| 1 | //===-- MissingFrameInferrer.cpp - Missing frame inferrer --------- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #include "MissingFrameInferrer.h" |
| 10 | #include "Options.h" |
| 11 | #include "PerfReader.h" |
| 12 | #include "ProfiledBinary.h" |
| 13 | #include "llvm/ADT/SCCIterator.h" |
| 14 | #include "llvm/ADT/Statistic.h" |
| 15 | #include <algorithm> |
| 16 | #include <cstdint> |
| 17 | #include <queue> |
| 18 | #include <sys/types.h> |
| 19 | |
| 20 | #define DEBUG_TYPE "missing-frame-inferrer" |
| 21 | |
| 22 | using namespace llvm; |
| 23 | using namespace sampleprof; |
| 24 | |
| 25 | STATISTIC(TailCallUniReachable, |
| 26 | "Number of frame pairs reachable via a unique tail call path" ); |
| 27 | STATISTIC(TailCallMultiReachable, |
| 28 | "Number of frame pairs reachable via a multiple tail call paths" ); |
| 29 | STATISTIC(TailCallUnreachable, |
| 30 | "Number of frame pairs unreachable via any tail call path" ); |
| 31 | STATISTIC(TailCallFuncSingleTailCalls, |
| 32 | "Number of functions with single tail call site" ); |
| 33 | STATISTIC(TailCallFuncMultipleTailCalls, |
| 34 | "Number of functions with multiple tail call sites" ); |
| 35 | STATISTIC(TailCallMaxTailCallPath, "Length of the longest tail call path" ); |
| 36 | |
| 37 | static cl::opt<uint32_t> |
| 38 | MaximumSearchDepth("max-search-depth" , cl::init(UINT32_MAX - 1), |
| 39 | cl::desc("The maximum levels the DFS-based missing " |
| 40 | "frame search should go with" ), |
| 41 | cl::cat(ProfGenCategory)); |
| 42 | |
| 43 | void MissingFrameInferrer::initialize( |
| 44 | const ContextSampleCounterMap *SampleCounters) { |
| 45 | // Refine call edges based on LBR samples. |
| 46 | if (SampleCounters) { |
| 47 | std::unordered_map<uint64_t, std::unordered_set<uint64_t>> SampledCalls; |
| 48 | std::unordered_map<uint64_t, std::unordered_set<uint64_t>> SampledTailCalls; |
| 49 | |
| 50 | // Populate SampledCalls based on static call sites. Similarly to |
| 51 | // SampledTailCalls. |
| 52 | for (const auto &CI : *SampleCounters) { |
| 53 | for (auto Item : CI.second.BranchCounter) { |
| 54 | auto From = Item.first.first; |
| 55 | auto To = Item.first.second; |
| 56 | if (CallEdges.count(x: From)) { |
| 57 | assert(CallEdges[From].size() == 1 && |
| 58 | "A callsite should only appear once with either a known or a " |
| 59 | "zero (unknown) target value at this point" ); |
| 60 | SampledCalls[From].insert(x: To); |
| 61 | } |
| 62 | if (TailCallEdges.count(x: From)) { |
| 63 | assert(TailCallEdges[From].size() == 1 && |
| 64 | "A callsite should only appear once with either a known or a " |
| 65 | "zero (unknown) target value at this point" ); |
| 66 | FuncRange *FromFRange = Binary->findFuncRange(Address: From); |
| 67 | FuncRange *ToFRange = Binary->findFuncRange(Address: To); |
| 68 | if (FromFRange != ToFRange) |
| 69 | SampledTailCalls[From].insert(x: To); |
| 70 | } |
| 71 | } |
| 72 | } |
| 73 | |
| 74 | // Replace static edges with dynamic edges. |
| 75 | CallEdges = SampledCalls; |
| 76 | TailCallEdges = SampledTailCalls; |
| 77 | } |
| 78 | |
| 79 | // Populate function-based edges. This is to speed up address to function |
| 80 | // translation. |
| 81 | for (auto Call : CallEdges) |
| 82 | for (auto Target : Call.second) |
| 83 | if (FuncRange *ToFRange = Binary->findFuncRange(Address: Target)) |
| 84 | CallEdgesF[Call.first].insert(x: ToFRange->Func); |
| 85 | |
| 86 | for (auto Call : TailCallEdges) { |
| 87 | for (auto Target : Call.second) { |
| 88 | if (FuncRange *ToFRange = Binary->findFuncRange(Address: Target)) { |
| 89 | TailCallEdgesF[Call.first].insert(x: ToFRange->Func); |
| 90 | TailCallTargetFuncs.insert(V: ToFRange->Func); |
| 91 | } |
| 92 | } |
| 93 | if (FuncRange *FromFRange = Binary->findFuncRange(Address: Call.first)) |
| 94 | FuncToTailCallMap[FromFRange->Func].push_back(x: Call.first); |
| 95 | } |
| 96 | |
| 97 | #if LLVM_ENABLE_STATS |
| 98 | for (auto F : FuncToTailCallMap) { |
| 99 | assert(F.second.size() > 0 && "" ); |
| 100 | if (F.second.size() > 1) |
| 101 | TailCallFuncMultipleTailCalls++; |
| 102 | else |
| 103 | TailCallFuncSingleTailCalls++; |
| 104 | } |
| 105 | #endif |
| 106 | |
| 107 | #ifndef NDEBUG |
| 108 | auto PrintCallTargets = |
| 109 | [&](const std::unordered_map<uint64_t, std::unordered_set<uint64_t>> |
| 110 | &CallTargets, |
| 111 | bool IsTailCall) { |
| 112 | for (const auto &Targets : CallTargets) { |
| 113 | for (const auto &Target : Targets.second) { |
| 114 | dbgs() << (IsTailCall ? "TailCall" : "Call" ); |
| 115 | dbgs() << " From " << format("%8" PRIx64, Targets.first) << " to " |
| 116 | << format("%8" PRIx64, Target) << "\n" ; |
| 117 | } |
| 118 | } |
| 119 | }; |
| 120 | |
| 121 | LLVM_DEBUG(dbgs() << "============================\n " ; |
| 122 | dbgs() << "Call targets:\n" ; |
| 123 | PrintCallTargets(CallEdges, false); |
| 124 | dbgs() << "\nTail call targets:\n" ; |
| 125 | PrintCallTargets(CallEdges, true); |
| 126 | dbgs() << "============================\n" ;); |
| 127 | #endif |
| 128 | } |
| 129 | |
| 130 | uint64_t MissingFrameInferrer::computeUniqueTailCallPath( |
| 131 | BinaryFunction *From, BinaryFunction *To, SmallVectorImpl<uint64_t> &Path) { |
| 132 | // Search for a unique path comprised of only tail call edges for a given |
| 133 | // source and target frame address on the a tail call graph that consists of |
| 134 | // only tail call edges. Note that only a unique path counts. Multiple paths |
| 135 | // are treated unreachable. |
| 136 | if (From == To) |
| 137 | return 1; |
| 138 | |
| 139 | // Ignore cyclic paths. Since we are doing a recursive DFS walk, if the source |
| 140 | // frame being visited is already in the stack, it means we are seeing a |
| 141 | // cycle. This is done before querying the cached result because the cached |
| 142 | // result may be computed based on the same path. Consider the following case: |
| 143 | // A -> B, B -> A, A -> D |
| 144 | // When computing unique reachablity from A to D, the cached result for (B,D) |
| 145 | // should not be counted since the unique path B->A->D is basically the same |
| 146 | // path as A->D. Counting that with invalidate the uniqueness from A to D. |
| 147 | if (Visiting.contains(V: From)) |
| 148 | return 0; |
| 149 | |
| 150 | // If already computed, return the cached result. |
| 151 | auto I = UniquePaths.find(x: {From, To}); |
| 152 | if (I != UniquePaths.end()) { |
| 153 | Path.append(in_start: I->second.begin(), in_end: I->second.end()); |
| 154 | return 1; |
| 155 | } |
| 156 | |
| 157 | auto J = NonUniquePaths.find(x: {From, To}); |
| 158 | if (J != NonUniquePaths.end()) { |
| 159 | return J->second; |
| 160 | } |
| 161 | |
| 162 | uint64_t Pos = Path.size(); |
| 163 | |
| 164 | // DFS walk each outgoing tail call edges. |
| 165 | // Bail out if we are already at the the maximum searching depth. |
| 166 | if (CurSearchingDepth == MaximumSearchDepth) |
| 167 | return 0; |
| 168 | |
| 169 | auto It = FuncToTailCallMap.find(x: From); |
| 170 | if (It == FuncToTailCallMap.end()) |
| 171 | return 0; |
| 172 | |
| 173 | CurSearchingDepth++; |
| 174 | Visiting.insert(V: From); |
| 175 | uint64_t NumPaths = 0; |
| 176 | for (auto TailCall : It->second) { |
| 177 | NumPaths += computeUniqueTailCallPath(From: TailCall, To, UniquePath&: Path); |
| 178 | // Stop analyzing the remaining if we are already seeing more than one |
| 179 | // reachable paths. |
| 180 | if (NumPaths > 1) |
| 181 | break; |
| 182 | } |
| 183 | CurSearchingDepth--; |
| 184 | Visiting.erase(V: From); |
| 185 | |
| 186 | // Undo already-computed path if it is not unique. |
| 187 | if (NumPaths != 1) { |
| 188 | Path.pop_back_n(NumItems: Path.size() - Pos); |
| 189 | } |
| 190 | |
| 191 | // Cache the result. |
| 192 | if (NumPaths == 1) { |
| 193 | UniquePaths[{From, To}].assign(first: Path.begin() + Pos, last: Path.end()); |
| 194 | #if LLVM_ENABLE_STATS |
| 195 | auto &LocalPath = UniquePaths[{From, To}]; |
| 196 | assert((LocalPath.size() <= MaximumSearchDepth + 1) && |
| 197 | "Path should not be longer than the maximum searching depth" ); |
| 198 | TailCallMaxTailCallPath = std::max(uint64_t(LocalPath.size()), |
| 199 | TailCallMaxTailCallPath.getValue()); |
| 200 | #endif |
| 201 | } else { |
| 202 | NonUniquePaths[{From, To}] = NumPaths; |
| 203 | } |
| 204 | |
| 205 | return NumPaths; |
| 206 | } |
| 207 | |
| 208 | uint64_t MissingFrameInferrer::computeUniqueTailCallPath( |
| 209 | uint64_t From, BinaryFunction *To, SmallVectorImpl<uint64_t> &Path) { |
| 210 | auto It = TailCallEdgesF.find(x: From); |
| 211 | if (It == TailCallEdgesF.end()) |
| 212 | return 0; |
| 213 | Path.push_back(Elt: From); |
| 214 | uint64_t NumPaths = 0; |
| 215 | for (auto Target : It->second) { |
| 216 | NumPaths += computeUniqueTailCallPath(From: Target, To, Path); |
| 217 | // Stop analyzing the remaining if we are already seeing more than one |
| 218 | // reachable paths. |
| 219 | if (NumPaths > 1) |
| 220 | break; |
| 221 | } |
| 222 | |
| 223 | // Undo already-computed path if it is not unique. |
| 224 | if (NumPaths != 1) |
| 225 | Path.pop_back(); |
| 226 | return NumPaths; |
| 227 | } |
| 228 | |
| 229 | bool MissingFrameInferrer::inferMissingFrames( |
| 230 | uint64_t From, uint64_t To, SmallVectorImpl<uint64_t> &UniquePath) { |
| 231 | assert(!TailCallEdgesF.count(From) && |
| 232 | "transition between From and To cannot be via a tailcall otherwise " |
| 233 | "they would not show up at the same time" ); |
| 234 | UniquePath.push_back(Elt: From); |
| 235 | uint64_t Pos = UniquePath.size(); |
| 236 | |
| 237 | FuncRange *ToFRange = Binary->findFuncRange(Address: To); |
| 238 | if (!ToFRange) |
| 239 | return false; |
| 240 | |
| 241 | // Bail out if caller has no known outgoing call edges. |
| 242 | auto It = CallEdgesF.find(x: From); |
| 243 | if (It == CallEdgesF.end()) |
| 244 | return false; |
| 245 | |
| 246 | // Done with the inference if the calle is reachable via a single callsite. |
| 247 | // This may not be accurate but it improves the search throughput. |
| 248 | if (llvm::is_contained(Range&: It->second, Element: ToFRange->Func)) |
| 249 | return true; |
| 250 | |
| 251 | // Bail out if callee is not tailcall reachable at all. |
| 252 | if (!TailCallTargetFuncs.contains(V: ToFRange->Func)) |
| 253 | return false; |
| 254 | |
| 255 | Visiting.clear(); |
| 256 | CurSearchingDepth = 0; |
| 257 | uint64_t NumPaths = 0; |
| 258 | for (auto Target : It->second) { |
| 259 | NumPaths += |
| 260 | computeUniqueTailCallPath(From: Target, To: ToFRange->Func, Path&: UniquePath); |
| 261 | // Stop analyzing the remaining if we are already seeing more than one |
| 262 | // reachable paths. |
| 263 | if (NumPaths > 1) |
| 264 | break; |
| 265 | } |
| 266 | |
| 267 | // Undo already-computed path if it is not unique. |
| 268 | if (NumPaths != 1) { |
| 269 | UniquePath.pop_back_n(NumItems: UniquePath.size() - Pos); |
| 270 | assert(UniquePath.back() == From && "broken path" ); |
| 271 | } |
| 272 | |
| 273 | #if LLVM_ENABLE_STATS |
| 274 | if (NumPaths == 1) { |
| 275 | if (ReachableViaUniquePaths.insert({From, ToFRange->StartAddress}).second) |
| 276 | TailCallUniReachable++; |
| 277 | } else if (NumPaths == 0) { |
| 278 | if (Unreachables.insert({From, ToFRange->StartAddress}).second) { |
| 279 | TailCallUnreachable++; |
| 280 | LLVM_DEBUG(dbgs() << "No path found from " |
| 281 | << format("%8" PRIx64 ":" , From) << " to " |
| 282 | << format("%8" PRIx64 ":" , ToFRange->StartAddress) |
| 283 | << "\n" ); |
| 284 | } |
| 285 | } else if (NumPaths > 1) { |
| 286 | if (ReachableViaMultiPaths.insert({From, ToFRange->StartAddress}) |
| 287 | .second) { |
| 288 | TailCallMultiReachable++; |
| 289 | LLVM_DEBUG(dbgs() << "Multiple paths found from " |
| 290 | << format("%8" PRIx64 ":" , From) << " to " |
| 291 | << format("%8" PRIx64 ":" , ToFRange->StartAddress) |
| 292 | << "\n" ); |
| 293 | } |
| 294 | } |
| 295 | #endif |
| 296 | |
| 297 | return NumPaths == 1; |
| 298 | } |
| 299 | |
| 300 | void MissingFrameInferrer::inferMissingFrames( |
| 301 | const SmallVectorImpl<uint64_t> &Context, |
| 302 | SmallVectorImpl<uint64_t> &NewContext) { |
| 303 | if (Context.size() == 1) { |
| 304 | NewContext = Context; |
| 305 | return; |
| 306 | } |
| 307 | |
| 308 | NewContext.clear(); |
| 309 | for (uint64_t I = 1; I < Context.size(); I++) { |
| 310 | inferMissingFrames(From: Context[I - 1], To: Context[I], UniquePath&: NewContext); |
| 311 | } |
| 312 | NewContext.push_back(Elt: Context.back()); |
| 313 | |
| 314 | assert((NewContext.size() >= Context.size()) && |
| 315 | "Inferred context should include all frames in the original context" ); |
| 316 | assert((NewContext.size() > Context.size() || NewContext == Context) && |
| 317 | "Inferred context should be exactly the same " |
| 318 | "with the original context" ); |
| 319 | } |
| 320 | |