| 1 | //===-- ProfiledBinary.cpp - Binary decoder ---------------------*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #include "ProfiledBinary.h" |
| 10 | #include "ErrorHandling.h" |
| 11 | #include "MissingFrameInferrer.h" |
| 12 | #include "Options.h" |
| 13 | #include "ProfileGenerator.h" |
| 14 | #include "llvm/DebugInfo/Symbolize/SymbolizableModule.h" |
| 15 | #include "llvm/Demangle/Demangle.h" |
| 16 | #include "llvm/IR/DebugInfoMetadata.h" |
| 17 | #include "llvm/MC/TargetRegistry.h" |
| 18 | #include "llvm/Object/COFF.h" |
| 19 | #include "llvm/Support/CommandLine.h" |
| 20 | #include "llvm/Support/Debug.h" |
| 21 | #include "llvm/Support/Format.h" |
| 22 | #include "llvm/Support/TargetSelect.h" |
| 23 | #include "llvm/TargetParser/Triple.h" |
| 24 | #include <optional> |
| 25 | |
| 26 | #define DEBUG_TYPE "load-binary" |
| 27 | |
| 28 | namespace llvm { |
| 29 | |
| 30 | using namespace object; |
| 31 | |
| 32 | cl::opt<bool> ShowDisassemblyOnly("show-disassembly-only" , |
| 33 | cl::desc("Print disassembled code." ), |
| 34 | cl::cat(ProfGenCategory)); |
| 35 | |
| 36 | cl::opt<bool> ShowSourceLocations("show-source-locations" , |
| 37 | cl::desc("Print source locations." ), |
| 38 | cl::cat(ProfGenCategory)); |
| 39 | |
| 40 | cl::opt<bool> LoadFunctionFromSymbol( |
| 41 | "load-function-from-symbol" , cl::init(Val: true), |
| 42 | cl::desc( |
| 43 | "Gather additional binary function info from symbols (e.g. .symtab) in " |
| 44 | "case dwarf info is incomplete. Only support binaries in ELF format " |
| 45 | "with pseudo probe, for other formats, this flag will be a no-op." ), |
| 46 | cl::cat(ProfGenCategory)); |
| 47 | |
| 48 | static cl::opt<bool> |
| 49 | ShowCanonicalFnName("show-canonical-fname" , |
| 50 | cl::desc("Print canonical function name." ), |
| 51 | cl::cat(ProfGenCategory)); |
| 52 | |
| 53 | static cl::opt<bool> ShowPseudoProbe( |
| 54 | "show-pseudo-probe" , |
| 55 | cl::desc("Print pseudo probe section and disassembled info." ), |
| 56 | cl::cat(ProfGenCategory)); |
| 57 | |
| 58 | static cl::opt<bool> UseDwarfCorrelation( |
| 59 | "use-dwarf-correlation" , |
| 60 | cl::desc("Use dwarf for profile correlation even when binary contains " |
| 61 | "pseudo probe." ), |
| 62 | cl::cat(ProfGenCategory)); |
| 63 | |
| 64 | static cl::opt<std::string> |
| 65 | DWPPath("dwp" , cl::init(Val: "" ), |
| 66 | cl::desc("Path of .dwp file. When not specified, it will be " |
| 67 | "<binary>.dwp in the same directory as the main binary." ), |
| 68 | cl::cat(ProfGenCategory)); |
| 69 | |
| 70 | static cl::list<std::string> DisassembleFunctions( |
| 71 | "disassemble-functions" , cl::CommaSeparated, |
| 72 | cl::desc("List of functions to print disassembly for. Accept demangled " |
| 73 | "names only. Only work with show-disassembly-only" ), |
| 74 | cl::cat(ProfGenCategory)); |
| 75 | |
| 76 | static cl::opt<bool> |
| 77 | KernelBinary("kernel" , |
| 78 | cl::desc("Generate the profile for Linux kernel binary." ), |
| 79 | cl::cat(ProfGenCategory)); |
| 80 | |
| 81 | namespace sampleprof { |
| 82 | |
| 83 | static const Target *getTarget(const ObjectFile *Obj) { |
| 84 | Triple TheTriple = Obj->makeTriple(); |
| 85 | std::string Error; |
| 86 | std::string ArchName; |
| 87 | const Target *TheTarget = |
| 88 | TargetRegistry::lookupTarget(ArchName, TheTriple, Error); |
| 89 | if (!TheTarget) |
| 90 | exitWithError(Message: Error, Whence: Obj->getFileName()); |
| 91 | return TheTarget; |
| 92 | } |
| 93 | |
| 94 | void BinarySizeContextTracker::addInstructionForContext( |
| 95 | const SampleContextFrameVector &Context, uint32_t InstrSize) { |
| 96 | ContextTrieNode *CurNode = &RootContext; |
| 97 | bool IsLeaf = true; |
| 98 | for (const auto &Callsite : reverse(C: Context)) { |
| 99 | FunctionId CallerName = Callsite.Func; |
| 100 | LineLocation CallsiteLoc = IsLeaf ? LineLocation(0, 0) : Callsite.Location; |
| 101 | CurNode = CurNode->getOrCreateChildContext(CallSite: CallsiteLoc, ChildName: CallerName); |
| 102 | IsLeaf = false; |
| 103 | } |
| 104 | |
| 105 | CurNode->addFunctionSize(FSize: InstrSize); |
| 106 | } |
| 107 | |
| 108 | uint32_t |
| 109 | BinarySizeContextTracker::getFuncSizeForContext(const ContextTrieNode *Node) { |
| 110 | ContextTrieNode *CurrNode = &RootContext; |
| 111 | ContextTrieNode *PrevNode = nullptr; |
| 112 | |
| 113 | std::optional<uint32_t> Size; |
| 114 | |
| 115 | // Start from top-level context-less function, traverse down the reverse |
| 116 | // context trie to find the best/longest match for given context, then |
| 117 | // retrieve the size. |
| 118 | LineLocation CallSiteLoc(0, 0); |
| 119 | while (CurrNode && Node->getParentContext() != nullptr) { |
| 120 | PrevNode = CurrNode; |
| 121 | CurrNode = CurrNode->getChildContext(CallSite: CallSiteLoc, ChildName: Node->getFuncName()); |
| 122 | if (CurrNode && CurrNode->getFunctionSize()) |
| 123 | Size = *CurrNode->getFunctionSize(); |
| 124 | CallSiteLoc = Node->getCallSiteLoc(); |
| 125 | Node = Node->getParentContext(); |
| 126 | } |
| 127 | |
| 128 | // If we traversed all nodes along the path of the context and haven't |
| 129 | // found a size yet, pivot to look for size from sibling nodes, i.e size |
| 130 | // of inlinee under different context. |
| 131 | if (!Size) { |
| 132 | if (!CurrNode) |
| 133 | CurrNode = PrevNode; |
| 134 | while (!Size && CurrNode && !CurrNode->getAllChildContext().empty()) { |
| 135 | CurrNode = &CurrNode->getAllChildContext().begin()->second; |
| 136 | if (CurrNode->getFunctionSize()) |
| 137 | Size = *CurrNode->getFunctionSize(); |
| 138 | } |
| 139 | } |
| 140 | |
| 141 | assert(Size && "We should at least find one context size." ); |
| 142 | return *Size; |
| 143 | } |
| 144 | |
| 145 | void BinarySizeContextTracker::trackInlineesOptimizedAway( |
| 146 | MCPseudoProbeDecoder &ProbeDecoder) { |
| 147 | ProbeFrameStack ProbeContext; |
| 148 | for (const auto &Child : ProbeDecoder.getDummyInlineRoot().getChildren()) |
| 149 | trackInlineesOptimizedAway(ProbeDecoder, ProbeNode: Child, Context&: ProbeContext); |
| 150 | } |
| 151 | |
| 152 | void BinarySizeContextTracker::trackInlineesOptimizedAway( |
| 153 | MCPseudoProbeDecoder &ProbeDecoder, |
| 154 | const MCDecodedPseudoProbeInlineTree &ProbeNode, |
| 155 | ProbeFrameStack &ProbeContext) { |
| 156 | StringRef FuncName = |
| 157 | ProbeDecoder.getFuncDescForGUID(GUID: ProbeNode.Guid)->FuncName; |
| 158 | ProbeContext.emplace_back(Args&: FuncName, Args: 0); |
| 159 | |
| 160 | // This ProbeContext has a probe, so it has code before inlining and |
| 161 | // optimization. Make sure we mark its size as known. |
| 162 | if (!ProbeNode.getProbes().empty()) { |
| 163 | ContextTrieNode *SizeContext = &RootContext; |
| 164 | for (auto &ProbeFrame : reverse(C&: ProbeContext)) { |
| 165 | StringRef CallerName = ProbeFrame.first; |
| 166 | LineLocation CallsiteLoc(ProbeFrame.second, 0); |
| 167 | SizeContext = |
| 168 | SizeContext->getOrCreateChildContext(CallSite: CallsiteLoc, |
| 169 | ChildName: FunctionId(CallerName)); |
| 170 | } |
| 171 | // Add 0 size to make known. |
| 172 | SizeContext->addFunctionSize(FSize: 0); |
| 173 | } |
| 174 | |
| 175 | // DFS down the probe inline tree |
| 176 | for (const auto &ChildNode : ProbeNode.getChildren()) { |
| 177 | InlineSite Location = ChildNode.getInlineSite(); |
| 178 | ProbeContext.back().second = std::get<1>(t&: Location); |
| 179 | trackInlineesOptimizedAway(ProbeDecoder, ProbeNode: ChildNode, ProbeContext); |
| 180 | } |
| 181 | |
| 182 | ProbeContext.pop_back(); |
| 183 | } |
| 184 | |
| 185 | ProfiledBinary::ProfiledBinary(const StringRef ExeBinPath, |
| 186 | const StringRef DebugBinPath) |
| 187 | : Path(ExeBinPath), DebugBinaryPath(DebugBinPath), |
| 188 | SymbolizerOpts(getSymbolizerOpts()), ProEpilogTracker(this), |
| 189 | Symbolizer(std::make_unique<symbolize::LLVMSymbolizer>(args&: SymbolizerOpts)), |
| 190 | TrackFuncContextSize(EnableCSPreInliner && UseContextCostForPreInliner) { |
| 191 | // Point to executable binary if debug info binary is not specified. |
| 192 | SymbolizerPath = DebugBinPath.empty() ? ExeBinPath : DebugBinPath; |
| 193 | if (InferMissingFrames) |
| 194 | MissingContextInferrer = std::make_unique<MissingFrameInferrer>(args: this); |
| 195 | load(); |
| 196 | } |
| 197 | |
| 198 | ProfiledBinary::~ProfiledBinary() = default; |
| 199 | |
| 200 | void ProfiledBinary::warnNoFuncEntry() { |
| 201 | uint64_t NoFuncEntryNum = 0; |
| 202 | for (auto &F : BinaryFunctions) { |
| 203 | if (F.second.Ranges.empty()) |
| 204 | continue; |
| 205 | bool hasFuncEntry = false; |
| 206 | for (auto &R : F.second.Ranges) { |
| 207 | if (FuncRange *FR = findFuncRangeForStartAddr(Address: R.first)) { |
| 208 | if (FR->IsFuncEntry) { |
| 209 | hasFuncEntry = true; |
| 210 | break; |
| 211 | } |
| 212 | } |
| 213 | } |
| 214 | |
| 215 | if (!hasFuncEntry) { |
| 216 | NoFuncEntryNum++; |
| 217 | if (ShowDetailedWarning) |
| 218 | WithColor::warning() |
| 219 | << "Failed to determine function entry for " << F.first |
| 220 | << " due to inconsistent name from symbol table and dwarf info.\n" ; |
| 221 | } |
| 222 | } |
| 223 | emitWarningSummary(Num: NoFuncEntryNum, Total: BinaryFunctions.size(), |
| 224 | Msg: "of functions failed to determine function entry due to " |
| 225 | "inconsistent name from symbol table and dwarf info." ); |
| 226 | } |
| 227 | |
| 228 | void ProfiledBinary::load() { |
| 229 | // Attempt to open the binary. |
| 230 | OwningBinary<Binary> OBinary = unwrapOrError(EO: createBinary(Path), Args&: Path); |
| 231 | Binary &ExeBinary = *OBinary.getBinary(); |
| 232 | |
| 233 | IsCOFF = isa<COFFObjectFile>(Val: &ExeBinary); |
| 234 | if (!isa<ELFObjectFileBase>(Val: &ExeBinary) && !IsCOFF) |
| 235 | exitWithError(Message: "not a valid ELF/COFF image" , Whence: Path); |
| 236 | |
| 237 | auto *Obj = cast<ObjectFile>(Val: &ExeBinary); |
| 238 | TheTriple = Obj->makeTriple(); |
| 239 | |
| 240 | LLVM_DEBUG(dbgs() << "Loading " << Path << "\n" ); |
| 241 | |
| 242 | // Mark the binary as a kernel image; |
| 243 | IsKernel = KernelBinary; |
| 244 | |
| 245 | // Find the preferred load address for text sections. |
| 246 | setPreferredTextSegmentAddresses(Obj); |
| 247 | |
| 248 | // Load debug info of subprograms from DWARF section. |
| 249 | // If path of debug info binary is specified, use the debug info from it, |
| 250 | // otherwise use the debug info from the executable binary. |
| 251 | OwningBinary<Binary> DebugBinary; |
| 252 | ObjectFile *PseudoProbeObj = nullptr; |
| 253 | if (!DebugBinaryPath.empty()) { |
| 254 | DebugBinary = unwrapOrError(EO: createBinary(Path: DebugBinaryPath), Args&: DebugBinaryPath); |
| 255 | ObjectFile *DebugObj = cast<ObjectFile>(Val: DebugBinary.getBinary()); |
| 256 | loadSymbolsFromDWARF(Obj&: *DebugObj); |
| 257 | if (checkPseudoProbe(Obj: DebugObj, ObjPath: DebugBinaryPath)) |
| 258 | PseudoProbeObj = DebugObj; |
| 259 | } else { |
| 260 | loadSymbolsFromDWARF(Obj&: *Obj); |
| 261 | } |
| 262 | |
| 263 | // Prefer loading pseudo probe from binary. |
| 264 | if (checkPseudoProbe(Obj, ObjPath: Path)) |
| 265 | PseudoProbeObj = Obj; |
| 266 | |
| 267 | DisassembleFunctionSet.insert_range(R&: DisassembleFunctions); |
| 268 | |
| 269 | if (usePseudoProbes()) |
| 270 | populateSymbolAddressList(O: Obj); |
| 271 | |
| 272 | if (ShowDisassemblyOnly && PseudoProbeObj) |
| 273 | decodePseudoProbe(Obj: PseudoProbeObj); |
| 274 | |
| 275 | if (LoadFunctionFromSymbol && usePseudoProbes()) |
| 276 | loadSymbolsFromSymtab(O: Obj); |
| 277 | |
| 278 | // Disassemble the text sections. |
| 279 | disassemble(O: Obj); |
| 280 | |
| 281 | // Use function start and return address to infer prolog and epilog |
| 282 | ProEpilogTracker.inferPrologAddresses(FuncStartAddressMap&: StartAddrToFuncRangeMap); |
| 283 | ProEpilogTracker.inferEpilogAddresses(RetAddrs&: RetAddressSet); |
| 284 | |
| 285 | warnNoFuncEntry(); |
| 286 | |
| 287 | // TODO: decode other sections. |
| 288 | } |
| 289 | |
| 290 | bool ProfiledBinary::inlineContextEqual(uint64_t Address1, uint64_t Address2) { |
| 291 | const SampleContextFrameVector &Context1 = |
| 292 | getCachedFrameLocationStack(Address: Address1); |
| 293 | const SampleContextFrameVector &Context2 = |
| 294 | getCachedFrameLocationStack(Address: Address2); |
| 295 | if (Context1.size() != Context2.size()) |
| 296 | return false; |
| 297 | if (Context1.empty()) |
| 298 | return false; |
| 299 | // The leaf frame contains location within the leaf, and it |
| 300 | // needs to be remove that as it's not part of the calling context |
| 301 | return std::equal(first1: Context1.begin(), last1: Context1.begin() + Context1.size() - 1, |
| 302 | first2: Context2.begin(), last2: Context2.begin() + Context2.size() - 1); |
| 303 | } |
| 304 | |
| 305 | SampleContextFrameVector |
| 306 | ProfiledBinary::getExpandedContext(const SmallVectorImpl<uint64_t> &Stack, |
| 307 | bool &WasLeafInlined) { |
| 308 | SampleContextFrameVector ContextVec; |
| 309 | if (Stack.empty()) |
| 310 | return ContextVec; |
| 311 | // Process from frame root to leaf |
| 312 | for (auto Address : Stack) { |
| 313 | const SampleContextFrameVector &ExpandedContext = |
| 314 | getCachedFrameLocationStack(Address); |
| 315 | // An instruction without a valid debug line will be ignored by sample |
| 316 | // processing |
| 317 | if (ExpandedContext.empty()) |
| 318 | return SampleContextFrameVector(); |
| 319 | // Set WasLeafInlined to the size of inlined frame count for the last |
| 320 | // address which is leaf |
| 321 | WasLeafInlined = (ExpandedContext.size() > 1); |
| 322 | ContextVec.append(RHS: ExpandedContext); |
| 323 | } |
| 324 | |
| 325 | // Replace with decoded base discriminator |
| 326 | for (auto &Frame : ContextVec) { |
| 327 | Frame.Location.Discriminator = ProfileGeneratorBase::getBaseDiscriminator( |
| 328 | Discriminator: Frame.Location.Discriminator, UseFSD: UseFSDiscriminator); |
| 329 | } |
| 330 | |
| 331 | assert(ContextVec.size() && "Context length should be at least 1" ); |
| 332 | |
| 333 | // Compress the context string except for the leaf frame |
| 334 | auto LeafFrame = ContextVec.back(); |
| 335 | LeafFrame.Location = LineLocation(0, 0); |
| 336 | ContextVec.pop_back(); |
| 337 | CSProfileGenerator::compressRecursionContext(Context&: ContextVec); |
| 338 | CSProfileGenerator::trimContext(S&: ContextVec); |
| 339 | ContextVec.push_back(Elt: LeafFrame); |
| 340 | return ContextVec; |
| 341 | } |
| 342 | |
| 343 | template <class ELFT> |
| 344 | void ProfiledBinary::setPreferredTextSegmentAddresses(const ELFFile<ELFT> &Obj, |
| 345 | StringRef FileName) { |
| 346 | const auto &PhdrRange = unwrapOrError(Obj.program_headers(), FileName); |
| 347 | // FIXME: This should be the page size of the system running profiling. |
| 348 | // However such info isn't available at post-processing time, assuming |
| 349 | // 4K page now. Note that we don't use EXEC_PAGESIZE from <linux/param.h> |
| 350 | // because we may build the tools on non-linux. |
| 351 | uint64_t PageSize = 0x1000; |
| 352 | for (const typename ELFT::Phdr &Phdr : PhdrRange) { |
| 353 | if (Phdr.p_type == ELF::PT_LOAD) { |
| 354 | if (!FirstLoadableAddress) |
| 355 | FirstLoadableAddress = Phdr.p_vaddr & ~(PageSize - 1U); |
| 356 | if (Phdr.p_flags & ELF::PF_X) { |
| 357 | // Segments will always be loaded at a page boundary. |
| 358 | PreferredTextSegmentAddresses.push_back(Phdr.p_vaddr & |
| 359 | ~(PageSize - 1U)); |
| 360 | TextSegmentOffsets.push_back(Phdr.p_offset & ~(PageSize - 1U)); |
| 361 | } else { |
| 362 | PhdrInfo Info; |
| 363 | Info.FileOffset = Phdr.p_offset; |
| 364 | Info.FileSz = Phdr.p_filesz; |
| 365 | Info.VirtualAddr = Phdr.p_vaddr; |
| 366 | NonTextPhdrInfo.push_back(Elt: Info); |
| 367 | } |
| 368 | } |
| 369 | } |
| 370 | |
| 371 | if (PreferredTextSegmentAddresses.empty()) |
| 372 | exitWithError(Message: "no executable segment found" , Whence: FileName); |
| 373 | } |
| 374 | |
| 375 | uint64_t ProfiledBinary::CanonicalizeNonTextAddress(uint64_t Address) { |
| 376 | uint64_t FileOffset = 0; |
| 377 | auto MMapIter = NonTextMMapEvents.lower_bound(x: Address); |
| 378 | if (MMapIter == NonTextMMapEvents.end()) |
| 379 | return Address; // No non-text mmap event found, return the address as is. |
| 380 | |
| 381 | const auto &MMapEvent = MMapIter->second; |
| 382 | |
| 383 | // If the address is within the non-text mmap event, calculate its file |
| 384 | // offset in the binary. |
| 385 | if (MMapEvent.Address <= Address && |
| 386 | Address < MMapEvent.Address + MMapEvent.Size) |
| 387 | FileOffset = Address - MMapEvent.Address + MMapEvent.Offset; |
| 388 | |
| 389 | // If the address is not within the non-text mmap event, return the address |
| 390 | // as is. |
| 391 | if (FileOffset == 0) |
| 392 | return Address; |
| 393 | |
| 394 | for (const auto &PhdrInfo : NonTextPhdrInfo) { |
| 395 | // Find the program section that contains the file offset and map the |
| 396 | // file offset to the virtual address. |
| 397 | if (PhdrInfo.FileOffset <= FileOffset && |
| 398 | FileOffset < PhdrInfo.FileOffset + PhdrInfo.FileSz) |
| 399 | return PhdrInfo.VirtualAddr + (FileOffset - PhdrInfo.FileOffset); |
| 400 | } |
| 401 | |
| 402 | return Address; |
| 403 | } |
| 404 | |
| 405 | void ProfiledBinary::setPreferredTextSegmentAddresses(const COFFObjectFile *Obj, |
| 406 | StringRef FileName) { |
| 407 | uint64_t ImageBase = Obj->getImageBase(); |
| 408 | if (!ImageBase) |
| 409 | exitWithError(Message: "Not a COFF image" , Whence: FileName); |
| 410 | |
| 411 | PreferredTextSegmentAddresses.push_back(x: ImageBase); |
| 412 | FirstLoadableAddress = ImageBase; |
| 413 | |
| 414 | for (SectionRef Section : Obj->sections()) { |
| 415 | const coff_section *Sec = Obj->getCOFFSection(Section); |
| 416 | if (Sec->Characteristics & COFF::IMAGE_SCN_CNT_CODE) |
| 417 | TextSegmentOffsets.push_back(x: Sec->VirtualAddress); |
| 418 | } |
| 419 | } |
| 420 | |
| 421 | void ProfiledBinary::setPreferredTextSegmentAddresses(const ObjectFile *Obj) { |
| 422 | if (const auto *ELFObj = dyn_cast<ELF32LEObjectFile>(Val: Obj)) |
| 423 | setPreferredTextSegmentAddresses(Obj: ELFObj->getELFFile(), FileName: Obj->getFileName()); |
| 424 | else if (const auto *ELFObj = dyn_cast<ELF32BEObjectFile>(Val: Obj)) |
| 425 | setPreferredTextSegmentAddresses(Obj: ELFObj->getELFFile(), FileName: Obj->getFileName()); |
| 426 | else if (const auto *ELFObj = dyn_cast<ELF64LEObjectFile>(Val: Obj)) |
| 427 | setPreferredTextSegmentAddresses(Obj: ELFObj->getELFFile(), FileName: Obj->getFileName()); |
| 428 | else if (const auto *ELFObj = dyn_cast<ELF64BEObjectFile>(Val: Obj)) |
| 429 | setPreferredTextSegmentAddresses(Obj: ELFObj->getELFFile(), FileName: Obj->getFileName()); |
| 430 | else if (const auto *COFFObj = dyn_cast<COFFObjectFile>(Val: Obj)) |
| 431 | setPreferredTextSegmentAddresses(Obj: COFFObj, FileName: Obj->getFileName()); |
| 432 | else |
| 433 | llvm_unreachable("invalid object format" ); |
| 434 | } |
| 435 | |
| 436 | bool ProfiledBinary::checkPseudoProbe(const ObjectFile *Obj, |
| 437 | StringRef ObjPath) { |
| 438 | if (UseDwarfCorrelation) |
| 439 | return false; |
| 440 | |
| 441 | bool HasProbeDescSection = false; |
| 442 | bool HasPseudoProbeSection = false; |
| 443 | |
| 444 | StringRef FileName = Obj->getFileName(); |
| 445 | for (section_iterator SI = Obj->section_begin(), SE = Obj->section_end(); |
| 446 | SI != SE; ++SI) { |
| 447 | const SectionRef &Section = *SI; |
| 448 | StringRef SectionName = unwrapOrError(EO: Section.getName(), Args&: FileName); |
| 449 | if (SectionName == ".pseudo_probe_desc" ) { |
| 450 | HasProbeDescSection = true; |
| 451 | } else if (SectionName == ".pseudo_probe" ) { |
| 452 | HasPseudoProbeSection = true; |
| 453 | } |
| 454 | } |
| 455 | |
| 456 | if (HasProbeDescSection && HasPseudoProbeSection) { |
| 457 | PseudoProbeBinPath = ObjPath; |
| 458 | return true; |
| 459 | } |
| 460 | |
| 461 | return false; |
| 462 | } |
| 463 | |
| 464 | void ProfiledBinary::decodePseudoProbe(const ObjectFile *Obj) { |
| 465 | if (!usePseudoProbes()) |
| 466 | return; |
| 467 | |
| 468 | LLVM_DEBUG(dbgs() << "Decoding pseudo probe in " << Obj->getFileName() |
| 469 | << "\n" ); |
| 470 | |
| 471 | MCPseudoProbeDecoder::Uint64Set GuidFilter; |
| 472 | MCPseudoProbeDecoder::Uint64Map FuncStartAddresses; |
| 473 | if (ShowDisassemblyOnly) { |
| 474 | if (DisassembleFunctionSet.empty()) { |
| 475 | FuncStartAddresses = SymbolStartAddrs; |
| 476 | } else { |
| 477 | for (auto &F : DisassembleFunctionSet) { |
| 478 | auto GUID = Function::getGUIDAssumingExternalLinkage(GlobalName: F.first()); |
| 479 | if (auto StartAddr = SymbolStartAddrs.lookup(Val: GUID)) { |
| 480 | FuncStartAddresses[GUID] = StartAddr; |
| 481 | FuncRange &Range = StartAddrToFuncRangeMap[StartAddr]; |
| 482 | GuidFilter.insert( |
| 483 | V: Function::getGUIDAssumingExternalLinkage(GlobalName: Range.getFuncName())); |
| 484 | } |
| 485 | } |
| 486 | } |
| 487 | } else { |
| 488 | for (auto *F : ProfiledFunctions) { |
| 489 | GuidFilter.insert(V: Function::getGUIDAssumingExternalLinkage(GlobalName: F->FuncName)); |
| 490 | // DWARF name might be broken when a DWARF32 .debug_str.dwo section |
| 491 | // execeeds 4GB. We expect symbol table to contain the correct function |
| 492 | // names which matches the pseudo probe. Adding back all the GUIDs if |
| 493 | // possible. |
| 494 | auto AltGUIDs = AlternativeFunctionGUIDs.equal_range(x: F); |
| 495 | for (const auto &[_, Func] : make_range(p: AltGUIDs)) |
| 496 | GuidFilter.insert(V: Func); |
| 497 | for (auto &Range : F->Ranges) { |
| 498 | auto GUIDs = StartAddrToSymMap.equal_range(x: Range.first); |
| 499 | for (const auto &[StartAddr, Func] : make_range(p: GUIDs)) |
| 500 | FuncStartAddresses[Func] = StartAddr; |
| 501 | } |
| 502 | } |
| 503 | } |
| 504 | |
| 505 | StringRef FileName = Obj->getFileName(); |
| 506 | for (section_iterator SI = Obj->section_begin(), SE = Obj->section_end(); |
| 507 | SI != SE; ++SI) { |
| 508 | const SectionRef &Section = *SI; |
| 509 | StringRef SectionName = unwrapOrError(EO: Section.getName(), Args&: FileName); |
| 510 | |
| 511 | if (SectionName == ".pseudo_probe_desc" ) { |
| 512 | StringRef Contents = unwrapOrError(EO: Section.getContents(), Args&: FileName); |
| 513 | if (!ProbeDecoder.buildGUID2FuncDescMap( |
| 514 | Start: reinterpret_cast<const uint8_t *>(Contents.data()), |
| 515 | Size: Contents.size())) |
| 516 | exitWithError( |
| 517 | Message: "Pseudo Probe decoder fail in .pseudo_probe_desc section" ); |
| 518 | } else if (SectionName == ".pseudo_probe" ) { |
| 519 | StringRef Contents = unwrapOrError(EO: Section.getContents(), Args&: FileName); |
| 520 | if (!ProbeDecoder.buildAddress2ProbeMap( |
| 521 | Start: reinterpret_cast<const uint8_t *>(Contents.data()), |
| 522 | Size: Contents.size(), GuildFilter: GuidFilter, FuncStartAddrs: FuncStartAddresses)) |
| 523 | exitWithError(Message: "Pseudo Probe decoder fail in .pseudo_probe section" ); |
| 524 | } |
| 525 | } |
| 526 | |
| 527 | // Build TopLevelProbeFrameMap to track size for optimized inlinees when probe |
| 528 | // is available |
| 529 | if (TrackFuncContextSize) { |
| 530 | for (auto &Child : ProbeDecoder.getDummyInlineRoot().getChildren()) { |
| 531 | auto *Frame = &Child; |
| 532 | StringRef FuncName = |
| 533 | ProbeDecoder.getFuncDescForGUID(GUID: Frame->Guid)->FuncName; |
| 534 | TopLevelProbeFrameMap[FuncName] = Frame; |
| 535 | } |
| 536 | } |
| 537 | |
| 538 | if (ShowPseudoProbe) |
| 539 | ProbeDecoder.printGUID2FuncDescMap(OS&: outs()); |
| 540 | } |
| 541 | |
| 542 | void ProfiledBinary::decodePseudoProbe() { |
| 543 | OwningBinary<Binary> OBinary = |
| 544 | unwrapOrError(EO: createBinary(Path: PseudoProbeBinPath), Args&: PseudoProbeBinPath); |
| 545 | auto *Obj = cast<ObjectFile>(Val: OBinary.getBinary()); |
| 546 | decodePseudoProbe(Obj); |
| 547 | } |
| 548 | |
| 549 | void ProfiledBinary::setIsFuncEntry(FuncRange *FuncRange, |
| 550 | StringRef RangeSymName) { |
| 551 | // Skip external function symbol. |
| 552 | if (!FuncRange) |
| 553 | return; |
| 554 | |
| 555 | // Set IsFuncEntry to ture if there is only one range in the function or the |
| 556 | // RangeSymName from ELF is equal to its DWARF-based function name. |
| 557 | if (FuncRange->Func->Ranges.size() == 1 || |
| 558 | (!FuncRange->IsFuncEntry && |
| 559 | (FuncRange->getFuncName() == RangeSymName || |
| 560 | FuncRange->Func->NameStatus != DwarfNameStatus::Matched))) |
| 561 | FuncRange->IsFuncEntry = true; |
| 562 | } |
| 563 | |
| 564 | bool ProfiledBinary::dissassembleSymbol(std::size_t SI, ArrayRef<uint8_t> Bytes, |
| 565 | SectionSymbolsTy &Symbols, |
| 566 | const SectionRef &Section) { |
| 567 | std::size_t SE = Symbols.size(); |
| 568 | uint64_t SectionAddress = Section.getAddress(); |
| 569 | uint64_t SectSize = Section.getSize(); |
| 570 | uint64_t StartAddress = Symbols[SI].Addr; |
| 571 | uint64_t NextStartAddress = |
| 572 | (SI + 1 < SE) ? Symbols[SI + 1].Addr : SectionAddress + SectSize; |
| 573 | FuncRange *FRange = findFuncRange(Address: StartAddress); |
| 574 | setIsFuncEntry(FuncRange: FRange, RangeSymName: FunctionSamples::getCanonicalFnName(FnName: Symbols[SI].Name)); |
| 575 | StringRef SymbolName = |
| 576 | ShowCanonicalFnName |
| 577 | ? FunctionSamples::getCanonicalFnName(FnName: Symbols[SI].Name) |
| 578 | : Symbols[SI].Name; |
| 579 | bool ShowDisassembly = |
| 580 | ShowDisassemblyOnly && (DisassembleFunctionSet.empty() || |
| 581 | DisassembleFunctionSet.count(Key: SymbolName)); |
| 582 | if (ShowDisassembly) |
| 583 | outs() << '<' << SymbolName << ">:\n" ; |
| 584 | |
| 585 | uint64_t Address = StartAddress; |
| 586 | // Size of a consecutive invalid instruction range starting from Address -1 |
| 587 | // backwards. |
| 588 | uint64_t InvalidInstLength = 0; |
| 589 | while (Address < NextStartAddress) { |
| 590 | MCInst Inst; |
| 591 | uint64_t Size; |
| 592 | // Disassemble an instruction. |
| 593 | bool Disassembled = DisAsm->getInstruction( |
| 594 | Instr&: Inst, Size, Bytes: Bytes.slice(N: Address - SectionAddress), Address, CStream&: nulls()); |
| 595 | if (Size == 0) |
| 596 | Size = 1; |
| 597 | |
| 598 | if (ShowDisassembly) { |
| 599 | if (ShowPseudoProbe) { |
| 600 | ProbeDecoder.printProbeForAddress(OS&: outs(), Address); |
| 601 | } |
| 602 | outs() << format(Fmt: "%8" PRIx64 ":" , Vals: Address); |
| 603 | size_t Start = outs().tell(); |
| 604 | if (Disassembled) |
| 605 | IPrinter->printInst(MI: &Inst, Address: Address + Size, Annot: "" , STI: *STI, OS&: outs()); |
| 606 | else |
| 607 | outs() << "\t<unknown>" ; |
| 608 | if (ShowSourceLocations) { |
| 609 | unsigned Cur = outs().tell() - Start; |
| 610 | if (Cur < 40) |
| 611 | outs().indent(NumSpaces: 40 - Cur); |
| 612 | InstructionPointer IP(this, Address); |
| 613 | outs() << getReversedLocWithContext( |
| 614 | Context: symbolize(IP, UseCanonicalFnName: ShowCanonicalFnName, UseProbeDiscriminator: ShowPseudoProbe)); |
| 615 | } |
| 616 | outs() << "\n" ; |
| 617 | } |
| 618 | |
| 619 | if (Disassembled) { |
| 620 | const MCInstrDesc &MCDesc = MII->get(Opcode: Inst.getOpcode()); |
| 621 | |
| 622 | // Record instruction size. |
| 623 | AddressToInstSizeMap[Address] = Size; |
| 624 | |
| 625 | // Populate address maps. |
| 626 | CodeAddressVec.push_back(x: Address); |
| 627 | if (MCDesc.isCall()) { |
| 628 | CallAddressSet.insert(x: Address); |
| 629 | UncondBranchAddrSet.insert(x: Address); |
| 630 | } else if (MCDesc.isReturn()) { |
| 631 | RetAddressSet.insert(x: Address); |
| 632 | UncondBranchAddrSet.insert(x: Address); |
| 633 | } else if (MCDesc.isBranch()) { |
| 634 | if (MCDesc.isUnconditionalBranch()) |
| 635 | UncondBranchAddrSet.insert(x: Address); |
| 636 | BranchAddressSet.insert(x: Address); |
| 637 | } |
| 638 | |
| 639 | // Record potential call targets for tail frame inference later-on. |
| 640 | if (InferMissingFrames && FRange) { |
| 641 | uint64_t Target = 0; |
| 642 | [[maybe_unused]] bool Err = |
| 643 | MIA->evaluateBranch(Inst, Addr: Address, Size, Target); |
| 644 | if (MCDesc.isCall()) { |
| 645 | // Indirect call targets are unknown at this point. Recording the |
| 646 | // unknown target (zero) for further LBR-based refinement. |
| 647 | MissingContextInferrer->CallEdges[Address].insert(x: Target); |
| 648 | } else if (MCDesc.isUnconditionalBranch()) { |
| 649 | assert(Err && |
| 650 | "target should be known for unconditional direct branch" ); |
| 651 | // Any inter-function unconditional jump is considered tail call at |
| 652 | // this point. This is not 100% accurate and could further be |
| 653 | // optimized based on some source annotation. |
| 654 | FuncRange *ToFRange = findFuncRange(Address: Target); |
| 655 | if (ToFRange && ToFRange->Func != FRange->Func) |
| 656 | MissingContextInferrer->TailCallEdges[Address].insert(x: Target); |
| 657 | LLVM_DEBUG({ |
| 658 | dbgs() << "Direct Tail call: " << format("%8" PRIx64 ":" , Address); |
| 659 | IPrinter->printInst(&Inst, Address + Size, "" , *STI.get(), dbgs()); |
| 660 | dbgs() << "\n" ; |
| 661 | }); |
| 662 | } else if (MCDesc.isIndirectBranch() && MCDesc.isBarrier()) { |
| 663 | // This is an indirect branch but not necessarily an indirect tail |
| 664 | // call. The isBarrier check is to filter out conditional branch. |
| 665 | // Similar with indirect call targets, recording the unknown target |
| 666 | // (zero) for further LBR-based refinement. |
| 667 | MissingContextInferrer->TailCallEdges[Address].insert(x: Target); |
| 668 | LLVM_DEBUG({ |
| 669 | dbgs() << "Indirect Tail call: " |
| 670 | << format("%8" PRIx64 ":" , Address); |
| 671 | IPrinter->printInst(&Inst, Address + Size, "" , *STI.get(), dbgs()); |
| 672 | dbgs() << "\n" ; |
| 673 | }); |
| 674 | } |
| 675 | } |
| 676 | |
| 677 | if (InvalidInstLength) { |
| 678 | AddrsWithInvalidInstruction.insert( |
| 679 | V: {Address - InvalidInstLength, Address - 1}); |
| 680 | InvalidInstLength = 0; |
| 681 | } |
| 682 | } else { |
| 683 | InvalidInstLength += Size; |
| 684 | } |
| 685 | |
| 686 | Address += Size; |
| 687 | } |
| 688 | |
| 689 | if (InvalidInstLength) |
| 690 | AddrsWithInvalidInstruction.insert( |
| 691 | V: {Address - InvalidInstLength, Address - 1}); |
| 692 | |
| 693 | if (ShowDisassembly) |
| 694 | outs() << "\n" ; |
| 695 | |
| 696 | return true; |
| 697 | } |
| 698 | |
| 699 | void ProfiledBinary::setUpDisassembler(const ObjectFile *Obj) { |
| 700 | const Target *TheTarget = getTarget(Obj); |
| 701 | StringRef FileName = Obj->getFileName(); |
| 702 | |
| 703 | MRI.reset(p: TheTarget->createMCRegInfo(TT: TheTriple)); |
| 704 | if (!MRI) |
| 705 | exitWithError(Message: "no register info for target " + TheTriple.str(), Whence: FileName); |
| 706 | |
| 707 | MCTargetOptions MCOptions; |
| 708 | AsmInfo.reset(p: TheTarget->createMCAsmInfo(MRI: *MRI, TheTriple, Options: MCOptions)); |
| 709 | if (!AsmInfo) |
| 710 | exitWithError(Message: "no assembly info for target " + TheTriple.str(), Whence: FileName); |
| 711 | |
| 712 | Expected<SubtargetFeatures> Features = Obj->getFeatures(); |
| 713 | if (!Features) |
| 714 | exitWithError(E: Features.takeError(), Whence: FileName); |
| 715 | STI.reset( |
| 716 | p: TheTarget->createMCSubtargetInfo(TheTriple, CPU: "" , Features: Features->getString())); |
| 717 | if (!STI) |
| 718 | exitWithError(Message: "no subtarget info for target " + TheTriple.str(), Whence: FileName); |
| 719 | |
| 720 | MII.reset(p: TheTarget->createMCInstrInfo()); |
| 721 | if (!MII) |
| 722 | exitWithError(Message: "no instruction info for target " + TheTriple.str(), |
| 723 | Whence: FileName); |
| 724 | |
| 725 | MCContext Ctx(TheTriple, AsmInfo.get(), MRI.get(), STI.get()); |
| 726 | std::unique_ptr<MCObjectFileInfo> MOFI( |
| 727 | TheTarget->createMCObjectFileInfo(Ctx, /*PIC=*/false)); |
| 728 | Ctx.setObjectFileInfo(MOFI.get()); |
| 729 | DisAsm.reset(p: TheTarget->createMCDisassembler(STI: *STI, Ctx)); |
| 730 | if (!DisAsm) |
| 731 | exitWithError(Message: "no disassembler for target " + TheTriple.str(), Whence: FileName); |
| 732 | |
| 733 | MIA.reset(p: TheTarget->createMCInstrAnalysis(Info: MII.get())); |
| 734 | |
| 735 | int AsmPrinterVariant = AsmInfo->getAssemblerDialect(); |
| 736 | IPrinter.reset(p: TheTarget->createMCInstPrinter(T: TheTriple, SyntaxVariant: AsmPrinterVariant, |
| 737 | MAI: *AsmInfo, MII: *MII, MRI: *MRI)); |
| 738 | IPrinter->setPrintBranchImmAsAddress(true); |
| 739 | } |
| 740 | |
| 741 | void ProfiledBinary::disassemble(const ObjectFile *Obj) { |
| 742 | // Set up disassembler and related components. |
| 743 | setUpDisassembler(Obj); |
| 744 | |
| 745 | // Create a mapping from virtual address to symbol name. The symbols in text |
| 746 | // sections are the candidates to dissassemble. |
| 747 | std::map<SectionRef, SectionSymbolsTy> AllSymbols; |
| 748 | StringRef FileName = Obj->getFileName(); |
| 749 | for (const SymbolRef &Symbol : Obj->symbols()) { |
| 750 | const uint64_t Addr = unwrapOrError(EO: Symbol.getAddress(), Args&: FileName); |
| 751 | const StringRef Name = unwrapOrError(EO: Symbol.getName(), Args&: FileName); |
| 752 | section_iterator SecI = unwrapOrError(EO: Symbol.getSection(), Args&: FileName); |
| 753 | if (SecI != Obj->section_end()) |
| 754 | AllSymbols[*SecI].push_back(x: SymbolInfoTy(Addr, Name, ELF::STT_NOTYPE)); |
| 755 | } |
| 756 | |
| 757 | // Sort all the symbols. Use a stable sort to stabilize the output. |
| 758 | for (std::pair<const SectionRef, SectionSymbolsTy> &SecSyms : AllSymbols) |
| 759 | stable_sort(Range&: SecSyms.second); |
| 760 | |
| 761 | assert((DisassembleFunctionSet.empty() || ShowDisassemblyOnly) && |
| 762 | "Functions to disassemble should be only specified together with " |
| 763 | "--show-disassembly-only" ); |
| 764 | |
| 765 | if (ShowDisassemblyOnly) |
| 766 | outs() << "\nDisassembly of " << FileName << ":\n" ; |
| 767 | |
| 768 | // Dissassemble a text section. |
| 769 | for (section_iterator SI = Obj->section_begin(), SE = Obj->section_end(); |
| 770 | SI != SE; ++SI) { |
| 771 | const SectionRef &Section = *SI; |
| 772 | if (!Section.isText()) |
| 773 | continue; |
| 774 | |
| 775 | uint64_t ImageLoadAddr = getPreferredBaseAddress(); |
| 776 | uint64_t SectionAddress = Section.getAddress() - ImageLoadAddr; |
| 777 | uint64_t SectSize = Section.getSize(); |
| 778 | if (!SectSize) |
| 779 | continue; |
| 780 | |
| 781 | // Register the text section. |
| 782 | TextSections.insert(x: {SectionAddress, SectSize}); |
| 783 | |
| 784 | StringRef SectionName = unwrapOrError(EO: Section.getName(), Args&: FileName); |
| 785 | |
| 786 | if (ShowDisassemblyOnly) { |
| 787 | outs() << "\nDisassembly of section " << SectionName; |
| 788 | outs() << " [" << format(Fmt: "0x%" PRIx64, Vals: Section.getAddress()) << ", " |
| 789 | << format(Fmt: "0x%" PRIx64, Vals: Section.getAddress() + SectSize) |
| 790 | << "]:\n\n" ; |
| 791 | } |
| 792 | |
| 793 | if (isa<ELFObjectFileBase>(Val: Obj) && SectionName == ".plt" ) |
| 794 | continue; |
| 795 | |
| 796 | // Get the section data. |
| 797 | ArrayRef<uint8_t> Bytes = |
| 798 | arrayRefFromStringRef(Input: unwrapOrError(EO: Section.getContents(), Args&: FileName)); |
| 799 | |
| 800 | // Get the list of all the symbols in this section. |
| 801 | SectionSymbolsTy &Symbols = AllSymbols[Section]; |
| 802 | |
| 803 | // Disassemble symbol by symbol. |
| 804 | for (std::size_t SI = 0, SE = Symbols.size(); SI != SE; ++SI) { |
| 805 | if (!dissassembleSymbol(SI, Bytes, Symbols, Section)) |
| 806 | exitWithError(Message: "disassembling error" , Whence: FileName); |
| 807 | } |
| 808 | } |
| 809 | |
| 810 | if (!AddrsWithInvalidInstruction.empty()) { |
| 811 | if (ShowDetailedWarning) { |
| 812 | for (auto &Addr : AddrsWithInvalidInstruction) { |
| 813 | WithColor::warning() |
| 814 | << "Invalid instructions at " << format(Fmt: "%8" PRIx64, Vals: Addr.first) |
| 815 | << " - " << format(Fmt: "%8" PRIx64, Vals: Addr.second) << "\n" ; |
| 816 | } |
| 817 | } |
| 818 | WithColor::warning() << "Found " << AddrsWithInvalidInstruction.size() |
| 819 | << " invalid instructions\n" ; |
| 820 | AddrsWithInvalidInstruction.clear(); |
| 821 | } |
| 822 | |
| 823 | // Dissassemble rodata section to check if FS discriminator symbol exists. |
| 824 | checkUseFSDiscriminator(Obj, AllSymbols); |
| 825 | } |
| 826 | |
| 827 | void ProfiledBinary::checkUseFSDiscriminator( |
| 828 | const ObjectFile *Obj, std::map<SectionRef, SectionSymbolsTy> &AllSymbols) { |
| 829 | const char *FSDiscriminatorVar = "__llvm_fs_discriminator__" ; |
| 830 | for (section_iterator SI = Obj->section_begin(), SE = Obj->section_end(); |
| 831 | SI != SE; ++SI) { |
| 832 | const SectionRef &Section = *SI; |
| 833 | if (!Section.isData() || Section.getSize() == 0) |
| 834 | continue; |
| 835 | SectionSymbolsTy &Symbols = AllSymbols[Section]; |
| 836 | |
| 837 | for (std::size_t SI = 0, SE = Symbols.size(); SI != SE; ++SI) { |
| 838 | if (Symbols[SI].Name == FSDiscriminatorVar) { |
| 839 | UseFSDiscriminator = true; |
| 840 | return; |
| 841 | } |
| 842 | } |
| 843 | } |
| 844 | } |
| 845 | |
| 846 | void ProfiledBinary::populateSymbolAddressList(const ObjectFile *Obj) { |
| 847 | // Create a mapping from virtual address to symbol GUID and the other way |
| 848 | // around. |
| 849 | StringRef FileName = Obj->getFileName(); |
| 850 | for (const SymbolRef &Symbol : Obj->symbols()) { |
| 851 | const uint64_t Addr = unwrapOrError(EO: Symbol.getAddress(), Args&: FileName); |
| 852 | const StringRef Name = unwrapOrError(EO: Symbol.getName(), Args&: FileName); |
| 853 | uint64_t GUID = Function::getGUIDAssumingExternalLinkage(GlobalName: Name); |
| 854 | SymbolStartAddrs[GUID] = Addr; |
| 855 | StartAddrToSymMap.emplace(args: Addr, args&: GUID); |
| 856 | } |
| 857 | } |
| 858 | |
| 859 | void ProfiledBinary::loadSymbolsFromSymtab(const ObjectFile *Obj) { |
| 860 | // Load binary functions from symbol table when Debug info is incomplete. |
| 861 | // Strip the internal suffixes which are not reflected in the DWARF info. |
| 862 | const SmallVector<StringRef, 10> Suffixes( |
| 863 | {// Internal suffixes from CoroSplit pass |
| 864 | ".cleanup" , ".destroy" , ".resume" , |
| 865 | // Internal suffixes from Bolt |
| 866 | ".cold" , ".warm" , |
| 867 | // Compiler/LTO internal |
| 868 | ".llvm." , ".part." , ".isra." , ".constprop." , ".lto_priv." }); |
| 869 | StringRef FileName = Obj->getFileName(); |
| 870 | // Only apply this to ELF binary. e.g. COFF file format doesn't have `size` |
| 871 | // field in the symbol table. |
| 872 | bool IsELFObject = isa<ELFObjectFileBase>(Val: Obj); |
| 873 | if (!IsELFObject) |
| 874 | return; |
| 875 | for (const SymbolRef &Symbol : Obj->symbols()) { |
| 876 | const SymbolRef::Type Type = unwrapOrError(EO: Symbol.getType(), Args&: FileName); |
| 877 | const uint64_t StartAddr = unwrapOrError(EO: Symbol.getAddress(), Args&: FileName); |
| 878 | const StringRef Name = unwrapOrError(EO: Symbol.getName(), Args&: FileName); |
| 879 | uint64_t Size = 0; |
| 880 | if (LLVM_LIKELY(IsELFObject)) { |
| 881 | ELFSymbolRef ElfSymbol(Symbol); |
| 882 | Size = ElfSymbol.getSize(); |
| 883 | } |
| 884 | |
| 885 | if (Size == 0 || Type != SymbolRef::ST_Function) |
| 886 | continue; |
| 887 | |
| 888 | const uint64_t EndAddr = StartAddr + Size; |
| 889 | const StringRef SymName = |
| 890 | FunctionSamples::getCanonicalFnName(FnName: Name, Suffixes); |
| 891 | assert(StartAddr < EndAddr && StartAddr >= getPreferredBaseAddress() && |
| 892 | "Function range is invalid." ); |
| 893 | |
| 894 | auto Range = findFuncRange(Address: StartAddr); |
| 895 | if (!Range) { |
| 896 | assert(findFuncRange(EndAddr - 1) == nullptr && |
| 897 | "Function range overlaps with existing functions." ); |
| 898 | // Function from symbol table not found previously in DWARF, store ranges. |
| 899 | auto Ret = BinaryFunctions.emplace(args: SymName, args: BinaryFunction()); |
| 900 | auto &Func = Ret.first->second; |
| 901 | if (Ret.second) { |
| 902 | Func.FuncName = Ret.first->first; |
| 903 | HashBinaryFunctions[Function::getGUIDAssumingExternalLinkage(GlobalName: SymName)] = |
| 904 | &Func; |
| 905 | } |
| 906 | |
| 907 | Func.NameStatus = DwarfNameStatus::Missing; |
| 908 | Func.Ranges.emplace_back(args: StartAddr, args: EndAddr); |
| 909 | |
| 910 | auto R = StartAddrToFuncRangeMap.emplace(args: StartAddr, args: FuncRange()); |
| 911 | FuncRange &FRange = R.first->second; |
| 912 | |
| 913 | FRange.Func = &Func; |
| 914 | FRange.StartAddress = StartAddr; |
| 915 | FRange.EndAddress = EndAddr; |
| 916 | |
| 917 | } else if (SymName != Range->getFuncName()) { |
| 918 | // Function range already found from DWARF, but the symbol name from |
| 919 | // symbol table is inconsistent with debug info. Log this discrepancy and |
| 920 | // the alternative function GUID. |
| 921 | if (ShowDetailedWarning) |
| 922 | WithColor::warning() |
| 923 | << "Conflicting name for symbol " << Name << " with range (" |
| 924 | << format(Fmt: "%8" PRIx64, Vals: StartAddr) << ", " |
| 925 | << format(Fmt: "%8" PRIx64, Vals: EndAddr) << ")" |
| 926 | << ", but the DWARF symbol " << Range->getFuncName() |
| 927 | << " indicates an overlapping range (" |
| 928 | << format(Fmt: "%8" PRIx64, Vals: Range->StartAddress) << ", " |
| 929 | << format(Fmt: "%8" PRIx64, Vals: Range->EndAddress) << ")\n" ; |
| 930 | |
| 931 | assert(StartAddr == Range->StartAddress && EndAddr == Range->EndAddress && |
| 932 | "Mismatched function range" ); |
| 933 | |
| 934 | Range->Func->NameStatus = DwarfNameStatus::Mismatch; |
| 935 | AlternativeFunctionGUIDs.emplace( |
| 936 | args&: Range->Func, args: Function::getGUIDAssumingExternalLinkage(GlobalName: SymName)); |
| 937 | |
| 938 | } else if (StartAddr != Range->StartAddress && |
| 939 | EndAddr != Range->EndAddress) { |
| 940 | // Function already found in DWARF, but the address range from symbol |
| 941 | // table conflicts/overlaps with the debug info. |
| 942 | WithColor::warning() << "Conflicting range for symbol " << Name |
| 943 | << " with range (" << format(Fmt: "%8" PRIx64, Vals: StartAddr) |
| 944 | << ", " << format(Fmt: "%8" PRIx64, Vals: EndAddr) << ")" |
| 945 | << ", but the DWARF symbol " << Range->getFuncName() |
| 946 | << " indicates another range (" |
| 947 | << format(Fmt: "%8" PRIx64, Vals: Range->StartAddress) << ", " |
| 948 | << format(Fmt: "%8" PRIx64, Vals: Range->EndAddress) << ")\n" ; |
| 949 | } |
| 950 | } |
| 951 | } |
| 952 | |
| 953 | void ProfiledBinary::loadSymbolsFromDWARFUnit(DWARFUnit &CompilationUnit) { |
| 954 | for (const auto &DieInfo : CompilationUnit.dies()) { |
| 955 | llvm::DWARFDie Die(&CompilationUnit, &DieInfo); |
| 956 | |
| 957 | if (!Die.isSubprogramDIE()) |
| 958 | continue; |
| 959 | auto Name = Die.getName(Kind: llvm::DINameKind::LinkageName); |
| 960 | if (!Name) |
| 961 | Name = Die.getName(Kind: llvm::DINameKind::ShortName); |
| 962 | if (!Name) |
| 963 | continue; |
| 964 | |
| 965 | auto RangesOrError = Die.getAddressRanges(); |
| 966 | if (!RangesOrError) |
| 967 | continue; |
| 968 | const DWARFAddressRangesVector &Ranges = RangesOrError.get(); |
| 969 | |
| 970 | if (Ranges.empty()) |
| 971 | continue; |
| 972 | |
| 973 | // Different DWARF symbols can have same function name, search or create |
| 974 | // BinaryFunction indexed by the name. |
| 975 | auto Ret = BinaryFunctions.emplace(args&: Name, args: BinaryFunction()); |
| 976 | auto &Func = Ret.first->second; |
| 977 | if (Ret.second) |
| 978 | Func.FuncName = Ret.first->first; |
| 979 | |
| 980 | for (const auto &Range : Ranges) { |
| 981 | uint64_t StartAddress = Range.LowPC; |
| 982 | uint64_t EndAddress = Range.HighPC; |
| 983 | |
| 984 | if (EndAddress <= StartAddress || |
| 985 | StartAddress < getPreferredBaseAddress()) |
| 986 | continue; |
| 987 | |
| 988 | // We may want to know all ranges for one function. Here group the |
| 989 | // ranges and store them into BinaryFunction. |
| 990 | Func.Ranges.emplace_back(args&: StartAddress, args&: EndAddress); |
| 991 | |
| 992 | auto R = StartAddrToFuncRangeMap.emplace(args&: StartAddress, args: FuncRange()); |
| 993 | if (R.second) { |
| 994 | FuncRange &FRange = R.first->second; |
| 995 | FRange.Func = &Func; |
| 996 | FRange.StartAddress = StartAddress; |
| 997 | FRange.EndAddress = EndAddress; |
| 998 | } else { |
| 999 | AddrsWithMultipleSymbols.insert(V: StartAddress); |
| 1000 | if (ShowDetailedWarning) |
| 1001 | WithColor::warning() |
| 1002 | << "Duplicated symbol start address at " |
| 1003 | << format(Fmt: "%8" PRIx64, Vals: StartAddress) << " " |
| 1004 | << R.first->second.getFuncName() << " and " << Name << "\n" ; |
| 1005 | } |
| 1006 | } |
| 1007 | } |
| 1008 | } |
| 1009 | |
| 1010 | void ProfiledBinary::loadSymbolsFromDWARF(ObjectFile &Obj) { |
| 1011 | auto DebugContext = llvm::DWARFContext::create( |
| 1012 | Obj, RelocAction: DWARFContext::ProcessDebugRelocations::Process, L: nullptr, DWPName: DWPPath); |
| 1013 | if (!DebugContext) |
| 1014 | exitWithError(Message: "Error creating the debug info context" , Whence: Path); |
| 1015 | |
| 1016 | for (const auto &CompilationUnit : DebugContext->compile_units()) |
| 1017 | loadSymbolsFromDWARFUnit(CompilationUnit&: *CompilationUnit); |
| 1018 | |
| 1019 | // Handles DWO sections that can either be in .o, .dwo or .dwp files. |
| 1020 | uint32_t NumOfDWOMissing = 0; |
| 1021 | for (const auto &CompilationUnit : DebugContext->compile_units()) { |
| 1022 | DWARFUnit *const DwarfUnit = CompilationUnit.get(); |
| 1023 | if (DwarfUnit->getDWOId()) { |
| 1024 | DWARFUnit *DWOCU = DwarfUnit->getNonSkeletonUnitDIE(ExtractUnitDIEOnly: false).getDwarfUnit(); |
| 1025 | if (!DWOCU->isDWOUnit()) { |
| 1026 | NumOfDWOMissing++; |
| 1027 | if (ShowDetailedWarning) { |
| 1028 | std::string DWOName = dwarf::toString( |
| 1029 | V: DwarfUnit->getUnitDIE().find( |
| 1030 | Attrs: {dwarf::DW_AT_dwo_name, dwarf::DW_AT_GNU_dwo_name}), |
| 1031 | Default: "" ); |
| 1032 | WithColor::warning() << "DWO debug information for " << DWOName |
| 1033 | << " was not loaded.\n" ; |
| 1034 | } |
| 1035 | continue; |
| 1036 | } |
| 1037 | loadSymbolsFromDWARFUnit(CompilationUnit&: *DWOCU); |
| 1038 | } |
| 1039 | } |
| 1040 | |
| 1041 | if (NumOfDWOMissing) |
| 1042 | WithColor::warning() |
| 1043 | << " DWO debug information was not loaded for " << NumOfDWOMissing |
| 1044 | << " modules. Please check the .o, .dwo or .dwp path.\n" ; |
| 1045 | if (BinaryFunctions.empty()) |
| 1046 | WithColor::warning() << "Loading of DWARF info completed, but no binary " |
| 1047 | "functions have been retrieved.\n" ; |
| 1048 | // Populate the hash binary function map for MD5 function name lookup. This |
| 1049 | // is done after BinaryFunctions are finalized. |
| 1050 | for (auto &BinaryFunction : BinaryFunctions) { |
| 1051 | HashBinaryFunctions[MD5Hash(Str: StringRef(BinaryFunction.first))] = |
| 1052 | &BinaryFunction.second; |
| 1053 | } |
| 1054 | |
| 1055 | if (!AddrsWithMultipleSymbols.empty()) { |
| 1056 | WithColor::warning() << "Found " << AddrsWithMultipleSymbols.size() |
| 1057 | << " start addresses with multiple symbols\n" ; |
| 1058 | AddrsWithMultipleSymbols.clear(); |
| 1059 | } |
| 1060 | } |
| 1061 | |
| 1062 | void ProfiledBinary::populateSymbolListFromDWARF( |
| 1063 | ProfileSymbolList &SymbolList) { |
| 1064 | for (auto &I : StartAddrToFuncRangeMap) |
| 1065 | SymbolList.add(Name: I.second.getFuncName()); |
| 1066 | } |
| 1067 | |
| 1068 | symbolize::LLVMSymbolizer::Options ProfiledBinary::getSymbolizerOpts() const { |
| 1069 | symbolize::LLVMSymbolizer::Options SymbolizerOpts; |
| 1070 | SymbolizerOpts.PrintFunctions = |
| 1071 | DILineInfoSpecifier::FunctionNameKind::LinkageName; |
| 1072 | SymbolizerOpts.Demangle = false; |
| 1073 | SymbolizerOpts.DefaultArch = TheTriple.getArchName().str(); |
| 1074 | SymbolizerOpts.UseSymbolTable = false; |
| 1075 | SymbolizerOpts.RelativeAddresses = false; |
| 1076 | SymbolizerOpts.DWPName = DWPPath; |
| 1077 | return SymbolizerOpts; |
| 1078 | } |
| 1079 | |
| 1080 | SampleContextFrameVector ProfiledBinary::symbolize(const InstructionPointer &IP, |
| 1081 | bool UseCanonicalFnName, |
| 1082 | bool UseProbeDiscriminator) { |
| 1083 | assert(this == IP.Binary && |
| 1084 | "Binary should only symbolize its own instruction" ); |
| 1085 | DIInliningInfo InlineStack = |
| 1086 | unwrapOrError(EO: Symbolizer->symbolizeInlinedCode( |
| 1087 | ModuleName: SymbolizerPath.str(), ModuleOffset: getSectionedAddress(Address: IP.Address)), |
| 1088 | Args&: SymbolizerPath); |
| 1089 | |
| 1090 | SampleContextFrameVector CallStack; |
| 1091 | for (int32_t I = InlineStack.getNumberOfFrames() - 1; I >= 0; I--) { |
| 1092 | const auto &CallerFrame = InlineStack.getFrame(Index: I); |
| 1093 | if (CallerFrame.FunctionName.empty() || |
| 1094 | (CallerFrame.FunctionName == "<invalid>" )) |
| 1095 | break; |
| 1096 | |
| 1097 | StringRef FunctionName(CallerFrame.FunctionName); |
| 1098 | if (UseCanonicalFnName) |
| 1099 | FunctionName = FunctionSamples::getCanonicalFnName(FnName: FunctionName); |
| 1100 | |
| 1101 | uint32_t Discriminator = CallerFrame.Discriminator; |
| 1102 | uint32_t LineOffset = (CallerFrame.Line - CallerFrame.StartLine) & 0xffff; |
| 1103 | if (UseProbeDiscriminator) { |
| 1104 | LineOffset = |
| 1105 | PseudoProbeDwarfDiscriminator::extractProbeIndex(Value: Discriminator); |
| 1106 | Discriminator = 0; |
| 1107 | } |
| 1108 | |
| 1109 | LineLocation Line(LineOffset, Discriminator); |
| 1110 | auto It = NameStrings.insert(x: FunctionName.str()); |
| 1111 | CallStack.emplace_back(Args: FunctionId(StringRef(*It.first)), Args&: Line); |
| 1112 | } |
| 1113 | |
| 1114 | return CallStack; |
| 1115 | } |
| 1116 | |
| 1117 | StringRef ProfiledBinary::symbolizeDataAddress(uint64_t Address) { |
| 1118 | DIGlobal DataDIGlobal = |
| 1119 | unwrapOrError(EO: Symbolizer->symbolizeData(ModuleName: SymbolizerPath.str(), |
| 1120 | ModuleOffset: getSectionedAddress(Address)), |
| 1121 | Args&: SymbolizerPath); |
| 1122 | decltype(NameStrings)::iterator Iter; |
| 1123 | std::tie(args&: Iter, args: std::ignore) = NameStrings.insert(x: DataDIGlobal.Name); |
| 1124 | return StringRef(*Iter); |
| 1125 | } |
| 1126 | |
| 1127 | void ProfiledBinary::computeInlinedContextSizeForRange(uint64_t RangeBegin, |
| 1128 | uint64_t RangeEnd) { |
| 1129 | InstructionPointer IP(this, RangeBegin, true); |
| 1130 | |
| 1131 | if (IP.Address != RangeBegin) |
| 1132 | WithColor::warning() << "Invalid start instruction at " |
| 1133 | << format(Fmt: "%8" PRIx64, Vals: RangeBegin) << "\n" ; |
| 1134 | |
| 1135 | if (IP.Address >= RangeEnd) |
| 1136 | return; |
| 1137 | |
| 1138 | do { |
| 1139 | const SampleContextFrameVector SymbolizedCallStack = |
| 1140 | getFrameLocationStack(Address: IP.Address, UseProbeDiscriminator: usePseudoProbes()); |
| 1141 | uint64_t Size = AddressToInstSizeMap[IP.Address]; |
| 1142 | // Record instruction size for the corresponding context |
| 1143 | FuncSizeTracker.addInstructionForContext(Context: SymbolizedCallStack, InstrSize: Size); |
| 1144 | |
| 1145 | } while (IP.advance() && IP.Address < RangeEnd); |
| 1146 | } |
| 1147 | |
| 1148 | void ProfiledBinary::computeInlinedContextSizeForFunc( |
| 1149 | const BinaryFunction *Func) { |
| 1150 | // Note that a function can be spilt into multiple ranges, so compute for all |
| 1151 | // ranges of the function. |
| 1152 | for (const auto &Range : Func->Ranges) |
| 1153 | computeInlinedContextSizeForRange(RangeBegin: Range.first, RangeEnd: Range.second); |
| 1154 | |
| 1155 | // Track optimized-away inlinee for probed binary. A function inlined and then |
| 1156 | // optimized away should still have their probes left over in places. |
| 1157 | if (usePseudoProbes()) { |
| 1158 | auto I = TopLevelProbeFrameMap.find(Key: Func->FuncName); |
| 1159 | if (I != TopLevelProbeFrameMap.end()) { |
| 1160 | BinarySizeContextTracker::ProbeFrameStack ProbeContext; |
| 1161 | FuncSizeTracker.trackInlineesOptimizedAway(ProbeDecoder, ProbeNode: *I->second, |
| 1162 | ProbeContext); |
| 1163 | } |
| 1164 | } |
| 1165 | } |
| 1166 | |
| 1167 | void ProfiledBinary::loadSymbolsFromPseudoProbe() { |
| 1168 | if (!usePseudoProbes()) |
| 1169 | return; |
| 1170 | |
| 1171 | const AddressProbesMap &Address2ProbesMap = getAddress2ProbesMap(); |
| 1172 | for (auto *Func : ProfiledFunctions) { |
| 1173 | if (Func->NameStatus != DwarfNameStatus::Mismatch) |
| 1174 | continue; |
| 1175 | for (auto &[StartAddr, EndAddr] : Func->Ranges) { |
| 1176 | auto Range = findFuncRangeForStartAddr(Address: StartAddr); |
| 1177 | if (!Range->IsFuncEntry) |
| 1178 | continue; |
| 1179 | const auto &Probe = Address2ProbesMap.find(From: StartAddr, To: EndAddr); |
| 1180 | if (Probe.begin() != Probe.end()) { |
| 1181 | const MCDecodedPseudoProbeInlineTree *InlineTreeNode = |
| 1182 | Probe.begin()->get().getInlineTreeNode(); |
| 1183 | while (!InlineTreeNode->isTopLevelFunc()) |
| 1184 | InlineTreeNode = static_cast<MCDecodedPseudoProbeInlineTree *>( |
| 1185 | InlineTreeNode->Parent); |
| 1186 | |
| 1187 | auto TopLevelProbes = InlineTreeNode->getProbes(); |
| 1188 | [[maybe_unused]] auto TopProbe = TopLevelProbes.begin(); |
| 1189 | assert(TopProbe != TopLevelProbes.end() && |
| 1190 | TopProbe->getAddress() >= StartAddr && |
| 1191 | TopProbe->getAddress() < EndAddr && |
| 1192 | "Top level pseudo probe does not match function range" ); |
| 1193 | |
| 1194 | const auto *ProbeDesc = getFuncDescForGUID(GUID: InlineTreeNode->Guid); |
| 1195 | auto Ret = PseudoProbeNames.emplace(args&: Func, args: ProbeDesc->FuncName); |
| 1196 | if (!Ret.second && Ret.first->second != ProbeDesc->FuncName && |
| 1197 | ShowDetailedWarning) |
| 1198 | WithColor::warning() |
| 1199 | << "Mismatched pseudo probe names in function " << Func->FuncName |
| 1200 | << " at range: (" << format(Fmt: "%8" PRIx64, Vals: StartAddr) << ", " |
| 1201 | << format(Fmt: "%8" PRIx64, Vals: EndAddr) << "). " |
| 1202 | << "The previously found pseudo probe name is " |
| 1203 | << Ret.first->second << " but it conflicts with name " |
| 1204 | << ProbeDesc->FuncName |
| 1205 | << " This likely indicates a DWARF error that produces " |
| 1206 | "conflicting symbols at the same starting address.\n" ; |
| 1207 | } |
| 1208 | } |
| 1209 | } |
| 1210 | } |
| 1211 | |
| 1212 | StringRef ProfiledBinary::findPseudoProbeName(const BinaryFunction *Func) { |
| 1213 | auto ProbeName = PseudoProbeNames.find(x: Func); |
| 1214 | if (ProbeName == PseudoProbeNames.end()) |
| 1215 | return StringRef(); |
| 1216 | return ProbeName->second; |
| 1217 | } |
| 1218 | |
| 1219 | void ProfiledBinary::inferMissingFrames( |
| 1220 | const SmallVectorImpl<uint64_t> &Context, |
| 1221 | SmallVectorImpl<uint64_t> &NewContext) { |
| 1222 | MissingContextInferrer->inferMissingFrames(Context, NewContext); |
| 1223 | } |
| 1224 | |
| 1225 | InstructionPointer::InstructionPointer(const ProfiledBinary *Binary, |
| 1226 | uint64_t Address, bool RoundToNext) |
| 1227 | : Binary(Binary), Address(Address) { |
| 1228 | Index = Binary->getIndexForAddr(Address); |
| 1229 | if (RoundToNext) { |
| 1230 | // we might get address which is not the code |
| 1231 | // it should round to the next valid address |
| 1232 | if (Index >= Binary->getCodeAddrVecSize()) |
| 1233 | this->Address = UINT64_MAX; |
| 1234 | else |
| 1235 | this->Address = Binary->getAddressforIndex(Index); |
| 1236 | } |
| 1237 | } |
| 1238 | |
| 1239 | bool InstructionPointer::advance() { |
| 1240 | Index++; |
| 1241 | if (Index >= Binary->getCodeAddrVecSize()) { |
| 1242 | Address = UINT64_MAX; |
| 1243 | return false; |
| 1244 | } |
| 1245 | Address = Binary->getAddressforIndex(Index); |
| 1246 | return true; |
| 1247 | } |
| 1248 | |
| 1249 | bool InstructionPointer::backward() { |
| 1250 | if (Index == 0) { |
| 1251 | Address = 0; |
| 1252 | return false; |
| 1253 | } |
| 1254 | Index--; |
| 1255 | Address = Binary->getAddressforIndex(Index); |
| 1256 | return true; |
| 1257 | } |
| 1258 | |
| 1259 | void InstructionPointer::update(uint64_t Addr) { |
| 1260 | Address = Addr; |
| 1261 | Index = Binary->getIndexForAddr(Address); |
| 1262 | } |
| 1263 | |
| 1264 | } // end namespace sampleprof |
| 1265 | } // end namespace llvm |
| 1266 | |