| 1 | //===--- CloneDetection.cpp - Finds code clones in an AST -------*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | /// |
| 9 | /// This file implements classes for searching and analyzing source code clones. |
| 10 | /// |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "clang/Analysis/CloneDetection.h" |
| 14 | #include "clang/AST/Attr.h" |
| 15 | #include "clang/AST/DataCollection.h" |
| 16 | #include "clang/Basic/SourceManager.h" |
| 17 | #include "llvm/Support/MD5.h" |
| 18 | #include "llvm/Support/Path.h" |
| 19 | |
| 20 | using namespace clang; |
| 21 | |
| 22 | StmtSequence::StmtSequence(const CompoundStmt *Stmt, const Decl *D, |
| 23 | unsigned StartIndex, unsigned EndIndex) |
| 24 | : S(Stmt), D(D), StartIndex(StartIndex), EndIndex(EndIndex) { |
| 25 | assert(Stmt && "Stmt must not be a nullptr" ); |
| 26 | assert(StartIndex < EndIndex && "Given array should not be empty" ); |
| 27 | assert(EndIndex <= Stmt->size() && "Given array too big for this Stmt" ); |
| 28 | } |
| 29 | |
| 30 | StmtSequence::StmtSequence(const Stmt *Stmt, const Decl *D) |
| 31 | : S(Stmt), D(D), StartIndex(0), EndIndex(0) {} |
| 32 | |
| 33 | StmtSequence::StmtSequence() |
| 34 | : S(nullptr), D(nullptr), StartIndex(0), EndIndex(0) {} |
| 35 | |
| 36 | bool StmtSequence::contains(const StmtSequence &Other) const { |
| 37 | // If both sequences reside in different declarations, they can never contain |
| 38 | // each other. |
| 39 | if (D != Other.D) |
| 40 | return false; |
| 41 | |
| 42 | const SourceManager &SM = getASTContext().getSourceManager(); |
| 43 | |
| 44 | // Otherwise check if the start and end locations of the current sequence |
| 45 | // surround the other sequence. |
| 46 | bool StartIsInBounds = |
| 47 | SM.isBeforeInTranslationUnit(LHS: getBeginLoc(), RHS: Other.getBeginLoc()) || |
| 48 | getBeginLoc() == Other.getBeginLoc(); |
| 49 | if (!StartIsInBounds) |
| 50 | return false; |
| 51 | |
| 52 | bool EndIsInBounds = |
| 53 | SM.isBeforeInTranslationUnit(LHS: Other.getEndLoc(), RHS: getEndLoc()) || |
| 54 | Other.getEndLoc() == getEndLoc(); |
| 55 | return EndIsInBounds; |
| 56 | } |
| 57 | |
| 58 | StmtSequence::iterator StmtSequence::begin() const { |
| 59 | if (!holdsSequence()) { |
| 60 | return &S; |
| 61 | } |
| 62 | auto CS = cast<CompoundStmt>(Val: S); |
| 63 | return CS->body_begin() + StartIndex; |
| 64 | } |
| 65 | |
| 66 | StmtSequence::iterator StmtSequence::end() const { |
| 67 | if (!holdsSequence()) { |
| 68 | return reinterpret_cast<StmtSequence::iterator>(&S) + 1; |
| 69 | } |
| 70 | auto CS = cast<CompoundStmt>(Val: S); |
| 71 | return CS->body_begin() + EndIndex; |
| 72 | } |
| 73 | |
| 74 | ASTContext &StmtSequence::getASTContext() const { |
| 75 | assert(D); |
| 76 | return D->getASTContext(); |
| 77 | } |
| 78 | |
| 79 | SourceLocation StmtSequence::getBeginLoc() const { |
| 80 | return front()->getBeginLoc(); |
| 81 | } |
| 82 | |
| 83 | SourceLocation StmtSequence::getEndLoc() const { return back()->getEndLoc(); } |
| 84 | |
| 85 | SourceRange StmtSequence::getSourceRange() const { |
| 86 | return SourceRange(getBeginLoc(), getEndLoc()); |
| 87 | } |
| 88 | |
| 89 | void CloneDetector::analyzeCodeBody(const Decl *D) { |
| 90 | assert(D); |
| 91 | assert(D->hasBody()); |
| 92 | |
| 93 | Sequences.push_back(Elt: StmtSequence(D->getBody(), D)); |
| 94 | } |
| 95 | |
| 96 | /// Returns true if and only if \p Stmt contains at least one other |
| 97 | /// sequence in the \p Group. |
| 98 | static bool containsAnyInGroup(StmtSequence &Seq, |
| 99 | CloneDetector::CloneGroup &Group) { |
| 100 | for (StmtSequence &GroupSeq : Group) { |
| 101 | if (Seq.contains(Other: GroupSeq)) |
| 102 | return true; |
| 103 | } |
| 104 | return false; |
| 105 | } |
| 106 | |
| 107 | /// Returns true if and only if all sequences in \p OtherGroup are |
| 108 | /// contained by a sequence in \p Group. |
| 109 | static bool containsGroup(CloneDetector::CloneGroup &Group, |
| 110 | CloneDetector::CloneGroup &OtherGroup) { |
| 111 | // We have less sequences in the current group than we have in the other, |
| 112 | // so we will never fulfill the requirement for returning true. This is only |
| 113 | // possible because we know that a sequence in Group can contain at most |
| 114 | // one sequence in OtherGroup. |
| 115 | if (Group.size() < OtherGroup.size()) |
| 116 | return false; |
| 117 | |
| 118 | for (StmtSequence &Stmt : Group) { |
| 119 | if (!containsAnyInGroup(Seq&: Stmt, Group&: OtherGroup)) |
| 120 | return false; |
| 121 | } |
| 122 | return true; |
| 123 | } |
| 124 | |
| 125 | void OnlyLargestCloneConstraint::constrain( |
| 126 | std::vector<CloneDetector::CloneGroup> &Result) { |
| 127 | std::vector<unsigned> IndexesToRemove; |
| 128 | |
| 129 | // Compare every group in the result with the rest. If one groups contains |
| 130 | // another group, we only need to return the bigger group. |
| 131 | // Note: This doesn't scale well, so if possible avoid calling any heavy |
| 132 | // function from this loop to minimize the performance impact. |
| 133 | for (unsigned i = 0; i < Result.size(); ++i) { |
| 134 | for (unsigned j = 0; j < Result.size(); ++j) { |
| 135 | // Don't compare a group with itself. |
| 136 | if (i == j) |
| 137 | continue; |
| 138 | |
| 139 | if (containsGroup(Group&: Result[j], OtherGroup&: Result[i])) { |
| 140 | IndexesToRemove.push_back(x: i); |
| 141 | break; |
| 142 | } |
| 143 | } |
| 144 | } |
| 145 | |
| 146 | // Erasing a list of indexes from the vector should be done with decreasing |
| 147 | // indexes. As IndexesToRemove is constructed with increasing values, we just |
| 148 | // reverse iterate over it to get the desired order. |
| 149 | for (unsigned I : llvm::reverse(C&: IndexesToRemove)) |
| 150 | Result.erase(position: Result.begin() + I); |
| 151 | } |
| 152 | |
| 153 | bool FilenamePatternConstraint::isAutoGenerated( |
| 154 | const CloneDetector::CloneGroup &Group) { |
| 155 | if (IgnoredFilesPattern.empty() || Group.empty() || |
| 156 | !IgnoredFilesRegex->isValid()) |
| 157 | return false; |
| 158 | |
| 159 | for (const StmtSequence &S : Group) { |
| 160 | const SourceManager &SM = S.getASTContext().getSourceManager(); |
| 161 | StringRef Filename = llvm::sys::path::filename( |
| 162 | path: SM.getFilename(SpellingLoc: S.getContainingDecl()->getLocation())); |
| 163 | if (IgnoredFilesRegex->match(String: Filename)) |
| 164 | return true; |
| 165 | } |
| 166 | |
| 167 | return false; |
| 168 | } |
| 169 | |
| 170 | /// This class defines what a type II code clone is: If it collects for two |
| 171 | /// statements the same data, then those two statements are considered to be |
| 172 | /// clones of each other. |
| 173 | /// |
| 174 | /// All collected data is forwarded to the given data consumer of the type T. |
| 175 | /// The data consumer class needs to provide a member method with the signature: |
| 176 | /// update(StringRef Str) |
| 177 | namespace { |
| 178 | template <class T> |
| 179 | class CloneTypeIIStmtDataCollector |
| 180 | : public ConstStmtVisitor<CloneTypeIIStmtDataCollector<T>> { |
| 181 | ASTContext &Context; |
| 182 | /// The data sink to which all data is forwarded. |
| 183 | T &DataConsumer; |
| 184 | |
| 185 | template <class Ty> void addData(const Ty &Data) { |
| 186 | data_collection::addDataToConsumer(DataConsumer, Data); |
| 187 | } |
| 188 | |
| 189 | public: |
| 190 | CloneTypeIIStmtDataCollector(const Stmt *S, ASTContext &Context, |
| 191 | T &DataConsumer) |
| 192 | : Context(Context), DataConsumer(DataConsumer) { |
| 193 | this->Visit(S); |
| 194 | } |
| 195 | |
| 196 | // Define a visit method for each class to collect data and subsequently visit |
| 197 | // all parent classes. This uses a template so that custom visit methods by us |
| 198 | // take precedence. |
| 199 | #define DEF_ADD_DATA(CLASS, CODE) \ |
| 200 | template <class = void> void Visit##CLASS(const CLASS *S) { \ |
| 201 | CODE; \ |
| 202 | ConstStmtVisitor<CloneTypeIIStmtDataCollector<T>>::Visit##CLASS(S); \ |
| 203 | } |
| 204 | |
| 205 | #include "clang/AST/StmtDataCollectors.inc" |
| 206 | |
| 207 | // Type II clones ignore variable names and literals, so let's skip them. |
| 208 | #define SKIP(CLASS) \ |
| 209 | void Visit##CLASS(const CLASS *S) { \ |
| 210 | ConstStmtVisitor<CloneTypeIIStmtDataCollector<T>>::Visit##CLASS(S); \ |
| 211 | } |
| 212 | SKIP(DeclRefExpr) |
| 213 | SKIP(MemberExpr) |
| 214 | SKIP(IntegerLiteral) |
| 215 | SKIP(FloatingLiteral) |
| 216 | SKIP(StringLiteral) |
| 217 | SKIP(CXXBoolLiteralExpr) |
| 218 | SKIP(CharacterLiteral) |
| 219 | #undef SKIP |
| 220 | }; |
| 221 | } // end anonymous namespace |
| 222 | |
| 223 | static size_t createHash(llvm::MD5 &Hash) { |
| 224 | size_t HashCode; |
| 225 | |
| 226 | // Create the final hash code for the current Stmt. |
| 227 | llvm::MD5::MD5Result HashResult; |
| 228 | Hash.final(Result&: HashResult); |
| 229 | |
| 230 | // Copy as much as possible of the generated hash code to the Stmt's hash |
| 231 | // code. |
| 232 | std::memcpy(dest: &HashCode, src: &HashResult, |
| 233 | n: std::min(a: sizeof(HashCode), b: sizeof(HashResult))); |
| 234 | |
| 235 | return HashCode; |
| 236 | } |
| 237 | |
| 238 | /// Generates and saves a hash code for the given Stmt. |
| 239 | /// \param S The given Stmt. |
| 240 | /// \param D The Decl containing S. |
| 241 | /// \param StmtsByHash Output parameter that will contain the hash codes for |
| 242 | /// each StmtSequence in the given Stmt. |
| 243 | /// \return The hash code of the given Stmt. |
| 244 | /// |
| 245 | /// If the given Stmt is a CompoundStmt, this method will also generate |
| 246 | /// hashes for all possible StmtSequences in the children of this Stmt. |
| 247 | static size_t |
| 248 | saveHash(const Stmt *S, const Decl *D, |
| 249 | std::vector<std::pair<size_t, StmtSequence>> &StmtsByHash) { |
| 250 | llvm::MD5 Hash; |
| 251 | ASTContext &Context = D->getASTContext(); |
| 252 | |
| 253 | CloneTypeIIStmtDataCollector<llvm::MD5>(S, Context, Hash); |
| 254 | |
| 255 | auto CS = dyn_cast<CompoundStmt>(Val: S); |
| 256 | SmallVector<size_t, 8> ChildHashes; |
| 257 | |
| 258 | for (const Stmt *Child : S->children()) { |
| 259 | if (Child == nullptr) { |
| 260 | ChildHashes.push_back(Elt: 0); |
| 261 | continue; |
| 262 | } |
| 263 | size_t ChildHash = saveHash(S: Child, D, StmtsByHash); |
| 264 | Hash.update( |
| 265 | Str: StringRef(reinterpret_cast<char *>(&ChildHash), sizeof(ChildHash))); |
| 266 | ChildHashes.push_back(Elt: ChildHash); |
| 267 | } |
| 268 | |
| 269 | if (CS) { |
| 270 | // If we're in a CompoundStmt, we hash all possible combinations of child |
| 271 | // statements to find clones in those subsequences. |
| 272 | // We first go through every possible starting position of a subsequence. |
| 273 | for (unsigned Pos = 0; Pos < CS->size(); ++Pos) { |
| 274 | // Then we try all possible lengths this subsequence could have and |
| 275 | // reuse the same hash object to make sure we only hash every child |
| 276 | // hash exactly once. |
| 277 | llvm::MD5 Hash; |
| 278 | for (unsigned Length = 1; Length <= CS->size() - Pos; ++Length) { |
| 279 | // Grab the current child hash and put it into our hash. We do |
| 280 | // -1 on the index because we start counting the length at 1. |
| 281 | size_t ChildHash = ChildHashes[Pos + Length - 1]; |
| 282 | Hash.update( |
| 283 | Str: StringRef(reinterpret_cast<char *>(&ChildHash), sizeof(ChildHash))); |
| 284 | // If we have at least two elements in our subsequence, we can start |
| 285 | // saving it. |
| 286 | if (Length > 1) { |
| 287 | llvm::MD5 SubHash = Hash; |
| 288 | StmtsByHash.push_back(x: std::make_pair( |
| 289 | x: createHash(Hash&: SubHash), y: StmtSequence(CS, D, Pos, Pos + Length))); |
| 290 | } |
| 291 | } |
| 292 | } |
| 293 | } |
| 294 | |
| 295 | size_t HashCode = createHash(Hash); |
| 296 | StmtsByHash.push_back(x: std::make_pair(x&: HashCode, y: StmtSequence(S, D))); |
| 297 | return HashCode; |
| 298 | } |
| 299 | |
| 300 | namespace { |
| 301 | /// Wrapper around FoldingSetNodeID that it can be used as the template |
| 302 | /// argument of the StmtDataCollector. |
| 303 | class FoldingSetNodeIDWrapper { |
| 304 | |
| 305 | llvm::FoldingSetNodeID &FS; |
| 306 | |
| 307 | public: |
| 308 | FoldingSetNodeIDWrapper(llvm::FoldingSetNodeID &FS) : FS(FS) {} |
| 309 | |
| 310 | void update(StringRef Str) { FS.AddString(String: Str); } |
| 311 | }; |
| 312 | } // end anonymous namespace |
| 313 | |
| 314 | /// Writes the relevant data from all statements and child statements |
| 315 | /// in the given StmtSequence into the given FoldingSetNodeID. |
| 316 | static void CollectStmtSequenceData(const StmtSequence &Sequence, |
| 317 | FoldingSetNodeIDWrapper &OutputData) { |
| 318 | for (const Stmt *S : Sequence) { |
| 319 | CloneTypeIIStmtDataCollector<FoldingSetNodeIDWrapper>( |
| 320 | S, Sequence.getASTContext(), OutputData); |
| 321 | |
| 322 | for (const Stmt *Child : S->children()) { |
| 323 | if (!Child) |
| 324 | continue; |
| 325 | |
| 326 | CollectStmtSequenceData(Sequence: StmtSequence(Child, Sequence.getContainingDecl()), |
| 327 | OutputData); |
| 328 | } |
| 329 | } |
| 330 | } |
| 331 | |
| 332 | /// Returns true if both sequences are clones of each other. |
| 333 | static bool areSequencesClones(const StmtSequence &LHS, |
| 334 | const StmtSequence &RHS) { |
| 335 | // We collect the data from all statements in the sequence as we did before |
| 336 | // when generating a hash value for each sequence. But this time we don't |
| 337 | // hash the collected data and compare the whole data set instead. This |
| 338 | // prevents any false-positives due to hash code collisions. |
| 339 | llvm::FoldingSetNodeID DataLHS, DataRHS; |
| 340 | FoldingSetNodeIDWrapper LHSWrapper(DataLHS); |
| 341 | FoldingSetNodeIDWrapper RHSWrapper(DataRHS); |
| 342 | |
| 343 | CollectStmtSequenceData(Sequence: LHS, OutputData&: LHSWrapper); |
| 344 | CollectStmtSequenceData(Sequence: RHS, OutputData&: RHSWrapper); |
| 345 | |
| 346 | return DataLHS == DataRHS; |
| 347 | } |
| 348 | |
| 349 | void RecursiveCloneTypeIIHashConstraint::constrain( |
| 350 | std::vector<CloneDetector::CloneGroup> &Sequences) { |
| 351 | // FIXME: Maybe we can do this in-place and don't need this additional vector. |
| 352 | std::vector<CloneDetector::CloneGroup> Result; |
| 353 | |
| 354 | for (CloneDetector::CloneGroup &Group : Sequences) { |
| 355 | // We assume in the following code that the Group is non-empty, so we |
| 356 | // skip all empty groups. |
| 357 | if (Group.empty()) |
| 358 | continue; |
| 359 | |
| 360 | std::vector<std::pair<size_t, StmtSequence>> StmtsByHash; |
| 361 | |
| 362 | // Generate hash codes for all children of S and save them in StmtsByHash. |
| 363 | for (const StmtSequence &S : Group) { |
| 364 | saveHash(S: S.front(), D: S.getContainingDecl(), StmtsByHash); |
| 365 | } |
| 366 | |
| 367 | // Sort hash_codes in StmtsByHash. |
| 368 | llvm::stable_sort(Range&: StmtsByHash, C: llvm::less_first()); |
| 369 | |
| 370 | // Check for each StmtSequence if its successor has the same hash value. |
| 371 | // We don't check the last StmtSequence as it has no successor. |
| 372 | // Note: The 'size - 1 ' in the condition is safe because we check for an |
| 373 | // empty Group vector at the beginning of this function. |
| 374 | for (unsigned i = 0; i < StmtsByHash.size() - 1; ++i) { |
| 375 | const auto Current = StmtsByHash[i]; |
| 376 | |
| 377 | // It's likely that we just found a sequence of StmtSequences that |
| 378 | // represent a CloneGroup, so we create a new group and start checking and |
| 379 | // adding the StmtSequences in this sequence. |
| 380 | CloneDetector::CloneGroup NewGroup; |
| 381 | |
| 382 | size_t PrototypeHash = Current.first; |
| 383 | |
| 384 | for (; i < StmtsByHash.size(); ++i) { |
| 385 | // A different hash value means we have reached the end of the sequence. |
| 386 | if (PrototypeHash != StmtsByHash[i].first) { |
| 387 | // The current sequence could be the start of a new CloneGroup. So we |
| 388 | // decrement i so that we visit it again in the outer loop. |
| 389 | // Note: i can never be 0 at this point because we are just comparing |
| 390 | // the hash of the Current StmtSequence with itself in the 'if' above. |
| 391 | assert(i != 0); |
| 392 | --i; |
| 393 | break; |
| 394 | } |
| 395 | // Same hash value means we should add the StmtSequence to the current |
| 396 | // group. |
| 397 | NewGroup.push_back(Elt: StmtsByHash[i].second); |
| 398 | } |
| 399 | |
| 400 | // We created a new clone group with matching hash codes and move it to |
| 401 | // the result vector. |
| 402 | Result.push_back(x: NewGroup); |
| 403 | } |
| 404 | } |
| 405 | // Sequences is the output parameter, so we copy our result into it. |
| 406 | Sequences = Result; |
| 407 | } |
| 408 | |
| 409 | void RecursiveCloneTypeIIVerifyConstraint::constrain( |
| 410 | std::vector<CloneDetector::CloneGroup> &Sequences) { |
| 411 | CloneConstraint::splitCloneGroups( |
| 412 | CloneGroups&: Sequences, Compare: [](const StmtSequence &A, const StmtSequence &B) { |
| 413 | return areSequencesClones(LHS: A, RHS: B); |
| 414 | }); |
| 415 | } |
| 416 | |
| 417 | size_t MinComplexityConstraint::calculateStmtComplexity( |
| 418 | const StmtSequence &Seq, std::size_t Limit, |
| 419 | const std::string &ParentMacroStack) { |
| 420 | if (Seq.empty()) |
| 421 | return 0; |
| 422 | |
| 423 | size_t Complexity = 1; |
| 424 | |
| 425 | ASTContext &Context = Seq.getASTContext(); |
| 426 | |
| 427 | // Look up what macros expanded into the current statement. |
| 428 | std::string MacroStack = |
| 429 | data_collection::getMacroStack(Loc: Seq.getBeginLoc(), Context); |
| 430 | |
| 431 | // First, check if ParentMacroStack is not empty which means we are currently |
| 432 | // dealing with a parent statement which was expanded from a macro. |
| 433 | // If this parent statement was expanded from the same macros as this |
| 434 | // statement, we reduce the initial complexity of this statement to zero. |
| 435 | // This causes that a group of statements that were generated by a single |
| 436 | // macro expansion will only increase the total complexity by one. |
| 437 | // Note: This is not the final complexity of this statement as we still |
| 438 | // add the complexity of the child statements to the complexity value. |
| 439 | if (!ParentMacroStack.empty() && MacroStack == ParentMacroStack) { |
| 440 | Complexity = 0; |
| 441 | } |
| 442 | |
| 443 | // Iterate over the Stmts in the StmtSequence and add their complexity values |
| 444 | // to the current complexity value. |
| 445 | if (Seq.holdsSequence()) { |
| 446 | for (const Stmt *S : Seq) { |
| 447 | Complexity += calculateStmtComplexity( |
| 448 | Seq: StmtSequence(S, Seq.getContainingDecl()), Limit, ParentMacroStack: MacroStack); |
| 449 | if (Complexity >= Limit) |
| 450 | return Limit; |
| 451 | } |
| 452 | } else { |
| 453 | for (const Stmt *S : Seq.front()->children()) { |
| 454 | Complexity += calculateStmtComplexity( |
| 455 | Seq: StmtSequence(S, Seq.getContainingDecl()), Limit, ParentMacroStack: MacroStack); |
| 456 | if (Complexity >= Limit) |
| 457 | return Limit; |
| 458 | } |
| 459 | } |
| 460 | return Complexity; |
| 461 | } |
| 462 | |
| 463 | void MatchingVariablePatternConstraint::constrain( |
| 464 | std::vector<CloneDetector::CloneGroup> &CloneGroups) { |
| 465 | CloneConstraint::splitCloneGroups( |
| 466 | CloneGroups, Compare: [](const StmtSequence &A, const StmtSequence &B) { |
| 467 | VariablePattern PatternA(A); |
| 468 | VariablePattern PatternB(B); |
| 469 | return PatternA.countPatternDifferences(Other: PatternB) == 0; |
| 470 | }); |
| 471 | } |
| 472 | |
| 473 | void CloneConstraint::splitCloneGroups( |
| 474 | std::vector<CloneDetector::CloneGroup> &CloneGroups, |
| 475 | llvm::function_ref<bool(const StmtSequence &, const StmtSequence &)> |
| 476 | Compare) { |
| 477 | std::vector<CloneDetector::CloneGroup> Result; |
| 478 | for (auto &HashGroup : CloneGroups) { |
| 479 | // Contains all indexes in HashGroup that were already added to a |
| 480 | // CloneGroup. |
| 481 | std::vector<char> Indexes; |
| 482 | Indexes.resize(new_size: HashGroup.size()); |
| 483 | |
| 484 | for (unsigned i = 0; i < HashGroup.size(); ++i) { |
| 485 | // Skip indexes that are already part of a CloneGroup. |
| 486 | if (Indexes[i]) |
| 487 | continue; |
| 488 | |
| 489 | // Pick the first unhandled StmtSequence and consider it as the |
| 490 | // beginning |
| 491 | // of a new CloneGroup for now. |
| 492 | // We don't add i to Indexes because we never iterate back. |
| 493 | StmtSequence Prototype = HashGroup[i]; |
| 494 | CloneDetector::CloneGroup PotentialGroup = {Prototype}; |
| 495 | ++Indexes[i]; |
| 496 | |
| 497 | // Check all following StmtSequences for clones. |
| 498 | for (unsigned j = i + 1; j < HashGroup.size(); ++j) { |
| 499 | // Skip indexes that are already part of a CloneGroup. |
| 500 | if (Indexes[j]) |
| 501 | continue; |
| 502 | |
| 503 | // If a following StmtSequence belongs to our CloneGroup, we add it. |
| 504 | const StmtSequence &Candidate = HashGroup[j]; |
| 505 | |
| 506 | if (!Compare(Prototype, Candidate)) |
| 507 | continue; |
| 508 | |
| 509 | PotentialGroup.push_back(Elt: Candidate); |
| 510 | // Make sure we never visit this StmtSequence again. |
| 511 | ++Indexes[j]; |
| 512 | } |
| 513 | |
| 514 | // Otherwise, add it to the result and continue searching for more |
| 515 | // groups. |
| 516 | Result.push_back(x: PotentialGroup); |
| 517 | } |
| 518 | |
| 519 | assert(llvm::all_of(Indexes, [](char c) { return c == 1; })); |
| 520 | } |
| 521 | CloneGroups = Result; |
| 522 | } |
| 523 | |
| 524 | void VariablePattern::addVariableOccurence(const VarDecl *VarDecl, |
| 525 | const Stmt *Mention) { |
| 526 | // First check if we already reference this variable |
| 527 | for (size_t KindIndex = 0; KindIndex < Variables.size(); ++KindIndex) { |
| 528 | if (Variables[KindIndex] == VarDecl) { |
| 529 | // If yes, add a new occurrence that points to the existing entry in |
| 530 | // the Variables vector. |
| 531 | Occurences.emplace_back(args&: KindIndex, args&: Mention); |
| 532 | return; |
| 533 | } |
| 534 | } |
| 535 | // If this variable wasn't already referenced, add it to the list of |
| 536 | // referenced variables and add a occurrence that points to this new entry. |
| 537 | Occurences.emplace_back(args: Variables.size(), args&: Mention); |
| 538 | Variables.push_back(x: VarDecl); |
| 539 | } |
| 540 | |
| 541 | void VariablePattern::addVariables(const Stmt *S) { |
| 542 | // Sometimes we get a nullptr (such as from IfStmts which often have nullptr |
| 543 | // children). We skip such statements as they don't reference any |
| 544 | // variables. |
| 545 | if (!S) |
| 546 | return; |
| 547 | |
| 548 | // Check if S is a reference to a variable. If yes, add it to the pattern. |
| 549 | if (auto D = dyn_cast<DeclRefExpr>(Val: S)) { |
| 550 | if (auto VD = dyn_cast<VarDecl>(Val: D->getDecl()->getCanonicalDecl())) |
| 551 | addVariableOccurence(VarDecl: VD, Mention: D); |
| 552 | } |
| 553 | |
| 554 | // Recursively check all children of the given statement. |
| 555 | for (const Stmt *Child : S->children()) { |
| 556 | addVariables(S: Child); |
| 557 | } |
| 558 | } |
| 559 | |
| 560 | unsigned VariablePattern::countPatternDifferences( |
| 561 | const VariablePattern &Other, |
| 562 | VariablePattern::SuspiciousClonePair *FirstMismatch) { |
| 563 | unsigned NumberOfDifferences = 0; |
| 564 | |
| 565 | assert(Other.Occurences.size() == Occurences.size()); |
| 566 | for (unsigned i = 0; i < Occurences.size(); ++i) { |
| 567 | auto ThisOccurence = Occurences[i]; |
| 568 | auto OtherOccurence = Other.Occurences[i]; |
| 569 | if (ThisOccurence.KindID == OtherOccurence.KindID) |
| 570 | continue; |
| 571 | |
| 572 | ++NumberOfDifferences; |
| 573 | |
| 574 | // If FirstMismatch is not a nullptr, we need to store information about |
| 575 | // the first difference between the two patterns. |
| 576 | if (FirstMismatch == nullptr) |
| 577 | continue; |
| 578 | |
| 579 | // Only proceed if we just found the first difference as we only store |
| 580 | // information about the first difference. |
| 581 | if (NumberOfDifferences != 1) |
| 582 | continue; |
| 583 | |
| 584 | const VarDecl *FirstSuggestion = nullptr; |
| 585 | // If there is a variable available in the list of referenced variables |
| 586 | // which wouldn't break the pattern if it is used in place of the |
| 587 | // current variable, we provide this variable as the suggested fix. |
| 588 | if (OtherOccurence.KindID < Variables.size()) |
| 589 | FirstSuggestion = Variables[OtherOccurence.KindID]; |
| 590 | |
| 591 | // Store information about the first clone. |
| 592 | FirstMismatch->FirstCloneInfo = |
| 593 | VariablePattern::SuspiciousClonePair::SuspiciousCloneInfo( |
| 594 | Variables[ThisOccurence.KindID], ThisOccurence.Mention, |
| 595 | FirstSuggestion); |
| 596 | |
| 597 | // Same as above but with the other clone. We do this for both clones as |
| 598 | // we don't know which clone is the one containing the unintended |
| 599 | // pattern error. |
| 600 | const VarDecl *SecondSuggestion = nullptr; |
| 601 | if (ThisOccurence.KindID < Other.Variables.size()) |
| 602 | SecondSuggestion = Other.Variables[ThisOccurence.KindID]; |
| 603 | |
| 604 | // Store information about the second clone. |
| 605 | FirstMismatch->SecondCloneInfo = |
| 606 | VariablePattern::SuspiciousClonePair::SuspiciousCloneInfo( |
| 607 | Other.Variables[OtherOccurence.KindID], OtherOccurence.Mention, |
| 608 | SecondSuggestion); |
| 609 | |
| 610 | // SuspiciousClonePair guarantees that the first clone always has a |
| 611 | // suggested variable associated with it. As we know that one of the two |
| 612 | // clones in the pair always has suggestion, we swap the two clones |
| 613 | // in case the first clone has no suggested variable which means that |
| 614 | // the second clone has a suggested variable and should be first. |
| 615 | if (!FirstMismatch->FirstCloneInfo.Suggestion) |
| 616 | std::swap(a&: FirstMismatch->FirstCloneInfo, b&: FirstMismatch->SecondCloneInfo); |
| 617 | |
| 618 | // This ensures that we always have at least one suggestion in a pair. |
| 619 | assert(FirstMismatch->FirstCloneInfo.Suggestion); |
| 620 | } |
| 621 | |
| 622 | return NumberOfDifferences; |
| 623 | } |
| 624 | |