1//===-- sanitizer_fuchsia.cpp ---------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file is shared between AddressSanitizer and other sanitizer
10// run-time libraries and implements Fuchsia-specific functions from
11// sanitizer_common.h.
12//===----------------------------------------------------------------------===//
13
14#include "sanitizer_fuchsia.h"
15#if SANITIZER_FUCHSIA
16
17# include <limits.h>
18# include <pthread.h>
19# include <stdlib.h>
20# include <unistd.h>
21# include <zircon/errors.h>
22# include <zircon/process.h>
23# include <zircon/syscalls.h>
24# include <zircon/utc.h>
25
26# include "sanitizer_common.h"
27# include "sanitizer_interface_internal.h"
28# include "sanitizer_libc.h"
29# include "sanitizer_mutex.h"
30
31namespace __sanitizer {
32
33void NORETURN internal__exit(int exitcode) { _zx_process_exit(exitcode); }
34
35uptr internal_sched_yield() {
36 zx_status_t status = _zx_thread_legacy_yield(0u);
37 CHECK_EQ(status, ZX_OK);
38 return 0; // Why doesn't this return void?
39}
40
41void internal_usleep(u64 useconds) {
42 zx_status_t status = _zx_nanosleep(_zx_deadline_after(ZX_USEC(useconds)));
43 CHECK_EQ(status, ZX_OK);
44}
45
46u64 NanoTime() {
47 zx_handle_t utc_clock = _zx_utc_reference_get();
48 CHECK_NE(utc_clock, ZX_HANDLE_INVALID);
49 zx_time_t time;
50 zx_status_t status = _zx_clock_read(utc_clock, &time);
51 CHECK_EQ(status, ZX_OK);
52 return time;
53}
54
55u64 MonotonicNanoTime() { return _zx_clock_get_monotonic(); }
56
57uptr internal_getpid() {
58 zx_info_handle_basic_t info;
59 zx_status_t status =
60 _zx_object_get_info(_zx_process_self(), ZX_INFO_HANDLE_BASIC, &info,
61 sizeof(info), NULL, NULL);
62 CHECK_EQ(status, ZX_OK);
63 uptr pid = static_cast<uptr>(info.koid);
64 CHECK_EQ(pid, info.koid);
65 return pid;
66}
67
68int internal_dlinfo(void *handle, int request, void *p) { UNIMPLEMENTED(); }
69
70uptr GetThreadSelf() { return reinterpret_cast<uptr>(thrd_current()); }
71
72ThreadID GetTid() { return GetThreadSelf(); }
73
74void Abort() { abort(); }
75
76int Atexit(void (*function)(void)) { return atexit(function); }
77
78void GetThreadStackTopAndBottom(bool, uptr *stack_top, uptr *stack_bottom) {
79 pthread_attr_t attr;
80 CHECK_EQ(pthread_getattr_np(pthread_self(), &attr), 0);
81 void *base;
82 size_t size;
83 CHECK_EQ(pthread_attr_getstack(&attr, &base, &size), 0);
84 CHECK_EQ(pthread_attr_destroy(&attr), 0);
85
86 *stack_bottom = reinterpret_cast<uptr>(base);
87 *stack_top = *stack_bottom + size;
88}
89
90void InitializePlatformEarly() {}
91void CheckASLR() {}
92void CheckMPROTECT() {}
93void PlatformPrepareForSandboxing(void *args) {}
94void DisableCoreDumperIfNecessary() {}
95void InstallDeadlySignalHandlers(SignalHandlerType handler) {}
96void SetAlternateSignalStack() {}
97void UnsetAlternateSignalStack() {}
98
99bool SignalContext::IsStackOverflow() const { return false; }
100void SignalContext::DumpAllRegisters(void *context) { UNIMPLEMENTED(); }
101const char *SignalContext::Describe() const { UNIMPLEMENTED(); }
102
103void FutexWait(atomic_uint32_t *p, u32 cmp) {
104 zx_status_t status = _zx_futex_wait(reinterpret_cast<zx_futex_t *>(p), cmp,
105 ZX_HANDLE_INVALID, ZX_TIME_INFINITE);
106 if (status != ZX_ERR_BAD_STATE) // Normal race.
107 CHECK_EQ(status, ZX_OK);
108}
109
110void FutexWake(atomic_uint32_t *p, u32 count) {
111 zx_status_t status = _zx_futex_wake(reinterpret_cast<zx_futex_t *>(p), count);
112 CHECK_EQ(status, ZX_OK);
113}
114
115uptr GetPageSize() { return _zx_system_get_page_size(); }
116
117uptr GetMmapGranularity() { return _zx_system_get_page_size(); }
118
119sanitizer_shadow_bounds_t ShadowBounds;
120
121// Any sanitizer that utilizes shadow should explicitly call whenever it's
122// appropriate for that sanitizer to reference shadow bounds. For ASan, this is
123// done in `InitializeShadowMemory` and for HWASan, this is done in
124// `InitShadow`.
125void InitShadowBounds() { ShadowBounds = __sanitizer_shadow_bounds(); }
126
127// TODO(leonardchan): It's not immediately clear from a user perspective if
128// `GetMaxUserVirtualAddress` should be called exatly once on runtime startup
129// or can be called multiple times. Currently it looks like most instances of
130// `GetMaxUserVirtualAddress` are meant to be called once, but if someone
131// decides to call this multiple times in the future, we should have a separate
132// function that's ok to call multiple times. Ideally we would just invoke this
133// syscall once. Also for Fuchsia, this syscall technically gets invoked twice
134// since `__sanitizer_shadow_bounds` also invokes this syscall under the hood.
135uptr GetMaxUserVirtualAddress() {
136 zx_info_vmar_t info;
137 zx_status_t status = _zx_object_get_info(_zx_vmar_root_self(), ZX_INFO_VMAR,
138 &info, sizeof(info), NULL, NULL);
139 CHECK_EQ(status, ZX_OK);
140
141 // Find the top of the accessible address space.
142 uintptr_t top = info.base + info.len;
143
144 // Round it up to a power-of-two size. There may be some pages at
145 // the top that can't actually be mapped, but for purposes of the
146 // the shadow, we'll pretend they could be.
147 int bit = (sizeof(uintptr_t) * CHAR_BIT) - __builtin_clzl(top);
148 if (top != (uintptr_t)1 << bit)
149 top = (uintptr_t)1 << (bit + 1);
150
151 return top - 1;
152}
153
154uptr GetMaxVirtualAddress() { return GetMaxUserVirtualAddress(); }
155
156bool ErrorIsOOM(error_t err) { return err == ZX_ERR_NO_MEMORY; }
157
158// For any sanitizer internal that needs to map something which can be unmapped
159// later, first attempt to map to a pre-allocated VMAR. This helps reduce
160// fragmentation from many small anonymous mmap calls. A good value for this
161// VMAR size would be the total size of your typical sanitizer internal objects
162// allocated in an "average" process lifetime. Examples of this include:
163// FakeStack, LowLevelAllocator mappings, TwoLevelMap, InternalMmapVector,
164// StackStore, CreateAsanThread, etc.
165//
166// This is roughly equal to the total sum of sanitizer internal mappings for a
167// large test case.
168constexpr size_t kSanitizerHeapVmarSize = 13ULL << 20;
169static zx_handle_t gSanitizerHeapVmar = ZX_HANDLE_INVALID;
170
171static zx_status_t GetSanitizerHeapVmar(zx_handle_t *vmar) {
172 zx_status_t status = ZX_OK;
173 if (gSanitizerHeapVmar == ZX_HANDLE_INVALID) {
174 CHECK_EQ(kSanitizerHeapVmarSize % GetPageSizeCached(), 0);
175 uintptr_t base;
176 status = _zx_vmar_allocate(
177 _zx_vmar_root_self(),
178 ZX_VM_CAN_MAP_READ | ZX_VM_CAN_MAP_WRITE | ZX_VM_CAN_MAP_SPECIFIC, 0,
179 kSanitizerHeapVmarSize, &gSanitizerHeapVmar, &base);
180 }
181 *vmar = gSanitizerHeapVmar;
182 if (status == ZX_OK)
183 CHECK_NE(gSanitizerHeapVmar, ZX_HANDLE_INVALID);
184 return status;
185}
186
187static zx_status_t TryVmoMapSanitizerVmar(zx_vm_option_t options,
188 size_t vmar_offset, zx_handle_t vmo,
189 size_t size, uintptr_t *addr,
190 zx_handle_t *vmar_used = nullptr) {
191 zx_handle_t vmar;
192 zx_status_t status = GetSanitizerHeapVmar(&vmar);
193 if (status != ZX_OK)
194 return status;
195
196 status = _zx_vmar_map(gSanitizerHeapVmar, options, vmar_offset, vmo,
197 /*vmo_offset=*/0, size, addr);
198 if (vmar_used)
199 *vmar_used = gSanitizerHeapVmar;
200 if (status == ZX_ERR_NO_RESOURCES || status == ZX_ERR_INVALID_ARGS) {
201 // This means there's no space in the heap VMAR, so fallback to the root
202 // VMAR.
203 status = _zx_vmar_map(_zx_vmar_root_self(), options, vmar_offset, vmo,
204 /*vmo_offset=*/0, size, addr);
205 if (vmar_used)
206 *vmar_used = _zx_vmar_root_self();
207 }
208
209 return status;
210}
211
212static void *DoAnonymousMmapOrDie(uptr size, const char *mem_type,
213 bool raw_report, bool die_for_nomem) {
214 size = RoundUpTo(size, GetPageSize());
215
216 zx_handle_t vmo;
217 zx_status_t status = _zx_vmo_create(size, 0, &vmo);
218 if (status != ZX_OK) {
219 if (status != ZX_ERR_NO_MEMORY || die_for_nomem)
220 ReportMmapFailureAndDie(size, mem_type, "zx_vmo_create", status,
221 raw_report);
222 return nullptr;
223 }
224 _zx_object_set_property(vmo, ZX_PROP_NAME, mem_type,
225 internal_strlen(mem_type));
226
227 uintptr_t addr;
228 status = TryVmoMapSanitizerVmar(ZX_VM_PERM_READ | ZX_VM_PERM_WRITE,
229 /*vmar_offset=*/0, vmo, size, &addr);
230 _zx_handle_close(vmo);
231
232 if (status != ZX_OK) {
233 if (status != ZX_ERR_NO_MEMORY || die_for_nomem)
234 ReportMmapFailureAndDie(size, mem_type, "zx_vmar_map", status,
235 raw_report);
236 return nullptr;
237 }
238
239 IncreaseTotalMmap(size);
240
241 return reinterpret_cast<void *>(addr);
242}
243
244void *MmapOrDie(uptr size, const char *mem_type, bool raw_report) {
245 return DoAnonymousMmapOrDie(size, mem_type, raw_report, true);
246}
247
248void *MmapNoReserveOrDie(uptr size, const char *mem_type) {
249 return MmapOrDie(size, mem_type);
250}
251
252void *MmapOrDieOnFatalError(uptr size, const char *mem_type) {
253 return DoAnonymousMmapOrDie(size, mem_type, false, false);
254}
255
256uptr ReservedAddressRange::Init(uptr init_size, const char *name,
257 uptr fixed_addr) {
258 init_size = RoundUpTo(init_size, GetPageSize());
259 DCHECK_EQ(os_handle_, ZX_HANDLE_INVALID);
260 uintptr_t base;
261 zx_handle_t vmar;
262 zx_status_t status = _zx_vmar_allocate(
263 _zx_vmar_root_self(),
264 ZX_VM_CAN_MAP_READ | ZX_VM_CAN_MAP_WRITE | ZX_VM_CAN_MAP_SPECIFIC, 0,
265 init_size, &vmar, &base);
266 if (status != ZX_OK)
267 ReportMmapFailureAndDie(init_size, name, "zx_vmar_allocate", status);
268 base_ = reinterpret_cast<void *>(base);
269 size_ = init_size;
270 name_ = name;
271 os_handle_ = vmar;
272
273 return reinterpret_cast<uptr>(base_);
274}
275
276static uptr DoMmapFixedOrDie(zx_handle_t vmar, uptr fixed_addr, uptr map_size,
277 void *base, const char *name, bool die_for_nomem) {
278 uptr offset = fixed_addr - reinterpret_cast<uptr>(base);
279 map_size = RoundUpTo(map_size, GetPageSize());
280 zx_handle_t vmo;
281 zx_status_t status = _zx_vmo_create(map_size, 0, &vmo);
282 if (status != ZX_OK) {
283 if (status != ZX_ERR_NO_MEMORY || die_for_nomem)
284 ReportMmapFailureAndDie(map_size, name, "zx_vmo_create", status);
285 return 0;
286 }
287 _zx_object_set_property(vmo, ZX_PROP_NAME, name, internal_strlen(name));
288 DCHECK_GE(base + size_, map_size + offset);
289 uintptr_t addr;
290
291 status =
292 _zx_vmar_map(vmar, ZX_VM_PERM_READ | ZX_VM_PERM_WRITE | ZX_VM_SPECIFIC,
293 offset, vmo, 0, map_size, &addr);
294 _zx_handle_close(vmo);
295 if (status != ZX_OK) {
296 if (status != ZX_ERR_NO_MEMORY || die_for_nomem) {
297 ReportMmapFailureAndDie(map_size, name, "zx_vmar_map", status);
298 }
299 return 0;
300 }
301 IncreaseTotalMmap(map_size);
302 return addr;
303}
304
305uptr ReservedAddressRange::Map(uptr fixed_addr, uptr map_size,
306 const char *name) {
307 return DoMmapFixedOrDie(os_handle_, fixed_addr, map_size, base_,
308 name ? name : name_, false);
309}
310
311uptr ReservedAddressRange::MapOrDie(uptr fixed_addr, uptr map_size,
312 const char *name) {
313 return DoMmapFixedOrDie(os_handle_, fixed_addr, map_size, base_,
314 name ? name : name_, true);
315}
316
317void UnmapOrDieVmar(void *addr, uptr size, zx_handle_t target_vmar,
318 bool raw_report) {
319 if (!addr || !size)
320 return;
321 size = RoundUpTo(size, GetPageSize());
322
323 zx_status_t status =
324 _zx_vmar_unmap(target_vmar, reinterpret_cast<uintptr_t>(addr), size);
325 if (status == ZX_ERR_INVALID_ARGS && target_vmar == gSanitizerHeapVmar) {
326 // If there wasn't any space in the heap vmar, the fallback was the root
327 // vmar.
328 status = _zx_vmar_unmap(_zx_vmar_root_self(),
329 reinterpret_cast<uintptr_t>(addr), size);
330 }
331 if (status != ZX_OK)
332 ReportMunmapFailureAndDie(addr, size, status, raw_report);
333
334 DecreaseTotalMmap(size);
335}
336
337void ReservedAddressRange::Unmap(uptr addr, uptr size) {
338 CHECK_LE(size, size_);
339 const zx_handle_t vmar = static_cast<zx_handle_t>(os_handle_);
340 if (addr == reinterpret_cast<uptr>(base_)) {
341 if (size == size_) {
342 // Destroying the vmar effectively unmaps the whole mapping.
343 _zx_vmar_destroy(vmar);
344 _zx_handle_close(vmar);
345 os_handle_ = static_cast<uptr>(ZX_HANDLE_INVALID);
346 DecreaseTotalMmap(size);
347 return;
348 }
349 } else {
350 CHECK_EQ(addr + size, reinterpret_cast<uptr>(base_) + size_);
351 }
352 // Partial unmapping does not affect the fact that the initial range is still
353 // reserved, and the resulting unmapped memory can't be reused.
354 UnmapOrDieVmar(reinterpret_cast<void *>(addr), size, vmar,
355 /*raw_report=*/false);
356}
357
358// This should never be called.
359void *MmapFixedNoAccess(uptr fixed_addr, uptr size, const char *name) {
360 UNIMPLEMENTED();
361}
362
363bool MprotectNoAccess(uptr addr, uptr size) {
364 return _zx_vmar_protect(_zx_vmar_root_self(), 0, addr, size) == ZX_OK;
365}
366
367bool MprotectReadOnly(uptr addr, uptr size) {
368 return _zx_vmar_protect(_zx_vmar_root_self(), ZX_VM_PERM_READ, addr, size) ==
369 ZX_OK;
370}
371
372bool MprotectReadWrite(uptr addr, uptr size) {
373 return _zx_vmar_protect(_zx_vmar_root_self(),
374 ZX_VM_PERM_READ | ZX_VM_PERM_WRITE, addr,
375 size) == ZX_OK;
376}
377
378void *MmapAlignedOrDieOnFatalError(uptr size, uptr alignment,
379 const char *mem_type) {
380 CHECK_GE(size, GetPageSize());
381 CHECK(IsPowerOfTwo(size));
382 CHECK(IsPowerOfTwo(alignment));
383
384 zx_handle_t vmo;
385 zx_status_t status = _zx_vmo_create(size, 0, &vmo);
386 if (status != ZX_OK) {
387 if (status != ZX_ERR_NO_MEMORY)
388 ReportMmapFailureAndDie(size, mem_type, "zx_vmo_create", status, false);
389 return nullptr;
390 }
391 _zx_object_set_property(vmo, ZX_PROP_NAME, mem_type,
392 internal_strlen(mem_type));
393
394 // Map a larger size to get a chunk of address space big enough that
395 // it surely contains an aligned region of the requested size. Then
396 // overwrite the aligned middle portion with a mapping from the
397 // beginning of the VMO, and unmap the excess before and after.
398 size_t map_size = size + alignment;
399 uintptr_t addr;
400 zx_handle_t vmar_used;
401 status = TryVmoMapSanitizerVmar(ZX_VM_PERM_READ | ZX_VM_PERM_WRITE,
402 /*vmar_offset=*/0, vmo, map_size, &addr,
403 &vmar_used);
404 if (status == ZX_OK) {
405 uintptr_t map_addr = addr;
406 uintptr_t map_end = map_addr + map_size;
407 addr = RoundUpTo(map_addr, alignment);
408 uintptr_t end = addr + size;
409 if (addr != map_addr) {
410 zx_info_vmar_t info;
411 status = _zx_object_get_info(vmar_used, ZX_INFO_VMAR, &info, sizeof(info),
412 NULL, NULL);
413 if (status == ZX_OK) {
414 uintptr_t new_addr;
415 status = _zx_vmar_map(
416 vmar_used,
417 ZX_VM_PERM_READ | ZX_VM_PERM_WRITE | ZX_VM_SPECIFIC_OVERWRITE,
418 addr - info.base, vmo, 0, size, &new_addr);
419 if (status == ZX_OK)
420 CHECK_EQ(new_addr, addr);
421 }
422 }
423 if (status == ZX_OK && addr != map_addr)
424 status = _zx_vmar_unmap(vmar_used, map_addr, addr - map_addr);
425 if (status == ZX_OK && end != map_end)
426 status = _zx_vmar_unmap(vmar_used, end, map_end - end);
427 }
428 _zx_handle_close(vmo);
429
430 if (status != ZX_OK) {
431 if (status != ZX_ERR_NO_MEMORY)
432 ReportMmapFailureAndDie(size, mem_type, "zx_vmar_map", status, false);
433 return nullptr;
434 }
435
436 IncreaseTotalMmap(size);
437
438 return reinterpret_cast<void *>(addr);
439}
440
441void UnmapOrDie(void *addr, uptr size, bool raw_report) {
442 UnmapOrDieVmar(addr, size, gSanitizerHeapVmar, raw_report);
443}
444
445void ReleaseMemoryPagesToOS(uptr beg, uptr end) {
446 uptr beg_aligned = RoundUpTo(beg, GetPageSize());
447 uptr end_aligned = RoundDownTo(end, GetPageSize());
448 if (beg_aligned < end_aligned) {
449 zx_handle_t root_vmar = _zx_vmar_root_self();
450 CHECK_NE(root_vmar, ZX_HANDLE_INVALID);
451 zx_status_t status =
452 _zx_vmar_op_range(root_vmar, ZX_VMAR_OP_DECOMMIT, beg_aligned,
453 end_aligned - beg_aligned, nullptr, 0);
454 CHECK_EQ(status, ZX_OK);
455 }
456}
457
458void DumpProcessMap() {
459 // TODO(mcgrathr): write it
460 return;
461}
462
463bool IsAccessibleMemoryRange(uptr beg, uptr size) {
464 // TODO(mcgrathr): Figure out a better way.
465 zx_handle_t vmo;
466 zx_status_t status = _zx_vmo_create(size, 0, &vmo);
467 if (status == ZX_OK) {
468 status = _zx_vmo_write(vmo, reinterpret_cast<const void *>(beg), 0, size);
469 _zx_handle_close(vmo);
470 }
471 return status == ZX_OK;
472}
473
474bool TryMemCpy(void *dest, const void *src, uptr n) {
475 // TODO: implement.
476 return false;
477}
478
479// FIXME implement on this platform.
480void GetMemoryProfile(fill_profile_f cb, uptr *stats) {}
481
482bool ReadFileToBuffer(const char *file_name, char **buff, uptr *buff_size,
483 uptr *read_len, uptr max_len, error_t *errno_p) {
484 *errno_p = ZX_ERR_NOT_SUPPORTED;
485 return false;
486}
487
488void RawWrite(const char *buffer) {
489 constexpr size_t size = 128;
490 static _Thread_local char line[size];
491 static _Thread_local size_t lastLineEnd = 0;
492 static _Thread_local size_t cur = 0;
493
494 while (*buffer) {
495 if (cur >= size) {
496 if (lastLineEnd == 0)
497 lastLineEnd = size;
498 __sanitizer_log_write(line, lastLineEnd);
499 internal_memmove(line, line + lastLineEnd, cur - lastLineEnd);
500 cur = cur - lastLineEnd;
501 lastLineEnd = 0;
502 }
503 if (*buffer == '\n')
504 lastLineEnd = cur + 1;
505 line[cur++] = *buffer++;
506 }
507 // Flush all complete lines before returning.
508 if (lastLineEnd != 0) {
509 __sanitizer_log_write(line, lastLineEnd);
510 internal_memmove(line, line + lastLineEnd, cur - lastLineEnd);
511 cur = cur - lastLineEnd;
512 lastLineEnd = 0;
513 }
514}
515
516void CatastrophicErrorWrite(const char *buffer, uptr length) {
517 __sanitizer_log_write(buffer, length);
518}
519
520char **StoredArgv;
521char **StoredEnviron;
522
523char **GetArgv() { return StoredArgv; }
524char **GetEnviron() { return StoredEnviron; }
525
526const char *GetEnv(const char *name) {
527 if (StoredEnviron) {
528 uptr NameLen = internal_strlen(name);
529 for (char **Env = StoredEnviron; *Env != 0; Env++) {
530 if (internal_strncmp(*Env, name, NameLen) == 0 && (*Env)[NameLen] == '=')
531 return (*Env) + NameLen + 1;
532 }
533 }
534 return nullptr;
535}
536
537uptr ReadBinaryName(/*out*/ char *buf, uptr buf_len) {
538 const char *argv0 = "<UNKNOWN>";
539 if (StoredArgv && StoredArgv[0]) {
540 argv0 = StoredArgv[0];
541 }
542 internal_strncpy(buf, argv0, buf_len);
543 return internal_strlen(buf);
544}
545
546uptr ReadLongProcessName(/*out*/ char *buf, uptr buf_len) {
547 return ReadBinaryName(buf, buf_len);
548}
549
550uptr MainThreadStackBase, MainThreadStackSize;
551
552bool GetRandom(void *buffer, uptr length, bool blocking) {
553 _zx_cprng_draw(buffer, length);
554 return true;
555}
556
557u32 GetNumberOfCPUs() { return zx_system_get_num_cpus(); }
558
559uptr GetRSS() { UNIMPLEMENTED(); }
560
561void *internal_start_thread(void *(*func)(void *arg), void *arg) { return 0; }
562void internal_join_thread(void *th) {}
563
564void InitializePlatformCommonFlags(CommonFlags *cf) {}
565
566} // namespace __sanitizer
567
568using namespace __sanitizer;
569
570extern "C" {
571void __sanitizer_startup_hook(int argc, char **argv, char **envp,
572 void *stack_base, size_t stack_size) {
573 __sanitizer::StoredArgv = argv;
574 __sanitizer::StoredEnviron = envp;
575 __sanitizer::MainThreadStackBase = reinterpret_cast<uintptr_t>(stack_base);
576 __sanitizer::MainThreadStackSize = stack_size;
577
578 EarlySanitizerInit();
579}
580
581void __sanitizer_set_report_path(const char *path) {
582 // Handle the initialization code in each sanitizer, but no other calls.
583 // This setting is never consulted on Fuchsia.
584 DCHECK_EQ(path, common_flags()->log_path);
585}
586
587void __sanitizer_set_report_fd(void *fd) {
588 UNREACHABLE("not available on Fuchsia");
589}
590
591const char *__sanitizer_get_report_path() {
592 UNREACHABLE("not available on Fuchsia");
593}
594} // extern "C"
595
596#endif // SANITIZER_FUCHSIA
597