| 1 | //===---- SemaAccess.cpp - C++ Access Control -------------------*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file provides Sema routines for C++ access control semantics. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "clang/AST/ASTContext.h" |
| 14 | #include "clang/AST/CXXInheritance.h" |
| 15 | #include "clang/AST/DeclCXX.h" |
| 16 | #include "clang/AST/DeclFriend.h" |
| 17 | #include "clang/AST/DeclObjC.h" |
| 18 | #include "clang/AST/DependentDiagnostic.h" |
| 19 | #include "clang/AST/ExprCXX.h" |
| 20 | #include "clang/Basic/Specifiers.h" |
| 21 | #include "clang/Sema/DelayedDiagnostic.h" |
| 22 | #include "clang/Sema/Initialization.h" |
| 23 | #include "clang/Sema/Lookup.h" |
| 24 | |
| 25 | using namespace clang; |
| 26 | using namespace sema; |
| 27 | |
| 28 | /// A copy of Sema's enum without AR_delayed. |
| 29 | enum AccessResult { |
| 30 | AR_accessible, |
| 31 | AR_inaccessible, |
| 32 | AR_dependent |
| 33 | }; |
| 34 | |
| 35 | bool Sema::SetMemberAccessSpecifier(NamedDecl *MemberDecl, |
| 36 | NamedDecl *PrevMemberDecl, |
| 37 | AccessSpecifier LexicalAS) { |
| 38 | if (!PrevMemberDecl) { |
| 39 | // Use the lexical access specifier. |
| 40 | MemberDecl->setAccess(LexicalAS); |
| 41 | return false; |
| 42 | } |
| 43 | |
| 44 | // C++ [class.access.spec]p3: When a member is redeclared its access |
| 45 | // specifier must be same as its initial declaration. |
| 46 | if (LexicalAS != AS_none && LexicalAS != PrevMemberDecl->getAccess()) { |
| 47 | Diag(Loc: MemberDecl->getLocation(), |
| 48 | DiagID: diag::err_class_redeclared_with_different_access) |
| 49 | << MemberDecl << LexicalAS; |
| 50 | Diag(Loc: PrevMemberDecl->getLocation(), DiagID: diag::note_previous_access_declaration) |
| 51 | << PrevMemberDecl << PrevMemberDecl->getAccess(); |
| 52 | |
| 53 | MemberDecl->setAccess(LexicalAS); |
| 54 | return true; |
| 55 | } |
| 56 | |
| 57 | MemberDecl->setAccess(PrevMemberDecl->getAccess()); |
| 58 | return false; |
| 59 | } |
| 60 | |
| 61 | static CXXRecordDecl *FindDeclaringClass(NamedDecl *D) { |
| 62 | DeclContext *DC = D->getDeclContext(); |
| 63 | |
| 64 | // This can only happen at top: enum decls only "publish" their |
| 65 | // immediate members. |
| 66 | if (isa<EnumDecl>(Val: DC)) |
| 67 | DC = cast<EnumDecl>(Val: DC)->getDeclContext(); |
| 68 | |
| 69 | CXXRecordDecl *DeclaringClass = cast<CXXRecordDecl>(Val: DC); |
| 70 | while (DeclaringClass->isAnonymousStructOrUnion()) |
| 71 | DeclaringClass = cast<CXXRecordDecl>(Val: DeclaringClass->getDeclContext()); |
| 72 | return DeclaringClass; |
| 73 | } |
| 74 | |
| 75 | namespace { |
| 76 | struct EffectiveContext { |
| 77 | EffectiveContext() : Inner(nullptr), Dependent(false) {} |
| 78 | |
| 79 | explicit EffectiveContext(DeclContext *DC) |
| 80 | : Inner(DC), |
| 81 | Dependent(DC->isDependentContext()) { |
| 82 | |
| 83 | // An implicit deduction guide is semantically in the context enclosing the |
| 84 | // class template, but for access purposes behaves like the constructor |
| 85 | // from which it was produced. |
| 86 | if (auto *DGD = dyn_cast<CXXDeductionGuideDecl>(Val: DC)) { |
| 87 | if (DGD->isImplicit()) { |
| 88 | DC = DGD->getCorrespondingConstructor(); |
| 89 | if (!DC) { |
| 90 | // The copy deduction candidate doesn't have a corresponding |
| 91 | // constructor. |
| 92 | DC = cast<DeclContext>(Val: DGD->getDeducedTemplate()->getTemplatedDecl()); |
| 93 | } |
| 94 | } |
| 95 | } |
| 96 | |
| 97 | // C++11 [class.access.nest]p1: |
| 98 | // A nested class is a member and as such has the same access |
| 99 | // rights as any other member. |
| 100 | // C++11 [class.access]p2: |
| 101 | // A member of a class can also access all the names to which |
| 102 | // the class has access. A local class of a member function |
| 103 | // may access the same names that the member function itself |
| 104 | // may access. |
| 105 | // This almost implies that the privileges of nesting are transitive. |
| 106 | // Technically it says nothing about the local classes of non-member |
| 107 | // functions (which can gain privileges through friendship), but we |
| 108 | // take that as an oversight. |
| 109 | while (true) { |
| 110 | // We want to add canonical declarations to the EC lists for |
| 111 | // simplicity of checking, but we need to walk up through the |
| 112 | // actual current DC chain. Otherwise, something like a local |
| 113 | // extern or friend which happens to be the canonical |
| 114 | // declaration will really mess us up. |
| 115 | |
| 116 | if (isa<CXXRecordDecl>(Val: DC)) { |
| 117 | CXXRecordDecl *Record = cast<CXXRecordDecl>(Val: DC); |
| 118 | Records.push_back(Elt: Record->getCanonicalDecl()); |
| 119 | DC = Record->getDeclContext(); |
| 120 | } else if (isa<FunctionDecl>(Val: DC)) { |
| 121 | FunctionDecl *Function = cast<FunctionDecl>(Val: DC); |
| 122 | Functions.push_back(Elt: Function->getCanonicalDecl()); |
| 123 | if (Function->getFriendObjectKind()) |
| 124 | DC = Function->getLexicalDeclContext(); |
| 125 | else |
| 126 | DC = Function->getDeclContext(); |
| 127 | } else if (DC->isFileContext()) { |
| 128 | break; |
| 129 | } else { |
| 130 | DC = DC->getParent(); |
| 131 | } |
| 132 | } |
| 133 | } |
| 134 | |
| 135 | bool isDependent() const { return Dependent; } |
| 136 | |
| 137 | bool includesClass(const CXXRecordDecl *R) const { |
| 138 | R = R->getCanonicalDecl(); |
| 139 | return llvm::is_contained(Range: Records, Element: R); |
| 140 | } |
| 141 | |
| 142 | /// Retrieves the innermost "useful" context. Can be null if we're |
| 143 | /// doing access-control without privileges. |
| 144 | DeclContext *getInnerContext() const { |
| 145 | return Inner; |
| 146 | } |
| 147 | |
| 148 | typedef SmallVectorImpl<CXXRecordDecl*>::const_iterator record_iterator; |
| 149 | |
| 150 | DeclContext *Inner; |
| 151 | SmallVector<FunctionDecl*, 4> Functions; |
| 152 | SmallVector<CXXRecordDecl*, 4> Records; |
| 153 | bool Dependent; |
| 154 | }; |
| 155 | |
| 156 | /// Like sema::AccessedEntity, but kindly lets us scribble all over |
| 157 | /// it. |
| 158 | struct AccessTarget : public AccessedEntity { |
| 159 | AccessTarget(const AccessedEntity &Entity) |
| 160 | : AccessedEntity(Entity) { |
| 161 | initialize(); |
| 162 | } |
| 163 | |
| 164 | AccessTarget(ASTContext &Context, |
| 165 | MemberNonce _, |
| 166 | CXXRecordDecl *NamingClass, |
| 167 | DeclAccessPair FoundDecl, |
| 168 | QualType BaseObjectType) |
| 169 | : AccessedEntity(Context.getDiagAllocator(), Member, NamingClass, |
| 170 | FoundDecl, BaseObjectType) { |
| 171 | initialize(); |
| 172 | } |
| 173 | |
| 174 | AccessTarget(ASTContext &Context, |
| 175 | BaseNonce _, |
| 176 | CXXRecordDecl *BaseClass, |
| 177 | CXXRecordDecl *DerivedClass, |
| 178 | AccessSpecifier Access) |
| 179 | : AccessedEntity(Context.getDiagAllocator(), Base, BaseClass, DerivedClass, |
| 180 | Access) { |
| 181 | initialize(); |
| 182 | } |
| 183 | |
| 184 | bool isInstanceMember() const { |
| 185 | return (isMemberAccess() && getTargetDecl()->isCXXInstanceMember()); |
| 186 | } |
| 187 | |
| 188 | bool hasInstanceContext() const { |
| 189 | return HasInstanceContext; |
| 190 | } |
| 191 | |
| 192 | class SavedInstanceContext { |
| 193 | public: |
| 194 | SavedInstanceContext(SavedInstanceContext &&S) |
| 195 | : Target(S.Target), Has(S.Has) { |
| 196 | S.Target = nullptr; |
| 197 | } |
| 198 | |
| 199 | // The move assignment operator is defined as deleted pending further |
| 200 | // motivation. |
| 201 | SavedInstanceContext &operator=(SavedInstanceContext &&) = delete; |
| 202 | |
| 203 | // The copy constrcutor and copy assignment operator is defined as deleted |
| 204 | // pending further motivation. |
| 205 | SavedInstanceContext(const SavedInstanceContext &) = delete; |
| 206 | SavedInstanceContext &operator=(const SavedInstanceContext &) = delete; |
| 207 | |
| 208 | ~SavedInstanceContext() { |
| 209 | if (Target) |
| 210 | Target->HasInstanceContext = Has; |
| 211 | } |
| 212 | |
| 213 | private: |
| 214 | friend struct AccessTarget; |
| 215 | explicit SavedInstanceContext(AccessTarget &Target) |
| 216 | : Target(&Target), Has(Target.HasInstanceContext) {} |
| 217 | AccessTarget *Target; |
| 218 | bool Has; |
| 219 | }; |
| 220 | |
| 221 | SavedInstanceContext saveInstanceContext() { |
| 222 | return SavedInstanceContext(*this); |
| 223 | } |
| 224 | |
| 225 | void suppressInstanceContext() { |
| 226 | HasInstanceContext = false; |
| 227 | } |
| 228 | |
| 229 | const CXXRecordDecl *resolveInstanceContext(Sema &S) const { |
| 230 | assert(HasInstanceContext); |
| 231 | if (CalculatedInstanceContext) |
| 232 | return InstanceContext; |
| 233 | |
| 234 | CalculatedInstanceContext = true; |
| 235 | DeclContext *IC = S.computeDeclContext(T: getBaseObjectType()); |
| 236 | InstanceContext = (IC ? cast<CXXRecordDecl>(Val: IC)->getCanonicalDecl() |
| 237 | : nullptr); |
| 238 | return InstanceContext; |
| 239 | } |
| 240 | |
| 241 | const CXXRecordDecl *getDeclaringClass() const { |
| 242 | return DeclaringClass; |
| 243 | } |
| 244 | |
| 245 | /// The "effective" naming class is the canonical non-anonymous |
| 246 | /// class containing the actual naming class. |
| 247 | const CXXRecordDecl *getEffectiveNamingClass() const { |
| 248 | const CXXRecordDecl *namingClass = getNamingClass(); |
| 249 | while (namingClass->isAnonymousStructOrUnion()) |
| 250 | namingClass = cast<CXXRecordDecl>(Val: namingClass->getParent()); |
| 251 | return namingClass->getCanonicalDecl(); |
| 252 | } |
| 253 | |
| 254 | private: |
| 255 | void initialize() { |
| 256 | HasInstanceContext = (isMemberAccess() && |
| 257 | !getBaseObjectType().isNull() && |
| 258 | getTargetDecl()->isCXXInstanceMember()); |
| 259 | CalculatedInstanceContext = false; |
| 260 | InstanceContext = nullptr; |
| 261 | |
| 262 | if (isMemberAccess()) |
| 263 | DeclaringClass = FindDeclaringClass(D: getTargetDecl()); |
| 264 | else |
| 265 | DeclaringClass = getBaseClass(); |
| 266 | DeclaringClass = DeclaringClass->getCanonicalDecl(); |
| 267 | } |
| 268 | |
| 269 | bool HasInstanceContext : 1; |
| 270 | mutable bool CalculatedInstanceContext : 1; |
| 271 | mutable const CXXRecordDecl *InstanceContext; |
| 272 | const CXXRecordDecl *DeclaringClass; |
| 273 | }; |
| 274 | |
| 275 | } |
| 276 | |
| 277 | /// Checks whether one class might instantiate to the other. |
| 278 | static bool MightInstantiateTo(const CXXRecordDecl *From, |
| 279 | const CXXRecordDecl *To) { |
| 280 | // Declaration names are always preserved by instantiation. |
| 281 | if (From->getDeclName() != To->getDeclName()) |
| 282 | return false; |
| 283 | |
| 284 | const DeclContext *FromDC = From->getDeclContext()->getPrimaryContext(); |
| 285 | const DeclContext *ToDC = To->getDeclContext()->getPrimaryContext(); |
| 286 | if (FromDC == ToDC) return true; |
| 287 | if (FromDC->isFileContext() || ToDC->isFileContext()) return false; |
| 288 | |
| 289 | // Be conservative. |
| 290 | return true; |
| 291 | } |
| 292 | |
| 293 | /// Checks whether one class is derived from another, inclusively. |
| 294 | /// Properly indicates when it couldn't be determined due to |
| 295 | /// dependence. |
| 296 | /// |
| 297 | /// This should probably be donated to AST or at least Sema. |
| 298 | static AccessResult IsDerivedFromInclusive(const CXXRecordDecl *Derived, |
| 299 | const CXXRecordDecl *Target) { |
| 300 | assert(Derived->getCanonicalDecl() == Derived); |
| 301 | assert(Target->getCanonicalDecl() == Target); |
| 302 | |
| 303 | if (Derived == Target) return AR_accessible; |
| 304 | |
| 305 | bool CheckDependent = Derived->isDependentContext(); |
| 306 | if (CheckDependent && MightInstantiateTo(From: Derived, To: Target)) |
| 307 | return AR_dependent; |
| 308 | |
| 309 | AccessResult OnFailure = AR_inaccessible; |
| 310 | SmallVector<const CXXRecordDecl*, 8> Queue; // actually a stack |
| 311 | |
| 312 | while (true) { |
| 313 | if (Derived->isDependentContext() && !Derived->hasDefinition() && |
| 314 | !Derived->isLambda()) |
| 315 | return AR_dependent; |
| 316 | |
| 317 | for (const auto &I : Derived->bases()) { |
| 318 | const CXXRecordDecl *RD; |
| 319 | |
| 320 | QualType T = I.getType(); |
| 321 | if (const RecordType *RT = T->getAs<RecordType>()) { |
| 322 | RD = cast<CXXRecordDecl>(Val: RT->getDecl()); |
| 323 | } else if (const InjectedClassNameType *IT |
| 324 | = T->getAs<InjectedClassNameType>()) { |
| 325 | RD = IT->getDecl(); |
| 326 | } else { |
| 327 | assert(T->isDependentType() && "non-dependent base wasn't a record?" ); |
| 328 | OnFailure = AR_dependent; |
| 329 | continue; |
| 330 | } |
| 331 | |
| 332 | RD = RD->getCanonicalDecl(); |
| 333 | if (RD == Target) return AR_accessible; |
| 334 | if (CheckDependent && MightInstantiateTo(From: RD, To: Target)) |
| 335 | OnFailure = AR_dependent; |
| 336 | |
| 337 | Queue.push_back(Elt: RD); |
| 338 | } |
| 339 | |
| 340 | if (Queue.empty()) break; |
| 341 | |
| 342 | Derived = Queue.pop_back_val(); |
| 343 | } |
| 344 | |
| 345 | return OnFailure; |
| 346 | } |
| 347 | |
| 348 | |
| 349 | static bool MightInstantiateTo(Sema &S, DeclContext *Context, |
| 350 | DeclContext *Friend) { |
| 351 | if (Friend == Context) |
| 352 | return true; |
| 353 | |
| 354 | assert(!Friend->isDependentContext() && |
| 355 | "can't handle friends with dependent contexts here" ); |
| 356 | |
| 357 | if (!Context->isDependentContext()) |
| 358 | return false; |
| 359 | |
| 360 | if (Friend->isFileContext()) |
| 361 | return false; |
| 362 | |
| 363 | // TODO: this is very conservative |
| 364 | return true; |
| 365 | } |
| 366 | |
| 367 | // Asks whether the type in 'context' can ever instantiate to the type |
| 368 | // in 'friend'. |
| 369 | static bool MightInstantiateTo(Sema &S, CanQualType Context, CanQualType Friend) { |
| 370 | if (Friend == Context) |
| 371 | return true; |
| 372 | |
| 373 | if (!Friend->isDependentType() && !Context->isDependentType()) |
| 374 | return false; |
| 375 | |
| 376 | // TODO: this is very conservative. |
| 377 | return true; |
| 378 | } |
| 379 | |
| 380 | static bool MightInstantiateTo(Sema &S, |
| 381 | FunctionDecl *Context, |
| 382 | FunctionDecl *Friend) { |
| 383 | if (Context->getDeclName() != Friend->getDeclName()) |
| 384 | return false; |
| 385 | |
| 386 | if (!MightInstantiateTo(S, |
| 387 | Context: Context->getDeclContext(), |
| 388 | Friend: Friend->getDeclContext())) |
| 389 | return false; |
| 390 | |
| 391 | CanQual<FunctionProtoType> FriendTy |
| 392 | = S.Context.getCanonicalType(T: Friend->getType()) |
| 393 | ->getAs<FunctionProtoType>(); |
| 394 | CanQual<FunctionProtoType> ContextTy |
| 395 | = S.Context.getCanonicalType(T: Context->getType()) |
| 396 | ->getAs<FunctionProtoType>(); |
| 397 | |
| 398 | // There isn't any way that I know of to add qualifiers |
| 399 | // during instantiation. |
| 400 | if (FriendTy.getQualifiers() != ContextTy.getQualifiers()) |
| 401 | return false; |
| 402 | |
| 403 | if (FriendTy->getNumParams() != ContextTy->getNumParams()) |
| 404 | return false; |
| 405 | |
| 406 | if (!MightInstantiateTo(S, Context: ContextTy->getReturnType(), |
| 407 | Friend: FriendTy->getReturnType())) |
| 408 | return false; |
| 409 | |
| 410 | for (unsigned I = 0, E = FriendTy->getNumParams(); I != E; ++I) |
| 411 | if (!MightInstantiateTo(S, Context: ContextTy->getParamType(i: I), |
| 412 | Friend: FriendTy->getParamType(i: I))) |
| 413 | return false; |
| 414 | |
| 415 | return true; |
| 416 | } |
| 417 | |
| 418 | static bool MightInstantiateTo(Sema &S, |
| 419 | FunctionTemplateDecl *Context, |
| 420 | FunctionTemplateDecl *Friend) { |
| 421 | return MightInstantiateTo(S, |
| 422 | Context: Context->getTemplatedDecl(), |
| 423 | Friend: Friend->getTemplatedDecl()); |
| 424 | } |
| 425 | |
| 426 | static AccessResult MatchesFriend(Sema &S, |
| 427 | const EffectiveContext &EC, |
| 428 | const CXXRecordDecl *Friend) { |
| 429 | if (EC.includesClass(R: Friend)) |
| 430 | return AR_accessible; |
| 431 | |
| 432 | if (EC.isDependent()) { |
| 433 | for (const CXXRecordDecl *Context : EC.Records) { |
| 434 | if (MightInstantiateTo(From: Context, To: Friend)) |
| 435 | return AR_dependent; |
| 436 | } |
| 437 | } |
| 438 | |
| 439 | return AR_inaccessible; |
| 440 | } |
| 441 | |
| 442 | static AccessResult MatchesFriend(Sema &S, |
| 443 | const EffectiveContext &EC, |
| 444 | CanQualType Friend) { |
| 445 | if (const RecordType *RT = Friend->getAs<RecordType>()) |
| 446 | return MatchesFriend(S, EC, Friend: cast<CXXRecordDecl>(Val: RT->getDecl())); |
| 447 | |
| 448 | // TODO: we can do better than this |
| 449 | if (Friend->isDependentType()) |
| 450 | return AR_dependent; |
| 451 | |
| 452 | return AR_inaccessible; |
| 453 | } |
| 454 | |
| 455 | /// Determines whether the given friend class template matches |
| 456 | /// anything in the effective context. |
| 457 | static AccessResult MatchesFriend(Sema &S, |
| 458 | const EffectiveContext &EC, |
| 459 | ClassTemplateDecl *Friend) { |
| 460 | AccessResult OnFailure = AR_inaccessible; |
| 461 | |
| 462 | // Check whether the friend is the template of a class in the |
| 463 | // context chain. |
| 464 | for (SmallVectorImpl<CXXRecordDecl*>::const_iterator |
| 465 | I = EC.Records.begin(), E = EC.Records.end(); I != E; ++I) { |
| 466 | CXXRecordDecl *Record = *I; |
| 467 | |
| 468 | // Figure out whether the current class has a template: |
| 469 | ClassTemplateDecl *CTD; |
| 470 | |
| 471 | // A specialization of the template... |
| 472 | if (isa<ClassTemplateSpecializationDecl>(Val: Record)) { |
| 473 | CTD = cast<ClassTemplateSpecializationDecl>(Val: Record) |
| 474 | ->getSpecializedTemplate(); |
| 475 | |
| 476 | // ... or the template pattern itself. |
| 477 | } else { |
| 478 | CTD = Record->getDescribedClassTemplate(); |
| 479 | if (!CTD) continue; |
| 480 | } |
| 481 | |
| 482 | // It's a match. |
| 483 | if (Friend == CTD->getCanonicalDecl()) |
| 484 | return AR_accessible; |
| 485 | |
| 486 | // If the context isn't dependent, it can't be a dependent match. |
| 487 | if (!EC.isDependent()) |
| 488 | continue; |
| 489 | |
| 490 | // If the template names don't match, it can't be a dependent |
| 491 | // match. |
| 492 | if (CTD->getDeclName() != Friend->getDeclName()) |
| 493 | continue; |
| 494 | |
| 495 | // If the class's context can't instantiate to the friend's |
| 496 | // context, it can't be a dependent match. |
| 497 | if (!MightInstantiateTo(S, Context: CTD->getDeclContext(), |
| 498 | Friend: Friend->getDeclContext())) |
| 499 | continue; |
| 500 | |
| 501 | // Otherwise, it's a dependent match. |
| 502 | OnFailure = AR_dependent; |
| 503 | } |
| 504 | |
| 505 | return OnFailure; |
| 506 | } |
| 507 | |
| 508 | /// Determines whether the given friend function matches anything in |
| 509 | /// the effective context. |
| 510 | static AccessResult MatchesFriend(Sema &S, |
| 511 | const EffectiveContext &EC, |
| 512 | FunctionDecl *Friend) { |
| 513 | AccessResult OnFailure = AR_inaccessible; |
| 514 | |
| 515 | for (SmallVectorImpl<FunctionDecl*>::const_iterator |
| 516 | I = EC.Functions.begin(), E = EC.Functions.end(); I != E; ++I) { |
| 517 | if (Friend == *I) |
| 518 | return AR_accessible; |
| 519 | |
| 520 | if (EC.isDependent() && MightInstantiateTo(S, Context: *I, Friend)) |
| 521 | OnFailure = AR_dependent; |
| 522 | } |
| 523 | |
| 524 | return OnFailure; |
| 525 | } |
| 526 | |
| 527 | /// Determines whether the given friend function template matches |
| 528 | /// anything in the effective context. |
| 529 | static AccessResult MatchesFriend(Sema &S, |
| 530 | const EffectiveContext &EC, |
| 531 | FunctionTemplateDecl *Friend) { |
| 532 | if (EC.Functions.empty()) return AR_inaccessible; |
| 533 | |
| 534 | AccessResult OnFailure = AR_inaccessible; |
| 535 | |
| 536 | for (SmallVectorImpl<FunctionDecl*>::const_iterator |
| 537 | I = EC.Functions.begin(), E = EC.Functions.end(); I != E; ++I) { |
| 538 | |
| 539 | FunctionTemplateDecl *FTD = (*I)->getPrimaryTemplate(); |
| 540 | if (!FTD) |
| 541 | FTD = (*I)->getDescribedFunctionTemplate(); |
| 542 | if (!FTD) |
| 543 | continue; |
| 544 | |
| 545 | FTD = FTD->getCanonicalDecl(); |
| 546 | |
| 547 | if (Friend == FTD) |
| 548 | return AR_accessible; |
| 549 | |
| 550 | if (EC.isDependent() && MightInstantiateTo(S, Context: FTD, Friend)) |
| 551 | OnFailure = AR_dependent; |
| 552 | } |
| 553 | |
| 554 | return OnFailure; |
| 555 | } |
| 556 | |
| 557 | /// Determines whether the given friend declaration matches anything |
| 558 | /// in the effective context. |
| 559 | static AccessResult MatchesFriend(Sema &S, |
| 560 | const EffectiveContext &EC, |
| 561 | FriendDecl *FriendD) { |
| 562 | // Whitelist accesses if there's an invalid or unsupported friend |
| 563 | // declaration. |
| 564 | if (FriendD->isInvalidDecl() || FriendD->isUnsupportedFriend()) |
| 565 | return AR_accessible; |
| 566 | |
| 567 | if (TypeSourceInfo *T = FriendD->getFriendType()) |
| 568 | return MatchesFriend(S, EC, Friend: T->getType()->getCanonicalTypeUnqualified()); |
| 569 | |
| 570 | NamedDecl *Friend |
| 571 | = cast<NamedDecl>(Val: FriendD->getFriendDecl()->getCanonicalDecl()); |
| 572 | |
| 573 | // FIXME: declarations with dependent or templated scope. |
| 574 | |
| 575 | if (isa<ClassTemplateDecl>(Val: Friend)) |
| 576 | return MatchesFriend(S, EC, Friend: cast<ClassTemplateDecl>(Val: Friend)); |
| 577 | |
| 578 | if (isa<FunctionTemplateDecl>(Val: Friend)) |
| 579 | return MatchesFriend(S, EC, Friend: cast<FunctionTemplateDecl>(Val: Friend)); |
| 580 | |
| 581 | if (isa<CXXRecordDecl>(Val: Friend)) |
| 582 | return MatchesFriend(S, EC, Friend: cast<CXXRecordDecl>(Val: Friend)); |
| 583 | |
| 584 | assert(isa<FunctionDecl>(Friend) && "unknown friend decl kind" ); |
| 585 | return MatchesFriend(S, EC, Friend: cast<FunctionDecl>(Val: Friend)); |
| 586 | } |
| 587 | |
| 588 | static AccessResult GetFriendKind(Sema &S, |
| 589 | const EffectiveContext &EC, |
| 590 | const CXXRecordDecl *Class) { |
| 591 | AccessResult OnFailure = AR_inaccessible; |
| 592 | |
| 593 | // Okay, check friends. |
| 594 | for (auto *Friend : Class->friends()) { |
| 595 | switch (MatchesFriend(S, EC, FriendD: Friend)) { |
| 596 | case AR_accessible: |
| 597 | return AR_accessible; |
| 598 | |
| 599 | case AR_inaccessible: |
| 600 | continue; |
| 601 | |
| 602 | case AR_dependent: |
| 603 | OnFailure = AR_dependent; |
| 604 | break; |
| 605 | } |
| 606 | } |
| 607 | |
| 608 | // That's it, give up. |
| 609 | return OnFailure; |
| 610 | } |
| 611 | |
| 612 | namespace { |
| 613 | |
| 614 | /// A helper class for checking for a friend which will grant access |
| 615 | /// to a protected instance member. |
| 616 | struct ProtectedFriendContext { |
| 617 | Sema &S; |
| 618 | const EffectiveContext &EC; |
| 619 | const CXXRecordDecl *NamingClass; |
| 620 | bool CheckDependent; |
| 621 | bool EverDependent; |
| 622 | |
| 623 | /// The path down to the current base class. |
| 624 | SmallVector<const CXXRecordDecl*, 20> CurPath; |
| 625 | |
| 626 | ProtectedFriendContext(Sema &S, const EffectiveContext &EC, |
| 627 | const CXXRecordDecl *InstanceContext, |
| 628 | const CXXRecordDecl *NamingClass) |
| 629 | : S(S), EC(EC), NamingClass(NamingClass), |
| 630 | CheckDependent(InstanceContext->isDependentContext() || |
| 631 | NamingClass->isDependentContext()), |
| 632 | EverDependent(false) {} |
| 633 | |
| 634 | /// Check classes in the current path for friendship, starting at |
| 635 | /// the given index. |
| 636 | bool checkFriendshipAlongPath(unsigned I) { |
| 637 | assert(I < CurPath.size()); |
| 638 | for (unsigned E = CurPath.size(); I != E; ++I) { |
| 639 | switch (GetFriendKind(S, EC, Class: CurPath[I])) { |
| 640 | case AR_accessible: return true; |
| 641 | case AR_inaccessible: continue; |
| 642 | case AR_dependent: EverDependent = true; continue; |
| 643 | } |
| 644 | } |
| 645 | return false; |
| 646 | } |
| 647 | |
| 648 | /// Perform a search starting at the given class. |
| 649 | /// |
| 650 | /// PrivateDepth is the index of the last (least derived) class |
| 651 | /// along the current path such that a notional public member of |
| 652 | /// the final class in the path would have access in that class. |
| 653 | bool findFriendship(const CXXRecordDecl *Cur, unsigned PrivateDepth) { |
| 654 | // If we ever reach the naming class, check the current path for |
| 655 | // friendship. We can also stop recursing because we obviously |
| 656 | // won't find the naming class there again. |
| 657 | if (Cur == NamingClass) |
| 658 | return checkFriendshipAlongPath(I: PrivateDepth); |
| 659 | |
| 660 | if (CheckDependent && MightInstantiateTo(From: Cur, To: NamingClass)) |
| 661 | EverDependent = true; |
| 662 | |
| 663 | // Recurse into the base classes. |
| 664 | for (const auto &I : Cur->bases()) { |
| 665 | // If this is private inheritance, then a public member of the |
| 666 | // base will not have any access in classes derived from Cur. |
| 667 | unsigned BasePrivateDepth = PrivateDepth; |
| 668 | if (I.getAccessSpecifier() == AS_private) |
| 669 | BasePrivateDepth = CurPath.size() - 1; |
| 670 | |
| 671 | const CXXRecordDecl *RD; |
| 672 | |
| 673 | QualType T = I.getType(); |
| 674 | if (const RecordType *RT = T->getAs<RecordType>()) { |
| 675 | RD = cast<CXXRecordDecl>(Val: RT->getDecl()); |
| 676 | } else if (const InjectedClassNameType *IT |
| 677 | = T->getAs<InjectedClassNameType>()) { |
| 678 | RD = IT->getDecl(); |
| 679 | } else { |
| 680 | assert(T->isDependentType() && "non-dependent base wasn't a record?" ); |
| 681 | EverDependent = true; |
| 682 | continue; |
| 683 | } |
| 684 | |
| 685 | // Recurse. We don't need to clean up if this returns true. |
| 686 | CurPath.push_back(Elt: RD); |
| 687 | if (findFriendship(Cur: RD->getCanonicalDecl(), PrivateDepth: BasePrivateDepth)) |
| 688 | return true; |
| 689 | CurPath.pop_back(); |
| 690 | } |
| 691 | |
| 692 | return false; |
| 693 | } |
| 694 | |
| 695 | bool findFriendship(const CXXRecordDecl *Cur) { |
| 696 | assert(CurPath.empty()); |
| 697 | CurPath.push_back(Elt: Cur); |
| 698 | return findFriendship(Cur, PrivateDepth: 0); |
| 699 | } |
| 700 | }; |
| 701 | } |
| 702 | |
| 703 | /// Search for a class P that EC is a friend of, under the constraint |
| 704 | /// InstanceContext <= P |
| 705 | /// if InstanceContext exists, or else |
| 706 | /// NamingClass <= P |
| 707 | /// and with the additional restriction that a protected member of |
| 708 | /// NamingClass would have some natural access in P, which implicitly |
| 709 | /// imposes the constraint that P <= NamingClass. |
| 710 | /// |
| 711 | /// This isn't quite the condition laid out in the standard. |
| 712 | /// Instead of saying that a notional protected member of NamingClass |
| 713 | /// would have to have some natural access in P, it says the actual |
| 714 | /// target has to have some natural access in P, which opens up the |
| 715 | /// possibility that the target (which is not necessarily a member |
| 716 | /// of NamingClass) might be more accessible along some path not |
| 717 | /// passing through it. That's really a bad idea, though, because it |
| 718 | /// introduces two problems: |
| 719 | /// - Most importantly, it breaks encapsulation because you can |
| 720 | /// access a forbidden base class's members by directly subclassing |
| 721 | /// it elsewhere. |
| 722 | /// - It also makes access substantially harder to compute because it |
| 723 | /// breaks the hill-climbing algorithm: knowing that the target is |
| 724 | /// accessible in some base class would no longer let you change |
| 725 | /// the question solely to whether the base class is accessible, |
| 726 | /// because the original target might have been more accessible |
| 727 | /// because of crazy subclassing. |
| 728 | /// So we don't implement that. |
| 729 | static AccessResult GetProtectedFriendKind(Sema &S, const EffectiveContext &EC, |
| 730 | const CXXRecordDecl *InstanceContext, |
| 731 | const CXXRecordDecl *NamingClass) { |
| 732 | assert(InstanceContext == nullptr || |
| 733 | InstanceContext->getCanonicalDecl() == InstanceContext); |
| 734 | assert(NamingClass->getCanonicalDecl() == NamingClass); |
| 735 | |
| 736 | // If we don't have an instance context, our constraints give us |
| 737 | // that NamingClass <= P <= NamingClass, i.e. P == NamingClass. |
| 738 | // This is just the usual friendship check. |
| 739 | if (!InstanceContext) return GetFriendKind(S, EC, Class: NamingClass); |
| 740 | |
| 741 | ProtectedFriendContext PRC(S, EC, InstanceContext, NamingClass); |
| 742 | if (PRC.findFriendship(Cur: InstanceContext)) return AR_accessible; |
| 743 | if (PRC.EverDependent) return AR_dependent; |
| 744 | return AR_inaccessible; |
| 745 | } |
| 746 | |
| 747 | static AccessResult HasAccess(Sema &S, |
| 748 | const EffectiveContext &EC, |
| 749 | const CXXRecordDecl *NamingClass, |
| 750 | AccessSpecifier Access, |
| 751 | const AccessTarget &Target) { |
| 752 | assert(NamingClass->getCanonicalDecl() == NamingClass && |
| 753 | "declaration should be canonicalized before being passed here" ); |
| 754 | |
| 755 | if (Access == AS_public) return AR_accessible; |
| 756 | assert(Access == AS_private || Access == AS_protected); |
| 757 | |
| 758 | AccessResult OnFailure = AR_inaccessible; |
| 759 | |
| 760 | for (EffectiveContext::record_iterator |
| 761 | I = EC.Records.begin(), E = EC.Records.end(); I != E; ++I) { |
| 762 | // All the declarations in EC have been canonicalized, so pointer |
| 763 | // equality from this point on will work fine. |
| 764 | const CXXRecordDecl *ECRecord = *I; |
| 765 | |
| 766 | // [B2] and [M2] |
| 767 | if (Access == AS_private) { |
| 768 | if (ECRecord == NamingClass) |
| 769 | return AR_accessible; |
| 770 | |
| 771 | if (EC.isDependent() && MightInstantiateTo(From: ECRecord, To: NamingClass)) |
| 772 | OnFailure = AR_dependent; |
| 773 | |
| 774 | // [B3] and [M3] |
| 775 | } else { |
| 776 | assert(Access == AS_protected); |
| 777 | switch (IsDerivedFromInclusive(Derived: ECRecord, Target: NamingClass)) { |
| 778 | case AR_accessible: break; |
| 779 | case AR_inaccessible: continue; |
| 780 | case AR_dependent: OnFailure = AR_dependent; continue; |
| 781 | } |
| 782 | |
| 783 | // C++ [class.protected]p1: |
| 784 | // An additional access check beyond those described earlier in |
| 785 | // [class.access] is applied when a non-static data member or |
| 786 | // non-static member function is a protected member of its naming |
| 787 | // class. As described earlier, access to a protected member is |
| 788 | // granted because the reference occurs in a friend or member of |
| 789 | // some class C. If the access is to form a pointer to member, |
| 790 | // the nested-name-specifier shall name C or a class derived from |
| 791 | // C. All other accesses involve a (possibly implicit) object |
| 792 | // expression. In this case, the class of the object expression |
| 793 | // shall be C or a class derived from C. |
| 794 | // |
| 795 | // We interpret this as a restriction on [M3]. |
| 796 | |
| 797 | // In this part of the code, 'C' is just our context class ECRecord. |
| 798 | |
| 799 | // These rules are different if we don't have an instance context. |
| 800 | if (!Target.hasInstanceContext()) { |
| 801 | // If it's not an instance member, these restrictions don't apply. |
| 802 | if (!Target.isInstanceMember()) return AR_accessible; |
| 803 | |
| 804 | // If it's an instance member, use the pointer-to-member rule |
| 805 | // that the naming class has to be derived from the effective |
| 806 | // context. |
| 807 | |
| 808 | // Emulate a MSVC bug where the creation of pointer-to-member |
| 809 | // to protected member of base class is allowed but only from |
| 810 | // static member functions. |
| 811 | if (S.getLangOpts().MSVCCompat && !EC.Functions.empty()) |
| 812 | if (CXXMethodDecl* MD = dyn_cast<CXXMethodDecl>(Val: EC.Functions.front())) |
| 813 | if (MD->isStatic()) return AR_accessible; |
| 814 | |
| 815 | // Despite the standard's confident wording, there is a case |
| 816 | // where you can have an instance member that's neither in a |
| 817 | // pointer-to-member expression nor in a member access: when |
| 818 | // it names a field in an unevaluated context that can't be an |
| 819 | // implicit member. Pending clarification, we just apply the |
| 820 | // same naming-class restriction here. |
| 821 | // FIXME: we're probably not correctly adding the |
| 822 | // protected-member restriction when we retroactively convert |
| 823 | // an expression to being evaluated. |
| 824 | |
| 825 | // We know that ECRecord derives from NamingClass. The |
| 826 | // restriction says to check whether NamingClass derives from |
| 827 | // ECRecord, but that's not really necessary: two distinct |
| 828 | // classes can't be recursively derived from each other. So |
| 829 | // along this path, we just need to check whether the classes |
| 830 | // are equal. |
| 831 | if (NamingClass == ECRecord) return AR_accessible; |
| 832 | |
| 833 | // Otherwise, this context class tells us nothing; on to the next. |
| 834 | continue; |
| 835 | } |
| 836 | |
| 837 | assert(Target.isInstanceMember()); |
| 838 | |
| 839 | const CXXRecordDecl *InstanceContext = Target.resolveInstanceContext(S); |
| 840 | if (!InstanceContext) { |
| 841 | OnFailure = AR_dependent; |
| 842 | continue; |
| 843 | } |
| 844 | |
| 845 | switch (IsDerivedFromInclusive(Derived: InstanceContext, Target: ECRecord)) { |
| 846 | case AR_accessible: return AR_accessible; |
| 847 | case AR_inaccessible: continue; |
| 848 | case AR_dependent: OnFailure = AR_dependent; continue; |
| 849 | } |
| 850 | } |
| 851 | } |
| 852 | |
| 853 | // [M3] and [B3] say that, if the target is protected in N, we grant |
| 854 | // access if the access occurs in a friend or member of some class P |
| 855 | // that's a subclass of N and where the target has some natural |
| 856 | // access in P. The 'member' aspect is easy to handle because P |
| 857 | // would necessarily be one of the effective-context records, and we |
| 858 | // address that above. The 'friend' aspect is completely ridiculous |
| 859 | // to implement because there are no restrictions at all on P |
| 860 | // *unless* the [class.protected] restriction applies. If it does, |
| 861 | // however, we should ignore whether the naming class is a friend, |
| 862 | // and instead rely on whether any potential P is a friend. |
| 863 | if (Access == AS_protected && Target.isInstanceMember()) { |
| 864 | // Compute the instance context if possible. |
| 865 | const CXXRecordDecl *InstanceContext = nullptr; |
| 866 | if (Target.hasInstanceContext()) { |
| 867 | InstanceContext = Target.resolveInstanceContext(S); |
| 868 | if (!InstanceContext) return AR_dependent; |
| 869 | } |
| 870 | |
| 871 | switch (GetProtectedFriendKind(S, EC, InstanceContext, NamingClass)) { |
| 872 | case AR_accessible: return AR_accessible; |
| 873 | case AR_inaccessible: return OnFailure; |
| 874 | case AR_dependent: return AR_dependent; |
| 875 | } |
| 876 | llvm_unreachable("impossible friendship kind" ); |
| 877 | } |
| 878 | |
| 879 | switch (GetFriendKind(S, EC, Class: NamingClass)) { |
| 880 | case AR_accessible: return AR_accessible; |
| 881 | case AR_inaccessible: return OnFailure; |
| 882 | case AR_dependent: return AR_dependent; |
| 883 | } |
| 884 | |
| 885 | // Silence bogus warnings |
| 886 | llvm_unreachable("impossible friendship kind" ); |
| 887 | } |
| 888 | |
| 889 | /// Finds the best path from the naming class to the declaring class, |
| 890 | /// taking friend declarations into account. |
| 891 | /// |
| 892 | /// C++0x [class.access.base]p5: |
| 893 | /// A member m is accessible at the point R when named in class N if |
| 894 | /// [M1] m as a member of N is public, or |
| 895 | /// [M2] m as a member of N is private, and R occurs in a member or |
| 896 | /// friend of class N, or |
| 897 | /// [M3] m as a member of N is protected, and R occurs in a member or |
| 898 | /// friend of class N, or in a member or friend of a class P |
| 899 | /// derived from N, where m as a member of P is public, private, |
| 900 | /// or protected, or |
| 901 | /// [M4] there exists a base class B of N that is accessible at R, and |
| 902 | /// m is accessible at R when named in class B. |
| 903 | /// |
| 904 | /// C++0x [class.access.base]p4: |
| 905 | /// A base class B of N is accessible at R, if |
| 906 | /// [B1] an invented public member of B would be a public member of N, or |
| 907 | /// [B2] R occurs in a member or friend of class N, and an invented public |
| 908 | /// member of B would be a private or protected member of N, or |
| 909 | /// [B3] R occurs in a member or friend of a class P derived from N, and an |
| 910 | /// invented public member of B would be a private or protected member |
| 911 | /// of P, or |
| 912 | /// [B4] there exists a class S such that B is a base class of S accessible |
| 913 | /// at R and S is a base class of N accessible at R. |
| 914 | /// |
| 915 | /// Along a single inheritance path we can restate both of these |
| 916 | /// iteratively: |
| 917 | /// |
| 918 | /// First, we note that M1-4 are equivalent to B1-4 if the member is |
| 919 | /// treated as a notional base of its declaring class with inheritance |
| 920 | /// access equivalent to the member's access. Therefore we need only |
| 921 | /// ask whether a class B is accessible from a class N in context R. |
| 922 | /// |
| 923 | /// Let B_1 .. B_n be the inheritance path in question (i.e. where |
| 924 | /// B_1 = N, B_n = B, and for all i, B_{i+1} is a direct base class of |
| 925 | /// B_i). For i in 1..n, we will calculate ACAB(i), the access to the |
| 926 | /// closest accessible base in the path: |
| 927 | /// Access(a, b) = (* access on the base specifier from a to b *) |
| 928 | /// Merge(a, forbidden) = forbidden |
| 929 | /// Merge(a, private) = forbidden |
| 930 | /// Merge(a, b) = min(a,b) |
| 931 | /// Accessible(c, forbidden) = false |
| 932 | /// Accessible(c, private) = (R is c) || IsFriend(c, R) |
| 933 | /// Accessible(c, protected) = (R derived from c) || IsFriend(c, R) |
| 934 | /// Accessible(c, public) = true |
| 935 | /// ACAB(n) = public |
| 936 | /// ACAB(i) = |
| 937 | /// let AccessToBase = Merge(Access(B_i, B_{i+1}), ACAB(i+1)) in |
| 938 | /// if Accessible(B_i, AccessToBase) then public else AccessToBase |
| 939 | /// |
| 940 | /// B is an accessible base of N at R iff ACAB(1) = public. |
| 941 | /// |
| 942 | /// \param FinalAccess the access of the "final step", or AS_public if |
| 943 | /// there is no final step. |
| 944 | /// \return null if friendship is dependent |
| 945 | static CXXBasePath *FindBestPath(Sema &S, |
| 946 | const EffectiveContext &EC, |
| 947 | AccessTarget &Target, |
| 948 | AccessSpecifier FinalAccess, |
| 949 | CXXBasePaths &Paths) { |
| 950 | // Derive the paths to the desired base. |
| 951 | const CXXRecordDecl *Derived = Target.getNamingClass(); |
| 952 | const CXXRecordDecl *Base = Target.getDeclaringClass(); |
| 953 | |
| 954 | // FIXME: fail correctly when there are dependent paths. |
| 955 | bool isDerived = Derived->isDerivedFrom(Base: const_cast<CXXRecordDecl*>(Base), |
| 956 | Paths); |
| 957 | assert(isDerived && "derived class not actually derived from base" ); |
| 958 | (void) isDerived; |
| 959 | |
| 960 | CXXBasePath *BestPath = nullptr; |
| 961 | |
| 962 | assert(FinalAccess != AS_none && "forbidden access after declaring class" ); |
| 963 | |
| 964 | bool AnyDependent = false; |
| 965 | |
| 966 | // Derive the friend-modified access along each path. |
| 967 | for (CXXBasePaths::paths_iterator PI = Paths.begin(), PE = Paths.end(); |
| 968 | PI != PE; ++PI) { |
| 969 | AccessTarget::SavedInstanceContext _ = Target.saveInstanceContext(); |
| 970 | |
| 971 | // Walk through the path backwards. |
| 972 | AccessSpecifier PathAccess = FinalAccess; |
| 973 | CXXBasePath::iterator I = PI->end(), E = PI->begin(); |
| 974 | while (I != E) { |
| 975 | --I; |
| 976 | |
| 977 | assert(PathAccess != AS_none); |
| 978 | |
| 979 | // If the declaration is a private member of a base class, there |
| 980 | // is no level of friendship in derived classes that can make it |
| 981 | // accessible. |
| 982 | if (PathAccess == AS_private) { |
| 983 | PathAccess = AS_none; |
| 984 | break; |
| 985 | } |
| 986 | |
| 987 | const CXXRecordDecl *NC = I->Class->getCanonicalDecl(); |
| 988 | |
| 989 | AccessSpecifier BaseAccess = I->Base->getAccessSpecifier(); |
| 990 | PathAccess = std::max(a: PathAccess, b: BaseAccess); |
| 991 | |
| 992 | switch (HasAccess(S, EC, NamingClass: NC, Access: PathAccess, Target)) { |
| 993 | case AR_inaccessible: break; |
| 994 | case AR_accessible: |
| 995 | PathAccess = AS_public; |
| 996 | |
| 997 | // Future tests are not against members and so do not have |
| 998 | // instance context. |
| 999 | Target.suppressInstanceContext(); |
| 1000 | break; |
| 1001 | case AR_dependent: |
| 1002 | AnyDependent = true; |
| 1003 | goto Next; |
| 1004 | } |
| 1005 | } |
| 1006 | |
| 1007 | // Note that we modify the path's Access field to the |
| 1008 | // friend-modified access. |
| 1009 | if (BestPath == nullptr || PathAccess < BestPath->Access) { |
| 1010 | BestPath = &*PI; |
| 1011 | BestPath->Access = PathAccess; |
| 1012 | |
| 1013 | // Short-circuit if we found a public path. |
| 1014 | if (BestPath->Access == AS_public) |
| 1015 | return BestPath; |
| 1016 | } |
| 1017 | |
| 1018 | Next: ; |
| 1019 | } |
| 1020 | |
| 1021 | assert((!BestPath || BestPath->Access != AS_public) && |
| 1022 | "fell out of loop with public path" ); |
| 1023 | |
| 1024 | // We didn't find a public path, but at least one path was subject |
| 1025 | // to dependent friendship, so delay the check. |
| 1026 | if (AnyDependent) |
| 1027 | return nullptr; |
| 1028 | |
| 1029 | return BestPath; |
| 1030 | } |
| 1031 | |
| 1032 | /// Given that an entity has protected natural access, check whether |
| 1033 | /// access might be denied because of the protected member access |
| 1034 | /// restriction. |
| 1035 | /// |
| 1036 | /// \return true if a note was emitted |
| 1037 | static bool TryDiagnoseProtectedAccess(Sema &S, const EffectiveContext &EC, |
| 1038 | AccessTarget &Target) { |
| 1039 | // Only applies to instance accesses. |
| 1040 | if (!Target.isInstanceMember()) |
| 1041 | return false; |
| 1042 | |
| 1043 | assert(Target.isMemberAccess()); |
| 1044 | |
| 1045 | const CXXRecordDecl *NamingClass = Target.getEffectiveNamingClass(); |
| 1046 | |
| 1047 | for (EffectiveContext::record_iterator |
| 1048 | I = EC.Records.begin(), E = EC.Records.end(); I != E; ++I) { |
| 1049 | const CXXRecordDecl *ECRecord = *I; |
| 1050 | switch (IsDerivedFromInclusive(Derived: ECRecord, Target: NamingClass)) { |
| 1051 | case AR_accessible: break; |
| 1052 | case AR_inaccessible: continue; |
| 1053 | case AR_dependent: continue; |
| 1054 | } |
| 1055 | |
| 1056 | // The effective context is a subclass of the declaring class. |
| 1057 | // Check whether the [class.protected] restriction is limiting |
| 1058 | // access. |
| 1059 | |
| 1060 | // To get this exactly right, this might need to be checked more |
| 1061 | // holistically; it's not necessarily the case that gaining |
| 1062 | // access here would grant us access overall. |
| 1063 | |
| 1064 | NamedDecl *D = Target.getTargetDecl(); |
| 1065 | |
| 1066 | // If we don't have an instance context, [class.protected] says the |
| 1067 | // naming class has to equal the context class. |
| 1068 | if (!Target.hasInstanceContext()) { |
| 1069 | // If it does, the restriction doesn't apply. |
| 1070 | if (NamingClass == ECRecord) continue; |
| 1071 | |
| 1072 | // TODO: it would be great to have a fixit here, since this is |
| 1073 | // such an obvious error. |
| 1074 | S.Diag(Loc: D->getLocation(), DiagID: diag::note_access_protected_restricted_noobject) |
| 1075 | << S.Context.getTypeDeclType(Decl: ECRecord); |
| 1076 | return true; |
| 1077 | } |
| 1078 | |
| 1079 | const CXXRecordDecl *InstanceContext = Target.resolveInstanceContext(S); |
| 1080 | assert(InstanceContext && "diagnosing dependent access" ); |
| 1081 | |
| 1082 | switch (IsDerivedFromInclusive(Derived: InstanceContext, Target: ECRecord)) { |
| 1083 | case AR_accessible: continue; |
| 1084 | case AR_dependent: continue; |
| 1085 | case AR_inaccessible: |
| 1086 | break; |
| 1087 | } |
| 1088 | |
| 1089 | // Okay, the restriction seems to be what's limiting us. |
| 1090 | |
| 1091 | // Use a special diagnostic for constructors and destructors. |
| 1092 | if (isa<CXXConstructorDecl>(Val: D) || isa<CXXDestructorDecl>(Val: D) || |
| 1093 | (isa<FunctionTemplateDecl>(Val: D) && |
| 1094 | isa<CXXConstructorDecl>( |
| 1095 | Val: cast<FunctionTemplateDecl>(Val: D)->getTemplatedDecl()))) { |
| 1096 | return S.Diag(Loc: D->getLocation(), |
| 1097 | DiagID: diag::note_access_protected_restricted_ctordtor) |
| 1098 | << isa<CXXDestructorDecl>(Val: D->getAsFunction()); |
| 1099 | } |
| 1100 | |
| 1101 | // Otherwise, use the generic diagnostic. |
| 1102 | return S.Diag(Loc: D->getLocation(), |
| 1103 | DiagID: diag::note_access_protected_restricted_object) |
| 1104 | << S.Context.getTypeDeclType(Decl: ECRecord); |
| 1105 | } |
| 1106 | |
| 1107 | return false; |
| 1108 | } |
| 1109 | |
| 1110 | /// We are unable to access a given declaration due to its direct |
| 1111 | /// access control; diagnose that. |
| 1112 | static void diagnoseBadDirectAccess(Sema &S, |
| 1113 | const EffectiveContext &EC, |
| 1114 | AccessTarget &entity) { |
| 1115 | assert(entity.isMemberAccess()); |
| 1116 | NamedDecl *D = entity.getTargetDecl(); |
| 1117 | |
| 1118 | if (D->getAccess() == AS_protected && |
| 1119 | TryDiagnoseProtectedAccess(S, EC, Target&: entity)) |
| 1120 | return; |
| 1121 | |
| 1122 | // Find an original declaration. |
| 1123 | while (D->isOutOfLine()) { |
| 1124 | NamedDecl *PrevDecl = nullptr; |
| 1125 | if (VarDecl *VD = dyn_cast<VarDecl>(Val: D)) |
| 1126 | PrevDecl = VD->getPreviousDecl(); |
| 1127 | else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Val: D)) |
| 1128 | PrevDecl = FD->getPreviousDecl(); |
| 1129 | else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(Val: D)) |
| 1130 | PrevDecl = TND->getPreviousDecl(); |
| 1131 | else if (TagDecl *TD = dyn_cast<TagDecl>(Val: D)) { |
| 1132 | if (isa<RecordDecl>(Val: D) && cast<RecordDecl>(Val: D)->isInjectedClassName()) |
| 1133 | break; |
| 1134 | PrevDecl = TD->getPreviousDecl(); |
| 1135 | } |
| 1136 | if (!PrevDecl) break; |
| 1137 | D = PrevDecl; |
| 1138 | } |
| 1139 | |
| 1140 | CXXRecordDecl *DeclaringClass = FindDeclaringClass(D); |
| 1141 | Decl *ImmediateChild; |
| 1142 | if (D->getDeclContext() == DeclaringClass) |
| 1143 | ImmediateChild = D; |
| 1144 | else { |
| 1145 | DeclContext *DC = D->getDeclContext(); |
| 1146 | while (DC->getParent() != DeclaringClass) |
| 1147 | DC = DC->getParent(); |
| 1148 | ImmediateChild = cast<Decl>(Val: DC); |
| 1149 | } |
| 1150 | |
| 1151 | // Check whether there's an AccessSpecDecl preceding this in the |
| 1152 | // chain of the DeclContext. |
| 1153 | bool isImplicit = true; |
| 1154 | for (const auto *I : DeclaringClass->decls()) { |
| 1155 | if (I == ImmediateChild) break; |
| 1156 | if (isa<AccessSpecDecl>(Val: I)) { |
| 1157 | isImplicit = false; |
| 1158 | break; |
| 1159 | } |
| 1160 | } |
| 1161 | |
| 1162 | S.Diag(Loc: D->getLocation(), DiagID: diag::note_access_natural) |
| 1163 | << (unsigned) (D->getAccess() == AS_protected) |
| 1164 | << isImplicit; |
| 1165 | } |
| 1166 | |
| 1167 | /// Diagnose the path which caused the given declaration or base class |
| 1168 | /// to become inaccessible. |
| 1169 | static void DiagnoseAccessPath(Sema &S, |
| 1170 | const EffectiveContext &EC, |
| 1171 | AccessTarget &entity) { |
| 1172 | // Save the instance context to preserve invariants. |
| 1173 | AccessTarget::SavedInstanceContext _ = entity.saveInstanceContext(); |
| 1174 | |
| 1175 | // This basically repeats the main algorithm but keeps some more |
| 1176 | // information. |
| 1177 | |
| 1178 | // The natural access so far. |
| 1179 | AccessSpecifier accessSoFar = AS_public; |
| 1180 | |
| 1181 | // Check whether we have special rights to the declaring class. |
| 1182 | if (entity.isMemberAccess()) { |
| 1183 | NamedDecl *D = entity.getTargetDecl(); |
| 1184 | accessSoFar = D->getAccess(); |
| 1185 | const CXXRecordDecl *declaringClass = entity.getDeclaringClass(); |
| 1186 | |
| 1187 | switch (HasAccess(S, EC, NamingClass: declaringClass, Access: accessSoFar, Target: entity)) { |
| 1188 | // If the declaration is accessible when named in its declaring |
| 1189 | // class, then we must be constrained by the path. |
| 1190 | case AR_accessible: |
| 1191 | accessSoFar = AS_public; |
| 1192 | entity.suppressInstanceContext(); |
| 1193 | break; |
| 1194 | |
| 1195 | case AR_inaccessible: |
| 1196 | if (accessSoFar == AS_private || |
| 1197 | declaringClass == entity.getEffectiveNamingClass()) |
| 1198 | return diagnoseBadDirectAccess(S, EC, entity); |
| 1199 | break; |
| 1200 | |
| 1201 | case AR_dependent: |
| 1202 | llvm_unreachable("cannot diagnose dependent access" ); |
| 1203 | } |
| 1204 | } |
| 1205 | |
| 1206 | CXXBasePaths paths; |
| 1207 | CXXBasePath &path = *FindBestPath(S, EC, Target&: entity, FinalAccess: accessSoFar, Paths&: paths); |
| 1208 | assert(path.Access != AS_public); |
| 1209 | |
| 1210 | CXXBasePath::iterator i = path.end(), e = path.begin(); |
| 1211 | CXXBasePath::iterator constrainingBase = i; |
| 1212 | while (i != e) { |
| 1213 | --i; |
| 1214 | |
| 1215 | assert(accessSoFar != AS_none && accessSoFar != AS_private); |
| 1216 | |
| 1217 | // Is the entity accessible when named in the deriving class, as |
| 1218 | // modified by the base specifier? |
| 1219 | const CXXRecordDecl *derivingClass = i->Class->getCanonicalDecl(); |
| 1220 | const CXXBaseSpecifier *base = i->Base; |
| 1221 | |
| 1222 | // If the access to this base is worse than the access we have to |
| 1223 | // the declaration, remember it. |
| 1224 | AccessSpecifier baseAccess = base->getAccessSpecifier(); |
| 1225 | if (baseAccess > accessSoFar) { |
| 1226 | constrainingBase = i; |
| 1227 | accessSoFar = baseAccess; |
| 1228 | } |
| 1229 | |
| 1230 | switch (HasAccess(S, EC, NamingClass: derivingClass, Access: accessSoFar, Target: entity)) { |
| 1231 | case AR_inaccessible: break; |
| 1232 | case AR_accessible: |
| 1233 | accessSoFar = AS_public; |
| 1234 | entity.suppressInstanceContext(); |
| 1235 | constrainingBase = nullptr; |
| 1236 | break; |
| 1237 | case AR_dependent: |
| 1238 | llvm_unreachable("cannot diagnose dependent access" ); |
| 1239 | } |
| 1240 | |
| 1241 | // If this was private inheritance, but we don't have access to |
| 1242 | // the deriving class, we're done. |
| 1243 | if (accessSoFar == AS_private) { |
| 1244 | assert(baseAccess == AS_private); |
| 1245 | assert(constrainingBase == i); |
| 1246 | break; |
| 1247 | } |
| 1248 | } |
| 1249 | |
| 1250 | // If we don't have a constraining base, the access failure must be |
| 1251 | // due to the original declaration. |
| 1252 | if (constrainingBase == path.end()) |
| 1253 | return diagnoseBadDirectAccess(S, EC, entity); |
| 1254 | |
| 1255 | // We're constrained by inheritance, but we want to say |
| 1256 | // "declared private here" if we're diagnosing a hierarchy |
| 1257 | // conversion and this is the final step. |
| 1258 | unsigned diagnostic; |
| 1259 | if (entity.isMemberAccess() || |
| 1260 | constrainingBase + 1 != path.end()) { |
| 1261 | diagnostic = diag::note_access_constrained_by_path; |
| 1262 | } else { |
| 1263 | diagnostic = diag::note_access_natural; |
| 1264 | } |
| 1265 | |
| 1266 | const CXXBaseSpecifier *base = constrainingBase->Base; |
| 1267 | |
| 1268 | S.Diag(Loc: base->getSourceRange().getBegin(), DiagID: diagnostic) |
| 1269 | << base->getSourceRange() |
| 1270 | << (base->getAccessSpecifier() == AS_protected) |
| 1271 | << (base->getAccessSpecifierAsWritten() == AS_none); |
| 1272 | |
| 1273 | if (entity.isMemberAccess()) |
| 1274 | S.Diag(Loc: entity.getTargetDecl()->getLocation(), |
| 1275 | DiagID: diag::note_member_declared_at); |
| 1276 | } |
| 1277 | |
| 1278 | static void DiagnoseBadAccess(Sema &S, SourceLocation Loc, |
| 1279 | const EffectiveContext &EC, |
| 1280 | AccessTarget &Entity) { |
| 1281 | const CXXRecordDecl *NamingClass = Entity.getNamingClass(); |
| 1282 | const CXXRecordDecl *DeclaringClass = Entity.getDeclaringClass(); |
| 1283 | NamedDecl *D = (Entity.isMemberAccess() ? Entity.getTargetDecl() : nullptr); |
| 1284 | |
| 1285 | S.Diag(Loc, PD: Entity.getDiag()) |
| 1286 | << (Entity.getAccess() == AS_protected) |
| 1287 | << (D ? D->getDeclName() : DeclarationName()) |
| 1288 | << S.Context.getTypeDeclType(Decl: NamingClass) |
| 1289 | << S.Context.getTypeDeclType(Decl: DeclaringClass); |
| 1290 | DiagnoseAccessPath(S, EC, entity&: Entity); |
| 1291 | } |
| 1292 | |
| 1293 | /// MSVC has a bug where if during an using declaration name lookup, |
| 1294 | /// the declaration found is unaccessible (private) and that declaration |
| 1295 | /// was bring into scope via another using declaration whose target |
| 1296 | /// declaration is accessible (public) then no error is generated. |
| 1297 | /// Example: |
| 1298 | /// class A { |
| 1299 | /// public: |
| 1300 | /// int f(); |
| 1301 | /// }; |
| 1302 | /// class B : public A { |
| 1303 | /// private: |
| 1304 | /// using A::f; |
| 1305 | /// }; |
| 1306 | /// class C : public B { |
| 1307 | /// private: |
| 1308 | /// using B::f; |
| 1309 | /// }; |
| 1310 | /// |
| 1311 | /// Here, B::f is private so this should fail in Standard C++, but |
| 1312 | /// because B::f refers to A::f which is public MSVC accepts it. |
| 1313 | static bool IsMicrosoftUsingDeclarationAccessBug(Sema& S, |
| 1314 | SourceLocation AccessLoc, |
| 1315 | AccessTarget &Entity) { |
| 1316 | if (UsingShadowDecl *Shadow = |
| 1317 | dyn_cast<UsingShadowDecl>(Val: Entity.getTargetDecl())) |
| 1318 | if (UsingDecl *UD = dyn_cast<UsingDecl>(Val: Shadow->getIntroducer())) { |
| 1319 | const NamedDecl *OrigDecl = Entity.getTargetDecl()->getUnderlyingDecl(); |
| 1320 | if (Entity.getTargetDecl()->getAccess() == AS_private && |
| 1321 | (OrigDecl->getAccess() == AS_public || |
| 1322 | OrigDecl->getAccess() == AS_protected)) { |
| 1323 | S.Diag(Loc: AccessLoc, DiagID: diag::ext_ms_using_declaration_inaccessible) |
| 1324 | << UD->getQualifiedNameAsString() |
| 1325 | << OrigDecl->getQualifiedNameAsString(); |
| 1326 | return true; |
| 1327 | } |
| 1328 | } |
| 1329 | return false; |
| 1330 | } |
| 1331 | |
| 1332 | /// Determines whether the accessed entity is accessible. Public members |
| 1333 | /// have been weeded out by this point. |
| 1334 | static AccessResult IsAccessible(Sema &S, |
| 1335 | const EffectiveContext &EC, |
| 1336 | AccessTarget &Entity) { |
| 1337 | // Determine the actual naming class. |
| 1338 | const CXXRecordDecl *NamingClass = Entity.getEffectiveNamingClass(); |
| 1339 | |
| 1340 | AccessSpecifier UnprivilegedAccess = Entity.getAccess(); |
| 1341 | assert(UnprivilegedAccess != AS_public && "public access not weeded out" ); |
| 1342 | |
| 1343 | // Before we try to recalculate access paths, try to white-list |
| 1344 | // accesses which just trade in on the final step, i.e. accesses |
| 1345 | // which don't require [M4] or [B4]. These are by far the most |
| 1346 | // common forms of privileged access. |
| 1347 | if (UnprivilegedAccess != AS_none) { |
| 1348 | switch (HasAccess(S, EC, NamingClass, Access: UnprivilegedAccess, Target: Entity)) { |
| 1349 | case AR_dependent: |
| 1350 | // This is actually an interesting policy decision. We don't |
| 1351 | // *have* to delay immediately here: we can do the full access |
| 1352 | // calculation in the hope that friendship on some intermediate |
| 1353 | // class will make the declaration accessible non-dependently. |
| 1354 | // But that's not cheap, and odds are very good (note: assertion |
| 1355 | // made without data) that the friend declaration will determine |
| 1356 | // access. |
| 1357 | return AR_dependent; |
| 1358 | |
| 1359 | case AR_accessible: return AR_accessible; |
| 1360 | case AR_inaccessible: break; |
| 1361 | } |
| 1362 | } |
| 1363 | |
| 1364 | AccessTarget::SavedInstanceContext _ = Entity.saveInstanceContext(); |
| 1365 | |
| 1366 | // We lower member accesses to base accesses by pretending that the |
| 1367 | // member is a base class of its declaring class. |
| 1368 | AccessSpecifier FinalAccess; |
| 1369 | |
| 1370 | if (Entity.isMemberAccess()) { |
| 1371 | // Determine if the declaration is accessible from EC when named |
| 1372 | // in its declaring class. |
| 1373 | NamedDecl *Target = Entity.getTargetDecl(); |
| 1374 | const CXXRecordDecl *DeclaringClass = Entity.getDeclaringClass(); |
| 1375 | |
| 1376 | FinalAccess = Target->getAccess(); |
| 1377 | switch (HasAccess(S, EC, NamingClass: DeclaringClass, Access: FinalAccess, Target: Entity)) { |
| 1378 | case AR_accessible: |
| 1379 | // Target is accessible at EC when named in its declaring class. |
| 1380 | // We can now hill-climb and simply check whether the declaring |
| 1381 | // class is accessible as a base of the naming class. This is |
| 1382 | // equivalent to checking the access of a notional public |
| 1383 | // member with no instance context. |
| 1384 | FinalAccess = AS_public; |
| 1385 | Entity.suppressInstanceContext(); |
| 1386 | break; |
| 1387 | case AR_inaccessible: break; |
| 1388 | case AR_dependent: return AR_dependent; // see above |
| 1389 | } |
| 1390 | |
| 1391 | if (DeclaringClass == NamingClass) |
| 1392 | return (FinalAccess == AS_public ? AR_accessible : AR_inaccessible); |
| 1393 | } else { |
| 1394 | FinalAccess = AS_public; |
| 1395 | } |
| 1396 | |
| 1397 | assert(Entity.getDeclaringClass() != NamingClass); |
| 1398 | |
| 1399 | // Append the declaration's access if applicable. |
| 1400 | CXXBasePaths Paths; |
| 1401 | CXXBasePath *Path = FindBestPath(S, EC, Target&: Entity, FinalAccess, Paths); |
| 1402 | if (!Path) |
| 1403 | return AR_dependent; |
| 1404 | |
| 1405 | assert(Path->Access <= UnprivilegedAccess && |
| 1406 | "access along best path worse than direct?" ); |
| 1407 | if (Path->Access == AS_public) |
| 1408 | return AR_accessible; |
| 1409 | return AR_inaccessible; |
| 1410 | } |
| 1411 | |
| 1412 | static void DelayDependentAccess(Sema &S, |
| 1413 | const EffectiveContext &EC, |
| 1414 | SourceLocation Loc, |
| 1415 | const AccessTarget &Entity) { |
| 1416 | assert(EC.isDependent() && "delaying non-dependent access" ); |
| 1417 | DeclContext *DC = EC.getInnerContext(); |
| 1418 | assert(DC->isDependentContext() && "delaying non-dependent access" ); |
| 1419 | DependentDiagnostic::Create(Context&: S.Context, Parent: DC, : DependentDiagnostic::Access, |
| 1420 | Loc, |
| 1421 | IsMemberAccess: Entity.isMemberAccess(), |
| 1422 | AS: Entity.getAccess(), |
| 1423 | TargetDecl: Entity.getTargetDecl(), |
| 1424 | NamingClass: Entity.getNamingClass(), |
| 1425 | BaseObjectType: Entity.getBaseObjectType(), |
| 1426 | PDiag: Entity.getDiag()); |
| 1427 | } |
| 1428 | |
| 1429 | /// Checks access to an entity from the given effective context. |
| 1430 | static AccessResult CheckEffectiveAccess(Sema &S, |
| 1431 | const EffectiveContext &EC, |
| 1432 | SourceLocation Loc, |
| 1433 | AccessTarget &Entity) { |
| 1434 | assert(Entity.getAccess() != AS_public && "called for public access!" ); |
| 1435 | |
| 1436 | switch (IsAccessible(S, EC, Entity)) { |
| 1437 | case AR_dependent: |
| 1438 | DelayDependentAccess(S, EC, Loc, Entity); |
| 1439 | return AR_dependent; |
| 1440 | |
| 1441 | case AR_inaccessible: |
| 1442 | if (S.getLangOpts().MSVCCompat && |
| 1443 | IsMicrosoftUsingDeclarationAccessBug(S, AccessLoc: Loc, Entity)) |
| 1444 | return AR_accessible; |
| 1445 | if (!Entity.isQuiet()) |
| 1446 | DiagnoseBadAccess(S, Loc, EC, Entity); |
| 1447 | return AR_inaccessible; |
| 1448 | |
| 1449 | case AR_accessible: |
| 1450 | return AR_accessible; |
| 1451 | } |
| 1452 | |
| 1453 | // silence unnecessary warning |
| 1454 | llvm_unreachable("invalid access result" ); |
| 1455 | } |
| 1456 | |
| 1457 | static Sema::AccessResult CheckAccess(Sema &S, SourceLocation Loc, |
| 1458 | AccessTarget &Entity) { |
| 1459 | // If the access path is public, it's accessible everywhere. |
| 1460 | if (Entity.getAccess() == AS_public) |
| 1461 | return Sema::AR_accessible; |
| 1462 | |
| 1463 | // If we're currently parsing a declaration, we may need to delay |
| 1464 | // access control checking, because our effective context might be |
| 1465 | // different based on what the declaration comes out as. |
| 1466 | // |
| 1467 | // For example, we might be parsing a declaration with a scope |
| 1468 | // specifier, like this: |
| 1469 | // A::private_type A::foo() { ... } |
| 1470 | // |
| 1471 | // friend declaration should not be delayed because it may lead to incorrect |
| 1472 | // redeclaration chain, such as: |
| 1473 | // class D { |
| 1474 | // class E{ |
| 1475 | // class F{}; |
| 1476 | // friend void foo(D::E::F& q); |
| 1477 | // }; |
| 1478 | // friend void foo(D::E::F& q); |
| 1479 | // }; |
| 1480 | if (S.DelayedDiagnostics.shouldDelayDiagnostics()) { |
| 1481 | // [class.friend]p9: |
| 1482 | // A member nominated by a friend declaration shall be accessible in the |
| 1483 | // class containing the friend declaration. The meaning of the friend |
| 1484 | // declaration is the same whether the friend declaration appears in the |
| 1485 | // private, protected, or public ([class.mem]) portion of the class |
| 1486 | // member-specification. |
| 1487 | Scope *TS = S.getCurScope(); |
| 1488 | bool IsFriendDeclaration = false; |
| 1489 | while (TS && !IsFriendDeclaration) { |
| 1490 | IsFriendDeclaration = TS->isFriendScope(); |
| 1491 | TS = TS->getParent(); |
| 1492 | } |
| 1493 | if (!IsFriendDeclaration) { |
| 1494 | S.DelayedDiagnostics.add(diag: DelayedDiagnostic::makeAccess(Loc, Entity)); |
| 1495 | return Sema::AR_delayed; |
| 1496 | } |
| 1497 | } |
| 1498 | |
| 1499 | EffectiveContext EC(S.CurContext); |
| 1500 | switch (CheckEffectiveAccess(S, EC, Loc, Entity)) { |
| 1501 | case AR_accessible: return Sema::AR_accessible; |
| 1502 | case AR_inaccessible: return Sema::AR_inaccessible; |
| 1503 | case AR_dependent: return Sema::AR_dependent; |
| 1504 | } |
| 1505 | llvm_unreachable("invalid access result" ); |
| 1506 | } |
| 1507 | |
| 1508 | void Sema::HandleDelayedAccessCheck(DelayedDiagnostic &DD, Decl *D) { |
| 1509 | // Access control for names used in the declarations of functions |
| 1510 | // and function templates should normally be evaluated in the context |
| 1511 | // of the declaration, just in case it's a friend of something. |
| 1512 | // However, this does not apply to local extern declarations. |
| 1513 | |
| 1514 | DeclContext *DC = D->getDeclContext(); |
| 1515 | if (D->isLocalExternDecl()) { |
| 1516 | DC = D->getLexicalDeclContext(); |
| 1517 | } else if (FunctionDecl *FN = dyn_cast<FunctionDecl>(Val: D)) { |
| 1518 | DC = FN; |
| 1519 | } else if (TemplateDecl *TD = dyn_cast<TemplateDecl>(Val: D)) { |
| 1520 | if (auto *D = dyn_cast_if_present<DeclContext>(Val: TD->getTemplatedDecl())) |
| 1521 | DC = D; |
| 1522 | } else if (auto *RD = dyn_cast<RequiresExprBodyDecl>(Val: D)) { |
| 1523 | DC = RD; |
| 1524 | } |
| 1525 | |
| 1526 | EffectiveContext EC(DC); |
| 1527 | |
| 1528 | AccessTarget Target(DD.getAccessData()); |
| 1529 | |
| 1530 | if (CheckEffectiveAccess(S&: *this, EC, Loc: DD.Loc, Entity&: Target) == ::AR_inaccessible) |
| 1531 | DD.Triggered = true; |
| 1532 | } |
| 1533 | |
| 1534 | void Sema::HandleDependentAccessCheck(const DependentDiagnostic &DD, |
| 1535 | const MultiLevelTemplateArgumentList &TemplateArgs) { |
| 1536 | SourceLocation Loc = DD.getAccessLoc(); |
| 1537 | AccessSpecifier Access = DD.getAccess(); |
| 1538 | |
| 1539 | Decl *NamingD = FindInstantiatedDecl(Loc, D: DD.getAccessNamingClass(), |
| 1540 | TemplateArgs); |
| 1541 | if (!NamingD) return; |
| 1542 | Decl *TargetD = FindInstantiatedDecl(Loc, D: DD.getAccessTarget(), |
| 1543 | TemplateArgs); |
| 1544 | if (!TargetD) return; |
| 1545 | |
| 1546 | if (DD.isAccessToMember()) { |
| 1547 | CXXRecordDecl *NamingClass = cast<CXXRecordDecl>(Val: NamingD); |
| 1548 | NamedDecl *TargetDecl = cast<NamedDecl>(Val: TargetD); |
| 1549 | QualType BaseObjectType = DD.getAccessBaseObjectType(); |
| 1550 | if (!BaseObjectType.isNull()) { |
| 1551 | BaseObjectType = SubstType(T: BaseObjectType, TemplateArgs, Loc, |
| 1552 | Entity: DeclarationName()); |
| 1553 | if (BaseObjectType.isNull()) return; |
| 1554 | } |
| 1555 | |
| 1556 | AccessTarget Entity(Context, |
| 1557 | AccessTarget::Member, |
| 1558 | NamingClass, |
| 1559 | DeclAccessPair::make(D: TargetDecl, AS: Access), |
| 1560 | BaseObjectType); |
| 1561 | Entity.setDiag(DD.getDiagnostic()); |
| 1562 | CheckAccess(S&: *this, Loc, Entity); |
| 1563 | } else { |
| 1564 | AccessTarget Entity(Context, |
| 1565 | AccessTarget::Base, |
| 1566 | cast<CXXRecordDecl>(Val: TargetD), |
| 1567 | cast<CXXRecordDecl>(Val: NamingD), |
| 1568 | Access); |
| 1569 | Entity.setDiag(DD.getDiagnostic()); |
| 1570 | CheckAccess(S&: *this, Loc, Entity); |
| 1571 | } |
| 1572 | } |
| 1573 | |
| 1574 | Sema::AccessResult Sema::CheckUnresolvedLookupAccess(UnresolvedLookupExpr *E, |
| 1575 | DeclAccessPair Found) { |
| 1576 | if (!getLangOpts().AccessControl || |
| 1577 | !E->getNamingClass() || |
| 1578 | Found.getAccess() == AS_public) |
| 1579 | return AR_accessible; |
| 1580 | |
| 1581 | AccessTarget Entity(Context, AccessTarget::Member, E->getNamingClass(), |
| 1582 | Found, QualType()); |
| 1583 | Entity.setDiag(diag::err_access) << E->getSourceRange(); |
| 1584 | |
| 1585 | return CheckAccess(S&: *this, Loc: E->getNameLoc(), Entity); |
| 1586 | } |
| 1587 | |
| 1588 | Sema::AccessResult Sema::CheckUnresolvedMemberAccess(UnresolvedMemberExpr *E, |
| 1589 | DeclAccessPair Found) { |
| 1590 | if (!getLangOpts().AccessControl || |
| 1591 | Found.getAccess() == AS_public) |
| 1592 | return AR_accessible; |
| 1593 | |
| 1594 | QualType BaseType = E->getBaseType(); |
| 1595 | if (E->isArrow()) |
| 1596 | BaseType = BaseType->castAs<PointerType>()->getPointeeType(); |
| 1597 | |
| 1598 | AccessTarget Entity(Context, AccessTarget::Member, E->getNamingClass(), |
| 1599 | Found, BaseType); |
| 1600 | Entity.setDiag(diag::err_access) << E->getSourceRange(); |
| 1601 | |
| 1602 | return CheckAccess(S&: *this, Loc: E->getMemberLoc(), Entity); |
| 1603 | } |
| 1604 | |
| 1605 | bool Sema::isMemberAccessibleForDeletion(CXXRecordDecl *NamingClass, |
| 1606 | DeclAccessPair Found, |
| 1607 | QualType ObjectType, |
| 1608 | SourceLocation Loc, |
| 1609 | const PartialDiagnostic &Diag) { |
| 1610 | // Fast path. |
| 1611 | if (Found.getAccess() == AS_public || !getLangOpts().AccessControl) |
| 1612 | return true; |
| 1613 | |
| 1614 | AccessTarget Entity(Context, AccessTarget::Member, NamingClass, Found, |
| 1615 | ObjectType); |
| 1616 | |
| 1617 | // Suppress diagnostics. |
| 1618 | Entity.setDiag(Diag); |
| 1619 | |
| 1620 | switch (CheckAccess(S&: *this, Loc, Entity)) { |
| 1621 | case AR_accessible: return true; |
| 1622 | case AR_inaccessible: return false; |
| 1623 | case AR_dependent: llvm_unreachable("dependent for =delete computation" ); |
| 1624 | case AR_delayed: llvm_unreachable("cannot delay =delete computation" ); |
| 1625 | } |
| 1626 | llvm_unreachable("bad access result" ); |
| 1627 | } |
| 1628 | |
| 1629 | Sema::AccessResult Sema::CheckDestructorAccess(SourceLocation Loc, |
| 1630 | CXXDestructorDecl *Dtor, |
| 1631 | const PartialDiagnostic &PDiag, |
| 1632 | QualType ObjectTy) { |
| 1633 | if (!getLangOpts().AccessControl) |
| 1634 | return AR_accessible; |
| 1635 | |
| 1636 | // There's never a path involved when checking implicit destructor access. |
| 1637 | AccessSpecifier Access = Dtor->getAccess(); |
| 1638 | if (Access == AS_public) |
| 1639 | return AR_accessible; |
| 1640 | |
| 1641 | CXXRecordDecl *NamingClass = Dtor->getParent(); |
| 1642 | if (ObjectTy.isNull()) ObjectTy = Context.getTypeDeclType(Decl: NamingClass); |
| 1643 | |
| 1644 | AccessTarget Entity(Context, AccessTarget::Member, NamingClass, |
| 1645 | DeclAccessPair::make(D: Dtor, AS: Access), |
| 1646 | ObjectTy); |
| 1647 | Entity.setDiag(PDiag); // TODO: avoid copy |
| 1648 | |
| 1649 | return CheckAccess(S&: *this, Loc, Entity); |
| 1650 | } |
| 1651 | |
| 1652 | Sema::AccessResult Sema::CheckConstructorAccess(SourceLocation UseLoc, |
| 1653 | CXXConstructorDecl *Constructor, |
| 1654 | DeclAccessPair Found, |
| 1655 | const InitializedEntity &Entity, |
| 1656 | bool IsCopyBindingRefToTemp) { |
| 1657 | if (!getLangOpts().AccessControl || Found.getAccess() == AS_public) |
| 1658 | return AR_accessible; |
| 1659 | |
| 1660 | PartialDiagnostic PD(PDiag()); |
| 1661 | switch (Entity.getKind()) { |
| 1662 | default: |
| 1663 | PD = PDiag(DiagID: IsCopyBindingRefToTemp |
| 1664 | ? diag::ext_rvalue_to_reference_access_ctor |
| 1665 | : diag::err_access_ctor); |
| 1666 | |
| 1667 | break; |
| 1668 | |
| 1669 | case InitializedEntity::EK_Base: |
| 1670 | PD = PDiag(DiagID: diag::err_access_base_ctor); |
| 1671 | PD << Entity.isInheritedVirtualBase() |
| 1672 | << Entity.getBaseSpecifier()->getType() << getSpecialMember(MD: Constructor); |
| 1673 | break; |
| 1674 | |
| 1675 | case InitializedEntity::EK_Member: |
| 1676 | case InitializedEntity::EK_ParenAggInitMember: { |
| 1677 | const FieldDecl *Field = cast<FieldDecl>(Val: Entity.getDecl()); |
| 1678 | PD = PDiag(DiagID: diag::err_access_field_ctor); |
| 1679 | PD << Field->getType() << getSpecialMember(MD: Constructor); |
| 1680 | break; |
| 1681 | } |
| 1682 | |
| 1683 | case InitializedEntity::EK_LambdaCapture: { |
| 1684 | StringRef VarName = Entity.getCapturedVarName(); |
| 1685 | PD = PDiag(DiagID: diag::err_access_lambda_capture); |
| 1686 | PD << VarName << Entity.getType() << getSpecialMember(MD: Constructor); |
| 1687 | break; |
| 1688 | } |
| 1689 | |
| 1690 | } |
| 1691 | |
| 1692 | return CheckConstructorAccess(Loc: UseLoc, D: Constructor, FoundDecl: Found, Entity, PDiag: PD); |
| 1693 | } |
| 1694 | |
| 1695 | Sema::AccessResult Sema::CheckConstructorAccess(SourceLocation UseLoc, |
| 1696 | CXXConstructorDecl *Constructor, |
| 1697 | DeclAccessPair Found, |
| 1698 | const InitializedEntity &Entity, |
| 1699 | const PartialDiagnostic &PD) { |
| 1700 | if (!getLangOpts().AccessControl || |
| 1701 | Found.getAccess() == AS_public) |
| 1702 | return AR_accessible; |
| 1703 | |
| 1704 | CXXRecordDecl *NamingClass = Constructor->getParent(); |
| 1705 | |
| 1706 | // Initializing a base sub-object is an instance method call on an |
| 1707 | // object of the derived class. Otherwise, we have an instance method |
| 1708 | // call on an object of the constructed type. |
| 1709 | // |
| 1710 | // FIXME: If we have a parent, we're initializing the base class subobject |
| 1711 | // in aggregate initialization. It's not clear whether the object class |
| 1712 | // should be the base class or the derived class in that case. |
| 1713 | CXXRecordDecl *ObjectClass; |
| 1714 | if ((Entity.getKind() == InitializedEntity::EK_Base || |
| 1715 | Entity.getKind() == InitializedEntity::EK_Delegating) && |
| 1716 | !Entity.getParent()) { |
| 1717 | ObjectClass = cast<CXXConstructorDecl>(Val: CurContext)->getParent(); |
| 1718 | } else if (auto *Shadow = |
| 1719 | dyn_cast<ConstructorUsingShadowDecl>(Val: Found.getDecl())) { |
| 1720 | // If we're using an inheriting constructor to construct an object, |
| 1721 | // the object class is the derived class, not the base class. |
| 1722 | ObjectClass = Shadow->getParent(); |
| 1723 | } else { |
| 1724 | ObjectClass = NamingClass; |
| 1725 | } |
| 1726 | |
| 1727 | AccessTarget AccessEntity( |
| 1728 | Context, AccessTarget::Member, NamingClass, |
| 1729 | DeclAccessPair::make(D: Constructor, AS: Found.getAccess()), |
| 1730 | Context.getTypeDeclType(Decl: ObjectClass)); |
| 1731 | AccessEntity.setDiag(PD); |
| 1732 | |
| 1733 | return CheckAccess(S&: *this, Loc: UseLoc, Entity&: AccessEntity); |
| 1734 | } |
| 1735 | |
| 1736 | Sema::AccessResult Sema::CheckAllocationAccess(SourceLocation OpLoc, |
| 1737 | SourceRange PlacementRange, |
| 1738 | CXXRecordDecl *NamingClass, |
| 1739 | DeclAccessPair Found, |
| 1740 | bool Diagnose) { |
| 1741 | if (!getLangOpts().AccessControl || |
| 1742 | !NamingClass || |
| 1743 | Found.getAccess() == AS_public) |
| 1744 | return AR_accessible; |
| 1745 | |
| 1746 | AccessTarget Entity(Context, AccessTarget::Member, NamingClass, Found, |
| 1747 | QualType()); |
| 1748 | if (Diagnose) |
| 1749 | Entity.setDiag(diag::err_access) |
| 1750 | << PlacementRange; |
| 1751 | |
| 1752 | return CheckAccess(S&: *this, Loc: OpLoc, Entity); |
| 1753 | } |
| 1754 | |
| 1755 | Sema::AccessResult Sema::CheckMemberAccess(SourceLocation UseLoc, |
| 1756 | CXXRecordDecl *NamingClass, |
| 1757 | DeclAccessPair Found) { |
| 1758 | if (!getLangOpts().AccessControl || |
| 1759 | !NamingClass || |
| 1760 | Found.getAccess() == AS_public) |
| 1761 | return AR_accessible; |
| 1762 | |
| 1763 | AccessTarget Entity(Context, AccessTarget::Member, NamingClass, |
| 1764 | Found, QualType()); |
| 1765 | |
| 1766 | return CheckAccess(S&: *this, Loc: UseLoc, Entity); |
| 1767 | } |
| 1768 | |
| 1769 | Sema::AccessResult |
| 1770 | Sema::CheckStructuredBindingMemberAccess(SourceLocation UseLoc, |
| 1771 | CXXRecordDecl *DecomposedClass, |
| 1772 | DeclAccessPair Field) { |
| 1773 | if (!getLangOpts().AccessControl || |
| 1774 | Field.getAccess() == AS_public) |
| 1775 | return AR_accessible; |
| 1776 | |
| 1777 | AccessTarget Entity(Context, AccessTarget::Member, DecomposedClass, Field, |
| 1778 | Context.getRecordType(Decl: DecomposedClass)); |
| 1779 | Entity.setDiag(diag::err_decomp_decl_inaccessible_field); |
| 1780 | |
| 1781 | return CheckAccess(S&: *this, Loc: UseLoc, Entity); |
| 1782 | } |
| 1783 | |
| 1784 | Sema::AccessResult Sema::CheckMemberOperatorAccess(SourceLocation OpLoc, |
| 1785 | Expr *ObjectExpr, |
| 1786 | const SourceRange &Range, |
| 1787 | DeclAccessPair Found) { |
| 1788 | if (!getLangOpts().AccessControl || Found.getAccess() == AS_public) |
| 1789 | return AR_accessible; |
| 1790 | |
| 1791 | const RecordType *RT = ObjectExpr->getType()->castAs<RecordType>(); |
| 1792 | CXXRecordDecl *NamingClass = cast<CXXRecordDecl>(Val: RT->getDecl()); |
| 1793 | |
| 1794 | AccessTarget Entity(Context, AccessTarget::Member, NamingClass, Found, |
| 1795 | ObjectExpr->getType()); |
| 1796 | Entity.setDiag(diag::err_access) << ObjectExpr->getSourceRange() << Range; |
| 1797 | |
| 1798 | return CheckAccess(S&: *this, Loc: OpLoc, Entity); |
| 1799 | } |
| 1800 | |
| 1801 | Sema::AccessResult Sema::CheckMemberOperatorAccess(SourceLocation OpLoc, |
| 1802 | Expr *ObjectExpr, |
| 1803 | Expr *ArgExpr, |
| 1804 | DeclAccessPair Found) { |
| 1805 | return CheckMemberOperatorAccess( |
| 1806 | OpLoc, ObjectExpr, Range: ArgExpr ? ArgExpr->getSourceRange() : SourceRange(), |
| 1807 | Found); |
| 1808 | } |
| 1809 | |
| 1810 | Sema::AccessResult Sema::CheckMemberOperatorAccess(SourceLocation OpLoc, |
| 1811 | Expr *ObjectExpr, |
| 1812 | ArrayRef<Expr *> ArgExprs, |
| 1813 | DeclAccessPair FoundDecl) { |
| 1814 | SourceRange R; |
| 1815 | if (!ArgExprs.empty()) { |
| 1816 | R = SourceRange(ArgExprs.front()->getBeginLoc(), |
| 1817 | ArgExprs.back()->getEndLoc()); |
| 1818 | } |
| 1819 | |
| 1820 | return CheckMemberOperatorAccess(OpLoc, ObjectExpr, Range: R, Found: FoundDecl); |
| 1821 | } |
| 1822 | |
| 1823 | Sema::AccessResult Sema::CheckFriendAccess(NamedDecl *target) { |
| 1824 | assert(isa<CXXMethodDecl>(target->getAsFunction())); |
| 1825 | |
| 1826 | // Friendship lookup is a redeclaration lookup, so there's never an |
| 1827 | // inheritance path modifying access. |
| 1828 | AccessSpecifier access = target->getAccess(); |
| 1829 | |
| 1830 | if (!getLangOpts().AccessControl || access == AS_public) |
| 1831 | return AR_accessible; |
| 1832 | |
| 1833 | CXXMethodDecl *method = cast<CXXMethodDecl>(Val: target->getAsFunction()); |
| 1834 | |
| 1835 | AccessTarget entity(Context, AccessTarget::Member, |
| 1836 | cast<CXXRecordDecl>(Val: target->getDeclContext()), |
| 1837 | DeclAccessPair::make(D: target, AS: access), |
| 1838 | /*no instance context*/ QualType()); |
| 1839 | entity.setDiag(diag::err_access_friend_function) |
| 1840 | << (method->getQualifier() ? method->getQualifierLoc().getSourceRange() |
| 1841 | : method->getNameInfo().getSourceRange()); |
| 1842 | |
| 1843 | // We need to bypass delayed-diagnostics because we might be called |
| 1844 | // while the ParsingDeclarator is active. |
| 1845 | EffectiveContext EC(CurContext); |
| 1846 | switch (CheckEffectiveAccess(S&: *this, EC, Loc: target->getLocation(), Entity&: entity)) { |
| 1847 | case ::AR_accessible: return Sema::AR_accessible; |
| 1848 | case ::AR_inaccessible: return Sema::AR_inaccessible; |
| 1849 | case ::AR_dependent: return Sema::AR_dependent; |
| 1850 | } |
| 1851 | llvm_unreachable("invalid access result" ); |
| 1852 | } |
| 1853 | |
| 1854 | Sema::AccessResult Sema::CheckAddressOfMemberAccess(Expr *OvlExpr, |
| 1855 | DeclAccessPair Found) { |
| 1856 | if (!getLangOpts().AccessControl || |
| 1857 | Found.getAccess() == AS_none || |
| 1858 | Found.getAccess() == AS_public) |
| 1859 | return AR_accessible; |
| 1860 | |
| 1861 | OverloadExpr *Ovl = OverloadExpr::find(E: OvlExpr).Expression; |
| 1862 | CXXRecordDecl *NamingClass = Ovl->getNamingClass(); |
| 1863 | |
| 1864 | AccessTarget Entity(Context, AccessTarget::Member, NamingClass, Found, |
| 1865 | /*no instance context*/ QualType()); |
| 1866 | Entity.setDiag(diag::err_access) |
| 1867 | << Ovl->getSourceRange(); |
| 1868 | |
| 1869 | return CheckAccess(S&: *this, Loc: Ovl->getNameLoc(), Entity); |
| 1870 | } |
| 1871 | |
| 1872 | Sema::AccessResult Sema::CheckBaseClassAccess( |
| 1873 | SourceLocation AccessLoc, CXXRecordDecl *Base, CXXRecordDecl *Derived, |
| 1874 | const CXXBasePath &Path, unsigned DiagID, |
| 1875 | llvm::function_ref<void(PartialDiagnostic &)> SetupPDiag, bool ForceCheck, |
| 1876 | bool ForceUnprivileged) { |
| 1877 | if (!ForceCheck && !getLangOpts().AccessControl) |
| 1878 | return AR_accessible; |
| 1879 | |
| 1880 | if (Path.Access == AS_public) |
| 1881 | return AR_accessible; |
| 1882 | |
| 1883 | AccessTarget Entity(Context, AccessTarget::Base, Base, Derived, Path.Access); |
| 1884 | if (DiagID) |
| 1885 | SetupPDiag(Entity.setDiag(DiagID)); |
| 1886 | |
| 1887 | if (ForceUnprivileged) { |
| 1888 | switch ( |
| 1889 | CheckEffectiveAccess(S&: *this, EC: EffectiveContext(), Loc: AccessLoc, Entity)) { |
| 1890 | case ::AR_accessible: |
| 1891 | return Sema::AR_accessible; |
| 1892 | case ::AR_inaccessible: |
| 1893 | return Sema::AR_inaccessible; |
| 1894 | case ::AR_dependent: |
| 1895 | return Sema::AR_dependent; |
| 1896 | } |
| 1897 | llvm_unreachable("unexpected result from CheckEffectiveAccess" ); |
| 1898 | } |
| 1899 | return CheckAccess(S&: *this, Loc: AccessLoc, Entity); |
| 1900 | } |
| 1901 | |
| 1902 | Sema::AccessResult Sema::CheckBaseClassAccess(SourceLocation AccessLoc, |
| 1903 | QualType Base, QualType Derived, |
| 1904 | const CXXBasePath &Path, |
| 1905 | unsigned DiagID, bool ForceCheck, |
| 1906 | bool ForceUnprivileged) { |
| 1907 | return CheckBaseClassAccess( |
| 1908 | AccessLoc, Base: Base->getAsCXXRecordDecl(), Derived: Derived->getAsCXXRecordDecl(), |
| 1909 | Path, DiagID, SetupPDiag: [&](PartialDiagnostic &PD) { PD << Derived << Base; }, |
| 1910 | ForceCheck, ForceUnprivileged); |
| 1911 | } |
| 1912 | |
| 1913 | void Sema::CheckLookupAccess(const LookupResult &R) { |
| 1914 | assert(getLangOpts().AccessControl |
| 1915 | && "performing access check without access control" ); |
| 1916 | assert(R.getNamingClass() && "performing access check without naming class" ); |
| 1917 | |
| 1918 | for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) { |
| 1919 | if (I.getAccess() != AS_public) { |
| 1920 | AccessTarget Entity(Context, AccessedEntity::Member, |
| 1921 | R.getNamingClass(), I.getPair(), |
| 1922 | R.getBaseObjectType()); |
| 1923 | Entity.setDiag(diag::err_access); |
| 1924 | CheckAccess(S&: *this, Loc: R.getNameLoc(), Entity); |
| 1925 | } |
| 1926 | } |
| 1927 | } |
| 1928 | |
| 1929 | bool Sema::IsSimplyAccessible(NamedDecl *Target, CXXRecordDecl *NamingClass, |
| 1930 | QualType BaseType) { |
| 1931 | // Perform the C++ accessibility checks first. |
| 1932 | if (Target->isCXXClassMember() && NamingClass) { |
| 1933 | if (!getLangOpts().CPlusPlus) |
| 1934 | return false; |
| 1935 | // The unprivileged access is AS_none as we don't know how the member was |
| 1936 | // accessed, which is described by the access in DeclAccessPair. |
| 1937 | // `IsAccessible` will examine the actual access of Target (i.e. |
| 1938 | // Decl->getAccess()) when calculating the access. |
| 1939 | AccessTarget Entity(Context, AccessedEntity::Member, NamingClass, |
| 1940 | DeclAccessPair::make(D: Target, AS: AS_none), BaseType); |
| 1941 | EffectiveContext EC(CurContext); |
| 1942 | return ::IsAccessible(S&: *this, EC, Entity) != ::AR_inaccessible; |
| 1943 | } |
| 1944 | |
| 1945 | if (ObjCIvarDecl *Ivar = dyn_cast<ObjCIvarDecl>(Val: Target)) { |
| 1946 | // @public and @package ivars are always accessible. |
| 1947 | if (Ivar->getCanonicalAccessControl() == ObjCIvarDecl::Public || |
| 1948 | Ivar->getCanonicalAccessControl() == ObjCIvarDecl::Package) |
| 1949 | return true; |
| 1950 | |
| 1951 | // If we are inside a class or category implementation, determine the |
| 1952 | // interface we're in. |
| 1953 | ObjCInterfaceDecl *ClassOfMethodDecl = nullptr; |
| 1954 | if (ObjCMethodDecl *MD = getCurMethodDecl()) |
| 1955 | ClassOfMethodDecl = MD->getClassInterface(); |
| 1956 | else if (FunctionDecl *FD = getCurFunctionDecl()) { |
| 1957 | if (ObjCImplDecl *Impl |
| 1958 | = dyn_cast<ObjCImplDecl>(Val: FD->getLexicalDeclContext())) { |
| 1959 | if (ObjCImplementationDecl *IMPD |
| 1960 | = dyn_cast<ObjCImplementationDecl>(Val: Impl)) |
| 1961 | ClassOfMethodDecl = IMPD->getClassInterface(); |
| 1962 | else if (ObjCCategoryImplDecl* CatImplClass |
| 1963 | = dyn_cast<ObjCCategoryImplDecl>(Val: Impl)) |
| 1964 | ClassOfMethodDecl = CatImplClass->getClassInterface(); |
| 1965 | } |
| 1966 | } |
| 1967 | |
| 1968 | // If we're not in an interface, this ivar is inaccessible. |
| 1969 | if (!ClassOfMethodDecl) |
| 1970 | return false; |
| 1971 | |
| 1972 | // If we're inside the same interface that owns the ivar, we're fine. |
| 1973 | if (declaresSameEntity(D1: ClassOfMethodDecl, D2: Ivar->getContainingInterface())) |
| 1974 | return true; |
| 1975 | |
| 1976 | // If the ivar is private, it's inaccessible. |
| 1977 | if (Ivar->getCanonicalAccessControl() == ObjCIvarDecl::Private) |
| 1978 | return false; |
| 1979 | |
| 1980 | return Ivar->getContainingInterface()->isSuperClassOf(I: ClassOfMethodDecl); |
| 1981 | } |
| 1982 | |
| 1983 | return true; |
| 1984 | } |
| 1985 | |