractToChange, PreferredExtractIndex: InsertIndex)) |
| 676 | return false; |
| 677 | |
| 678 | Value *ExtOp0 = Ext0->getVectorOperand(); |
| 679 | Value *ExtOp1 = Ext1->getVectorOperand(); |
| 680 | |
| 681 | if (ExtractToChange) { |
| 682 | unsigned = ExtractToChange == Ext0 ? C1 : C0; |
| 683 | Value *NewExtOp = |
| 684 | translateExtract(ExtElt: ExtractToChange, NewIndex: CheapExtractIdx, Builder); |
| 685 | if (!NewExtOp) |
| 686 | return false; |
| 687 | if (ExtractToChange == Ext0) |
| 688 | ExtOp0 = NewExtOp; |
| 689 | else |
| 690 | ExtOp1 = NewExtOp; |
| 691 | } |
| 692 | |
| 693 | Value *ExtIndex = ExtractToChange == Ext0 ? Ext1->getIndexOperand() |
| 694 | : Ext0->getIndexOperand(); |
| 695 | Value *NewExt = Pred != CmpInst::BAD_ICMP_PREDICATE |
| 696 | ? foldExtExtCmp(V0: ExtOp0, V1: ExtOp1, ExtIndex, I) |
| 697 | : foldExtExtBinop(V0: ExtOp0, V1: ExtOp1, ExtIndex, I); |
| 698 | Worklist.push(I: Ext0); |
| 699 | Worklist.push(I: Ext1); |
| 700 | replaceValue(Old&: I, New&: *NewExt); |
| 701 | return true; |
| 702 | } |
| 703 | |
| 704 | /// Try to replace an extract + scalar fneg + insert with a vector fneg + |
| 705 | /// shuffle. |
| 706 | bool VectorCombine::foldInsExtFNeg(Instruction &I) { |
| 707 | // Match an insert (op (extract)) pattern. |
| 708 | Value *DstVec; |
| 709 | uint64_t ExtIdx, InsIdx; |
| 710 | Instruction *FNeg; |
| 711 | if (!match(V: &I, P: m_InsertElt(Val: m_Value(V&: DstVec), Elt: m_OneUse(SubPattern: m_Instruction(I&: FNeg)), |
| 712 | Idx: m_ConstantInt(V&: InsIdx)))) |
| 713 | return false; |
| 714 | |
| 715 | // Note: This handles the canonical fneg instruction and "fsub -0.0, X". |
| 716 | Value *SrcVec; |
| 717 | Instruction *; |
| 718 | if (!match(V: FNeg, P: m_FNeg(X: m_CombineAnd( |
| 719 | L: m_Instruction(I&: Extract), |
| 720 | R: m_ExtractElt(Val: m_Value(V&: SrcVec), Idx: m_ConstantInt(V&: ExtIdx)))))) |
| 721 | return false; |
| 722 | |
| 723 | auto *DstVecTy = cast<FixedVectorType>(Val: DstVec->getType()); |
| 724 | auto *DstVecScalarTy = DstVecTy->getScalarType(); |
| 725 | auto *SrcVecTy = dyn_cast<FixedVectorType>(Val: SrcVec->getType()); |
| 726 | if (!SrcVecTy || DstVecScalarTy != SrcVecTy->getScalarType()) |
| 727 | return false; |
| 728 | |
| 729 | // Ignore if insert/extract index is out of bounds or destination vector has |
| 730 | // one element |
| 731 | unsigned NumDstElts = DstVecTy->getNumElements(); |
| 732 | unsigned NumSrcElts = SrcVecTy->getNumElements(); |
| 733 | if (ExtIdx > NumSrcElts || InsIdx >= NumDstElts || NumDstElts == 1) |
| 734 | return false; |
| 735 | |
| 736 | // We are inserting the negated element into the same lane that we extracted |
| 737 | // from. This is equivalent to a select-shuffle that chooses all but the |
| 738 | // negated element from the destination vector. |
| 739 | SmallVector<int> Mask(NumDstElts); |
| 740 | std::iota(first: Mask.begin(), last: Mask.end(), value: 0); |
| 741 | Mask[InsIdx] = (ExtIdx % NumDstElts) + NumDstElts; |
| 742 | InstructionCost OldCost = |
| 743 | TTI.getArithmeticInstrCost(Opcode: Instruction::FNeg, Ty: DstVecScalarTy, CostKind) + |
| 744 | TTI.getVectorInstrCost(I, Val: DstVecTy, CostKind, Index: InsIdx); |
| 745 | |
| 746 | // If the extract has one use, it will be eliminated, so count it in the |
| 747 | // original cost. If it has more than one use, ignore the cost because it will |
| 748 | // be the same before/after. |
| 749 | if (Extract->hasOneUse()) |
| 750 | OldCost += TTI.getVectorInstrCost(I: *Extract, Val: SrcVecTy, CostKind, Index: ExtIdx); |
| 751 | |
| 752 | InstructionCost NewCost = |
| 753 | TTI.getArithmeticInstrCost(Opcode: Instruction::FNeg, Ty: SrcVecTy, CostKind) + |
| 754 | TTI.getShuffleCost(Kind: TargetTransformInfo::SK_PermuteTwoSrc, DstTy: DstVecTy, |
| 755 | SrcTy: DstVecTy, Mask, CostKind); |
| 756 | |
| 757 | bool NeedLenChg = SrcVecTy->getNumElements() != NumDstElts; |
| 758 | // If the lengths of the two vectors are not equal, |
| 759 | // we need to add a length-change vector. Add this cost. |
| 760 | SmallVector<int> SrcMask; |
| 761 | if (NeedLenChg) { |
| 762 | SrcMask.assign(NumElts: NumDstElts, Elt: PoisonMaskElem); |
| 763 | SrcMask[ExtIdx % NumDstElts] = ExtIdx; |
| 764 | NewCost += TTI.getShuffleCost(Kind: TargetTransformInfo::SK_PermuteSingleSrc, |
| 765 | DstTy: DstVecTy, SrcTy: SrcVecTy, Mask: SrcMask, CostKind); |
| 766 | } |
| 767 | |
| 768 | LLVM_DEBUG(dbgs() << "Found an insertion of (extract)fneg : " << I |
| 769 | << "\n OldCost: " << OldCost << " vs NewCost: " << NewCost |
| 770 | << "\n" ); |
| 771 | if (NewCost > OldCost) |
| 772 | return false; |
| 773 | |
| 774 | Value *NewShuf, *LenChgShuf = nullptr; |
| 775 | // insertelt DstVec, (fneg (extractelt SrcVec, Index)), Index |
| 776 | Value *VecFNeg = Builder.CreateFNegFMF(V: SrcVec, FMFSource: FNeg); |
| 777 | if (NeedLenChg) { |
| 778 | // shuffle DstVec, (shuffle (fneg SrcVec), poison, SrcMask), Mask |
| 779 | LenChgShuf = Builder.CreateShuffleVector(V: VecFNeg, Mask: SrcMask); |
| 780 | NewShuf = Builder.CreateShuffleVector(V1: DstVec, V2: LenChgShuf, Mask); |
| 781 | Worklist.pushValue(V: LenChgShuf); |
| 782 | } else { |
| 783 | // shuffle DstVec, (fneg SrcVec), Mask |
| 784 | NewShuf = Builder.CreateShuffleVector(V1: DstVec, V2: VecFNeg, Mask); |
| 785 | } |
| 786 | |
| 787 | Worklist.pushValue(V: VecFNeg); |
| 788 | replaceValue(Old&: I, New&: *NewShuf); |
| 789 | return true; |
| 790 | } |
| 791 | |
| 792 | /// Try to fold insert(binop(x,y),binop(a,b),idx) |
| 793 | /// --> binop(insert(x,a,idx),insert(y,b,idx)) |
| 794 | bool VectorCombine::foldInsExtBinop(Instruction &I) { |
| 795 | BinaryOperator *VecBinOp, *SclBinOp; |
| 796 | uint64_t Index; |
| 797 | if (!match(V: &I, |
| 798 | P: m_InsertElt(Val: m_OneUse(SubPattern: m_BinOp(I&: VecBinOp)), |
| 799 | Elt: m_OneUse(SubPattern: m_BinOp(I&: SclBinOp)), Idx: m_ConstantInt(V&: Index)))) |
| 800 | return false; |
| 801 | |
| 802 | // TODO: Add support for addlike etc. |
| 803 | Instruction::BinaryOps BinOpcode = VecBinOp->getOpcode(); |
| 804 | if (BinOpcode != SclBinOp->getOpcode()) |
| 805 | return false; |
| 806 | |
| 807 | auto *ResultTy = dyn_cast<FixedVectorType>(Val: I.getType()); |
| 808 | if (!ResultTy) |
| 809 | return false; |
| 810 | |
| 811 | // TODO: Attempt to detect m_ExtractElt for scalar operands and convert to |
| 812 | // shuffle? |
| 813 | |
| 814 | InstructionCost OldCost = TTI.getInstructionCost(U: &I, CostKind) + |
| 815 | TTI.getInstructionCost(U: VecBinOp, CostKind) + |
| 816 | TTI.getInstructionCost(U: SclBinOp, CostKind); |
| 817 | InstructionCost NewCost = |
| 818 | TTI.getArithmeticInstrCost(Opcode: BinOpcode, Ty: ResultTy, CostKind) + |
| 819 | TTI.getVectorInstrCost(Opcode: Instruction::InsertElement, Val: ResultTy, CostKind, |
| 820 | Index, Op0: VecBinOp->getOperand(i_nocapture: 0), |
| 821 | Op1: SclBinOp->getOperand(i_nocapture: 0)) + |
| 822 | TTI.getVectorInstrCost(Opcode: Instruction::InsertElement, Val: ResultTy, CostKind, |
| 823 | Index, Op0: VecBinOp->getOperand(i_nocapture: 1), |
| 824 | Op1: SclBinOp->getOperand(i_nocapture: 1)); |
| 825 | |
| 826 | LLVM_DEBUG(dbgs() << "Found an insertion of two binops: " << I |
| 827 | << "\n OldCost: " << OldCost << " vs NewCost: " << NewCost |
| 828 | << "\n" ); |
| 829 | if (NewCost > OldCost) |
| 830 | return false; |
| 831 | |
| 832 | Value *NewIns0 = Builder.CreateInsertElement(Vec: VecBinOp->getOperand(i_nocapture: 0), |
| 833 | NewElt: SclBinOp->getOperand(i_nocapture: 0), Idx: Index); |
| 834 | Value *NewIns1 = Builder.CreateInsertElement(Vec: VecBinOp->getOperand(i_nocapture: 1), |
| 835 | NewElt: SclBinOp->getOperand(i_nocapture: 1), Idx: Index); |
| 836 | Value *NewBO = Builder.CreateBinOp(Opc: BinOpcode, LHS: NewIns0, RHS: NewIns1); |
| 837 | |
| 838 | // Intersect flags from the old binops. |
| 839 | if (auto *NewInst = dyn_cast<Instruction>(Val: NewBO)) { |
| 840 | NewInst->copyIRFlags(V: VecBinOp); |
| 841 | NewInst->andIRFlags(V: SclBinOp); |
| 842 | } |
| 843 | |
| 844 | Worklist.pushValue(V: NewIns0); |
| 845 | Worklist.pushValue(V: NewIns1); |
| 846 | replaceValue(Old&: I, New&: *NewBO); |
| 847 | return true; |
| 848 | } |
| 849 | |
| 850 | /// Match: bitop(castop(x), castop(y)) -> castop(bitop(x, y)) |
| 851 | /// Supports: bitcast, trunc, sext, zext |
| 852 | bool VectorCombine::foldBitOpOfCastops(Instruction &I) { |
| 853 | // Check if this is a bitwise logic operation |
| 854 | auto *BinOp = dyn_cast<BinaryOperator>(Val: &I); |
| 855 | if (!BinOp || !BinOp->isBitwiseLogicOp()) |
| 856 | return false; |
| 857 | |
| 858 | // Get the cast instructions |
| 859 | auto *LHSCast = dyn_cast<CastInst>(Val: BinOp->getOperand(i_nocapture: 0)); |
| 860 | auto *RHSCast = dyn_cast<CastInst>(Val: BinOp->getOperand(i_nocapture: 1)); |
| 861 | if (!LHSCast || !RHSCast) { |
| 862 | LLVM_DEBUG(dbgs() << " One or both operands are not cast instructions\n" ); |
| 863 | return false; |
| 864 | } |
| 865 | |
| 866 | // Both casts must be the same type |
| 867 | Instruction::CastOps CastOpcode = LHSCast->getOpcode(); |
| 868 | if (CastOpcode != RHSCast->getOpcode()) |
| 869 | return false; |
| 870 | |
| 871 | // Only handle supported cast operations |
| 872 | switch (CastOpcode) { |
| 873 | case Instruction::BitCast: |
| 874 | case Instruction::Trunc: |
| 875 | case Instruction::SExt: |
| 876 | case Instruction::ZExt: |
| 877 | break; |
| 878 | default: |
| 879 | return false; |
| 880 | } |
| 881 | |
| 882 | Value *LHSSrc = LHSCast->getOperand(i_nocapture: 0); |
| 883 | Value *RHSSrc = RHSCast->getOperand(i_nocapture: 0); |
| 884 | |
| 885 | // Source types must match |
| 886 | if (LHSSrc->getType() != RHSSrc->getType()) |
| 887 | return false; |
| 888 | |
| 889 | auto *SrcTy = LHSSrc->getType(); |
| 890 | auto *DstTy = I.getType(); |
| 891 | // Bitcasts can handle scalar/vector mixes, such as i16 -> <16 x i1>. |
| 892 | // Other casts only handle vector types with integer elements. |
| 893 | if (CastOpcode != Instruction::BitCast && |
| 894 | (!isa<FixedVectorType>(Val: SrcTy) || !isa<FixedVectorType>(Val: DstTy))) |
| 895 | return false; |
| 896 | |
| 897 | // Only integer scalar/vector values are legal for bitwise logic operations. |
| 898 | if (!SrcTy->getScalarType()->isIntegerTy() || |
| 899 | !DstTy->getScalarType()->isIntegerTy()) |
| 900 | return false; |
| 901 | |
| 902 | // Cost Check : |
| 903 | // OldCost = bitlogic + 2*casts |
| 904 | // NewCost = bitlogic + cast |
| 905 | |
| 906 | // Calculate specific costs for each cast with instruction context |
| 907 | InstructionCost LHSCastCost = TTI.getCastInstrCost( |
| 908 | Opcode: CastOpcode, Dst: DstTy, Src: SrcTy, CCH: TTI::CastContextHint::None, CostKind, I: LHSCast); |
| 909 | InstructionCost RHSCastCost = TTI.getCastInstrCost( |
| 910 | Opcode: CastOpcode, Dst: DstTy, Src: SrcTy, CCH: TTI::CastContextHint::None, CostKind, I: RHSCast); |
| 911 | |
| 912 | InstructionCost OldCost = |
| 913 | TTI.getArithmeticInstrCost(Opcode: BinOp->getOpcode(), Ty: DstTy, CostKind) + |
| 914 | LHSCastCost + RHSCastCost; |
| 915 | |
| 916 | // For new cost, we can't provide an instruction (it doesn't exist yet) |
| 917 | InstructionCost GenericCastCost = TTI.getCastInstrCost( |
| 918 | Opcode: CastOpcode, Dst: DstTy, Src: SrcTy, CCH: TTI::CastContextHint::None, CostKind); |
| 919 | |
| 920 | InstructionCost NewCost = |
| 921 | TTI.getArithmeticInstrCost(Opcode: BinOp->getOpcode(), Ty: SrcTy, CostKind) + |
| 922 | GenericCastCost; |
| 923 | |
| 924 | // Account for multi-use casts using specific costs |
| 925 | if (!LHSCast->hasOneUse()) |
| 926 | NewCost += LHSCastCost; |
| 927 | if (!RHSCast->hasOneUse()) |
| 928 | NewCost += RHSCastCost; |
| 929 | |
| 930 | LLVM_DEBUG(dbgs() << "foldBitOpOfCastops: OldCost=" << OldCost |
| 931 | << " NewCost=" << NewCost << "\n" ); |
| 932 | |
| 933 | if (NewCost > OldCost) |
| 934 | return false; |
| 935 | |
| 936 | // Create the operation on the source type |
| 937 | Value *NewOp = Builder.CreateBinOp(Opc: BinOp->getOpcode(), LHS: LHSSrc, RHS: RHSSrc, |
| 938 | Name: BinOp->getName() + ".inner" ); |
| 939 | if (auto *NewBinOp = dyn_cast<BinaryOperator>(Val: NewOp)) |
| 940 | NewBinOp->copyIRFlags(V: BinOp); |
| 941 | |
| 942 | Worklist.pushValue(V: NewOp); |
| 943 | |
| 944 | // Create the cast operation directly to ensure we get a new instruction |
| 945 | Instruction *NewCast = CastInst::Create(CastOpcode, S: NewOp, Ty: I.getType()); |
| 946 | |
| 947 | // Preserve cast instruction flags |
| 948 | NewCast->copyIRFlags(V: LHSCast); |
| 949 | NewCast->andIRFlags(V: RHSCast); |
| 950 | |
| 951 | // Insert the new instruction |
| 952 | Value *Result = Builder.Insert(I: NewCast); |
| 953 | |
| 954 | replaceValue(Old&: I, New&: *Result); |
| 955 | return true; |
| 956 | } |
| 957 | |
| 958 | /// Match: |
| 959 | // bitop(castop(x), C) -> |
| 960 | // bitop(castop(x), castop(InvC)) -> |
| 961 | // castop(bitop(x, InvC)) |
| 962 | // Supports: bitcast |
| 963 | bool VectorCombine::foldBitOpOfCastConstant(Instruction &I) { |
| 964 | Instruction *LHS; |
| 965 | Constant *C; |
| 966 | |
| 967 | // Check if this is a bitwise logic operation |
| 968 | if (!match(V: &I, P: m_c_BitwiseLogic(L: m_Instruction(I&: LHS), R: m_Constant(C)))) |
| 969 | return false; |
| 970 | |
| 971 | // Get the cast instructions |
| 972 | auto *LHSCast = dyn_cast<CastInst>(Val: LHS); |
| 973 | if (!LHSCast) |
| 974 | return false; |
| 975 | |
| 976 | Instruction::CastOps CastOpcode = LHSCast->getOpcode(); |
| 977 | |
| 978 | // Only handle supported cast operations |
| 979 | switch (CastOpcode) { |
| 980 | case Instruction::BitCast: |
| 981 | case Instruction::ZExt: |
| 982 | case Instruction::SExt: |
| 983 | case Instruction::Trunc: |
| 984 | break; |
| 985 | default: |
| 986 | return false; |
| 987 | } |
| 988 | |
| 989 | Value *LHSSrc = LHSCast->getOperand(i_nocapture: 0); |
| 990 | |
| 991 | auto *SrcTy = LHSSrc->getType(); |
| 992 | auto *DstTy = I.getType(); |
| 993 | // Bitcasts can handle scalar/vector mixes, such as i16 -> <16 x i1>. |
| 994 | // Other casts only handle vector types with integer elements. |
| 995 | if (CastOpcode != Instruction::BitCast && |
| 996 | (!isa<FixedVectorType>(Val: SrcTy) || !isa<FixedVectorType>(Val: DstTy))) |
| 997 | return false; |
| 998 | |
| 999 | // Only integer scalar/vector values are legal for bitwise logic operations. |
| 1000 | if (!SrcTy->getScalarType()->isIntegerTy() || |
| 1001 | !DstTy->getScalarType()->isIntegerTy()) |
| 1002 | return false; |
| 1003 | |
| 1004 | // Find the constant InvC, such that castop(InvC) equals to C. |
| 1005 | PreservedCastFlags RHSFlags; |
| 1006 | Constant *InvC = getLosslessInvCast(C, InvCastTo: SrcTy, CastOp: CastOpcode, DL: *DL, Flags: &RHSFlags); |
| 1007 | if (!InvC) |
| 1008 | return false; |
| 1009 | |
| 1010 | // Cost Check : |
| 1011 | // OldCost = bitlogic + cast |
| 1012 | // NewCost = bitlogic + cast |
| 1013 | |
| 1014 | // Calculate specific costs for each cast with instruction context |
| 1015 | InstructionCost LHSCastCost = TTI.getCastInstrCost( |
| 1016 | Opcode: CastOpcode, Dst: DstTy, Src: SrcTy, CCH: TTI::CastContextHint::None, CostKind, I: LHSCast); |
| 1017 | |
| 1018 | InstructionCost OldCost = |
| 1019 | TTI.getArithmeticInstrCost(Opcode: I.getOpcode(), Ty: DstTy, CostKind) + LHSCastCost; |
| 1020 | |
| 1021 | // For new cost, we can't provide an instruction (it doesn't exist yet) |
| 1022 | InstructionCost GenericCastCost = TTI.getCastInstrCost( |
| 1023 | Opcode: CastOpcode, Dst: DstTy, Src: SrcTy, CCH: TTI::CastContextHint::None, CostKind); |
| 1024 | |
| 1025 | InstructionCost NewCost = |
| 1026 | TTI.getArithmeticInstrCost(Opcode: I.getOpcode(), Ty: SrcTy, CostKind) + |
| 1027 | GenericCastCost; |
| 1028 | |
| 1029 | // Account for multi-use casts using specific costs |
| 1030 | if (!LHSCast->hasOneUse()) |
| 1031 | NewCost += LHSCastCost; |
| 1032 | |
| 1033 | LLVM_DEBUG(dbgs() << "foldBitOpOfCastConstant: OldCost=" << OldCost |
| 1034 | << " NewCost=" << NewCost << "\n" ); |
| 1035 | |
| 1036 | if (NewCost > OldCost) |
| 1037 | return false; |
| 1038 | |
| 1039 | // Create the operation on the source type |
| 1040 | Value *NewOp = Builder.CreateBinOp(Opc: (Instruction::BinaryOps)I.getOpcode(), |
| 1041 | LHS: LHSSrc, RHS: InvC, Name: I.getName() + ".inner" ); |
| 1042 | if (auto *NewBinOp = dyn_cast<BinaryOperator>(Val: NewOp)) |
| 1043 | NewBinOp->copyIRFlags(V: &I); |
| 1044 | |
| 1045 | Worklist.pushValue(V: NewOp); |
| 1046 | |
| 1047 | // Create the cast operation directly to ensure we get a new instruction |
| 1048 | Instruction *NewCast = CastInst::Create(CastOpcode, S: NewOp, Ty: I.getType()); |
| 1049 | |
| 1050 | // Preserve cast instruction flags |
| 1051 | if (RHSFlags.NNeg) |
| 1052 | NewCast->setNonNeg(); |
| 1053 | if (RHSFlags.NUW) |
| 1054 | NewCast->setHasNoUnsignedWrap(); |
| 1055 | if (RHSFlags.NSW) |
| 1056 | NewCast->setHasNoSignedWrap(); |
| 1057 | |
| 1058 | NewCast->andIRFlags(V: LHSCast); |
| 1059 | |
| 1060 | // Insert the new instruction |
| 1061 | Value *Result = Builder.Insert(I: NewCast); |
| 1062 | |
| 1063 | replaceValue(Old&: I, New&: *Result); |
| 1064 | return true; |
| 1065 | } |
| 1066 | |
| 1067 | /// If this is a bitcast of a shuffle, try to bitcast the source vector to the |
| 1068 | /// destination type followed by shuffle. This can enable further transforms by |
| 1069 | /// moving bitcasts or shuffles together. |
| 1070 | bool VectorCombine::foldBitcastShuffle(Instruction &I) { |
| 1071 | Value *V0, *V1; |
| 1072 | ArrayRef<int> Mask; |
| 1073 | if (!match(V: &I, P: m_BitCast(Op: m_OneUse( |
| 1074 | SubPattern: m_Shuffle(v1: m_Value(V&: V0), v2: m_Value(V&: V1), mask: m_Mask(Mask)))))) |
| 1075 | return false; |
| 1076 | |
| 1077 | // 1) Do not fold bitcast shuffle for scalable type. First, shuffle cost for |
| 1078 | // scalable type is unknown; Second, we cannot reason if the narrowed shuffle |
| 1079 | // mask for scalable type is a splat or not. |
| 1080 | // 2) Disallow non-vector casts. |
| 1081 | // TODO: We could allow any shuffle. |
| 1082 | auto *DestTy = dyn_cast<FixedVectorType>(Val: I.getType()); |
| 1083 | auto *SrcTy = dyn_cast<FixedVectorType>(Val: V0->getType()); |
| 1084 | if (!DestTy || !SrcTy) |
| 1085 | return false; |
| 1086 | |
| 1087 | unsigned DestEltSize = DestTy->getScalarSizeInBits(); |
| 1088 | unsigned SrcEltSize = SrcTy->getScalarSizeInBits(); |
| 1089 | if (SrcTy->getPrimitiveSizeInBits() % DestEltSize != 0) |
| 1090 | return false; |
| 1091 | |
| 1092 | bool IsUnary = isa<UndefValue>(Val: V1); |
| 1093 | |
| 1094 | // For binary shuffles, only fold bitcast(shuffle(X,Y)) |
| 1095 | // if it won't increase the number of bitcasts. |
| 1096 | if (!IsUnary) { |
| 1097 | auto *BCTy0 = dyn_cast<FixedVectorType>(Val: peekThroughBitcasts(V: V0)->getType()); |
| 1098 | auto *BCTy1 = dyn_cast<FixedVectorType>(Val: peekThroughBitcasts(V: V1)->getType()); |
| 1099 | if (!(BCTy0 && BCTy0->getElementType() == DestTy->getElementType()) && |
| 1100 | !(BCTy1 && BCTy1->getElementType() == DestTy->getElementType())) |
| 1101 | return false; |
| 1102 | } |
| 1103 | |
| 1104 | SmallVector<int, 16> NewMask; |
| 1105 | if (DestEltSize <= SrcEltSize) { |
| 1106 | // The bitcast is from wide to narrow/equal elements. The shuffle mask can |
| 1107 | // always be expanded to the equivalent form choosing narrower elements. |
| 1108 | assert(SrcEltSize % DestEltSize == 0 && "Unexpected shuffle mask" ); |
| 1109 | unsigned ScaleFactor = SrcEltSize / DestEltSize; |
| 1110 | narrowShuffleMaskElts(Scale: ScaleFactor, Mask, ScaledMask&: NewMask); |
| 1111 | } else { |
| 1112 | // The bitcast is from narrow elements to wide elements. The shuffle mask |
| 1113 | // must choose consecutive elements to allow casting first. |
| 1114 | assert(DestEltSize % SrcEltSize == 0 && "Unexpected shuffle mask" ); |
| 1115 | unsigned ScaleFactor = DestEltSize / SrcEltSize; |
| 1116 | if (!widenShuffleMaskElts(Scale: ScaleFactor, Mask, ScaledMask&: NewMask)) |
| 1117 | return false; |
| 1118 | } |
| 1119 | |
| 1120 | // Bitcast the shuffle src - keep its original width but using the destination |
| 1121 | // scalar type. |
| 1122 | unsigned NumSrcElts = SrcTy->getPrimitiveSizeInBits() / DestEltSize; |
| 1123 | auto *NewShuffleTy = |
| 1124 | FixedVectorType::get(ElementType: DestTy->getScalarType(), NumElts: NumSrcElts); |
| 1125 | auto *OldShuffleTy = |
| 1126 | FixedVectorType::get(ElementType: SrcTy->getScalarType(), NumElts: Mask.size()); |
| 1127 | unsigned NumOps = IsUnary ? 1 : 2; |
| 1128 | |
| 1129 | // The new shuffle must not cost more than the old shuffle. |
| 1130 | TargetTransformInfo::ShuffleKind SK = |
| 1131 | IsUnary ? TargetTransformInfo::SK_PermuteSingleSrc |
| 1132 | : TargetTransformInfo::SK_PermuteTwoSrc; |
| 1133 | |
| 1134 | InstructionCost NewCost = |
| 1135 | TTI.getShuffleCost(Kind: SK, DstTy: DestTy, SrcTy: NewShuffleTy, Mask: NewMask, CostKind) + |
| 1136 | (NumOps * TTI.getCastInstrCost(Opcode: Instruction::BitCast, Dst: NewShuffleTy, Src: SrcTy, |
| 1137 | CCH: TargetTransformInfo::CastContextHint::None, |
| 1138 | CostKind)); |
| 1139 | InstructionCost OldCost = |
| 1140 | TTI.getShuffleCost(Kind: SK, DstTy: OldShuffleTy, SrcTy, Mask, CostKind) + |
| 1141 | TTI.getCastInstrCost(Opcode: Instruction::BitCast, Dst: DestTy, Src: OldShuffleTy, |
| 1142 | CCH: TargetTransformInfo::CastContextHint::None, |
| 1143 | CostKind); |
| 1144 | |
| 1145 | LLVM_DEBUG(dbgs() << "Found a bitcasted shuffle: " << I << "\n OldCost: " |
| 1146 | << OldCost << " vs NewCost: " << NewCost << "\n" ); |
| 1147 | |
| 1148 | if (NewCost > OldCost || !NewCost.isValid()) |
| 1149 | return false; |
| 1150 | |
| 1151 | // bitcast (shuf V0, V1, MaskC) --> shuf (bitcast V0), (bitcast V1), MaskC' |
| 1152 | ++NumShufOfBitcast; |
| 1153 | Value *CastV0 = Builder.CreateBitCast(V: peekThroughBitcasts(V: V0), DestTy: NewShuffleTy); |
| 1154 | Value *CastV1 = Builder.CreateBitCast(V: peekThroughBitcasts(V: V1), DestTy: NewShuffleTy); |
| 1155 | Value *Shuf = Builder.CreateShuffleVector(V1: CastV0, V2: CastV1, Mask: NewMask); |
| 1156 | replaceValue(Old&: I, New&: *Shuf); |
| 1157 | return true; |
| 1158 | } |
| 1159 | |
| 1160 | /// VP Intrinsics whose vector operands are both splat values may be simplified |
| 1161 | /// into the scalar version of the operation and the result splatted. This |
| 1162 | /// can lead to scalarization down the line. |
| 1163 | bool VectorCombine::scalarizeVPIntrinsic(Instruction &I) { |
| 1164 | if (!isa<VPIntrinsic>(Val: I)) |
| 1165 | return false; |
| 1166 | VPIntrinsic &VPI = cast<VPIntrinsic>(Val&: I); |
| 1167 | Value *Op0 = VPI.getArgOperand(i: 0); |
| 1168 | Value *Op1 = VPI.getArgOperand(i: 1); |
| 1169 | |
| 1170 | if (!isSplatValue(V: Op0) || !isSplatValue(V: Op1)) |
| 1171 | return false; |
| 1172 | |
| 1173 | // Check getSplatValue early in this function, to avoid doing unnecessary |
| 1174 | // work. |
| 1175 | Value *ScalarOp0 = getSplatValue(V: Op0); |
| 1176 | Value *ScalarOp1 = getSplatValue(V: Op1); |
| 1177 | if (!ScalarOp0 || !ScalarOp1) |
| 1178 | return false; |
| 1179 | |
| 1180 | // For the binary VP intrinsics supported here, the result on disabled lanes |
| 1181 | // is a poison value. For now, only do this simplification if all lanes |
| 1182 | // are active. |
| 1183 | // TODO: Relax the condition that all lanes are active by using insertelement |
| 1184 | // on inactive lanes. |
| 1185 | auto IsAllTrueMask = [](Value *MaskVal) { |
| 1186 | if (Value *SplattedVal = getSplatValue(V: MaskVal)) |
| 1187 | if (auto *ConstValue = dyn_cast<Constant>(Val: SplattedVal)) |
| 1188 | return ConstValue->isAllOnesValue(); |
| 1189 | return false; |
| 1190 | }; |
| 1191 | if (!IsAllTrueMask(VPI.getArgOperand(i: 2))) |
| 1192 | return false; |
| 1193 | |
| 1194 | // Check to make sure we support scalarization of the intrinsic |
| 1195 | Intrinsic::ID IntrID = VPI.getIntrinsicID(); |
| 1196 | if (!VPBinOpIntrinsic::isVPBinOp(ID: IntrID)) |
| 1197 | return false; |
| 1198 | |
| 1199 | // Calculate cost of splatting both operands into vectors and the vector |
| 1200 | // intrinsic |
| 1201 | VectorType *VecTy = cast<VectorType>(Val: VPI.getType()); |
| 1202 | SmallVector<int> Mask; |
| 1203 | if (auto *FVTy = dyn_cast<FixedVectorType>(Val: VecTy)) |
| 1204 | Mask.resize(N: FVTy->getNumElements(), NV: 0); |
| 1205 | InstructionCost SplatCost = |
| 1206 | TTI.getVectorInstrCost(Opcode: Instruction::InsertElement, Val: VecTy, CostKind, Index: 0) + |
| 1207 | TTI.getShuffleCost(Kind: TargetTransformInfo::SK_Broadcast, DstTy: VecTy, SrcTy: VecTy, Mask, |
| 1208 | CostKind); |
| 1209 | |
| 1210 | // Calculate the cost of the VP Intrinsic |
| 1211 | SmallVector<Type *, 4> Args; |
| 1212 | for (Value *V : VPI.args()) |
| 1213 | Args.push_back(Elt: V->getType()); |
| 1214 | IntrinsicCostAttributes Attrs(IntrID, VecTy, Args); |
| 1215 | InstructionCost VectorOpCost = TTI.getIntrinsicInstrCost(ICA: Attrs, CostKind); |
| 1216 | InstructionCost OldCost = 2 * SplatCost + VectorOpCost; |
| 1217 | |
| 1218 | // Determine scalar opcode |
| 1219 | std::optional<unsigned> FunctionalOpcode = |
| 1220 | VPI.getFunctionalOpcode(); |
| 1221 | std::optional<Intrinsic::ID> ScalarIntrID = std::nullopt; |
| 1222 | if (!FunctionalOpcode) { |
| 1223 | ScalarIntrID = VPI.getFunctionalIntrinsicID(); |
| 1224 | if (!ScalarIntrID) |
| 1225 | return false; |
| 1226 | } |
| 1227 | |
| 1228 | // Calculate cost of scalarizing |
| 1229 | InstructionCost ScalarOpCost = 0; |
| 1230 | if (ScalarIntrID) { |
| 1231 | IntrinsicCostAttributes Attrs(*ScalarIntrID, VecTy->getScalarType(), Args); |
| 1232 | ScalarOpCost = TTI.getIntrinsicInstrCost(ICA: Attrs, CostKind); |
| 1233 | } else { |
| 1234 | ScalarOpCost = TTI.getArithmeticInstrCost(Opcode: *FunctionalOpcode, |
| 1235 | Ty: VecTy->getScalarType(), CostKind); |
| 1236 | } |
| 1237 | |
| 1238 | // The existing splats may be kept around if other instructions use them. |
| 1239 | InstructionCost CostToKeepSplats = |
| 1240 | (SplatCost * !Op0->hasOneUse()) + (SplatCost * !Op1->hasOneUse()); |
| 1241 | InstructionCost NewCost = ScalarOpCost + SplatCost + CostToKeepSplats; |
| 1242 | |
| 1243 | LLVM_DEBUG(dbgs() << "Found a VP Intrinsic to scalarize: " << VPI |
| 1244 | << "\n" ); |
| 1245 | LLVM_DEBUG(dbgs() << "Cost of Intrinsic: " << OldCost |
| 1246 | << ", Cost of scalarizing:" << NewCost << "\n" ); |
| 1247 | |
| 1248 | // We want to scalarize unless the vector variant actually has lower cost. |
| 1249 | if (OldCost < NewCost || !NewCost.isValid()) |
| 1250 | return false; |
| 1251 | |
| 1252 | // Scalarize the intrinsic |
| 1253 | ElementCount EC = cast<VectorType>(Val: Op0->getType())->getElementCount(); |
| 1254 | Value *EVL = VPI.getArgOperand(i: 3); |
| 1255 | |
| 1256 | // If the VP op might introduce UB or poison, we can scalarize it provided |
| 1257 | // that we know the EVL > 0: If the EVL is zero, then the original VP op |
| 1258 | // becomes a no-op and thus won't be UB, so make sure we don't introduce UB by |
| 1259 | // scalarizing it. |
| 1260 | bool SafeToSpeculate; |
| 1261 | if (ScalarIntrID) |
| 1262 | SafeToSpeculate = Intrinsic::getFnAttributes(C&: I.getContext(), id: *ScalarIntrID) |
| 1263 | .hasAttribute(Kind: Attribute::AttrKind::Speculatable); |
| 1264 | else |
| 1265 | SafeToSpeculate = isSafeToSpeculativelyExecuteWithOpcode( |
| 1266 | Opcode: *FunctionalOpcode, Inst: &VPI, CtxI: nullptr, AC: &AC, DT: &DT); |
| 1267 | if (!SafeToSpeculate && |
| 1268 | !isKnownNonZero(V: EVL, Q: SimplifyQuery(*DL, &DT, &AC, &VPI))) |
| 1269 | return false; |
| 1270 | |
| 1271 | Value *ScalarVal = |
| 1272 | ScalarIntrID |
| 1273 | ? Builder.CreateIntrinsic(RetTy: VecTy->getScalarType(), ID: *ScalarIntrID, |
| 1274 | Args: {ScalarOp0, ScalarOp1}) |
| 1275 | : Builder.CreateBinOp(Opc: (Instruction::BinaryOps)(*FunctionalOpcode), |
| 1276 | LHS: ScalarOp0, RHS: ScalarOp1); |
| 1277 | |
| 1278 | replaceValue(Old&: VPI, New&: *Builder.CreateVectorSplat(EC, V: ScalarVal)); |
| 1279 | return true; |
| 1280 | } |
| 1281 | |
| 1282 | /// Match a vector op/compare/intrinsic with at least one |
| 1283 | /// inserted scalar operand and convert to scalar op/cmp/intrinsic followed |
| 1284 | /// by insertelement. |
| 1285 | bool VectorCombine::scalarizeOpOrCmp(Instruction &I) { |
| 1286 | auto *UO = dyn_cast<UnaryOperator>(Val: &I); |
| 1287 | auto *BO = dyn_cast<BinaryOperator>(Val: &I); |
| 1288 | auto *CI = dyn_cast<CmpInst>(Val: &I); |
| 1289 | auto *II = dyn_cast<IntrinsicInst>(Val: &I); |
| 1290 | if (!UO && !BO && !CI && !II) |
| 1291 | return false; |
| 1292 | |
| 1293 | // TODO: Allow intrinsics with different argument types |
| 1294 | if (II) { |
| 1295 | if (!isTriviallyVectorizable(ID: II->getIntrinsicID())) |
| 1296 | return false; |
| 1297 | for (auto [Idx, Arg] : enumerate(First: II->args())) |
| 1298 | if (Arg->getType() != II->getType() && |
| 1299 | !isVectorIntrinsicWithScalarOpAtArg(ID: II->getIntrinsicID(), ScalarOpdIdx: Idx, TTI: &TTI)) |
| 1300 | return false; |
| 1301 | } |
| 1302 | |
| 1303 | // Do not convert the vector condition of a vector select into a scalar |
| 1304 | // condition. That may cause problems for codegen because of differences in |
| 1305 | // boolean formats and register-file transfers. |
| 1306 | // TODO: Can we account for that in the cost model? |
| 1307 | if (CI) |
| 1308 | for (User *U : I.users()) |
| 1309 | if (match(V: U, P: m_Select(C: m_Specific(V: &I), L: m_Value(), R: m_Value()))) |
| 1310 | return false; |
| 1311 | |
| 1312 | // Match constant vectors or scalars being inserted into constant vectors: |
| 1313 | // vec_op [VecC0 | (inselt VecC0, V0, Index)], ... |
| 1314 | SmallVector<Value *> VecCs, ScalarOps; |
| 1315 | std::optional<uint64_t> Index; |
| 1316 | |
| 1317 | auto Ops = II ? II->args() : I.operands(); |
| 1318 | for (auto [OpNum, Op] : enumerate(First&: Ops)) { |
| 1319 | Constant *VecC; |
| 1320 | Value *V; |
| 1321 | uint64_t InsIdx = 0; |
| 1322 | if (match(V: Op.get(), P: m_InsertElt(Val: m_Constant(C&: VecC), Elt: m_Value(V), |
| 1323 | Idx: m_ConstantInt(V&: InsIdx)))) { |
| 1324 | // Bail if any inserts are out of bounds. |
| 1325 | VectorType *OpTy = cast<VectorType>(Val: Op->getType()); |
| 1326 | if (OpTy->getElementCount().getKnownMinValue() <= InsIdx) |
| 1327 | return false; |
| 1328 | // All inserts must have the same index. |
| 1329 | // TODO: Deal with mismatched index constants and variable indexes? |
| 1330 | if (!Index) |
| 1331 | Index = InsIdx; |
| 1332 | else if (InsIdx != *Index) |
| 1333 | return false; |
| 1334 | VecCs.push_back(Elt: VecC); |
| 1335 | ScalarOps.push_back(Elt: V); |
| 1336 | } else if (II && isVectorIntrinsicWithScalarOpAtArg(ID: II->getIntrinsicID(), |
| 1337 | ScalarOpdIdx: OpNum, TTI: &TTI)) { |
| 1338 | VecCs.push_back(Elt: Op.get()); |
| 1339 | ScalarOps.push_back(Elt: Op.get()); |
| 1340 | } else if (match(V: Op.get(), P: m_Constant(C&: VecC))) { |
| 1341 | VecCs.push_back(Elt: VecC); |
| 1342 | ScalarOps.push_back(Elt: nullptr); |
| 1343 | } else { |
| 1344 | return false; |
| 1345 | } |
| 1346 | } |
| 1347 | |
| 1348 | // Bail if all operands are constant. |
| 1349 | if (!Index.has_value()) |
| 1350 | return false; |
| 1351 | |
| 1352 | VectorType *VecTy = cast<VectorType>(Val: I.getType()); |
| 1353 | Type *ScalarTy = VecTy->getScalarType(); |
| 1354 | assert(VecTy->isVectorTy() && |
| 1355 | (ScalarTy->isIntegerTy() || ScalarTy->isFloatingPointTy() || |
| 1356 | ScalarTy->isPointerTy()) && |
| 1357 | "Unexpected types for insert element into binop or cmp" ); |
| 1358 | |
| 1359 | unsigned Opcode = I.getOpcode(); |
| 1360 | InstructionCost ScalarOpCost, VectorOpCost; |
| 1361 | if (CI) { |
| 1362 | CmpInst::Predicate Pred = CI->getPredicate(); |
| 1363 | ScalarOpCost = TTI.getCmpSelInstrCost( |
| 1364 | Opcode, ValTy: ScalarTy, CondTy: CmpInst::makeCmpResultType(opnd_type: ScalarTy), VecPred: Pred, CostKind); |
| 1365 | VectorOpCost = TTI.getCmpSelInstrCost( |
| 1366 | Opcode, ValTy: VecTy, CondTy: CmpInst::makeCmpResultType(opnd_type: VecTy), VecPred: Pred, CostKind); |
| 1367 | } else if (UO || BO) { |
| 1368 | ScalarOpCost = TTI.getArithmeticInstrCost(Opcode, Ty: ScalarTy, CostKind); |
| 1369 | VectorOpCost = TTI.getArithmeticInstrCost(Opcode, Ty: VecTy, CostKind); |
| 1370 | } else { |
| 1371 | IntrinsicCostAttributes ScalarICA( |
| 1372 | II->getIntrinsicID(), ScalarTy, |
| 1373 | SmallVector<Type *>(II->arg_size(), ScalarTy)); |
| 1374 | ScalarOpCost = TTI.getIntrinsicInstrCost(ICA: ScalarICA, CostKind); |
| 1375 | IntrinsicCostAttributes VectorICA( |
| 1376 | II->getIntrinsicID(), VecTy, |
| 1377 | SmallVector<Type *>(II->arg_size(), VecTy)); |
| 1378 | VectorOpCost = TTI.getIntrinsicInstrCost(ICA: VectorICA, CostKind); |
| 1379 | } |
| 1380 | |
| 1381 | // Fold the vector constants in the original vectors into a new base vector to |
| 1382 | // get more accurate cost modelling. |
| 1383 | Value *NewVecC = nullptr; |
| 1384 | if (CI) |
| 1385 | NewVecC = simplifyCmpInst(Predicate: CI->getPredicate(), LHS: VecCs[0], RHS: VecCs[1], Q: SQ); |
| 1386 | else if (UO) |
| 1387 | NewVecC = |
| 1388 | simplifyUnOp(Opcode: UO->getOpcode(), Op: VecCs[0], FMF: UO->getFastMathFlags(), Q: SQ); |
| 1389 | else if (BO) |
| 1390 | NewVecC = simplifyBinOp(Opcode: BO->getOpcode(), LHS: VecCs[0], RHS: VecCs[1], Q: SQ); |
| 1391 | else if (II) |
| 1392 | NewVecC = simplifyCall(Call: II, Callee: II->getCalledOperand(), Args: VecCs, Q: SQ); |
| 1393 | |
| 1394 | if (!NewVecC) |
| 1395 | return false; |
| 1396 | |
| 1397 | // Get cost estimate for the insert element. This cost will factor into |
| 1398 | // both sequences. |
| 1399 | InstructionCost OldCost = VectorOpCost; |
| 1400 | InstructionCost NewCost = |
| 1401 | ScalarOpCost + TTI.getVectorInstrCost(Opcode: Instruction::InsertElement, Val: VecTy, |
| 1402 | CostKind, Index: *Index, Op0: NewVecC); |
| 1403 | |
| 1404 | for (auto [Idx, Op, VecC, Scalar] : enumerate(First&: Ops, Rest&: VecCs, Rest&: ScalarOps)) { |
| 1405 | if (!Scalar || (II && isVectorIntrinsicWithScalarOpAtArg( |
| 1406 | ID: II->getIntrinsicID(), ScalarOpdIdx: Idx, TTI: &TTI))) |
| 1407 | continue; |
| 1408 | InstructionCost InsertCost = TTI.getVectorInstrCost( |
| 1409 | Opcode: Instruction::InsertElement, Val: VecTy, CostKind, Index: *Index, Op0: VecC, Op1: Scalar); |
| 1410 | OldCost += InsertCost; |
| 1411 | NewCost += !Op->hasOneUse() * InsertCost; |
| 1412 | } |
| 1413 | |
| 1414 | // We want to scalarize unless the vector variant actually has lower cost. |
| 1415 | if (OldCost < NewCost || !NewCost.isValid()) |
| 1416 | return false; |
| 1417 | |
| 1418 | // vec_op (inselt VecC0, V0, Index), (inselt VecC1, V1, Index) --> |
| 1419 | // inselt NewVecC, (scalar_op V0, V1), Index |
| 1420 | if (CI) |
| 1421 | ++NumScalarCmp; |
| 1422 | else if (UO || BO) |
| 1423 | ++NumScalarOps; |
| 1424 | else |
| 1425 | ++NumScalarIntrinsic; |
| 1426 | |
| 1427 | // For constant cases, extract the scalar element, this should constant fold. |
| 1428 | for (auto [OpIdx, Scalar, VecC] : enumerate(First&: ScalarOps, Rest&: VecCs)) |
| 1429 | if (!Scalar) |
| 1430 | ScalarOps[OpIdx] = ConstantExpr::getExtractElement( |
| 1431 | Vec: cast<Constant>(Val: VecC), Idx: Builder.getInt64(C: *Index)); |
| 1432 | |
| 1433 | Value *Scalar; |
| 1434 | if (CI) |
| 1435 | Scalar = Builder.CreateCmp(Pred: CI->getPredicate(), LHS: ScalarOps[0], RHS: ScalarOps[1]); |
| 1436 | else if (UO || BO) |
| 1437 | Scalar = Builder.CreateNAryOp(Opc: Opcode, Ops: ScalarOps); |
| 1438 | else |
| 1439 | Scalar = Builder.CreateIntrinsic(RetTy: ScalarTy, ID: II->getIntrinsicID(), Args: ScalarOps); |
| 1440 | |
| 1441 | Scalar->setName(I.getName() + ".scalar" ); |
| 1442 | |
| 1443 | // All IR flags are safe to back-propagate. There is no potential for extra |
| 1444 | // poison to be created by the scalar instruction. |
| 1445 | if (auto *ScalarInst = dyn_cast<Instruction>(Val: Scalar)) |
| 1446 | ScalarInst->copyIRFlags(V: &I); |
| 1447 | |
| 1448 | Value *Insert = Builder.CreateInsertElement(Vec: NewVecC, NewElt: Scalar, Idx: *Index); |
| 1449 | replaceValue(Old&: I, New&: *Insert); |
| 1450 | return true; |
| 1451 | } |
| 1452 | |
| 1453 | /// Try to combine a scalar binop + 2 scalar compares of extracted elements of |
| 1454 | /// a vector into vector operations followed by extract. Note: The SLP pass |
| 1455 | /// may miss this pattern because of implementation problems. |
| 1456 | bool VectorCombine::(Instruction &I) { |
| 1457 | auto *BI = dyn_cast<BinaryOperator>(Val: &I); |
| 1458 | |
| 1459 | // We are looking for a scalar binop of booleans. |
| 1460 | // binop i1 (cmp Pred I0, C0), (cmp Pred I1, C1) |
| 1461 | if (!BI || !I.getType()->isIntegerTy(Bitwidth: 1)) |
| 1462 | return false; |
| 1463 | |
| 1464 | // The compare predicates should match, and each compare should have a |
| 1465 | // constant operand. |
| 1466 | Value *B0 = I.getOperand(i: 0), *B1 = I.getOperand(i: 1); |
| 1467 | Instruction *I0, *I1; |
| 1468 | Constant *C0, *C1; |
| 1469 | CmpPredicate P0, P1; |
| 1470 | if (!match(V: B0, P: m_Cmp(Pred&: P0, L: m_Instruction(I&: I0), R: m_Constant(C&: C0))) || |
| 1471 | !match(V: B1, P: m_Cmp(Pred&: P1, L: m_Instruction(I&: I1), R: m_Constant(C&: C1)))) |
| 1472 | return false; |
| 1473 | |
| 1474 | auto MatchingPred = CmpPredicate::getMatching(A: P0, B: P1); |
| 1475 | if (!MatchingPred) |
| 1476 | return false; |
| 1477 | |
| 1478 | // The compare operands must be extracts of the same vector with constant |
| 1479 | // extract indexes. |
| 1480 | Value *X; |
| 1481 | uint64_t Index0, Index1; |
| 1482 | if (!match(V: I0, P: m_ExtractElt(Val: m_Value(V&: X), Idx: m_ConstantInt(V&: Index0))) || |
| 1483 | !match(V: I1, P: m_ExtractElt(Val: m_Specific(V: X), Idx: m_ConstantInt(V&: Index1)))) |
| 1484 | return false; |
| 1485 | |
| 1486 | auto *Ext0 = cast<ExtractElementInst>(Val: I0); |
| 1487 | auto *Ext1 = cast<ExtractElementInst>(Val: I1); |
| 1488 | ExtractElementInst *ConvertToShuf = getShuffleExtract(Ext0, Ext1, PreferredExtractIndex: CostKind); |
| 1489 | if (!ConvertToShuf) |
| 1490 | return false; |
| 1491 | assert((ConvertToShuf == Ext0 || ConvertToShuf == Ext1) && |
| 1492 | "Unknown ExtractElementInst" ); |
| 1493 | |
| 1494 | // The original scalar pattern is: |
| 1495 | // binop i1 (cmp Pred (ext X, Index0), C0), (cmp Pred (ext X, Index1), C1) |
| 1496 | CmpInst::Predicate Pred = *MatchingPred; |
| 1497 | unsigned CmpOpcode = |
| 1498 | CmpInst::isFPPredicate(P: Pred) ? Instruction::FCmp : Instruction::ICmp; |
| 1499 | auto *VecTy = dyn_cast<FixedVectorType>(Val: X->getType()); |
| 1500 | if (!VecTy) |
| 1501 | return false; |
| 1502 | |
| 1503 | InstructionCost Ext0Cost = |
| 1504 | TTI.getVectorInstrCost(I: *Ext0, Val: VecTy, CostKind, Index: Index0); |
| 1505 | InstructionCost Ext1Cost = |
| 1506 | TTI.getVectorInstrCost(I: *Ext1, Val: VecTy, CostKind, Index: Index1); |
| 1507 | InstructionCost CmpCost = TTI.getCmpSelInstrCost( |
| 1508 | Opcode: CmpOpcode, ValTy: I0->getType(), CondTy: CmpInst::makeCmpResultType(opnd_type: I0->getType()), VecPred: Pred, |
| 1509 | CostKind); |
| 1510 | |
| 1511 | InstructionCost OldCost = |
| 1512 | Ext0Cost + Ext1Cost + CmpCost * 2 + |
| 1513 | TTI.getArithmeticInstrCost(Opcode: I.getOpcode(), Ty: I.getType(), CostKind); |
| 1514 | |
| 1515 | // The proposed vector pattern is: |
| 1516 | // vcmp = cmp Pred X, VecC |
| 1517 | // ext (binop vNi1 vcmp, (shuffle vcmp, Index1)), Index0 |
| 1518 | int CheapIndex = ConvertToShuf == Ext0 ? Index1 : Index0; |
| 1519 | int ExpensiveIndex = ConvertToShuf == Ext0 ? Index0 : Index1; |
| 1520 | auto *CmpTy = cast<FixedVectorType>(Val: CmpInst::makeCmpResultType(opnd_type: VecTy)); |
| 1521 | InstructionCost NewCost = TTI.getCmpSelInstrCost( |
| 1522 | Opcode: CmpOpcode, ValTy: VecTy, CondTy: CmpInst::makeCmpResultType(opnd_type: VecTy), VecPred: Pred, CostKind); |
| 1523 | SmallVector<int, 32> ShufMask(VecTy->getNumElements(), PoisonMaskElem); |
| 1524 | ShufMask[CheapIndex] = ExpensiveIndex; |
| 1525 | NewCost += TTI.getShuffleCost(Kind: TargetTransformInfo::SK_PermuteSingleSrc, DstTy: CmpTy, |
| 1526 | SrcTy: CmpTy, Mask: ShufMask, CostKind); |
| 1527 | NewCost += TTI.getArithmeticInstrCost(Opcode: I.getOpcode(), Ty: CmpTy, CostKind); |
| 1528 | NewCost += TTI.getVectorInstrCost(I: *Ext0, Val: CmpTy, CostKind, Index: CheapIndex); |
| 1529 | NewCost += Ext0->hasOneUse() ? 0 : Ext0Cost; |
| 1530 | NewCost += Ext1->hasOneUse() ? 0 : Ext1Cost; |
| 1531 | |
| 1532 | // Aggressively form vector ops if the cost is equal because the transform |
| 1533 | // may enable further optimization. |
| 1534 | // Codegen can reverse this transform (scalarize) if it was not profitable. |
| 1535 | if (OldCost < NewCost || !NewCost.isValid()) |
| 1536 | return false; |
| 1537 | |
| 1538 | // Create a vector constant from the 2 scalar constants. |
| 1539 | SmallVector<Constant *, 32> CmpC(VecTy->getNumElements(), |
| 1540 | PoisonValue::get(T: VecTy->getElementType())); |
| 1541 | CmpC[Index0] = C0; |
| 1542 | CmpC[Index1] = C1; |
| 1543 | Value *VCmp = Builder.CreateCmp(Pred, LHS: X, RHS: ConstantVector::get(V: CmpC)); |
| 1544 | Value *Shuf = createShiftShuffle(Vec: VCmp, OldIndex: ExpensiveIndex, NewIndex: CheapIndex, Builder); |
| 1545 | Value *LHS = ConvertToShuf == Ext0 ? Shuf : VCmp; |
| 1546 | Value *RHS = ConvertToShuf == Ext0 ? VCmp : Shuf; |
| 1547 | Value *VecLogic = Builder.CreateBinOp(Opc: BI->getOpcode(), LHS, RHS); |
| 1548 | Value *NewExt = Builder.CreateExtractElement(Vec: VecLogic, Idx: CheapIndex); |
| 1549 | replaceValue(Old&: I, New&: *NewExt); |
| 1550 | ++NumVecCmpBO; |
| 1551 | return true; |
| 1552 | } |
| 1553 | |
| 1554 | /// Try to fold scalar selects that select between extracted elements and zero |
| 1555 | /// into extracting from a vector select. This is rooted at the bitcast. |
| 1556 | /// |
| 1557 | /// This pattern arises when a vector is bitcast to a smaller element type, |
| 1558 | /// elements are extracted, and then conditionally selected with zero: |
| 1559 | /// |
| 1560 | /// %bc = bitcast <4 x i32> %src to <16 x i8> |
| 1561 | /// %e0 = extractelement <16 x i8> %bc, i32 0 |
| 1562 | /// %s0 = select i1 %cond, i8 %e0, i8 0 |
| 1563 | /// %e1 = extractelement <16 x i8> %bc, i32 1 |
| 1564 | /// %s1 = select i1 %cond, i8 %e1, i8 0 |
| 1565 | /// ... |
| 1566 | /// |
| 1567 | /// Transforms to: |
| 1568 | /// %sel = select i1 %cond, <4 x i32> %src, <4 x i32> zeroinitializer |
| 1569 | /// %bc = bitcast <4 x i32> %sel to <16 x i8> |
| 1570 | /// %e0 = extractelement <16 x i8> %bc, i32 0 |
| 1571 | /// %e1 = extractelement <16 x i8> %bc, i32 1 |
| 1572 | /// ... |
| 1573 | /// |
| 1574 | /// This is profitable because vector select on wider types produces fewer |
| 1575 | /// select/cndmask instructions than scalar selects on each element. |
| 1576 | bool VectorCombine::foldSelectsFromBitcast(Instruction &I) { |
| 1577 | auto *BC = dyn_cast<BitCastInst>(Val: &I); |
| 1578 | if (!BC) |
| 1579 | return false; |
| 1580 | |
| 1581 | FixedVectorType *SrcVecTy = dyn_cast<FixedVectorType>(Val: BC->getSrcTy()); |
| 1582 | FixedVectorType *DstVecTy = dyn_cast<FixedVectorType>(Val: BC->getDestTy()); |
| 1583 | if (!SrcVecTy || !DstVecTy) |
| 1584 | return false; |
| 1585 | |
| 1586 | // Source must be 32-bit or 64-bit elements, destination must be smaller |
| 1587 | // integer elements. Zero in all these types is all-bits-zero. |
| 1588 | Type *SrcEltTy = SrcVecTy->getElementType(); |
| 1589 | Type *DstEltTy = DstVecTy->getElementType(); |
| 1590 | unsigned SrcEltBits = SrcEltTy->getPrimitiveSizeInBits(); |
| 1591 | unsigned DstEltBits = DstEltTy->getPrimitiveSizeInBits(); |
| 1592 | |
| 1593 | if (SrcEltBits != 32 && SrcEltBits != 64) |
| 1594 | return false; |
| 1595 | |
| 1596 | if (!DstEltTy->isIntegerTy() || DstEltBits >= SrcEltBits) |
| 1597 | return false; |
| 1598 | |
| 1599 | // Check profitability using TTI before collecting users. |
| 1600 | Type *CondTy = CmpInst::makeCmpResultType(opnd_type: DstEltTy); |
| 1601 | Type *VecCondTy = CmpInst::makeCmpResultType(opnd_type: SrcVecTy); |
| 1602 | |
| 1603 | InstructionCost ScalarSelCost = |
| 1604 | TTI.getCmpSelInstrCost(Opcode: Instruction::Select, ValTy: DstEltTy, CondTy, |
| 1605 | VecPred: CmpInst::BAD_ICMP_PREDICATE, CostKind); |
| 1606 | InstructionCost VecSelCost = |
| 1607 | TTI.getCmpSelInstrCost(Opcode: Instruction::Select, ValTy: SrcVecTy, CondTy: VecCondTy, |
| 1608 | VecPred: CmpInst::BAD_ICMP_PREDICATE, CostKind); |
| 1609 | |
| 1610 | // We need at least this many selects for vectorization to be profitable. |
| 1611 | // VecSelCost < ScalarSelCost * NumSelects => NumSelects > VecSelCost / |
| 1612 | // ScalarSelCost |
| 1613 | if (!ScalarSelCost.isValid() || ScalarSelCost == 0) |
| 1614 | return false; |
| 1615 | |
| 1616 | unsigned MinSelects = (VecSelCost.getValue() / ScalarSelCost.getValue()) + 1; |
| 1617 | |
| 1618 | // Quick check: if bitcast doesn't have enough users, bail early. |
| 1619 | if (!BC->hasNUsesOrMore(N: MinSelects)) |
| 1620 | return false; |
| 1621 | |
| 1622 | // Collect all select users that match the pattern, grouped by condition. |
| 1623 | // Pattern: select i1 %cond, (extractelement %bc, idx), 0 |
| 1624 | DenseMap<Value *, SmallVector<SelectInst *, 8>> CondToSelects; |
| 1625 | |
| 1626 | for (User *U : BC->users()) { |
| 1627 | auto *Ext = dyn_cast<ExtractElementInst>(Val: U); |
| 1628 | if (!Ext) |
| 1629 | continue; |
| 1630 | |
| 1631 | for (User *ExtUser : Ext->users()) { |
| 1632 | Value *Cond; |
| 1633 | // Match: select i1 %cond, %ext, 0 |
| 1634 | if (match(V: ExtUser, P: m_Select(C: m_Value(V&: Cond), L: m_Specific(V: Ext), R: m_Zero())) && |
| 1635 | Cond->getType()->isIntegerTy(Bitwidth: 1)) |
| 1636 | CondToSelects[Cond].push_back(Elt: cast<SelectInst>(Val: ExtUser)); |
| 1637 | } |
| 1638 | } |
| 1639 | |
| 1640 | if (CondToSelects.empty()) |
| 1641 | return false; |
| 1642 | |
| 1643 | bool MadeChange = false; |
| 1644 | Value *SrcVec = BC->getOperand(i_nocapture: 0); |
| 1645 | |
| 1646 | // Process each group of selects with the same condition. |
| 1647 | for (auto [Cond, Selects] : CondToSelects) { |
| 1648 | // Only profitable if vector select cost < total scalar select cost. |
| 1649 | if (Selects.size() < MinSelects) { |
| 1650 | LLVM_DEBUG(dbgs() << "VectorCombine: foldSelectsFromBitcast not " |
| 1651 | << "profitable (VecCost=" << VecSelCost |
| 1652 | << ", ScalarCost=" << ScalarSelCost |
| 1653 | << ", NumSelects=" << Selects.size() << ")\n" ); |
| 1654 | continue; |
| 1655 | } |
| 1656 | |
| 1657 | // Create the vector select and bitcast once for this condition. |
| 1658 | auto InsertPt = std::next(x: BC->getIterator()); |
| 1659 | |
| 1660 | if (auto *CondInst = dyn_cast<Instruction>(Val: Cond)) |
| 1661 | if (DT.dominates(Def: BC, User: CondInst)) |
| 1662 | InsertPt = std::next(x: CondInst->getIterator()); |
| 1663 | |
| 1664 | Builder.SetInsertPoint(InsertPt); |
| 1665 | Value *VecSel = |
| 1666 | Builder.CreateSelect(C: Cond, True: SrcVec, False: Constant::getNullValue(Ty: SrcVecTy)); |
| 1667 | Value *NewBC = Builder.CreateBitCast(V: VecSel, DestTy: DstVecTy); |
| 1668 | |
| 1669 | // Replace each scalar select with an extract from the new bitcast. |
| 1670 | for (SelectInst *Sel : Selects) { |
| 1671 | auto *Ext = cast<ExtractElementInst>(Val: Sel->getTrueValue()); |
| 1672 | Value *Idx = Ext->getIndexOperand(); |
| 1673 | |
| 1674 | Builder.SetInsertPoint(Sel); |
| 1675 | Value *NewExt = Builder.CreateExtractElement(Vec: NewBC, Idx); |
| 1676 | replaceValue(Old&: *Sel, New&: *NewExt); |
| 1677 | MadeChange = true; |
| 1678 | } |
| 1679 | |
| 1680 | LLVM_DEBUG(dbgs() << "VectorCombine: folded " << Selects.size() |
| 1681 | << " selects into vector select\n" ); |
| 1682 | } |
| 1683 | |
| 1684 | return MadeChange; |
| 1685 | } |
| 1686 | |
| 1687 | static void analyzeCostOfVecReduction(const IntrinsicInst &II, |
| 1688 | TTI::TargetCostKind CostKind, |
| 1689 | const TargetTransformInfo &TTI, |
| 1690 | InstructionCost &CostBeforeReduction, |
| 1691 | InstructionCost &CostAfterReduction) { |
| 1692 | Instruction *Op0, *Op1; |
| 1693 | auto *RedOp = dyn_cast<Instruction>(Val: II.getOperand(i_nocapture: 0)); |
| 1694 | auto *VecRedTy = cast<VectorType>(Val: II.getOperand(i_nocapture: 0)->getType()); |
| 1695 | unsigned ReductionOpc = |
| 1696 | getArithmeticReductionInstruction(RdxID: II.getIntrinsicID()); |
| 1697 | if (RedOp && match(V: RedOp, P: m_ZExtOrSExt(Op: m_Value()))) { |
| 1698 | bool IsUnsigned = isa<ZExtInst>(Val: RedOp); |
| 1699 | auto *ExtType = cast<VectorType>(Val: RedOp->getOperand(i: 0)->getType()); |
| 1700 | |
| 1701 | CostBeforeReduction = |
| 1702 | TTI.getCastInstrCost(Opcode: RedOp->getOpcode(), Dst: VecRedTy, Src: ExtType, |
| 1703 | CCH: TTI::CastContextHint::None, CostKind, I: RedOp); |
| 1704 | CostAfterReduction = |
| 1705 | TTI.getExtendedReductionCost(Opcode: ReductionOpc, IsUnsigned, ResTy: II.getType(), |
| 1706 | Ty: ExtType, FMF: FastMathFlags(), CostKind); |
| 1707 | return; |
| 1708 | } |
| 1709 | if (RedOp && II.getIntrinsicID() == Intrinsic::vector_reduce_add && |
| 1710 | match(V: RedOp, |
| 1711 | P: m_ZExtOrSExt(Op: m_Mul(L: m_Instruction(I&: Op0), R: m_Instruction(I&: Op1)))) && |
| 1712 | match(V: Op0, P: m_ZExtOrSExt(Op: m_Value())) && |
| 1713 | Op0->getOpcode() == Op1->getOpcode() && |
| 1714 | Op0->getOperand(i: 0)->getType() == Op1->getOperand(i: 0)->getType() && |
| 1715 | (Op0->getOpcode() == RedOp->getOpcode() || Op0 == Op1)) { |
| 1716 | // Matched reduce.add(ext(mul(ext(A), ext(B))) |
| 1717 | bool IsUnsigned = isa<ZExtInst>(Val: Op0); |
| 1718 | auto *ExtType = cast<VectorType>(Val: Op0->getOperand(i: 0)->getType()); |
| 1719 | VectorType *MulType = VectorType::get(ElementType: Op0->getType(), Other: VecRedTy); |
| 1720 | |
| 1721 | InstructionCost ExtCost = |
| 1722 | TTI.getCastInstrCost(Opcode: Op0->getOpcode(), Dst: MulType, Src: ExtType, |
| 1723 | CCH: TTI::CastContextHint::None, CostKind, I: Op0); |
| 1724 | InstructionCost MulCost = |
| 1725 | TTI.getArithmeticInstrCost(Opcode: Instruction::Mul, Ty: MulType, CostKind); |
| 1726 | InstructionCost Ext2Cost = |
| 1727 | TTI.getCastInstrCost(Opcode: RedOp->getOpcode(), Dst: VecRedTy, Src: MulType, |
| 1728 | CCH: TTI::CastContextHint::None, CostKind, I: RedOp); |
| 1729 | |
| 1730 | CostBeforeReduction = ExtCost * 2 + MulCost + Ext2Cost; |
| 1731 | CostAfterReduction = TTI.getMulAccReductionCost( |
| 1732 | IsUnsigned, RedOpcode: ReductionOpc, ResTy: II.getType(), Ty: ExtType, CostKind); |
| 1733 | return; |
| 1734 | } |
| 1735 | CostAfterReduction = TTI.getArithmeticReductionCost(Opcode: ReductionOpc, Ty: VecRedTy, |
| 1736 | FMF: std::nullopt, CostKind); |
| 1737 | } |
| 1738 | |
| 1739 | bool VectorCombine::foldBinopOfReductions(Instruction &I) { |
| 1740 | Instruction::BinaryOps BinOpOpc = cast<BinaryOperator>(Val: &I)->getOpcode(); |
| 1741 | Intrinsic::ID ReductionIID = getReductionForBinop(Opc: BinOpOpc); |
| 1742 | if (BinOpOpc == Instruction::Sub) |
| 1743 | ReductionIID = Intrinsic::vector_reduce_add; |
| 1744 | if (ReductionIID == Intrinsic::not_intrinsic) |
| 1745 | return false; |
| 1746 | |
| 1747 | auto checkIntrinsicAndGetItsArgument = [](Value *V, |
| 1748 | Intrinsic::ID IID) -> Value * { |
| 1749 | auto *II = dyn_cast<IntrinsicInst>(Val: V); |
| 1750 | if (!II) |
| 1751 | return nullptr; |
| 1752 | if (II->getIntrinsicID() == IID && II->hasOneUse()) |
| 1753 | return II->getArgOperand(i: 0); |
| 1754 | return nullptr; |
| 1755 | }; |
| 1756 | |
| 1757 | Value *V0 = checkIntrinsicAndGetItsArgument(I.getOperand(i: 0), ReductionIID); |
| 1758 | if (!V0) |
| 1759 | return false; |
| 1760 | Value *V1 = checkIntrinsicAndGetItsArgument(I.getOperand(i: 1), ReductionIID); |
| 1761 | if (!V1) |
| 1762 | return false; |
| 1763 | |
| 1764 | auto *VTy = cast<VectorType>(Val: V0->getType()); |
| 1765 | if (V1->getType() != VTy) |
| 1766 | return false; |
| 1767 | const auto &II0 = *cast<IntrinsicInst>(Val: I.getOperand(i: 0)); |
| 1768 | const auto &II1 = *cast<IntrinsicInst>(Val: I.getOperand(i: 1)); |
| 1769 | unsigned ReductionOpc = |
| 1770 | getArithmeticReductionInstruction(RdxID: II0.getIntrinsicID()); |
| 1771 | |
| 1772 | InstructionCost OldCost = 0; |
| 1773 | InstructionCost NewCost = 0; |
| 1774 | InstructionCost CostOfRedOperand0 = 0; |
| 1775 | InstructionCost CostOfRed0 = 0; |
| 1776 | InstructionCost CostOfRedOperand1 = 0; |
| 1777 | InstructionCost CostOfRed1 = 0; |
| 1778 | analyzeCostOfVecReduction(II: II0, CostKind, TTI, CostBeforeReduction&: CostOfRedOperand0, CostAfterReduction&: CostOfRed0); |
| 1779 | analyzeCostOfVecReduction(II: II1, CostKind, TTI, CostBeforeReduction&: CostOfRedOperand1, CostAfterReduction&: CostOfRed1); |
| 1780 | OldCost = CostOfRed0 + CostOfRed1 + TTI.getInstructionCost(U: &I, CostKind); |
| 1781 | NewCost = |
| 1782 | CostOfRedOperand0 + CostOfRedOperand1 + |
| 1783 | TTI.getArithmeticInstrCost(Opcode: BinOpOpc, Ty: VTy, CostKind) + |
| 1784 | TTI.getArithmeticReductionCost(Opcode: ReductionOpc, Ty: VTy, FMF: std::nullopt, CostKind); |
| 1785 | if (NewCost >= OldCost || !NewCost.isValid()) |
| 1786 | return false; |
| 1787 | |
| 1788 | LLVM_DEBUG(dbgs() << "Found two mergeable reductions: " << I |
| 1789 | << "\n OldCost: " << OldCost << " vs NewCost: " << NewCost |
| 1790 | << "\n" ); |
| 1791 | Value *VectorBO; |
| 1792 | if (BinOpOpc == Instruction::Or) |
| 1793 | VectorBO = Builder.CreateOr(LHS: V0, RHS: V1, Name: "" , |
| 1794 | IsDisjoint: cast<PossiblyDisjointInst>(Val&: I).isDisjoint()); |
| 1795 | else |
| 1796 | VectorBO = Builder.CreateBinOp(Opc: BinOpOpc, LHS: V0, RHS: V1); |
| 1797 | |
| 1798 | Instruction *Rdx = Builder.CreateIntrinsic(ID: ReductionIID, Types: {VTy}, Args: {VectorBO}); |
| 1799 | replaceValue(Old&: I, New&: *Rdx); |
| 1800 | return true; |
| 1801 | } |
| 1802 | |
| 1803 | // Check if memory loc modified between two instrs in the same BB |
| 1804 | static bool isMemModifiedBetween(BasicBlock::iterator Begin, |
| 1805 | BasicBlock::iterator End, |
| 1806 | const MemoryLocation &Loc, AAResults &AA) { |
| 1807 | unsigned NumScanned = 0; |
| 1808 | return std::any_of(first: Begin, last: End, pred: [&](const Instruction &Instr) { |
| 1809 | return isModSet(MRI: AA.getModRefInfo(I: &Instr, OptLoc: Loc)) || |
| 1810 | ++NumScanned > MaxInstrsToScan; |
| 1811 | }); |
| 1812 | } |
| 1813 | |
| 1814 | namespace { |
| 1815 | /// Helper class to indicate whether a vector index can be safely scalarized and |
| 1816 | /// if a freeze needs to be inserted. |
| 1817 | class ScalarizationResult { |
| 1818 | enum class StatusTy { Unsafe, Safe, SafeWithFreeze }; |
| 1819 | |
| 1820 | StatusTy Status; |
| 1821 | Value *ToFreeze; |
| 1822 | |
| 1823 | ScalarizationResult(StatusTy Status, Value *ToFreeze = nullptr) |
| 1824 | : Status(Status), ToFreeze(ToFreeze) {} |
| 1825 | |
| 1826 | public: |
| 1827 | ScalarizationResult(const ScalarizationResult &Other) = default; |
| 1828 | ~ScalarizationResult() { |
| 1829 | assert(!ToFreeze && "freeze() not called with ToFreeze being set" ); |
| 1830 | } |
| 1831 | |
| 1832 | static ScalarizationResult unsafe() { return {StatusTy::Unsafe}; } |
| 1833 | static ScalarizationResult safe() { return {StatusTy::Safe}; } |
| 1834 | static ScalarizationResult safeWithFreeze(Value *ToFreeze) { |
| 1835 | return {StatusTy::SafeWithFreeze, ToFreeze}; |
| 1836 | } |
| 1837 | |
| 1838 | /// Returns true if the index can be scalarize without requiring a freeze. |
| 1839 | bool isSafe() const { return Status == StatusTy::Safe; } |
| 1840 | /// Returns true if the index cannot be scalarized. |
| 1841 | bool isUnsafe() const { return Status == StatusTy::Unsafe; } |
| 1842 | /// Returns true if the index can be scalarize, but requires inserting a |
| 1843 | /// freeze. |
| 1844 | bool isSafeWithFreeze() const { return Status == StatusTy::SafeWithFreeze; } |
| 1845 | |
| 1846 | /// Reset the state of Unsafe and clear ToFreze if set. |
| 1847 | void discard() { |
| 1848 | ToFreeze = nullptr; |
| 1849 | Status = StatusTy::Unsafe; |
| 1850 | } |
| 1851 | |
| 1852 | /// Freeze the ToFreeze and update the use in \p User to use it. |
| 1853 | void freeze(IRBuilderBase &Builder, Instruction &UserI) { |
| 1854 | assert(isSafeWithFreeze() && |
| 1855 | "should only be used when freezing is required" ); |
| 1856 | assert(is_contained(ToFreeze->users(), &UserI) && |
| 1857 | "UserI must be a user of ToFreeze" ); |
| 1858 | IRBuilder<>::InsertPointGuard Guard(Builder); |
| 1859 | Builder.SetInsertPoint(cast<Instruction>(Val: &UserI)); |
| 1860 | Value *Frozen = |
| 1861 | Builder.CreateFreeze(V: ToFreeze, Name: ToFreeze->getName() + ".frozen" ); |
| 1862 | for (Use &U : make_early_inc_range(Range: (UserI.operands()))) |
| 1863 | if (U.get() == ToFreeze) |
| 1864 | U.set(Frozen); |
| 1865 | |
| 1866 | ToFreeze = nullptr; |
| 1867 | } |
| 1868 | }; |
| 1869 | } // namespace |
| 1870 | |
| 1871 | /// Check if it is legal to scalarize a memory access to \p VecTy at index \p |
| 1872 | /// Idx. \p Idx must access a valid vector element. |
| 1873 | static ScalarizationResult canScalarizeAccess(VectorType *VecTy, Value *Idx, |
| 1874 | Instruction *CtxI, |
| 1875 | AssumptionCache &AC, |
| 1876 | const DominatorTree &DT) { |
| 1877 | // We do checks for both fixed vector types and scalable vector types. |
| 1878 | // This is the number of elements of fixed vector types, |
| 1879 | // or the minimum number of elements of scalable vector types. |
| 1880 | uint64_t NumElements = VecTy->getElementCount().getKnownMinValue(); |
| 1881 | unsigned IntWidth = Idx->getType()->getScalarSizeInBits(); |
| 1882 | |
| 1883 | if (auto *C = dyn_cast<ConstantInt>(Val: Idx)) { |
| 1884 | if (C->getValue().ult(RHS: NumElements)) |
| 1885 | return ScalarizationResult::safe(); |
| 1886 | return ScalarizationResult::unsafe(); |
| 1887 | } |
| 1888 | |
| 1889 | // Always unsafe if the index type can't handle all inbound values. |
| 1890 | if (!llvm::isUIntN(N: IntWidth, x: NumElements)) |
| 1891 | return ScalarizationResult::unsafe(); |
| 1892 | |
| 1893 | APInt Zero(IntWidth, 0); |
| 1894 | APInt MaxElts(IntWidth, NumElements); |
| 1895 | ConstantRange ValidIndices(Zero, MaxElts); |
| 1896 | ConstantRange IdxRange(IntWidth, true); |
| 1897 | |
| 1898 | if (isGuaranteedNotToBePoison(V: Idx, AC: &AC)) { |
| 1899 | if (ValidIndices.contains(CR: computeConstantRange(V: Idx, /* ForSigned */ false, |
| 1900 | UseInstrInfo: true, AC: &AC, CtxI, DT: &DT))) |
| 1901 | return ScalarizationResult::safe(); |
| 1902 | return ScalarizationResult::unsafe(); |
| 1903 | } |
| 1904 | |
| 1905 | // If the index may be poison, check if we can insert a freeze before the |
| 1906 | // range of the index is restricted. |
| 1907 | Value *IdxBase; |
| 1908 | ConstantInt *CI; |
| 1909 | if (match(V: Idx, P: m_And(L: m_Value(V&: IdxBase), R: m_ConstantInt(CI)))) { |
| 1910 | IdxRange = IdxRange.binaryAnd(Other: CI->getValue()); |
| 1911 | } else if (match(V: Idx, P: m_URem(L: m_Value(V&: IdxBase), R: m_ConstantInt(CI)))) { |
| 1912 | IdxRange = IdxRange.urem(Other: CI->getValue()); |
| 1913 | } |
| 1914 | |
| 1915 | if (ValidIndices.contains(CR: IdxRange)) |
| 1916 | return ScalarizationResult::safeWithFreeze(ToFreeze: IdxBase); |
| 1917 | return ScalarizationResult::unsafe(); |
| 1918 | } |
| 1919 | |
| 1920 | /// The memory operation on a vector of \p ScalarType had alignment of |
| 1921 | /// \p VectorAlignment. Compute the maximal, but conservatively correct, |
| 1922 | /// alignment that will be valid for the memory operation on a single scalar |
| 1923 | /// element of the same type with index \p Idx. |
| 1924 | static Align computeAlignmentAfterScalarization(Align VectorAlignment, |
| 1925 | Type *ScalarType, Value *Idx, |
| 1926 | const DataLayout &DL) { |
| 1927 | if (auto *C = dyn_cast<ConstantInt>(Val: Idx)) |
| 1928 | return commonAlignment(A: VectorAlignment, |
| 1929 | Offset: C->getZExtValue() * DL.getTypeStoreSize(Ty: ScalarType)); |
| 1930 | return commonAlignment(A: VectorAlignment, Offset: DL.getTypeStoreSize(Ty: ScalarType)); |
| 1931 | } |
| 1932 | |
| 1933 | // Combine patterns like: |
| 1934 | // %0 = load <4 x i32>, <4 x i32>* %a |
| 1935 | // %1 = insertelement <4 x i32> %0, i32 %b, i32 1 |
| 1936 | // store <4 x i32> %1, <4 x i32>* %a |
| 1937 | // to: |
| 1938 | // %0 = bitcast <4 x i32>* %a to i32* |
| 1939 | // %1 = getelementptr inbounds i32, i32* %0, i64 0, i64 1 |
| 1940 | // store i32 %b, i32* %1 |
| 1941 | bool VectorCombine::foldSingleElementStore(Instruction &I) { |
| 1942 | if (!TTI.allowVectorElementIndexingUsingGEP()) |
| 1943 | return false; |
| 1944 | auto *SI = cast<StoreInst>(Val: &I); |
| 1945 | if (!SI->isSimple() || !isa<VectorType>(Val: SI->getValueOperand()->getType())) |
| 1946 | return false; |
| 1947 | |
| 1948 | // TODO: Combine more complicated patterns (multiple insert) by referencing |
| 1949 | // TargetTransformInfo. |
| 1950 | Instruction *Source; |
| 1951 | Value *NewElement; |
| 1952 | Value *Idx; |
| 1953 | if (!match(V: SI->getValueOperand(), |
| 1954 | P: m_InsertElt(Val: m_Instruction(I&: Source), Elt: m_Value(V&: NewElement), |
| 1955 | Idx: m_Value(V&: Idx)))) |
| 1956 | return false; |
| 1957 | |
| 1958 | if (auto *Load = dyn_cast<LoadInst>(Val: Source)) { |
| 1959 | auto VecTy = cast<VectorType>(Val: SI->getValueOperand()->getType()); |
| 1960 | Value *SrcAddr = Load->getPointerOperand()->stripPointerCasts(); |
| 1961 | // Don't optimize for atomic/volatile load or store. Ensure memory is not |
| 1962 | // modified between, vector type matches store size, and index is inbounds. |
| 1963 | if (!Load->isSimple() || Load->getParent() != SI->getParent() || |
| 1964 | !DL->typeSizeEqualsStoreSize(Ty: Load->getType()->getScalarType()) || |
| 1965 | SrcAddr != SI->getPointerOperand()->stripPointerCasts()) |
| 1966 | return false; |
| 1967 | |
| 1968 | auto ScalarizableIdx = canScalarizeAccess(VecTy, Idx, CtxI: Load, AC, DT); |
| 1969 | if (ScalarizableIdx.isUnsafe() || |
| 1970 | isMemModifiedBetween(Begin: Load->getIterator(), End: SI->getIterator(), |
| 1971 | Loc: MemoryLocation::get(SI), AA)) |
| 1972 | return false; |
| 1973 | |
| 1974 | // Ensure we add the load back to the worklist BEFORE its users so they can |
| 1975 | // erased in the correct order. |
| 1976 | Worklist.push(I: Load); |
| 1977 | |
| 1978 | if (ScalarizableIdx.isSafeWithFreeze()) |
| 1979 | ScalarizableIdx.freeze(Builder, UserI&: *cast<Instruction>(Val: Idx)); |
| 1980 | Value *GEP = Builder.CreateInBoundsGEP( |
| 1981 | Ty: SI->getValueOperand()->getType(), Ptr: SI->getPointerOperand(), |
| 1982 | IdxList: {ConstantInt::get(Ty: Idx->getType(), V: 0), Idx}); |
| 1983 | StoreInst *NSI = Builder.CreateStore(Val: NewElement, Ptr: GEP); |
| 1984 | NSI->copyMetadata(SrcInst: *SI); |
| 1985 | Align ScalarOpAlignment = computeAlignmentAfterScalarization( |
| 1986 | VectorAlignment: std::max(a: SI->getAlign(), b: Load->getAlign()), ScalarType: NewElement->getType(), Idx, |
| 1987 | DL: *DL); |
| 1988 | NSI->setAlignment(ScalarOpAlignment); |
| 1989 | replaceValue(Old&: I, New&: *NSI); |
| 1990 | eraseInstruction(I); |
| 1991 | return true; |
| 1992 | } |
| 1993 | |
| 1994 | return false; |
| 1995 | } |
| 1996 | |
| 1997 | /// Try to scalarize vector loads feeding extractelement or bitcast |
| 1998 | /// instructions. |
| 1999 | bool VectorCombine::scalarizeLoad(Instruction &I) { |
| 2000 | Value *Ptr; |
| 2001 | if (!match(V: &I, P: m_Load(Op: m_Value(V&: Ptr)))) |
| 2002 | return false; |
| 2003 | |
| 2004 | auto *LI = cast<LoadInst>(Val: &I); |
| 2005 | auto *VecTy = cast<VectorType>(Val: LI->getType()); |
| 2006 | if (LI->isVolatile() || !DL->typeSizeEqualsStoreSize(Ty: VecTy->getScalarType())) |
| 2007 | return false; |
| 2008 | |
| 2009 | bool = true; |
| 2010 | bool AllBitcasts = true; |
| 2011 | Instruction *LastCheckedInst = LI; |
| 2012 | unsigned NumInstChecked = 0; |
| 2013 | |
| 2014 | // Check what type of users we have (must either all be extracts or |
| 2015 | // bitcasts) and ensure no memory modifications between the load and |
| 2016 | // its users. |
| 2017 | for (User *U : LI->users()) { |
| 2018 | auto *UI = dyn_cast<Instruction>(Val: U); |
| 2019 | if (!UI || UI->getParent() != LI->getParent()) |
| 2020 | return false; |
| 2021 | |
| 2022 | // If any user is waiting to be erased, then bail out as this will |
| 2023 | // distort the cost calculation and possibly lead to infinite loops. |
| 2024 | if (UI->use_empty()) |
| 2025 | return false; |
| 2026 | |
| 2027 | if (!isa<ExtractElementInst>(Val: UI)) |
| 2028 | AllExtracts = false; |
| 2029 | if (!isa<BitCastInst>(Val: UI)) |
| 2030 | AllBitcasts = false; |
| 2031 | |
| 2032 | // Check if any instruction between the load and the user may modify memory. |
| 2033 | if (LastCheckedInst->comesBefore(Other: UI)) { |
| 2034 | for (Instruction &I : |
| 2035 | make_range(x: std::next(x: LI->getIterator()), y: UI->getIterator())) { |
| 2036 | // Bail out if we reached the check limit or the instruction may write |
| 2037 | // to memory. |
| 2038 | if (NumInstChecked == MaxInstrsToScan || I.mayWriteToMemory()) |
| 2039 | return false; |
| 2040 | NumInstChecked++; |
| 2041 | } |
| 2042 | LastCheckedInst = UI; |
| 2043 | } |
| 2044 | } |
| 2045 | |
| 2046 | if (AllExtracts) |
| 2047 | return scalarizeLoadExtract(LI, VecTy, Ptr); |
| 2048 | if (AllBitcasts) |
| 2049 | return scalarizeLoadBitcast(LI, VecTy, Ptr); |
| 2050 | return false; |
| 2051 | } |
| 2052 | |
| 2053 | /// Try to scalarize vector loads feeding extractelement instructions. |
| 2054 | bool VectorCombine::(LoadInst *LI, VectorType *VecTy, |
| 2055 | Value *Ptr) { |
| 2056 | if (!TTI.allowVectorElementIndexingUsingGEP()) |
| 2057 | return false; |
| 2058 | |
| 2059 | DenseMap<ExtractElementInst *, ScalarizationResult> NeedFreeze; |
| 2060 | llvm::scope_exit FailureGuard([&]() { |
| 2061 | // If the transform is aborted, discard the ScalarizationResults. |
| 2062 | for (auto &Pair : NeedFreeze) |
| 2063 | Pair.second.discard(); |
| 2064 | }); |
| 2065 | |
| 2066 | InstructionCost OriginalCost = |
| 2067 | TTI.getMemoryOpCost(Opcode: Instruction::Load, Src: VecTy, Alignment: LI->getAlign(), |
| 2068 | AddressSpace: LI->getPointerAddressSpace(), CostKind); |
| 2069 | InstructionCost ScalarizedCost = 0; |
| 2070 | |
| 2071 | for (User *U : LI->users()) { |
| 2072 | auto *UI = cast<ExtractElementInst>(Val: U); |
| 2073 | |
| 2074 | auto ScalarIdx = |
| 2075 | canScalarizeAccess(VecTy, Idx: UI->getIndexOperand(), CtxI: LI, AC, DT); |
| 2076 | if (ScalarIdx.isUnsafe()) |
| 2077 | return false; |
| 2078 | if (ScalarIdx.isSafeWithFreeze()) { |
| 2079 | NeedFreeze.try_emplace(Key: UI, Args&: ScalarIdx); |
| 2080 | ScalarIdx.discard(); |
| 2081 | } |
| 2082 | |
| 2083 | auto *Index = dyn_cast<ConstantInt>(Val: UI->getIndexOperand()); |
| 2084 | OriginalCost += |
| 2085 | TTI.getVectorInstrCost(Opcode: Instruction::ExtractElement, Val: VecTy, CostKind, |
| 2086 | Index: Index ? Index->getZExtValue() : -1); |
| 2087 | ScalarizedCost += |
| 2088 | TTI.getMemoryOpCost(Opcode: Instruction::Load, Src: VecTy->getElementType(), |
| 2089 | Alignment: Align(1), AddressSpace: LI->getPointerAddressSpace(), CostKind); |
| 2090 | ScalarizedCost += TTI.getAddressComputationCost(PtrTy: LI->getPointerOperandType(), |
| 2091 | SE: nullptr, Ptr: nullptr, CostKind); |
| 2092 | } |
| 2093 | |
| 2094 | LLVM_DEBUG(dbgs() << "Found all extractions of a vector load: " << *LI |
| 2095 | << "\n LoadExtractCost: " << OriginalCost |
| 2096 | << " vs ScalarizedCost: " << ScalarizedCost << "\n" ); |
| 2097 | |
| 2098 | if (ScalarizedCost >= OriginalCost) |
| 2099 | return false; |
| 2100 | |
| 2101 | // Ensure we add the load back to the worklist BEFORE its users so they can |
| 2102 | // erased in the correct order. |
| 2103 | Worklist.push(I: LI); |
| 2104 | |
| 2105 | Type *ElemType = VecTy->getElementType(); |
| 2106 | |
| 2107 | // Replace extracts with narrow scalar loads. |
| 2108 | for (User *U : LI->users()) { |
| 2109 | auto *EI = cast<ExtractElementInst>(Val: U); |
| 2110 | Value *Idx = EI->getIndexOperand(); |
| 2111 | |
| 2112 | // Insert 'freeze' for poison indexes. |
| 2113 | auto It = NeedFreeze.find(Val: EI); |
| 2114 | if (It != NeedFreeze.end()) |
| 2115 | It->second.freeze(Builder, UserI&: *cast<Instruction>(Val: Idx)); |
| 2116 | |
| 2117 | Builder.SetInsertPoint(EI); |
| 2118 | Value *GEP = |
| 2119 | Builder.CreateInBoundsGEP(Ty: VecTy, Ptr, IdxList: {Builder.getInt32(C: 0), Idx}); |
| 2120 | auto *NewLoad = cast<LoadInst>( |
| 2121 | Val: Builder.CreateLoad(Ty: ElemType, Ptr: GEP, Name: EI->getName() + ".scalar" )); |
| 2122 | |
| 2123 | Align ScalarOpAlignment = |
| 2124 | computeAlignmentAfterScalarization(VectorAlignment: LI->getAlign(), ScalarType: ElemType, Idx, DL: *DL); |
| 2125 | NewLoad->setAlignment(ScalarOpAlignment); |
| 2126 | |
| 2127 | if (auto *ConstIdx = dyn_cast<ConstantInt>(Val: Idx)) { |
| 2128 | size_t Offset = ConstIdx->getZExtValue() * DL->getTypeStoreSize(Ty: ElemType); |
| 2129 | AAMDNodes OldAAMD = LI->getAAMetadata(); |
| 2130 | NewLoad->setAAMetadata(OldAAMD.adjustForAccess(Offset, AccessTy: ElemType, DL: *DL)); |
| 2131 | } |
| 2132 | |
| 2133 | replaceValue(Old&: *EI, New&: *NewLoad, Erase: false); |
| 2134 | } |
| 2135 | |
| 2136 | FailureGuard.release(); |
| 2137 | return true; |
| 2138 | } |
| 2139 | |
| 2140 | /// Try to scalarize vector loads feeding bitcast instructions. |
| 2141 | bool VectorCombine::scalarizeLoadBitcast(LoadInst *LI, VectorType *VecTy, |
| 2142 | Value *Ptr) { |
| 2143 | InstructionCost OriginalCost = |
| 2144 | TTI.getMemoryOpCost(Opcode: Instruction::Load, Src: VecTy, Alignment: LI->getAlign(), |
| 2145 | AddressSpace: LI->getPointerAddressSpace(), CostKind); |
| 2146 | |
| 2147 | Type *TargetScalarType = nullptr; |
| 2148 | unsigned VecBitWidth = DL->getTypeSizeInBits(Ty: VecTy); |
| 2149 | |
| 2150 | for (User *U : LI->users()) { |
| 2151 | auto *BC = cast<BitCastInst>(Val: U); |
| 2152 | |
| 2153 | Type *DestTy = BC->getDestTy(); |
| 2154 | if (!DestTy->isIntegerTy() && !DestTy->isFloatingPointTy()) |
| 2155 | return false; |
| 2156 | |
| 2157 | unsigned DestBitWidth = DL->getTypeSizeInBits(Ty: DestTy); |
| 2158 | if (DestBitWidth != VecBitWidth) |
| 2159 | return false; |
| 2160 | |
| 2161 | // All bitcasts must target the same scalar type. |
| 2162 | if (!TargetScalarType) |
| 2163 | TargetScalarType = DestTy; |
| 2164 | else if (TargetScalarType != DestTy) |
| 2165 | return false; |
| 2166 | |
| 2167 | OriginalCost += |
| 2168 | TTI.getCastInstrCost(Opcode: Instruction::BitCast, Dst: TargetScalarType, Src: VecTy, |
| 2169 | CCH: TTI.getCastContextHint(I: BC), CostKind, I: BC); |
| 2170 | } |
| 2171 | |
| 2172 | if (!TargetScalarType) |
| 2173 | return false; |
| 2174 | |
| 2175 | assert(!LI->user_empty() && "Unexpected load without bitcast users" ); |
| 2176 | InstructionCost ScalarizedCost = |
| 2177 | TTI.getMemoryOpCost(Opcode: Instruction::Load, Src: TargetScalarType, Alignment: LI->getAlign(), |
| 2178 | AddressSpace: LI->getPointerAddressSpace(), CostKind); |
| 2179 | |
| 2180 | LLVM_DEBUG(dbgs() << "Found vector load feeding only bitcasts: " << *LI |
| 2181 | << "\n OriginalCost: " << OriginalCost |
| 2182 | << " vs ScalarizedCost: " << ScalarizedCost << "\n" ); |
| 2183 | |
| 2184 | if (ScalarizedCost >= OriginalCost) |
| 2185 | return false; |
| 2186 | |
| 2187 | // Ensure we add the load back to the worklist BEFORE its users so they can |
| 2188 | // erased in the correct order. |
| 2189 | Worklist.push(I: LI); |
| 2190 | |
| 2191 | Builder.SetInsertPoint(LI); |
| 2192 | auto *ScalarLoad = |
| 2193 | Builder.CreateLoad(Ty: TargetScalarType, Ptr, Name: LI->getName() + ".scalar" ); |
| 2194 | ScalarLoad->setAlignment(LI->getAlign()); |
| 2195 | ScalarLoad->copyMetadata(SrcInst: *LI); |
| 2196 | |
| 2197 | // Replace all bitcast users with the scalar load. |
| 2198 | for (User *U : LI->users()) { |
| 2199 | auto *BC = cast<BitCastInst>(Val: U); |
| 2200 | replaceValue(Old&: *BC, New&: *ScalarLoad, Erase: false); |
| 2201 | } |
| 2202 | |
| 2203 | return true; |
| 2204 | } |
| 2205 | |
| 2206 | bool VectorCombine::(Instruction &I) { |
| 2207 | if (!TTI.allowVectorElementIndexingUsingGEP()) |
| 2208 | return false; |
| 2209 | auto *Ext = dyn_cast<ZExtInst>(Val: &I); |
| 2210 | if (!Ext) |
| 2211 | return false; |
| 2212 | |
| 2213 | // Try to convert a vector zext feeding only extracts to a set of scalar |
| 2214 | // (Src << ExtIdx *Size) & (Size -1) |
| 2215 | // if profitable . |
| 2216 | auto *SrcTy = dyn_cast<FixedVectorType>(Val: Ext->getOperand(i_nocapture: 0)->getType()); |
| 2217 | if (!SrcTy) |
| 2218 | return false; |
| 2219 | auto *DstTy = cast<FixedVectorType>(Val: Ext->getType()); |
| 2220 | |
| 2221 | Type *ScalarDstTy = DstTy->getElementType(); |
| 2222 | if (DL->getTypeSizeInBits(Ty: SrcTy) != DL->getTypeSizeInBits(Ty: ScalarDstTy)) |
| 2223 | return false; |
| 2224 | |
| 2225 | InstructionCost VectorCost = |
| 2226 | TTI.getCastInstrCost(Opcode: Instruction::ZExt, Dst: DstTy, Src: SrcTy, |
| 2227 | CCH: TTI::CastContextHint::None, CostKind, I: Ext); |
| 2228 | unsigned ExtCnt = 0; |
| 2229 | bool ExtLane0 = false; |
| 2230 | for (User *U : Ext->users()) { |
| 2231 | uint64_t Idx; |
| 2232 | if (!match(V: U, P: m_ExtractElt(Val: m_Value(), Idx: m_ConstantInt(V&: Idx)))) |
| 2233 | return false; |
| 2234 | if (cast<Instruction>(Val: U)->use_empty()) |
| 2235 | continue; |
| 2236 | ExtCnt += 1; |
| 2237 | ExtLane0 |= !Idx; |
| 2238 | VectorCost += TTI.getVectorInstrCost(Opcode: Instruction::ExtractElement, Val: DstTy, |
| 2239 | CostKind, Index: Idx, Op0: U); |
| 2240 | } |
| 2241 | |
| 2242 | InstructionCost ScalarCost = |
| 2243 | ExtCnt * TTI.getArithmeticInstrCost( |
| 2244 | Opcode: Instruction::And, Ty: ScalarDstTy, CostKind, |
| 2245 | Opd1Info: {.Kind: TTI::OK_AnyValue, .Properties: TTI::OP_None}, |
| 2246 | Opd2Info: {.Kind: TTI::OK_NonUniformConstantValue, .Properties: TTI::OP_None}) + |
| 2247 | (ExtCnt - ExtLane0) * |
| 2248 | TTI.getArithmeticInstrCost( |
| 2249 | Opcode: Instruction::LShr, Ty: ScalarDstTy, CostKind, |
| 2250 | Opd1Info: {.Kind: TTI::OK_AnyValue, .Properties: TTI::OP_None}, |
| 2251 | Opd2Info: {.Kind: TTI::OK_NonUniformConstantValue, .Properties: TTI::OP_None}); |
| 2252 | if (ScalarCost > VectorCost) |
| 2253 | return false; |
| 2254 | |
| 2255 | Value *ScalarV = Ext->getOperand(i_nocapture: 0); |
| 2256 | if (!isGuaranteedNotToBePoison(V: ScalarV, AC: &AC, CtxI: dyn_cast<Instruction>(Val: ScalarV), |
| 2257 | DT: &DT)) { |
| 2258 | // Check wether all lanes are extracted, all extracts trigger UB |
| 2259 | // on poison, and the last extract (and hence all previous ones) |
| 2260 | // are guaranteed to execute if Ext executes. If so, we do not |
| 2261 | // need to insert a freeze. |
| 2262 | SmallDenseSet<ConstantInt *, 8> ; |
| 2263 | bool = true; |
| 2264 | ExtractElementInst * = nullptr; |
| 2265 | BasicBlock *ExtBB = Ext->getParent(); |
| 2266 | for (User *U : Ext->users()) { |
| 2267 | auto * = cast<ExtractElementInst>(Val: U); |
| 2268 | if (Extract->getParent() != ExtBB || !programUndefinedIfPoison(Inst: Extract)) { |
| 2269 | AllExtractsTriggerUB = false; |
| 2270 | break; |
| 2271 | } |
| 2272 | ExtractedLanes.insert(V: cast<ConstantInt>(Val: Extract->getIndexOperand())); |
| 2273 | if (!LastExtract || LastExtract->comesBefore(Other: Extract)) |
| 2274 | LastExtract = Extract; |
| 2275 | } |
| 2276 | if (ExtractedLanes.size() != DstTy->getNumElements() || |
| 2277 | !AllExtractsTriggerUB || |
| 2278 | !isGuaranteedToTransferExecutionToSuccessor(Begin: Ext->getIterator(), |
| 2279 | End: LastExtract->getIterator())) |
| 2280 | ScalarV = Builder.CreateFreeze(V: ScalarV); |
| 2281 | } |
| 2282 | ScalarV = Builder.CreateBitCast( |
| 2283 | V: ScalarV, |
| 2284 | DestTy: IntegerType::get(C&: SrcTy->getContext(), NumBits: DL->getTypeSizeInBits(Ty: SrcTy))); |
| 2285 | uint64_t SrcEltSizeInBits = DL->getTypeSizeInBits(Ty: SrcTy->getElementType()); |
| 2286 | uint64_t TotalBits = DL->getTypeSizeInBits(Ty: SrcTy); |
| 2287 | APInt EltBitMask = APInt::getLowBitsSet(numBits: TotalBits, loBitsSet: SrcEltSizeInBits); |
| 2288 | Type *PackedTy = IntegerType::get(C&: SrcTy->getContext(), NumBits: TotalBits); |
| 2289 | Value *Mask = ConstantInt::get(Ty: PackedTy, V: EltBitMask); |
| 2290 | for (User *U : Ext->users()) { |
| 2291 | auto * = cast<ExtractElementInst>(Val: U); |
| 2292 | uint64_t Idx = |
| 2293 | cast<ConstantInt>(Val: Extract->getIndexOperand())->getZExtValue(); |
| 2294 | uint64_t ShiftAmt = |
| 2295 | DL->isBigEndian() |
| 2296 | ? (TotalBits - SrcEltSizeInBits - Idx * SrcEltSizeInBits) |
| 2297 | : (Idx * SrcEltSizeInBits); |
| 2298 | Value *LShr = Builder.CreateLShr(LHS: ScalarV, RHS: ShiftAmt); |
| 2299 | Value *And = Builder.CreateAnd(LHS: LShr, RHS: Mask); |
| 2300 | U->replaceAllUsesWith(V: And); |
| 2301 | } |
| 2302 | return true; |
| 2303 | } |
| 2304 | |
| 2305 | /// Try to fold "(or (zext (bitcast X)), (shl (zext (bitcast Y)), C))" |
| 2306 | /// to "(bitcast (concat X, Y))" |
| 2307 | /// where X/Y are bitcasted from i1 mask vectors. |
| 2308 | bool VectorCombine::foldConcatOfBoolMasks(Instruction &I) { |
| 2309 | Type *Ty = I.getType(); |
| 2310 | if (!Ty->isIntegerTy()) |
| 2311 | return false; |
| 2312 | |
| 2313 | // TODO: Add big endian test coverage |
| 2314 | if (DL->isBigEndian()) |
| 2315 | return false; |
| 2316 | |
| 2317 | // Restrict to disjoint cases so the mask vectors aren't overlapping. |
| 2318 | Instruction *X, *Y; |
| 2319 | if (!match(V: &I, P: m_DisjointOr(L: m_Instruction(I&: X), R: m_Instruction(I&: Y)))) |
| 2320 | return false; |
| 2321 | |
| 2322 | // Allow both sources to contain shl, to handle more generic pattern: |
| 2323 | // "(or (shl (zext (bitcast X)), C1), (shl (zext (bitcast Y)), C2))" |
| 2324 | Value *SrcX; |
| 2325 | uint64_t ShAmtX = 0; |
| 2326 | if (!match(V: X, P: m_OneUse(SubPattern: m_ZExt(Op: m_OneUse(SubPattern: m_BitCast(Op: m_Value(V&: SrcX)))))) && |
| 2327 | !match(V: X, P: m_OneUse( |
| 2328 | SubPattern: m_Shl(L: m_OneUse(SubPattern: m_ZExt(Op: m_OneUse(SubPattern: m_BitCast(Op: m_Value(V&: SrcX))))), |
| 2329 | R: m_ConstantInt(V&: ShAmtX))))) |
| 2330 | return false; |
| 2331 | |
| 2332 | Value *SrcY; |
| 2333 | uint64_t ShAmtY = 0; |
| 2334 | if (!match(V: Y, P: m_OneUse(SubPattern: m_ZExt(Op: m_OneUse(SubPattern: m_BitCast(Op: m_Value(V&: SrcY)))))) && |
| 2335 | !match(V: Y, P: m_OneUse( |
| 2336 | SubPattern: m_Shl(L: m_OneUse(SubPattern: m_ZExt(Op: m_OneUse(SubPattern: m_BitCast(Op: m_Value(V&: SrcY))))), |
| 2337 | R: m_ConstantInt(V&: ShAmtY))))) |
| 2338 | return false; |
| 2339 | |
| 2340 | // Canonicalize larger shift to the RHS. |
| 2341 | if (ShAmtX > ShAmtY) { |
| 2342 | std::swap(a&: X, b&: Y); |
| 2343 | std::swap(a&: SrcX, b&: SrcY); |
| 2344 | std::swap(a&: ShAmtX, b&: ShAmtY); |
| 2345 | } |
| 2346 | |
| 2347 | // Ensure both sources are matching vXi1 bool mask types, and that the shift |
| 2348 | // difference is the mask width so they can be easily concatenated together. |
| 2349 | uint64_t ShAmtDiff = ShAmtY - ShAmtX; |
| 2350 | unsigned NumSHL = (ShAmtX > 0) + (ShAmtY > 0); |
| 2351 | unsigned BitWidth = Ty->getPrimitiveSizeInBits(); |
| 2352 | auto *MaskTy = dyn_cast<FixedVectorType>(Val: SrcX->getType()); |
| 2353 | if (!MaskTy || SrcX->getType() != SrcY->getType() || |
| 2354 | !MaskTy->getElementType()->isIntegerTy(Bitwidth: 1) || |
| 2355 | MaskTy->getNumElements() != ShAmtDiff || |
| 2356 | MaskTy->getNumElements() > (BitWidth / 2)) |
| 2357 | return false; |
| 2358 | |
| 2359 | auto *ConcatTy = FixedVectorType::getDoubleElementsVectorType(VTy: MaskTy); |
| 2360 | auto *ConcatIntTy = |
| 2361 | Type::getIntNTy(C&: Ty->getContext(), N: ConcatTy->getNumElements()); |
| 2362 | auto *MaskIntTy = Type::getIntNTy(C&: Ty->getContext(), N: ShAmtDiff); |
| 2363 | |
| 2364 | SmallVector<int, 32> ConcatMask(ConcatTy->getNumElements()); |
| 2365 | std::iota(first: ConcatMask.begin(), last: ConcatMask.end(), value: 0); |
| 2366 | |
| 2367 | // TODO: Is it worth supporting multi use cases? |
| 2368 | InstructionCost OldCost = 0; |
| 2369 | OldCost += TTI.getArithmeticInstrCost(Opcode: Instruction::Or, Ty, CostKind); |
| 2370 | OldCost += |
| 2371 | NumSHL * TTI.getArithmeticInstrCost(Opcode: Instruction::Shl, Ty, CostKind); |
| 2372 | OldCost += 2 * TTI.getCastInstrCost(Opcode: Instruction::ZExt, Dst: Ty, Src: MaskIntTy, |
| 2373 | CCH: TTI::CastContextHint::None, CostKind); |
| 2374 | OldCost += 2 * TTI.getCastInstrCost(Opcode: Instruction::BitCast, Dst: MaskIntTy, Src: MaskTy, |
| 2375 | CCH: TTI::CastContextHint::None, CostKind); |
| 2376 | |
| 2377 | InstructionCost NewCost = 0; |
| 2378 | NewCost += TTI.getShuffleCost(Kind: TargetTransformInfo::SK_PermuteTwoSrc, DstTy: ConcatTy, |
| 2379 | SrcTy: MaskTy, Mask: ConcatMask, CostKind); |
| 2380 | NewCost += TTI.getCastInstrCost(Opcode: Instruction::BitCast, Dst: ConcatIntTy, Src: ConcatTy, |
| 2381 | CCH: TTI::CastContextHint::None, CostKind); |
| 2382 | if (Ty != ConcatIntTy) |
| 2383 | NewCost += TTI.getCastInstrCost(Opcode: Instruction::ZExt, Dst: Ty, Src: ConcatIntTy, |
| 2384 | CCH: TTI::CastContextHint::None, CostKind); |
| 2385 | if (ShAmtX > 0) |
| 2386 | NewCost += TTI.getArithmeticInstrCost(Opcode: Instruction::Shl, Ty, CostKind); |
| 2387 | |
| 2388 | LLVM_DEBUG(dbgs() << "Found a concatenation of bitcasted bool masks: " << I |
| 2389 | << "\n OldCost: " << OldCost << " vs NewCost: " << NewCost |
| 2390 | << "\n" ); |
| 2391 | |
| 2392 | if (NewCost > OldCost) |
| 2393 | return false; |
| 2394 | |
| 2395 | // Build bool mask concatenation, bitcast back to scalar integer, and perform |
| 2396 | // any residual zero-extension or shifting. |
| 2397 | Value *Concat = Builder.CreateShuffleVector(V1: SrcX, V2: SrcY, Mask: ConcatMask); |
| 2398 | Worklist.pushValue(V: Concat); |
| 2399 | |
| 2400 | Value *Result = Builder.CreateBitCast(V: Concat, DestTy: ConcatIntTy); |
| 2401 | |
| 2402 | if (Ty != ConcatIntTy) { |
| 2403 | Worklist.pushValue(V: Result); |
| 2404 | Result = Builder.CreateZExt(V: Result, DestTy: Ty); |
| 2405 | } |
| 2406 | |
| 2407 | if (ShAmtX > 0) { |
| 2408 | Worklist.pushValue(V: Result); |
| 2409 | Result = Builder.CreateShl(LHS: Result, RHS: ShAmtX); |
| 2410 | } |
| 2411 | |
| 2412 | replaceValue(Old&: I, New&: *Result); |
| 2413 | return true; |
| 2414 | } |
| 2415 | |
| 2416 | /// Try to convert "shuffle (binop (shuffle, shuffle)), undef" |
| 2417 | /// --> "binop (shuffle), (shuffle)". |
| 2418 | bool VectorCombine::foldPermuteOfBinops(Instruction &I) { |
| 2419 | BinaryOperator *BinOp; |
| 2420 | ArrayRef<int> OuterMask; |
| 2421 | if (!match(V: &I, P: m_Shuffle(v1: m_BinOp(I&: BinOp), v2: m_Undef(), mask: m_Mask(OuterMask)))) |
| 2422 | return false; |
| 2423 | |
| 2424 | // Don't introduce poison into div/rem. |
| 2425 | if (BinOp->isIntDivRem() && llvm::is_contained(Range&: OuterMask, Element: PoisonMaskElem)) |
| 2426 | return false; |
| 2427 | |
| 2428 | Value *Op00, *Op01, *Op10, *Op11; |
| 2429 | ArrayRef<int> Mask0, Mask1; |
| 2430 | bool Match0 = match(V: BinOp->getOperand(i_nocapture: 0), |
| 2431 | P: m_Shuffle(v1: m_Value(V&: Op00), v2: m_Value(V&: Op01), mask: m_Mask(Mask0))); |
| 2432 | bool Match1 = match(V: BinOp->getOperand(i_nocapture: 1), |
| 2433 | P: m_Shuffle(v1: m_Value(V&: Op10), v2: m_Value(V&: Op11), mask: m_Mask(Mask1))); |
| 2434 | if (!Match0 && !Match1) |
| 2435 | return false; |
| 2436 | |
| 2437 | Op00 = Match0 ? Op00 : BinOp->getOperand(i_nocapture: 0); |
| 2438 | Op01 = Match0 ? Op01 : BinOp->getOperand(i_nocapture: 0); |
| 2439 | Op10 = Match1 ? Op10 : BinOp->getOperand(i_nocapture: 1); |
| 2440 | Op11 = Match1 ? Op11 : BinOp->getOperand(i_nocapture: 1); |
| 2441 | |
| 2442 | Instruction::BinaryOps Opcode = BinOp->getOpcode(); |
| 2443 | auto *ShuffleDstTy = dyn_cast<FixedVectorType>(Val: I.getType()); |
| 2444 | auto *BinOpTy = dyn_cast<FixedVectorType>(Val: BinOp->getType()); |
| 2445 | auto *Op0Ty = dyn_cast<FixedVectorType>(Val: Op00->getType()); |
| 2446 | auto *Op1Ty = dyn_cast<FixedVectorType>(Val: Op10->getType()); |
| 2447 | if (!ShuffleDstTy || !BinOpTy || !Op0Ty || !Op1Ty) |
| 2448 | return false; |
| 2449 | |
| 2450 | unsigned NumSrcElts = BinOpTy->getNumElements(); |
| 2451 | |
| 2452 | // Don't accept shuffles that reference the second operand in |
| 2453 | // div/rem or if its an undef arg. |
| 2454 | if ((BinOp->isIntDivRem() || !isa<PoisonValue>(Val: I.getOperand(i: 1))) && |
| 2455 | any_of(Range&: OuterMask, P: [NumSrcElts](int M) { return M >= (int)NumSrcElts; })) |
| 2456 | return false; |
| 2457 | |
| 2458 | // Merge outer / inner (or identity if no match) shuffles. |
| 2459 | SmallVector<int> NewMask0, NewMask1; |
| 2460 | for (int M : OuterMask) { |
| 2461 | if (M < 0 || M >= (int)NumSrcElts) { |
| 2462 | NewMask0.push_back(Elt: PoisonMaskElem); |
| 2463 | NewMask1.push_back(Elt: PoisonMaskElem); |
| 2464 | } else { |
| 2465 | NewMask0.push_back(Elt: Match0 ? Mask0[M] : M); |
| 2466 | NewMask1.push_back(Elt: Match1 ? Mask1[M] : M); |
| 2467 | } |
| 2468 | } |
| 2469 | |
| 2470 | unsigned NumOpElts = Op0Ty->getNumElements(); |
| 2471 | bool IsIdentity0 = ShuffleDstTy == Op0Ty && |
| 2472 | all_of(Range&: NewMask0, P: [NumOpElts](int M) { return M < (int)NumOpElts; }) && |
| 2473 | ShuffleVectorInst::isIdentityMask(Mask: NewMask0, NumSrcElts: NumOpElts); |
| 2474 | bool IsIdentity1 = ShuffleDstTy == Op1Ty && |
| 2475 | all_of(Range&: NewMask1, P: [NumOpElts](int M) { return M < (int)NumOpElts; }) && |
| 2476 | ShuffleVectorInst::isIdentityMask(Mask: NewMask1, NumSrcElts: NumOpElts); |
| 2477 | |
| 2478 | InstructionCost NewCost = 0; |
| 2479 | // Try to merge shuffles across the binop if the new shuffles are not costly. |
| 2480 | InstructionCost BinOpCost = |
| 2481 | TTI.getArithmeticInstrCost(Opcode, Ty: BinOpTy, CostKind); |
| 2482 | InstructionCost OldCost = |
| 2483 | BinOpCost + TTI.getShuffleCost(Kind: TargetTransformInfo::SK_PermuteSingleSrc, |
| 2484 | DstTy: ShuffleDstTy, SrcTy: BinOpTy, Mask: OuterMask, CostKind, |
| 2485 | Index: 0, SubTp: nullptr, Args: {BinOp}, CxtI: &I); |
| 2486 | if (!BinOp->hasOneUse()) |
| 2487 | NewCost += BinOpCost; |
| 2488 | |
| 2489 | if (Match0) { |
| 2490 | InstructionCost Shuf0Cost = TTI.getShuffleCost( |
| 2491 | Kind: TargetTransformInfo::SK_PermuteTwoSrc, DstTy: BinOpTy, SrcTy: Op0Ty, Mask: Mask0, CostKind, |
| 2492 | Index: 0, SubTp: nullptr, Args: {Op00, Op01}, CxtI: cast<Instruction>(Val: BinOp->getOperand(i_nocapture: 0))); |
| 2493 | OldCost += Shuf0Cost; |
| 2494 | if (!BinOp->hasOneUse() || !BinOp->getOperand(i_nocapture: 0)->hasOneUse()) |
| 2495 | NewCost += Shuf0Cost; |
| 2496 | } |
| 2497 | if (Match1) { |
| 2498 | InstructionCost Shuf1Cost = TTI.getShuffleCost( |
| 2499 | Kind: TargetTransformInfo::SK_PermuteTwoSrc, DstTy: BinOpTy, SrcTy: Op1Ty, Mask: Mask1, CostKind, |
| 2500 | Index: 0, SubTp: nullptr, Args: {Op10, Op11}, CxtI: cast<Instruction>(Val: BinOp->getOperand(i_nocapture: 1))); |
| 2501 | OldCost += Shuf1Cost; |
| 2502 | if (!BinOp->hasOneUse() || !BinOp->getOperand(i_nocapture: 1)->hasOneUse()) |
| 2503 | NewCost += Shuf1Cost; |
| 2504 | } |
| 2505 | |
| 2506 | NewCost += TTI.getArithmeticInstrCost(Opcode, Ty: ShuffleDstTy, CostKind); |
| 2507 | |
| 2508 | if (!IsIdentity0) |
| 2509 | NewCost += |
| 2510 | TTI.getShuffleCost(Kind: TargetTransformInfo::SK_PermuteTwoSrc, DstTy: ShuffleDstTy, |
| 2511 | SrcTy: Op0Ty, Mask: NewMask0, CostKind, Index: 0, SubTp: nullptr, Args: {Op00, Op01}); |
| 2512 | if (!IsIdentity1) |
| 2513 | NewCost += |
| 2514 | TTI.getShuffleCost(Kind: TargetTransformInfo::SK_PermuteTwoSrc, DstTy: ShuffleDstTy, |
| 2515 | SrcTy: Op1Ty, Mask: NewMask1, CostKind, Index: 0, SubTp: nullptr, Args: {Op10, Op11}); |
| 2516 | |
| 2517 | LLVM_DEBUG(dbgs() << "Found a shuffle feeding a shuffled binop: " << I |
| 2518 | << "\n OldCost: " << OldCost << " vs NewCost: " << NewCost |
| 2519 | << "\n" ); |
| 2520 | |
| 2521 | // If costs are equal, still fold as we reduce instruction count. |
| 2522 | if (NewCost > OldCost) |
| 2523 | return false; |
| 2524 | |
| 2525 | Value *LHS = |
| 2526 | IsIdentity0 ? Op00 : Builder.CreateShuffleVector(V1: Op00, V2: Op01, Mask: NewMask0); |
| 2527 | Value *RHS = |
| 2528 | IsIdentity1 ? Op10 : Builder.CreateShuffleVector(V1: Op10, V2: Op11, Mask: NewMask1); |
| 2529 | Value *NewBO = Builder.CreateBinOp(Opc: Opcode, LHS, RHS); |
| 2530 | |
| 2531 | // Intersect flags from the old binops. |
| 2532 | if (auto *NewInst = dyn_cast<Instruction>(Val: NewBO)) |
| 2533 | NewInst->copyIRFlags(V: BinOp); |
| 2534 | |
| 2535 | Worklist.pushValue(V: LHS); |
| 2536 | Worklist.pushValue(V: RHS); |
| 2537 | replaceValue(Old&: I, New&: *NewBO); |
| 2538 | return true; |
| 2539 | } |
| 2540 | |
| 2541 | /// Try to convert "shuffle (binop), (binop)" into "binop (shuffle), (shuffle)". |
| 2542 | /// Try to convert "shuffle (cmpop), (cmpop)" into "cmpop (shuffle), (shuffle)". |
| 2543 | bool VectorCombine::foldShuffleOfBinops(Instruction &I) { |
| 2544 | ArrayRef<int> OldMask; |
| 2545 | Instruction *LHS, *RHS; |
| 2546 | if (!match(V: &I, P: m_Shuffle(v1: m_OneUse(SubPattern: m_Instruction(I&: LHS)), |
| 2547 | v2: m_OneUse(SubPattern: m_Instruction(I&: RHS)), mask: m_Mask(OldMask)))) |
| 2548 | return false; |
| 2549 | |
| 2550 | // TODO: Add support for addlike etc. |
| 2551 | if (LHS->getOpcode() != RHS->getOpcode()) |
| 2552 | return false; |
| 2553 | |
| 2554 | Value *X, *Y, *Z, *W; |
| 2555 | bool IsCommutative = false; |
| 2556 | CmpPredicate PredLHS = CmpInst::BAD_ICMP_PREDICATE; |
| 2557 | CmpPredicate PredRHS = CmpInst::BAD_ICMP_PREDICATE; |
| 2558 | if (match(V: LHS, P: m_BinOp(L: m_Value(V&: X), R: m_Value(V&: Y))) && |
| 2559 | match(V: RHS, P: m_BinOp(L: m_Value(V&: Z), R: m_Value(V&: W)))) { |
| 2560 | auto *BO = cast<BinaryOperator>(Val: LHS); |
| 2561 | // Don't introduce poison into div/rem. |
| 2562 | if (llvm::is_contained(Range&: OldMask, Element: PoisonMaskElem) && BO->isIntDivRem()) |
| 2563 | return false; |
| 2564 | IsCommutative = BinaryOperator::isCommutative(Opcode: BO->getOpcode()); |
| 2565 | } else if (match(V: LHS, P: m_Cmp(Pred&: PredLHS, L: m_Value(V&: X), R: m_Value(V&: Y))) && |
| 2566 | match(V: RHS, P: m_Cmp(Pred&: PredRHS, L: m_Value(V&: Z), R: m_Value(V&: W))) && |
| 2567 | (CmpInst::Predicate)PredLHS == (CmpInst::Predicate)PredRHS) { |
| 2568 | IsCommutative = cast<CmpInst>(Val: LHS)->isCommutative(); |
| 2569 | } else |
| 2570 | return false; |
| 2571 | |
| 2572 | auto *ShuffleDstTy = dyn_cast<FixedVectorType>(Val: I.getType()); |
| 2573 | auto *BinResTy = dyn_cast<FixedVectorType>(Val: LHS->getType()); |
| 2574 | auto *BinOpTy = dyn_cast<FixedVectorType>(Val: X->getType()); |
| 2575 | if (!ShuffleDstTy || !BinResTy || !BinOpTy || X->getType() != Z->getType()) |
| 2576 | return false; |
| 2577 | |
| 2578 | unsigned NumSrcElts = BinOpTy->getNumElements(); |
| 2579 | |
| 2580 | // If we have something like "add X, Y" and "add Z, X", swap ops to match. |
| 2581 | if (IsCommutative && X != Z && Y != W && (X == W || Y == Z)) |
| 2582 | std::swap(a&: X, b&: Y); |
| 2583 | |
| 2584 | auto ConvertToUnary = [NumSrcElts](int &M) { |
| 2585 | if (M >= (int)NumSrcElts) |
| 2586 | M -= NumSrcElts; |
| 2587 | }; |
| 2588 | |
| 2589 | SmallVector<int> NewMask0(OldMask); |
| 2590 | TargetTransformInfo::ShuffleKind SK0 = TargetTransformInfo::SK_PermuteTwoSrc; |
| 2591 | TTI::OperandValueInfo Op0Info = TTI.commonOperandInfo(X, Y: Z); |
| 2592 | if (X == Z) { |
| 2593 | llvm::for_each(Range&: NewMask0, F: ConvertToUnary); |
| 2594 | SK0 = TargetTransformInfo::SK_PermuteSingleSrc; |
| 2595 | Z = PoisonValue::get(T: BinOpTy); |
| 2596 | } |
| 2597 | |
| 2598 | SmallVector<int> NewMask1(OldMask); |
| 2599 | TargetTransformInfo::ShuffleKind SK1 = TargetTransformInfo::SK_PermuteTwoSrc; |
| 2600 | TTI::OperandValueInfo Op1Info = TTI.commonOperandInfo(X: Y, Y: W); |
| 2601 | if (Y == W) { |
| 2602 | llvm::for_each(Range&: NewMask1, F: ConvertToUnary); |
| 2603 | SK1 = TargetTransformInfo::SK_PermuteSingleSrc; |
| 2604 | W = PoisonValue::get(T: BinOpTy); |
| 2605 | } |
| 2606 | |
| 2607 | // Try to replace a binop with a shuffle if the shuffle is not costly. |
| 2608 | InstructionCost OldCost = |
| 2609 | TTI.getInstructionCost(U: LHS, CostKind) + |
| 2610 | TTI.getInstructionCost(U: RHS, CostKind) + |
| 2611 | TTI.getShuffleCost(Kind: TargetTransformInfo::SK_PermuteTwoSrc, DstTy: ShuffleDstTy, |
| 2612 | SrcTy: BinResTy, Mask: OldMask, CostKind, Index: 0, SubTp: nullptr, Args: {LHS, RHS}, |
| 2613 | CxtI: &I); |
| 2614 | |
| 2615 | // Handle shuffle(binop(shuffle(x),y),binop(z,shuffle(w))) style patterns |
| 2616 | // where one use shuffles have gotten split across the binop/cmp. These |
| 2617 | // often allow a major reduction in total cost that wouldn't happen as |
| 2618 | // individual folds. |
| 2619 | auto MergeInner = [&](Value *&Op, int Offset, MutableArrayRef<int> Mask, |
| 2620 | TTI::TargetCostKind CostKind) -> bool { |
| 2621 | Value *InnerOp; |
| 2622 | ArrayRef<int> InnerMask; |
| 2623 | if (match(V: Op, P: m_OneUse(SubPattern: m_Shuffle(v1: m_Value(V&: InnerOp), v2: m_Undef(), |
| 2624 | mask: m_Mask(InnerMask)))) && |
| 2625 | InnerOp->getType() == Op->getType() && |
| 2626 | all_of(Range&: InnerMask, |
| 2627 | P: [NumSrcElts](int M) { return M < (int)NumSrcElts; })) { |
| 2628 | for (int &M : Mask) |
| 2629 | if (Offset <= M && M < (int)(Offset + NumSrcElts)) { |
| 2630 | M = InnerMask[M - Offset]; |
| 2631 | M = 0 <= M ? M + Offset : M; |
| 2632 | } |
| 2633 | OldCost += TTI.getInstructionCost(U: cast<Instruction>(Val: Op), CostKind); |
| 2634 | Op = InnerOp; |
| 2635 | return true; |
| 2636 | } |
| 2637 | return false; |
| 2638 | }; |
| 2639 | bool ReducedInstCount = false; |
| 2640 | ReducedInstCount |= MergeInner(X, 0, NewMask0, CostKind); |
| 2641 | ReducedInstCount |= MergeInner(Y, 0, NewMask1, CostKind); |
| 2642 | ReducedInstCount |= MergeInner(Z, NumSrcElts, NewMask0, CostKind); |
| 2643 | ReducedInstCount |= MergeInner(W, NumSrcElts, NewMask1, CostKind); |
| 2644 | bool SingleSrcBinOp = (X == Y) && (Z == W) && (NewMask0 == NewMask1); |
| 2645 | ReducedInstCount |= SingleSrcBinOp; |
| 2646 | |
| 2647 | auto *ShuffleCmpTy = |
| 2648 | FixedVectorType::get(ElementType: BinOpTy->getElementType(), FVTy: ShuffleDstTy); |
| 2649 | InstructionCost NewCost = TTI.getShuffleCost( |
| 2650 | Kind: SK0, DstTy: ShuffleCmpTy, SrcTy: BinOpTy, Mask: NewMask0, CostKind, Index: 0, SubTp: nullptr, Args: {X, Z}); |
| 2651 | if (!SingleSrcBinOp) |
| 2652 | NewCost += TTI.getShuffleCost(Kind: SK1, DstTy: ShuffleCmpTy, SrcTy: BinOpTy, Mask: NewMask1, |
| 2653 | CostKind, Index: 0, SubTp: nullptr, Args: {Y, W}); |
| 2654 | |
| 2655 | if (PredLHS == CmpInst::BAD_ICMP_PREDICATE) { |
| 2656 | NewCost += TTI.getArithmeticInstrCost(Opcode: LHS->getOpcode(), Ty: ShuffleDstTy, |
| 2657 | CostKind, Opd1Info: Op0Info, Opd2Info: Op1Info); |
| 2658 | } else { |
| 2659 | NewCost += |
| 2660 | TTI.getCmpSelInstrCost(Opcode: LHS->getOpcode(), ValTy: ShuffleCmpTy, CondTy: ShuffleDstTy, |
| 2661 | VecPred: PredLHS, CostKind, Op1Info: Op0Info, Op2Info: Op1Info); |
| 2662 | } |
| 2663 | |
| 2664 | LLVM_DEBUG(dbgs() << "Found a shuffle feeding two binops: " << I |
| 2665 | << "\n OldCost: " << OldCost << " vs NewCost: " << NewCost |
| 2666 | << "\n" ); |
| 2667 | |
| 2668 | // If either shuffle will constant fold away, then fold for the same cost as |
| 2669 | // we will reduce the instruction count. |
| 2670 | ReducedInstCount |= (isa<Constant>(Val: X) && isa<Constant>(Val: Z)) || |
| 2671 | (isa<Constant>(Val: Y) && isa<Constant>(Val: W)); |
| 2672 | if (ReducedInstCount ? (NewCost > OldCost) : (NewCost >= OldCost)) |
| 2673 | return false; |
| 2674 | |
| 2675 | Value *Shuf0 = Builder.CreateShuffleVector(V1: X, V2: Z, Mask: NewMask0); |
| 2676 | Value *Shuf1 = |
| 2677 | SingleSrcBinOp ? Shuf0 : Builder.CreateShuffleVector(V1: Y, V2: W, Mask: NewMask1); |
| 2678 | Value *NewBO = PredLHS == CmpInst::BAD_ICMP_PREDICATE |
| 2679 | ? Builder.CreateBinOp( |
| 2680 | Opc: cast<BinaryOperator>(Val: LHS)->getOpcode(), LHS: Shuf0, RHS: Shuf1) |
| 2681 | : Builder.CreateCmp(Pred: PredLHS, LHS: Shuf0, RHS: Shuf1); |
| 2682 | |
| 2683 | // Intersect flags from the old binops. |
| 2684 | if (auto *NewInst = dyn_cast<Instruction>(Val: NewBO)) { |
| 2685 | NewInst->copyIRFlags(V: LHS); |
| 2686 | NewInst->andIRFlags(V: RHS); |
| 2687 | } |
| 2688 | |
| 2689 | Worklist.pushValue(V: Shuf0); |
| 2690 | Worklist.pushValue(V: Shuf1); |
| 2691 | replaceValue(Old&: I, New&: *NewBO); |
| 2692 | return true; |
| 2693 | } |
| 2694 | |
| 2695 | /// Try to convert, |
| 2696 | /// (shuffle(select(c1,t1,f1)), (select(c2,t2,f2)), m) into |
| 2697 | /// (select (shuffle c1,c2,m), (shuffle t1,t2,m), (shuffle f1,f2,m)) |
| 2698 | bool VectorCombine::foldShuffleOfSelects(Instruction &I) { |
| 2699 | ArrayRef<int> Mask; |
| 2700 | Value *C1, *T1, *F1, *C2, *T2, *F2; |
| 2701 | if (!match(V: &I, P: m_Shuffle(v1: m_Select(C: m_Value(V&: C1), L: m_Value(V&: T1), R: m_Value(V&: F1)), |
| 2702 | v2: m_Select(C: m_Value(V&: C2), L: m_Value(V&: T2), R: m_Value(V&: F2)), |
| 2703 | mask: m_Mask(Mask)))) |
| 2704 | return false; |
| 2705 | |
| 2706 | auto *Sel1 = cast<Instruction>(Val: I.getOperand(i: 0)); |
| 2707 | auto *Sel2 = cast<Instruction>(Val: I.getOperand(i: 1)); |
| 2708 | |
| 2709 | auto *C1VecTy = dyn_cast<FixedVectorType>(Val: C1->getType()); |
| 2710 | auto *C2VecTy = dyn_cast<FixedVectorType>(Val: C2->getType()); |
| 2711 | if (!C1VecTy || !C2VecTy || C1VecTy != C2VecTy) |
| 2712 | return false; |
| 2713 | |
| 2714 | auto *SI0FOp = dyn_cast<FPMathOperator>(Val: I.getOperand(i: 0)); |
| 2715 | auto *SI1FOp = dyn_cast<FPMathOperator>(Val: I.getOperand(i: 1)); |
| 2716 | // SelectInsts must have the same FMF. |
| 2717 | if (((SI0FOp == nullptr) != (SI1FOp == nullptr)) || |
| 2718 | ((SI0FOp != nullptr) && |
| 2719 | (SI0FOp->getFastMathFlags() != SI1FOp->getFastMathFlags()))) |
| 2720 | return false; |
| 2721 | |
| 2722 | auto *SrcVecTy = cast<FixedVectorType>(Val: T1->getType()); |
| 2723 | auto *DstVecTy = cast<FixedVectorType>(Val: I.getType()); |
| 2724 | auto SK = TargetTransformInfo::SK_PermuteTwoSrc; |
| 2725 | auto SelOp = Instruction::Select; |
| 2726 | |
| 2727 | InstructionCost CostSel1 = TTI.getCmpSelInstrCost( |
| 2728 | Opcode: SelOp, ValTy: SrcVecTy, CondTy: C1VecTy, VecPred: CmpInst::BAD_ICMP_PREDICATE, CostKind); |
| 2729 | InstructionCost CostSel2 = TTI.getCmpSelInstrCost( |
| 2730 | Opcode: SelOp, ValTy: SrcVecTy, CondTy: C2VecTy, VecPred: CmpInst::BAD_ICMP_PREDICATE, CostKind); |
| 2731 | |
| 2732 | InstructionCost OldCost = |
| 2733 | CostSel1 + CostSel2 + |
| 2734 | TTI.getShuffleCost(Kind: SK, DstTy: DstVecTy, SrcTy: SrcVecTy, Mask, CostKind, Index: 0, SubTp: nullptr, |
| 2735 | Args: {I.getOperand(i: 0), I.getOperand(i: 1)}, CxtI: &I); |
| 2736 | |
| 2737 | InstructionCost NewCost = TTI.getShuffleCost( |
| 2738 | Kind: SK, DstTy: FixedVectorType::get(ElementType: C1VecTy->getScalarType(), NumElts: Mask.size()), SrcTy: C1VecTy, |
| 2739 | Mask, CostKind, Index: 0, SubTp: nullptr, Args: {C1, C2}); |
| 2740 | NewCost += TTI.getShuffleCost(Kind: SK, DstTy: DstVecTy, SrcTy: SrcVecTy, Mask, CostKind, Index: 0, |
| 2741 | SubTp: nullptr, Args: {T1, T2}); |
| 2742 | NewCost += TTI.getShuffleCost(Kind: SK, DstTy: DstVecTy, SrcTy: SrcVecTy, Mask, CostKind, Index: 0, |
| 2743 | SubTp: nullptr, Args: {F1, F2}); |
| 2744 | auto *C1C2ShuffledVecTy = cast<FixedVectorType>( |
| 2745 | Val: toVectorTy(Scalar: Type::getInt1Ty(C&: I.getContext()), VF: DstVecTy->getNumElements())); |
| 2746 | NewCost += TTI.getCmpSelInstrCost(Opcode: SelOp, ValTy: DstVecTy, CondTy: C1C2ShuffledVecTy, |
| 2747 | VecPred: CmpInst::BAD_ICMP_PREDICATE, CostKind); |
| 2748 | |
| 2749 | if (!Sel1->hasOneUse()) |
| 2750 | NewCost += CostSel1; |
| 2751 | if (!Sel2->hasOneUse()) |
| 2752 | NewCost += CostSel2; |
| 2753 | |
| 2754 | LLVM_DEBUG(dbgs() << "Found a shuffle feeding two selects: " << I |
| 2755 | << "\n OldCost: " << OldCost << " vs NewCost: " << NewCost |
| 2756 | << "\n" ); |
| 2757 | if (NewCost > OldCost) |
| 2758 | return false; |
| 2759 | |
| 2760 | Value *ShuffleCmp = Builder.CreateShuffleVector(V1: C1, V2: C2, Mask); |
| 2761 | Value *ShuffleTrue = Builder.CreateShuffleVector(V1: T1, V2: T2, Mask); |
| 2762 | Value *ShuffleFalse = Builder.CreateShuffleVector(V1: F1, V2: F2, Mask); |
| 2763 | Value *NewSel; |
| 2764 | // We presuppose that the SelectInsts have the same FMF. |
| 2765 | if (SI0FOp) |
| 2766 | NewSel = Builder.CreateSelectFMF(C: ShuffleCmp, True: ShuffleTrue, False: ShuffleFalse, |
| 2767 | FMFSource: SI0FOp->getFastMathFlags()); |
| 2768 | else |
| 2769 | NewSel = Builder.CreateSelect(C: ShuffleCmp, True: ShuffleTrue, False: ShuffleFalse); |
| 2770 | |
| 2771 | Worklist.pushValue(V: ShuffleCmp); |
| 2772 | Worklist.pushValue(V: ShuffleTrue); |
| 2773 | Worklist.pushValue(V: ShuffleFalse); |
| 2774 | replaceValue(Old&: I, New&: *NewSel); |
| 2775 | return true; |
| 2776 | } |
| 2777 | |
| 2778 | /// Try to convert "shuffle (castop), (castop)" with a shared castop operand |
| 2779 | /// into "castop (shuffle)". |
| 2780 | bool VectorCombine::foldShuffleOfCastops(Instruction &I) { |
| 2781 | Value *V0, *V1; |
| 2782 | ArrayRef<int> OldMask; |
| 2783 | if (!match(V: &I, P: m_Shuffle(v1: m_Value(V&: V0), v2: m_Value(V&: V1), mask: m_Mask(OldMask)))) |
| 2784 | return false; |
| 2785 | |
| 2786 | // Check whether this is a binary shuffle. |
| 2787 | bool IsBinaryShuffle = !isa<UndefValue>(Val: V1); |
| 2788 | |
| 2789 | auto *C0 = dyn_cast<CastInst>(Val: V0); |
| 2790 | auto *C1 = dyn_cast<CastInst>(Val: V1); |
| 2791 | if (!C0 || (IsBinaryShuffle && !C1)) |
| 2792 | return false; |
| 2793 | |
| 2794 | Instruction::CastOps Opcode = C0->getOpcode(); |
| 2795 | |
| 2796 | // If this is allowed, foldShuffleOfCastops can get stuck in a loop |
| 2797 | // with foldBitcastOfShuffle. Reject in favor of foldBitcastOfShuffle. |
| 2798 | if (!IsBinaryShuffle && Opcode == Instruction::BitCast) |
| 2799 | return false; |
| 2800 | |
| 2801 | if (IsBinaryShuffle) { |
| 2802 | if (C0->getSrcTy() != C1->getSrcTy()) |
| 2803 | return false; |
| 2804 | // Handle shuffle(zext_nneg(x), sext(y)) -> sext(shuffle(x,y)) folds. |
| 2805 | if (Opcode != C1->getOpcode()) { |
| 2806 | if (match(V: C0, P: m_SExtLike(Op: m_Value())) && match(V: C1, P: m_SExtLike(Op: m_Value()))) |
| 2807 | Opcode = Instruction::SExt; |
| 2808 | else |
| 2809 | return false; |
| 2810 | } |
| 2811 | } |
| 2812 | |
| 2813 | auto *ShuffleDstTy = dyn_cast<FixedVectorType>(Val: I.getType()); |
| 2814 | auto *CastDstTy = dyn_cast<FixedVectorType>(Val: C0->getDestTy()); |
| 2815 | auto *CastSrcTy = dyn_cast<FixedVectorType>(Val: C0->getSrcTy()); |
| 2816 | if (!ShuffleDstTy || !CastDstTy || !CastSrcTy) |
| 2817 | return false; |
| 2818 | |
| 2819 | unsigned NumSrcElts = CastSrcTy->getNumElements(); |
| 2820 | unsigned NumDstElts = CastDstTy->getNumElements(); |
| 2821 | assert((NumDstElts == NumSrcElts || Opcode == Instruction::BitCast) && |
| 2822 | "Only bitcasts expected to alter src/dst element counts" ); |
| 2823 | |
| 2824 | // Check for bitcasting of unscalable vector types. |
| 2825 | // e.g. <32 x i40> -> <40 x i32> |
| 2826 | if (NumDstElts != NumSrcElts && (NumSrcElts % NumDstElts) != 0 && |
| 2827 | (NumDstElts % NumSrcElts) != 0) |
| 2828 | return false; |
| 2829 | |
| 2830 | SmallVector<int, 16> NewMask; |
| 2831 | if (NumSrcElts >= NumDstElts) { |
| 2832 | // The bitcast is from wide to narrow/equal elements. The shuffle mask can |
| 2833 | // always be expanded to the equivalent form choosing narrower elements. |
| 2834 | assert(NumSrcElts % NumDstElts == 0 && "Unexpected shuffle mask" ); |
| 2835 | unsigned ScaleFactor = NumSrcElts / NumDstElts; |
| 2836 | narrowShuffleMaskElts(Scale: ScaleFactor, Mask: OldMask, ScaledMask&: NewMask); |
| 2837 | } else { |
| 2838 | // The bitcast is from narrow elements to wide elements. The shuffle mask |
| 2839 | // must choose consecutive elements to allow casting first. |
| 2840 | assert(NumDstElts % NumSrcElts == 0 && "Unexpected shuffle mask" ); |
| 2841 | unsigned ScaleFactor = NumDstElts / NumSrcElts; |
| 2842 | if (!widenShuffleMaskElts(Scale: ScaleFactor, Mask: OldMask, ScaledMask&: NewMask)) |
| 2843 | return false; |
| 2844 | } |
| 2845 | |
| 2846 | auto *NewShuffleDstTy = |
| 2847 | FixedVectorType::get(ElementType: CastSrcTy->getScalarType(), NumElts: NewMask.size()); |
| 2848 | |
| 2849 | // Try to replace a castop with a shuffle if the shuffle is not costly. |
| 2850 | InstructionCost CostC0 = |
| 2851 | TTI.getCastInstrCost(Opcode: C0->getOpcode(), Dst: CastDstTy, Src: CastSrcTy, |
| 2852 | CCH: TTI::CastContextHint::None, CostKind); |
| 2853 | |
| 2854 | TargetTransformInfo::ShuffleKind ShuffleKind; |
| 2855 | if (IsBinaryShuffle) |
| 2856 | ShuffleKind = TargetTransformInfo::SK_PermuteTwoSrc; |
| 2857 | else |
| 2858 | ShuffleKind = TargetTransformInfo::SK_PermuteSingleSrc; |
| 2859 | |
| 2860 | InstructionCost OldCost = CostC0; |
| 2861 | OldCost += TTI.getShuffleCost(Kind: ShuffleKind, DstTy: ShuffleDstTy, SrcTy: CastDstTy, Mask: OldMask, |
| 2862 | CostKind, Index: 0, SubTp: nullptr, Args: {}, CxtI: &I); |
| 2863 | |
| 2864 | InstructionCost NewCost = TTI.getShuffleCost(Kind: ShuffleKind, DstTy: NewShuffleDstTy, |
| 2865 | SrcTy: CastSrcTy, Mask: NewMask, CostKind); |
| 2866 | NewCost += TTI.getCastInstrCost(Opcode, Dst: ShuffleDstTy, Src: NewShuffleDstTy, |
| 2867 | CCH: TTI::CastContextHint::None, CostKind); |
| 2868 | if (!C0->hasOneUse()) |
| 2869 | NewCost += CostC0; |
| 2870 | if (IsBinaryShuffle) { |
| 2871 | InstructionCost CostC1 = |
| 2872 | TTI.getCastInstrCost(Opcode: C1->getOpcode(), Dst: CastDstTy, Src: CastSrcTy, |
| 2873 | CCH: TTI::CastContextHint::None, CostKind); |
| 2874 | OldCost += CostC1; |
| 2875 | if (!C1->hasOneUse()) |
| 2876 | NewCost += CostC1; |
| 2877 | } |
| 2878 | |
| 2879 | LLVM_DEBUG(dbgs() << "Found a shuffle feeding two casts: " << I |
| 2880 | << "\n OldCost: " << OldCost << " vs NewCost: " << NewCost |
| 2881 | << "\n" ); |
| 2882 | if (NewCost > OldCost) |
| 2883 | return false; |
| 2884 | |
| 2885 | Value *Shuf; |
| 2886 | if (IsBinaryShuffle) |
| 2887 | Shuf = Builder.CreateShuffleVector(V1: C0->getOperand(i_nocapture: 0), V2: C1->getOperand(i_nocapture: 0), |
| 2888 | Mask: NewMask); |
| 2889 | else |
| 2890 | Shuf = Builder.CreateShuffleVector(V: C0->getOperand(i_nocapture: 0), Mask: NewMask); |
| 2891 | |
| 2892 | Value *Cast = Builder.CreateCast(Op: Opcode, V: Shuf, DestTy: ShuffleDstTy); |
| 2893 | |
| 2894 | // Intersect flags from the old casts. |
| 2895 | if (auto *NewInst = dyn_cast<Instruction>(Val: Cast)) { |
| 2896 | NewInst->copyIRFlags(V: C0); |
| 2897 | if (IsBinaryShuffle) |
| 2898 | NewInst->andIRFlags(V: C1); |
| 2899 | } |
| 2900 | |
| 2901 | Worklist.pushValue(V: Shuf); |
| 2902 | replaceValue(Old&: I, New&: *Cast); |
| 2903 | return true; |
| 2904 | } |
| 2905 | |
| 2906 | /// Try to convert any of: |
| 2907 | /// "shuffle (shuffle x, y), (shuffle y, x)" |
| 2908 | /// "shuffle (shuffle x, undef), (shuffle y, undef)" |
| 2909 | /// "shuffle (shuffle x, undef), y" |
| 2910 | /// "shuffle x, (shuffle y, undef)" |
| 2911 | /// into "shuffle x, y". |
| 2912 | bool VectorCombine::foldShuffleOfShuffles(Instruction &I) { |
| 2913 | ArrayRef<int> OuterMask; |
| 2914 | Value *OuterV0, *OuterV1; |
| 2915 | if (!match(V: &I, |
| 2916 | P: m_Shuffle(v1: m_Value(V&: OuterV0), v2: m_Value(V&: OuterV1), mask: m_Mask(OuterMask)))) |
| 2917 | return false; |
| 2918 | |
| 2919 | ArrayRef<int> InnerMask0, InnerMask1; |
| 2920 | Value *X0, *X1, *Y0, *Y1; |
| 2921 | bool Match0 = |
| 2922 | match(V: OuterV0, P: m_Shuffle(v1: m_Value(V&: X0), v2: m_Value(V&: Y0), mask: m_Mask(InnerMask0))); |
| 2923 | bool Match1 = |
| 2924 | match(V: OuterV1, P: m_Shuffle(v1: m_Value(V&: X1), v2: m_Value(V&: Y1), mask: m_Mask(InnerMask1))); |
| 2925 | if (!Match0 && !Match1) |
| 2926 | return false; |
| 2927 | |
| 2928 | // If the outer shuffle is a permute, then create a fake inner all-poison |
| 2929 | // shuffle. This is easier than accounting for length-changing shuffles below. |
| 2930 | SmallVector<int, 16> PoisonMask1; |
| 2931 | if (!Match1 && isa<PoisonValue>(Val: OuterV1)) { |
| 2932 | X1 = X0; |
| 2933 | Y1 = Y0; |
| 2934 | PoisonMask1.append(NumInputs: InnerMask0.size(), Elt: PoisonMaskElem); |
| 2935 | InnerMask1 = PoisonMask1; |
| 2936 | Match1 = true; // fake match |
| 2937 | } |
| 2938 | |
| 2939 | X0 = Match0 ? X0 : OuterV0; |
| 2940 | Y0 = Match0 ? Y0 : OuterV0; |
| 2941 | X1 = Match1 ? X1 : OuterV1; |
| 2942 | Y1 = Match1 ? Y1 : OuterV1; |
| 2943 | auto *ShuffleDstTy = dyn_cast<FixedVectorType>(Val: I.getType()); |
| 2944 | auto *ShuffleSrcTy = dyn_cast<FixedVectorType>(Val: X0->getType()); |
| 2945 | auto *ShuffleImmTy = dyn_cast<FixedVectorType>(Val: OuterV0->getType()); |
| 2946 | if (!ShuffleDstTy || !ShuffleSrcTy || !ShuffleImmTy || |
| 2947 | X0->getType() != X1->getType()) |
| 2948 | return false; |
| 2949 | |
| 2950 | unsigned NumSrcElts = ShuffleSrcTy->getNumElements(); |
| 2951 | unsigned NumImmElts = ShuffleImmTy->getNumElements(); |
| 2952 | |
| 2953 | // Attempt to merge shuffles, matching upto 2 source operands. |
| 2954 | // Replace index to a poison arg with PoisonMaskElem. |
| 2955 | // Bail if either inner masks reference an undef arg. |
| 2956 | SmallVector<int, 16> NewMask(OuterMask); |
| 2957 | Value *NewX = nullptr, *NewY = nullptr; |
| 2958 | for (int &M : NewMask) { |
| 2959 | Value *Src = nullptr; |
| 2960 | if (0 <= M && M < (int)NumImmElts) { |
| 2961 | Src = OuterV0; |
| 2962 | if (Match0) { |
| 2963 | M = InnerMask0[M]; |
| 2964 | Src = M >= (int)NumSrcElts ? Y0 : X0; |
| 2965 | M = M >= (int)NumSrcElts ? (M - NumSrcElts) : M; |
| 2966 | } |
| 2967 | } else if (M >= (int)NumImmElts) { |
| 2968 | Src = OuterV1; |
| 2969 | M -= NumImmElts; |
| 2970 | if (Match1) { |
| 2971 | M = InnerMask1[M]; |
| 2972 | Src = M >= (int)NumSrcElts ? Y1 : X1; |
| 2973 | M = M >= (int)NumSrcElts ? (M - NumSrcElts) : M; |
| 2974 | } |
| 2975 | } |
| 2976 | if (Src && M != PoisonMaskElem) { |
| 2977 | assert(0 <= M && M < (int)NumSrcElts && "Unexpected shuffle mask index" ); |
| 2978 | if (isa<UndefValue>(Val: Src)) { |
| 2979 | // We've referenced an undef element - if its poison, update the shuffle |
| 2980 | // mask, else bail. |
| 2981 | if (!isa<PoisonValue>(Val: Src)) |
| 2982 | return false; |
| 2983 | M = PoisonMaskElem; |
| 2984 | continue; |
| 2985 | } |
| 2986 | if (!NewX || NewX == Src) { |
| 2987 | NewX = Src; |
| 2988 | continue; |
| 2989 | } |
| 2990 | if (!NewY || NewY == Src) { |
| 2991 | M += NumSrcElts; |
| 2992 | NewY = Src; |
| 2993 | continue; |
| 2994 | } |
| 2995 | return false; |
| 2996 | } |
| 2997 | } |
| 2998 | |
| 2999 | if (!NewX) |
| 3000 | return PoisonValue::get(T: ShuffleDstTy); |
| 3001 | if (!NewY) |
| 3002 | NewY = PoisonValue::get(T: ShuffleSrcTy); |
| 3003 | |
| 3004 | // Have we folded to an Identity shuffle? |
| 3005 | if (ShuffleVectorInst::isIdentityMask(Mask: NewMask, NumSrcElts)) { |
| 3006 | replaceValue(Old&: I, New&: *NewX); |
| 3007 | return true; |
| 3008 | } |
| 3009 | |
| 3010 | // Try to merge the shuffles if the new shuffle is not costly. |
| 3011 | InstructionCost InnerCost0 = 0; |
| 3012 | if (Match0) |
| 3013 | InnerCost0 = TTI.getInstructionCost(U: cast<User>(Val: OuterV0), CostKind); |
| 3014 | |
| 3015 | InstructionCost InnerCost1 = 0; |
| 3016 | if (Match1) |
| 3017 | InnerCost1 = TTI.getInstructionCost(U: cast<User>(Val: OuterV1), CostKind); |
| 3018 | |
| 3019 | InstructionCost OuterCost = TTI.getInstructionCost(U: &I, CostKind); |
| 3020 | |
| 3021 | InstructionCost OldCost = InnerCost0 + InnerCost1 + OuterCost; |
| 3022 | |
| 3023 | bool IsUnary = all_of(Range&: NewMask, P: [&](int M) { return M < (int)NumSrcElts; }); |
| 3024 | TargetTransformInfo::ShuffleKind SK = |
| 3025 | IsUnary ? TargetTransformInfo::SK_PermuteSingleSrc |
| 3026 | : TargetTransformInfo::SK_PermuteTwoSrc; |
| 3027 | InstructionCost NewCost = |
| 3028 | TTI.getShuffleCost(Kind: SK, DstTy: ShuffleDstTy, SrcTy: ShuffleSrcTy, Mask: NewMask, CostKind, Index: 0, |
| 3029 | SubTp: nullptr, Args: {NewX, NewY}); |
| 3030 | if (!OuterV0->hasOneUse()) |
| 3031 | NewCost += InnerCost0; |
| 3032 | if (!OuterV1->hasOneUse()) |
| 3033 | NewCost += InnerCost1; |
| 3034 | |
| 3035 | LLVM_DEBUG(dbgs() << "Found a shuffle feeding two shuffles: " << I |
| 3036 | << "\n OldCost: " << OldCost << " vs NewCost: " << NewCost |
| 3037 | << "\n" ); |
| 3038 | if (NewCost > OldCost) |
| 3039 | return false; |
| 3040 | |
| 3041 | Value *Shuf = Builder.CreateShuffleVector(V1: NewX, V2: NewY, Mask: NewMask); |
| 3042 | replaceValue(Old&: I, New&: *Shuf); |
| 3043 | return true; |
| 3044 | } |
| 3045 | |
| 3046 | /// Try to convert a chain of length-preserving shuffles that are fed by |
| 3047 | /// length-changing shuffles from the same source, e.g. a chain of length 3: |
| 3048 | /// |
| 3049 | /// "shuffle (shuffle (shuffle x, (shuffle y, undef)), |
| 3050 | /// (shuffle y, undef)), |
| 3051 | // (shuffle y, undef)" |
| 3052 | /// |
| 3053 | /// into a single shuffle fed by a length-changing shuffle: |
| 3054 | /// |
| 3055 | /// "shuffle x, (shuffle y, undef)" |
| 3056 | /// |
| 3057 | /// Such chains arise e.g. from folding extract/insert sequences. |
| 3058 | bool VectorCombine::foldShufflesOfLengthChangingShuffles(Instruction &I) { |
| 3059 | FixedVectorType *TrunkType = dyn_cast<FixedVectorType>(Val: I.getType()); |
| 3060 | if (!TrunkType) |
| 3061 | return false; |
| 3062 | |
| 3063 | unsigned ChainLength = 0; |
| 3064 | SmallVector<int> Mask; |
| 3065 | SmallVector<int> YMask; |
| 3066 | InstructionCost OldCost = 0; |
| 3067 | InstructionCost NewCost = 0; |
| 3068 | Value *Trunk = &I; |
| 3069 | unsigned NumTrunkElts = TrunkType->getNumElements(); |
| 3070 | Value *Y = nullptr; |
| 3071 | |
| 3072 | for (;;) { |
| 3073 | // Match the current trunk against (commutations of) the pattern |
| 3074 | // "shuffle trunk', (shuffle y, undef)" |
| 3075 | ArrayRef<int> OuterMask; |
| 3076 | Value *OuterV0, *OuterV1; |
| 3077 | if (ChainLength != 0 && !Trunk->hasOneUse()) |
| 3078 | break; |
| 3079 | if (!match(V: Trunk, P: m_Shuffle(v1: m_Value(V&: OuterV0), v2: m_Value(V&: OuterV1), |
| 3080 | mask: m_Mask(OuterMask)))) |
| 3081 | break; |
| 3082 | if (OuterV0->getType() != TrunkType) { |
| 3083 | // This shuffle is not length-preserving, so it cannot be part of the |
| 3084 | // chain. |
| 3085 | break; |
| 3086 | } |
| 3087 | |
| 3088 | ArrayRef<int> InnerMask0, InnerMask1; |
| 3089 | Value *A0, *A1, *B0, *B1; |
| 3090 | bool Match0 = |
| 3091 | match(V: OuterV0, P: m_Shuffle(v1: m_Value(V&: A0), v2: m_Value(V&: B0), mask: m_Mask(InnerMask0))); |
| 3092 | bool Match1 = |
| 3093 | match(V: OuterV1, P: m_Shuffle(v1: m_Value(V&: A1), v2: m_Value(V&: B1), mask: m_Mask(InnerMask1))); |
| 3094 | bool Match0Leaf = Match0 && A0->getType() != I.getType(); |
| 3095 | bool Match1Leaf = Match1 && A1->getType() != I.getType(); |
| 3096 | if (Match0Leaf == Match1Leaf) { |
| 3097 | // Only handle the case of exactly one leaf in each step. The "two leaves" |
| 3098 | // case is handled by foldShuffleOfShuffles. |
| 3099 | break; |
| 3100 | } |
| 3101 | |
| 3102 | SmallVector<int> CommutedOuterMask; |
| 3103 | if (Match0Leaf) { |
| 3104 | std::swap(a&: OuterV0, b&: OuterV1); |
| 3105 | std::swap(a&: InnerMask0, b&: InnerMask1); |
| 3106 | std::swap(a&: A0, b&: A1); |
| 3107 | std::swap(a&: B0, b&: B1); |
| 3108 | llvm::append_range(C&: CommutedOuterMask, R&: OuterMask); |
| 3109 | for (int &M : CommutedOuterMask) { |
| 3110 | if (M == PoisonMaskElem) |
| 3111 | continue; |
| 3112 | if (M < (int)NumTrunkElts) |
| 3113 | M += NumTrunkElts; |
| 3114 | else |
| 3115 | M -= NumTrunkElts; |
| 3116 | } |
| 3117 | OuterMask = CommutedOuterMask; |
| 3118 | } |
| 3119 | if (!OuterV1->hasOneUse()) |
| 3120 | break; |
| 3121 | |
| 3122 | if (!isa<UndefValue>(Val: A1)) { |
| 3123 | if (!Y) |
| 3124 | Y = A1; |
| 3125 | else if (Y != A1) |
| 3126 | break; |
| 3127 | } |
| 3128 | if (!isa<UndefValue>(Val: B1)) { |
| 3129 | if (!Y) |
| 3130 | Y = B1; |
| 3131 | else if (Y != B1) |
| 3132 | break; |
| 3133 | } |
| 3134 | |
| 3135 | auto *YType = cast<FixedVectorType>(Val: A1->getType()); |
| 3136 | int NumLeafElts = YType->getNumElements(); |
| 3137 | SmallVector<int> LocalYMask(InnerMask1); |
| 3138 | for (int &M : LocalYMask) { |
| 3139 | if (M >= NumLeafElts) |
| 3140 | M -= NumLeafElts; |
| 3141 | } |
| 3142 | |
| 3143 | InstructionCost LocalOldCost = |
| 3144 | TTI.getInstructionCost(U: cast<User>(Val: Trunk), CostKind) + |
| 3145 | TTI.getInstructionCost(U: cast<User>(Val: OuterV1), CostKind); |
| 3146 | |
| 3147 | // Handle the initial (start of chain) case. |
| 3148 | if (!ChainLength) { |
| 3149 | Mask.assign(AR: OuterMask); |
| 3150 | YMask.assign(RHS: LocalYMask); |
| 3151 | OldCost = NewCost = LocalOldCost; |
| 3152 | Trunk = OuterV0; |
| 3153 | ChainLength++; |
| 3154 | continue; |
| 3155 | } |
| 3156 | |
| 3157 | // For the non-root case, first attempt to combine masks. |
| 3158 | SmallVector<int> NewYMask(YMask); |
| 3159 | bool Valid = true; |
| 3160 | for (auto [CombinedM, LeafM] : llvm::zip(t&: NewYMask, u&: LocalYMask)) { |
| 3161 | if (LeafM == -1 || CombinedM == LeafM) |
| 3162 | continue; |
| 3163 | if (CombinedM == -1) { |
| 3164 | CombinedM = LeafM; |
| 3165 | } else { |
| 3166 | Valid = false; |
| 3167 | break; |
| 3168 | } |
| 3169 | } |
| 3170 | if (!Valid) |
| 3171 | break; |
| 3172 | |
| 3173 | SmallVector<int> NewMask; |
| 3174 | NewMask.reserve(N: NumTrunkElts); |
| 3175 | for (int M : Mask) { |
| 3176 | if (M < 0 || M >= static_cast<int>(NumTrunkElts)) |
| 3177 | NewMask.push_back(Elt: M); |
| 3178 | else |
| 3179 | NewMask.push_back(Elt: OuterMask[M]); |
| 3180 | } |
| 3181 | |
| 3182 | // Break the chain if adding this new step complicates the shuffles such |
| 3183 | // that it would increase the new cost by more than the old cost of this |
| 3184 | // step. |
| 3185 | InstructionCost LocalNewCost = |
| 3186 | TTI.getShuffleCost(Kind: TargetTransformInfo::SK_PermuteSingleSrc, DstTy: TrunkType, |
| 3187 | SrcTy: YType, Mask: NewYMask, CostKind) + |
| 3188 | TTI.getShuffleCost(Kind: TargetTransformInfo::SK_PermuteTwoSrc, DstTy: TrunkType, |
| 3189 | SrcTy: TrunkType, Mask: NewMask, CostKind); |
| 3190 | |
| 3191 | if (LocalNewCost >= NewCost && LocalOldCost < LocalNewCost - NewCost) |
| 3192 | break; |
| 3193 | |
| 3194 | LLVM_DEBUG({ |
| 3195 | if (ChainLength == 1) { |
| 3196 | dbgs() << "Found chain of shuffles fed by length-changing shuffles: " |
| 3197 | << I << '\n'; |
| 3198 | } |
| 3199 | dbgs() << " next chain link: " << *Trunk << '\n' |
| 3200 | << " old cost: " << (OldCost + LocalOldCost) |
| 3201 | << " new cost: " << LocalNewCost << '\n'; |
| 3202 | }); |
| 3203 | |
| 3204 | Mask = NewMask; |
| 3205 | YMask = NewYMask; |
| 3206 | OldCost += LocalOldCost; |
| 3207 | NewCost = LocalNewCost; |
| 3208 | Trunk = OuterV0; |
| 3209 | ChainLength++; |
| 3210 | } |
| 3211 | if (ChainLength <= 1) |
| 3212 | return false; |
| 3213 | |
| 3214 | if (llvm::all_of(Range&: Mask, P: [&](int M) { |
| 3215 | return M < 0 || M >= static_cast<int>(NumTrunkElts); |
| 3216 | })) { |
| 3217 | // Produce a canonical simplified form if all elements are sourced from Y. |
| 3218 | for (int &M : Mask) { |
| 3219 | if (M >= static_cast<int>(NumTrunkElts)) |
| 3220 | M = YMask[M - NumTrunkElts]; |
| 3221 | } |
| 3222 | Value *Root = |
| 3223 | Builder.CreateShuffleVector(V1: Y, V2: PoisonValue::get(T: Y->getType()), Mask); |
| 3224 | replaceValue(Old&: I, New&: *Root); |
| 3225 | return true; |
| 3226 | } |
| 3227 | |
| 3228 | Value *Leaf = |
| 3229 | Builder.CreateShuffleVector(V1: Y, V2: PoisonValue::get(T: Y->getType()), Mask: YMask); |
| 3230 | Value *Root = Builder.CreateShuffleVector(V1: Trunk, V2: Leaf, Mask); |
| 3231 | replaceValue(Old&: I, New&: *Root); |
| 3232 | return true; |
| 3233 | } |
| 3234 | |
| 3235 | /// Try to convert |
| 3236 | /// "shuffle (intrinsic), (intrinsic)" into "intrinsic (shuffle), (shuffle)". |
| 3237 | bool VectorCombine::foldShuffleOfIntrinsics(Instruction &I) { |
| 3238 | Value *V0, *V1; |
| 3239 | ArrayRef<int> OldMask; |
| 3240 | if (!match(V: &I, P: m_Shuffle(v1: m_Value(V&: V0), v2: m_Value(V&: V1), mask: m_Mask(OldMask)))) |
| 3241 | return false; |
| 3242 | |
| 3243 | auto *II0 = dyn_cast<IntrinsicInst>(Val: V0); |
| 3244 | auto *II1 = dyn_cast<IntrinsicInst>(Val: V1); |
| 3245 | if (!II0 || !II1) |
| 3246 | return false; |
| 3247 | |
| 3248 | Intrinsic::ID IID = II0->getIntrinsicID(); |
| 3249 | if (IID != II1->getIntrinsicID()) |
| 3250 | return false; |
| 3251 | InstructionCost CostII0 = |
| 3252 | TTI.getIntrinsicInstrCost(ICA: IntrinsicCostAttributes(IID, *II0), CostKind); |
| 3253 | InstructionCost CostII1 = |
| 3254 | TTI.getIntrinsicInstrCost(ICA: IntrinsicCostAttributes(IID, *II1), CostKind); |
| 3255 | |
| 3256 | auto *ShuffleDstTy = dyn_cast<FixedVectorType>(Val: I.getType()); |
| 3257 | auto *II0Ty = dyn_cast<FixedVectorType>(Val: II0->getType()); |
| 3258 | if (!ShuffleDstTy || !II0Ty) |
| 3259 | return false; |
| 3260 | |
| 3261 | if (!isTriviallyVectorizable(ID: IID)) |
| 3262 | return false; |
| 3263 | |
| 3264 | for (unsigned I = 0, E = II0->arg_size(); I != E; ++I) |
| 3265 | if (isVectorIntrinsicWithScalarOpAtArg(ID: IID, ScalarOpdIdx: I, TTI: &TTI) && |
| 3266 | II0->getArgOperand(i: I) != II1->getArgOperand(i: I)) |
| 3267 | return false; |
| 3268 | |
| 3269 | InstructionCost OldCost = |
| 3270 | CostII0 + CostII1 + |
| 3271 | TTI.getShuffleCost(Kind: TargetTransformInfo::SK_PermuteTwoSrc, DstTy: ShuffleDstTy, |
| 3272 | SrcTy: II0Ty, Mask: OldMask, CostKind, Index: 0, SubTp: nullptr, Args: {II0, II1}, CxtI: &I); |
| 3273 | |
| 3274 | SmallVector<Type *> NewArgsTy; |
| 3275 | InstructionCost NewCost = 0; |
| 3276 | SmallDenseSet<std::pair<Value *, Value *>> SeenOperandPairs; |
| 3277 | for (unsigned I = 0, E = II0->arg_size(); I != E; ++I) { |
| 3278 | if (isVectorIntrinsicWithScalarOpAtArg(ID: IID, ScalarOpdIdx: I, TTI: &TTI)) { |
| 3279 | NewArgsTy.push_back(Elt: II0->getArgOperand(i: I)->getType()); |
| 3280 | } else { |
| 3281 | auto *VecTy = cast<FixedVectorType>(Val: II0->getArgOperand(i: I)->getType()); |
| 3282 | auto *ArgTy = FixedVectorType::get(ElementType: VecTy->getElementType(), |
| 3283 | NumElts: ShuffleDstTy->getNumElements()); |
| 3284 | NewArgsTy.push_back(Elt: ArgTy); |
| 3285 | std::pair<Value *, Value *> OperandPair = |
| 3286 | std::make_pair(x: II0->getArgOperand(i: I), y: II1->getArgOperand(i: I)); |
| 3287 | if (!SeenOperandPairs.insert(V: OperandPair).second) { |
| 3288 | // We've already computed the cost for this operand pair. |
| 3289 | continue; |
| 3290 | } |
| 3291 | NewCost += TTI.getShuffleCost( |
| 3292 | Kind: TargetTransformInfo::SK_PermuteTwoSrc, DstTy: ArgTy, SrcTy: VecTy, Mask: OldMask, |
| 3293 | CostKind, Index: 0, SubTp: nullptr, Args: {II0->getArgOperand(i: I), II1->getArgOperand(i: I)}); |
| 3294 | } |
| 3295 | } |
| 3296 | IntrinsicCostAttributes NewAttr(IID, ShuffleDstTy, NewArgsTy); |
| 3297 | |
| 3298 | NewCost += TTI.getIntrinsicInstrCost(ICA: NewAttr, CostKind); |
| 3299 | if (!II0->hasOneUse()) |
| 3300 | NewCost += CostII0; |
| 3301 | if (II1 != II0 && !II1->hasOneUse()) |
| 3302 | NewCost += CostII1; |
| 3303 | |
| 3304 | LLVM_DEBUG(dbgs() << "Found a shuffle feeding two intrinsics: " << I |
| 3305 | << "\n OldCost: " << OldCost << " vs NewCost: " << NewCost |
| 3306 | << "\n" ); |
| 3307 | |
| 3308 | if (NewCost > OldCost) |
| 3309 | return false; |
| 3310 | |
| 3311 | SmallVector<Value *> NewArgs; |
| 3312 | SmallDenseMap<std::pair<Value *, Value *>, Value *> ShuffleCache; |
| 3313 | for (unsigned I = 0, E = II0->arg_size(); I != E; ++I) |
| 3314 | if (isVectorIntrinsicWithScalarOpAtArg(ID: IID, ScalarOpdIdx: I, TTI: &TTI)) { |
| 3315 | NewArgs.push_back(Elt: II0->getArgOperand(i: I)); |
| 3316 | } else { |
| 3317 | std::pair<Value *, Value *> OperandPair = |
| 3318 | std::make_pair(x: II0->getArgOperand(i: I), y: II1->getArgOperand(i: I)); |
| 3319 | auto It = ShuffleCache.find(Val: OperandPair); |
| 3320 | if (It != ShuffleCache.end()) { |
| 3321 | // Reuse previously created shuffle for this operand pair. |
| 3322 | NewArgs.push_back(Elt: It->second); |
| 3323 | continue; |
| 3324 | } |
| 3325 | Value *Shuf = Builder.CreateShuffleVector(V1: II0->getArgOperand(i: I), |
| 3326 | V2: II1->getArgOperand(i: I), Mask: OldMask); |
| 3327 | ShuffleCache[OperandPair] = Shuf; |
| 3328 | NewArgs.push_back(Elt: Shuf); |
| 3329 | Worklist.pushValue(V: Shuf); |
| 3330 | } |
| 3331 | Value *NewIntrinsic = Builder.CreateIntrinsic(RetTy: ShuffleDstTy, ID: IID, Args: NewArgs); |
| 3332 | |
| 3333 | // Intersect flags from the old intrinsics. |
| 3334 | if (auto *NewInst = dyn_cast<Instruction>(Val: NewIntrinsic)) { |
| 3335 | NewInst->copyIRFlags(V: II0); |
| 3336 | NewInst->andIRFlags(V: II1); |
| 3337 | } |
| 3338 | |
| 3339 | replaceValue(Old&: I, New&: *NewIntrinsic); |
| 3340 | return true; |
| 3341 | } |
| 3342 | |
| 3343 | /// Try to convert |
| 3344 | /// "shuffle (intrinsic), (poison/undef)" into "intrinsic (shuffle)". |
| 3345 | bool VectorCombine::foldPermuteOfIntrinsic(Instruction &I) { |
| 3346 | Value *V0; |
| 3347 | ArrayRef<int> Mask; |
| 3348 | if (!match(V: &I, P: m_Shuffle(v1: m_Value(V&: V0), v2: m_Undef(), mask: m_Mask(Mask)))) |
| 3349 | return false; |
| 3350 | |
| 3351 | auto *II0 = dyn_cast<IntrinsicInst>(Val: V0); |
| 3352 | if (!II0) |
| 3353 | return false; |
| 3354 | |
| 3355 | auto *ShuffleDstTy = dyn_cast<FixedVectorType>(Val: I.getType()); |
| 3356 | auto *IntrinsicSrcTy = dyn_cast<FixedVectorType>(Val: II0->getType()); |
| 3357 | if (!ShuffleDstTy || !IntrinsicSrcTy) |
| 3358 | return false; |
| 3359 | |
| 3360 | // Validate it's a pure permute, mask should only reference the first vector |
| 3361 | unsigned NumSrcElts = IntrinsicSrcTy->getNumElements(); |
| 3362 | if (any_of(Range&: Mask, P: [NumSrcElts](int M) { return M >= (int)NumSrcElts; })) |
| 3363 | return false; |
| 3364 | |
| 3365 | Intrinsic::ID IID = II0->getIntrinsicID(); |
| 3366 | if (!isTriviallyVectorizable(ID: IID)) |
| 3367 | return false; |
| 3368 | |
| 3369 | // Cost analysis |
| 3370 | InstructionCost IntrinsicCost = |
| 3371 | TTI.getIntrinsicInstrCost(ICA: IntrinsicCostAttributes(IID, *II0), CostKind); |
| 3372 | InstructionCost OldCost = |
| 3373 | IntrinsicCost + |
| 3374 | TTI.getShuffleCost(Kind: TargetTransformInfo::SK_PermuteSingleSrc, DstTy: ShuffleDstTy, |
| 3375 | SrcTy: IntrinsicSrcTy, Mask, CostKind, Index: 0, SubTp: nullptr, Args: {V0}, CxtI: &I); |
| 3376 | |
| 3377 | SmallVector<Type *> NewArgsTy; |
| 3378 | InstructionCost NewCost = 0; |
| 3379 | for (unsigned I = 0, E = II0->arg_size(); I != E; ++I) { |
| 3380 | if (isVectorIntrinsicWithScalarOpAtArg(ID: IID, ScalarOpdIdx: I, TTI: &TTI)) { |
| 3381 | NewArgsTy.push_back(Elt: II0->getArgOperand(i: I)->getType()); |
| 3382 | } else { |
| 3383 | auto *VecTy = cast<FixedVectorType>(Val: II0->getArgOperand(i: I)->getType()); |
| 3384 | auto *ArgTy = FixedVectorType::get(ElementType: VecTy->getElementType(), |
| 3385 | NumElts: ShuffleDstTy->getNumElements()); |
| 3386 | NewArgsTy.push_back(Elt: ArgTy); |
| 3387 | NewCost += TTI.getShuffleCost(Kind: TargetTransformInfo::SK_PermuteSingleSrc, |
| 3388 | DstTy: ArgTy, SrcTy: VecTy, Mask, CostKind, Index: 0, SubTp: nullptr, |
| 3389 | Args: {II0->getArgOperand(i: I)}); |
| 3390 | } |
| 3391 | } |
| 3392 | IntrinsicCostAttributes NewAttr(IID, ShuffleDstTy, NewArgsTy); |
| 3393 | NewCost += TTI.getIntrinsicInstrCost(ICA: NewAttr, CostKind); |
| 3394 | |
| 3395 | // If the intrinsic has multiple uses, we need to account for the cost of |
| 3396 | // keeping the original intrinsic around. |
| 3397 | if (!II0->hasOneUse()) |
| 3398 | NewCost += IntrinsicCost; |
| 3399 | |
| 3400 | LLVM_DEBUG(dbgs() << "Found a permute of intrinsic: " << I << "\n OldCost: " |
| 3401 | << OldCost << " vs NewCost: " << NewCost << "\n" ); |
| 3402 | |
| 3403 | if (NewCost > OldCost) |
| 3404 | return false; |
| 3405 | |
| 3406 | // Transform |
| 3407 | SmallVector<Value *> NewArgs; |
| 3408 | for (unsigned I = 0, E = II0->arg_size(); I != E; ++I) { |
| 3409 | if (isVectorIntrinsicWithScalarOpAtArg(ID: IID, ScalarOpdIdx: I, TTI: &TTI)) { |
| 3410 | NewArgs.push_back(Elt: II0->getArgOperand(i: I)); |
| 3411 | } else { |
| 3412 | Value *Shuf = Builder.CreateShuffleVector(V: II0->getArgOperand(i: I), Mask); |
| 3413 | NewArgs.push_back(Elt: Shuf); |
| 3414 | Worklist.pushValue(V: Shuf); |
| 3415 | } |
| 3416 | } |
| 3417 | |
| 3418 | Value *NewIntrinsic = Builder.CreateIntrinsic(RetTy: ShuffleDstTy, ID: IID, Args: NewArgs); |
| 3419 | |
| 3420 | if (auto *NewInst = dyn_cast<Instruction>(Val: NewIntrinsic)) |
| 3421 | NewInst->copyIRFlags(V: II0); |
| 3422 | |
| 3423 | replaceValue(Old&: I, New&: *NewIntrinsic); |
| 3424 | return true; |
| 3425 | } |
| 3426 | |
| 3427 | using InstLane = std::pair<Use *, int>; |
| 3428 | |
| 3429 | static InstLane lookThroughShuffles(Use *U, int Lane) { |
| 3430 | while (auto *SV = dyn_cast<ShuffleVectorInst>(Val: U->get())) { |
| 3431 | unsigned NumElts = |
| 3432 | cast<FixedVectorType>(Val: SV->getOperand(i_nocapture: 0)->getType())->getNumElements(); |
| 3433 | int M = SV->getMaskValue(Elt: Lane); |
| 3434 | if (M < 0) |
| 3435 | return {nullptr, PoisonMaskElem}; |
| 3436 | if (static_cast<unsigned>(M) < NumElts) { |
| 3437 | U = &SV->getOperandUse(i: 0); |
| 3438 | Lane = M; |
| 3439 | } else { |
| 3440 | U = &SV->getOperandUse(i: 1); |
| 3441 | Lane = M - NumElts; |
| 3442 | } |
| 3443 | } |
| 3444 | return InstLane{U, Lane}; |
| 3445 | } |
| 3446 | |
| 3447 | static SmallVector<InstLane> |
| 3448 | generateInstLaneVectorFromOperand(ArrayRef<InstLane> Item, int Op) { |
| 3449 | SmallVector<InstLane> NItem; |
| 3450 | for (InstLane IL : Item) { |
| 3451 | auto [U, Lane] = IL; |
| 3452 | InstLane OpLane = |
| 3453 | U ? lookThroughShuffles(U: &cast<Instruction>(Val: U->get())->getOperandUse(i: Op), |
| 3454 | Lane) |
| 3455 | : InstLane{nullptr, PoisonMaskElem}; |
| 3456 | NItem.emplace_back(Args&: OpLane); |
| 3457 | } |
| 3458 | return NItem; |
| 3459 | } |
| 3460 | |
| 3461 | /// Detect concat of multiple values into a vector |
| 3462 | static bool isFreeConcat(ArrayRef<InstLane> Item, TTI::TargetCostKind CostKind, |
| 3463 | const TargetTransformInfo &TTI) { |
| 3464 | auto *Ty = cast<FixedVectorType>(Val: Item.front().first->get()->getType()); |
| 3465 | unsigned NumElts = Ty->getNumElements(); |
| 3466 | if (Item.size() == NumElts || NumElts == 1 || Item.size() % NumElts != 0) |
| 3467 | return false; |
| 3468 | |
| 3469 | // Check that the concat is free, usually meaning that the type will be split |
| 3470 | // during legalization. |
| 3471 | SmallVector<int, 16> ConcatMask(NumElts * 2); |
| 3472 | std::iota(first: ConcatMask.begin(), last: ConcatMask.end(), value: 0); |
| 3473 | if (TTI.getShuffleCost(Kind: TTI::SK_PermuteTwoSrc, |
| 3474 | DstTy: FixedVectorType::get(ElementType: Ty->getScalarType(), NumElts: NumElts * 2), |
| 3475 | SrcTy: Ty, Mask: ConcatMask, CostKind) != 0) |
| 3476 | return false; |
| 3477 | |
| 3478 | unsigned NumSlices = Item.size() / NumElts; |
| 3479 | // Currently we generate a tree of shuffles for the concats, which limits us |
| 3480 | // to a power2. |
| 3481 | if (!isPowerOf2_32(Value: NumSlices)) |
| 3482 | return false; |
| 3483 | for (unsigned Slice = 0; Slice < NumSlices; ++Slice) { |
| 3484 | Use *SliceV = Item[Slice * NumElts].first; |
| 3485 | if (!SliceV || SliceV->get()->getType() != Ty) |
| 3486 | return false; |
| 3487 | for (unsigned Elt = 0; Elt < NumElts; ++Elt) { |
| 3488 | auto [V, Lane] = Item[Slice * NumElts + Elt]; |
| 3489 | if (Lane != static_cast<int>(Elt) || SliceV->get() != V->get()) |
| 3490 | return false; |
| 3491 | } |
| 3492 | } |
| 3493 | return true; |
| 3494 | } |
| 3495 | |
| 3496 | static Value *generateNewInstTree(ArrayRef<InstLane> Item, FixedVectorType *Ty, |
| 3497 | const SmallPtrSet<Use *, 4> &IdentityLeafs, |
| 3498 | const SmallPtrSet<Use *, 4> &SplatLeafs, |
| 3499 | const SmallPtrSet<Use *, 4> &ConcatLeafs, |
| 3500 | IRBuilderBase &Builder, |
| 3501 | const TargetTransformInfo *TTI) { |
| 3502 | auto [FrontU, FrontLane] = Item.front(); |
| 3503 | |
| 3504 | if (IdentityLeafs.contains(Ptr: FrontU)) { |
| 3505 | return FrontU->get(); |
| 3506 | } |
| 3507 | if (SplatLeafs.contains(Ptr: FrontU)) { |
| 3508 | SmallVector<int, 16> Mask(Ty->getNumElements(), FrontLane); |
| 3509 | return Builder.CreateShuffleVector(V: FrontU->get(), Mask); |
| 3510 | } |
| 3511 | if (ConcatLeafs.contains(Ptr: FrontU)) { |
| 3512 | unsigned NumElts = |
| 3513 | cast<FixedVectorType>(Val: FrontU->get()->getType())->getNumElements(); |
| 3514 | SmallVector<Value *> Values(Item.size() / NumElts, nullptr); |
| 3515 | for (unsigned S = 0; S < Values.size(); ++S) |
| 3516 | Values[S] = Item[S * NumElts].first->get(); |
| 3517 | |
| 3518 | while (Values.size() > 1) { |
| 3519 | NumElts *= 2; |
| 3520 | SmallVector<int, 16> Mask(NumElts, 0); |
| 3521 | std::iota(first: Mask.begin(), last: Mask.end(), value: 0); |
| 3522 | SmallVector<Value *> NewValues(Values.size() / 2, nullptr); |
| 3523 | for (unsigned S = 0; S < NewValues.size(); ++S) |
| 3524 | NewValues[S] = |
| 3525 | Builder.CreateShuffleVector(V1: Values[S * 2], V2: Values[S * 2 + 1], Mask); |
| 3526 | Values = NewValues; |
| 3527 | } |
| 3528 | return Values[0]; |
| 3529 | } |
| 3530 | |
| 3531 | auto *I = cast<Instruction>(Val: FrontU->get()); |
| 3532 | auto *II = dyn_cast<IntrinsicInst>(Val: I); |
| 3533 | unsigned NumOps = I->getNumOperands() - (II ? 1 : 0); |
| 3534 | SmallVector<Value *> Ops(NumOps); |
| 3535 | for (unsigned Idx = 0; Idx < NumOps; Idx++) { |
| 3536 | if (II && |
| 3537 | isVectorIntrinsicWithScalarOpAtArg(ID: II->getIntrinsicID(), ScalarOpdIdx: Idx, TTI)) { |
| 3538 | Ops[Idx] = II->getOperand(i_nocapture: Idx); |
| 3539 | continue; |
| 3540 | } |
| 3541 | Ops[Idx] = generateNewInstTree(Item: generateInstLaneVectorFromOperand(Item, Op: Idx), |
| 3542 | Ty, IdentityLeafs, SplatLeafs, ConcatLeafs, |
| 3543 | Builder, TTI); |
| 3544 | } |
| 3545 | |
| 3546 | SmallVector<Value *, 8> ValueList; |
| 3547 | for (const auto &Lane : Item) |
| 3548 | if (Lane.first) |
| 3549 | ValueList.push_back(Elt: Lane.first->get()); |
| 3550 | |
| 3551 | Type *DstTy = |
| 3552 | FixedVectorType::get(ElementType: I->getType()->getScalarType(), NumElts: Ty->getNumElements()); |
| 3553 | if (auto *BI = dyn_cast<BinaryOperator>(Val: I)) { |
| 3554 | auto *Value = Builder.CreateBinOp(Opc: (Instruction::BinaryOps)BI->getOpcode(), |
| 3555 | LHS: Ops[0], RHS: Ops[1]); |
| 3556 | propagateIRFlags(I: Value, VL: ValueList); |
| 3557 | return Value; |
| 3558 | } |
| 3559 | if (auto *CI = dyn_cast<CmpInst>(Val: I)) { |
| 3560 | auto *Value = Builder.CreateCmp(Pred: CI->getPredicate(), LHS: Ops[0], RHS: Ops[1]); |
| 3561 | propagateIRFlags(I: Value, VL: ValueList); |
| 3562 | return Value; |
| 3563 | } |
| 3564 | if (auto *SI = dyn_cast<SelectInst>(Val: I)) { |
| 3565 | auto *Value = Builder.CreateSelect(C: Ops[0], True: Ops[1], False: Ops[2], Name: "" , MDFrom: SI); |
| 3566 | propagateIRFlags(I: Value, VL: ValueList); |
| 3567 | return Value; |
| 3568 | } |
| 3569 | if (auto *CI = dyn_cast<CastInst>(Val: I)) { |
| 3570 | auto *Value = Builder.CreateCast(Op: CI->getOpcode(), V: Ops[0], DestTy: DstTy); |
| 3571 | propagateIRFlags(I: Value, VL: ValueList); |
| 3572 | return Value; |
| 3573 | } |
| 3574 | if (II) { |
| 3575 | auto *Value = Builder.CreateIntrinsic(RetTy: DstTy, ID: II->getIntrinsicID(), Args: Ops); |
| 3576 | propagateIRFlags(I: Value, VL: ValueList); |
| 3577 | return Value; |
| 3578 | } |
| 3579 | assert(isa<UnaryInstruction>(I) && "Unexpected instruction type in Generate" ); |
| 3580 | auto *Value = |
| 3581 | Builder.CreateUnOp(Opc: (Instruction::UnaryOps)I->getOpcode(), V: Ops[0]); |
| 3582 | propagateIRFlags(I: Value, VL: ValueList); |
| 3583 | return Value; |
| 3584 | } |
| 3585 | |
| 3586 | // Starting from a shuffle, look up through operands tracking the shuffled index |
| 3587 | // of each lane. If we can simplify away the shuffles to identities then |
| 3588 | // do so. |
| 3589 | bool VectorCombine::foldShuffleToIdentity(Instruction &I) { |
| 3590 | auto *Ty = dyn_cast<FixedVectorType>(Val: I.getType()); |
| 3591 | if (!Ty || I.use_empty()) |
| 3592 | return false; |
| 3593 | |
| 3594 | SmallVector<InstLane> Start(Ty->getNumElements()); |
| 3595 | for (unsigned M = 0, E = Ty->getNumElements(); M < E; ++M) |
| 3596 | Start[M] = lookThroughShuffles(U: &*I.use_begin(), Lane: M); |
| 3597 | |
| 3598 | SmallVector<SmallVector<InstLane>> Worklist; |
| 3599 | Worklist.push_back(Elt: Start); |
| 3600 | SmallPtrSet<Use *, 4> IdentityLeafs, SplatLeafs, ConcatLeafs; |
| 3601 | unsigned NumVisited = 0; |
| 3602 | |
| 3603 | while (!Worklist.empty()) { |
| 3604 | if (++NumVisited > MaxInstrsToScan) |
| 3605 | return false; |
| 3606 | |
| 3607 | SmallVector<InstLane> Item = Worklist.pop_back_val(); |
| 3608 | auto [FrontU, FrontLane] = Item.front(); |
| 3609 | |
| 3610 | // If we found an undef first lane then bail out to keep things simple. |
| 3611 | if (!FrontU) |
| 3612 | return false; |
| 3613 | |
| 3614 | // Helper to peek through bitcasts to the same value. |
| 3615 | auto IsEquiv = [&](Value *X, Value *Y) { |
| 3616 | return X->getType() == Y->getType() && |
| 3617 | peekThroughBitcasts(V: X) == peekThroughBitcasts(V: Y); |
| 3618 | }; |
| 3619 | |
| 3620 | // Look for an identity value. |
| 3621 | if (FrontLane == 0 && |
| 3622 | cast<FixedVectorType>(Val: FrontU->get()->getType())->getNumElements() == |
| 3623 | Ty->getNumElements() && |
| 3624 | all_of(Range: drop_begin(RangeOrContainer: enumerate(First&: Item)), P: [IsEquiv, Item](const auto &E) { |
| 3625 | Value *FrontV = Item.front().first->get(); |
| 3626 | return !E.value().first || (IsEquiv(E.value().first->get(), FrontV) && |
| 3627 | E.value().second == (int)E.index()); |
| 3628 | })) { |
| 3629 | IdentityLeafs.insert(Ptr: FrontU); |
| 3630 | continue; |
| 3631 | } |
| 3632 | // Look for constants, for the moment only supporting constant splats. |
| 3633 | if (auto *C = dyn_cast<Constant>(Val: FrontU); |
| 3634 | C && C->getSplatValue() && |
| 3635 | all_of(Range: drop_begin(RangeOrContainer&: Item), P: [Item](InstLane &IL) { |
| 3636 | Value *FrontV = Item.front().first->get(); |
| 3637 | Use *U = IL.first; |
| 3638 | return !U || (isa<Constant>(Val: U->get()) && |
| 3639 | cast<Constant>(Val: U->get())->getSplatValue() == |
| 3640 | cast<Constant>(Val: FrontV)->getSplatValue()); |
| 3641 | })) { |
| 3642 | SplatLeafs.insert(Ptr: FrontU); |
| 3643 | continue; |
| 3644 | } |
| 3645 | // Look for a splat value. |
| 3646 | if (all_of(Range: drop_begin(RangeOrContainer&: Item), P: [Item](InstLane &IL) { |
| 3647 | auto [FrontU, FrontLane] = Item.front(); |
| 3648 | auto [U, Lane] = IL; |
| 3649 | return !U || (U->get() == FrontU->get() && Lane == FrontLane); |
| 3650 | })) { |
| 3651 | SplatLeafs.insert(Ptr: FrontU); |
| 3652 | continue; |
| 3653 | } |
| 3654 | |
| 3655 | // We need each element to be the same type of value, and check that each |
| 3656 | // element has a single use. |
| 3657 | auto CheckLaneIsEquivalentToFirst = [Item](InstLane IL) { |
| 3658 | Value *FrontV = Item.front().first->get(); |
| 3659 | if (!IL.first) |
| 3660 | return true; |
| 3661 | Value *V = IL.first->get(); |
| 3662 | if (auto *I = dyn_cast<Instruction>(Val: V); I && !I->hasOneUser()) |
| 3663 | return false; |
| 3664 | if (V->getValueID() != FrontV->getValueID()) |
| 3665 | return false; |
| 3666 | if (auto *CI = dyn_cast<CmpInst>(Val: V)) |
| 3667 | if (CI->getPredicate() != cast<CmpInst>(Val: FrontV)->getPredicate()) |
| 3668 | return false; |
| 3669 | if (auto *CI = dyn_cast<CastInst>(Val: V)) |
| 3670 | if (CI->getSrcTy()->getScalarType() != |
| 3671 | cast<CastInst>(Val: FrontV)->getSrcTy()->getScalarType()) |
| 3672 | return false; |
| 3673 | if (auto *SI = dyn_cast<SelectInst>(Val: V)) |
| 3674 | if (!isa<VectorType>(Val: SI->getOperand(i_nocapture: 0)->getType()) || |
| 3675 | SI->getOperand(i_nocapture: 0)->getType() != |
| 3676 | cast<SelectInst>(Val: FrontV)->getOperand(i_nocapture: 0)->getType()) |
| 3677 | return false; |
| 3678 | if (isa<CallInst>(Val: V) && !isa<IntrinsicInst>(Val: V)) |
| 3679 | return false; |
| 3680 | auto *II = dyn_cast<IntrinsicInst>(Val: V); |
| 3681 | return !II || (isa<IntrinsicInst>(Val: FrontV) && |
| 3682 | II->getIntrinsicID() == |
| 3683 | cast<IntrinsicInst>(Val: FrontV)->getIntrinsicID() && |
| 3684 | !II->hasOperandBundles()); |
| 3685 | }; |
| 3686 | if (all_of(Range: drop_begin(RangeOrContainer&: Item), P: CheckLaneIsEquivalentToFirst)) { |
| 3687 | // Check the operator is one that we support. |
| 3688 | if (isa<BinaryOperator, CmpInst>(Val: FrontU)) { |
| 3689 | // We exclude div/rem in case they hit UB from poison lanes. |
| 3690 | if (auto *BO = dyn_cast<BinaryOperator>(Val: FrontU); |
| 3691 | BO && BO->isIntDivRem()) |
| 3692 | return false; |
| 3693 | Worklist.push_back(Elt: generateInstLaneVectorFromOperand(Item, Op: 0)); |
| 3694 | Worklist.push_back(Elt: generateInstLaneVectorFromOperand(Item, Op: 1)); |
| 3695 | continue; |
| 3696 | } else if (isa<UnaryOperator, TruncInst, ZExtInst, SExtInst, FPToSIInst, |
| 3697 | FPToUIInst, SIToFPInst, UIToFPInst>(Val: FrontU)) { |
| 3698 | Worklist.push_back(Elt: generateInstLaneVectorFromOperand(Item, Op: 0)); |
| 3699 | continue; |
| 3700 | } else if (auto *BitCast = dyn_cast<BitCastInst>(Val: FrontU)) { |
| 3701 | // TODO: Handle vector widening/narrowing bitcasts. |
| 3702 | auto *DstTy = dyn_cast<FixedVectorType>(Val: BitCast->getDestTy()); |
| 3703 | auto *SrcTy = dyn_cast<FixedVectorType>(Val: BitCast->getSrcTy()); |
| 3704 | if (DstTy && SrcTy && |
| 3705 | SrcTy->getNumElements() == DstTy->getNumElements()) { |
| 3706 | Worklist.push_back(Elt: generateInstLaneVectorFromOperand(Item, Op: 0)); |
| 3707 | continue; |
| 3708 | } |
| 3709 | } else if (isa<SelectInst>(Val: FrontU)) { |
| 3710 | Worklist.push_back(Elt: generateInstLaneVectorFromOperand(Item, Op: 0)); |
| 3711 | Worklist.push_back(Elt: generateInstLaneVectorFromOperand(Item, Op: 1)); |
| 3712 | Worklist.push_back(Elt: generateInstLaneVectorFromOperand(Item, Op: 2)); |
| 3713 | continue; |
| 3714 | } else if (auto *II = dyn_cast<IntrinsicInst>(Val: FrontU); |
| 3715 | II && isTriviallyVectorizable(ID: II->getIntrinsicID()) && |
| 3716 | !II->hasOperandBundles()) { |
| 3717 | for (unsigned Op = 0, E = II->getNumOperands() - 1; Op < E; Op++) { |
| 3718 | if (isVectorIntrinsicWithScalarOpAtArg(ID: II->getIntrinsicID(), ScalarOpdIdx: Op, |
| 3719 | TTI: &TTI)) { |
| 3720 | if (!all_of(Range: drop_begin(RangeOrContainer&: Item), P: [Item, Op](InstLane &IL) { |
| 3721 | Value *FrontV = Item.front().first->get(); |
| 3722 | Use *U = IL.first; |
| 3723 | return !U || (cast<Instruction>(Val: U->get())->getOperand(i: Op) == |
| 3724 | cast<Instruction>(Val: FrontV)->getOperand(i: Op)); |
| 3725 | })) |
| 3726 | return false; |
| 3727 | continue; |
| 3728 | } |
| 3729 | Worklist.push_back(Elt: generateInstLaneVectorFromOperand(Item, Op)); |
| 3730 | } |
| 3731 | continue; |
| 3732 | } |
| 3733 | } |
| 3734 | |
| 3735 | if (isFreeConcat(Item, CostKind, TTI)) { |
| 3736 | ConcatLeafs.insert(Ptr: FrontU); |
| 3737 | continue; |
| 3738 | } |
| 3739 | |
| 3740 | return false; |
| 3741 | } |
| 3742 | |
| 3743 | if (NumVisited <= 1) |
| 3744 | return false; |
| 3745 | |
| 3746 | LLVM_DEBUG(dbgs() << "Found a superfluous identity shuffle: " << I << "\n" ); |
| 3747 | |
| 3748 | // If we got this far, we know the shuffles are superfluous and can be |
| 3749 | // removed. Scan through again and generate the new tree of instructions. |
| 3750 | Builder.SetInsertPoint(&I); |
| 3751 | Value *V = generateNewInstTree(Item: Start, Ty, IdentityLeafs, SplatLeafs, |
| 3752 | ConcatLeafs, Builder, TTI: &TTI); |
| 3753 | replaceValue(Old&: I, New&: *V); |
| 3754 | return true; |
| 3755 | } |
| 3756 | |
| 3757 | /// Given a commutative reduction, the order of the input lanes does not alter |
| 3758 | /// the results. We can use this to remove certain shuffles feeding the |
| 3759 | /// reduction, removing the need to shuffle at all. |
| 3760 | bool VectorCombine::foldShuffleFromReductions(Instruction &I) { |
| 3761 | auto *II = dyn_cast<IntrinsicInst>(Val: &I); |
| 3762 | if (!II) |
| 3763 | return false; |
| 3764 | switch (II->getIntrinsicID()) { |
| 3765 | case Intrinsic::vector_reduce_add: |
| 3766 | case Intrinsic::vector_reduce_mul: |
| 3767 | case Intrinsic::vector_reduce_and: |
| 3768 | case Intrinsic::vector_reduce_or: |
| 3769 | case Intrinsic::vector_reduce_xor: |
| 3770 | case Intrinsic::vector_reduce_smin: |
| 3771 | case Intrinsic::vector_reduce_smax: |
| 3772 | case Intrinsic::vector_reduce_umin: |
| 3773 | case Intrinsic::vector_reduce_umax: |
| 3774 | break; |
| 3775 | default: |
| 3776 | return false; |
| 3777 | } |
| 3778 | |
| 3779 | // Find all the inputs when looking through operations that do not alter the |
| 3780 | // lane order (binops, for example). Currently we look for a single shuffle, |
| 3781 | // and can ignore splat values. |
| 3782 | std::queue<Value *> Worklist; |
| 3783 | SmallPtrSet<Value *, 4> Visited; |
| 3784 | ShuffleVectorInst *Shuffle = nullptr; |
| 3785 | if (auto *Op = dyn_cast<Instruction>(Val: I.getOperand(i: 0))) |
| 3786 | Worklist.push(x: Op); |
| 3787 | |
| 3788 | while (!Worklist.empty()) { |
| 3789 | Value *CV = Worklist.front(); |
| 3790 | Worklist.pop(); |
| 3791 | if (Visited.contains(Ptr: CV)) |
| 3792 | continue; |
| 3793 | |
| 3794 | // Splats don't change the order, so can be safely ignored. |
| 3795 | if (isSplatValue(V: CV)) |
| 3796 | continue; |
| 3797 | |
| 3798 | Visited.insert(Ptr: CV); |
| 3799 | |
| 3800 | if (auto *CI = dyn_cast<Instruction>(Val: CV)) { |
| 3801 | if (CI->isBinaryOp()) { |
| 3802 | for (auto *Op : CI->operand_values()) |
| 3803 | Worklist.push(x: Op); |
| 3804 | continue; |
| 3805 | } else if (auto *SV = dyn_cast<ShuffleVectorInst>(Val: CI)) { |
| 3806 | if (Shuffle && Shuffle != SV) |
| 3807 | return false; |
| 3808 | Shuffle = SV; |
| 3809 | continue; |
| 3810 | } |
| 3811 | } |
| 3812 | |
| 3813 | // Anything else is currently an unknown node. |
| 3814 | return false; |
| 3815 | } |
| 3816 | |
| 3817 | if (!Shuffle) |
| 3818 | return false; |
| 3819 | |
| 3820 | // Check all uses of the binary ops and shuffles are also included in the |
| 3821 | // lane-invariant operations (Visited should be the list of lanewise |
| 3822 | // instructions, including the shuffle that we found). |
| 3823 | for (auto *V : Visited) |
| 3824 | for (auto *U : V->users()) |
| 3825 | if (!Visited.contains(Ptr: U) && U != &I) |
| 3826 | return false; |
| 3827 | |
| 3828 | FixedVectorType *VecType = |
| 3829 | dyn_cast<FixedVectorType>(Val: II->getOperand(i_nocapture: 0)->getType()); |
| 3830 | if (!VecType) |
| 3831 | return false; |
| 3832 | FixedVectorType *ShuffleInputType = |
| 3833 | dyn_cast<FixedVectorType>(Val: Shuffle->getOperand(i_nocapture: 0)->getType()); |
| 3834 | if (!ShuffleInputType) |
| 3835 | return false; |
| 3836 | unsigned NumInputElts = ShuffleInputType->getNumElements(); |
| 3837 | |
| 3838 | // Find the mask from sorting the lanes into order. This is most likely to |
| 3839 | // become a identity or concat mask. Undef elements are pushed to the end. |
| 3840 | SmallVector<int> ConcatMask; |
| 3841 | Shuffle->getShuffleMask(Result&: ConcatMask); |
| 3842 | sort(C&: ConcatMask, Comp: [](int X, int Y) { return (unsigned)X < (unsigned)Y; }); |
| 3843 | bool UsesSecondVec = |
| 3844 | any_of(Range&: ConcatMask, P: [&](int M) { return M >= (int)NumInputElts; }); |
| 3845 | |
| 3846 | InstructionCost OldCost = TTI.getShuffleCost( |
| 3847 | Kind: UsesSecondVec ? TTI::SK_PermuteTwoSrc : TTI::SK_PermuteSingleSrc, DstTy: VecType, |
| 3848 | SrcTy: ShuffleInputType, Mask: Shuffle->getShuffleMask(), CostKind); |
| 3849 | InstructionCost NewCost = TTI.getShuffleCost( |
| 3850 | Kind: UsesSecondVec ? TTI::SK_PermuteTwoSrc : TTI::SK_PermuteSingleSrc, DstTy: VecType, |
| 3851 | SrcTy: ShuffleInputType, Mask: ConcatMask, CostKind); |
| 3852 | |
| 3853 | LLVM_DEBUG(dbgs() << "Found a reduction feeding from a shuffle: " << *Shuffle |
| 3854 | << "\n" ); |
| 3855 | LLVM_DEBUG(dbgs() << " OldCost: " << OldCost << " vs NewCost: " << NewCost |
| 3856 | << "\n" ); |
| 3857 | bool MadeChanges = false; |
| 3858 | if (NewCost < OldCost) { |
| 3859 | Builder.SetInsertPoint(Shuffle); |
| 3860 | Value *NewShuffle = Builder.CreateShuffleVector( |
| 3861 | V1: Shuffle->getOperand(i_nocapture: 0), V2: Shuffle->getOperand(i_nocapture: 1), Mask: ConcatMask); |
| 3862 | LLVM_DEBUG(dbgs() << "Created new shuffle: " << *NewShuffle << "\n" ); |
| 3863 | replaceValue(Old&: *Shuffle, New&: *NewShuffle); |
| 3864 | return true; |
| 3865 | } |
| 3866 | |
| 3867 | // See if we can re-use foldSelectShuffle, getting it to reduce the size of |
| 3868 | // the shuffle into a nicer order, as it can ignore the order of the shuffles. |
| 3869 | MadeChanges |= foldSelectShuffle(I&: *Shuffle, FromReduction: true); |
| 3870 | return MadeChanges; |
| 3871 | } |
| 3872 | |
| 3873 | /// For a given chain of patterns of the following form: |
| 3874 | /// |
| 3875 | /// ``` |
| 3876 | /// %1 = shufflevector <n x ty1> %0, <n x ty1> poison <n x ty2> mask |
| 3877 | /// |
| 3878 | /// %2 = tail call <n x ty1> llvm.<umin/umax/smin/smax>(<n x ty1> %0, <n x |
| 3879 | /// ty1> %1) |
| 3880 | /// OR |
| 3881 | /// %2 = add/mul/or/and/xor <n x ty1> %0, %1 |
| 3882 | /// |
| 3883 | /// %3 = shufflevector <n x ty1> %2, <n x ty1> poison <n x ty2> mask |
| 3884 | /// ... |
| 3885 | /// ... |
| 3886 | /// %(i - 1) = tail call <n x ty1> llvm.<umin/umax/smin/smax>(<n x ty1> %(i - |
| 3887 | /// 3), <n x ty1> %(i - 2) |
| 3888 | /// OR |
| 3889 | /// %(i - 1) = add/mul/or/and/xor <n x ty1> %(i - 3), %(i - 2) |
| 3890 | /// |
| 3891 | /// %(i) = extractelement <n x ty1> %(i - 1), 0 |
| 3892 | /// ``` |
| 3893 | /// |
| 3894 | /// Where: |
| 3895 | /// `mask` follows a partition pattern: |
| 3896 | /// |
| 3897 | /// Ex: |
| 3898 | /// [n = 8, p = poison] |
| 3899 | /// |
| 3900 | /// 4 5 6 7 | p p p p |
| 3901 | /// 2 3 | p p p p p p |
| 3902 | /// 1 | p p p p p p p |
| 3903 | /// |
| 3904 | /// For powers of 2, there's a consistent pattern, but for other cases |
| 3905 | /// the parity of the current half value at each step decides the |
| 3906 | /// next partition half (see `ExpectedParityMask` for more logical details |
| 3907 | /// in generalising this). |
| 3908 | /// |
| 3909 | /// Ex: |
| 3910 | /// [n = 6] |
| 3911 | /// |
| 3912 | /// 3 4 5 | p p p |
| 3913 | /// 1 2 | p p p p |
| 3914 | /// 1 | p p p p p |
| 3915 | bool VectorCombine::foldShuffleChainsToReduce(Instruction &I) { |
| 3916 | // Going bottom-up for the pattern. |
| 3917 | std::queue<Value *> InstWorklist; |
| 3918 | InstructionCost OrigCost = 0; |
| 3919 | |
| 3920 | // Common instruction operation after each shuffle op. |
| 3921 | std::optional<unsigned int> CommonCallOp = std::nullopt; |
| 3922 | std::optional<Instruction::BinaryOps> CommonBinOp = std::nullopt; |
| 3923 | |
| 3924 | bool IsFirstCallOrBinInst = true; |
| 3925 | bool ShouldBeCallOrBinInst = true; |
| 3926 | |
| 3927 | // This stores the last used instructions for shuffle/common op. |
| 3928 | // |
| 3929 | // PrevVecV[0] / PrevVecV[1] store the last two simultaneous |
| 3930 | // instructions from either shuffle/common op. |
| 3931 | SmallVector<Value *, 2> PrevVecV(2, nullptr); |
| 3932 | |
| 3933 | Value *VecOpEE; |
| 3934 | if (!match(V: &I, P: m_ExtractElt(Val: m_Value(V&: VecOpEE), Idx: m_Zero()))) |
| 3935 | return false; |
| 3936 | |
| 3937 | auto *FVT = dyn_cast<FixedVectorType>(Val: VecOpEE->getType()); |
| 3938 | if (!FVT) |
| 3939 | return false; |
| 3940 | |
| 3941 | int64_t VecSize = FVT->getNumElements(); |
| 3942 | if (VecSize < 2) |
| 3943 | return false; |
| 3944 | |
| 3945 | // Number of levels would be ~log2(n), considering we always partition |
| 3946 | // by half for this fold pattern. |
| 3947 | unsigned int NumLevels = Log2_64_Ceil(Value: VecSize), VisitedCnt = 0; |
| 3948 | int64_t ShuffleMaskHalf = 1, ExpectedParityMask = 0; |
| 3949 | |
| 3950 | // This is how we generalise for all element sizes. |
| 3951 | // At each step, if vector size is odd, we need non-poison |
| 3952 | // values to cover the dominant half so we don't miss out on any element. |
| 3953 | // |
| 3954 | // This mask will help us retrieve this as we go from bottom to top: |
| 3955 | // |
| 3956 | // Mask Set -> N = N * 2 - 1 |
| 3957 | // Mask Unset -> N = N * 2 |
| 3958 | for (int Cur = VecSize, Mask = NumLevels - 1; Cur > 1; |
| 3959 | Cur = (Cur + 1) / 2, --Mask) { |
| 3960 | if (Cur & 1) |
| 3961 | ExpectedParityMask |= (1ll << Mask); |
| 3962 | } |
| 3963 | |
| 3964 | InstWorklist.push(x: VecOpEE); |
| 3965 | |
| 3966 | while (!InstWorklist.empty()) { |
| 3967 | Value *CI = InstWorklist.front(); |
| 3968 | InstWorklist.pop(); |
| 3969 | |
| 3970 | if (auto *II = dyn_cast<IntrinsicInst>(Val: CI)) { |
| 3971 | if (!ShouldBeCallOrBinInst) |
| 3972 | return false; |
| 3973 | |
| 3974 | if (!IsFirstCallOrBinInst && any_of(Range&: PrevVecV, P: equal_to(Arg: nullptr))) |
| 3975 | return false; |
| 3976 | |
| 3977 | // For the first found call/bin op, the vector has to come from the |
| 3978 | // extract element op. |
| 3979 | if (II != (IsFirstCallOrBinInst ? VecOpEE : PrevVecV[0])) |
| 3980 | return false; |
| 3981 | IsFirstCallOrBinInst = false; |
| 3982 | |
| 3983 | if (!CommonCallOp) |
| 3984 | CommonCallOp = II->getIntrinsicID(); |
| 3985 | if (II->getIntrinsicID() != *CommonCallOp) |
| 3986 | return false; |
| 3987 | |
| 3988 | switch (II->getIntrinsicID()) { |
| 3989 | case Intrinsic::umin: |
| 3990 | case Intrinsic::umax: |
| 3991 | case Intrinsic::smin: |
| 3992 | case Intrinsic::smax: { |
| 3993 | auto *Op0 = II->getOperand(i_nocapture: 0); |
| 3994 | auto *Op1 = II->getOperand(i_nocapture: 1); |
| 3995 | PrevVecV[0] = Op0; |
| 3996 | PrevVecV[1] = Op1; |
| 3997 | break; |
| 3998 | } |
| 3999 | default: |
| 4000 | return false; |
| 4001 | } |
| 4002 | ShouldBeCallOrBinInst ^= 1; |
| 4003 | |
| 4004 | IntrinsicCostAttributes ICA( |
| 4005 | *CommonCallOp, II->getType(), |
| 4006 | {PrevVecV[0]->getType(), PrevVecV[1]->getType()}); |
| 4007 | OrigCost += TTI.getIntrinsicInstrCost(ICA, CostKind); |
| 4008 | |
| 4009 | // We may need a swap here since it can be (a, b) or (b, a) |
| 4010 | // and accordingly change as we go up. |
| 4011 | if (!isa<ShuffleVectorInst>(Val: PrevVecV[1])) |
| 4012 | std::swap(a&: PrevVecV[0], b&: PrevVecV[1]); |
| 4013 | InstWorklist.push(x: PrevVecV[1]); |
| 4014 | InstWorklist.push(x: PrevVecV[0]); |
| 4015 | } else if (auto *BinOp = dyn_cast<BinaryOperator>(Val: CI)) { |
| 4016 | // Similar logic for bin ops. |
| 4017 | |
| 4018 | if (!ShouldBeCallOrBinInst) |
| 4019 | return false; |
| 4020 | |
| 4021 | if (!IsFirstCallOrBinInst && any_of(Range&: PrevVecV, P: equal_to(Arg: nullptr))) |
| 4022 | return false; |
| 4023 | |
| 4024 | if (BinOp != (IsFirstCallOrBinInst ? VecOpEE : PrevVecV[0])) |
| 4025 | return false; |
| 4026 | IsFirstCallOrBinInst = false; |
| 4027 | |
| 4028 | if (!CommonBinOp) |
| 4029 | CommonBinOp = BinOp->getOpcode(); |
| 4030 | |
| 4031 | if (BinOp->getOpcode() != *CommonBinOp) |
| 4032 | return false; |
| 4033 | |
| 4034 | switch (*CommonBinOp) { |
| 4035 | case BinaryOperator::Add: |
| 4036 | case BinaryOperator::Mul: |
| 4037 | case BinaryOperator::Or: |
| 4038 | case BinaryOperator::And: |
| 4039 | case BinaryOperator::Xor: { |
| 4040 | auto *Op0 = BinOp->getOperand(i_nocapture: 0); |
| 4041 | auto *Op1 = BinOp->getOperand(i_nocapture: 1); |
| 4042 | PrevVecV[0] = Op0; |
| 4043 | PrevVecV[1] = Op1; |
| 4044 | break; |
| 4045 | } |
| 4046 | default: |
| 4047 | return false; |
| 4048 | } |
| 4049 | ShouldBeCallOrBinInst ^= 1; |
| 4050 | |
| 4051 | OrigCost += |
| 4052 | TTI.getArithmeticInstrCost(Opcode: *CommonBinOp, Ty: BinOp->getType(), CostKind); |
| 4053 | |
| 4054 | if (!isa<ShuffleVectorInst>(Val: PrevVecV[1])) |
| 4055 | std::swap(a&: PrevVecV[0], b&: PrevVecV[1]); |
| 4056 | InstWorklist.push(x: PrevVecV[1]); |
| 4057 | InstWorklist.push(x: PrevVecV[0]); |
| 4058 | } else if (auto *SVInst = dyn_cast<ShuffleVectorInst>(Val: CI)) { |
| 4059 | // We shouldn't have any null values in the previous vectors, |
| 4060 | // is so, there was a mismatch in pattern. |
| 4061 | if (ShouldBeCallOrBinInst || any_of(Range&: PrevVecV, P: equal_to(Arg: nullptr))) |
| 4062 | return false; |
| 4063 | |
| 4064 | if (SVInst != PrevVecV[1]) |
| 4065 | return false; |
| 4066 | |
| 4067 | ArrayRef<int> CurMask; |
| 4068 | if (!match(V: SVInst, P: m_Shuffle(v1: m_Specific(V: PrevVecV[0]), v2: m_Poison(), |
| 4069 | mask: m_Mask(CurMask)))) |
| 4070 | return false; |
| 4071 | |
| 4072 | // Subtract the parity mask when checking the condition. |
| 4073 | for (int Mask = 0, MaskSize = CurMask.size(); Mask != MaskSize; ++Mask) { |
| 4074 | if (Mask < ShuffleMaskHalf && |
| 4075 | CurMask[Mask] != ShuffleMaskHalf + Mask - (ExpectedParityMask & 1)) |
| 4076 | return false; |
| 4077 | if (Mask >= ShuffleMaskHalf && CurMask[Mask] != -1) |
| 4078 | return false; |
| 4079 | } |
| 4080 | |
| 4081 | // Update mask values. |
| 4082 | ShuffleMaskHalf *= 2; |
| 4083 | ShuffleMaskHalf -= (ExpectedParityMask & 1); |
| 4084 | ExpectedParityMask >>= 1; |
| 4085 | |
| 4086 | OrigCost += TTI.getShuffleCost(Kind: TargetTransformInfo::SK_PermuteSingleSrc, |
| 4087 | DstTy: SVInst->getType(), SrcTy: SVInst->getType(), |
| 4088 | Mask: CurMask, CostKind); |
| 4089 | |
| 4090 | VisitedCnt += 1; |
| 4091 | if (!ExpectedParityMask && VisitedCnt == NumLevels) |
| 4092 | break; |
| 4093 | |
| 4094 | ShouldBeCallOrBinInst ^= 1; |
| 4095 | } else { |
| 4096 | return false; |
| 4097 | } |
| 4098 | } |
| 4099 | |
| 4100 | // Pattern should end with a shuffle op. |
| 4101 | if (ShouldBeCallOrBinInst) |
| 4102 | return false; |
| 4103 | |
| 4104 | assert(VecSize != -1 && "Expected Match for Vector Size" ); |
| 4105 | |
| 4106 | Value *FinalVecV = PrevVecV[0]; |
| 4107 | if (!FinalVecV) |
| 4108 | return false; |
| 4109 | |
| 4110 | auto *FinalVecVTy = cast<FixedVectorType>(Val: FinalVecV->getType()); |
| 4111 | |
| 4112 | Intrinsic::ID ReducedOp = |
| 4113 | (CommonCallOp ? getMinMaxReductionIntrinsicID(IID: *CommonCallOp) |
| 4114 | : getReductionForBinop(Opc: *CommonBinOp)); |
| 4115 | if (!ReducedOp) |
| 4116 | return false; |
| 4117 | |
| 4118 | IntrinsicCostAttributes ICA(ReducedOp, FinalVecVTy, {FinalVecV}); |
| 4119 | InstructionCost NewCost = TTI.getIntrinsicInstrCost(ICA, CostKind); |
| 4120 | |
| 4121 | if (NewCost >= OrigCost) |
| 4122 | return false; |
| 4123 | |
| 4124 | auto *ReducedResult = |
| 4125 | Builder.CreateIntrinsic(ID: ReducedOp, Types: {FinalVecV->getType()}, Args: {FinalVecV}); |
| 4126 | replaceValue(Old&: I, New&: *ReducedResult); |
| 4127 | |
| 4128 | return true; |
| 4129 | } |
| 4130 | |
| 4131 | /// Determine if its more efficient to fold: |
| 4132 | /// reduce(trunc(x)) -> trunc(reduce(x)). |
| 4133 | /// reduce(sext(x)) -> sext(reduce(x)). |
| 4134 | /// reduce(zext(x)) -> zext(reduce(x)). |
| 4135 | bool VectorCombine::foldCastFromReductions(Instruction &I) { |
| 4136 | auto *II = dyn_cast<IntrinsicInst>(Val: &I); |
| 4137 | if (!II) |
| 4138 | return false; |
| 4139 | |
| 4140 | bool TruncOnly = false; |
| 4141 | Intrinsic::ID IID = II->getIntrinsicID(); |
| 4142 | switch (IID) { |
| 4143 | case Intrinsic::vector_reduce_add: |
| 4144 | case Intrinsic::vector_reduce_mul: |
| 4145 | TruncOnly = true; |
| 4146 | break; |
| 4147 | case Intrinsic::vector_reduce_and: |
| 4148 | case Intrinsic::vector_reduce_or: |
| 4149 | case Intrinsic::vector_reduce_xor: |
| 4150 | break; |
| 4151 | default: |
| 4152 | return false; |
| 4153 | } |
| 4154 | |
| 4155 | unsigned ReductionOpc = getArithmeticReductionInstruction(RdxID: IID); |
| 4156 | Value *ReductionSrc = I.getOperand(i: 0); |
| 4157 | |
| 4158 | Value *Src; |
| 4159 | if (!match(V: ReductionSrc, P: m_OneUse(SubPattern: m_Trunc(Op: m_Value(V&: Src)))) && |
| 4160 | (TruncOnly || !match(V: ReductionSrc, P: m_OneUse(SubPattern: m_ZExtOrSExt(Op: m_Value(V&: Src)))))) |
| 4161 | return false; |
| 4162 | |
| 4163 | auto CastOpc = |
| 4164 | (Instruction::CastOps)cast<Instruction>(Val: ReductionSrc)->getOpcode(); |
| 4165 | |
| 4166 | auto *SrcTy = cast<VectorType>(Val: Src->getType()); |
| 4167 | auto *ReductionSrcTy = cast<VectorType>(Val: ReductionSrc->getType()); |
| 4168 | Type *ResultTy = I.getType(); |
| 4169 | |
| 4170 | InstructionCost OldCost = TTI.getArithmeticReductionCost( |
| 4171 | Opcode: ReductionOpc, Ty: ReductionSrcTy, FMF: std::nullopt, CostKind); |
| 4172 | OldCost += TTI.getCastInstrCost(Opcode: CastOpc, Dst: ReductionSrcTy, Src: SrcTy, |
| 4173 | CCH: TTI::CastContextHint::None, CostKind, |
| 4174 | I: cast<CastInst>(Val: ReductionSrc)); |
| 4175 | InstructionCost NewCost = |
| 4176 | TTI.getArithmeticReductionCost(Opcode: ReductionOpc, Ty: SrcTy, FMF: std::nullopt, |
| 4177 | CostKind) + |
| 4178 | TTI.getCastInstrCost(Opcode: CastOpc, Dst: ResultTy, Src: ReductionSrcTy->getScalarType(), |
| 4179 | CCH: TTI::CastContextHint::None, CostKind); |
| 4180 | |
| 4181 | if (OldCost <= NewCost || !NewCost.isValid()) |
| 4182 | return false; |
| 4183 | |
| 4184 | Value *NewReduction = Builder.CreateIntrinsic(RetTy: SrcTy->getScalarType(), |
| 4185 | ID: II->getIntrinsicID(), Args: {Src}); |
| 4186 | Value *NewCast = Builder.CreateCast(Op: CastOpc, V: NewReduction, DestTy: ResultTy); |
| 4187 | replaceValue(Old&: I, New&: *NewCast); |
| 4188 | return true; |
| 4189 | } |
| 4190 | |
| 4191 | /// Fold: |
| 4192 | /// icmp pred (reduce.{add,or,and,umax,umin}(signbit_extract(x))), C |
| 4193 | /// into: |
| 4194 | /// icmp sgt/slt (reduce.{or,umax,and,umin}(x)), -1/0 |
| 4195 | /// |
| 4196 | /// Sign-bit reductions produce values with known semantics: |
| 4197 | /// - reduce.{or,umax}: 0 if no element is negative, 1 if any is |
| 4198 | /// - reduce.{and,umin}: 1 if all elements are negative, 0 if any isn't |
| 4199 | /// - reduce.add: count of negative elements (0 to NumElts) |
| 4200 | /// |
| 4201 | /// We transform to a direct sign check on reduce.{or,umax} or |
| 4202 | /// reduce.{and,umin} without explicit sign-bit extraction. |
| 4203 | /// |
| 4204 | /// In spirit, it's similar to foldSignBitCheck in InstCombine. |
| 4205 | bool VectorCombine::foldSignBitReductionCmp(Instruction &I) { |
| 4206 | CmpPredicate Pred; |
| 4207 | Value *ReduceOp; |
| 4208 | const APInt *CmpVal; |
| 4209 | if (!match(V: &I, P: m_ICmp(Pred, L: m_Value(V&: ReduceOp), R: m_APInt(Res&: CmpVal)))) |
| 4210 | return false; |
| 4211 | |
| 4212 | auto *II = dyn_cast<IntrinsicInst>(Val: ReduceOp); |
| 4213 | if (!II || !II->hasOneUse()) |
| 4214 | return false; |
| 4215 | |
| 4216 | Intrinsic::ID OrigIID = II->getIntrinsicID(); |
| 4217 | switch (OrigIID) { |
| 4218 | case Intrinsic::vector_reduce_or: |
| 4219 | case Intrinsic::vector_reduce_umax: |
| 4220 | case Intrinsic::vector_reduce_and: |
| 4221 | case Intrinsic::vector_reduce_umin: |
| 4222 | case Intrinsic::vector_reduce_add: |
| 4223 | break; |
| 4224 | default: |
| 4225 | return false; |
| 4226 | } |
| 4227 | |
| 4228 | Value *ReductionSrc = II->getArgOperand(i: 0); |
| 4229 | if (!ReductionSrc->hasOneUse()) |
| 4230 | return false; |
| 4231 | |
| 4232 | auto *VecTy = dyn_cast<FixedVectorType>(Val: ReductionSrc->getType()); |
| 4233 | if (!VecTy) |
| 4234 | return false; |
| 4235 | |
| 4236 | unsigned BitWidth = VecTy->getScalarSizeInBits(); |
| 4237 | unsigned NumElts = VecTy->getNumElements(); |
| 4238 | |
| 4239 | // For reduce.add, the result is the count of negative elements |
| 4240 | // (0 to NumElts). This must fit in the scalar type without overflow. |
| 4241 | // Otherwise, reduce.add can wrap and identity doesn't hold. |
| 4242 | if (OrigIID == Intrinsic::vector_reduce_add && !isUIntN(N: BitWidth, x: NumElts)) |
| 4243 | return false; |
| 4244 | |
| 4245 | // Match sign-bit extraction: shr X, (bitwidth-1) |
| 4246 | Value *X; |
| 4247 | if (!match(V: ReductionSrc, P: m_Shr(L: m_Value(V&: X), R: m_SpecificInt(V: BitWidth - 1)))) |
| 4248 | return false; |
| 4249 | |
| 4250 | // MaxVal: 1 for or/and/umax/umin, NumElts for add |
| 4251 | APInt MaxVal(CmpVal->getBitWidth(), |
| 4252 | OrigIID == Intrinsic::vector_reduce_add ? NumElts : 1); |
| 4253 | |
| 4254 | // In addition to direct comparisons EQ 0, NE 0, EQ 1, NE 1, etc. we support |
| 4255 | // inequalities that can be interpreted as either EQ or NE considering a |
| 4256 | // rather narrow range of possible value of sign-bit reductions. |
| 4257 | bool IsEq; |
| 4258 | bool TestsHigh; |
| 4259 | if (ICmpInst::isEquality(P: Pred)) { |
| 4260 | // EQ/NE: comparison must be against 0 or MaxVal |
| 4261 | if (!CmpVal->isZero() && *CmpVal != MaxVal) |
| 4262 | return false; |
| 4263 | IsEq = Pred == ICmpInst::ICMP_EQ; |
| 4264 | TestsHigh = *CmpVal == MaxVal; |
| 4265 | } else if (ICmpInst::isLT(P: Pred) && *CmpVal == MaxVal) { |
| 4266 | // s/ult MaxVal -> ne MaxVal |
| 4267 | IsEq = false; |
| 4268 | TestsHigh = true; |
| 4269 | } else if (ICmpInst::isGT(P: Pred) && *CmpVal == MaxVal - 1) { |
| 4270 | // s/ugt MaxVal-1 -> eq MaxVal |
| 4271 | IsEq = true; |
| 4272 | TestsHigh = true; |
| 4273 | } else { |
| 4274 | return false; |
| 4275 | } |
| 4276 | |
| 4277 | // For this fold we support four types of checks: |
| 4278 | // |
| 4279 | // 1. All lanes are negative - AllNeg |
| 4280 | // 2. All lanes are non-negative - AllNonNeg |
| 4281 | // 3. At least one negative lane - AnyNeg |
| 4282 | // 4. At least one non-negative lane - AnyNonNeg |
| 4283 | // |
| 4284 | // For each case, we can generate the following code: |
| 4285 | // |
| 4286 | // 1. AllNeg - reduce.and/umin(X) < 0 |
| 4287 | // 2. AllNonNeg - reduce.or/umax(X) > -1 |
| 4288 | // 3. AnyNeg - reduce.or/umax(X) < 0 |
| 4289 | // 4. AnyNonNeg - reduce.and/umin(X) > -1 |
| 4290 | // |
| 4291 | // The table below shows the aggregation of all supported cases |
| 4292 | // using these four cases. |
| 4293 | // |
| 4294 | // Reduction | == 0 | != 0 | == MAX | != MAX |
| 4295 | // ------------+-----------+-----------+-----------+----------- |
| 4296 | // or/umax | AllNonNeg | AnyNeg | AnyNeg | AllNonNeg |
| 4297 | // and/umin | AnyNonNeg | AllNeg | AllNeg | AnyNonNeg |
| 4298 | // add | AllNonNeg | AnyNeg | AllNeg | AnyNonNeg |
| 4299 | // |
| 4300 | // NOTE: MAX = 1 for or/and/umax/umin, and the vector size N for add |
| 4301 | // |
| 4302 | // For easier codegen and check inversion, we use the following encoding: |
| 4303 | // |
| 4304 | // 1. Bit-3 === requires or/umax (1) or and/umin (0) check |
| 4305 | // 2. Bit-2 === checks < 0 (1) or > -1 (0) |
| 4306 | // 3. Bit-1 === universal (1) or existential (0) check |
| 4307 | // |
| 4308 | // AnyNeg = 0b110: uses or/umax, checks negative, any-check |
| 4309 | // AllNonNeg = 0b101: uses or/umax, checks non-neg, all-check |
| 4310 | // AnyNonNeg = 0b000: uses and/umin, checks non-neg, any-check |
| 4311 | // AllNeg = 0b011: uses and/umin, checks negative, all-check |
| 4312 | // |
| 4313 | // XOR with 0b011 inverts the check (swaps all/any and neg/non-neg). |
| 4314 | // |
| 4315 | enum CheckKind : unsigned { |
| 4316 | AnyNonNeg = 0b000, |
| 4317 | AllNeg = 0b011, |
| 4318 | AllNonNeg = 0b101, |
| 4319 | AnyNeg = 0b110, |
| 4320 | }; |
| 4321 | // Return true if we fold this check into or/umax and false for and/umin |
| 4322 | auto RequiresOr = [](CheckKind C) -> bool { return C & 0b100; }; |
| 4323 | // Return true if we should check if result is negative and false otherwise |
| 4324 | auto IsNegativeCheck = [](CheckKind C) -> bool { return C & 0b010; }; |
| 4325 | // Logically invert the check |
| 4326 | auto Invert = [](CheckKind C) { return CheckKind(C ^ 0b011); }; |
| 4327 | |
| 4328 | CheckKind Base; |
| 4329 | switch (OrigIID) { |
| 4330 | case Intrinsic::vector_reduce_or: |
| 4331 | case Intrinsic::vector_reduce_umax: |
| 4332 | Base = TestsHigh ? AnyNeg : AllNonNeg; |
| 4333 | break; |
| 4334 | case Intrinsic::vector_reduce_and: |
| 4335 | case Intrinsic::vector_reduce_umin: |
| 4336 | Base = TestsHigh ? AllNeg : AnyNonNeg; |
| 4337 | break; |
| 4338 | case Intrinsic::vector_reduce_add: |
| 4339 | Base = TestsHigh ? AllNeg : AllNonNeg; |
| 4340 | break; |
| 4341 | default: |
| 4342 | llvm_unreachable("Unexpected intrinsic" ); |
| 4343 | } |
| 4344 | |
| 4345 | CheckKind Check = IsEq ? Base : Invert(Base); |
| 4346 | |
| 4347 | // Calculate old cost: shift + reduction |
| 4348 | InstructionCost OldCost = |
| 4349 | TTI.getInstructionCost(U: cast<Instruction>(Val: ReductionSrc), CostKind); |
| 4350 | OldCost += TTI.getInstructionCost(U: II, CostKind); |
| 4351 | |
| 4352 | auto PickCheaper = [&](Intrinsic::ID Arith, Intrinsic::ID MinMax) { |
| 4353 | InstructionCost ArithCost = |
| 4354 | TTI.getArithmeticReductionCost(Opcode: getArithmeticReductionInstruction(RdxID: Arith), |
| 4355 | Ty: VecTy, FMF: std::nullopt, CostKind); |
| 4356 | InstructionCost MinMaxCost = |
| 4357 | TTI.getMinMaxReductionCost(IID: getMinMaxReductionIntrinsicOp(RdxID: MinMax), Ty: VecTy, |
| 4358 | FMF: FastMathFlags(), CostKind); |
| 4359 | return ArithCost <= MinMaxCost ? std::make_pair(x&: Arith, y&: ArithCost) |
| 4360 | : std::make_pair(x&: MinMax, y&: MinMaxCost); |
| 4361 | }; |
| 4362 | |
| 4363 | // Choose output reduction based on encoding's MSB |
| 4364 | auto [NewIID, NewCost] = RequiresOr(Check) |
| 4365 | ? PickCheaper(Intrinsic::vector_reduce_or, |
| 4366 | Intrinsic::vector_reduce_umax) |
| 4367 | : PickCheaper(Intrinsic::vector_reduce_and, |
| 4368 | Intrinsic::vector_reduce_umin); |
| 4369 | |
| 4370 | LLVM_DEBUG(dbgs() << "Found sign-bit reduction cmp: " << I << "\n OldCost: " |
| 4371 | << OldCost << " vs NewCost: " << NewCost << "\n" ); |
| 4372 | |
| 4373 | if (NewCost > OldCost) |
| 4374 | return false; |
| 4375 | |
| 4376 | // Generate comparison based on encoding's neg bit: slt 0 for neg, sgt -1 for |
| 4377 | // non-neg |
| 4378 | Builder.SetInsertPoint(&I); |
| 4379 | Type *ScalarTy = VecTy->getScalarType(); |
| 4380 | Value *NewReduce = Builder.CreateIntrinsic(RetTy: ScalarTy, ID: NewIID, Args: {X}); |
| 4381 | Value *NewCmp = IsNegativeCheck(Check) ? Builder.CreateIsNeg(Arg: NewReduce) |
| 4382 | : Builder.CreateIsNotNeg(Arg: NewReduce); |
| 4383 | replaceValue(Old&: I, New&: *NewCmp); |
| 4384 | return true; |
| 4385 | } |
| 4386 | |
| 4387 | /// vector.reduce.OP f(X_i) == 0 -> vector.reduce.OP X_i == 0 |
| 4388 | /// |
| 4389 | /// We can prove it for cases when: |
| 4390 | /// |
| 4391 | /// 1. OP X_i == 0 <=> \forall i \in [1, N] X_i == 0 |
| 4392 | /// 1'. OP X_i == 0 <=> \exists j \in [1, N] X_j == 0 |
| 4393 | /// 2. f(x) == 0 <=> x == 0 |
| 4394 | /// |
| 4395 | /// From 1 and 2 (or 1' and 2), we can infer that |
| 4396 | /// |
| 4397 | /// OP f(X_i) == 0 <=> OP X_i == 0. |
| 4398 | /// |
| 4399 | /// (1) |
| 4400 | /// OP f(X_i) == 0 <=> \forall i \in [1, N] f(X_i) == 0 |
| 4401 | /// (2) |
| 4402 | /// <=> \forall i \in [1, N] X_i == 0 |
| 4403 | /// (1) |
| 4404 | /// <=> OP(X_i) == 0 |
| 4405 | /// |
| 4406 | /// For some of the OP's and f's, we need to have domain constraints on X |
| 4407 | /// to ensure properties 1 (or 1') and 2. |
| 4408 | bool VectorCombine::foldICmpEqZeroVectorReduce(Instruction &I) { |
| 4409 | CmpPredicate Pred; |
| 4410 | Value *Op; |
| 4411 | if (!match(V: &I, P: m_ICmp(Pred, L: m_Value(V&: Op), R: m_Zero())) || |
| 4412 | !ICmpInst::isEquality(P: Pred)) |
| 4413 | return false; |
| 4414 | |
| 4415 | auto *II = dyn_cast<IntrinsicInst>(Val: Op); |
| 4416 | if (!II) |
| 4417 | return false; |
| 4418 | |
| 4419 | switch (II->getIntrinsicID()) { |
| 4420 | case Intrinsic::vector_reduce_add: |
| 4421 | case Intrinsic::vector_reduce_or: |
| 4422 | case Intrinsic::vector_reduce_umin: |
| 4423 | case Intrinsic::vector_reduce_umax: |
| 4424 | case Intrinsic::vector_reduce_smin: |
| 4425 | case Intrinsic::vector_reduce_smax: |
| 4426 | break; |
| 4427 | default: |
| 4428 | return false; |
| 4429 | } |
| 4430 | |
| 4431 | Value *InnerOp = II->getArgOperand(i: 0); |
| 4432 | |
| 4433 | // TODO: fixed vector type might be too restrictive |
| 4434 | if (!II->hasOneUse() || !isa<FixedVectorType>(Val: InnerOp->getType())) |
| 4435 | return false; |
| 4436 | |
| 4437 | Value *X = nullptr; |
| 4438 | |
| 4439 | // Check for zero-preserving operations where f(x) = 0 <=> x = 0 |
| 4440 | // |
| 4441 | // 1. f(x) = shl nuw x, y for arbitrary y |
| 4442 | // 2. f(x) = mul nuw x, c for defined c != 0 |
| 4443 | // 3. f(x) = zext x |
| 4444 | // 4. f(x) = sext x |
| 4445 | // 5. f(x) = neg x |
| 4446 | // |
| 4447 | if (!(match(V: InnerOp, P: m_NUWShl(L: m_Value(V&: X), R: m_Value())) || // Case 1 |
| 4448 | match(V: InnerOp, P: m_NUWMul(L: m_Value(V&: X), R: m_NonZeroInt())) || // Case 2 |
| 4449 | match(V: InnerOp, P: m_ZExt(Op: m_Value(V&: X))) || // Case 3 |
| 4450 | match(V: InnerOp, P: m_SExt(Op: m_Value(V&: X))) || // Case 4 |
| 4451 | match(V: InnerOp, P: m_Neg(V: m_Value(V&: X))) // Case 5 |
| 4452 | )) |
| 4453 | return false; |
| 4454 | |
| 4455 | SimplifyQuery S = SQ.getWithInstruction(I: &I); |
| 4456 | auto *XTy = cast<FixedVectorType>(Val: X->getType()); |
| 4457 | |
| 4458 | // Check for domain constraints for all supported reductions. |
| 4459 | // |
| 4460 | // a. OR X_i - has property 1 for every X |
| 4461 | // b. UMAX X_i - has property 1 for every X |
| 4462 | // c. UMIN X_i - has property 1' for every X |
| 4463 | // d. SMAX X_i - has property 1 for X >= 0 |
| 4464 | // e. SMIN X_i - has property 1' for X >= 0 |
| 4465 | // f. ADD X_i - has property 1 for X >= 0 && ADD X_i doesn't sign wrap |
| 4466 | // |
| 4467 | // In order for the proof to work, we need 1 (or 1') to be true for both |
| 4468 | // OP f(X_i) and OP X_i and that's why below we check constraints twice. |
| 4469 | // |
| 4470 | // NOTE: ADD X_i holds property 1 for a mirror case as well, i.e. when |
| 4471 | // X <= 0 && ADD X_i doesn't sign wrap. However, due to the nature |
| 4472 | // of known bits, we can't reasonably hold knowledge of "either 0 |
| 4473 | // or negative". |
| 4474 | switch (II->getIntrinsicID()) { |
| 4475 | case Intrinsic::vector_reduce_add: { |
| 4476 | // We need to check that both X_i and f(X_i) have enough leading |
| 4477 | // zeros to not overflow. |
| 4478 | KnownBits KnownX = computeKnownBits(V: X, Q: S); |
| 4479 | KnownBits KnownFX = computeKnownBits(V: InnerOp, Q: S); |
| 4480 | unsigned NumElems = XTy->getNumElements(); |
| 4481 | // Adding N elements loses at most ceil(log2(N)) leading bits. |
| 4482 | unsigned LostBits = Log2_32_Ceil(Value: NumElems); |
| 4483 | unsigned LeadingZerosX = KnownX.countMinLeadingZeros(); |
| 4484 | unsigned LeadingZerosFX = KnownFX.countMinLeadingZeros(); |
| 4485 | // Need at least one leading zero left after summation to ensure no overflow |
| 4486 | if (LeadingZerosX <= LostBits || LeadingZerosFX <= LostBits) |
| 4487 | return false; |
| 4488 | |
| 4489 | // We are not checking whether X or f(X) are positive explicitly because |
| 4490 | // we implicitly checked for it when we checked if both cases have enough |
| 4491 | // leading zeros to not wrap addition. |
| 4492 | break; |
| 4493 | } |
| 4494 | case Intrinsic::vector_reduce_smin: |
| 4495 | case Intrinsic::vector_reduce_smax: |
| 4496 | // Check whether X >= 0 and f(X) >= 0 |
| 4497 | if (!isKnownNonNegative(V: InnerOp, SQ: S) || !isKnownNonNegative(V: X, SQ: S)) |
| 4498 | return false; |
| 4499 | |
| 4500 | break; |
| 4501 | default: |
| 4502 | break; |
| 4503 | }; |
| 4504 | |
| 4505 | LLVM_DEBUG(dbgs() << "Found a reduction to 0 comparison with removable op: " |
| 4506 | << *II << "\n" ); |
| 4507 | |
| 4508 | // For zext/sext, check if the transform is profitable using cost model. |
| 4509 | // For other operations (shl, mul, neg), we're removing an instruction |
| 4510 | // while keeping the same reduction type, so it's always profitable. |
| 4511 | if (isa<ZExtInst>(Val: InnerOp) || isa<SExtInst>(Val: InnerOp)) { |
| 4512 | auto *FXTy = cast<FixedVectorType>(Val: InnerOp->getType()); |
| 4513 | Intrinsic::ID IID = II->getIntrinsicID(); |
| 4514 | |
| 4515 | InstructionCost ExtCost = TTI.getCastInstrCost( |
| 4516 | Opcode: cast<CastInst>(Val: InnerOp)->getOpcode(), Dst: FXTy, Src: XTy, |
| 4517 | CCH: TTI::CastContextHint::None, CostKind, I: cast<CastInst>(Val: InnerOp)); |
| 4518 | |
| 4519 | InstructionCost OldReduceCost, NewReduceCost; |
| 4520 | switch (IID) { |
| 4521 | case Intrinsic::vector_reduce_add: |
| 4522 | case Intrinsic::vector_reduce_or: |
| 4523 | OldReduceCost = TTI.getArithmeticReductionCost( |
| 4524 | Opcode: getArithmeticReductionInstruction(RdxID: IID), Ty: FXTy, FMF: std::nullopt, CostKind); |
| 4525 | NewReduceCost = TTI.getArithmeticReductionCost( |
| 4526 | Opcode: getArithmeticReductionInstruction(RdxID: IID), Ty: XTy, FMF: std::nullopt, CostKind); |
| 4527 | break; |
| 4528 | case Intrinsic::vector_reduce_umin: |
| 4529 | case Intrinsic::vector_reduce_umax: |
| 4530 | case Intrinsic::vector_reduce_smin: |
| 4531 | case Intrinsic::vector_reduce_smax: |
| 4532 | OldReduceCost = TTI.getMinMaxReductionCost( |
| 4533 | IID: getMinMaxReductionIntrinsicOp(RdxID: IID), Ty: FXTy, FMF: FastMathFlags(), CostKind); |
| 4534 | NewReduceCost = TTI.getMinMaxReductionCost( |
| 4535 | IID: getMinMaxReductionIntrinsicOp(RdxID: IID), Ty: XTy, FMF: FastMathFlags(), CostKind); |
| 4536 | break; |
| 4537 | default: |
| 4538 | llvm_unreachable("Unexpected reduction" ); |
| 4539 | } |
| 4540 | |
| 4541 | InstructionCost OldCost = OldReduceCost + ExtCost; |
| 4542 | InstructionCost NewCost = |
| 4543 | NewReduceCost + (InnerOp->hasOneUse() ? 0 : ExtCost); |
| 4544 | |
| 4545 | LLVM_DEBUG(dbgs() << "Found a removable extension before reduction: " |
| 4546 | << *InnerOp << "\n OldCost: " << OldCost |
| 4547 | << " vs NewCost: " << NewCost << "\n" ); |
| 4548 | |
| 4549 | // We consider transformation to still be potentially beneficial even |
| 4550 | // when the costs are the same because we might remove a use from f(X) |
| 4551 | // and unlock other optimizations. Equal costs would just mean that we |
| 4552 | // didn't make it worse in the worst case. |
| 4553 | if (NewCost > OldCost) |
| 4554 | return false; |
| 4555 | } |
| 4556 | |
| 4557 | // Since we support zext and sext as f, we might change the scalar type |
| 4558 | // of the intrinsic. |
| 4559 | Type *Ty = XTy->getScalarType(); |
| 4560 | Value *NewReduce = Builder.CreateIntrinsic(RetTy: Ty, ID: II->getIntrinsicID(), Args: {X}); |
| 4561 | Value *NewCmp = |
| 4562 | Builder.CreateICmp(P: Pred, LHS: NewReduce, RHS: ConstantInt::getNullValue(Ty)); |
| 4563 | replaceValue(Old&: I, New&: *NewCmp); |
| 4564 | return true; |
| 4565 | } |
| 4566 | |
| 4567 | /// Fold comparisons of reduce.or/reduce.and with reduce.umax/reduce.umin |
| 4568 | /// based on cost, preserving the comparison semantics. |
| 4569 | /// |
| 4570 | /// We use two fundamental properties for each pair: |
| 4571 | /// |
| 4572 | /// 1. or(X) == 0 <=> umax(X) == 0 |
| 4573 | /// 2. or(X) == 1 <=> umax(X) == 1 |
| 4574 | /// 3. sign(or(X)) == sign(umax(X)) |
| 4575 | /// |
| 4576 | /// 1. and(X) == -1 <=> umin(X) == -1 |
| 4577 | /// 2. and(X) == -2 <=> umin(X) == -2 |
| 4578 | /// 3. sign(and(X)) == sign(umin(X)) |
| 4579 | /// |
| 4580 | /// From these we can infer the following transformations: |
| 4581 | /// a. or(X) ==/!= 0 <-> umax(X) ==/!= 0 |
| 4582 | /// b. or(X) s< 0 <-> umax(X) s< 0 |
| 4583 | /// c. or(X) s> -1 <-> umax(X) s> -1 |
| 4584 | /// d. or(X) s< 1 <-> umax(X) s< 1 |
| 4585 | /// e. or(X) ==/!= 1 <-> umax(X) ==/!= 1 |
| 4586 | /// f. or(X) s< 2 <-> umax(X) s< 2 |
| 4587 | /// g. and(X) ==/!= -1 <-> umin(X) ==/!= -1 |
| 4588 | /// h. and(X) s< 0 <-> umin(X) s< 0 |
| 4589 | /// i. and(X) s> -1 <-> umin(X) s> -1 |
| 4590 | /// j. and(X) s> -2 <-> umin(X) s> -2 |
| 4591 | /// k. and(X) ==/!= -2 <-> umin(X) ==/!= -2 |
| 4592 | /// l. and(X) s> -3 <-> umin(X) s> -3 |
| 4593 | /// |
| 4594 | bool VectorCombine::foldEquivalentReductionCmp(Instruction &I) { |
| 4595 | CmpPredicate Pred; |
| 4596 | Value *ReduceOp; |
| 4597 | const APInt *CmpVal; |
| 4598 | if (!match(V: &I, P: m_ICmp(Pred, L: m_Value(V&: ReduceOp), R: m_APInt(Res&: CmpVal)))) |
| 4599 | return false; |
| 4600 | |
| 4601 | auto *II = dyn_cast<IntrinsicInst>(Val: ReduceOp); |
| 4602 | if (!II || !II->hasOneUse()) |
| 4603 | return false; |
| 4604 | |
| 4605 | const auto IsValidOrUmaxCmp = [&]() { |
| 4606 | // Cases a and e |
| 4607 | bool IsEquality = |
| 4608 | (CmpVal->isZero() || CmpVal->isOne()) && ICmpInst::isEquality(P: Pred); |
| 4609 | // Case c |
| 4610 | bool IsPositive = CmpVal->isAllOnes() && Pred == ICmpInst::ICMP_SGT; |
| 4611 | // Cases b, d, and f |
| 4612 | bool IsNegative = (CmpVal->isZero() || CmpVal->isOne() || *CmpVal == 2) && |
| 4613 | Pred == ICmpInst::ICMP_SLT; |
| 4614 | return IsEquality || IsPositive || IsNegative; |
| 4615 | }; |
| 4616 | |
| 4617 | const auto IsValidAndUminCmp = [&]() { |
| 4618 | const auto LeadingOnes = CmpVal->countl_one(); |
| 4619 | |
| 4620 | // Cases g and k |
| 4621 | bool IsEquality = |
| 4622 | (CmpVal->isAllOnes() || LeadingOnes + 1 == CmpVal->getBitWidth()) && |
| 4623 | ICmpInst::isEquality(P: Pred); |
| 4624 | // Case h |
| 4625 | bool IsNegative = CmpVal->isZero() && Pred == ICmpInst::ICMP_SLT; |
| 4626 | // Cases i, j, and l |
| 4627 | bool IsPositive = |
| 4628 | // if the number has at least N - 2 leading ones |
| 4629 | // and the two LSBs are: |
| 4630 | // - 1 x 1 -> -1 |
| 4631 | // - 1 x 0 -> -2 |
| 4632 | // - 0 x 1 -> -3 |
| 4633 | LeadingOnes + 2 >= CmpVal->getBitWidth() && |
| 4634 | ((*CmpVal)[0] || (*CmpVal)[1]) && Pred == ICmpInst::ICMP_SGT; |
| 4635 | return IsEquality || IsNegative || IsPositive; |
| 4636 | }; |
| 4637 | |
| 4638 | Intrinsic::ID OriginalIID = II->getIntrinsicID(); |
| 4639 | Intrinsic::ID AlternativeIID; |
| 4640 | |
| 4641 | // Check if this is a valid comparison pattern and determine the alternate |
| 4642 | // reduction intrinsic. |
| 4643 | switch (OriginalIID) { |
| 4644 | case Intrinsic::vector_reduce_or: |
| 4645 | if (!IsValidOrUmaxCmp()) |
| 4646 | return false; |
| 4647 | AlternativeIID = Intrinsic::vector_reduce_umax; |
| 4648 | break; |
| 4649 | case Intrinsic::vector_reduce_umax: |
| 4650 | if (!IsValidOrUmaxCmp()) |
| 4651 | return false; |
| 4652 | AlternativeIID = Intrinsic::vector_reduce_or; |
| 4653 | break; |
| 4654 | case Intrinsic::vector_reduce_and: |
| 4655 | if (!IsValidAndUminCmp()) |
| 4656 | return false; |
| 4657 | AlternativeIID = Intrinsic::vector_reduce_umin; |
| 4658 | break; |
| 4659 | case Intrinsic::vector_reduce_umin: |
| 4660 | if (!IsValidAndUminCmp()) |
| 4661 | return false; |
| 4662 | AlternativeIID = Intrinsic::vector_reduce_and; |
| 4663 | break; |
| 4664 | default: |
| 4665 | return false; |
| 4666 | } |
| 4667 | |
| 4668 | Value *X = II->getArgOperand(i: 0); |
| 4669 | auto *VecTy = dyn_cast<FixedVectorType>(Val: X->getType()); |
| 4670 | if (!VecTy) |
| 4671 | return false; |
| 4672 | |
| 4673 | const auto GetReductionCost = [&](Intrinsic::ID IID) -> InstructionCost { |
| 4674 | unsigned ReductionOpc = getArithmeticReductionInstruction(RdxID: IID); |
| 4675 | if (ReductionOpc != Instruction::ICmp) |
| 4676 | return TTI.getArithmeticReductionCost(Opcode: ReductionOpc, Ty: VecTy, FMF: std::nullopt, |
| 4677 | CostKind); |
| 4678 | return TTI.getMinMaxReductionCost(IID: getMinMaxReductionIntrinsicOp(RdxID: IID), Ty: VecTy, |
| 4679 | FMF: FastMathFlags(), CostKind); |
| 4680 | }; |
| 4681 | |
| 4682 | InstructionCost OrigCost = GetReductionCost(OriginalIID); |
| 4683 | InstructionCost AltCost = GetReductionCost(AlternativeIID); |
| 4684 | |
| 4685 | LLVM_DEBUG(dbgs() << "Found equivalent reduction cmp: " << I |
| 4686 | << "\n OrigCost: " << OrigCost |
| 4687 | << " vs AltCost: " << AltCost << "\n" ); |
| 4688 | |
| 4689 | if (AltCost >= OrigCost) |
| 4690 | return false; |
| 4691 | |
| 4692 | Builder.SetInsertPoint(&I); |
| 4693 | Type *ScalarTy = VecTy->getScalarType(); |
| 4694 | Value *NewReduce = Builder.CreateIntrinsic(RetTy: ScalarTy, ID: AlternativeIID, Args: {X}); |
| 4695 | Value *NewCmp = |
| 4696 | Builder.CreateICmp(P: Pred, LHS: NewReduce, RHS: ConstantInt::get(Ty: ScalarTy, V: *CmpVal)); |
| 4697 | |
| 4698 | replaceValue(Old&: I, New&: *NewCmp); |
| 4699 | return true; |
| 4700 | } |
| 4701 | |
| 4702 | /// Returns true if this ShuffleVectorInst eventually feeds into a |
| 4703 | /// vector reduction intrinsic (e.g., vector_reduce_add) by only following |
| 4704 | /// chains of shuffles and binary operators (in any combination/order). |
| 4705 | /// The search does not go deeper than the given Depth. |
| 4706 | static bool feedsIntoVectorReduction(ShuffleVectorInst *SVI) { |
| 4707 | constexpr unsigned MaxVisited = 32; |
| 4708 | SmallPtrSet<Instruction *, 8> Visited; |
| 4709 | SmallVector<Instruction *, 4> WorkList; |
| 4710 | bool FoundReduction = false; |
| 4711 | |
| 4712 | WorkList.push_back(Elt: SVI); |
| 4713 | while (!WorkList.empty()) { |
| 4714 | Instruction *I = WorkList.pop_back_val(); |
| 4715 | for (User *U : I->users()) { |
| 4716 | auto *UI = cast<Instruction>(Val: U); |
| 4717 | if (!UI || !Visited.insert(Ptr: UI).second) |
| 4718 | continue; |
| 4719 | if (Visited.size() > MaxVisited) |
| 4720 | return false; |
| 4721 | if (auto *II = dyn_cast<IntrinsicInst>(Val: UI)) { |
| 4722 | // More than one reduction reached |
| 4723 | if (FoundReduction) |
| 4724 | return false; |
| 4725 | switch (II->getIntrinsicID()) { |
| 4726 | case Intrinsic::vector_reduce_add: |
| 4727 | case Intrinsic::vector_reduce_mul: |
| 4728 | case Intrinsic::vector_reduce_and: |
| 4729 | case Intrinsic::vector_reduce_or: |
| 4730 | case Intrinsic::vector_reduce_xor: |
| 4731 | case Intrinsic::vector_reduce_smin: |
| 4732 | case Intrinsic::vector_reduce_smax: |
| 4733 | case Intrinsic::vector_reduce_umin: |
| 4734 | case Intrinsic::vector_reduce_umax: |
| 4735 | FoundReduction = true; |
| 4736 | continue; |
| 4737 | default: |
| 4738 | return false; |
| 4739 | } |
| 4740 | } |
| 4741 | |
| 4742 | if (!isa<BinaryOperator>(Val: UI) && !isa<ShuffleVectorInst>(Val: UI)) |
| 4743 | return false; |
| 4744 | |
| 4745 | WorkList.emplace_back(Args&: UI); |
| 4746 | } |
| 4747 | } |
| 4748 | return FoundReduction; |
| 4749 | } |
| 4750 | |
| 4751 | /// This method looks for groups of shuffles acting on binops, of the form: |
| 4752 | /// %x = shuffle ... |
| 4753 | /// %y = shuffle ... |
| 4754 | /// %a = binop %x, %y |
| 4755 | /// %b = binop %x, %y |
| 4756 | /// shuffle %a, %b, selectmask |
| 4757 | /// We may, especially if the shuffle is wider than legal, be able to convert |
| 4758 | /// the shuffle to a form where only parts of a and b need to be computed. On |
| 4759 | /// architectures with no obvious "select" shuffle, this can reduce the total |
| 4760 | /// number of operations if the target reports them as cheaper. |
| 4761 | bool VectorCombine::foldSelectShuffle(Instruction &I, bool FromReduction) { |
| 4762 | auto *SVI = cast<ShuffleVectorInst>(Val: &I); |
| 4763 | auto *VT = cast<FixedVectorType>(Val: I.getType()); |
| 4764 | auto *Op0 = dyn_cast<Instruction>(Val: SVI->getOperand(i_nocapture: 0)); |
| 4765 | auto *Op1 = dyn_cast<Instruction>(Val: SVI->getOperand(i_nocapture: 1)); |
| 4766 | if (!Op0 || !Op1 || Op0 == Op1 || !Op0->isBinaryOp() || !Op1->isBinaryOp() || |
| 4767 | VT != Op0->getType()) |
| 4768 | return false; |
| 4769 | |
| 4770 | auto *SVI0A = dyn_cast<Instruction>(Val: Op0->getOperand(i: 0)); |
| 4771 | auto *SVI0B = dyn_cast<Instruction>(Val: Op0->getOperand(i: 1)); |
| 4772 | auto *SVI1A = dyn_cast<Instruction>(Val: Op1->getOperand(i: 0)); |
| 4773 | auto *SVI1B = dyn_cast<Instruction>(Val: Op1->getOperand(i: 1)); |
| 4774 | SmallPtrSet<Instruction *, 4> InputShuffles({SVI0A, SVI0B, SVI1A, SVI1B}); |
| 4775 | auto checkSVNonOpUses = [&](Instruction *I) { |
| 4776 | if (!I || I->getOperand(i: 0)->getType() != VT) |
| 4777 | return true; |
| 4778 | return any_of(Range: I->users(), P: [&](User *U) { |
| 4779 | return U != Op0 && U != Op1 && |
| 4780 | !(isa<ShuffleVectorInst>(Val: U) && |
| 4781 | (InputShuffles.contains(Ptr: cast<Instruction>(Val: U)) || |
| 4782 | isInstructionTriviallyDead(I: cast<Instruction>(Val: U)))); |
| 4783 | }); |
| 4784 | }; |
| 4785 | if (checkSVNonOpUses(SVI0A) || checkSVNonOpUses(SVI0B) || |
| 4786 | checkSVNonOpUses(SVI1A) || checkSVNonOpUses(SVI1B)) |
| 4787 | return false; |
| 4788 | |
| 4789 | // Collect all the uses that are shuffles that we can transform together. We |
| 4790 | // may not have a single shuffle, but a group that can all be transformed |
| 4791 | // together profitably. |
| 4792 | SmallVector<ShuffleVectorInst *> Shuffles; |
| 4793 | auto collectShuffles = [&](Instruction *I) { |
| 4794 | for (auto *U : I->users()) { |
| 4795 | auto *SV = dyn_cast<ShuffleVectorInst>(Val: U); |
| 4796 | if (!SV || SV->getType() != VT) |
| 4797 | return false; |
| 4798 | if ((SV->getOperand(i_nocapture: 0) != Op0 && SV->getOperand(i_nocapture: 0) != Op1) || |
| 4799 | (SV->getOperand(i_nocapture: 1) != Op0 && SV->getOperand(i_nocapture: 1) != Op1)) |
| 4800 | return false; |
| 4801 | if (!llvm::is_contained(Range&: Shuffles, Element: SV)) |
| 4802 | Shuffles.push_back(Elt: SV); |
| 4803 | } |
| 4804 | return true; |
| 4805 | }; |
| 4806 | if (!collectShuffles(Op0) || !collectShuffles(Op1)) |
| 4807 | return false; |
| 4808 | // From a reduction, we need to be processing a single shuffle, otherwise the |
| 4809 | // other uses will not be lane-invariant. |
| 4810 | if (FromReduction && Shuffles.size() > 1) |
| 4811 | return false; |
| 4812 | |
| 4813 | // Add any shuffle uses for the shuffles we have found, to include them in our |
| 4814 | // cost calculations. |
| 4815 | if (!FromReduction) { |
| 4816 | for (ShuffleVectorInst *SV : Shuffles) { |
| 4817 | for (auto *U : SV->users()) { |
| 4818 | ShuffleVectorInst *SSV = dyn_cast<ShuffleVectorInst>(Val: U); |
| 4819 | if (SSV && isa<UndefValue>(Val: SSV->getOperand(i_nocapture: 1)) && SSV->getType() == VT) |
| 4820 | Shuffles.push_back(Elt: SSV); |
| 4821 | } |
| 4822 | } |
| 4823 | } |
| 4824 | |
| 4825 | // For each of the output shuffles, we try to sort all the first vector |
| 4826 | // elements to the beginning, followed by the second array elements at the |
| 4827 | // end. If the binops are legalized to smaller vectors, this may reduce total |
| 4828 | // number of binops. We compute the ReconstructMask mask needed to convert |
| 4829 | // back to the original lane order. |
| 4830 | SmallVector<std::pair<int, int>> V1, V2; |
| 4831 | SmallVector<SmallVector<int>> OrigReconstructMasks; |
| 4832 | int MaxV1Elt = 0, MaxV2Elt = 0; |
| 4833 | unsigned NumElts = VT->getNumElements(); |
| 4834 | for (ShuffleVectorInst *SVN : Shuffles) { |
| 4835 | SmallVector<int> Mask; |
| 4836 | SVN->getShuffleMask(Result&: Mask); |
| 4837 | |
| 4838 | // Check the operands are the same as the original, or reversed (in which |
| 4839 | // case we need to commute the mask). |
| 4840 | Value *SVOp0 = SVN->getOperand(i_nocapture: 0); |
| 4841 | Value *SVOp1 = SVN->getOperand(i_nocapture: 1); |
| 4842 | if (isa<UndefValue>(Val: SVOp1)) { |
| 4843 | auto *SSV = cast<ShuffleVectorInst>(Val: SVOp0); |
| 4844 | SVOp0 = SSV->getOperand(i_nocapture: 0); |
| 4845 | SVOp1 = SSV->getOperand(i_nocapture: 1); |
| 4846 | for (int &Elem : Mask) { |
| 4847 | if (Elem >= static_cast<int>(SSV->getShuffleMask().size())) |
| 4848 | return false; |
| 4849 | Elem = Elem < 0 ? Elem : SSV->getMaskValue(Elt: Elem); |
| 4850 | } |
| 4851 | } |
| 4852 | if (SVOp0 == Op1 && SVOp1 == Op0) { |
| 4853 | std::swap(a&: SVOp0, b&: SVOp1); |
| 4854 | ShuffleVectorInst::commuteShuffleMask(Mask, InVecNumElts: NumElts); |
| 4855 | } |
| 4856 | if (SVOp0 != Op0 || SVOp1 != Op1) |
| 4857 | return false; |
| 4858 | |
| 4859 | // Calculate the reconstruction mask for this shuffle, as the mask needed to |
| 4860 | // take the packed values from Op0/Op1 and reconstructing to the original |
| 4861 | // order. |
| 4862 | SmallVector<int> ReconstructMask; |
| 4863 | for (unsigned I = 0; I < Mask.size(); I++) { |
| 4864 | if (Mask[I] < 0) { |
| 4865 | ReconstructMask.push_back(Elt: -1); |
| 4866 | } else if (Mask[I] < static_cast<int>(NumElts)) { |
| 4867 | MaxV1Elt = std::max(a: MaxV1Elt, b: Mask[I]); |
| 4868 | auto It = find_if(Range&: V1, P: [&](const std::pair<int, int> &A) { |
| 4869 | return Mask[I] == A.first; |
| 4870 | }); |
| 4871 | if (It != V1.end()) |
| 4872 | ReconstructMask.push_back(Elt: It - V1.begin()); |
| 4873 | else { |
| 4874 | ReconstructMask.push_back(Elt: V1.size()); |
| 4875 | V1.emplace_back(Args&: Mask[I], Args: V1.size()); |
| 4876 | } |
| 4877 | } else { |
| 4878 | MaxV2Elt = std::max<int>(a: MaxV2Elt, b: Mask[I] - NumElts); |
| 4879 | auto It = find_if(Range&: V2, P: [&](const std::pair<int, int> &A) { |
| 4880 | return Mask[I] - static_cast<int>(NumElts) == A.first; |
| 4881 | }); |
| 4882 | if (It != V2.end()) |
| 4883 | ReconstructMask.push_back(Elt: NumElts + It - V2.begin()); |
| 4884 | else { |
| 4885 | ReconstructMask.push_back(Elt: NumElts + V2.size()); |
| 4886 | V2.emplace_back(Args: Mask[I] - NumElts, Args: NumElts + V2.size()); |
| 4887 | } |
| 4888 | } |
| 4889 | } |
| 4890 | |
| 4891 | // For reductions, we know that the lane ordering out doesn't alter the |
| 4892 | // result. In-order can help simplify the shuffle away. |
| 4893 | if (FromReduction) |
| 4894 | sort(C&: ReconstructMask); |
| 4895 | OrigReconstructMasks.push_back(Elt: std::move(ReconstructMask)); |
| 4896 | } |
| 4897 | |
| 4898 | // If the Maximum element used from V1 and V2 are not larger than the new |
| 4899 | // vectors, the vectors are already packes and performing the optimization |
| 4900 | // again will likely not help any further. This also prevents us from getting |
| 4901 | // stuck in a cycle in case the costs do not also rule it out. |
| 4902 | if (V1.empty() || V2.empty() || |
| 4903 | (MaxV1Elt == static_cast<int>(V1.size()) - 1 && |
| 4904 | MaxV2Elt == static_cast<int>(V2.size()) - 1)) |
| 4905 | return false; |
| 4906 | |
| 4907 | // GetBaseMaskValue takes one of the inputs, which may either be a shuffle, a |
| 4908 | // shuffle of another shuffle, or not a shuffle (that is treated like a |
| 4909 | // identity shuffle). |
| 4910 | auto GetBaseMaskValue = [&](Instruction *I, int M) { |
| 4911 | auto *SV = dyn_cast<ShuffleVectorInst>(Val: I); |
| 4912 | if (!SV) |
| 4913 | return M; |
| 4914 | if (isa<UndefValue>(Val: SV->getOperand(i_nocapture: 1))) |
| 4915 | if (auto *SSV = dyn_cast<ShuffleVectorInst>(Val: SV->getOperand(i_nocapture: 0))) |
| 4916 | if (InputShuffles.contains(Ptr: SSV)) |
| 4917 | return SSV->getMaskValue(Elt: SV->getMaskValue(Elt: M)); |
| 4918 | return SV->getMaskValue(Elt: M); |
| 4919 | }; |
| 4920 | |
| 4921 | // Attempt to sort the inputs my ascending mask values to make simpler input |
| 4922 | // shuffles and push complex shuffles down to the uses. We sort on the first |
| 4923 | // of the two input shuffle orders, to try and get at least one input into a |
| 4924 | // nice order. |
| 4925 | auto SortBase = [&](Instruction *A, std::pair<int, int> X, |
| 4926 | std::pair<int, int> Y) { |
| 4927 | int MXA = GetBaseMaskValue(A, X.first); |
| 4928 | int MYA = GetBaseMaskValue(A, Y.first); |
| 4929 | return MXA < MYA; |
| 4930 | }; |
| 4931 | stable_sort(Range&: V1, C: [&](std::pair<int, int> A, std::pair<int, int> B) { |
| 4932 | return SortBase(SVI0A, A, B); |
| 4933 | }); |
| 4934 | stable_sort(Range&: V2, C: [&](std::pair<int, int> A, std::pair<int, int> B) { |
| 4935 | return SortBase(SVI1A, A, B); |
| 4936 | }); |
| 4937 | // Calculate our ReconstructMasks from the OrigReconstructMasks and the |
| 4938 | // modified order of the input shuffles. |
| 4939 | SmallVector<SmallVector<int>> ReconstructMasks; |
| 4940 | for (const auto &Mask : OrigReconstructMasks) { |
| 4941 | SmallVector<int> ReconstructMask; |
| 4942 | for (int M : Mask) { |
| 4943 | auto FindIndex = [](const SmallVector<std::pair<int, int>> &V, int M) { |
| 4944 | auto It = find_if(Range: V, P: [M](auto A) { return A.second == M; }); |
| 4945 | assert(It != V.end() && "Expected all entries in Mask" ); |
| 4946 | return std::distance(first: V.begin(), last: It); |
| 4947 | }; |
| 4948 | if (M < 0) |
| 4949 | ReconstructMask.push_back(Elt: -1); |
| 4950 | else if (M < static_cast<int>(NumElts)) { |
| 4951 | ReconstructMask.push_back(Elt: FindIndex(V1, M)); |
| 4952 | } else { |
| 4953 | ReconstructMask.push_back(Elt: NumElts + FindIndex(V2, M)); |
| 4954 | } |
| 4955 | } |
| 4956 | ReconstructMasks.push_back(Elt: std::move(ReconstructMask)); |
| 4957 | } |
| 4958 | |
| 4959 | // Calculate the masks needed for the new input shuffles, which get padded |
| 4960 | // with undef |
| 4961 | SmallVector<int> V1A, V1B, V2A, V2B; |
| 4962 | for (unsigned I = 0; I < V1.size(); I++) { |
| 4963 | V1A.push_back(Elt: GetBaseMaskValue(SVI0A, V1[I].first)); |
| 4964 | V1B.push_back(Elt: GetBaseMaskValue(SVI0B, V1[I].first)); |
| 4965 | } |
| 4966 | for (unsigned I = 0; I < V2.size(); I++) { |
| 4967 | V2A.push_back(Elt: GetBaseMaskValue(SVI1A, V2[I].first)); |
| 4968 | V2B.push_back(Elt: GetBaseMaskValue(SVI1B, V2[I].first)); |
| 4969 | } |
| 4970 | while (V1A.size() < NumElts) { |
| 4971 | V1A.push_back(Elt: PoisonMaskElem); |
| 4972 | V1B.push_back(Elt: PoisonMaskElem); |
| 4973 | } |
| 4974 | while (V2A.size() < NumElts) { |
| 4975 | V2A.push_back(Elt: PoisonMaskElem); |
| 4976 | V2B.push_back(Elt: PoisonMaskElem); |
| 4977 | } |
| 4978 | |
| 4979 | auto AddShuffleCost = [&](InstructionCost C, Instruction *I) { |
| 4980 | auto *SV = dyn_cast<ShuffleVectorInst>(Val: I); |
| 4981 | if (!SV) |
| 4982 | return C; |
| 4983 | return C + TTI.getShuffleCost(Kind: isa<UndefValue>(Val: SV->getOperand(i_nocapture: 1)) |
| 4984 | ? TTI::SK_PermuteSingleSrc |
| 4985 | : TTI::SK_PermuteTwoSrc, |
| 4986 | DstTy: VT, SrcTy: VT, Mask: SV->getShuffleMask(), CostKind); |
| 4987 | }; |
| 4988 | auto AddShuffleMaskCost = [&](InstructionCost C, ArrayRef<int> Mask) { |
| 4989 | return C + |
| 4990 | TTI.getShuffleCost(Kind: TTI::SK_PermuteTwoSrc, DstTy: VT, SrcTy: VT, Mask, CostKind); |
| 4991 | }; |
| 4992 | |
| 4993 | unsigned ElementSize = VT->getElementType()->getPrimitiveSizeInBits(); |
| 4994 | unsigned MaxVectorSize = |
| 4995 | TTI.getRegisterBitWidth(K: TargetTransformInfo::RGK_FixedWidthVector); |
| 4996 | unsigned MaxElementsInVector = MaxVectorSize / ElementSize; |
| 4997 | if (MaxElementsInVector == 0) |
| 4998 | return false; |
| 4999 | // When there are multiple shufflevector operations on the same input, |
| 5000 | // especially when the vector length is larger than the register size, |
| 5001 | // identical shuffle patterns may occur across different groups of elements. |
| 5002 | // To avoid overestimating the cost by counting these repeated shuffles more |
| 5003 | // than once, we only account for unique shuffle patterns. This adjustment |
| 5004 | // prevents inflated costs in the cost model for wide vectors split into |
| 5005 | // several register-sized groups. |
| 5006 | std::set<SmallVector<int, 4>> UniqueShuffles; |
| 5007 | auto AddShuffleMaskAdjustedCost = [&](InstructionCost C, ArrayRef<int> Mask) { |
| 5008 | // Compute the cost for performing the shuffle over the full vector. |
| 5009 | auto ShuffleCost = |
| 5010 | TTI.getShuffleCost(Kind: TTI::SK_PermuteTwoSrc, DstTy: VT, SrcTy: VT, Mask, CostKind); |
| 5011 | unsigned NumFullVectors = Mask.size() / MaxElementsInVector; |
| 5012 | if (NumFullVectors < 2) |
| 5013 | return C + ShuffleCost; |
| 5014 | SmallVector<int, 4> SubShuffle(MaxElementsInVector); |
| 5015 | unsigned NumUniqueGroups = 0; |
| 5016 | unsigned NumGroups = Mask.size() / MaxElementsInVector; |
| 5017 | // For each group of MaxElementsInVector contiguous elements, |
| 5018 | // collect their shuffle pattern and insert into the set of unique patterns. |
| 5019 | for (unsigned I = 0; I < NumFullVectors; ++I) { |
| 5020 | for (unsigned J = 0; J < MaxElementsInVector; ++J) |
| 5021 | SubShuffle[J] = Mask[MaxElementsInVector * I + J]; |
| 5022 | if (UniqueShuffles.insert(x: SubShuffle).second) |
| 5023 | NumUniqueGroups += 1; |
| 5024 | } |
| 5025 | return C + ShuffleCost * NumUniqueGroups / NumGroups; |
| 5026 | }; |
| 5027 | auto AddShuffleAdjustedCost = [&](InstructionCost C, Instruction *I) { |
| 5028 | auto *SV = dyn_cast<ShuffleVectorInst>(Val: I); |
| 5029 | if (!SV) |
| 5030 | return C; |
| 5031 | SmallVector<int, 16> Mask; |
| 5032 | SV->getShuffleMask(Result&: Mask); |
| 5033 | return AddShuffleMaskAdjustedCost(C, Mask); |
| 5034 | }; |
| 5035 | // Check that input consists of ShuffleVectors applied to the same input |
| 5036 | auto AllShufflesHaveSameOperands = |
| 5037 | [](SmallPtrSetImpl<Instruction *> &InputShuffles) { |
| 5038 | if (InputShuffles.size() < 2) |
| 5039 | return false; |
| 5040 | ShuffleVectorInst *FirstSV = |
| 5041 | dyn_cast<ShuffleVectorInst>(Val: *InputShuffles.begin()); |
| 5042 | if (!FirstSV) |
| 5043 | return false; |
| 5044 | |
| 5045 | Value *In0 = FirstSV->getOperand(i_nocapture: 0), *In1 = FirstSV->getOperand(i_nocapture: 1); |
| 5046 | return std::all_of( |
| 5047 | first: std::next(x: InputShuffles.begin()), last: InputShuffles.end(), |
| 5048 | pred: [&](Instruction *I) { |
| 5049 | ShuffleVectorInst *SV = dyn_cast<ShuffleVectorInst>(Val: I); |
| 5050 | return SV && SV->getOperand(i_nocapture: 0) == In0 && SV->getOperand(i_nocapture: 1) == In1; |
| 5051 | }); |
| 5052 | }; |
| 5053 | |
| 5054 | // Get the costs of the shuffles + binops before and after with the new |
| 5055 | // shuffle masks. |
| 5056 | InstructionCost CostBefore = |
| 5057 | TTI.getArithmeticInstrCost(Opcode: Op0->getOpcode(), Ty: VT, CostKind) + |
| 5058 | TTI.getArithmeticInstrCost(Opcode: Op1->getOpcode(), Ty: VT, CostKind); |
| 5059 | CostBefore += std::accumulate(first: Shuffles.begin(), last: Shuffles.end(), |
| 5060 | init: InstructionCost(0), binary_op: AddShuffleCost); |
| 5061 | if (AllShufflesHaveSameOperands(InputShuffles)) { |
| 5062 | UniqueShuffles.clear(); |
| 5063 | CostBefore += std::accumulate(first: InputShuffles.begin(), last: InputShuffles.end(), |
| 5064 | init: InstructionCost(0), binary_op: AddShuffleAdjustedCost); |
| 5065 | } else { |
| 5066 | CostBefore += std::accumulate(first: InputShuffles.begin(), last: InputShuffles.end(), |
| 5067 | init: InstructionCost(0), binary_op: AddShuffleCost); |
| 5068 | } |
| 5069 | |
| 5070 | // The new binops will be unused for lanes past the used shuffle lengths. |
| 5071 | // These types attempt to get the correct cost for that from the target. |
| 5072 | FixedVectorType *Op0SmallVT = |
| 5073 | FixedVectorType::get(ElementType: VT->getScalarType(), NumElts: V1.size()); |
| 5074 | FixedVectorType *Op1SmallVT = |
| 5075 | FixedVectorType::get(ElementType: VT->getScalarType(), NumElts: V2.size()); |
| 5076 | InstructionCost CostAfter = |
| 5077 | TTI.getArithmeticInstrCost(Opcode: Op0->getOpcode(), Ty: Op0SmallVT, CostKind) + |
| 5078 | TTI.getArithmeticInstrCost(Opcode: Op1->getOpcode(), Ty: Op1SmallVT, CostKind); |
| 5079 | UniqueShuffles.clear(); |
| 5080 | CostAfter += std::accumulate(first: ReconstructMasks.begin(), last: ReconstructMasks.end(), |
| 5081 | init: InstructionCost(0), binary_op: AddShuffleMaskAdjustedCost); |
| 5082 | std::set<SmallVector<int>> OutputShuffleMasks({V1A, V1B, V2A, V2B}); |
| 5083 | CostAfter += |
| 5084 | std::accumulate(first: OutputShuffleMasks.begin(), last: OutputShuffleMasks.end(), |
| 5085 | init: InstructionCost(0), binary_op: AddShuffleMaskCost); |
| 5086 | |
| 5087 | LLVM_DEBUG(dbgs() << "Found a binop select shuffle pattern: " << I << "\n" ); |
| 5088 | LLVM_DEBUG(dbgs() << " CostBefore: " << CostBefore |
| 5089 | << " vs CostAfter: " << CostAfter << "\n" ); |
| 5090 | if (CostBefore < CostAfter || |
| 5091 | (CostBefore == CostAfter && !feedsIntoVectorReduction(SVI))) |
| 5092 | return false; |
| 5093 | |
| 5094 | // The cost model has passed, create the new instructions. |
| 5095 | auto GetShuffleOperand = [&](Instruction *I, unsigned Op) -> Value * { |
| 5096 | auto *SV = dyn_cast<ShuffleVectorInst>(Val: I); |
| 5097 | if (!SV) |
| 5098 | return I; |
| 5099 | if (isa<UndefValue>(Val: SV->getOperand(i_nocapture: 1))) |
| 5100 | if (auto *SSV = dyn_cast<ShuffleVectorInst>(Val: SV->getOperand(i_nocapture: 0))) |
| 5101 | if (InputShuffles.contains(Ptr: SSV)) |
| 5102 | return SSV->getOperand(i_nocapture: Op); |
| 5103 | return SV->getOperand(i_nocapture: Op); |
| 5104 | }; |
| 5105 | Builder.SetInsertPoint(*SVI0A->getInsertionPointAfterDef()); |
| 5106 | Value *NSV0A = Builder.CreateShuffleVector(V1: GetShuffleOperand(SVI0A, 0), |
| 5107 | V2: GetShuffleOperand(SVI0A, 1), Mask: V1A); |
| 5108 | Builder.SetInsertPoint(*SVI0B->getInsertionPointAfterDef()); |
| 5109 | Value *NSV0B = Builder.CreateShuffleVector(V1: GetShuffleOperand(SVI0B, 0), |
| 5110 | V2: GetShuffleOperand(SVI0B, 1), Mask: V1B); |
| 5111 | Builder.SetInsertPoint(*SVI1A->getInsertionPointAfterDef()); |
| 5112 | Value *NSV1A = Builder.CreateShuffleVector(V1: GetShuffleOperand(SVI1A, 0), |
| 5113 | V2: GetShuffleOperand(SVI1A, 1), Mask: V2A); |
| 5114 | Builder.SetInsertPoint(*SVI1B->getInsertionPointAfterDef()); |
| 5115 | Value *NSV1B = Builder.CreateShuffleVector(V1: GetShuffleOperand(SVI1B, 0), |
| 5116 | V2: GetShuffleOperand(SVI1B, 1), Mask: V2B); |
| 5117 | Builder.SetInsertPoint(Op0); |
| 5118 | Value *NOp0 = Builder.CreateBinOp(Opc: (Instruction::BinaryOps)Op0->getOpcode(), |
| 5119 | LHS: NSV0A, RHS: NSV0B); |
| 5120 | if (auto *I = dyn_cast<Instruction>(Val: NOp0)) |
| 5121 | I->copyIRFlags(V: Op0, IncludeWrapFlags: true); |
| 5122 | Builder.SetInsertPoint(Op1); |
| 5123 | Value *NOp1 = Builder.CreateBinOp(Opc: (Instruction::BinaryOps)Op1->getOpcode(), |
| 5124 | LHS: NSV1A, RHS: NSV1B); |
| 5125 | if (auto *I = dyn_cast<Instruction>(Val: NOp1)) |
| 5126 | I->copyIRFlags(V: Op1, IncludeWrapFlags: true); |
| 5127 | |
| 5128 | for (int S = 0, E = ReconstructMasks.size(); S != E; S++) { |
| 5129 | Builder.SetInsertPoint(Shuffles[S]); |
| 5130 | Value *NSV = Builder.CreateShuffleVector(V1: NOp0, V2: NOp1, Mask: ReconstructMasks[S]); |
| 5131 | replaceValue(Old&: *Shuffles[S], New&: *NSV, Erase: false); |
| 5132 | } |
| 5133 | |
| 5134 | Worklist.pushValue(V: NSV0A); |
| 5135 | Worklist.pushValue(V: NSV0B); |
| 5136 | Worklist.pushValue(V: NSV1A); |
| 5137 | Worklist.pushValue(V: NSV1B); |
| 5138 | return true; |
| 5139 | } |
| 5140 | |
| 5141 | /// Check if instruction depends on ZExt and this ZExt can be moved after the |
| 5142 | /// instruction. Move ZExt if it is profitable. For example: |
| 5143 | /// logic(zext(x),y) -> zext(logic(x,trunc(y))) |
| 5144 | /// lshr((zext(x),y) -> zext(lshr(x,trunc(y))) |
| 5145 | /// Cost model calculations takes into account if zext(x) has other users and |
| 5146 | /// whether it can be propagated through them too. |
| 5147 | bool VectorCombine::shrinkType(Instruction &I) { |
| 5148 | Value *ZExted, *OtherOperand; |
| 5149 | if (!match(V: &I, P: m_c_BitwiseLogic(L: m_ZExt(Op: m_Value(V&: ZExted)), |
| 5150 | R: m_Value(V&: OtherOperand))) && |
| 5151 | !match(V: &I, P: m_LShr(L: m_ZExt(Op: m_Value(V&: ZExted)), R: m_Value(V&: OtherOperand)))) |
| 5152 | return false; |
| 5153 | |
| 5154 | Value *ZExtOperand = I.getOperand(i: I.getOperand(i: 0) == OtherOperand ? 1 : 0); |
| 5155 | |
| 5156 | auto *BigTy = cast<FixedVectorType>(Val: I.getType()); |
| 5157 | auto *SmallTy = cast<FixedVectorType>(Val: ZExted->getType()); |
| 5158 | unsigned BW = SmallTy->getElementType()->getPrimitiveSizeInBits(); |
| 5159 | |
| 5160 | if (I.getOpcode() == Instruction::LShr) { |
| 5161 | // Check that the shift amount is less than the number of bits in the |
| 5162 | // smaller type. Otherwise, the smaller lshr will return a poison value. |
| 5163 | KnownBits ShAmtKB = computeKnownBits(V: I.getOperand(i: 1), DL: *DL); |
| 5164 | if (ShAmtKB.getMaxValue().uge(RHS: BW)) |
| 5165 | return false; |
| 5166 | } else { |
| 5167 | // Check that the expression overall uses at most the same number of bits as |
| 5168 | // ZExted |
| 5169 | KnownBits KB = computeKnownBits(V: &I, DL: *DL); |
| 5170 | if (KB.countMaxActiveBits() > BW) |
| 5171 | return false; |
| 5172 | } |
| 5173 | |
| 5174 | // Calculate costs of leaving current IR as it is and moving ZExt operation |
| 5175 | // later, along with adding truncates if needed |
| 5176 | InstructionCost ZExtCost = TTI.getCastInstrCost( |
| 5177 | Opcode: Instruction::ZExt, Dst: BigTy, Src: SmallTy, |
| 5178 | CCH: TargetTransformInfo::CastContextHint::None, CostKind); |
| 5179 | InstructionCost CurrentCost = ZExtCost; |
| 5180 | InstructionCost ShrinkCost = 0; |
| 5181 | |
| 5182 | // Calculate total cost and check that we can propagate through all ZExt users |
| 5183 | for (User *U : ZExtOperand->users()) { |
| 5184 | auto *UI = cast<Instruction>(Val: U); |
| 5185 | if (UI == &I) { |
| 5186 | CurrentCost += |
| 5187 | TTI.getArithmeticInstrCost(Opcode: UI->getOpcode(), Ty: BigTy, CostKind); |
| 5188 | ShrinkCost += |
| 5189 | TTI.getArithmeticInstrCost(Opcode: UI->getOpcode(), Ty: SmallTy, CostKind); |
| 5190 | ShrinkCost += ZExtCost; |
| 5191 | continue; |
| 5192 | } |
| 5193 | |
| 5194 | if (!Instruction::isBinaryOp(Opcode: UI->getOpcode())) |
| 5195 | return false; |
| 5196 | |
| 5197 | // Check if we can propagate ZExt through its other users |
| 5198 | KnownBits KB = computeKnownBits(V: UI, DL: *DL); |
| 5199 | if (KB.countMaxActiveBits() > BW) |
| 5200 | return false; |
| 5201 | |
| 5202 | CurrentCost += TTI.getArithmeticInstrCost(Opcode: UI->getOpcode(), Ty: BigTy, CostKind); |
| 5203 | ShrinkCost += |
| 5204 | TTI.getArithmeticInstrCost(Opcode: UI->getOpcode(), Ty: SmallTy, CostKind); |
| 5205 | ShrinkCost += ZExtCost; |
| 5206 | } |
| 5207 | |
| 5208 | // If the other instruction operand is not a constant, we'll need to |
| 5209 | // generate a truncate instruction. So we have to adjust cost |
| 5210 | if (!isa<Constant>(Val: OtherOperand)) |
| 5211 | ShrinkCost += TTI.getCastInstrCost( |
| 5212 | Opcode: Instruction::Trunc, Dst: SmallTy, Src: BigTy, |
| 5213 | CCH: TargetTransformInfo::CastContextHint::None, CostKind); |
| 5214 | |
| 5215 | // If the cost of shrinking types and leaving the IR is the same, we'll lean |
| 5216 | // towards modifying the IR because shrinking opens opportunities for other |
| 5217 | // shrinking optimisations. |
| 5218 | if (ShrinkCost > CurrentCost) |
| 5219 | return false; |
| 5220 | |
| 5221 | Builder.SetInsertPoint(&I); |
| 5222 | Value *Op0 = ZExted; |
| 5223 | Value *Op1 = Builder.CreateTrunc(V: OtherOperand, DestTy: SmallTy); |
| 5224 | // Keep the order of operands the same |
| 5225 | if (I.getOperand(i: 0) == OtherOperand) |
| 5226 | std::swap(a&: Op0, b&: Op1); |
| 5227 | Value *NewBinOp = |
| 5228 | Builder.CreateBinOp(Opc: (Instruction::BinaryOps)I.getOpcode(), LHS: Op0, RHS: Op1); |
| 5229 | cast<Instruction>(Val: NewBinOp)->copyIRFlags(V: &I); |
| 5230 | cast<Instruction>(Val: NewBinOp)->copyMetadata(SrcInst: I); |
| 5231 | Value *NewZExtr = Builder.CreateZExt(V: NewBinOp, DestTy: BigTy); |
| 5232 | replaceValue(Old&: I, New&: *NewZExtr); |
| 5233 | return true; |
| 5234 | } |
| 5235 | |
| 5236 | /// insert (DstVec, (extract SrcVec, ExtIdx), InsIdx) --> |
| 5237 | /// shuffle (DstVec, SrcVec, Mask) |
| 5238 | bool VectorCombine::foldInsExtVectorToShuffle(Instruction &I) { |
| 5239 | Value *DstVec, *SrcVec; |
| 5240 | uint64_t ExtIdx, InsIdx; |
| 5241 | if (!match(V: &I, |
| 5242 | P: m_InsertElt(Val: m_Value(V&: DstVec), |
| 5243 | Elt: m_ExtractElt(Val: m_Value(V&: SrcVec), Idx: m_ConstantInt(V&: ExtIdx)), |
| 5244 | Idx: m_ConstantInt(V&: InsIdx)))) |
| 5245 | return false; |
| 5246 | |
| 5247 | auto *DstVecTy = dyn_cast<FixedVectorType>(Val: I.getType()); |
| 5248 | auto *SrcVecTy = dyn_cast<FixedVectorType>(Val: SrcVec->getType()); |
| 5249 | // We can try combining vectors with different element sizes. |
| 5250 | if (!DstVecTy || !SrcVecTy || |
| 5251 | SrcVecTy->getElementType() != DstVecTy->getElementType()) |
| 5252 | return false; |
| 5253 | |
| 5254 | unsigned NumDstElts = DstVecTy->getNumElements(); |
| 5255 | unsigned NumSrcElts = SrcVecTy->getNumElements(); |
| 5256 | if (InsIdx >= NumDstElts || ExtIdx >= NumSrcElts || NumDstElts == 1) |
| 5257 | return false; |
| 5258 | |
| 5259 | // Insertion into poison is a cheaper single operand shuffle. |
| 5260 | TargetTransformInfo::ShuffleKind SK; |
| 5261 | SmallVector<int> Mask(NumDstElts, PoisonMaskElem); |
| 5262 | |
| 5263 | bool NeedExpOrNarrow = NumSrcElts != NumDstElts; |
| 5264 | bool NeedDstSrcSwap = isa<PoisonValue>(Val: DstVec) && !isa<UndefValue>(Val: SrcVec); |
| 5265 | if (NeedDstSrcSwap) { |
| 5266 | SK = TargetTransformInfo::SK_PermuteSingleSrc; |
| 5267 | Mask[InsIdx] = ExtIdx % NumDstElts; |
| 5268 | std::swap(a&: DstVec, b&: SrcVec); |
| 5269 | } else { |
| 5270 | SK = TargetTransformInfo::SK_PermuteTwoSrc; |
| 5271 | std::iota(first: Mask.begin(), last: Mask.end(), value: 0); |
| 5272 | Mask[InsIdx] = (ExtIdx % NumDstElts) + NumDstElts; |
| 5273 | } |
| 5274 | |
| 5275 | // Cost |
| 5276 | auto *Ins = cast<InsertElementInst>(Val: &I); |
| 5277 | auto *Ext = cast<ExtractElementInst>(Val: I.getOperand(i: 1)); |
| 5278 | InstructionCost InsCost = |
| 5279 | TTI.getVectorInstrCost(I: *Ins, Val: DstVecTy, CostKind, Index: InsIdx); |
| 5280 | InstructionCost ExtCost = |
| 5281 | TTI.getVectorInstrCost(I: *Ext, Val: DstVecTy, CostKind, Index: ExtIdx); |
| 5282 | InstructionCost OldCost = ExtCost + InsCost; |
| 5283 | |
| 5284 | InstructionCost NewCost = 0; |
| 5285 | SmallVector<int> ExtToVecMask; |
| 5286 | if (!NeedExpOrNarrow) { |
| 5287 | // Ignore 'free' identity insertion shuffle. |
| 5288 | // TODO: getShuffleCost should return TCC_Free for Identity shuffles. |
| 5289 | if (!ShuffleVectorInst::isIdentityMask(Mask, NumSrcElts)) |
| 5290 | NewCost += TTI.getShuffleCost(Kind: SK, DstTy: DstVecTy, SrcTy: DstVecTy, Mask, CostKind, Index: 0, |
| 5291 | SubTp: nullptr, Args: {DstVec, SrcVec}); |
| 5292 | } else { |
| 5293 | // When creating a length-changing-vector, always try to keep the relevant |
| 5294 | // element in an equivalent position, so that bulk shuffles are more likely |
| 5295 | // to be useful. |
| 5296 | ExtToVecMask.assign(NumElts: NumDstElts, Elt: PoisonMaskElem); |
| 5297 | ExtToVecMask[ExtIdx % NumDstElts] = ExtIdx; |
| 5298 | // Add cost for expanding or narrowing |
| 5299 | NewCost = TTI.getShuffleCost(Kind: TargetTransformInfo::SK_PermuteSingleSrc, |
| 5300 | DstTy: DstVecTy, SrcTy: SrcVecTy, Mask: ExtToVecMask, CostKind); |
| 5301 | NewCost += TTI.getShuffleCost(Kind: SK, DstTy: DstVecTy, SrcTy: DstVecTy, Mask, CostKind); |
| 5302 | } |
| 5303 | |
| 5304 | if (!Ext->hasOneUse()) |
| 5305 | NewCost += ExtCost; |
| 5306 | |
| 5307 | LLVM_DEBUG(dbgs() << "Found a insert/extract shuffle-like pair: " << I |
| 5308 | << "\n OldCost: " << OldCost << " vs NewCost: " << NewCost |
| 5309 | << "\n" ); |
| 5310 | |
| 5311 | if (OldCost < NewCost) |
| 5312 | return false; |
| 5313 | |
| 5314 | if (NeedExpOrNarrow) { |
| 5315 | if (!NeedDstSrcSwap) |
| 5316 | SrcVec = Builder.CreateShuffleVector(V: SrcVec, Mask: ExtToVecMask); |
| 5317 | else |
| 5318 | DstVec = Builder.CreateShuffleVector(V: DstVec, Mask: ExtToVecMask); |
| 5319 | } |
| 5320 | |
| 5321 | // Canonicalize undef param to RHS to help further folds. |
| 5322 | if (isa<UndefValue>(Val: DstVec) && !isa<UndefValue>(Val: SrcVec)) { |
| 5323 | ShuffleVectorInst::commuteShuffleMask(Mask, InVecNumElts: NumDstElts); |
| 5324 | std::swap(a&: DstVec, b&: SrcVec); |
| 5325 | } |
| 5326 | |
| 5327 | Value *Shuf = Builder.CreateShuffleVector(V1: DstVec, V2: SrcVec, Mask); |
| 5328 | replaceValue(Old&: I, New&: *Shuf); |
| 5329 | |
| 5330 | return true; |
| 5331 | } |
| 5332 | |
| 5333 | /// If we're interleaving 2 constant splats, for instance `<vscale x 8 x i32> |
| 5334 | /// <splat of 666>` and `<vscale x 8 x i32> <splat of 777>`, we can create a |
| 5335 | /// larger splat `<vscale x 8 x i64> <splat of ((777 << 32) | 666)>` first |
| 5336 | /// before casting it back into `<vscale x 16 x i32>`. |
| 5337 | bool VectorCombine::foldInterleaveIntrinsics(Instruction &I) { |
| 5338 | const APInt *SplatVal0, *SplatVal1; |
| 5339 | if (!match(V: &I, P: m_Intrinsic<Intrinsic::vector_interleave2>( |
| 5340 | Op0: m_APInt(Res&: SplatVal0), Op1: m_APInt(Res&: SplatVal1)))) |
| 5341 | return false; |
| 5342 | |
| 5343 | LLVM_DEBUG(dbgs() << "VC: Folding interleave2 with two splats: " << I |
| 5344 | << "\n" ); |
| 5345 | |
| 5346 | auto *VTy = |
| 5347 | cast<VectorType>(Val: cast<IntrinsicInst>(Val&: I).getArgOperand(i: 0)->getType()); |
| 5348 | auto *ExtVTy = VectorType::getExtendedElementVectorType(VTy); |
| 5349 | unsigned Width = VTy->getElementType()->getIntegerBitWidth(); |
| 5350 | |
| 5351 | // Just in case the cost of interleave2 intrinsic and bitcast are both |
| 5352 | // invalid, in which case we want to bail out, we use <= rather |
| 5353 | // than < here. Even they both have valid and equal costs, it's probably |
| 5354 | // not a good idea to emit a high-cost constant splat. |
| 5355 | if (TTI.getInstructionCost(U: &I, CostKind) <= |
| 5356 | TTI.getCastInstrCost(Opcode: Instruction::BitCast, Dst: I.getType(), Src: ExtVTy, |
| 5357 | CCH: TTI::CastContextHint::None, CostKind)) { |
| 5358 | LLVM_DEBUG(dbgs() << "VC: The cost to cast from " << *ExtVTy << " to " |
| 5359 | << *I.getType() << " is too high.\n" ); |
| 5360 | return false; |
| 5361 | } |
| 5362 | |
| 5363 | APInt NewSplatVal = SplatVal1->zext(width: Width * 2); |
| 5364 | NewSplatVal <<= Width; |
| 5365 | NewSplatVal |= SplatVal0->zext(width: Width * 2); |
| 5366 | auto *NewSplat = ConstantVector::getSplat( |
| 5367 | EC: ExtVTy->getElementCount(), Elt: ConstantInt::get(Context&: F.getContext(), V: NewSplatVal)); |
| 5368 | |
| 5369 | IRBuilder<> Builder(&I); |
| 5370 | replaceValue(Old&: I, New&: *Builder.CreateBitCast(V: NewSplat, DestTy: I.getType())); |
| 5371 | return true; |
| 5372 | } |
| 5373 | |
| 5374 | // Attempt to shrink loads that are only used by shufflevector instructions. |
| 5375 | bool VectorCombine::shrinkLoadForShuffles(Instruction &I) { |
| 5376 | auto *OldLoad = dyn_cast<LoadInst>(Val: &I); |
| 5377 | if (!OldLoad || !OldLoad->isSimple()) |
| 5378 | return false; |
| 5379 | |
| 5380 | auto *OldLoadTy = dyn_cast<FixedVectorType>(Val: OldLoad->getType()); |
| 5381 | if (!OldLoadTy) |
| 5382 | return false; |
| 5383 | |
| 5384 | unsigned const OldNumElements = OldLoadTy->getNumElements(); |
| 5385 | |
| 5386 | // Search all uses of load. If all uses are shufflevector instructions, and |
| 5387 | // the second operands are all poison values, find the minimum and maximum |
| 5388 | // indices of the vector elements referenced by all shuffle masks. |
| 5389 | // Otherwise return `std::nullopt`. |
| 5390 | using IndexRange = std::pair<int, int>; |
| 5391 | auto GetIndexRangeInShuffles = [&]() -> std::optional<IndexRange> { |
| 5392 | IndexRange OutputRange = IndexRange(OldNumElements, -1); |
| 5393 | for (llvm::Use &Use : I.uses()) { |
| 5394 | // Ensure all uses match the required pattern. |
| 5395 | User *Shuffle = Use.getUser(); |
| 5396 | ArrayRef<int> Mask; |
| 5397 | |
| 5398 | if (!match(V: Shuffle, |
| 5399 | P: m_Shuffle(v1: m_Specific(V: OldLoad), v2: m_Undef(), mask: m_Mask(Mask)))) |
| 5400 | return std::nullopt; |
| 5401 | |
| 5402 | // Ignore shufflevector instructions that have no uses. |
| 5403 | if (Shuffle->use_empty()) |
| 5404 | continue; |
| 5405 | |
| 5406 | // Find the min and max indices used by the shufflevector instruction. |
| 5407 | for (int Index : Mask) { |
| 5408 | if (Index >= 0 && Index < static_cast<int>(OldNumElements)) { |
| 5409 | OutputRange.first = std::min(a: Index, b: OutputRange.first); |
| 5410 | OutputRange.second = std::max(a: Index, b: OutputRange.second); |
| 5411 | } |
| 5412 | } |
| 5413 | } |
| 5414 | |
| 5415 | if (OutputRange.second < OutputRange.first) |
| 5416 | return std::nullopt; |
| 5417 | |
| 5418 | return OutputRange; |
| 5419 | }; |
| 5420 | |
| 5421 | // Get the range of vector elements used by shufflevector instructions. |
| 5422 | if (std::optional<IndexRange> Indices = GetIndexRangeInShuffles()) { |
| 5423 | unsigned const NewNumElements = Indices->second + 1u; |
| 5424 | |
| 5425 | // If the range of vector elements is smaller than the full load, attempt |
| 5426 | // to create a smaller load. |
| 5427 | if (NewNumElements < OldNumElements) { |
| 5428 | IRBuilder Builder(&I); |
| 5429 | Builder.SetCurrentDebugLocation(I.getDebugLoc()); |
| 5430 | |
| 5431 | // Calculate costs of old and new ops. |
| 5432 | Type *ElemTy = OldLoadTy->getElementType(); |
| 5433 | FixedVectorType *NewLoadTy = FixedVectorType::get(ElementType: ElemTy, NumElts: NewNumElements); |
| 5434 | Value *PtrOp = OldLoad->getPointerOperand(); |
| 5435 | |
| 5436 | InstructionCost OldCost = TTI.getMemoryOpCost( |
| 5437 | Opcode: Instruction::Load, Src: OldLoad->getType(), Alignment: OldLoad->getAlign(), |
| 5438 | AddressSpace: OldLoad->getPointerAddressSpace(), CostKind); |
| 5439 | InstructionCost NewCost = |
| 5440 | TTI.getMemoryOpCost(Opcode: Instruction::Load, Src: NewLoadTy, Alignment: OldLoad->getAlign(), |
| 5441 | AddressSpace: OldLoad->getPointerAddressSpace(), CostKind); |
| 5442 | |
| 5443 | using UseEntry = std::pair<ShuffleVectorInst *, std::vector<int>>; |
| 5444 | SmallVector<UseEntry, 4u> NewUses; |
| 5445 | unsigned const MaxIndex = NewNumElements * 2u; |
| 5446 | |
| 5447 | for (llvm::Use &Use : I.uses()) { |
| 5448 | auto *Shuffle = cast<ShuffleVectorInst>(Val: Use.getUser()); |
| 5449 | ArrayRef<int> OldMask = Shuffle->getShuffleMask(); |
| 5450 | |
| 5451 | // Create entry for new use. |
| 5452 | NewUses.push_back(Elt: {Shuffle, OldMask}); |
| 5453 | |
| 5454 | // Validate mask indices. |
| 5455 | for (int Index : OldMask) { |
| 5456 | if (Index >= static_cast<int>(MaxIndex)) |
| 5457 | return false; |
| 5458 | } |
| 5459 | |
| 5460 | // Update costs. |
| 5461 | OldCost += |
| 5462 | TTI.getShuffleCost(Kind: TTI::SK_PermuteSingleSrc, DstTy: Shuffle->getType(), |
| 5463 | SrcTy: OldLoadTy, Mask: OldMask, CostKind); |
| 5464 | NewCost += |
| 5465 | TTI.getShuffleCost(Kind: TTI::SK_PermuteSingleSrc, DstTy: Shuffle->getType(), |
| 5466 | SrcTy: NewLoadTy, Mask: OldMask, CostKind); |
| 5467 | } |
| 5468 | |
| 5469 | LLVM_DEBUG( |
| 5470 | dbgs() << "Found a load used only by shufflevector instructions: " |
| 5471 | << I << "\n OldCost: " << OldCost |
| 5472 | << " vs NewCost: " << NewCost << "\n" ); |
| 5473 | |
| 5474 | if (OldCost < NewCost || !NewCost.isValid()) |
| 5475 | return false; |
| 5476 | |
| 5477 | // Create new load of smaller vector. |
| 5478 | auto *NewLoad = cast<LoadInst>( |
| 5479 | Val: Builder.CreateAlignedLoad(Ty: NewLoadTy, Ptr: PtrOp, Align: OldLoad->getAlign())); |
| 5480 | NewLoad->copyMetadata(SrcInst: I); |
| 5481 | |
| 5482 | // Replace all uses. |
| 5483 | for (UseEntry &Use : NewUses) { |
| 5484 | ShuffleVectorInst *Shuffle = Use.first; |
| 5485 | std::vector<int> &NewMask = Use.second; |
| 5486 | |
| 5487 | Builder.SetInsertPoint(Shuffle); |
| 5488 | Builder.SetCurrentDebugLocation(Shuffle->getDebugLoc()); |
| 5489 | Value *NewShuffle = Builder.CreateShuffleVector( |
| 5490 | V1: NewLoad, V2: PoisonValue::get(T: NewLoadTy), Mask: NewMask); |
| 5491 | |
| 5492 | replaceValue(Old&: *Shuffle, New&: *NewShuffle, Erase: false); |
| 5493 | } |
| 5494 | |
| 5495 | return true; |
| 5496 | } |
| 5497 | } |
| 5498 | return false; |
| 5499 | } |
| 5500 | |
| 5501 | // Attempt to narrow a phi of shufflevector instructions where the two incoming |
| 5502 | // values have the same operands but different masks. If the two shuffle masks |
| 5503 | // are offsets of one another we can use one branch to rotate the incoming |
| 5504 | // vector and perform one larger shuffle after the phi. |
| 5505 | bool VectorCombine::shrinkPhiOfShuffles(Instruction &I) { |
| 5506 | auto *Phi = dyn_cast<PHINode>(Val: &I); |
| 5507 | if (!Phi || Phi->getNumIncomingValues() != 2u) |
| 5508 | return false; |
| 5509 | |
| 5510 | Value *Op = nullptr; |
| 5511 | ArrayRef<int> Mask0; |
| 5512 | ArrayRef<int> Mask1; |
| 5513 | |
| 5514 | if (!match(V: Phi->getOperand(i_nocapture: 0u), |
| 5515 | P: m_OneUse(SubPattern: m_Shuffle(v1: m_Value(V&: Op), v2: m_Poison(), mask: m_Mask(Mask0)))) || |
| 5516 | !match(V: Phi->getOperand(i_nocapture: 1u), |
| 5517 | P: m_OneUse(SubPattern: m_Shuffle(v1: m_Specific(V: Op), v2: m_Poison(), mask: m_Mask(Mask1))))) |
| 5518 | return false; |
| 5519 | |
| 5520 | auto *Shuf = cast<ShuffleVectorInst>(Val: Phi->getOperand(i_nocapture: 0u)); |
| 5521 | |
| 5522 | // Ensure result vectors are wider than the argument vector. |
| 5523 | auto *InputVT = cast<FixedVectorType>(Val: Op->getType()); |
| 5524 | auto *ResultVT = cast<FixedVectorType>(Val: Shuf->getType()); |
| 5525 | auto const InputNumElements = InputVT->getNumElements(); |
| 5526 | |
| 5527 | if (InputNumElements >= ResultVT->getNumElements()) |
| 5528 | return false; |
| 5529 | |
| 5530 | // Take the difference of the two shuffle masks at each index. Ignore poison |
| 5531 | // values at the same index in both masks. |
| 5532 | SmallVector<int, 16> NewMask; |
| 5533 | NewMask.reserve(N: Mask0.size()); |
| 5534 | |
| 5535 | for (auto [M0, M1] : zip(t&: Mask0, u&: Mask1)) { |
| 5536 | if (M0 >= 0 && M1 >= 0) |
| 5537 | NewMask.push_back(Elt: M0 - M1); |
| 5538 | else if (M0 == -1 && M1 == -1) |
| 5539 | continue; |
| 5540 | else |
| 5541 | return false; |
| 5542 | } |
| 5543 | |
| 5544 | // Ensure all elements of the new mask are equal. If the difference between |
| 5545 | // the incoming mask elements is the same, the two must be constant offsets |
| 5546 | // of one another. |
| 5547 | if (NewMask.empty() || !all_equal(Range&: NewMask)) |
| 5548 | return false; |
| 5549 | |
| 5550 | // Create new mask using difference of the two incoming masks. |
| 5551 | int MaskOffset = NewMask[0u]; |
| 5552 | unsigned Index = (InputNumElements + MaskOffset) % InputNumElements; |
| 5553 | NewMask.clear(); |
| 5554 | |
| 5555 | for (unsigned I = 0u; I < InputNumElements; ++I) { |
| 5556 | NewMask.push_back(Elt: Index); |
| 5557 | Index = (Index + 1u) % InputNumElements; |
| 5558 | } |
| 5559 | |
| 5560 | // Calculate costs for worst cases and compare. |
| 5561 | auto const Kind = TTI::SK_PermuteSingleSrc; |
| 5562 | auto OldCost = |
| 5563 | std::max(a: TTI.getShuffleCost(Kind, DstTy: ResultVT, SrcTy: InputVT, Mask: Mask0, CostKind), |
| 5564 | b: TTI.getShuffleCost(Kind, DstTy: ResultVT, SrcTy: InputVT, Mask: Mask1, CostKind)); |
| 5565 | auto NewCost = TTI.getShuffleCost(Kind, DstTy: InputVT, SrcTy: InputVT, Mask: NewMask, CostKind) + |
| 5566 | TTI.getShuffleCost(Kind, DstTy: ResultVT, SrcTy: InputVT, Mask: Mask1, CostKind); |
| 5567 | |
| 5568 | LLVM_DEBUG(dbgs() << "Found a phi of mergeable shuffles: " << I |
| 5569 | << "\n OldCost: " << OldCost << " vs NewCost: " << NewCost |
| 5570 | << "\n" ); |
| 5571 | |
| 5572 | if (NewCost > OldCost) |
| 5573 | return false; |
| 5574 | |
| 5575 | // Create new shuffles and narrowed phi. |
| 5576 | auto Builder = IRBuilder(Shuf); |
| 5577 | Builder.SetCurrentDebugLocation(Shuf->getDebugLoc()); |
| 5578 | auto *PoisonVal = PoisonValue::get(T: InputVT); |
| 5579 | auto *NewShuf0 = Builder.CreateShuffleVector(V1: Op, V2: PoisonVal, Mask: NewMask); |
| 5580 | Worklist.push(I: cast<Instruction>(Val: NewShuf0)); |
| 5581 | |
| 5582 | Builder.SetInsertPoint(Phi); |
| 5583 | Builder.SetCurrentDebugLocation(Phi->getDebugLoc()); |
| 5584 | auto *NewPhi = Builder.CreatePHI(Ty: NewShuf0->getType(), NumReservedValues: 2u); |
| 5585 | NewPhi->addIncoming(V: NewShuf0, BB: Phi->getIncomingBlock(i: 0u)); |
| 5586 | NewPhi->addIncoming(V: Op, BB: Phi->getIncomingBlock(i: 1u)); |
| 5587 | |
| 5588 | Builder.SetInsertPoint(*NewPhi->getInsertionPointAfterDef()); |
| 5589 | PoisonVal = PoisonValue::get(T: NewPhi->getType()); |
| 5590 | auto *NewShuf1 = Builder.CreateShuffleVector(V1: NewPhi, V2: PoisonVal, Mask: Mask1); |
| 5591 | |
| 5592 | replaceValue(Old&: *Phi, New&: *NewShuf1); |
| 5593 | return true; |
| 5594 | } |
| 5595 | |
| 5596 | /// This is the entry point for all transforms. Pass manager differences are |
| 5597 | /// handled in the callers of this function. |
| 5598 | bool VectorCombine::run() { |
| 5599 | if (DisableVectorCombine) |
| 5600 | return false; |
| 5601 | |
| 5602 | // Don't attempt vectorization if the target does not support vectors. |
| 5603 | if (!TTI.getNumberOfRegisters(ClassID: TTI.getRegisterClassForType(/*Vector*/ true))) |
| 5604 | return false; |
| 5605 | |
| 5606 | LLVM_DEBUG(dbgs() << "\n\nVECTORCOMBINE on " << F.getName() << "\n" ); |
| 5607 | |
| 5608 | auto FoldInst = [this](Instruction &I) { |
| 5609 | Builder.SetInsertPoint(&I); |
| 5610 | bool IsVectorType = isa<VectorType>(Val: I.getType()); |
| 5611 | bool IsFixedVectorType = isa<FixedVectorType>(Val: I.getType()); |
| 5612 | auto Opcode = I.getOpcode(); |
| 5613 | |
| 5614 | LLVM_DEBUG(dbgs() << "VC: Visiting: " << I << '\n'); |
| 5615 | |
| 5616 | // These folds should be beneficial regardless of when this pass is run |
| 5617 | // in the optimization pipeline. |
| 5618 | // The type checking is for run-time efficiency. We can avoid wasting time |
| 5619 | // dispatching to folding functions if there's no chance of matching. |
| 5620 | if (IsFixedVectorType) { |
| 5621 | switch (Opcode) { |
| 5622 | case Instruction::InsertElement: |
| 5623 | if (vectorizeLoadInsert(I)) |
| 5624 | return true; |
| 5625 | break; |
| 5626 | case Instruction::ShuffleVector: |
| 5627 | if (widenSubvectorLoad(I)) |
| 5628 | return true; |
| 5629 | break; |
| 5630 | default: |
| 5631 | break; |
| 5632 | } |
| 5633 | } |
| 5634 | |
| 5635 | // This transform works with scalable and fixed vectors |
| 5636 | // TODO: Identify and allow other scalable transforms |
| 5637 | if (IsVectorType) { |
| 5638 | if (scalarizeOpOrCmp(I)) |
| 5639 | return true; |
| 5640 | if (scalarizeLoad(I)) |
| 5641 | return true; |
| 5642 | if (scalarizeExtExtract(I)) |
| 5643 | return true; |
| 5644 | if (scalarizeVPIntrinsic(I)) |
| 5645 | return true; |
| 5646 | if (foldInterleaveIntrinsics(I)) |
| 5647 | return true; |
| 5648 | } |
| 5649 | |
| 5650 | if (Opcode == Instruction::Store) |
| 5651 | if (foldSingleElementStore(I)) |
| 5652 | return true; |
| 5653 | |
| 5654 | // If this is an early pipeline invocation of this pass, we are done. |
| 5655 | if (TryEarlyFoldsOnly) |
| 5656 | return false; |
| 5657 | |
| 5658 | // Otherwise, try folds that improve codegen but may interfere with |
| 5659 | // early IR canonicalizations. |
| 5660 | // The type checking is for run-time efficiency. We can avoid wasting time |
| 5661 | // dispatching to folding functions if there's no chance of matching. |
| 5662 | if (IsFixedVectorType) { |
| 5663 | switch (Opcode) { |
| 5664 | case Instruction::InsertElement: |
| 5665 | if (foldInsExtFNeg(I)) |
| 5666 | return true; |
| 5667 | if (foldInsExtBinop(I)) |
| 5668 | return true; |
| 5669 | if (foldInsExtVectorToShuffle(I)) |
| 5670 | return true; |
| 5671 | break; |
| 5672 | case Instruction::ShuffleVector: |
| 5673 | if (foldPermuteOfBinops(I)) |
| 5674 | return true; |
| 5675 | if (foldShuffleOfBinops(I)) |
| 5676 | return true; |
| 5677 | if (foldShuffleOfSelects(I)) |
| 5678 | return true; |
| 5679 | if (foldShuffleOfCastops(I)) |
| 5680 | return true; |
| 5681 | if (foldShuffleOfShuffles(I)) |
| 5682 | return true; |
| 5683 | if (foldPermuteOfIntrinsic(I)) |
| 5684 | return true; |
| 5685 | if (foldShufflesOfLengthChangingShuffles(I)) |
| 5686 | return true; |
| 5687 | if (foldShuffleOfIntrinsics(I)) |
| 5688 | return true; |
| 5689 | if (foldSelectShuffle(I)) |
| 5690 | return true; |
| 5691 | if (foldShuffleToIdentity(I)) |
| 5692 | return true; |
| 5693 | break; |
| 5694 | case Instruction::Load: |
| 5695 | if (shrinkLoadForShuffles(I)) |
| 5696 | return true; |
| 5697 | break; |
| 5698 | case Instruction::BitCast: |
| 5699 | if (foldBitcastShuffle(I)) |
| 5700 | return true; |
| 5701 | if (foldSelectsFromBitcast(I)) |
| 5702 | return true; |
| 5703 | break; |
| 5704 | case Instruction::And: |
| 5705 | case Instruction::Or: |
| 5706 | case Instruction::Xor: |
| 5707 | if (foldBitOpOfCastops(I)) |
| 5708 | return true; |
| 5709 | if (foldBitOpOfCastConstant(I)) |
| 5710 | return true; |
| 5711 | break; |
| 5712 | case Instruction::PHI: |
| 5713 | if (shrinkPhiOfShuffles(I)) |
| 5714 | return true; |
| 5715 | break; |
| 5716 | default: |
| 5717 | if (shrinkType(I)) |
| 5718 | return true; |
| 5719 | break; |
| 5720 | } |
| 5721 | } else { |
| 5722 | switch (Opcode) { |
| 5723 | case Instruction::Call: |
| 5724 | if (foldShuffleFromReductions(I)) |
| 5725 | return true; |
| 5726 | if (foldCastFromReductions(I)) |
| 5727 | return true; |
| 5728 | break; |
| 5729 | case Instruction::ExtractElement: |
| 5730 | if (foldShuffleChainsToReduce(I)) |
| 5731 | return true; |
| 5732 | break; |
| 5733 | case Instruction::ICmp: |
| 5734 | if (foldSignBitReductionCmp(I)) |
| 5735 | return true; |
| 5736 | if (foldICmpEqZeroVectorReduce(I)) |
| 5737 | return true; |
| 5738 | if (foldEquivalentReductionCmp(I)) |
| 5739 | return true; |
| 5740 | [[fallthrough]]; |
| 5741 | case Instruction::FCmp: |
| 5742 | if (foldExtractExtract(I)) |
| 5743 | return true; |
| 5744 | break; |
| 5745 | case Instruction::Or: |
| 5746 | if (foldConcatOfBoolMasks(I)) |
| 5747 | return true; |
| 5748 | [[fallthrough]]; |
| 5749 | default: |
| 5750 | if (Instruction::isBinaryOp(Opcode)) { |
| 5751 | if (foldExtractExtract(I)) |
| 5752 | return true; |
| 5753 | if (foldExtractedCmps(I)) |
| 5754 | return true; |
| 5755 | if (foldBinopOfReductions(I)) |
| 5756 | return true; |
| 5757 | } |
| 5758 | break; |
| 5759 | } |
| 5760 | } |
| 5761 | return false; |
| 5762 | }; |
| 5763 | |
| 5764 | bool MadeChange = false; |
| 5765 | for (BasicBlock &BB : F) { |
| 5766 | // Ignore unreachable basic blocks. |
| 5767 | if (!DT.isReachableFromEntry(A: &BB)) |
| 5768 | continue; |
| 5769 | // Use early increment range so that we can erase instructions in loop. |
| 5770 | // make_early_inc_range is not applicable here, as the next iterator may |
| 5771 | // be invalidated by RecursivelyDeleteTriviallyDeadInstructions. |
| 5772 | // We manually maintain the next instruction and update it when it is about |
| 5773 | // to be deleted. |
| 5774 | Instruction *I = &BB.front(); |
| 5775 | while (I) { |
| 5776 | NextInst = I->getNextNode(); |
| 5777 | if (!I->isDebugOrPseudoInst()) |
| 5778 | MadeChange |= FoldInst(*I); |
| 5779 | I = NextInst; |
| 5780 | } |
| 5781 | } |
| 5782 | |
| 5783 | NextInst = nullptr; |
| 5784 | |
| 5785 | while (!Worklist.isEmpty()) { |
| 5786 | Instruction *I = Worklist.removeOne(); |
| 5787 | if (!I) |
| 5788 | continue; |
| 5789 | |
| 5790 | if (isInstructionTriviallyDead(I)) { |
| 5791 | eraseInstruction(I&: *I); |
| 5792 | continue; |
| 5793 | } |
| 5794 | |
| 5795 | MadeChange |= FoldInst(*I); |
| 5796 | } |
| 5797 | |
| 5798 | return MadeChange; |
| 5799 | } |
| 5800 | |
| 5801 | PreservedAnalyses VectorCombinePass::run(Function &F, |
| 5802 | FunctionAnalysisManager &FAM) { |
| 5803 | auto &AC = FAM.getResult<AssumptionAnalysis>(IR&: F); |
| 5804 | TargetTransformInfo &TTI = FAM.getResult<TargetIRAnalysis>(IR&: F); |
| 5805 | DominatorTree &DT = FAM.getResult<DominatorTreeAnalysis>(IR&: F); |
| 5806 | AAResults &AA = FAM.getResult<AAManager>(IR&: F); |
| 5807 | const DataLayout *DL = &F.getDataLayout(); |
| 5808 | VectorCombine Combiner(F, TTI, DT, AA, AC, DL, TTI::TCK_RecipThroughput, |
| 5809 | TryEarlyFoldsOnly); |
| 5810 | if (!Combiner.run()) |
| 5811 | return PreservedAnalyses::all(); |
| 5812 | PreservedAnalyses PA; |
| 5813 | PA.preserveSet<CFGAnalyses>(); |
| 5814 | return PA; |
| 5815 | } |
| 5816 | |